WorldWideScience

Sample records for palm oil mill

  1. Electrocoagulation of Palm Oil Mill Effluent

    OpenAIRE

    Weerachai Phutdhawong; Sengpracha, Waya P.; Agustin, Melissa B.

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as we...

  2. Electrocoagulation of palm oil mill effluent.

    Science.gov (United States)

    Agustin, Melissa B; Sengpracha, Waya P; Phutdhawong, Weerachai

    2008-09-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  3. Electrocoagulation of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Weerachai Phutdhawong

    2008-09-01

    Full Text Available Electrocoagulation (EC is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME.

  4. Aerobic treatment of palm oil mill effluent.

    Science.gov (United States)

    Vijayaraghavan, K; Ahmad, Desa; Ezani Bin Abdul Aziz, Mohd

    2007-01-01

    In this study treatment of palm oil mill effluent (POME) was investigated using aerobic oxidation based on an activated sludge process. The effects of sludge volume index, scum index and mixed liquor suspended solids during the acclimatizing phase and biomass build-up phase were investigated in order to ascertain the reactor stability. The efficiency of the activated sludge process was evaluated by treating anaerobically digested and diluted raw POME obtained from Golden Hope Plantations, Malaysia. The treatment of POME was carried out at a fixed biomass concentration of 3900+/-200mg/L, whereas the corresponding sludge volume index was found to be around 105+/-5mL/g. The initial studies on the efficiency of the activated sludge reactor were carried out using diluted raw POME for varying the hydraulic retention time, viz: 18, 24, 30 and 36h and influent COD concentration, viz: 1000, 2000, 3000, 4000 and 5000mg/L, respectively. The results showed that at the end of 36h of hydraulic retention time for the above said influent COD, the COD removal efficiencies were found to be 83%, 72%, 64%, 54% and 42% whereas at 24h hydraulic retention time they were 57%, 45%, 38%, 30% and 27%, respectively. The effectiveness of aerobic oxidation was also compared between anaerobically digested and diluted raw POME having corresponding CODs of 3908 and 3925mg/L, for varying hydraulic retention time, viz: 18, 24, 30, 36, 42, 48, 54 and 60h. The dissolved oxygen concentration and pH in the activated sludge reactor were found to be 1.8-2.2mg/L and 7-8.5, respectively. The scum index was found to rise from 0.5% to 1.9% during the acclimatizing phase and biomass build-up phase. PMID:16584834

  5. PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT

    OpenAIRE

    Chiew Wei Puah; Yuen May Choo; Soon Hock Ong

    2013-01-01

    The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO) with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB) and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of...

  6. A Study of Biomass Fuel Briquettes from Oil Palm Mill Residues

    OpenAIRE

    Shiraz Aris, M.; Chin Yee Sing

    2013-01-01

    This study presents a systematic approach in utilizing the large amount of oil palm mill residues that are loosely-bounded and have low energy density. The rate of waste materials (palm kernel shell, palm fiber and empty fruit bunches) generated by oil palm mills amounted to about 34 million tonnes in 2010. Efforts have been made to increase the energy density of the loosely-bounded waste materials, in which solid fuel briquettes made of densified oil palm residues would contribute towa...

  7. Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills

    OpenAIRE

    Madaki, Yahaya S.

    2013-01-01

    Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME) into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm o...

  8. PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Chiew Wei Puah

    2013-01-01

    Full Text Available The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of Greenhouse Gas (GHG such as methane and carbon dioxide emissions by avoiding the formation of liquid biomass in the form of Palm Oil Mill Effluent (POME. The attributional Life Cycle Assessment (LCA shows the improved milling process contributes to significant reduction of GHG emission from palm oil mills as compared to the process of capturing biogas from POME. The palm based food source contains phytonutrients, namely carotenoids, tocols (tocopherol and tocotrienols and water soluble polyphenols.

  9. Co-Composting of Palm Oil Mill Sludge-Sawdust

    OpenAIRE

    Abu Zahrim Yaser; Rakmi Abd Rahman; Mohd Sahaid Kalil

    2007-01-01

    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40°C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the pr...

  10. Coagulation of Palm Oil Mill Effluent (POME) at High Temperature

    OpenAIRE

    Ismail, S.; Idris, I.; Ng, Y. T.; Ahmad, A. L.

    2014-01-01

    Aluminum sulfate or alum is traditionally used as a coagulant in wastewater treatment since it has proven its effectiveness in the removal suspended solid. In the current study, coagulation process is used as a pre-treatment to remove the high content of the suspended solids for membrane distillation treatment in raw Palm Oil Mill Effluent (POME) at high temperature. The performance in term of percentage suspended solids removal was evaluated to identify the ...

  11. Potency of Palm Oil Plantation and Mill Byproduct as Ruminant Feed in Paser Regency, East Kalimantan

    OpenAIRE

    Hamdi Mayulu; Sunarso, S.; Sutrisno, C. I.; Sumarsono, S.; Christiyanto, M.; Isharyudono, K.

    2013-01-01

    By-product produced from plantation and palm oil mill can be utilized for energy and protein source of ruminant feed. Thus, it still has potency for further exploration. The objective of the research was to investigate the nutrient value of palm oil plantation and mill’s by-product used to formulate ruminant feed. The research located in 66,118.5 ha of palm oil plantation in Paser regency, East Kalimantan province. The research was carried out in palm oil plantation and mill of PTPN XIII co...

  12. A Qualitative Approach of Identifying Major Cost Influencing Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil

    Directory of Open Access Journals (Sweden)

    Elaine L.Y. Man

    2011-01-01

    Full Text Available Problem statement: The oil palm industry, which heavily depends on the world market, is an export oriented industry. Worlds palm oil consumption was growing over the years. In addition, Indonesia and Malaysia dominated the oil palm industry. The oil palm industry in Malaysia is very competitive and become one of the major economic sectors contributing to the total revenue of the country. In year 2009, there was a total of 22.40 million tons of oil palm products including palm oil, palm kernel oil, palm kernel cake, oleo-chemicals and finished products, equivalent to RM 49.59 billion of export revenue. However, cost of production for Crude Palm Oil (CPO varies in a big gap. Therefore, it is essential to identify the major cost influencing factors in the production of CPO. Approach: The study system started with collection of Fresh Fruits Bunches (FFB from oil palm plantation to the production of CPO at palm oil mills. Two palm oil mills of different production capacity were chosen for this study. Statistical analysis was done to identify the major cost influencing factors of production cost for CPO. Results: The production cost of CPO for small scale palm oil mills preferably lied between RM 45 to RM 50 per metric tons while large scale palm oil mills lied below RM 45 per metric tons. Conclusion: Palm oil mills with higher production capacity were efficient in producing CPO than lower production capacity palm oil mills. Thus, the production cost of CPO was lower compared to that of small scale palm oil mills.

  13. Palm Oil Mill Biogas Producing Process Effluent Treatment: A Short Review

    Directory of Open Access Journals (Sweden)

    A.Y. Zahrim

    2014-01-01

    Full Text Available Biogas generation from palm oil mill effluent treatment plant is becoming the future trend for the palm oil millers. Therefore, the efficient treatment of biogas producing process effluent is equally important to minimize the detrimental effect towards human and environment. In addition, stricter regulations in the future, increasing in public awareness and towards water reuse also motivated investigation on this important topic. This study aims to discuss several treatment systems for palm oil mill biogas producing process effluent. Integrated treatment system is vital for treating palm oil mill biogas producing process effluent.

  14. Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent

    OpenAIRE

    Daoud, Jamal I.; Alam, Md Z.

    2010-01-01

    Problem statement: Palm oil mill effluent discharged by the oil palm industries is considered as the mixed of high polluted effluent which is abundant (about 20 million tonnes year-1) and its effect contributes to the serious environmental problems through the pollution of water bodies. Approach: The aim of this study was to identify the potential of low cost substrate such as Palm Oil Mill Effluent (POME) for the production of cellulase enzyme by liquid state bioconversion. The filamentous f...

  15. Evaluation of Technological Content of Wastewater Treatment of Palm Oil Mill in Lampung Province, Indonesia

    OpenAIRE

    Sarono; Gumbira-sa Id, E.; Ono Suparno; Suprihatin; Udin Hasanudin

    2014-01-01

    Palm oil industry is the most important economic sector in Lampung Province, Indonesia. There are 13 units of palm oil mills (POMs) operating in Lampung, producing about 1,094,586 tons of palm oil mill effluent (POME) a year. So far, the POME has been treated by the ponding system. However, the system has still caused environmental problems due to greenhouse gas emissions. Methane capture technology of which methane is converted to electrical energy is thus proposed. The objective of this stu...

  16. The possibility of palm oil mill effluent for biogas production

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ?40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  17. A Review of Biofilm Treatment Systems in Treating Downstream Palm Oil Mill Effluent (POME)

    OpenAIRE

    Takriff, M. S.; Jaafar, N. L.; Abdullah, S. R. S.

    2014-01-01

    The palm oil industry is a vital economic backbone of Malaysia since it is one of the world’s largest producer and exporter of palm oil despite creating enormous environmental problems, one being the huge generation of Palm Oil Mill Effluent (POME) during the oil extraction process. This highly polluting wastewater contains high concentrations of Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Due to the high organic content of POME, biol...

  18. Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach

    OpenAIRE

    Vijaya Subramaniam; Ngan, Ma A.; May, Choo Y.; Sulaiman, Nik M. K.

    2008-01-01

    Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 m...

  19. Adsorption of residual oil from palm oil mill effluent using rubber powder

    OpenAIRE

    Ahmad, A. L.; Bhatia, S.; Ibrahim, N.; Sumathi, S.

    2005-01-01

    A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME). POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Ma...

  20. Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills

    Directory of Open Access Journals (Sweden)

    Yahaya S. Madaki

    2013-10-01

    Full Text Available Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm oil mills operators on current advance POME treatment technology (PTT in relation to achieving zero discharge concepts. The survey attempted to identify the key issues about the PTT in respect to feasibility of zero discharge concepts in palm oil mills. The results shows that, although palm oil mills generate a lot of different types of wastes during processing of Fresh Fruit Bunches, according to the operators and available literature, POME is the most difficult waste to manage. The results also shows that, palm oil mills cannot meet up with the new discharge limits of 20ppm of BOD and zero emission using only conventional open or closed pounding system

  1. Adsorption Chromatography of Carotenes from Extracted Oil of Palm Oil Mill Effluent

    OpenAIRE

    Mashitah, M. D.; Abd Shukor, S. R.; Chan, C. Y.; Ahmad, A. L.

    2010-01-01

    Carotenes is one of the most important vitamin A precursor in human nutrition which has numerous advantages. Palm Oil Mill Effluent (POME) is wastewater which consists of carotenes in the oil and grease content. Therefore, adsorption chromatography is used to separate the carotenes from the oil and grease in POME. Several types of adsorbents, temperatures and mass loading were studied in the experiments. The 40°C and oil:adsorbent ratio of 1:5 was recommended to be the most suitable temperat...

  2. Evaluation of Hybrid Membrane Bioreactor (MBR) For Palm Oil Mill Effluent (POME) Treatment

    OpenAIRE

    Ahmad, Z.; Ujang, Z.; Olsson, G.; Abdul Latiff, A. A.

    2009-01-01

    The pollution load of palm oil mill effluent (POME) is in the range of 50,000 mg COD/L. With more than 500 palm oil mills, Malaysia produces some 13.9 million tonnes of crude palm oil annually and generates around 35 x 106 m3 POME. Typically, raw POME is difficult to degrade because it contains significant amounts of oil (tryacylglycerols) and degradative products such as di-and monoacylglycerols and fatty acids. The fatty acids composition (C12 – C20) of each of this fraction are diffe...

  3. Palm Oil Mill Biogas Producing Process Effluent Treatment: A Short Review

    OpenAIRE

    Zahrim, A. Y.

    2014-01-01

    Biogas generation from palm oil mill effluent treatment plant is becoming the future trend for the palm oil millers. Therefore, the efficient treatment of biogas producing process effluent is equally important to minimize the detrimental effect towards human and environment. In addition, stricter regulations in the future, increasing in public awareness and towards water reuse also motivated investigation on this important topic. This study aims to discuss several treatment systems for palm o...

  4. Phytoremediations of Palm Oil Mill Effluent (POME) by Using Aquatic Plants and Microalge for Biomass Production

    OpenAIRE

    Danny Soetrisnanto; Marcelinus Christwardana; Hadiyanto

    2013-01-01

    Phytoremediation by using aquatic plants and microalgae was evaluated in study to reduce waste load of Palm Oil Mill Effluent (POME). This study was aimed to utilize the aquatic plants i.e. water hyacinth (Eichhornia crassipes) and water lily (Nymphaea sp.) and alga Spriulina sp. to reduce COD and nutrients content in palm oil mill effluent. The phytoremediation was conducted in a sequence process. The aquatic plants were used in the first stage of remediation by varying height of culture (5-...

  5. A Study on Zeolite Performance in Waste Treating Ponds for Treatment of Palm Oil Mill Effluent

    OpenAIRE

    Shamsul Izhar; Syafiie Syam; Shazryenna Dalang; Halim Shah Ismail, M.

    2013-01-01

    Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of al...

  6. Anaerobic degradation of palm oil mill effluent (POME).

    Science.gov (United States)

    Yoochatchaval, W; Kumakura, S; Tanikawa, D; Yamaguchi, T; Yunus, M F M; Chen, S S; Kubota, K; Harada, H; Syutsubo, K

    2011-01-01

    The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions. PMID:22105121

  7. Co-composting of palm oil mill sludge-sawdust.

    Science.gov (United States)

    Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

    2007-12-15

    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components. PMID:19093514

  8. Co-Composting of Palm Oil Mill Sludge-Sawdust

    Directory of Open Access Journals (Sweden)

    Abu Zahrim Yaser

    2007-01-01

    Full Text Available Composting of Palm Oil Mill Sludge (POMS with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40°C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7. The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.

  9. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  10. Adsorption Chromatography of Carotenes from Extracted Oil of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    M.D. Mashitah

    2010-01-01

    Full Text Available Carotenes is one of the most important vitamin A precursor in human nutrition which has numerous advantages. Palm Oil Mill Effluent (POME is wastewater which consists of carotenes in the oil and grease content. Therefore, adsorption chromatography is used to separate the carotenes from the oil and grease in POME. Several types of adsorbents, temperatures and mass loading were studied in the experiments. The 40°C and oil:adsorbent ratio of 1:5 was recommended to be the most suitable temperature and mass loading for separation of carotenes by adsorption chromatography. Silica gel also shows better quality of adsorbent in separation of carotenes in hexane fractions.

  11. Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt

    OpenAIRE

    Saifuddin, N.; Fazlili, S. A.

    2009-01-01

    Problem Statement: Oil palm production is a major agricultural industry in Malaysia. In 2006, palm oil mills in Malaysia produced more than 58 million tonnes of Palm Oil Mill Effluent (POME). Existing treatment in a series of open lagoons at high ambient temperatures, results in the uncontrolled production of methane and carbon dioxide, which are both green house gases (GHGs). With the increased worldwide concern on environmentally friendly production processes particularly the emission of me...

  12. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.

    Science.gov (United States)

    Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali

    2014-08-01

    Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose. PMID:24908052

  13. A Study of Biomass Fuel Briquettes from Oil Palm Mill Residues

    Directory of Open Access Journals (Sweden)

    M. Shiraz Aris

    2013-01-01

    Full Text Available This study presents a systematic approach in utilizing the large amount of oil palm mill residues that are loosely-bounded and have low energy density. The rate of waste materials (palm kernel shell, palm fiber and empty fruit bunches generated by oil palm mills amounted to about 34 million tonnes in 2010. Efforts have been made to increase the energy density of the loosely-bounded waste materials, in which solid fuel briquettes made of densified oil palm residues would contribute towards a more efficient utilization of the waste material. This work focused on determining a fuel briquette with an optimum ratio of waste materials mixtures that has considerably high heating value and good mechanical properties. As part of the densification process, the waste material was pulverized and then compacted using a 200 kN force into 40 mm diameter briquettes. The heating values, proximate analysis, ultimate analysis and burning profile of the briquettes were studied. The end result was an optimised solid fuel with relatively high energy content made from a suitable mixing ratio of the different palm oil mill residues and an appropriate binder to ensure acceptable mechanical strength.

  14. Potency of Palm Oil Plantation and Mill Byproduct as Ruminant Feed in Paser Regency, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Hamdi Mayulu

    2013-10-01

    Full Text Available By-product produced from plantation and palm oil mill can be utilized for energy and protein source of ruminant feed. Thus, it still has potency for further exploration. The objective of the research was to investigate the nutrient value of palm oil plantation and mill’s by-product used to formulate ruminant feed. The research located in 66,118.5 ha of palm oil plantation in Paser regency, East Kalimantan province. The research was carried out in palm oil plantation and mill of PTPN XIII comprising productive plants (TM in +14,000 ha arranged in 9 divisions (afdeling. Measured variables consisted of: 1 dry mass production (mass of midrib every cutting and frond (kg;                        2 Centrosema sp mass production (kg; 3 mass of empty fruit bunches (kg; palm pressed fiber (PPF (kg, palm kernel cake (PKC (kg dan palm oil sludge (POS (kg; 4 nutrient content analyzed under proximate analysis in accordance with the procedure of Ruminant Feed Nutrient Laboratory, Faculty of Livestock, Diponegoro University. The result showed that total dry matter (DM production was 14.82 ton/ha/year, consisting: midrib 29.09% (crude protein (CP 3.16% and crude fiber (CF 37.85%, frond 10.31% (CP 6.53% dan CF 30.39%, Centrosema sp. 2.48% (CP 22.58% and CF 35.12, EFB 24.31% (CP 7.01% and CF 40.22%, PPF 1.23% (CP 5.56% and CF 50.36%, PKC 1.29% (CP 15.49% and CF10.45 and POS 1.20% (CP 17.86% and CF 45.99%. This could be concluded that palm oil plantation and mill’s by-product was recommended for ruminant feed as it had huge amount and appropriate nutrient contentDoi: 10.12777/ijse.5.2.56-60 [How to cite this article: Mayulu, H., Sunarso, C. I. Sutrisno, Sumarsono, M. Christiyanto, K. Isharyudono. (2013.  Potency of Palm Oil Plantation and Mill Byproduct as Ruminant Feed in Paser Regency, East Kalimantan, 5(2,56-60. Doi: 10.12777/ijse.5.2.56-60

  15. Screening of thermotolerant microorganisms and application for oil separation from palm oil mill wastewater

    Directory of Open Access Journals (Sweden)

    Aran H-Kittikun

    2007-05-01

    Full Text Available The characteristics of palm oil mill wastewater (POMW were brown color, pH 3.8-4.3, temperature 48-55oC, total solids 68.2-82.1 g/l, suspended solids 26.2-65.6 g/l, oil and grease 19.1-25.1 g/l, COD 49.9-160.7g/l and BOD 32.5-75.3 g/l. After centrifugation (3,184 xg of 50 ml POMW for 10 min, the POMW was separated into 3 layers: top (oil, middle (supernatant and bottom layer (sediment. The sediment containeddry weight 1.19 g and oil and grease 1.07 g. In order to release oil and grease trapped in palm fiber debris in the POMW, cellulase- and/or xylanase-enzyme-producing and thermotolerant microorganisms wereisolated. The isolates SO1 and SO2 were isolated from soil near the first anaerobic pond of the palm oil mill. They were aerobic, Gram positive, rod shaped, thermotolerant microorganisms and produced cellulase 12.11 U/ml (3 days and 7.2 U/ml (4 days, and xylanase 50.98 U/ml (4 days and 20.42 U/ml (4 days, respectivelyin synthetic medium containing carboxymethycellulose as a carbon source. When these 2 isolates were added into the steriled POMW under shaking condition for 7 days, after centrifugation at 3,184 xg the isolate SO1gave the better % reduction of dry weight (64.66 % and of oil and grease in the bottom layer (85.32 % of the POMW.

  16. Adsorption of residual oil from palm oil mill effluent using rubber powder

    Scientific Electronic Library Online (English)

    A.L., Ahmad; S., Bhatia; N., Ibrahim; S., Sumathi.

    2005-09-01

    Full Text Available A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME). POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing o [...] f sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

  17. Adsorption of residual oil from palm oil mill effluent using rubber powder

    Directory of Open Access Journals (Sweden)

    A.L. Ahmad

    2005-09-01

    Full Text Available A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME. POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

  18. Trends and Effective Use of Energy Input in the Palm Kernel Oil Mills

    OpenAIRE

    Bamgboye, Ai; Jekanyinfa, So

    2007-01-01

    This work aims at studying the importance and the efficiency of energy use in a few palm kernel oil mills selected for their representativity. Pattern of energy use, the cost of energy per unit product, energy intensity and normalized performance indicator (NPI) were determined. Results show that the medium and the large mills depend largely on fossil fuel; while the small mill depends on electricity. It was found out that the large mill has the most effective use of energy with high energy i...

  19. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yacob, Shahrakbah; Shirai, Yoshihito; Wakisaka, Minato [Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196 (Japan); Ali Hassan, Mohd [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Subash, Sunderaj [Felda Palm Industries Sdn. Bhd., Balai Felda, Jalan Gurney Satu, 54000 Kuala Lumpur (Malaysia)

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m{sup 2}. Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping. (author)

  20. Carbon Mobilization in Oil Palm Plantation and Milling Based on a Carbon-Balanced Model – A Case Study in Thailand

    OpenAIRE

    Withida Patthanaissaranukool; Chongchin Polprasert

    2011-01-01

    Damage to agricultural areas and household properties occurs more frequently all year round from extreme weather, which is believed to be due to climate change caused by the increase of greenhouse gases – particularly, CO2. In order to help reduce its concentration in the atmosphere, palm oil is a renewable energy which can be used for this purpose. In this study, the carbon mobilization of palm oil was investigated, from oil palm plantation process to the milling process, so as to determin...

  1. A Review of Biofilm Treatment Systems in Treating Downstream Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    M.S. Takriff

    2014-01-01

    Full Text Available The palm oil industry is a vital economic backbone of Malaysia since it is one of the world’s largest producer and exporter of palm oil despite creating enormous environmental problems, one being the huge generation of Palm Oil Mill Effluent (POME during the oil extraction process. This highly polluting wastewater contains high concentrations of Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD. Due to the high organic content of POME, biological treatment method seems to be a preferable solution. Therefore, a series of treatment comprising of fermentation, algae, biofilm and membrane system is proposed as one of the possible option to treat POME. This paper also reviews few configurations and modes of operation of several biofilm treatment systems as well as focusing on the application of a Fluidized Bed Biofilm Reactor (FBBR in treating POME further down the proposed treatment chain.

  2. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME)

    OpenAIRE

    Ganang Dwi Hartanto; Muhamad Maulana Azimatun Nur; Hadiyanto, H.

    2012-01-01

    Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME), this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%). The objective of the ...

  3. High-rate anaerobic treatment of palm oil mill effluent

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil mil effluent (POME contains high amount of organic matter, oil & grease, total solids and suspended solids. Anaerobic treatment of POME was conducted at room temperature (30±2ºC and high temperature (50±0.5ºC. The effects of hydraulic retention time (HRT, organic loading rate (OLR, COD:N ratio and temperature on the anaerobic digestion of POME were investigated. The optimum conditions were found to be 10 days HRT, OLR of 9.50 kg COD m-3d-1, COD:N ratio of 65 and the optimum temperature at 50ºC. The highest COD reduction of 81.1% was achieved. Biogas production in general was greater than 0.30 m3/kg COD/d. Comparison on anaerobic treatment using POME and POME treated by thermotolerant polymer-producing fungi Rhizopus sp. ST4 revealed that the biopretreated POME gave higher COD removal (72.6% but lower biogas production (0.97 m3/m3/d or 0.27 m3/kg COD/d than the POME without pretreatment (56.1% and 1.16 m3/m3/d or 0.37 m3/kg COD/d, respectively.

  4. Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach

    Directory of Open Access Journals (Sweden)

    Vijaya Subramaniam

    2008-01-01

    Full Text Available Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 mills identifies the potential impacts associated with the production of palm oil using the life cycle assessment approach and evaluates opportunities to overcome the potential impacts. Most of the impact categories show savings rather than impact. Within the system boundary there are only two main parameters that are causing the potential impacts to the environment; they are the Palm Oil Mill Effluent (POME followed by the boiler ash. The impact categories that the POME contributes to are under the Respiratory Organics and Climate Change. Both these impact categories are related to air emissions. The main air emission from the POME ponds during the anaerobic digestion is the biogas which consists of methane, carbon dioxide and traces of hydrogen sulfide. An alternate scenario was conducted to see how the impact will be if the biogas was harvested and used as energy and the results shows that when the biogas is harvested, the impact from the POME is removed. The other significant impact is the boiler ash. This is the ash that is produced when the biomass is burnt in the boiler. This potential impact contributes to the ecotoxicity impact category. This is mainly because of the disposal of this ash which in most cases was used for land application in the roads leading to the mil or in the plantations. If the parameters causing these two potential impacts are curbed, then this will be a further plus point for the Malaysian oil palm industry which is already avoiding fossil fuel based energy and chemical use for processing.

  5. An Experimental Investigation on the Handling and Storage Properties of Biomass Fuel Briquettes Made from Oil Palm Mill Residues

    OpenAIRE

    Mohd. Shiraz Aris; Chin Yee Sing

    2012-01-01

    This study is about experimental investigation on solid fuel briquettes made of oil palm mill residues that exhibit optimum handling and storage properties. One of the major technical challenges in utilizing biomass waste material as a solid fuel is the handling and storage issues of loose and wet waste material. The solid biomass fuel briquettes made from different types and combinations of palm oil mill residues were explored for optimum storage and handling features. A solution to im...

  6. Biomethanation of Palm Oil Mill Effluent (POME) By Ultrasonic Membrane Anaerobic System (UMAS) Using Pome as Substrate

    OpenAIRE

    Abdurahman.H.Nour*1,; Nuri ‘AdilahNashrulmillah2

    2014-01-01

    Palm oil mill effluent (POME) with average chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of 70,000 and 30,000 mg/L, respectively, can cause serious environmental hazard if discharged untreated. There are conventional palm oil mill effluent (POME) treatment systems that require large footprint, long HRT and fail to meet the Malaysia Department of Environment (DOE) discharge limit. In this study, the potential of ultrasonic-assisted membrane anaerobic system (...

  7. Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.

    Science.gov (United States)

    Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

    2008-01-01

    The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality. PMID:19227069

  8. Factors affecting treatment of palm oil mill effluent using enzyme from Aspergillus niger ATCC 6275

    Directory of Open Access Journals (Sweden)

    Chantaphaso, S.

    2001-11-01

    Full Text Available Powdered enzyme was produced by freeze-drying the enzyme solution extracted from 3 days culture of Aspergillus niger ATCC 6275 on palm cake with the addition of 0.2% glucose and 2% urea. The product yield was 38% by weight. The half-life of the enzyme was 9 months keeping at 4ºC. The enzyme was tested with decanter effluent with different characteristics from two palm oil mills. The decanter effluent possessing high suspended solid (SS and low oil (9.5 g/l content was selected for studying the factors affecting the separation of SS and oil as bulking solid. Results indicated that the effluent must contain oil not less than 15 g/l so that the bulking solid would occur from the reaction of the enzyme (with xylanase activity of 200 U/ ml after incubation at 40ºC for 6 h. Minimum concentrations of the enzyme from A. niger ATCC 6275 and commercial xylanase (Meicellase were 200 and 600 U/ml, respectively. The optimum pH was 4.5. Treatment of palm oil mill effluent by the enzyme from A. niger ATCC 6275 for 3 h under the optimum conditions resulted in 78% separation of suspended solids with oil & grease removal of 95% and COD reduction of 35%.

  9. Direct Fermentation of Palm Oil Mill Effluent to Acetone-butanol-ethanol by Solvent Producing Clostridia

    OpenAIRE

    Mohd Sahaid Kalil; Pang Wey Kit; Wan Mohtar Wan Yusoff; Yoshino Sadazo; Rakmi Abdul Rahman

    2003-01-01

    Studies on direct use of palm oil mill effluent (POME) as fermentation medium for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum NCIMB 13357 and C. saccharoperbutylacetonicum N1-4 have been carried out in batch culture system. Investigations were carried out on the effect of concentration of sedimented POME, the effect of initial culture pH and the use of immobilized cells for ABE production. It was found that C. acetobutylicum NCIMB13357 grown in 90% sedimented POME w...

  10. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    Vivian Wongistani

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  11. Optimization of Electricity Generation and Palm Oil Mill Effluent (POME) Treatment from Microbial Fuel Cell

    OpenAIRE

    Siti Norhana Shari; Siti Kartom Kamarudin; Nurina Anuar; Manal Ismail; Wan Ramli Wan Daud; Jamaliah Md. Jahim; Swee Su Lim

    2010-01-01

    Natural micro-flora of Palm Oil Mill Effluent (POME) sludge was grown in dual-chamber Microbial Fuel Cells (MFC) to produce electricity by providing glucose at different concentration. A greater strength of Open Circuit Voltage (OCV) was observed with optimal biomass metabolism activity, as increasing glucose concentrations. The time Response Constant (RC) of OCV was taken everyday to estimate the total time needed to achieve steady state voltage at zero current. The lower value of RC indicat...

  12. Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Hassan, Mohd Ali; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2005-06-01

    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated. PMID:15894045

  13. Trends and Effective Use of Energy Input in the Palm Kernel Oil Mills

    Directory of Open Access Journals (Sweden)

    Bamgboye, AI.

    2007-01-01

    Full Text Available This work aims at studying the importance and the efficiency of energy use in a few palm kernel oil mills selected for their representativity. Pattern of energy use, the cost of energy per unit product, energy intensity and normalized performance indicator (NPI were determined. Results show that the medium and the large mills depend largely on fossil fuel; while the small mill depends on electricity. It was found out that the large mill has the most effective use of energy with high energy intensity. The annual cost of energy per unit product of N8,360,000 ($64,307.69; N12,262,250 ($94,325 and N13,353,870 ($102, 722.08 were obtained for small, medium and large mills respectively. The NPI results show that there was no wastage of energy through space heating in energy supplied for production within the factory site.

  14. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    Science.gov (United States)

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

  15. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. PMID:21712603

  16. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste

    International Nuclear Information System (INIS)

    Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

  17. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Boe, Kanokwan

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co-digestion of treated EFB by NaOH presoaking and hydrothermal treatment with POME, which resulted in 98% improvement inmethane yield comparing with co-digesting untreated EFB. The maximum methane production of co-digestion treated EFB with POME was 82.7m3 CH4/ton of mixed treated EFB and POME (6.8:1), corresponding to methane yield of 392mL CH4/gVS-added. The electricity production of 1ton mixture of treated EFB and POME would be 1190MJ or 330kWh of electricity. The study shows that there is a great potential to co-digestion treated EFB with POME for bioenergy production.

  18. Enzymatic saccharification of hemicellulose extracted from palm oil mill wastes

    Directory of Open Access Journals (Sweden)

    Poonsuk Prasertsan

    2001-11-01

    Full Text Available Various parameters affecting the extraction of hemicellulose from palm cake by alkali method and sterilizer condensate by solvent method were investigated. For extraction of hemicellulose from palm cake, the optimal ratio of palm cake to sodium hydroxide (NaOH (1.5% conc. was 1:10. However, potassium hydroxide (KOH was a better source of alkali than NaOH and the optimum ratio of palm cake to 12% KOH was 1:50 (w/v. Temperature over 100ºC (100 and 121ºC extracted significantly higher hemicellulose than at 80ºC after 20 min treatment. The addition of ethanol to the extracted solution in the ratio of 1:1 (v/v gave the highest hemicellulose yield of 8.67 g/100 g palm cake. For extraction of hemicellulose from sterilizer condensate, the optimum ratio of ethanol to the condensate was 2:1 (v/v, which gave a hemicellulose yield of 6.42 g/100 ml. The enzymatic saccharification of the hemicelllulose extracted from palm cake (HEPC and from sterilizer condensate (HESC was 3-10 times lower than that of xylan. The enzyme from Aspergillus niger ATCC 6275 and Meicellase gave higher saccharification rates than that of Sumyzyme. The contents of reducing sugars in xylan, HEPC and HESC were 96.4, 36.2 and 20.6%, respectively and 75.3, 67.9 and 97.6% of these values could be hydrolysed by the enzymes. Hence, palm cake was a better source of substrate for extraction of hemicellulose while hemicellulose extracted from sterilizer condensate gave higher percentage of enzymatic saccharification.

  19. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  20. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.

    Science.gov (United States)

    Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

    2010-11-01

    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry. PMID:20609579

  1. Evaluation of Technological Content of Wastewater Treatment of Palm Oil Mill in Lampung Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sarono

    2014-01-01

    Full Text Available Palm oil industry is the most important economic sector in Lampung Province, Indonesia. There are 13 units of palm oil mills (POMs operating in Lampung, producing about 1,094,586 tons of palm oil mill effluent (POME a year. So far, the POME has been treated by the ponding system. However, the system has still caused environmental problems due to greenhouse gas emissions. Methane capture technology of which methane is converted to electrical energy is thus proposed. The objective of this study was to evaluate the conditions of POME treatment technology of POMs in Lampung. Technological content analysis was performed to identify the conditions of technoware, humanware, infoware and orgaware (THIO being applied at POMs. The results showed that: (1 technological condition of POME treatment at 13 POM's in Lampung was almost equal among state-owned enterprises (SOE' s, non-public companies, and public companies, (2 the value of technology contribution coefficient of PTPN V Tandun, as a reference POM unit,was higher than that of the technology contribution coefficient of the POMs in Lampung, and (3 enhancing performance technology elements of technoware, humanware, infoware, and orgaware to apply methane capture technology are absolutely needed by all the POMs in Lampung.

  2. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. PMID:25463585

  3. A Qualitative Approach of Identifying Major Cost Influencing Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil

    OpenAIRE

    Man, Elaine L. Y.; Adam Baharum

    2011-01-01

    Problem statement: The oil palm industry, which heavily depends on the world market, is an export oriented industry. Worlds palm oil consumption was growing over the years. In addition, Indonesia and Malaysia dominated the oil palm industry. The oil palm industry in Malaysia is very competitive and become one of the major economic sectors contributing to the total revenue of the country. In year 2009, there was a total of 22.40 million tons of oil palm products including p...

  4. Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.

    Science.gov (United States)

    Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K

    2001-01-01

    Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification. PMID:11794647

  5. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  6. Isolation of lipase producing fungi from palm oil Mill effluent (POME) dump sites at Nsukka

    Scientific Electronic Library Online (English)

    Charles Ogugua, Nwuche; James Chukwuma, Ogbonna.

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42%) and was present in all the samples assayed. Mucor sp. was the least encountered [...] (8.3%).The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL) and Aspergillus (6.25 -7.54 u/mL) spp. were the highest lipase producers while Mucor (5.72 u/mL) was the least.

  7. Methane Emission from Digestion of Palm Oil Mill Effluent (POME) in a Thermophilic Anaerobic Reactor

    OpenAIRE

    Vivian Wongistani; Yoshimasa Tomiuchi; Bambang Trisakti; Irvan, I.

    2012-01-01

    As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG) have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the resea...

  8. Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME)

    OpenAIRE

    Supawadee Sinnaraprasat; Prayoon Fongsatitkul

    2011-01-01

    Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME) for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w) and H2O2: Fe2+ ratios (molar ratio) used to oxidize carbohydrate and high molec...

  9. Phototreatment of Palm Oil Mill Effluent (POME) over Cu/TiO2 Photocatalyst

    OpenAIRE

    Kim Hoong Ng; Mohd Rizauddin Deraman; Chun How Ang; Soo Kee Chong; Zi Ying Kong; Khan, Maksudur R.; Chin Kui Cheng

    2014-01-01

    The current work reported on the use of different formulations of Cu/TiO2 photocatalysts for the UV-irradiation of palm oil mills effluent (POME). Different copper loadings, viz. 2 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt% were doped onto titania. XRD pattern confirmed the presence of anatase TiO2 as primary phase due to mild calcination temperature (573 K). Photo-decomposition of POME over 20 wt% Cu/TiO2 exhibited the highest conversion (27.0%) attributed to its large pore diameter (20.0...

  10. Cellulases Production in Palm Oil Mill Effluent: Effect of Aeration and Agitation

    OpenAIRE

    Mashitah, M. D.; Fadzilah, K.

    2010-01-01

    Effect of aeration (0.5, 1.0 and 1.5 vvm) and agitation rate (100, 300 and 500 rpm) on cellulase production in submerged culture of Pycnoporus sanguineus was studied in a 2.5 L stirred-tank bioreactor using Palm Oil Mill Effluent (POME) as a substrate. Maximum cell biomass (3.16 g L-1) and cellulase activity (0.1748 FPU mL-1) was obtained at aeration rate of 1.0 vvm and agitation speed of 300 rpm. Volumetric mass transfer coefficient (kLa) was found to be dependent on aeration and agitation r...

  11. Isolation of lipase producing fungi from palm oil Mill effluent (POME) dump sites at Nsukka

    OpenAIRE

    Charles Ogugua Nwuche; James Chukwuma Ogbonna

    2011-01-01

    In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42%) and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%).The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL) and Aspergillus (6.25 -7.54 u/mL) spp. were the highest lipase producers while Mucor (5.72 u/mL) was the least.

  12. Evaluation of Hybrid Membrane Bioreactor (MBR For Palm Oil Mill Effluent (POME Treatment

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2009-12-01

    Full Text Available The pollution load of palm oil mill effluent (POME is in the range of 50,000 mg COD/L. With more than 500 palm oil mills, Malaysia produces some 13.9 million tonnes of crude palm oil annually and generates around 35 x 106 m3 POME. Typically, raw POME is difficult to degrade because it contains significant amounts of oil (tryacylglycerols and degradative products such as di-and monoacylglycerols and fatty acids. The fatty acids composition (C12 – C20 of each of this fraction are different from one another and contribute to the high value of pollution load in POME. Thus POME has to be treated, usually in a series of anaerobic and aerobic treatment steps, for the organic matter to be degraded before the effluent is allowed to be discharged into public waterways. The objective of this study was to observe the performance of a hybrid membrane bioreactor (MBR for POME. The raw POME was introduced into sequencing processes of anaerobic, anoxic and aerobic in order to achieve biological nutrient removal and the membrane modules were submerged into the aerobic zone. The critical flux of MBR using the flux-step method based on transmembrane pressure (TMP was conducted as well as flux and permeability studies for assessing fouling in a membrane bioreactor operating at constant flux. The reactor was operated at a mixed liquor suspended solid (MLSS concentration of 4000 to 8000 mg/l. The removal efficiency of COD, SS, TN and TP achieved were 94%, 98%, 83% and 64% respectively. The hybrid MBR was found to be able to degrade POME significantly and high quality effluent could be reused for various other applications.Keywords:

  13. The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent

    OpenAIRE

    Irvan Matseh

    2012-01-01

    The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME). Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS) and volatile s...

  14. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    Science.gov (United States)

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. PMID:25479389

  15. Screening and application of thermotolerant microorganisms and their flocculant for treatment of palm oil mill effluent

    Directory of Open Access Journals (Sweden)

    Saithong Kaewchai

    2002-07-01

    Full Text Available Among fifteen thermotolerant polymer-producing isolates, three strains SM 29, WD 90, and SM 38 produced polymer posessing very high flocculating activities (24.81, 14.63 and 10.84, respectively and flocculation rates (94.29, 90.69 and 87.84, respectively. These three strains were identified to be Bacillus subtilis WD90, Bacillus subtilis SM 29, and Enterobacter agglomerans SM 38. Treatment of palm oil mill effluent (POME by these three selected strains under aerobic condition at 45ºC for 48 h revealed that neither oil separation nor flocculation of solids was observed. However, all three strains were able to decolorize the POME from dark brown to very light yellow. Flocculant produced from the three selected isolates could not separate the suspended solids and oil from the POME.

  16. Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jamal I. Daoud

    2010-01-01

    Full Text Available Problem statement: Palm oil mill effluent discharged by the oil palm industries is considered as the mixed of high polluted effluent which is abundant (about 20 million tonnes year-1 and its effect contributes to the serious environmental problems through the pollution of water bodies. Approach: The aim of this study was to identify the potential of low cost substrate such as Palm Oil Mill Effluent (POME for the production of cellulase enzyme by liquid state bioconversion. The filamentous fungus Trichoderma harzianum was used for liquid state bioconversion of POME for cellulase production. Statistical optimization was carried out to evaluate the physico-chemical parameters (factors for maximum cellulase production by 2-level fractional factorial design with six central points. The polynomial regression model was developed using the experimental data including the effects of linear, quadratic and interaction of the factors. The factors involved were substrate (POME and co-substrate (wheat flour concentrations, temperature, pH, inoculum and agitation. Results: Statistical analysis showed that the optimum conditions were: Temperature of 30°C, substrate concentration of 2%, wheat flour concentration of 3%, pH of 4, inoculum of 3% and agitation of 200 rpm. Under these conditions, the model predicted the enzyme production to be about 14 FPU mL-1. Analysis Of Variance (ANOVA of the design showed a high coefficient of determination (R2 value of 0.999, thus ensuring a high satisfactory adjustment of the quadratic model with the experimental data. Conclusion/Recommendations: This study indicates a better solution for waste management through the utilization of POME for cellulase production that could be used in the industrial applications such as bioethanol production.

  17. Phytoremediations of Palm Oil Mill Effluent (POME by Using Aquatic Plants and Microalge for Biomass Production

    Directory of Open Access Journals (Sweden)

    Danny Soetrisnanto

    2013-01-01

    Full Text Available Phytoremediation by using aquatic plants and microalgae was evaluated in study to reduce waste load of Palm Oil Mill Effluent (POME. This study was aimed to utilize the aquatic plants i.e. water hyacinth (Eichhornia crassipes and water lily (Nymphaea sp. and alga Spriulina sp. to reduce COD and nutrients content in palm oil mill effluent. The phytoremediation was conducted in a sequence process. The aquatic plants were used in the first stage of remediation by varying height of culture (5-15 cm, length of remediation (3-8 days and type of plants (water hyacinth and water lily. The effluent of the first stage was then transferred to the second remediation where microalgae Spriulina use this effluent as medium growth for 15 days. The results showed that the aquatic plants was able to reduce COD, N, P up to 50, 88 and 64%, respectively, while microalgae could reduce the COD, N, P up to 50.79, 96.5 and 85.92%, respectively. The maximum growth rate of Spirulina platensis was 0.412 day-1, while the correlation between Optical Density (OD and dry weight-g L-1 was shown as dry weight (g L-1 = 0.782.OD. In conclusion, two stage phytoremediation process gives promising method to reduce waste load and producing high value able biomass of algae.

  18. Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Kim Hoong Ng

    2014-07-01

    Full Text Available The current work reported on the use of different formulations of Cu/TiO2 photocatalysts for the UV-irradiation of palm oil mills effluent (POME. Different copper loadings, viz. 2 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt% were doped onto titania. XRD pattern confirmed the presence of anatase TiO2 as primary phase due to mild calcination temperature (573 K. Photo-decomposition of POME over 20 wt% Cu/TiO2 exhibited the highest conversion (27.0% attributed to its large pore diameter (20.0 nm. In addition, optimum loading was 0.83 g/l. © 2014 BCREC UNDIP. All rights reservedReceived: 5th January 2014; Revised: 8th April 2014; Accepted: 8th April 2014[How to Cite: Hoong, N.K., Deraman, M.R., Ang, C.H., Chong, S.K., Kong, Z.Y., Khan, M.R., Cheng, C.K., (2014. Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 121-127. (doi:10.9767/bcrec.9.2.6011.121-127][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6011.121-127

  19. Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora

    Energy Technology Data Exchange (ETDEWEB)

    Atif, A.A.Y.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia); Ngan, M.A.; Morimoto, M. [Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor (Malaysia); Iyuke, S.E. [School of Process and Materials Engineering, Faculty of Engineering and the Built Environment, Witwaterstand, Private Bag 3, Wits 2050, Johannesburg (South Africa); Veziroglu, N.T. [Clean Energy Research Institute, College of Engineering, University of Miami, Coral Gables, FI 33124 (United States)

    2005-11-01

    Anaerobic production of hydrogen from palm oil mill effluent (POME) by microflora was investigated in 5-l bioreactor at 60{sup o}C and pH 5.5. POME sludge was collected from the anaerobic pond of a POME treatment plant at a palm oil mill and used as a source of inocula. A batch reactor was found to yield a total of 4708ml H{sub 2}/(l POME) and the maximum evolution rate was 454ml-H{sub 2}/(l POMEh). A fed batch process was conducted after 50h. Two liters of reaction medium was removed and 2l of fresh POME was added to the reactor every 24h (15 times). The reproducibility of the fed batch process checked by changing the feeding time every 8h (10 times). A yield of 2382ml H{sub 2}/(l POME) and 2419ml H{sub 2}/(l POME) at maximum evolution rate of 313ml H{sub 2}/(l POMEh) and 436ml H{sub 2}/(l POMEh) were obtained, respectively. Throughout the study, methane gas was not observed in the evolved gas mixture. (author)

  20. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587?mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  1. Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Isnazunita [Environment and Bioprocess Technology Centre, SIRIM Berhad, 40911 Shah Alam, Selangor D.E. (Malaysia); Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Hassan, Mohd. Ali; Abdul Rahman, Nor Aini [Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Soon, Chen Sau [Environment and Bioprocess Technology Centre, SIRIM Berhad, 40911 Shah Alam, Selangor D.E. (Malaysia)

    2010-01-15

    A batch study was conducted to determine the fate of carbohydrate and oil that are present in palm oil mill effluent (POME) during the biohydrogen fermentation process. Sucrose and crude palm oil (CPO) were chosen as substrates and the kinetic profile indicated that mainly sucrose was metabolised by the mixed sludge. The hydrogen yield based on the COD of sucrose added was 146 cm{sup 3} g{sup -1} which is equivalent to a hydrogen to hexose mole ratio of 2.5. The free fatty acids from hydrolysed CPO were not metabolised further which render insignificant generation of hydrogen and volatile fatty acids from oil-based substrate. The average continuous biohydrogen production rate (HPR) from a unit volume of POME under thermophilic condition at 55 C was 2.64 m{sup 3} m{sup -3} d{sup -1} at a hydraulic retention time (HRT) of 4 days. Hydrogen constitutes up to 52% of the total biogas and methane was not detected over the 60 day continuous operation. The hydrogen yield (i.e. based on mole ratio of hydrogen to hexose) was 1.72 with an average carbohydrate conversion efficiency of 58%. These limit the potential of recovering more hydrogen energy from POME under current operating conditions. (author)

  2. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    Science.gov (United States)

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-11-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved. PMID:24074024

  3. Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

    2013-11-01

    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified. PMID:24012093

  4. An Experimental Investigation on the Handling and Storage Properties of Biomass Fuel Briquettes Made from Oil Palm Mill Residues

    Directory of Open Access Journals (Sweden)

    Mohd. Shiraz Aris

    2012-01-01

    Full Text Available This study is about experimental investigation on solid fuel briquettes made of oil palm mill residues that exhibit optimum handling and storage properties. One of the major technical challenges in utilizing biomass waste material as a solid fuel is the handling and storage issues of loose and wet waste material. The solid biomass fuel briquettes made from different types and combinations of palm oil mill residues were explored for optimum storage and handling features. A solution to improving the handling and storage properties of loosely-bound oil palm mill residues is proposed in this work via a densification process known as fuel briquetting. Raw oil palm waste material was pulverized and compacted with a 159 MPa pressing pressure to form 40 mm diameter solid fuel briquettes. It was found that a fuel briquette with a 60:40 palm kernel shell to mesocarp fiber ratio using waste paper as its binding agent gave the best mechanical properties without sacrificing the combustion properties of the solid fuel.

  5. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    Science.gov (United States)

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%). PMID:17141409

  6. Integration of biological method and membrane technology in treating palm oil mill effluent.

    Science.gov (United States)

    Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water. PMID:18575108

  7. Synthetic Polyelectrolytes Based on Acrylamide and Their Application as a Flocculent in the Treatment of Palm Oil Mill Effluent

    OpenAIRE

    Ariffin, A.; Shatat, Raid S. A.; Nik Norulaini, A. R.; Mohd Omar, A. K.

    2004-01-01

    Five cationic polyacrylamides of varying molecular weights but similar charge density were synthesized using free radical polymerization and Mannich reaction, characterized by different methods (infra red (IR) spectroscopy, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), viscosity measurements and conductometric titration) and applied as flocculants to palm oil mill effluents (POME). Flocculent performance was assessed by determining the polyelectrolyte dosa...

  8. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm3 (at 7 % O2) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm3, the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cycloneschievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  9. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. PMID:20940036

  10. Enumeration, identification and decontamination of microorganisms on empty fruit bunches (EFB) and palm press fibre (PPF) from selected palm oil mills in the Peninsular Malaysia

    International Nuclear Information System (INIS)

    The PPF and EFB temporarily disposed into the environment at the mill are heavily contaminated with micro-organisms, therefore require decontamination prior to utilisation. The current methods for decontaminating PPF and EFB has been briefly reviewed (Mat Rasol et. al.,1987). They suggested that these by-products can be effectively decontaminated by gamma-irradiation and the resulting sterilised by-products could subsequently be used for conversion into animals feeds by fermentation with fungi or chemical stock. The primary objectives of the investigation are: a) to enumerate contaminating microorganisms on PPF and EFB collected from various oil palm mills in the Peninsular Malaysia, and b) to establish the inactivation curves of the PPF and EFB from the selected palm oil mills

  11. Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector

    International Nuclear Information System (INIS)

    A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 ?m ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

  12. Kinetic studies of controlled-release formulations of diuron containing palm oil mill effluent

    International Nuclear Information System (INIS)

    Controlled-release formulations of diuron herbicide containing sodium alginate as binder and kaolin or palm oil mill effluent (POME) as fillers were studied. Small ratios of alginates to kaolin or POME in the formulation produce less spherical granular products. The kinetic of release in static water was studied spectrophotometrically at 248nm. Both products with two different fillers showed good first order plots with rate constants about ax10-1 day-1. Preliminary screening on several species of weeds in one square meter boxes in glasshouse showed good effectiveness of the slow release products. Further studies are being carried out especially with the POME formulations which contain quite high major nutrients. (author). 7 refs, 3 figs, 4 tabs

  13. Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent.

    Science.gov (United States)

    Wong, Yee Shian; Kadir, Mohd Omar A B; Teng, Tjoon Tow

    2009-11-01

    Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively. PMID:19560338

  14. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment.

    Science.gov (United States)

    Poh, P E; Chong, M F

    2009-01-01

    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed. PMID:18657414

  15. Direct Fermentation of Palm Oil Mill Effluent to Acetone-butanol-ethanol by Solvent Producing Clostridia

    Directory of Open Access Journals (Sweden)

    Mohd Sahaid Kalil

    2003-01-01

    Full Text Available Studies on direct use of palm oil mill effluent (POME as fermentation medium for acetone-butanol-ethanol (ABE production by Clostridium acetobutylicum NCIMB 13357 and C. saccharoperbutylacetonicum N1-4 have been carried out in batch culture system. Investigations were carried out on the effect of concentration of sedimented POME, the effect of initial culture pH and the use of immobilized cells for ABE production. It was found that C. acetobutylicum NCIMB13357 grown in 90% sedimented POME with initial pH 5.8 produced highest total ABE (4 g L-1. However, butanol production was maximum (1.82 gL-1 in the culture with the initial pH of 6.0. Results obtained from these experiment with immobilized cells of C. saccharoperbutylacetonicum N1-4 indicated that ABE production from POME could be improved when high concentrations of cells at solventogenic growth phase were used.

  16. Cellulases Production in Palm Oil Mill Effluent: Effect of Aeration and Agitation

    Directory of Open Access Journals (Sweden)

    M.D. Mashitah

    2010-01-01

    Full Text Available Effect of aeration (0.5, 1.0 and 1.5 vvm and agitation rate (100, 300 and 500 rpm on cellulase production in submerged culture of Pycnoporus sanguineus was studied in a 2.5 L stirred-tank bioreactor using Palm Oil Mill Effluent (POME as a substrate. Maximum cell biomass (3.16 g L-1 and cellulase activity (0.1748 FPU mL-1 was obtained at aeration rate of 1.0 vvm and agitation speed of 300 rpm. Volumetric mass transfer coefficient (kLa was found to be dependent on aeration and agitation rate, with maximum kLa (124.2 h-1 attained at 300 rpm and 1.5 vvm.

  17. A comparative study on the membrane based palm oil mill effluent (POME) treatment plant.

    Science.gov (United States)

    Ahmad, A L; Chong, M F; Bhatia, S

    2009-11-15

    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost. PMID:19573986

  18. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.

    Science.gov (United States)

    Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

    2014-11-01

    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

  19. Comparison on decolorization of palm oil mill effluent by biological, chemical and physical methods

    Directory of Open Access Journals (Sweden)

    Chantaphaso, S.

    2001-11-01

    Full Text Available Decolorization of palm oil mill effluent pretreated by enzyme from Aspergillus niger ATCC 6275 was investigated. The culture filtrate after separation of suspended solids was used for decolorization by biological, chemical and physical methods. Results indicated that the chemical method (using coagulant was more effective than the biological method (using commercial peroxidase, two strains of white-rot fungi Phanerochaete chrysosporium and Coriolus versicolor and physical method (using activated carbon, pararubber seed and sand filter. Studies on the effect of coagulant concentrations on decolorization revealed that using the combination of 10 ml/l polyferric sulphate and 10 g/l calcium oxide gave the highest color removal of 84.5% and organic matter (in term of chemical oxygen demand, COD removal of 86.5%.

  20. Concurrent bioelectricity generation and palm oil mill effluent treatment using microbial fuel cell

    International Nuclear Information System (INIS)

    Microbial fuel cell (MFC) provides promising microbial environmental technology to generate bio energy while treating organic wastewaters at the same time. In this study, a dual-chamber MFC system was developed to evaluate the continuous bioelectricity production while treating palm oil mill effluent (POME). A maximum power density of 622 mW/ m2 was generated with continuous feeding of 200 ppm POME. Meanwhile, a COD removal efficiency of 23% and coulombic efficiency of 32 % was recorded. Direct 16S rDNA analyses showed predomination by Geobacter-related sequences at the MFC anode electrode. It is shown that electrochemically-active bacteria originated from POME can be enriched to concurrently generate electricity and treat POME. (author)

  1. Anaerobic digestion of palm oil mill effluent and its utilization as fertilizer for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Ugoji, E.O. [Lagos Univ. (Nigeria). Dept. of Biological Sciences

    1997-02-01

    Biodegradation of palm oil mill effluent (POME) under anaerobic conditions to environmentally acceptable products was carried out. This method of digestion was chosen in preference to the aerobic mode, among other factors, efficiency of COD and BOD removal and relevance of the operation to the needs of local communities. Studies were carried out in three experimental set-ups: (i) a single stage anaerobic ponding system; (ii) a single stage anaerobic tank digester with a certain degree of mixing; and (iii) recycled spent POME sludge in a single stage anaerobic tank. Operational variables such as optimum pH, the COD/BOD removal efficiencies and the overall usefulness of the digester modes to local communities and farmers are discussed. (author)

  2. A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2009-01-01

    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products. PMID:18804158

  3. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. PMID:20231054

  4. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  5. Morphological Characterization of Photosynthetic Microbial Granule from Palm Oil Mill Effluent (POME)

    International Nuclear Information System (INIS)

    Presently, global warming is the most highlighted subjects in the environmental issues which relates closely to greenhouse gases (GHG) emissions. In 2007, the Intergovernmental Panel on Climate Change (IPCC) assigns only methane (CH4) emissions to wastewater treatment rather than GHG emissions specifically carbon dioxide (CO2) gas from the aerobic treatment processes. Focusing on the palm oil industry in Malaysia, the most commonly used treatment of palm oil mill effluent (POME) which is the conventional pounding system, has caused excessive generation of GHG such as CH4 and CO2 gases. To develop a novel, innovative and environmental-friendly mitigation method, this study explores into the possibility of growing the photosynthetic bacteria in the form of granules via the aerobic granulation process with potential applications in reducing CO2 gases. The cultivation of photosynthetic microbial granules was investigated using POME as the substrate in a sequencing batch reactor (SBR) system via the sequencing cycle of feeding, reacting, settling and decanting. Evidence of the formation of granule was based on microscopic examination of the morphological changes during the development of the granule in the SBR system over a period of 90 days. It shows changes from dispersed loose structure of the sludge merging into small flocs of irregular shapes and finally into dense and compact granular form. The granule was formed by applying an organic loading rate (OLR) at 2.75 kg COD/ m3.day, hydraulic retention time (HRT) at 4 h and superficial air velocity of 2.07 cm/ s. The biomass concentration began to decreased first (initial sludge biomass = 16750 mg/ L) and then increased steadily to a constant value of 32000 mg/ L after 90 days. Besides, the results also demonstrated a good accumulation of biomass as the settleability between raw sludge and granule increased from 0.03 cm/ s to 0.94 cm/ s. The maximum settling velocity obtained in the reactor was approximately 2.0 cm/ s. (author)

  6. Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    Supawadee Sinnaraprasat

    2011-07-01

    Full Text Available Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w and H2O2: Fe2+ ratios (molar ratio used to oxidize carbohydrate and high molecular organic compounds into simple sugars, which are further fermented into alcohol. The experiments were carried out at H2O2: Fe2+ ratios (molar ratios of 5, 10, 20, 30 and 40 and the COD: H2O2 ratios (w/w of 50, 70, 100 and 130 (initial COD about 50,000 mg/L. The total sugar concentrations and organic compounds biodegradability (BOD5/COD ratios were also used for investigating suitable conditions for Fenton's reaction. The concentration of Fenton's reagent at H2O2:Fe2+ and COD:H2O2 ratio of 20 and 130 was identified as the optimum operating condition for the highest simple sugars of about 0.865% and BOD5/COD ratios of 0.539. The alcohol productions were carried out in the continuous stirred tank reactors (CSTR under an anaerobic continuous immobilization system. At a hydraulic retention time of 12 hours and POME pH of 4.8, the maximum total ABE concentration of 495 mg/L and the ABE yield of 0.236 grams of ABE produced/gram of reducing sugars were achieved at the mixed polyvinyl alcohol (PVA and palm oil ash (POA ratio of 10 : 3.

  7. Comparison of ASBR and CSTR reactor for hydrogen production from palm oil mill effluent under thermophilic condition

    OpenAIRE

    Jiravut Seengenyoung; Sompong O-Thong; Poonsuk Prasertsan

    2014-01-01

    Hydrogen production from palm oil mill effluent (POME) by Thermoanaerobacterium thermosaccharolyticum PSU-2 was investigated both in batch and continuous reactors using anaerobic sequencing batch reactor (ASBR) and continuous stirred tank reactor (CSTR). The hydrogen production determined from batch experiment of POME at an inoculum size of 0%, 10%, 20% and 30% (v/v) was 161, 201, 246 and 296 mL H2/g-COD with COD removal efficiency of 21%, 23%, 23% and 23%, respectively...

  8. Techno-economic Evaluation on Enhancing Cogeneration Plant Capacity: Case Study of Palm Oil Mill Cogeneration Plant

    OpenAIRE

    Mohd Amin Abd Majid; Zulkipli Ghazali; Nazri Talib Shin Min

    2014-01-01

    The aim of the study is to apply techno-economic evaluation for selecting a feasible alternative to enhance a co-generation power generation capacity of a palm oil mill. The co-generation plant is using Empty Fruit Bunch (EFB) as fuel. The basis of the technical evaluation is to compare three alternatives on increasing the co-generation power generation capacity. Alternative 1 is to consider installing a new high capacity boiler to the current cogeneration ...

  9. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    OpenAIRE

    Baharuddin, Azhari S.; Razak, Mohamad N. A.; Hock, Lim S.; Ahmad, Mohd N.; Suraini Abd-Aziz; Rahman, Nor A. A.; Shah, Umi K. M.; Hassan, Mohd A.; Kenji Sakai; Yoshihito Shirai,

    2010-01-01

    Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB) and Palm Oil Mill Effluent (POME) as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile ...

  10. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    Science.gov (United States)

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

  11. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    Ganang Dwi Hartanto

    2012-07-01

    Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

  12. Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available Problem Statement: Oil palm production is a major agricultural industry in Malaysia. In 2006, palm oil mills in Malaysia produced more than 58 million tonnes of Palm Oil Mill Effluent (POME. Existing treatment in a series of open lagoons at high ambient temperatures, results in the uncontrolled production of methane and carbon dioxide, which are both green house gases (GHGs. With the increased worldwide concern on environmentally friendly production processes particularly the emission of methane, it is important to develop an alternative concept for POME treatment. This study elucidates the effects of pre-treatment of palm oil mill effluent by microwave irradiation and ultrasonic on anaerobic digestion. Approach: Effects of pre-treatment on sludge characterisation parameters were monitored. The Soluble Chemical Oxygen Demand (SCOD/total COD ratio and biodegradability of soluble organic matter increased significantly after both the pre-treatments which indicated an increase in disintegration of the floc structure of the sludge. Three identical bioreactors with working volume of 5 litres were used as anaerobic digesters at 32-35°C. The reactors were separately fed with pre-treated sludge (microwave, ultrasonic and combination of microwave and ultrasonic and control sludge at different Hydraulic Retention Times (HRT to check for the production of methane. Results: The maximum SCOD/TCOD ratio reached almost 29% after 30 min of ultrasonic treatment, while it was 45% after 7 min of microwave irradiation. The BOD5/SCOD ratio also increased after the pre-treatments suggesting the biodegradability of the soluble organic material increased during the treatment. It was observed that TVFA released was increased after both the treatments, with microwave treatment showing a higher yield of TVFA. Greatest enhancement in methane production was shown by the 3 min microwave plus 10 min ultrasonic treatment. Conclusion: The microwave in combination with ultrasonic would be a rapid and economical method for sludge pre-treatment for enhancement of biogas production.

  13. Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.

    Science.gov (United States)

    Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2012-07-01

    The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria. PMID:22876480

  14. Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata.

    Science.gov (United States)

    Neoh, Chin Hong; Lam, Chi Yong; Lim, Chi Kim; Yahya, Adibah; Ibrahim, Zaharah

    2014-03-01

    Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds. PMID:24327114

  15. Respirometric analysis of activated sludge models from palm oil mill effluent.

    Science.gov (United States)

    Damayanti, A; Ujang, Z; Salim, M R; Olsson, G; Sulaiman, A Z

    2010-01-01

    Activated sludge models (ASMs) have been widely used as a basis for further model development in wastewater treatment processes. Values for parameters to be used are vital for the accuracy of the modeling approach. A continuous stirred tank reactor (CSTR), as open respirometer with continuous flow for 20 h is used in ASMs. The dissolved oxygen (DO) profile for 11 days was monitored. It was found the mass transfer coefficient K(La) is 0.3 h(-1) during lag and start feed phase and 0.01 h(-1) during stop feed phase, while the heterotrophic yield coefficient Y(H) is 0.44. Some of the chemical oxygen demand (COD) fractionations of palm oil mill effluent (POME) using respirometric test in ASM models are S(s) 50 mg/L, S(I) 16,600 mg/L, X(S) 25,550 mg/L, and X(I) 2,800 mg/L. The comparison of experimental and ASM1 from OUR concentration is found to fit well. PMID:19734044

  16. Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent.

    Science.gov (United States)

    Zhang, Yejian; Yan, Li; Chi, Lina; Long, Xiuhua; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35 degrees C for 514 d, with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m3 x d). The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand, high COD removal of 91% was obtained at two days' of hydraulic retention time (HRT), and the highest OLR of 17.5 kg COD/(m3 x d). On the other hand, only 46% COD in raw POME was transformed into biogas in which the methane content was about 70% (V/V). A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane was 56%. Volatile fatty acid (VFA) accumulation was observed in the later operation stage, and this was settled by supplementing trace metal elements. On the whole, the system exhibited good stability in terms of acidity and alkalinity. Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed. PMID:18763558

  17. The particulate matter dispersion studies from a local palm oil mill

    International Nuclear Information System (INIS)

    The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

  18. Anaerobic treatment of palm oil mill effluent using combined high-rate anaerobic reactors.

    Science.gov (United States)

    Choi, Won-Ho; Shin, Chang-Ha; Son, Sung-Min; Ghorpade, Praveen A; Kim, Jeong-Joo; Park, Joo-Yang

    2013-08-01

    Combined system of high-rate anaerobic reactors for treating palm oil mill effluent (POME) was developed and investigated in this study. The system composed of one common primary hybrid reactor which was shared by two different secondary filter reactors. An overall COD removal efficiency of 93.5% was achieved in both systems. The secondary reactors contributed not only in enhancing the COD removal efficiency, but also ensured the performance stability of the entire system. Biomass remained intact in the secondary reactor in contrast to the primary reactor in which occasional washout of biomass was observed. The pH of POME was adjusted at the beginning of the operation, as the process continued POME did not require the external pH adjustment as the pH was maintained in desired range. The biogas was produced up to 110 l/d with the yield of 0.171-0.269 l [CH?]/g [COD removed] and 59.5-78.2% content of methane. PMID:23489567

  19. Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Mei-Ling; Rahim, Raha Abdul; Hassan, Mohd Ali [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shirai, Yoshihito [Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, 808-0196 Hibikimo 2-4, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (Japan)

    2009-01-15

    A hydrogen producer was successfully isolated from anaerobic digested palm oil mill effluent (POME) sludge. The strain, designated as Clostridium butyricum EB6, efficiently produced hydrogen concurrently with cell growth. A controlled study was done on a synthetic medium at an initial pH value of 6.0 with 10 g/L glucose with the maximum hydrogen production at 948 mL H{sub 2}/L-medium and the volumetric hydrogen production rate at 172 mL H{sub 2}/L-medium/h. The supplementation of yeast extract was shown to have a significant effect with a maximum hydrogen production of 992 mL H{sub 2}/L-medium at 4 g/L of yeast extract added. The effect of pH on hydrogen production from POME was investigated. Experimental results showed that the optimum hydrogen production ability occurred at pH 5.5. The maximum hydrogen production and maximum volumetric hydrogen production rate were at 3195 mL H{sub 2}/L-medium and 1034 mL H{sub 2}/L-medium/h, respectively. The hydrogen content in the biogas produced was in the range of 60-70%. (author)

  20. Carbon Mobilization in Oil Palm Plantation and Milling Based on a Carbon-Balanced Model – A Case Study in Thailand

    Directory of Open Access Journals (Sweden)

    Withida Patthanaissaranukool

    2011-07-01

    Full Text Available Damage to agricultural areas and household properties occurs more frequently all year round from extreme weather, which is believed to be due to climate change caused by the increase of greenhouse gases – particularly, CO2. In order to help reduce its concentration in the atmosphere, palm oil is a renewable energy which can be used for this purpose. In this study, the carbon mobilization of palm oil was investigated, from oil palm plantation process to the milling process, so as to determine the associated Carbon Equivalence (CE and the effects on human and land space. A carbon-balanced model (CBM is proposed herewith to indicate the main paths of carbon emission, fixation, and reduction. The net equivalent carbon emission was found to be 56 kg CE per ton of Crude Palm Oil (CPO produced, resulting in the emission flux of 175 kg CE/ha-y. The plantation activity that emits the highest CO2 levels is fertilizer application, accounting for about 84% of the total. All bio-residues produced from CPO production were found to be utilized for human use, thereby decreasing the carbon emission. Their use ranged from biogas and electricity generation to soil conditioning, and the utilization of the bio-residues resulted in total carbon reduction of 212 kg CE per ton of CPO. Carbon fixation as a main product (CPO was found to be an average of 812 kg CE per ton of CPO, equivalent to 2543 kg CE/ha-y. Overall, as the total fixation is 14 times higher than that of the total emissions, the production of CPO generates and introduces a very small amount of waste into the environment. To satisfy the need for palm oil as renewable energy and other end-user products the expansion of the plantation areas may result in competition of agricultural land with other cash crops.

  1. Oil palm: domestication achieved?

    OpenAIRE

    Gerritsma, W.; Wessel, M.

    1997-01-01

    The natural habitat of the oil palm comprises very wet and relatively dry niches in the lowland rain forest in West and Central Africa. The domestication of the oil palm started with the extraction of fruits from wild forest resources. When forests were cleared for shifting cultivation, oil palms were not felled and in the subsequent regeneration period they obtained a favourable position resulting in semi-wild palm groves. Thinning of groves gave rise to semi-permanent or permanent intercrop...

  2. Lipase Production from Palm Oil Mill Effluent by Aspergillus terreus Immobilized on Luffa Sponge

    Directory of Open Access Journals (Sweden)

    Charles O. Nwuche

    2013-01-01

    Full Text Available An integrated treatment and valorization of Palm Oil Mill Effluent (POME by Aspergillus terreus IMI 282743 immobilized on Luffa sponge was investigated. Effects of POME concentrations and nitrogen supplementation on Chemical Oxygen Demand (COD reduction, microbial lipase and biomass production were evaluated in batch cultures. A 50% POME promoted the highest lipolytic activities in both immobilized and free cell cultures. In the former, the maximum lipase activity was 5.14 U mL-1 but in the non-immobilized batch, it was only 2.10 U mL-1. Lipase activities were low in the 25 and 100% POME due to overdilution and presence of inhibitory compounds, respectively. The pH was unchanged in the 100% POME but in other cultures, there were significant increase in the pH values. The pH of the 75% POME increased after a 48 h lag but in the 25 and 50% POME, the pH rose from 4-6.43 within a period of 96 h. COD did not change in the 100% POME but in the 75% POME, a 60.7% reduction was achieved. The COD of both the 50 and 25% POME decreased by 45% respectively. The immobilized biomass concentration was highest in the 75% POME (0.83 g L-1 but in the 25 and 100% POME, it was 0.27 and 0.63 g L-1, respectively. Supplementation of the 50% POME with a mixture of ammonium sulphate and yeast extract increased lipase production to10.6 U mL-1, biomass concentration to 3.7 g L-1 while the COD decreased by 80%. Lipase production from POME could be economically competitive to present industrial processes and provides additional incentive of treatment that is cheap and sustainable.

  3. Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria.

    Science.gov (United States)

    Limkhuansuwan, Vassanasak; Chaiprasert, Pawinee

    2010-01-01

    Lactobacillus plantarum SF5.6 is one of the lactic acid bacteria (LAB) that has the highest ability of molasses melanoidin (MM) decolorization among the 2114 strains of LAB. The strains were isolated from spoilage, pickle fruit and vegetable, soil and sludge from the wastewater treatment system by using technical step of enrichment, primary screening and secondary screening. This LAB strain SF5.6 was identified by 16S rDNA analysis and carbohydrate fermentation (API 50 CH). The top five LAB strains having high MM decolorization (> 55%), namely TBSF5.8-1, TBSF2.1-1, TBSF2.1, FF4A and SF5.6 were selected to determine the optimal condition. It was found that the temperature at 30 degrees C under facultative conditions in GPY-MM medium (0.5% glucose, 0.1% peptone, 0.1% yeast extract, 0.1% sodium acetate, 0.05% MgSO4 and 0.005% MnCl2 in MM solution at pH 6) giving a high microbial growth and MM decolorization for all five strains. It was noticed that the decolorization of MM by LAB strains might be cell growth associated. L. plantarum SF5.6 grew rapidly within one day while the other strains took 2-3 days. This L. plantarum SF5.6 could rapidly decolorize MM to 60.91% without any lag phase, and it also had the ability to remove 34.00% phenolic compounds and 15.88% color from treated palm oil mill effluent. PMID:21179960

  4. Adsorption isotherm studies of BOD, TSS and colour reduction from palm oil mill effluent (POME) using boiler fly ash

    Scientific Electronic Library Online (English)

    J.C, Igwe; C.O, Onyegbado; A.A, Abia.

    2010-09-01

    Full Text Available Palm oil is one of the two most important vegetable oils in the world's oil and fats market. The extraction and purification processes generate different kinds of waste generally known as palm oil mill effluent (POME). Earlier studies had indicated the possibility of using boiler fly ash to adsorb i [...] mpurities and colour in POME treatment. The adsorption treatment of POME using boiler fly ash was further investigated in detail in this work with regards to the reduction of BOD, colour and TSS from palm oil mill effluent. The amount of BOD, colour and TSS adsorbed increased as the weight of the boiler fly ash used was increased. Also, the smaller particle size of 425µm adsorbed more than the 850µm size. Attempts were made to fit the experimental data with the Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The R² values, which ranged from 0.8974-0.9898, 0.8848-0.9824 and 0.6235-0.9101 for Freundlich, Langmuir and Dubinin-Radushkevich isotherms respectively, showed that Freundlich isotherm gave a better fit followed by Langmuir and then Dubinin-Radushkevich isotherm. The sorption trend could be put as BOD > Colour > TSS. The apparent energy of adsorption was found to be 1.25, 0.58 and 0.97 (KJ/mol) for BOD, colour and TSS respectively, showing that sorption process occurs by physiosorption. Therefore, boiler fly ash is capable of reducing BOD, Colour and TSS from POME and hence could be used to develop a good adsorbent for POME treatment.

  5. Techno-economic Evaluation on Enhancing Cogeneration Plant Capacity: Case Study of Palm Oil Mill Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Mohd Amin Abd Majid

    2014-01-01

    Full Text Available The aim of the study is to apply techno-economic evaluation for selecting a feasible alternative to enhance a co-generation power generation capacity of a palm oil mill. The co-generation plant is using Empty Fruit Bunch (EFB as fuel. The basis of the technical evaluation is to compare three alternatives on increasing the co-generation power generation capacity. Alternative 1 is to consider installing a new high capacity boiler to the current cogeneration system and maintaining the current turbine. Alternative 2 is to install a new high efficiency back pressure steam turbine and maintain the current boiler. While Alternative 3, is to install high capacity an extraction steam turbine and maintain the current boiler. Present worth analysis is used for economic evaluation. Both the capital and operational expenditures are taken into account in assessing the present worth of the alternatives. Results from the technical and economic analysis have identified Alternative 2 as the most feasible alternative. Since substantial quantity EFB are available in Malaysia and being used as fuel for power generation at the palm oil mills, the approach could be useful for enhancement of co-generation capacity of the mills.

  6. Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent

    International Nuclear Information System (INIS)

    An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

  7. Biosynthesis and Characterization of Polyhydroxyalkanoates Copolymers Produced by Pseudomonas putida Bet001 Isolated from Palm Oil Mill Effluent

    OpenAIRE

    Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

    2012-01-01

    The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C8?0) to oleic acid (C18?1) were used as sole carbon and energy source....

  8. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    OpenAIRE

    Fang, Cheng; O-thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at ...

  9. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    Directory of Open Access Journals (Sweden)

    Azhari S. Baharuddin

    2010-01-01

    Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

  10. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.

    Science.gov (United States)

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2014-10-01

    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported. PMID:25058299

  11. Palm Oil Mill Effluent Treatment Process Evaluation and Fate of Priority Components in an Open and Closed Digestion System

    Directory of Open Access Journals (Sweden)

    Anwar Ahmad

    2014-08-01

    Full Text Available The evaluation for the degradability of chemical oxygen demand (COD and biogas contents before and after closed tank reactor (CR and open tank reactor (TP were observed. COD reduction in the TP (maximum degradability rate of 60% and CR (maximum degradability rate of 85%. The variation in CH4, volatile fatty acid (VFA and total suspended (TSS contents in the effluent was more pronounced in the first six months and found stable afterward. The maximum organic loading rate (OLR of 11.5 g-COD l/d attained corresponded to 85% overall COD removal. However, there is study to degradability of COD and quantify the actual CH4 recover from the commercial scale wastewater treatment from TP and CR. The findings indicated that the CH4 content was between 49% TP which was lower than the value of 57% reported in TP. The lower VFAs were found in the CR because of variation of palm oil mill effluent quality and quantity from palm oil mill industry.

  12. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.

    Science.gov (United States)

    Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

    2014-01-22

    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status. PMID:24372356

  13. Biomethanation of Palm Oil Mill Effluent (POME By Ultrasonic Membrane Anaerobic System (UMAS Using Pome as Substrate

    Directory of Open Access Journals (Sweden)

    Abdurahman.H.Nour*1,

    2014-01-01

    Full Text Available Palm oil mill effluent (POME with average chemical oxygen demand (COD and biochemical oxygen demand (BOD of 70,000 and 30,000 mg/L, respectively, can cause serious environmental hazard if discharged untreated. There are conventional palm oil mill effluent (POME treatment systems that require large footprint, long HRT and fail to meet the Malaysia Department of Environment (DOE discharge limit. In this study, the potential of ultrasonic-assisted membrane anaerobic system (UMAS was evaluated as alternative and cost effective method for treating POME wastewater to avoid fouling. This study also is an initiative to implement concept waste to energy by capturing methane gas. Throughout the experiment, the removal efficiency of COD was 95.55% with HRT of 6 days. The BOD removal efficiency was 71.58% while TSS removal rate was from 91 to 99.5%.The methane gas production efficiency was 94.14%. The UMAS treatment efficiency was greatly improved by UMAS introduction. The membrane fouling and polarization at the membrane surface was significantly reduced.

  14. Effect of temperature on the anaerobic digestion of palm oil mill effluent

    Scientific Electronic Library Online (English)

    Wanna, Choorit; Pornpan, Wisarnwan.

    2007-07-15

    Full Text Available Two continuous stirred tank reactors (CSTRs) each fed with palm oil mill effluent (POME), operated at 37ºC and 55ºC, respectively, were investigated for their performance under varies organic loading rates (OLRs). The 37ºC reactor operated successfully at a maximum OLR of 12.25 g[COD]/L/day and a hy [...] draulic retention time (HRT) of 7 days. The 55ºC reactor operated successfully at the higher loading rate of 17.01 g[COD]/L/day and had a HRT of 5 days. The 37ºC reactor achieved a 71.10% reduction of chemical oxygen demand (COD), a biogas production rate of 3.73 L of gas/L[reactor]/day containing 71.04% methane, whereas the 55ºC reactor achieved a 70.32% reduction of COD, a biogas production rate of 4.66 L of gas/L[reactor]/day containing 69.53% methane. An OLR of 9.68 g[COD]/L/day, at a HRT of 7 days, was used to study the effects of changing the temperature by 3ºC increments. The reactor processes were reasonably stable during the increase from 37ºC to 43ºC and the decrease from 55ºC to 43ºC. When the temperature was increased from 37ºC to 46ºC, the total volatile fatty acid (TVFA) concentration and biogas production was 2,059 mg as acetic acid/L and 1.49 L of gas/L[reactor]/day at day 56, respectively. When the temperature was reduced from 55ºC to 40ºC, the TVFA concentration and biogas production was 2,368 mg as acetic acid/L and 2.01 L of gas/L[reactor]/day at day 102, respectively. By first reducing the OLR to 4.20 g[COD]/L/day then slowly increasing the OLR back to 9.68 g[COD]/L/day, both reactors were restored to stable conditions at 49ºC and 37ºC respectively. The initial 37ºC reactor became fully acclimatized at 55ºC with an efficiency similar to that when operated at the initial 37ºC whereas the 55ºC reactor also achieved stability at 37ºC but with a lower efficiency

  15. Optimization of Electricity Generation and Palm Oil Mill Effluent (POME Treatment from Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Siti Norhana Shari

    2010-01-01

    Full Text Available Natural micro-flora of Palm Oil Mill Effluent (POME sludge was grown in dual-chamber Microbial Fuel Cells (MFC to produce electricity by providing glucose at different concentration. A greater strength of Open Circuit Voltage (OCV was observed with optimal biomass metabolism activity, as increasing glucose concentrations. The time Response Constant (RC of OCV was taken everyday to estimate the total time needed to achieve steady state voltage at zero current. The lower value of RC indicates that the strength of OCV value is high and the biomass attached to the anode could be active in producing electrons. At 3 750 mg-COD L-1 with 10% added POME and 10 000 mg-COD L-1 synthetic wastewater, the values of RC for each medium were found as 3.36 and 1.95 h, respectively. The removal efficiency of COD was achieved 72.2% for 10% POME and 89.9% for synthetic wastewater. The initial COD level was found proportionally to the COD removal and maximum power density in the MFC system. However, the results shown that relation between RC value and initial COD level were inversely proportional. The highest power density (with present current density in POME added and synthetic medium were 3.155 mW m-2 (9.322 mA m-2 and 1.780 mW m-2 (3.996 mA m-2, respectively. The optimal power density that conducted in different level of COD was occurred at day 2 before its start decrease at next consecutive day. The effects of electrochemical parameters to power densities at different initial COD level were also studied using polarization model. From the simulated data, averaged power densities (with present current densities that could achieved at COD 3750 and 10000 mg L-1 were estimated 2.61 mW m-2 (4.5 and 1.38 mA m-2 (3.5 mA m-2, respectively. The total losses due to current limitation were eliminated about 15-55 % at high initial COD level based on results mention above. The end of study showed that the maximum power density kept on increased although COD value had reached to the lower level and this could be due to the hydrolysis of inactive of the living cells undergone lysis, has contributed to COD level in the system.

  16. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T and Geobacillus thermoleovorans (DSM 5366T on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile.

  17. Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production.

    Science.gov (United States)

    Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin

    2012-12-01

    Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 ?m) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. PMID:23026328

  18. The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Irvan Matseh

    2012-10-01

    Full Text Available The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME. Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS and volatile solid (VS, M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS and volatile solid (VS decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas.

  19. Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Irvan Matseh

    2012-10-01

    Full Text Available Macro and micro nutrients are important ingredients for successful anaerobic digestion. The presence or lack of nutrients can enhance or limit the functioning of the fermentation process. Micro-nutrients most often reported as stimulatory are trace metals such as nickel, cobalt, iron, and zinc. The purpose of this research is to study the effect of nickel and cobalt as trace metals on digestion performance and biogas produced from the fermentation of palm oil mill effluent (POME. Anaerobic digestion was performed in a two litres stirred tank reactor and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from a fat pit of palm oil mill’s waste water treatment facility belongs to one of the palm oil company in North Sumatera which has VS concentration of 26,300 mg/L and COD value of 42,000 mg/L. To gain precise results, complete recording and reliable equipment of digester were employed. Supporting materials were also needed such as sodium bicarbonate, ammonium bicarbonate, and hydrochloric acid solution. Variables observed were included M-alkalinity, total solid (TS, volatile solid (VS, and biogas production. Hydraulic retention time (HRT was maintained at 6 days. Experimental results concluded that the reduction of trace metals concentration did not affect the TS and VS concentration and M-alkalinity. doi: http://dx.doi.org/10.12777/ijwr.2.2.2012.16-19 [ How to cite this article: Irvan, M. (2012. Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent. International Journal of Waste Resources (IJWR, 2(2, 16-19. doi: http://dx.doi.org/10.12777/ijwr.2.2.2012.16-19

  20. Maintenance Management Performance - An Overview towards Evaluating Malaysian Palm Oil Mill

    OpenAIRE

    Nazim Baluch; Che Sobry Bin Abdullah; Shahimi Bin Mohtar

    2010-01-01

    Deficient maintenance management can severely affect competitiveness of an organization byreducing throughput, increasing inventory, and leading to poor performance. Performancecannot be managed without measurement: it provides the required information to themanagement for effective decision making; and is used by industries to assess progressagainst set goals and objectives in a quantifiable way for effectiveness and efficiency. For thepalm oil mills to stay competitive, it is imperative tha...

  1. Waste to Wealth: Hidden Treasures in the Oil Palm Industry

    International Nuclear Information System (INIS)

    The palm oil industry plays an important role in the creation of waste to wealth using the abundant oil palm biomass resources generated from palm oil supply chain i.e. upstream to downstream activities. The oil palm biomass and other palm-derived waste streams available are oil palm trunks (felled), fronds (felled and pruned), shell, mesocarp fibers, empty fruit bunches (EFB), palm oil mill effluent (POME), palm kernel expelled (PKE), palm fatty acid distillates (PFAD), used frying oil (UFO), residual oil from spent bleaching earth (SBE) and glycerol. For 88.5 million tonnes of fresh fruit bunches (FFB) processed in 2008, the amount of oil palm biomass generated was more than 25 million tones (dry weight basis) with the generation of 59 million tonnes of POME from 410 palm oil mills. Oil palm biomass consists of mainly lignocellulose materials that can be potentially and fully utilized for renewable energy, wood-based products and high value-added products such as pytonutrients, phenolics, carotenes and vitamin E. Oil palm biomass can be converted to bio energy with high combustible characteristics such as briquettes, bio-oils, bio-producer gas, boiler fuel, biogas and bio ethanol. Oil palm biomass can also be made into wood-based products such as composite and furniture, pulp and paper and planting medium. The recovery of phenolics from POME as valuable antioxidants has potential drug application. Other possible applications for oil palm biomass include fine chemica for oil palm biomass include fine chemicals, dietary fibers, animal feed and polymers. There must be a strategic and sustainable resource management to distribute palm oil and palm biomass to maximize the use of the resources so that it can generate revenues, bring benefits to the palm oil industry and meet stringent sustainability requirements in the future. (author)

  2. Influence of palm oil mill effluent as inoculum on anaerobic digestion of cattle manure for biogas production.

    Science.gov (United States)

    Saidu, Mohammed; Yuzir, Ali; Salim, Mohd Razman; Salmiati; Azman, Shamila; Abdullah, Norhayati

    2013-08-01

    Anaerobic digestion for palm oil mill effluent (POME) is widely known for its potential in biogass production. In this study, the potential of using cattle manure for biogas production in complete mix anaerobic bioreactor was investigated using POME at unregulated pH and temperature. Two identical bioreactors were used in this study; namely R1 and R2 fed with cattle manure without and with POME as inoculum, respectively. Both bioreactors were allowed for five days to run in batch mode followed by semi continuous operations at HRT of 20 days. R2 produced 41% methane content compared to 18% produced in R1. A better COD percentage reduction of 45% was found in R2 which was operated with POME as inoculum compared to R1 with 35%. These results indicated that POME as inoculum has an influence on the start-up time and the rate of biogas produced.This findings will help in waste reduction. PMID:23588120

  3. Effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge mixed with shredded palm empty fruit bunches and decanter cake

    Directory of Open Access Journals (Sweden)

    Tanawut Nutongkaew

    2014-06-01

    Full Text Available The effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge (POMS mixed with shredded palm empty fruit bunches (PEFB and decanter cake (DC was studied using the mixed culture LDD1 as an inoculum. Three piles of 50 kg mixture (POMS:PEFB:DC = 2:1:1 with different inoculum sizes of 0.0075% (treatment A, 0.015% (treatment B, and 0.030% (treatment C were set up. The physicochemical parameters were measured during the composting. All the compost appeared dark brown in color, crumbly, attained an ambient temperature and had the C/N ratio of 11:1 after 40 days fermentation, indicating the maturity of the compost. The optimal inoculum size was found to be 0.030% (w/w. For enzyme production, the highest carboxymethylcellulase (CMCase activity was 3.23 Unit/g substrates at 12 days incubation whereas the highest xylanase activity was 3.11 Unit/g substrates at 6 days incubation. At the end of 60 days fermentation, the compost (treatment C had a TN-P2O5 -K2O of 3.10-1.29-2.01% (dry basis. Therefore, the compost quality complied with the national compost standard set by the Ministry of Agriculture, Thailand.

  4. Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production

    OpenAIRE

    Sulaiman, A.; Zakaria, M. R.; Hassan, M. A.; Shirai, Y.; Busu, Z.

    2009-01-01

    Problem statement: Refined Glycerin Wash Water (RGWW) from the oleochemical industry contains high Chemical Oxygen Demand (COD) and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl) that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME) for its treatment and methane recovery. Approach: A large 500 m3 semi-com...

  5. Lipase Production from Palm Oil Mill Effluent by Aspergillus terreus Immobilized on Luffa Sponge

    OpenAIRE

    Nwuche, Charles O.; Hideki Aoyagi; Ogbonna, James C.

    2013-01-01

    An integrated treatment and valorization of Palm Oil Mill Effluent (POME) by Aspergillus terreus IMI 282743 immobilized on Luffa sponge was investigated. Effects of POME concentrations and nitrogen supplementation on Chemical Oxygen Demand (COD) reduction, microbial lipase and biomass production were evaluated in batch cultures. A 50% POME promoted the highest lipolytic activities in both immobilized and free cell cultures. In the former, the maximum lipase...

  6. The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy

    OpenAIRE

    Alawi Sulaiman; Zainuri Busu; Meisam Tabatabaei; Shahrakbah Yacob; Suraini Abd-Aziz; Mohd Ali Hassan,; Yoshihito Shirai,

    2009-01-01

    Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME) treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA) accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME ...

  7. Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent

    OpenAIRE

    Irvan Matseh

    2012-01-01

    Macro and micro nutrients are important ingredients for successful anaerobic digestion. The presence or lack of nutrients can enhance or limit the functioning of the fermentation process. Micro-nutrients most often reported as stimulatory are trace metals such as nickel, cobalt, iron, and zinc. The purpose of this research is to study the effect of nickel and cobalt as trace metals on digestion performance and biogas produced from the fermentation of palm oil mill effluent (POME). Anaerobic d...

  8. Comparative studies on the adsorption properties of powdered activated carbon and propenoic acid modified sawdust in the treatment of secondary palm oil mill effluent

    International Nuclear Information System (INIS)

    Propenoic acid monomer was used to modify pulped cellulosic materials (sawdust). The sorption properties of the propenoic acid modified sawdust (PAMS) were compared with those of powdered activated carbon (PAC) in the tertiary treatment of palm oil mill effluent, previously clarified with iron (III) chloride plus lime (secondary effluent). The adsorption processes were effected in a fluidized bed reactor (FBR) at a pressure of 80 kilo Newton per meter square (kNm/sup -2/). Optimum amount of PAC and PAMS used for the fluidized adsorption of contaminants from the secondary palm oil mill effluent (POME) were 2.5 g/1 and 4.0 g/1, respectively. These sorption processes were found to be optimum at 10 min and 50 min for PAC and PAMS, respectively. At optimum sorption conditions, removal differentials of 28.6%/g chemical oxygen demand, 19.1%/g suspended solids, and 19.3%/g colour in favour of PAC were established. The application of optimum conditions for adsorption, for both adsorbents, to the bulk treatment of the palm oil mill effluent yielded a clear effluent with wider reuse applicability. (author)

  9. The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water

    OpenAIRE

    Nazatul Shima Azmi; Khairul Faezah Md Yunos; Azhari Samsu Baharuddin; Zanariah Md Dom

    2013-01-01

    An attempt was made to reclaim and recover palm oil mill effluent (POME) for water reuse using tubular ultrafiltration (UF) and reverse osmosis (RO) membranes. The reclaimed water was compared with the final discharged water of the local mill. The raw POME was first subjected to a physical pre-treatment process to remove the content of organic matter and suspended solids. The pre-treatment process was coupled with membrane technology (UF and RO) to reclaim the clean water from POME. From the ...

  10. Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2013-04-01

    Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  11. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    International Nuclear Information System (INIS)

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH4/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  12. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME).

    Science.gov (United States)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2011-05-15

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH(4)/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH(4)/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH(4)/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor. PMID:21377272

  13. Performance of cellulose acetate - polyethersulphone blend membrane prepared using microwave heating for palm oil mill effluent treatment.

    Science.gov (United States)

    Idris, A; Ahmed, I; Jye, H W

    2007-01-01

    The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation. PMID:17978445

  14. Synthetic Polyelectrolytes Based on Acrylamide and Their Application as a Flocculent in the Treatment of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    A. Ariffin

    2004-01-01

    Full Text Available Five cationic polyacrylamides of varying molecular weights but similar charge density were synthesized using free radical polymerization and Mannich reaction, characterized by different methods (infra red (IR spectroscopy, differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA, viscosity measurements and conductometric titration and applied as flocculants to palm oil mill effluents (POME. Flocculent performance was assessed by determining the polyelectrolyte dosage and the removal efficiency of the resulting supernatants using turbidity, suspended solids (SS and chemical oxygen demand (COD as indicators. It was found that varying in the molecular weight of the cationic polyacrylamide from 20X103 to 1.5X106 g mol-1 affects flocculent performance significantly. Polyelectrolyte adsorption increased as the molecular weight of the polyelectrolyte increased. High molecular weight cationic polyacrylamide (1.5X106 g mol-1 is the most effective polymer as it obtains a high removal efficiency (% with a dosage as low as 60 mg L-1 at pH 3 of POME. The very high molecular weight cationic polyacrylamide (over 5 million g mol-1 produced very poor floc formation this is because polyelectrolytes having very high molecular weights do not dissolve readily but tend to form gel lumps.

  15. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor.

    Science.gov (United States)

    Ahmad, Anwar; Ghufran, Rumana; Abd Wahid, Zularisam

    2011-12-30

    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration. PMID:22047724

  16. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    Science.gov (United States)

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. PMID:20042327

  17. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    DEFF Research Database (Denmark)

    Fang, Cheng; O-Thong, Sompong

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8gVS/(L-reactor.d). Similar methane yields of 436–438mL-CH4/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6gVS/(L-reactor.d), with the methane yield of 600 and 555mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  18. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

    2012-01-01

    The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (?H(f)) of 100.9 (± 0.1) J g(-1). PMID:23028854

  19. UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent.

    Science.gov (United States)

    Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2012-07-30

    The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C. PMID:22466006

  20. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark); Angelidaki, Irini, E-mail: ria@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark)

    2011-05-15

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH{sub 4}/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH{sub 4}/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH{sub 4}/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  1. Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Mei-Ling; Abdul Rahman, Nor' Aini; Aziz, Suraini Abdul; Hassan, Mohd Ali [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Rahim, Raha Abdul [Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shirai, Yoshihito [Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, 808-0196 Hibikino 2-4, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (Japan)

    2009-09-15

    Clostridium butyricum EB6 successfully produced hydrogen gas from palm oil mill effluent (POME). In this study, central composite design and response surface methodology were applied to determine the optimum conditions for hydrogen production (P{sub c}) and maximum hydrogen production rate (R{sub max}) from POME. Experimental results showed that the pH, temperature and chemical oxygen demand (COD) of POME affected both the hydrogen production and production rate, both individually and interactively. The optimum conditions for hydrogen production (P{sub c}) were pH 5.69, 36 C, and 92 g COD/l; with an estimated P{sub c} value of 306 ml H{sub 2}/g carbohydrate. The optimum conditions for maximum hydrogen production rate (R{sub max}) were pH 6.52, 41 C and 60 g COD/l; with an estimated R{sub max} value of 914 ml H{sub 2}/h. An overlay study was performed to obtain an overall model optimization. The optimized conditions for the overall model were pH 6.05, 36 C and 94 g COD/l. The hydrogen content in the biogas produced ranged from 60% to 75%. (author)

  2. Isolation of a novel thermophilic fungus Chaetomium sp. nov. MS-017 and description of its palm-oil mill fiber-decomposing properties.

    Science.gov (United States)

    Suyanto; Ohtsuki, T; Yazaki, S; Ui, S; Mimura, A

    2003-01-01

    Palm-oil mill fiber (POMF) is a fibrous, natural hard material discharged in enormous amounts from palm-oil mills in tropical plantations; therefore, research to find microorganisms that decompose POMF was conducted. As the result of screening, a new thermophilic fungus, Chaetomium sp. nov. MS-017, exhibiting rapid growth on POMF was isolated from rotted wood. Based on partial characterization of the decomposition of POMF, it was shown that MS-017 preferentially assimilates polysaccharides, especially hemicelluloses such as xylan. A preliminary composting study indicated that MS-017 produced 855 g of decomposed product from 1,000 g of intact POMF in 12 days under optimized solid-culture conditions. The decomposition rate of POMF was 23% (w/w), and the cell yield calculated from consumed POMF was as high as 36% (w/w). These results indicate that MS-017 has a very high potential to decompose POMF and that it is suitable for economical production of compost to recycle by-product biomass from oil-palm plantations. PMID:12536260

  3. Sterilization of Oil Palm Fresh Fruit Using Microwave Technique

    OpenAIRE

    Umudee, I.; Chongcheawchamnan, M.; Kiatweerasakul, M.; Tongurai, C.

    2013-01-01

    Dramatically increasing rate of free fatty acid (FFA) in long storage oil palm fruit is one of the most crucial problems of oil palm mill industries. The aim of this paper is to study the possibility of oil palm fruits sterilization by using microwave irradiation in order of halting enzymatic lipolysis reaction which caused of FFA production. The results indicate that microwave heating can be interrupted the FFA produced reaction and the optimum condition heating temperature of the fruits mes...

  4. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR).

    Science.gov (United States)

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2010-08-01

    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit. PMID:20430515

  5. Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology.

    Science.gov (United States)

    Neoh, Chin Hong; Yahya, Adibah; Adnan, Robiah; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-05-01

    The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes. PMID:23054764

  6. Pretreatment Evaluation and its Application on Palm Oil Mill Effluent for Bio-Hydrogen Enhancement and Methanogenic Activity Repression

    Directory of Open Access Journals (Sweden)

    Porntip Wimonsong

    2009-01-01

    Full Text Available Pretreatment evaluations of biological sludge were performed to observe the enhancement of hydrogen production and repression of methanogenic activity using anaerobic sludge and sucrose as substrate. The treatments include heating (H, ozonation (O, drug (D application using fluvastatin, Na2SO4(S dosing and their combinations to make up for the total of 9 pretreatment methods. Heat treatment at 95°C for 45 min provided a complete methanogen repression and good enhancement of hydrogen production activity. The remaining pretreatments were imperfect either for repression or enhancement based on the application conditions and concentration ranges. The order of methane repression was: H>HO>HD>HS>O>D>OD>OS>S while hydrogen production was: HO>H>HS>OD>HD>OS>D>O>S. Heat treatment at the specified condition was considered sufficient and suitable for pretreatment of anaerobic sludge. The practical application was explored using Palm Oil Mill Effluent (POME containing different amounts of solid content (15.830 g VSS L-1, namely LPOME and 21.445 g VSS L-1, namely HPOME as substrate. Beside the difference in COD of nearly 16% which is higher for HPOME, a higher specific hydrogen production rate was obtained at 0.81 and 0.17 mL H2 g-1 COD h for LPOME and HPOME, respectively. It should also be noted that a prolonged lag-time during start-up was observed for HPOME as well as hydrogen suppression which may be associated with the solid content mainly lipids in wastewater. Thus, high solid content of wastewater may be of concerned for bio-hydrogen production.

  7. Pretreatment evaluation and its application on palm oil mill effluent for bio-hydrogen enhancement and methanogenic activity repression.

    Science.gov (United States)

    Wimonsong, Porntip; Nitisoravut, Suwanchai

    2009-08-15

    Pretreatment evaluations of biological sludge were performed to observe the enhancement of hydrogen production and repression of methanogenic activity using anaerobic sludge and sucrose as substrate. The treatments include heating (H), ozonation (O), drug (D) application using fluvastatin, Na2SO4(S) dosing and their combinations to make up for the total of 9 pretreatment methods. Heat treatment at 95 degrees C for 45 min provided a complete methanogen repression and good enhancement of hydrogen production activity. The remaining pretreatments were imperfect either for repression or enhancement based on the application conditions and concentration ranges. The order of methane repression was: H > HO > HD > HS > O > D > OD > OS > S while hydrogen production was: HO > H > HS > OD > HD > OS > D > O > S. Heat treatment at the specified condition was considered sufficient and suitable for pretreatment of anaerobic sludge. The practical application was explored using Palm Oil Mill Effluent (POME) containing different amounts of solid content (15.830 g VSS L(-1), namely LPOME and 21.445 g VSS L(-1), namely HPOME) as substrate. Beside the difference in COD of nearly 16% which is higher for HPOME, a higher specific hydrogen production rate was obtained at 0.81 and 0.17 mL H2g (-1) COD h for LPOME and HPOME, respectively. It should also be noted that a prolonged lag-time during start-up was observed for HPOME as well as hydrogen suppression which may be associated with the solid content mainly lipids in wastewater. Thus, high solid content of wastewater may be of concerned for bio-hydrogen production. PMID:19899323

  8. Systematic approach for synthesis of palm oil-based biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

    2012-11-01

    Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

  9. Zeolite Utilization as a Catalyst and Nutrient Adsorbent of an Organic Fertilizer Process From Palm Oil Mill Effluent as Raw Material

    OpenAIRE

    Ida Nursanti; Dedik Budianta; Adipati Napoleon; Yakup Parto

    2013-01-01

    Palm Oil Mill Effluent (POME) cannot be directly used as an organic fertilizer source due to its high Biological Oxygen Demand (BOD) thus it is not environmentally safely. To increase the high quality of organic fertilizer obtained, the liquid wastes are needed to be processed in order to decrease the BOD to degrade both the soluble and suspension materials of organic materials. The altenative process to be conducted to make a better quality of POME is by adding the adsorbent. The aim of the...

  10. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) reactor

    OpenAIRE

    S A Habeeb, Ab Aziz Abdul Latiff

    2011-01-01

    Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organi...

  11. PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent

    Scientific Electronic Library Online (English)

    Meisam, Tabatabaei; Mohd Rafein, Zakaria; Raha Abdul, Rahim; André-Denis G., Wright; Yoshihito, Shirai; Norhani, Abdullah; Kenji, Sakai; Shinya, Ikeno; Masatsugu, Mori; Nakamura, Kazunori; Alawi, Sulaiman; Mohd Ali, Hassan.

    2009-07-15

    Full Text Available 16S ribosomal RNA (rRNA)-targeted fluorescent in situ hybridization combined with polymerase chain reaction (PCR)-cloning, light microscopy using Gram stains, scanning electron microscopy and denatured gradient gel electrophoresis were used to reveal the distribution of methanogens within an anaerob [...] ic closed digester tank fed with palm oil mill effluent. For specific detection of methanogens, 16S rRNA-cloning analysis was conducted followed by restriction fragment length polymorphism (RFLP) for presumptive identification of methanogens. To cover the drawbacks of the PCR-cloning study, the organization of the microorganisms was visualized in the activated sludge sample by using fluorescent oligonucleotide probes specific to several different methanogens, and a probe for bacteria. In situ hybridization with methanogens and bacterial probes and denatured gradient gel electrophoresis within activated sludge clearly confirmed the presence of Methanosaeta sp. and Methanosarcina sp. cells. Methanosaeta concilii was found to be the dominant species in the bioreactor. These results revealed the presence of possibly new strain of Methanosaeta in the bioreactor for treating palm oil mill effluent called Methanosaeta concilii SamaliEB (Gene bank accession number: EU580025). In addition, fluorescent hybridization pictured the close association between the methanogens and bacteria and that the number of methanogens was greater than the number of bacteria.

  12. The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water

    Directory of Open Access Journals (Sweden)

    Nazatul Shima Azmi

    2013-02-01

    Full Text Available An attempt was made to reclaim and recover palm oil mill effluent (POME for water reuse using tubular ultrafiltration (UF and reverse osmosis (RO membranes. The reclaimed water was compared with the final discharged water of the local mill. The raw POME was first subjected to a physical pre-treatment process to remove the content of organic matter and suspended solids. The pre-treatment process was coupled with membrane technology (UF and RO to reclaim the clean water from POME. From the combined techniques of UF (5 bar and RO (30 bar the results showed that the turbidity and BOD5 were reduced by 99% and 98.9%, respectively. Compared to the final discharged POME, this suggested method gives a significant difference in BOD5 and turbidity. The final permeate of RO was found to comply with the standards for water reuse. Therefore, the combined UF and RO method is a viable alternative and has a great potential for use in the palm oil industry.

  13. Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water

    Science.gov (United States)

    Selmani, Nabila; Mirghani, Mohamed E. S.; Zahangir Alam, Md

    2013-06-01

    This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett-Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

  14. Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water

    International Nuclear Information System (INIS)

    This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett–Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

  15. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    International Nuclear Information System (INIS)

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ? Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ? The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ? The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ? SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO–CKD concentration.

  16. Characteristics of granular sludge developed in an upflow anaerobic sludge fixed-film bioreactor treating palm oil mill effluent.

    Science.gov (United States)

    Zinatizadeh, A A L; Mohamed, A R; Mashitah, M D; Abdullah, A Z; Hasnain Isa, M

    2007-08-01

    In the present study, characteristics of the granular sludge (including physical characteristics under stable conditions and process shocks arising from suspended solid overload, soluble organic overload, and high temperature; biological activity; and sludge kinetic evaluation in a batch experiment) developed in an upflow anaerobic sludge blanket fixed-film reactor for palm oil mill effluent (POME) treatment was investigated. The main aim of this work was to provide suitable understanding of POME anaerobic digestion using such a granular sludge reactor, particularly with respect to granule structure at various operating conditions. The morphological changes in granular sludge resulting from various operational conditions was studied using scanning electron microscopy and transmission electron microscopy images. It was shown that the developed granules consisted of densely packed rod- (Methanosaeta-like microorganism; predominant) and cocci- (Methanosarsina) shaped microorganisms. Methanosaeta aggregates functioned as nucleation centers that initiated granule development of POME-degrading granules. Under the suspended solid overload condition, most of the granules were covered with a thin layer of fiberlike suspended solids, so that the granule color changed to brown and the sludge volume index also increased to 24.5 from 12 to 15 mL/g, which caused a large amount of sludge washout. Some of the granules were disintegrated because of an acidified environment, which originated from acidogenesis of high influent organic load (29 g chemical oxygen demand [COD]/L d). At 60 degrees C, the rate of biomass washout increased, as a result of disintegration of the outer layer of the granules. In the biological activity test, approximately 95% COD removal was achieved within 72 hours, with an initial COD removal rate of 3.5 g COD/L d. During POME digestion, 275 mg calcium carbonate/L bicarbonate alkalinity was produced per 1000 mg COD(removed)/ L. A consecutive reaction kinetic model was used to simulate the data obtained from the sludge activity in the batch experiment. The mathematical model gave a good fit with the experimental results (R2 > 0.93). The slowest step was modeled to be the acidification step, with a rate constant between 0.015 and 0.083 hours(-1), while the rate constant for the methanogenic step was obtained to be between 0.218 and 0.361 hours(-1). PMID:17824529

  17. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2011-12-30

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.

  18. Material-mass Balance of Smallholder Oil Palm Processing in the Niger Delta, Nigeria

    OpenAIRE

    Ohimain, Elijah I.; Izah, Sylvester C.; Obieze, Francis A. U.

    2013-01-01

    This study evaluates the material-mass balance of smallholder oil palm processing in Niger Delta Nigeria. Ten smallholder oil palm processing mills were randomly sampled. Measuring scale was used to measure the weight of the Fresh Fruit Bunch (FFB) and all the processing intermediates/products including Threshed Fresh Fruit (TFF), Palm Pressed Fibre (PPF), Palm Kernel Shell (PKS), Empty Fruit Bunch (EFB), Crude Palm Oil (CPO), chaff and nut. During the study period (13-22 April 2012), 8 of th...

  19. A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

    2011-07-01

    Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  20. Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete

    OpenAIRE

    Muthusamy, K.; Zulkepli, N. A.; Mat Yahaya, F.

    2013-01-01

    Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (...

  1. Sustainability of Palm Oil Industries: An Innovative Treatment via Membrane Technology

    OpenAIRE

    Ahmad, A. L.; Chan, C. Y.

    2009-01-01

    Malaysia is the largest producer of palm oil, the processing of oil palm Fresh Fruit Bunches (FFB) has resulted large amount Palm Oil Mill Effluent (POME). The highly polluting POME is identified as the major stumbling block to the development of palm oil industry in Malaysia. Hence, an integrated membrane process with physical-chemical treatment had been successfully achieved for treatment of POME. The role of membrane was explored significantly; where the chemical treated POME was further t...

  2. Life cycle assessment of two palm oil production systems

    International Nuclear Information System (INIS)

    In 2009 approx. 40 Mt of palm oil were produced globally. Growing demand for palm oil is driven by an increasing human population as well as subsidies for biodiesel and is likely to increase further in coming years. The production of 1 t crude palm oil requires 5 t of fresh fruit bunches (FFB). On average processing of 1 t FFB in palm oil mills generates 0.23 t empty fruit bunches (EFB) and 0.65 t palm oil mill effluents (POME) as residues. In this study it is assumed that land use change does not occur. In order to estimate the environmental impacts of palm oil production a worst and a best case scenario are assessed and compared in the present study using 1000 kg of FFB as functional unit. The production and treatment of one t FFB causes more than 460 kg CO2eq in the worst case scenario and 110 kg CO2eq in the best case scenario. The significant greenhouse gas (GHG) emission reduction is achieved by co-composting residues of the palm oil mill. Thus treating those residues appropriately is paramount for reducing environmental impacts particularly global warming potential (GWP) and eutrophication potential (EP). Another important contributor to the EP but also to the human toxicity potential (HTP) is the biomass powered combined heat and power (CHP) plant of palm oil mills. Frequently CHP plants of palm oil mills operate without flue gas cleaning. The CHP plant emits heavy metals and nitrogen oxides and these account for 93% of the HTP of the advanced palm oil production system, of which heavy metal emissions to air are responsible for 79%. The exact emission reduction potential from CHP plants could not be quantified due to existing data gaps, but it is apparent that cleaning the exhaust gas would reduce eutrophication, acidification and toxicity considerably. -- Highlights: ? We have estimated the environmental impacts of two palm oil production systems. ? Residues from palm oil mills are a wasted resource rather than waste. ? Co-composting of EFB and POME reduces greenhouse gas emission significantly. ? Flue gas cleaning would abate the eutrophication and human toxicity potential.

  3. A novel application of red mud-iron on granulation and treatment of palm oil mill effluent using upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Ahmad, Anwar

    2014-01-01

    The performance of the upflow anaerobic sludge blanket reactor that used red mud-iron (RM-Fe) for methane production for the treatment of palm oil mill effluent (POME) at various hydraulic retention time (HRT) was determined. POME was used as the substrate carbon source. The biogas production rate was 1.7 l biogas/h with a methane yield of 0.78 l CH4/g CODremoved and chemical oxygen demand (COD) removal was 85% at POME concentration of 30 g COD/l at HRT 16 h. The reactor R2 showed average methane content of biogas and COD reduction of 78% and 85% at 400 mg/l RM-Fe. Significant increase in the granule diameter (up to 2900 ?m) in R2 was compared to control R1 (up to 86 ?m) at end of the experiment. PMID:25176306

  4. Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME).

    Science.gov (United States)

    Din, Mohd Fadhil Md; Mohanadoss, Ponraj; Ujang, Zaini; van Loosdrecht, Mark; Yunus, Salmiati Muhd; Chelliapan, Shreeshivadasan; Zambare, Vasudeo; Olsson, Gustaf

    2012-11-01

    High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (q(p)) of 0.343 C-mol/C-molh when air was supplied at 20 ml/min. The PHA yield was found to be 0.80 C-mol/C-mol acetic acid (HAc) at microaerophilic condition and the mass balance calculation showed that PHA production increased up to 15.68±2.15 C-mmol/cycle. The experiments showed that short feeding rate, limited requirements for electron acceptors (e.g. O(2), NO(3)) and nutrients (N and P) showed lower tendency of glycogen accumulation and contributed more to PHA productivity. PMID:22989648

  5. The influenced of PAC, zeolite, and Moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME).

    Science.gov (United States)

    Damayanti, A; Ujang, Z; Salim, M R

    2011-03-01

    The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests. PMID:21251818

  6. Coconut, date and oil palm genomics

    Science.gov (United States)

    A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...

  7. Industrial ecosystems in the crude palm oil industry in Thailand

    OpenAIRE

    Chavalparit, O.

    2003-01-01

    The crude palm oil industry plays an important role in Thai economic development and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it contributes to environmental degradation from both input and output sides of its activities. On the input side, crude palm oil mill uses much water in production process and consumes high energy. On the output side , manufacturing process generates large quantity of wastewater, solid waste/ by-pro...

  8. Biodiesel production from palm oil

    Directory of Open Access Journals (Sweden)

    Kiatsimkul, P.

    2001-11-01

    Full Text Available Methyl ester was produced from many sources of oil palm products, namely used frying oil, RBD palm oil, degummed and deacidified palm oil, palm stearin and superhard palm stearin. Production process was a conventional transesterification batch process using methanol as reactant and sodium hydroxide as catalyst. Production procedure consisted of oil preparation, solvent preparation, reaction step, glycerol separation, washing step and finishing step. Thin layer chromatograph was used to determine the composition of product and nearly 100% methyl ester was obtained at a suitable condition. Molar ratio of oil: methanol was about 1:6, which equal to 20% by weight of methanol. Sodium hydroxide was 0.5-1 %wt. of oil. The production temperature was 60-80ºC, mixing time was only 15-30 minutes and reaction time was 3-4 hours. Many fuel properties of methyl ester were very close to high-speed diesel such as viscosity, density, heating value and boiling point range. Pour point of methyl ester was higher than diesel owing to the high composition of saturated methyl ester that has a high melting point.

  9. Flexural strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Highlights: • Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. • The palm oil clinker concrete can be classified as lightweight concrete. • Full scale reinforced palm oil clinker concrete beams were tested. • The palm oil clinker concrete beam can provide ample warning to the imminence of failure. - Abstract: This paper presents an experimental program on the flexural behaviour of reinforced concrete beams produced from palm oil clinker (POC) aggregates. POC is obtained from by-product of palm oil milling. Utilisation of POC in concrete production not only solves the problem of disposal of this solid waste but also helps to conserve natural resources. An experimental work was conducted involving eight under-reinforced beams with varying reinforcement ratios (0.34–2.21%) which were fabricated and tested. The data presented include the deflection characteristics, cracking behaviour and ductility indices. It was found that although palm oil clinker concrete (POCC) has a low modulus of elasticity, the test results revealed that the deflection of singly reinforced POCC beams, with reinforcement ratio less than 0.524, under the design service load is acceptable as the span-deflection ratios range between 250 and 257 and these values are within the allowable limit provided by BS 8110. In addition, the results reported in this paper indicate that the BS8110 based design equations can be used for the prediction of the flexural capacity of POCC beams with reinforcement ratio up to 2.23%

  10. Research advancements in palm oil nutrition*

    Science.gov (United States)

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

  11. Palm oil use in Mortadella

    Directory of Open Access Journals (Sweden)

    Dany Pérez Dubé

    2010-06-01

    Full Text Available Palm (Elaeis guineensis oil and its fractions can be combined to obtain designed fats with desired composition and physical properties. Incorporation of this type of ingredient in meat products can influence meat products process and sensory quality. In this study, a mixture of palm refined oil and stearin were employed to replace pork fat in a mortadella type product. A two-component mixture design was employed by the D-optimum design. Moisture, fat, protein, cocking losses and instrumental texture profiles were determined, besides a sensory evaluation. Results indicate that 8.8 % of pork fat can be replaced to obtain a good quality mortadella. Maximum palm fat in formulation was 44% of total fat content.

  12. BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF WASTEWATER FROM PALM OIL MILL INDUSTRY / PRODUCCIÓN DE BIOGÁS MEDIANTE DIGESTIÓN ANAEROBIA DE AGUAS RESIDUALES PROVENIENTES DE LA INDUSTRIA PALMERA

    Scientific Electronic Library Online (English)

    Debora-Alcida, Nabarlatz; Ligia-Patricia, Arenas-Beltrán; Diana-Milena, Herrera-Soracá; Diana-Andrea, Niño-Bonilla.

    2013-01-01

    Full Text Available SciELO Colombia | Language: English Abstract in portuguese O impacto ambiental gerado pelo uso de combustíveis fósseis, incentiva à sociedade a procurar novas fontes de energia renováveis, tais como o biodiesel. Na Colômbia, a matéria-prima mais utilizada para produzir biodiesel é o óleo de palma, devido a isso a sua produção tem aumentado drasticamente nos [...] últimos anos, gerando efluentes com alta carga contaminante para o meio ambiente como consequência do processo. Dado que as características físico químicas destes efluentes são propícias para a produção de biogás mediante digestão anaeróbia, este trabalho avalia a produção de metano a partir de água residual de uma empresa extratora de óleo de palma colombiana. Foram realizados experimentos de digestão anaeróbia em modo batch para avaliar a influência do pH e a relação inoculo/substrato utilizando dois inóculos diferentes. Encontrou-se que a mistura 1:1 v/v lodo anaerobio de tratamento de águas residuais urbanas e esterco de porco usada como inóculo, gerou a maior produção de metano acumulado, atingindo 2740 mL de metano (0,343 m³ CH4/kg SV), usando uma relação de 2 g SV de inóculo/g SV de substrato, sem necessidade de neutralizar o pH do sistema. Abstract in spanish El impacto ambiental generado por el uso de combustibles fósiles, incentiva a la sociedad a buscar nuevas fuentes de energía renovables tales como el biodiesel. En Colombia, la materia prima más utilizada para producir biodiesel es el aceite de palma, con lo que su producción ha aumentado drásticame [...] nte en los últimos años, generando efluentes con alta carga contaminante para el medio ambiente como consecuencia del proceso. Dado que las características físico-químicas de estos efluentes son propicias para la producción de biogas mediante digestión anaerobia, este trabajo evalúa la producción de metano a partir de agua residual de una empresa extractora de aceite de palma colombiana. Se realizaron experimentos de digestión anaerobia en modo batch para evaluar la influencia del pH y la relación inóculo/ sustrato utilizando dos inóculos diferentes. Se encontró que la mezcla 1:1 v/v lodo anaerobio de planta de tratamiento de aguas residuales urbanas y estiércol de cerdo usada como inóculo, generó la mayor producción de metano acumulado, alcanzando 2740 mL de metano (0.343 m³ CH4/kg SV), usando una relación de 2 g SV de inóculo/g SV de sustrato, sin necesidad de neutralizar el pH del sistema. Abstract in english The environmental impact caused by the fossil fuel use encourages society to look for new sources of renewable energy, such as biodiesel. During the last years, palm oil production has dramatically increased in Colombia, since it is the main raw material for biodiesel production. As consequence of t [...] he process, palm oil mill effluents with high content of pollutants are released to the environment. Since these effluents have physicochemical characteristics that make them suitable for the production of biogas by anaerobic digestion of residual water, this research evaluates the production of methane using wastewater as substrate from a Colombian palm oil mill. Anaerobic digestion experiments were conducted in batch mode to evaluate the influence of pH and inoculum to substrate ratio, by using two differents inoculums. It was found that the most suitable inoculum was a mixture of 1:1 v/v urban Wastewater Treatment Plant (WWTP) anaerobic sludge/pig manure at a ratio 2 g Volatile Solids (VS) inoculum/g VS substrate, which presented the highest accumulated methane production, reaching 2740 mL methane (0.343 m³ CH4/kg VS) without neutralizing pH.

  13. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach.

    Science.gov (United States)

    Gan, Pei Pei; Ng, Shi Han; Huang, Yan; Li, Sam Fong Yau

    2012-06-01

    The present study reports the synthesis of gold nanoparticles (AuNps) from gold precursor using palm oil mill effluent (POME) without adding external surfactant, capping agent or template. The biosynthesized AuNps were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). According to the image analysis performed on a representative TEM micrograph by counting 258 particles, the obtained AuNps are predominantly spherical with an average size of 18.75 ± 5.96 nm. In addition, some triangular and hexagonal nanoparticles were also observed. The influence of various reaction parameters such as reaction pH, concentration of gold precursor and interaction time to the morphology and size of biosynthesized AuNps was investigated. This study shows the feasibility of using agro waste material for the biosynthesis of AuNps which is potentially more scalable and economic due to its lower cost. PMID:22297042

  14. Effect of solids retention time on membrane fouling intensity in two-stage submerged anaerobic membrane bioreactors treating palm oil mill effluent.

    Science.gov (United States)

    Annop, S; Sridang, P; Puetpaiboon, U; Grasmick, A

    2014-01-01

    Submerged anaerobic membrane bioreactors (SAnMBRs) treating palm oil mill effluent were analysed in terms of membrane fouling dynamics when working at three different sludge retention times (SRTs of 15, 30 and 60 d). The average permeate flux was fixed at 2.4 L x m(-2) x h(-1). During operation, the membrane was regenerated by using two steps: membrane wiping during each experiment as soon as trans-membrane pressure reached 125-130 mbars, and complete membrane cleaning including backwash and chemical cleaning at the end of each experiment when analysing the membrane surface and foulant material. Whatever the SRT, the cake formation was the dominant effect on membrane fouling dynamics. The concentration of suspended solids in the SAnMBRs, depending on the SRT, was then a determining criterion. Scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy indicated that fouled membrane surfaces were covered with a cake layer containing organic and inorganic elements whose concentrations were higher when working at a higher SRT; the higher concentrations of such elements gave to the cake layer a denser and more compact structure. In these experiments, the soluble fractions played a secondary role because of the dominant effect of cake layer structuring. PMID:25145221

  15. Pilot-scale production of lipase using palm oil mill effluent as a basal medium and its immobilization by selected materials.

    Science.gov (United States)

    Asih, Devi Ratna; Alam, Zahangir; Salleh, Noor; Salihu, Aliyu

    2014-01-01

    A pilot-scale production of lipase using palm oil mill effluent (POME) as a fermentation basal medium was carried out, and parameters for immobilization of the produced lipase were optimized. Lipase production in a 300-L bioreactor was performed using two proposed strategies, constant power per volume (P/V) and constant tip speed. Moreover, lipase immobilization on different materials was also investigated. Lipase production was performed using liquid-state bioconversion of POME as the medium and Candida cylindracea as the inoculum. The fermentation medium was composed of 1% total suspended solids (TSS) of POME, 0.5% (w/v) peptone, 0.7% (v/v) Tween-80, and 2.2% inoculum. The medium composition was decided on the basis of the medium optimization results of a previous study. The fermentation was carried out for 48 h at 30°C and pH 6. The maximum lipase production was 5.72U/mL and 21.34 U/mL, obtained from the scale-up strategies of constant tip speed and P/V, respectively. Four accessible support materials were screened for their potential use in immobilization. The most suitable support material was found to be activated carbon, with a maximum immobilization of 94%. PMID:25017863

  16. Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis. PMID:22622964

  17. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).

    Science.gov (United States)

    Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

    2014-07-01

    This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system. PMID:24659435

  18. Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM).

    Science.gov (United States)

    Chou, K W; Norli, I; Anees, A

    2010-11-01

    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME. PMID:20638277

  19. Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis

    Scientific Electronic Library Online (English)

    Sompong, O-Thong; Chonticha, Mamimin; Poonsuk, Prasertsan.

    2011-09-15

    Full Text Available Anaerobic sludge from palm oil mill effluent (POME) treatment plant was used as a source of inocula for the conversion of POME into hydrogen. Optimization of temperature and initial pH for biohydrogen production from POME was investigated by response surface methodology. Temperature of 60ºC and init [...] ial pHof 5.5 was optimized for anaerobic microflora which gave a maximum hydrogen production of 4820 ml H2/l-POME corresponding to hydrogen yield of 243 ml H2/g-sugar. Total sugar consumption and chemical oxygen demand (COD) removal efficiency were 98.7% and 46%, respectively. Long-term hydrogen production in continuous reactor at HRT of 2 days, 1 day and 12 hrs were 4850 ± 90, 4660 ± 99 and 2590 ± 120 ml H2/l-POME, respectively. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and continuous reactors were phylogenetically related to the Thermoanaerobacterium thermosaccharolyticum. Batch reactor showed more diversity of microorganisms than continuous reactor. Microbial community structure of batch reactor was comprised of T. thermosaccharolyticum, T. bryantii, Thermoanaerobacterium sp., Clostridium thermopalmarium and Clostridium NS5-4, while continuous reactor was comprised of T. thermosaccharolyticum, T. bryantii and Thermoanaerobacterium sp. POME is good substrate for biohydrogen production under thermophilic condition with Thermoanaerobacterium species play an important role in hydrogen fermentation.

  20. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    Science.gov (United States)

    Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

    2013-06-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  1. Sustainable biogas and biomass utilization in Malaysian palm oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, Minato; Shirai, Yoshihito (Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu (Japan)); Yacob, Shahrakbah (Advanced Agriecological Research Sdn Bhd, Selangor (Malaysia)); Ali Hassan, M. (Dept. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang (Malaysia))

    2007-07-01

    Palm oil industry in Malaysia is producing palm oil more than 12 million tones every year, while yielding more than 14 million of empty fruit bunch (EFB) and 25 million tones of palm oil mill effluent (POME). In the POME treatment, huge anaerobic ponds (lagoon) are adopted, generating large amount of methane, more than 20 times global warming effect than CO{sub 2}. The objective of this research is to estimate actual methane emission from the POME treatment and to find out any possibility to utilize generated methane as an energy source under the Clean Development Mechanism (CDM). Methane emission of 0.238 kg CH{sub 4} per kg COD removed or 12.36 kg CH{sub 4} per tone POME are obtained from actual mill operation throughout annual measurement. This indicates that more than 200,000 tones of methane, which is equivalent to 4 million tones of carbon dioxide, are estimated to be emitted from whole Malaysia. 500 tones of methane fermentor installed to palm oil mill to prevent GHG emission under the CDM. By this, lagoon system as major source of local environment pollution necessary no more, thus obtaining another 3 to 4 times large land area than mill. Our proposal is to establish novel industry utilizing biogas energy for value added material or energy conversion of excess biomass, thus enabling reduction of GHG and local environment pollution and sustainable development of local community. (orig.)

  2. Palm oil and the heart: A review

    Science.gov (United States)

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-01-01

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids.

  3. Palm oil and the heart: A review.

    Science.gov (United States)

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-03-26

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids. PMID:25810814

  4. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    Science.gov (United States)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.

  5. Zeolite Utilization as a Catalyst and Nutrient Adsorbent of an Organic Fertilizer Process From Palm Oil Mill Effluent as Raw Material

    Directory of Open Access Journals (Sweden)

    Ida Nursanti

    2013-09-01

    Full Text Available Palm Oil Mill Effluent (POME cannot be directly used as an organic fertilizer source due to its high Biological Oxygen Demand (BOD thus it is not environmentally safely. To increase the high quality of organic fertilizer obtained, the liquid wastes are needed to be processed in order to decrease the BOD to degrade both the soluble and suspension materials of organic materials. The altenative process to be conducted to make a better quality of POME is by adding the adsorbent. The aim of the research was to study the effect of zeolite utilization and duration of hydrolysis process in order to increase the nutrients content and to decrease the BOD of POME. The research was conducted at the PT Sumbertama Nusa Pertiwi Jambi, Indonesia in August 2012 until February 2013. The sample of POME was taken from the inlet of the factory’s acidulating pool. There were several doses of zeolite as treatments which were 0, 5, 10, 15% and several durations of hydrolysis process which were 1,2,3 and 4 weeks. Active zeolite was added to POME and then it was fermented with different hydrolysis duration times as mentioned above. The research showed that application of zeolite and duration of hydrolysis process significantly affected the pH, N, P, K, Al, Fe, BOD of POME and the adsorption of N, P, K, Al, Fe by zeolite. It can be concluded that 10% of zeolite incubated in two weeks duration of hydrolysis process produced higher nutrient of N, P, K with BOD, Al, Fe and pH matched with the waste quality standard. The highest efficiency of N, P and K adsorbent was show by the 15% of zeolite which was incubated for two weeks of hydrolysis process.

  6. The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy

    Directory of Open Access Journals (Sweden)

    Alawi Sulaiman

    2009-01-01

    Full Text Available Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME and methane gas production. The effect of sludge recycling rate was studied by applying Organic Loading Rates (OLR (between 1.0 and 10.0 kgCOD m-3 day-1 at different sludge recycling rates (6, 12 and 18 m3 day-1. Results: At sludge recycling rate of 18 m3 day-1, the maximum OLR was 10.0 kgCOD m-3 day-1 with biogas and methane productivity of 1.5 and 0.9 m3 m-3 day-1, respectively. By increasing the sludge recycling rate the VFA concentration was controlled below its inhibitory limit (1000 mg L-1 and the COD removal efficiency recorded was above 95% which indicated good treatment performance for the digester. Two methanogens species (Methanosarcina sp. and Methanosaeta concilii had been identified from sludge samples obtained from the digester and recycled stream. Conclusion: By increasing the sludge recycling rate upon higher application of OLR, the treatment process was kept stable with high COD removal efficiency. The biogas and methane productivity were initially improved but reduced once OLR and recycling rate were increased to 10.0 kg COD m3 day-1 and 18 m3 day-1 respectively.

  7. Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production

    Directory of Open Access Journals (Sweden)

    A. Sulaiman

    2009-01-01

    Full Text Available Problem statement: Refined Glycerin Wash Water (RGWW from the oleochemical industry contains high Chemical Oxygen Demand (COD and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME for its treatment and methane recovery. Approach: A large 500 m3 semi-commercial closed digester tank was used to study the effect of co-digesting POME and RGWW under mesophilic condition at different RGWW percentage. The digester performance in terms of COD removal efficiency and methane production rate and stability based on total Volatile Fatty Acids (VFA accumulation, Mixed Liquor Volatile Suspended Solid (MLVSS and pH were evaluated. Results: At 1.0% of RGWW co-digested, both COD removal efficiency and methane production rate showed satisfactory results with higher than 90% and 505 m3 day-1, respectively. However, once the percentage was increased to a maximum of 5.25%, COD removal efficiency remains high but the methane production rate reduced significantly down to 307 m3 day-1. At this stage, the digester was already unstable with high total VFA recorded of 913 mg L-1 and low cells concentration of 8.58 g L-1. This was probably due to the effect of plasmolysis on the methanogens at high concentration of NaCl in the digester of nearly 4000 mg L-1. Conclusion: Co-digesting of RGWW with high NaCl content and POME is satisfactory for COD removal but not for increasing the methane production.

  8. Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre

    OpenAIRE

    Hassan S.; Tesfamichael Aklilu; Mohd Nor M.F.

    2014-01-01

    In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons w...

  9. Value-added Products from Palm Sludge Oil

    OpenAIRE

    Choo Yuen May; Harrison Lau Lik Nang; Nursulihatimarsyila Abd. Wafti

    2012-01-01

    The very short chain fatty acid has been recovered from palm sludge oils, a by-product of palm oil mills using vacuum distillation method. The recovered very short chain fatty acid contains mainly C6 fatty acid which is a valuable fine chemical in perfume industry. The very short chain fatty acid perfume esters were then synthesised using ethanol with sulphuric acid as catalyst. The reaction conditions were alcohol- very short chain fatty acid volume ratio of 2:1, 1.5% wt of sulphuric acid at...

  10. Evaluation of the Quality of Palm Oil Produced by Different Methods of Processing

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Five palm oil samples obtained by different methods of processing were evaluated for quality. The palm oil samples evaluated were oils produced by traditional aqueous palm oil extraction method, palm oil press, fibre extract, Adapalm mechanized extraction method and adulterated palm oil extract. The physical quality indices analyzed were moisture content, impurities, density, smoke point, flash point and fire point, while the chemical quality indices analyzed were Free Fatty Acids (FFA, saponification value, peroxide value, iodine value, unsaponifiable matter and potash content. The Adapalm oil ( from the standard industrial oil mill had significantly(p<0.05 lower values of FFA (0.97%, moisture content (0.23%, peroxide value (07.0 mEq kg-1 and the other quality parameters showed that it is of higher quality than the rest. It was closely followed by palm oil from press extract and traditional aqueous palm oil with FFA of 3.3% and 2.6%, respectively. These were then followed by palm oil from fibre extract with FFA (2.9%, moisture content (9.3%, impurities (1.6%, peroxide value (7.4 mEq kg -1. The adulterated palm oil extract was found to have significantly higher values of moisture content (26.4%, FFA (3.9%, impurities (1.89%, potash content (3.96% and other quality indices showed that it is of the poorest quality among all the oil samples.

  11. How will oil palm expansion affect biodiversity?

    Science.gov (United States)

    Fitzherbert, Emily B; Struebig, Matthew J; Morel, Alexandra; Danielsen, Finn; Brühl, Carsten A; Donald, Paul F; Phalan, Ben

    2008-10-01

    Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation. PMID:18775582

  12. Sterilization of Oil Palm Fresh Fruit Using Microwave Technique

    Directory of Open Access Journals (Sweden)

    I. Umudee

    2013-06-01

    Full Text Available Dramatically increasing rate of free fatty acid (FFA in long storage oil palm fruit is one of the most crucial problems of oil palm mill industries. The aim of this paper is to study the possibility of oil palm fruits sterilization by using microwave irradiation in order of halting enzymatic lipolysis reaction which caused of FFA production. The results indicate that microwave heating can be interrupted the FFA produced reaction and the optimum condition heating temperature of the fruits mesocarp is 50 °C but not exceed to 80 °C, and the fruits can be storage for 7 days at ambient condition without FFA significantly generation. Conclude that heating from irradiation of microwave is capacitating for dry and clean sterilization system.

  13. Bio-oils from Pyrolysis of Oil Palm Empty Fruit Bunches

    Directory of Open Access Journals (Sweden)

    Mohamad A. Sukiran

    2009-01-01

    Full Text Available Problem Statement: The palm oil industry generates an abundance of oil palm biomass such as the mesocarp fibre, shell, empty fruit bunch (EFB, frond, trunk and palm oil mill effluent (POME. For 80 million tonnes of fresh fruit bunch (FFB processed last year, the amount of oil palm biomass was more than 25 million tones. The objectives of this study were to: (i Determine the effect of various pyrolysis parameters on product yields and (ii Characterise liquid product obtained under different condition. Approach: In this study, pyrolysis of oil palm Empty Fruit Bunches (EFB was investigated using quartz fluidized fixed bed reactor. The effects of pyrolysis temperatures, particle sizes and heating rates on the yield of the products were investigated. The temperature of pyrolysis and heating rate were varied in the range 300-700 °C and 10-100 °C min1 respectively. The particle size was varied in the range of Results: Under the experimental conditions, the maximum bio-oil yield was 42.28% obtained at 500 ºC, with a heating rate of 100 ºC min-1 and particle size of 91-106 µm. The calorific values of bio-oil ranged from 20-21 MJ kg-1. A great range of functional groups of phenol, alcohols, ketones, aldehydes and carboxylic acids were indicated in FTIR spectrum. Conclusion: The chemical characterisation results showed that the bio-oil obtained from oil palm EFB maybe a potentially valuable source as fuel or chemical feedstocks.

  14. Numerical analysis of emission component from incineration of palm oil wastes

    Energy Technology Data Exchange (ETDEWEB)

    Harimi, M. [Universiti Malaysia Sabah (Malaysia). School of Engineering and Information Technology; Megat Ahmad, M.M.H.; Sapuan, S.M. [Universiti Putra Malaysia, Selangor, Darul Ehsan (Malaysia). Dept. of Mechanical and Manufacturing Engineering; Idris, A. [Universiti Putra Malaysia, Selangor, Darul Ehsan (Malaysia). Dept. of Chemical and Environmental Engineering

    2005-03-01

    In the last decade, there has been an increasing awareness of the use of by-products and wastes from palm oil mills with the dual objective of reducing their environmental impacts and enhancing the economic viability of the crop. The recycling aspects of palm oil cultivation and palm oil processing have been reviewed and have provided an indication of the present and future use of palm oil biomass current applications being mainly for organic fertilizers and fuel. In the present work, the emissions from incineration of two types of palm oil wastes (POW) fibre and shell are considered, and compared to fuel oil. The results, which indicate less pollutant emission from incineration of POW compared to that of fuel oil, have been presented graphically. (author)

  15. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant. PMID:19487007

  16. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  17. A case study of pyrolysis of oil palm wastes in Malaysia

    Science.gov (United States)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  18. Contemporary land-use transitions: The global oil palm expansion

    DEFF Research Database (Denmark)

    Kongsager, Rico; Reenberg, Anette

    2012-01-01

    The present report aims at providing an overview of the magnitude and geographical distribution of oil palm cultivation. It also considers recent trends in the palm oil market and the future prospects for palm oil. By way of background, we briefly summarize the agroecological characteristics of oil palms. The main aim of the paper is, however, to present a quantitative overview of the extent of land transformations related to the global oil palm production.

  19. Palm oil based polyols for acrylated polyurethane production

    International Nuclear Information System (INIS)

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  20. Dioxin/ Furan Level in the Malaysian Oil Palm Environment

    International Nuclear Information System (INIS)

    Environmental samples collected from oil palm premises were evaluated for dioxins/ furans contamination. The samplings were carried out at oil palm premises located in Banting (Premise A) and in Teluk Intan (Premise B), involving two environmental matrices namely ambient air and soil. The soil samples were collected in the plantations while ambient air samples were collected in the vicinity of the mills and refineries. The results of the analyses showed that the level of dioxins/ furans in ambient air were generally higher in oil palm premise located adjacent to industrial establishments. The concentration levels at premise A mill and refinery located adjacent to industrial establishments, ranged from 64.14 WHO-TEQ fg m-3 to 131.87 WHO-TEQ fg m-3, while for premise B mill and refinery located in the rural area, ranged from 9.93 WHO-TEQ fg m-3 to 16.66 WHO-TEQ fg m-3. Meanwhile for soil samples, the highest concentrations were recorded in soil collected near roads used heavily by vehicles. The concentration levels of soil samples collected at premise A and premise B plantations ranged from 1.910 WHO-TEQ pg g-1 dry weight to 3.305 WHO-TEQ pg g-1 dry weight. (author)

  1. Utilization of oil palm as a source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, S.; Chai, S.P.; Mohamed, A.R. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2008-12-15

    Malaysia is currently the world's largest producer and exporter of palm oil. Malaysia produces about 47% of the world's supply of palm oil. Malaysia also accounts the highest percentage of global vegetable oils and fats trade in year 2005. Besides producing oils and fats, at present there is a continuous increasing interest concerning oil palm renewable energy. One of the major attentions is bio-diesel from palm oil. Bio-diesel implementation in Malaysia is important because of environmental protection and energy supply security reasons. This palm oil bio-diesel is biodegradable, non-toxic, and has significantly fewer emissions than petroleum-based diesel (petro-diesel) when burned. In addition to this oil, palm is also a well-known plant for its other sources of renewable energy, for example huge quantities of biomass by-products are developed to produce value added products such as methane gas, bio-plastic, organic acids, bio-compost, ply-wood, activated carbon, and animal feedstock. Even waste effluent; palm oil mill effluent (POME) has been converted to produce energy. Oil palm has created many opportunities and social benefits for the locals. In the above perspective, the objective of the present work is to give a concise and up-to-date picture of the present status of oil palm industry enhancing sustainable and renewable energy. This work also aims to identify the prospects of Malaysian oil palm industry towards utilization of oil palm as a source of renewable energy. (author)

  2. Sustainability of Palm Oil Industries: An Innovative Treatment via Membrane Technology

    Directory of Open Access Journals (Sweden)

    A.L. Ahmad

    2009-01-01

    Full Text Available Malaysia is the largest producer of palm oil, the processing of oil palm Fresh Fruit Bunches (FFB has resulted large amount Palm Oil Mill Effluent (POME. The highly polluting POME is identified as the major stumbling block to the development of palm oil industry in Malaysia. Hence, an integrated membrane process with physical-chemical treatment had been successfully achieved for treatment of POME. The role of membrane was explored significantly; where the chemical treated POME was further treated using ultrafiltration and reverse osmosis membrane. The concept of sustainable development in palm oil industries is achieved by recovering and recycling the crystal clear water and sludge as organic fertilizer from POME back to its process and plantations using the innovative membrane treatment. Consequently, zero discharge is achieved by eliminating the discharge of POME into the rivers.

  3. Techno-economic Analysis of Electricity Generation from Biogas Using Palm Oil Waste

    OpenAIRE

    Saad, Mohd Firdaus M.; Shahida Begum

    2013-01-01

    In Malaysia, nearly 80 million tons of fresh fruit bunches are processed annually in 406 palm oil mills and are generating approximately 54 million tons of Palm Oil Mill Effluent (POME). This POME is known to generate biogas consisting of methane-a Green House Gas (GHG) identifiable to cause global warming. The amount of methane gas generated annually is equivalent to 19 million tons of carbon dioxide. To meet the regulatory requirement, more than 85% of the mills use solely the lagoon system...

  4. IMPACT OF CPO EXPORT DUTIES ON MALAYSIAN PALM OIL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Ibragimov Abdulla

    2014-01-01

    Full Text Available In January 2013, Malaysia reduced the export duty structure to be in line with the Indonesia’s duty structure. Both countries export crude and processed palm oil. Since Malaysia and Indonesia are close competitors and they compete in the same market, a change in export duty rate in one country will affect the other. Indonesia, as the world’s biggest palm oil producer, has drastically widened the values between the crude palm oil and refined palm oil export taxes since October 2011, to encourage more downstream investments and production of refined palm oil products. Under the revised export duty structure, crude palm oil and crude palm kernel oil are cheaper for downstream activities in Indonesia. The new structure is expected to reduce Malaysia’s competitiveness in the world market as its export duty is relatively higher. A high export duty results in high price of crude palm oil which is the raw material for processed palm oil. The research questions are: (i What are the likely future trends of crude palm oil exports under the new crude palm oil export duties? Will it increase, reduce or stabilize? (ii What are the likely future trends of processed palm oil exports? Will it increase exponentially, stabilize or reduce? To answer these questions, a system dynamics model was developed for the Malaysian palm oil. Application of the system dynamics model provides a framework to understand the feedback structure and how changes in variables impact the behavior of the palm oil industry. This research suggests that with low crude palm oil export duties crude palm oil domestic price, profitability of plantation owners, immature crop, mature crop, total planted area, production and exports of crude palm oil increase, however exports of processed palm oil decrease.

  5. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Highlights: ? We evaluate energy and carbon equivalence from CPO production based on a CBM. ? Energy spent and produced via carbon movement from palm oil mill was determined. ? Scenarios were formulated to evaluate the potential reduction of carbon emission. ? Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of plantation. This equates to a quantity of 68 kg CE reduced per ton of FFB. Thus, utilization of palm oil biomass can have a significantly high potential as a resource to be used for climate change mitigation by reducing carbon emissions. The findings of this work can be used as a template for policy makers to use in assessing and planning their energy programs.

  6. Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre

    Directory of Open Access Journals (Sweden)

    Hassan S.

    2014-07-01

    Full Text Available In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons were made with others common insulating materials, and it was found that the experimental k values for oil palm waste insulation was lower by between 4 to 56 times for rockwool and between 7 to 57 times for glass fiber at low temperatures. The value k of oil palm fiber however showed an increase at higher temperatures and was lower at lower packing densities. Although not being able to match the k values of common insulators at higher temperatures, other factors such as cost and environmental benefits of using waste material should be taken into consideration and hence encouraging its use as at least a supplement to existing insulation materials

  7. European Policies towards Palm Oil - Sorting Out some Facts

    OpenAIRE

    Pehnelt, Gernot; Vietze, Christoph

    2009-01-01

    This paper analyses the role of palm oil and its sustainability from different perspectives. We consider the role of palm oil within the GHG context. We discuss the impact of palm oil on biodiversity and analyse how palm oil can contribute to economic growth and development in tropical countries. Finally, based on this analysis, we assess the current concerns about and politics towards palm oil with special focus on the EU. Palm oil is a low-energy and low-fertilizer crop that offers much hig...

  8. Design and Development of Laboratory Scale Updraft Gasifier for Gasification of Oil Palm Fronds

    OpenAIRE

    Konda, Ramzy E.; Sulaiman, Shaharin A.; Bambang Ariwahjoedi

    2014-01-01

    The huge amount of wasted Oil Palm Fronds (OPF) produced annually provides a very good opportunity for the oil palm industry in Malaysia to use it for power generation, especially in mill boilers. Recently, gasification technology is receiving more attention as it can be used to convert wasted biomass into gaseous fuel for power generation and thermal applications as well as it can be used as a fuel source for the production of other chemicals. This study addresses the design, fabrication and...

  9. Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2014-07-01

    Full Text Available In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing various percentage of POFA ranging from 10, 20, 30, 40 and 50%, respectively by weight of cement. All the mixes were cast in form of cubes and then subjected to water curing until the testing date. The compressive strength test is conducted in accordance to BSEN 12390 (2009 at 7 and 28 days. From the results, it was observed that the combination of appropriate POFA content would enhance the compressive strength of OPS lightweight aggregate concrete. Specimen produced using 20% POFA as partial cement replacement exhibit higher value of compressive strength than that of control OPS lightweight aggregate concrete. However, mixes consisting POFA up to 50% is also suitable for structural application.

  10. Fuel conversional aspects of palm oil and sunflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Demi-Rbas, A. [PK 216, Trabzon (Turkey)

    2003-05-15

    There are great differences between palm oil and palm kernel oil in physical and chemical characteristics. Palm oil contains mainly palmitic (16:0) and oleic (18:1) acids, the 2 common fatty acids and about 50% saturated, while palm kernel oil contains mainly lauric acid (12:0) and is more than 89% saturated. Palm is widely grown in Southeast Asia, and 90% of the palm oil produced is used for food, while the remaining 10% is used for nonfood consumption, such as production of oleo-chemicals. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, while methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than the vegetable oils. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. The yield of conversion of the sunflower oil reached the maximum 78.3% at 660 K over ZnCl{sub 2} catalyst. (Author)

  11. An experimental investigation to evaluate the heating value of palm oil waste by calorimetry. Paper no. IGEC-1-040

    International Nuclear Information System (INIS)

    A palm oil mill produces palm oil and kernel palm oil as main products and biomass residue (fiber and shell). This excess biomass residue can be used as fuel in boilers to meet energy and process heat demand in the industries. Quality of the palm oil waste (POW) is characterized by low fixed carbon and relatively high moisture content which may affect the heating value (HV). By applying the principle of calorimetry, a bomb calorimeter is utilized to evaluate the heating value of POW. From the experimental results, it is found that higher heating value (HHV) varies with the moisture content (MC) and it is observed as a function of MC. (author)

  12. SYNERGISTIC ACTIVITY OF ENZYMES PRODUCED BY EUPENICILLIUM JAVANICUM AND ASPERGILLUS NIGER NRRL 337 ON PALM OIL FACTORY WASTES

    OpenAIRE

    TRESNAWATI PURWADARIA; YANTYATI WIDYASTUTI; Ketaren, Pius P.; DYAH ISWANTINI PRADONO; NONI NIRWANA

    2003-01-01

    The use of palm kernel cake (PKC) and palm oil mill effluent (POME), substances from palm oil factory wastes, for monogastric is limited by their high cellulose and mannan contents. Hydrolytic enzymes have been supplemented to increase the nutrient digestibility. The maximal digestibility was obtained in the synergistic action of all enzyme components including B-D-endoglucanase (CMCase), B-D-glucosidase, B-D-mannanase, p-D-mannosidase, and oc-D-galactosidase. Two kinds of enzymes produced by...

  13. Effect of Palm Oil on Serum Lipid Profile in Rats

    OpenAIRE

    Karaji-bani, M.; Montazeri, F.; Hashemi, M.

    2006-01-01

    Palm oil is considered as plant oil in which two types of cooking oil, palm seed oil and palm oil are derived. Palm oil has almost 50% saturated fatty acid and 50% poly unsaturated fatty acid. It is considered to be useful due to metabolites products such as prostacycline and antithrombois in cardiovascular disease (C.V.D) and variation in lipoprotein. In the present study we examined the effect of 12% palm oil on 30 days old male rats (149.3±10.7 g) for 60 days. The changes of weight...

  14. Evaluation of the Lubricating Properties of Palm Oil

    OpenAIRE

    Musa, John Jiya

    2010-01-01

    There has been an increase in effort to reduce the reliance on petroleum fuels for energy generation and transportation throughout the world. Among the proposed alternative fuels is biodiesel. Over the years, a little attention was paid to the industrial use of palm oil. Laboratory tests such as viscosity, fire point, flash point, pour point and densities were conducted on raw palm oil and bleached palm oil using standard procedures. The flash points of palm oil and the bleached sample are 25...

  15. Application of Extreme Value Copulas to Palm Oil Prices Analysis

    OpenAIRE

    Kantaporn Chuangchid; Aree Wiboonpongse; Songsak Sriboonchitta; Chukiat Chaiboonsri

    2012-01-01

    In this paper we study the tail behavior of the palm oil future markets using the Extreme Value Theory and focusing on the dependence structure between the returns on palm oil future price in three palm oil futures markets, namely Malaysian futures markets (KLSE), Dalian Commodity Exchange (DCE) and Singapore Exchange Derivatives Trading Limited (SGX-DT) by using the Extreme Value Copulas. The results demonstrated that the returns on palm oil future price among KLSE and SGX-DT have dependence...

  16. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning

    OpenAIRE

    Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-ebongue, Georges-frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent

    2011-01-01

    Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript ...

  17. UV curable palm oil based inks

    International Nuclear Information System (INIS)

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  18. UV curable palm oil based ink

    International Nuclear Information System (INIS)

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil urethane acrylate (POBUA) as a prepolymer in the UV ink system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  19. Performance Evaluation of Palm Oil as Biodiesel

    OpenAIRE

    Lawal, Sunday A.; Babakano, Ahmed

    2011-01-01

    This work involved the production of diesel from most commonly available palm fruits oil Pisifera elaeis guineensis and testing for the brake power, torque of an engine and specific fuel consumption of a conventional diesel engine utilizing the produced diesel from palm oil. The obtained results were compared with those for fossil diesel fuel. The results show that the value of brake power was 6927.21W for fossil diesel while that of biodiesel was 7135.02W. Similarly the value for brake torqu...

  20. Radiation curing applications of palm oil acrylates

    International Nuclear Information System (INIS)

    Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

  1. Irradiation effect on chemical components of oil palm empty fruit bunch and palm press fibre

    International Nuclear Information System (INIS)

    Physico-chemical properties of empty fruit bunch (EFB) and palm press fibre (PPF), which are major by-products of the oil palm industries, were studied for upgrading their utilisation as animal feed by radiation-fermentation process. Comparative analyses of raw EFB and PPF from 3 different mills showed significant variations in some of their chemical components. Significant differences were also observed between the chemical components of EFB and PPF samples. The water holding capacities (WHC) of both EFB and PPF suggested their suitability for use as fermentation media. Gamma irradiation of up to 50 kGy have little effect on the components of both EFB and PPF. Irradiation dose of 25 kGy appeared to produce enhancement effect on cellulase hydrolysis of holocellulose and alpha-cellulose of EFB but a retarding effect on hydrolysis of PPF

  2. Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2013-03-01

    Full Text Available Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (COPS as partial sand replacement material in concrete mix towards density and compressive strength was investigated in this study. Total of five mixes consisting various content of crushed oil palm shell as partial sand replacement ranging from 0, 25, 50, 75 and 100% were prepared in form of cubes. All the specimens were water cured before tested at 7, 14 and 28 days. Compressive strength was conducted in accordance to BSEN 12390. Generally, the compressive strength and density decrease with the increase in the crushed oil palm shell replacement level. Between 50 to 75% replacement, the mix produced possess lower density enabling it to be categorized as lightweight concrete and has the potential to be used as non-load bearing structure. The application in structural concrete material is suited for mix consisting around 25% of crushed oil palm shell.

  3. Oil Palm Fruit Bunch Grading System Using Red, Green and Blue Digital Number

    Science.gov (United States)

    Alfatni, Meftah Salem M.; Shariff, Abdul Rashid Mohamed; Zulhaidi Mohd Shafri, Helmi; Ben Saaed, Osama M.; Eshanta, Omar M.

    This research deals with the ripeness grading of oil palm fruit bunches. The current practice in the oil palm mills is to grade the oil palm bunches manually using human graders. This method is subjective and subject to disputes. In this research, we developed an automated grading system for oil palm bunches using the RGB color model. This grading system was developed to distinguish between the three different categories of oil palm fruit bunches. The maturity or color ripening index was based on different color intensity. Our grading system employs a computer and camera to analyze and interpret images equivalent to the human eye and brain. The colors namely Red, Green and Blue (RGB) of the palm oil fruit bunch were investigated using this grading system. The computer program developed and used the mean color intensity to differentiate between the different color and ripeness of the fruits such as oil palm FFB. The program results showed that the ripeness of fruit bunch could be differentiated between different categories of fruit bunches based on RGB intensity.

  4. Oil Palm Fruit Bunch Grading System Using Red, Green and Blue Digital Number

    Directory of Open Access Journals (Sweden)

    Meftah Salem M. Alfatni

    2008-01-01

    Full Text Available This research deals with the ripeness grading of oil palm fruit bunches. The current practice in the oil palm mills is to grade the oil palm bunches manually using human graders. This method is subjective and subject to disputes. In this research, we developed an automated grading system for oil palm bunches using the RGB color model. This grading system was developed to distinguish between the three different categories of oil palm fruit bunches. The maturity or color ripening index was based on different color intensity. Our grading system employs a computer and camera to analyze and interpret images equivalent to the human eye and brain. The colors namely Red, Green and Blue (RGB of the palm oil fruit bunch were investigated using this grading system. The computer program developed and used the mean color intensity to differentiate between the different color and ripeness of the fruits such as oil palm FFB. The program results showed that the ripeness of fruit bunch could be differentiated between different categories of fruit bunches based on RGB intensity.

  5. Analysis on Indonesian Sustainable Palm Oil (ISPO:A Qualitative Assessment the Success Factors for ISPO

    Directory of Open Access Journals (Sweden)

    Dina Harsono

    2012-09-01

    Full Text Available ISPO (Indonesian Sustainable Palm Oil serves as the baseline of sustainability standards for palm oil industry and is expected to improve the competitive advantage of Indonesian palm oil industry. ISPO was introduced by the government in March 2011 and currently most of plantations are in process of applying ISPO. The objective of this research is to analyze success factors affecting implementation of ISPO. Using qualitative method of in-depth interview on 20 selected experts representing actors mapped in the value chain of palm oil industry. The results depicted that; very little companies apply sustainable principles hence ISPO is needed for industrial standards, success factors affecting ISPO implementation, and necessary conditions for ISPO implementation. SWOT technique resulting 8 recommended strategies to be applied for ISPO implementation. Acknowledging ISPO applies to upstream industry (plantations and mills only, managerial implication for this research is the need to develop of a grand master plan for Indonesian palm oil Industry by developing integrated policies complementing ISPO aiming for sustainability, growing and developing downstream industry to add value to CPO product, and for upstream industry to be developed by farmers and cooperatives while big investors to develop mills and downstream industry.Keywords: Palm Oil, ISPO, Sustainable Certification, Success Factors, Qualitative

  6. Physicochemical Properties of Palm Kernel Oil

    Directory of Open Access Journals (Sweden)

    Amira P. Olaniyi

    2014-09-01

    Full Text Available Physicochemical analyses were carried out on palm kernel oil (Adin and the following results were obtained: Saponification value; 280.5±56.1 mgKOH/g, acid value; 2.7±0.3 mg KOH/g, Free Fatty Acid (FFA; 1.35±0.15 KOH/g, ester value; 277.8±56.4 mgKOH/g, peroxide value; 14.3±0.8 mEq/kg; iodine value; 15.86±4.02 mgKOH/g, Specific Gravity (S.G value; 0.904, refractive index; 1.412 and inorganic materials; 1.05%. Its odour and colour were heavy burnt smell and burnt brown, respectively. These values were compared with those obtained for groundnut and coconut oils. It was found that the physico-chemical properties of palm kernel oil are comparable to those of groundnut and coconut oils except for the peroxide value (i.e., 14.3±0.8 mEq which was not detectable in groundnut and coconut oils. Also the odour of both groundnut and coconut oils were pleasant while that of the palm kernel oil was not as pleasant (i.e., heavy burnt smell.

  7. Cogeneration potential in the Columbian palm oil industry: Three case studies

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, F.N.; Lora, E. [Federal University of Itajuba/Excellence Group in Thermal and Distributed Generation, Itajuba-MG (Brazil); Yanez, E. [CENIPALMA (Colombia); Castillo, E. [UIS, (Colombia); Arrieta, F.R.P.

    2007-07-15

    The palm oil mills are characterized by the availability of considerable amounts of by-products of high-energy value such as empty fruit bunches (EFB), fibers, shells and liquid effluents with high content of organics called palm oil mill effluent (POME). A palm oil mill produces residues equivalent to almost three times the amount of oil produced by biomass, showing a huge potential for increasing the power efficiency of the plants and installed power, mainly by the use of by-products in cogeneration plants with high steam parameters and by reducing steam consumption in process. The objective of this paper is to present the results of the study about the cogeneration potential for three representative palm oil mills located in two important palm oil producing regions in Colombia (South-America), fifth palm oil producers of the world. The sizing of the cogeneration system was made assuming it operation during the greatest possible number of hours throughout the year (based on the seasonal availability of fruit) considering parameters for the steam at 2 MPa and 350 C, using a condensing-extraction turbine. The balance of mass and energy was made by using the Gate Cycle Enter Software, version 5.51, to estimate the potential of electricity generation. The results showed that for fresh fruit bunch (FFB) processing capacities between 18 and 60 t FFB h{sup -1}, it is possible to have surplus power ranging between 1 and 7 MW, if the plants are self-sufficient in electric energy and steam for process. With an average Capacity Factor (approximately 0.4), it is possible to expect a generation index of 75 and 160 kWh t{sup -1} FFB when the processing plant is operating or shutdown, respectively, 3 or 4 times better than when a traditional system with a back-pressure steam turbines is used. This analysis used up to 60% of EFB produced in plant as fuel, considering its value as fertilizer for the palm crop. Several economic conditions were considered to estimate the economic and technical feasibility of cogeneration systems in palm oil mill for Colombian palm oil sector. (author)

  8. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios

    International Nuclear Information System (INIS)

    Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N2O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (?3.0 to 5.3 kg CO2eq kg?1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

  9. Will oil palm's homecoming spell doom for Africa's great apes?

    Science.gov (United States)

    Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin

    2014-07-21

    Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. PMID:25017207

  10. Material-mass Balance of Smallholder Oil Palm Processing in the Niger Delta, Nigeria

    Directory of Open Access Journals (Sweden)

    Elijah I. Ohimain

    2013-03-01

    Full Text Available This study evaluates the material-mass balance of smallholder oil palm processing in Niger Delta Nigeria. Ten smallholder oil palm processing mills were randomly sampled. Measuring scale was used to measure the weight of the Fresh Fruit Bunch (FFB and all the processing intermediates/products including Threshed Fresh Fruit (TFF, Palm Pressed Fibre (PPF, Palm Kernel Shell (PKS, Empty Fruit Bunch (EFB, Crude Palm Oil (CPO, chaff and nut. During the study period (13-22 April 2012, 8 of the mills processed 90-400 bunches of Dura variety, while the remaining 2 mills processed 65-200 bunches of Tenera variety. During the batch processing of Dura variety, the proportion of the intermediate products computed in relation to the weight of the FFB (100% are as follows; TFF (66.0-75.0%, mesocarp (44.8-51.1%, nuts (19.0-27.5%, kernel (5.7-7.2%, water in mesocarp (9.0-12.1% and water in nut (2.4-3.4%, EFB (23.7-32.4%, chaff (0.8-2.4%, Palm Kernel Shell (PKS (10.0-18.8%, Palm Press Fibre (PPF (23.2-28.1% and Crude Palm Oil (CPO (9.4-12.8%. For the Tenera varieties, the compositions are as follows; TFF (70.9-72.9%, mesocarp (56.4-58.0%, nuts (14.5-14.9%, kernel (5.5-5.6%, water in mesocarp (10.1-10.4% and water in the nut (1.9-2.1%, EFB (25.7-28.2%, chaff (0.9-1.4%, PKS (6.8-7.5%, (19.1-20.3% and CPO (26.0-28.2%. This result shows that Tenera produces more oil and less wastes compared to the Dura variety. The solid wastes fractions are used as energy sources during the processing of oil palm and as filling materials for upgrading access roads to palm plantations. Except the huge volume of wastes (71.8-90.6% generated by smallholder oil palm processors is effectively utilized, the process will be unsustainable.

  11. Techno-economic Analysis of Electricity Generation from Biogas Using Palm Oil Waste

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus M. Saad

    2013-01-01

    Full Text Available In Malaysia, nearly 80 million tons of fresh fruit bunches are processed annually in 406 palm oil mills and are generating approximately 54 million tons of Palm Oil Mill Effluent (POME. This POME is known to generate biogas consisting of methane-a Green House Gas (GHG identifiable to cause global warming. The amount of methane gas generated annually is equivalent to 19 million tons of carbon dioxide. To meet the regulatory requirement, more than 85% of the mills use solely the lagoon systems in waste water treatment, typically anaerobic first stage followed by facultative treatment. However, these two major palm oil wastes are a viable Renewable Energy (RE source for production of electricity. In the present paper, an attempt has been made to study the technological parameters for different capacity digester to produce electricity. The cost related data are collected from Serting Hilir Palm Oil Mill. Net present worth, internal rate of return and payback period were calculated. On the basis of the calculated values it has been found that the application of biogas plant for generation of electricity is economically viable in Malaysian perspective and this viability or economic attractiveness increase with the increase of plant size. The findings of this study should be useful to give some directions and guidelines for future planning and implementation of biogas plants in Malaysia.

  12. Storage Stability and Sensory Evaluation of Taro Chips Fried in Palm Oil, Palm Olein Oil, Groundnut Oil, Soybean Oil and Their Blends

    OpenAIRE

    Emmanuel-ikpeme, C. A.; Eneji, C. A.; Essiet, U.

    2007-01-01

    Taro (Colocasia esculenta) chips fried in Palm Oil (PO), Soybean Oil (SBO), Palm Olein Oil (POO), Groundnut Oil (GO) and in 40:60 w/w blend ratio of palm oil: POO; SBO; GO were stored for 0-5 weeks in dark and in fluorescent light. Chips were subjected to weekly chemical and sensory analysis. Results showed that significant (p<0.05) differences occurred in the organoleptic properties of taro chips fried in the different oil types during storage. Chips fried in palm oil and groundnut...

  13. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    Science.gov (United States)

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

  14. Determination of Antioxidants in Oil Palm Leaves (Elaeis guineensis

    Directory of Open Access Journals (Sweden)

    Ng M. Han

    2010-01-01

    Full Text Available Problem statement: Previous findings on the occurrence of water soluble antioxidants in palm oil has brought to the question on whether these compounds is also present in other parts of the oil palm; namely its leaves. Approach: It is now believed that the water soluble antioxidants are also present in other biomass of the oil palm, namely, the leaves. This study reported on the determination of the water soluble antioxidants in oil palm leaves. Results: The results showed the analyses of the antioxidants in oil palm leaves. Conclusion: This study is thus conducted to trace the availability of these antioxidants in the leaves of the oil palm of the Elaeis guineensis variety.

  15. Epoxidation of Palm Kernel Oil Fatty Acids

    Directory of Open Access Journals (Sweden)

    Michelle Ni Fong Fong

    2013-02-01

    Full Text Available Epoxidation of palm kernel oil fatty acids using formic acid and hydrogen peroxide was carried out effectively using a homogeneous reaction. It was found that epoxidation reaction occurred optimally at a temperature of 40oC and reaction time of 120 minits. The oxirane conversion was the highest at 1.46mol and 0.85mol of hydrogen peroxide and formic acid respectively. It was found that a maximum of 99% relative conversion of ethylenic oxirane was obtained, similar to the conversion of iodine value. The formation of epoxide adduct of palm kernel oil fatty acids (FAPKO was confirmed by 1H NMR and 13C NMR spectral analysis showed the disappearance of double bonds and replaced by epoxy group in the EFAPKO.

  16. Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon.

    Science.gov (United States)

    Achten, Wouter M J; Vandenbempt, Pieter; Almeida, Joana; Mathijs, Erik; Muys, Bart

    2010-06-15

    The use of palm oil as a biofuel has been heavily debated for its land-use conflict with nature and its competition with food production, being the number one cooking oil worldwide. In that context, we present a life cycle assessment of a palm oil production process yielding both biodiesel and cooking oil, incorporating the land-use impact and evaluating the effect of treating the palm oil mill effluent (POME) prior to disposal. The results show that the nonrenewable energy requirement, global warming potential (GWP; exclusive land-use change), and acidification potential are lower than those of the fossil alternative. However, the system triggers an increase in eutrophication potential (EP) compared to the fossil fuel reference. This system shows less energy requirement, global warming and acidification reduction, and less eutrophication increase compared to the reference than the same system converting all palm oil into biodiesel (no cooking oil production). The land occupation of palm oil triggers ecosystem quality (EQ) loss of 30-45% compared to the potential natural vegetation. Furthermore, such land-use change triggers a carbon debt neutralizing the GWP reduction for 45-53 years. The POME treatment scenarios reveal a trade-off between GWP and EP. PMID:20496929

  17. Noise exposure in oil mills

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar G

    2008-01-01

    Full Text Available Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM (Model-824, Larson and Davis, USA, equivalent SPL was measured at operator?s ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m x 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis, USA, equivalent SPL and noise spectrum at each reading was obtained. Noise survey map of equivalent SPL was drawn for each oil mill by drawing contour lines on the sketch of the oil mill between the points of equal SPL. The floor area in the oil mill where SPL exceeded 85 dBA was identified from the noise survey map of each oil mill to determine the causes of high level of noise. Subjective assessment was done during the rest period of workers and it was assessed with personal interview with each worker separately. Demographic information, nature of work, working hours, rest period, experience of working in the mill, degree of noise annoyance, activity interference, and psychological and physiological effects of machine noise on the worker were asked during the interview. These details were noted in a structured form. Statistical Analysis Used: Nil. Results: The noise survey conducted in three renowned oil mills of north-eastern region of India revealed that about 26% of the total workers were exposed to noise level of more than 85 dBA. Further, 10% to 30% floor areas of workrooms, where oil expellers are provided have the SPL of more than 85 dBA. The noise in the oil mills was dominated by low frequency noise. The predominant noise sources in the oil mills were seed cleaner and power transmission system to oil expellers. Poor maintenance of machines and use of bamboo stick to prevent the fall of belt from misaligned pulleys were the main reason of high noise. Noise emitted by the electric motor, table ghani and oil expellers in all the oil mills was well within 85 dBA. Subjective response indicated that about 63% of the total workers felt that noise interfered with their conversation. About 16% each were of the opinion that noise interfered in their work and harmed their hearing. About 5% of workers stated that the workroom noise gave them headaches. Conclusions: The workers engaged in the workrooms of the oil mills are exposed to high noise, which will have detrimental effect on their health. Th

  18. Neural Network in Modeling Malaysian Oil Palm Yield

    OpenAIRE

    Zuhaimy Ismail; Azme Khamis

    2011-01-01

    Problem statement: Forecasting of palm oil yield has become an important element in the management of oil palm industry for proper planning and decision making. The importance of yield forecasting has led us to explore modeling of palm oil yield for Malaysia using the most recent development of Artificial Neural Network (ANN). The main issue in yield forecasting is to predict the future value with the minimum error. Approach: Artificial neural networks are computing systems containing many in...

  19. Clean technology for the crude palm oil industry in Thailand

    OpenAIRE

    Chavalparit, O.

    2006-01-01

    The aims of this study were to assess the potential contribution of clean(er) technology to improve the environmental performance of the crude palm oil industry inThailand, to analyse implementation barriers for cleaner production in crude palm oil industry, and to provide recommendations for overcoming these barriers. As such the overall aim was to generate ideas for moving the crude palm oil industry towards sustainability.In order to fulfill these research aimsdetailed case studies have be...

  20. Polygon Sawing: An Optimum Sawing Pattern for Oil Palm Stems

    OpenAIRE

    Edi Suhaimi Bakar; Fauzi Febrianto; Imam Wahyudi; Zaidon Ashaari,

    2006-01-01

    The shortage in wood supply makes the effort to find alternative for wood material become more and more important. It was reported that the outer parts of oil palm stems could be used as solid wood after being properly treated. Being a monocotyledon, oil palm stems have a contradictory characteristic to the conventional hardwoods and softwoods and thus the sawing patterns suitable for hardwoods and softwoods should not be suitable for the oil palm stems. Two modified sawing patterns (polygon ...

  1. Oil palm natural diversity and the potential for yield improvement

    Science.gov (United States)

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  2. Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand through Enhancement of Industrial Ecosystems

    OpenAIRE

    Chavalparit, O.; Rulkens, W. H.; Mol, A. P. J.; Khaodhair, S.

    2006-01-01

    The crude palm oil industry plays an important role in the economic development of Thailand and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation, both at the input and the output sides of its activities. On the input side, crude palm oil mills use large quantities of water and energy in the production process. On the output side, manufacturing processes generate large qu...

  3. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel

    OpenAIRE

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, en...

  4. Effects of Fires in Juvenile Oil Palm Fields on Yield and Oil Palm Breeding

    Directory of Open Access Journals (Sweden)

    Claude Bakoumé

    2011-09-01

    Full Text Available Fires in juvenile oil palm (Elaeis guinenesis Jacq. fields cause the death and/or reduce the yield. The magnitude of the loss of yield in subsequent years has been assessed for the first time on four of the 25 progenies that composed the 20th genetic trial laid out at La Dibamba (Cameroon in 1993 which was accidentally victim of fires in 1996. Records of bunch production during the first five years of harvesting (1996-2000 showed that in the first two years after fires, total bunch weight was reduced by 35%, bunch number by 26% and average bunch weight by 23%. From two years after the fires onwards, burnt oil palms reacted by producing a high number of bunches, which compensated for the small average bunch weight. Fire damage to juvenile oil palms disrupted the selection of precocious progenies that helps procure for the plantations an early financial return on their investment.

  5. Exploring Opportunities for Sustainability in the Malaysian Palm Oil Industry

    DEFF Research Database (Denmark)

    Padfield, Rory; Hansen, Sune Balle

    2011-01-01

    The global thirst for vegetable oil can be regarded as one of the greatest environmental challenges of the 21st Century and interest has intensified with the prospect of biofuels. Palm oil has risen to become the dominant player on the vegetable oil market – and the main recipient of environmental scrutiny. Focusing specifically on the Malaysian context, this paper analyses the major environmental, social and economic impacts associated with palm oil production. Drawing on recently published research, publicly available data and a comparison made with a recent sustainability initiative undertaken by the hydropower industry – an equally controversial and highly scrutinised sector – it is argued that the full extent of the impacts of palm oil should be acknowledged by those on both sides of the debate. Moreover, it is argued that by moving towards a less polarised version of the palm oil narrative and one based on scientific evidence is more likely to lead to greater opportunities for sustainable palm oil.

  6. A Gate to Gate Assessment of Environmental Performance for Production of Crude Palm Kernel Oil Using Life Cycle Assessment Approach

    Directory of Open Access Journals (Sweden)

    S. Vijaya

    2009-01-01

    Full Text Available Problem statement: The oil palm industry is an export orientated industry which heavily relies on the world market. In 2007 alone the total export earnings reached RM 45.1 billion. It is essential that the oil palm industry is ready to meet the higher expectation of its overseas customers on the environmental performance of the industry. Life Cycle Assessment (LCA is a tool to evaluate the environmental impacts of a product or process throughout its entire life cycle. To identify the potential environmental impacts associated with the production of CPKO and to use this assessment for evaluating opportunities to overcome the potential impacts. Approach: This study had a gate to gate system boundary that starts with the collection and transportation of the palm kernel from the palm oil mills to the production of Crude Palm Kernel Oil (CPKO at the kernel crushing plants. Six kernel crushing plants were selected to collect inventory data which consists of inputs of raw materials and energy; outputs of solid, liquid and gaseous wastes. Five crushing plants used electricity directly from the grid while one crushing plant used the electricity generated at the neighboring palm oil mill for processing. This study compared the Life Cycle Impact Assessment (LCIA of two scenarios namely; when the crushing plants uses electricity from the grid versus the crushing plant which uses electricity generated from the palm oil mill. The LCIA was conducted using the Simapro software and the Eco-Indicator 99 methodology. Results: For scenario one there was two potential impacts mainly from the electricity consumption from the grid for processing and diesel consumption for transporting the palm kernel from the mills. For scenario two, the potential impact from the electricity consumption from the grid was reduced due to the use of renewable energy from the palm oil mill and the impact from diesel consumption was reduced due to the short distance for transporting the palm kernel. Conclusion: It was recommended that more kernel crushing plants should be integrated with the palm oil mills to over come these impacts.

  7. Production of methyl ester from oil in the wastewater pond of a palm oil factory

    Directory of Open Access Journals (Sweden)

    Tongurai, C.

    2007-11-01

    Full Text Available This research studied the suitable technique for the production of methyl ester from waste palm oil in the water pond of a palm oil mill. The composition of the waste palm oil was 73.82% fatty acid, 5.07% triglyceride, 3.39% diglyceride and 17.76% unknown compounds. The unknown compounds were separated via simple distillation carried out at a temperature range of 300-350oC.First, the experiments were carried out in screw capped bottles using filtrated as-received waste oil as the reactant. The esterification and transesterification process were conducted using sulfuric acid catalyst in a methanol solution. The key parameters studied were mole ratio of waste oil to methanol (1:1 to 1:72, amount of catalyst from 0.1-20 v/w% of the reactant, temperature range of 60-98oC and reaction time range of 15-180 minutes. Thin Layer Chromatography (TLC analysis showed 85-90% purity of methyl ester with 4-5% of mono-, di-, and triglycerides and fatty acids and about 5-10% of the unknown compounds for the best condition. The resulting yield of biodiesel was 84-88%. Eradication of contaminants by distillation gave about a 75% distillate yield. Distilled waste palm oil was esterified and transesterified using the previous optimum condition of as-received waste oil, but the reaction time and temperature were varied. The optimal result was obtained by using distilled waste palm oil to methanol molar ratio of 1:8, sulfuric acid of 1 v/w% of reactant, reaction temperature of 70oC and reaction time of 1 hour. TLC analysis indicated a biodiesel composition of methyl ester, free fatty acid, diglyceride and monoglyceride of 96.39%, 3.20%, 0.24% and 0.17%, respectively. The yield of biodiesel was 96-98% having physical fuel properties according to Thailand standard for methyl esterFinally, the distilled waste palm oil was esterified using a 3 liters continuous stirred-tank reactor (CSTR. Using the suitable condition for the batch process and an hour retention time, the resulting biodiesel contained methyl ester, free fatty acid, diglyceride and monoglyceride at compositions of 94.34%, 3.22%, 1.60% and 0.84%, respectively, which were very close to the qualities from the batch process.

  8. Minimizing the biodiversity impact of Neotropical oil palm development.

    Science.gov (United States)

    Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González Del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2015-04-01

    Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region - improved cattle pasture - together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. PMID:25175402

  9. A choice of renewable or upgraded material from oil palm solid wastes

    International Nuclear Information System (INIS)

    Malaysian palm oil industries are producing a large amount of solid wastes from the palm oil mills. Malaysia generates around 1.10 million tons of oil palm shells in year 1980 but this amount increased up to 4.11 million tons in year 2002 as wastes. Disposal of these wastes created environmental problems. Thus, a process was designed to reuse and recycle these wastes into value added products. This research used oil palm shells as a renewable material resource by thermo-chemical process to produce pyrolysis oil. The oil could be utilized as fuel or converted to valued added products. Since it contain a significant amount of phenols, it was extracted using solvent extraction technique to gain the useful phenol and phenolic compounds. The extracted oil-palm-shell-based phenol was used in the manufacturing of phenol formaldehyde wood adhesives. Then the capability of wood bonding was tested comparing with the petroleum-based phenol formaldehyde wood adhesives. For the commercial values of this research, the total global consumption of phenol in 2000 was 11.3 million metric ton that worth USD 10.0 billions. Thus, the commercial potentiality of this research is very high as the oil-palm-shell-based phenol could replace the petroleum-based phenol. The methods and products utilize low manufacturing cost from relatively simple technology and locally abundant raw material, comparable performances in wood bonding and competitive in price. It is estimated that around USD 900 / te. It is estimated that around USD 900 / ton for petroleum-based, but just USD 250 / ton for palm-shell-based phenol

  10. Transesterification of Palm Oil for the Production of Biodiesel

    Directory of Open Access Journals (Sweden)

    Khalizani Khalid

    2011-01-01

    Full Text Available Problem statement: Palm oil is known as an important source of edible oil with significant values of renewable energy. Depletion of petroleum had captured much attention on producing biodiesel from the palm oil. Approach: The most concerning methods for the production of biodiesel were discussed, namely transesterification (alkali and acid, enzymetic approach and supercritical alcohol. Results: The results showed the vis-a-vis of the methods for possible consideration of research. Conclusion: Concerning the importance of this vegetable oil, the contribution of palm oil towards diminution of fossil fuel, possible methods for the production of biodiesel and the opportunity for the futures is very much important.

  11. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    Science.gov (United States)

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill. PMID:22482288

  12. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  13. Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid

    OpenAIRE

    Abdul Rajab; Umar K.; Hamdani, D.; Aminuddin S.; Suwarno; Abe, Y.; Tsuchie, M.; Kozako, M.; Ohtsuka, S.; Hikita, M.

    2011-01-01

    Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD) in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measu...

  14. Re-esterified Palm Oils, Compared to Native Palm Oil, do not Alter Fat Absorption, Postprandial Lipemia or Growth Performance in Broiler Chicks

    OpenAIRE

    Vilarrasa, E.; Tres, A.; Baye?s-garci?a, L.; Parella, T.; Esteve-garcia, E.; Barroeta, A. C.

    2014-01-01

    Re-esterified palm oils are obtained from the chemical esterification of palm acid oils (rich in free fatty acids) with glycerol, both economically interesting by-products from oil refining and biodiesel industries, respectively. Thus, re-esterified palm oils could be an economically interesting alternative to native palm oil in broiler chick diets. However, because they may have different physicochemical properties than have their corresponding native oil, we assessed the effect of fatty aci...

  15. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles.

    Science.gov (United States)

    Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, Hps; Alwani, M Siti; Nadirah, Wo Wan; Fizree, H Mohammad

    2013-01-01

    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and impregnated into the OPTL by vacuum-pressure method. The treated OPTL samples were exposed to natural weathering for the period of 6 and 12 months in West Java, Indonesia according to ASTM D1435-99 standard. Physical and mechanical tests were done for analyzing the changes in phenol formaldehyde-nanoparticles impregnated (PF-NPI) OPTL. FT-IR and SEM studies were done to analyze the morphological changes. The results showed that both exposure time of weathering and concentration of PF-NPI had significant impact on physical and mechanical properties of OPTL. The longer exposure of samples to weathering condition reduced the wave numbers during FT-IR test. However, all these physical, mechanical and morphological changes were significant when compared with the untreated samples or only PF impregnated samples. Thus, it can be concluded that PF-NP impregnation into OPTL improved the resistance against natural weathering and would pave the ground for improved products from OPTL for outdoor conditions. PMID:25674417

  16. Supercritical Fluid Extraction of Palm Kernel Oil from Palm Kernel Cake

    OpenAIRE

    Rosalam Sarbatly; Awang Bono; Duduku Krishnaiah; Siti Fadhilah

    2012-01-01

    Supercritical fluid carbon dioxide (SC-CO2) at pressure 19.8 MPa and temperature 51C with different amount of ethanol (0-100 mL) was studied the extraction of palm kernel oil from palm kernel cake. The amount of oil produced from SFE and Modified ethanol-CO2 are proportional to the amount of ethanol. It was found that a-tocopherol, a-tocotrienol, sterols and fatty acid such lauric acid, myristic acid and oleic acid were present in all of the palm kernel oil sample.

  17. Supercritical Fluid Extraction of Palm Kernel Oil from Palm Kernel Cake

    Directory of Open Access Journals (Sweden)

    Rosalam Sarbatly

    2012-01-01

    Full Text Available Supercritical fluid carbon dioxide (SC-CO2 at pressure 19.8 MPa and temperature 51C with different amount of ethanol (0-100 mL was studied the extraction of palm kernel oil from palm kernel cake. The amount of oil produced from SFE and Modified ethanol-CO2 are proportional to the amount of ethanol. It was found that a-tocopherol, a-tocotrienol, sterols and fatty acid such lauric acid, myristic acid and oleic acid were present in all of the palm kernel oil sample.

  18. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 106 ty-1) of palm oil from 38.6 x 106 ty- 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 106 ty- 1), shell (2.3 x 106 ty- 1 ), and empty fruit bunches (8.8 x 106 ty- 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  19. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.

    Science.gov (United States)

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. PMID:22137753

  20. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel

    DEFF Research Database (Denmark)

    Hansen, Sune Balle; Olsen, Stig Irving

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.

  1. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    OpenAIRE

    Noor Hasmiza Harun; Norhisam Misron; Roslina Mohd Sidek; Ishak Aris; Hiroyuki Wakiwaka; Kunihisa Tashiro

    2014-01-01

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 ...

  2. Cellulase Production by Pycnoporus sanguineus on Oil Palm Residues through Pretreatment and Optimization Study

    Directory of Open Access Journals (Sweden)

    M.D. Mashitah

    2010-01-01

    Full Text Available The ever expanding trend of the palm oil industries in Malaysia brings about environmental concern with various parties calling for global practice of sustainable palm oil production. In as much as researches in processing technologies are ongoing, utilization of palm oil industries’ residues as a substrate for cellulases production has received little attention. This study addressed on the effect of pressed pericarp fibers sterilization on cellulase production by Pycnoporus sanguineus grown in shake flask culture using a statistical approach. Optimum condition was obtained in 70% (v/v palm oil mill effluent supplemented with 6 g L-1 sterilized palm pressed fibers at pH 6.77 and 350 rpm with CMCase, FPase and ?-glucosidase activities and net changes of biomass and suspended solid at 50.11, 29.01, 5.58 IU mL-1 and 2.49 g L-1, respectively. Under such conditions, the predicted maximum growth and cellulolytic enzyme production were in good agreement with the experimental data with 0.016-0.358% error.

  3. Oil palm waste for the production of bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    San H' ng, P.; Ling Chin, K.; Ti Tey, B.; Tahir Paridah, M. (Univ. of Putra Malaysia, Serdang, Selangor (Malaysia). Inst. of Tropical Forestry and Forest Product), Email: ngpaiksan@gmail.com

    2009-07-01

    Malaysia, as one of the top producers of palm oil in the world, is well positioned to take advantage of its enormous output of lignocellulosic biomass, the oil palm residues. It is a potential source that can be used as a raw material for the production of bio-ethanol by fermentation of glucose obtained from the hydrolysis process. There were two main objectives for this study; to determine the effect of sulfuric acid concentration and reaction period on the glucose yields from hydrolysis of oil palm trunk and to determine the effect of temperature and pH on the ethanol yields from fermentation of oil palm trunk hydrolysates using Saccharomyces cerevisae. Oil palm trunk was prepared in 40 mesh sizes and dried to 5 % moisture content prior to chemical analysis and hydrolysis. The two stage concentrated acid sulfuric hydrolysis process with different acid concentration and time were performed on oil palm trunk samples. The hydrolysates obtained were used in the fermentation process with different temperature and pH. Results showed that highest glucose yields for oil palm trunk could be achieved by using 60 % acid concentration reacted for 60 minutes during 1st stage hydrolysis and subsequently followed by 30 % acid concentration reacted 60 minutes during 2nd stage hydrolysis. While the highest ethanol yields were obtained with the temperature of 30 deg C and pH6 from the fermentation process. (orig.)

  4. The hidden carbon liability of Indonesian palm oil

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-05-15

    This report highlights the urgent need for global palm oil consumers and investors to support Unilever's call for an immediate moratorium on deforestation and peatland clearance in Indonesia. This report focuses on Unilever, which shares major institutional investors with other leading corporations including Nestle, Procter and Gamble and Kraft. Not only do these corporations share investors, they also share growing carbon liability within their raw material supply chains through the expansion in the palm oil sector in Indonesia. Unilever has recognised the global problems associated with palm oil expansion and the need for drastic reform to this sector. Unilever has taken a bold move in calling for an immediate moratorium on deforestation and peatland clearance. While Unilever's position is strengthened by its status as the largest palm oil consumer in the world, this report shows how, unless companies like Nestle, Procter and Gamble and Kraft support its call for a halt to deforestation, the palm oil industry will continue to present a massive carbon liability over the coming years. This report uses Unilever's palm oil supply chains as a case study to help quantify the carbon liability and collateral risks associated with the Indonesian palm oil sector. It shows how, by buying palm oil from suppliers who account for more than one-third of Indonesia's palm oil production, Unilever and its competitors are increasing their potential carbon liability and thus leaving investors exposed to potentially significant levels of hidden risk, compromising long-term financial and brand stability.

  5. Electron beam pasteurised oil palm waste: a potential feed resource

    International Nuclear Information System (INIS)

    Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

  6. Ethyl ester production from (RBD palm oil

    Directory of Open Access Journals (Sweden)

    Oscar Mauricio Martínez Ávila

    2010-07-01

    Full Text Available This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised palm oil by evaluating the oil’s transesterification and separation. Two catalysts were first tested (KOH and NaOH by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering the best results and carrying out the purification stage. Raw materials and products were characterised for comparing the latter with those obtained by traditional means and verifying the quality of the esters so produced; minimum differences were found bet-ween both. The proposed methodology thus allows esters to be used as raw material in petrochemical industry applications. A more profitable process can be obtained compared to those used today, given the amounts of separation agent so established (1% H3PO4 solution, in water. The overall process achieved 74.4% yield, based on the oil being used.

  7. PalmGHG, the RSPO greenhouse gas calculator for oil palm products

    OpenAIRE

    Bessou, Ce?cile; Chase, Laurence; Henson, Ian; Abdul-manan, Amir F. N.; Mila?-i-canals, Llorenc?; Agus, Fahmuddin; Sharma, Mukesh

    2012-01-01

    The Roundtable on Sustainable Palm Oil (RSPO) is a non-profit association promoting sustainable palm oil through a voluntary certi-fication scheme. Two successive science-based working groups on greenhouse gas (GHG) have been active in RSPO between 2009-2011, with the aim of identifying ways leading to meaningful and verifiable reduction of GHG emissions. One of the outputs is PalmGHG, a GHG calculator using the LCA approach to quantify the major sources of emission and sequestration for a mi...

  8. Bioactive Compounds of Palm Fatty Acid Distillate (PFAD) from Several Palm Oil Refineries

    OpenAIRE

    Teti Estiasih1)*; Kgs Ahmadi1)*,; Tri Dewanti Widyaningsih; Jaya Mahar Maligan; Ahmad Zaki Mubarok; Elok Zubaidah; Jhauharotul Mukhlisiyyah; Risma Puspitasari

    2013-01-01

    This research studied the characteristics of Palm Fatty Acids Distillates (PFADs) from several palm oil refineries. It was aimed to know the potency of PFAD as bioactive compounds source, including vitamin E (mainly tocotrienols), phytosterols, squalene and possibly co-enzyme Q10 and polycosanol. Sampling was conducted at 6 palm oil refineries. The results showed that PFAD was dominated by free fatty acids of 85-95% with low oxidation level indicated by peroxide value of 1-10 meq/kg and anisi...

  9. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    OpenAIRE

    Kanlayanee Meesap; Nimaradee Boonapatcharoen; Somkiet Techkarnjanaruk; Pawinee Chaiprasert

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2?g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9?g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane p...

  10. Palm oil: a healthful and cost-effective dietary component.

    Science.gov (United States)

    Ong, A S H; Goh, S H

    2002-03-01

    Palm oil is an excellent choice for food manufacturers because of its nutritional benefits and versatility. The oil is highly structured to contain predominantly oleic acid at the sn2-position in the major triacylglycerols to account for the beneficial effects described in numerous nutritional studies. Oil quality and nutritional benefits have been assured for the variety of foods that can be manufactured from the oil directly or from blends with other oils while remaining trans-free. The oxidative stability coupled with the cost-effectiveness is unparalleled among cholesterol-free oils, and these values can be extended to blends of polyunsaturated oils to provide long shelf-life. Presently the supply of genetic-modification-free palm oil is assured at economic prices, since the oil palm is a perennial crop with unparalleled productivity. Numerous studies have confirmed the nutritional value of palm oil as a result of the high monounsaturation at the crucial 2-position of the oil's triacylglycerols, making the oil as healthful as olive oil. It is now recognized that the contribution of dietary fats to blood lipids and cholesterol modulation is a consequence of the digestion, absorption, and metabolism of the fats. Lipolytic hydrolysis of palm oil glycerides containing predominantly oleic acid at the 2 position and palmitic and stearic acids at the 1 and 3 positions allows for the ready absorption of the 2-monoacrylglycerols while the saturated free fatty acids remain poorly absorbed. Dietary palm oil in balanced diets generally reduced blood cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides while raising the high-density lipoprotein (HDL) cholesterol. Improved lipoprotein(a) and apo-A1 levels were also demonstrated from palm oil diets; an important benefits also comes from the lowering of blood triglycerides (or reduced fat storage) as compared with those from polyunsaturated fat diets. Virgin palm oil also provides carotenes apart from tocotrienols and tocopherols that have been shown to be powerful antioxidants and potential mediators of cellular functions. These compounds can be antithrombotic, cause an increase of the prostacyclin/thromboxane ratio, reduce restenosis, and inhibit HMG-CoA-reductase (thus reducing) cholesterol biosynthesis). Red palm oil is a rich source of beta-carotene as well as of alpha-tocopherol and tocotrienols. PMID:11975364

  11. Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre

    Directory of Open Access Journals (Sweden)

    Lamyaa Abd ALRahman

    2014-02-01

    Full Text Available This study investigated and compared the acoustic characteristics of two natural organic fibres: date palm fibre and oil palm fibre, these materials eligible for acoustical absorption. During the processing stage, both fibre sheets are treated with latex. The two fibres are compressed after latex treatment Circular samples (100 mm in diameter and 28 mm, based on the measurement tube requirements are cut out of the sheets. The density of the date palm fibre sheet is 150 kg/m3 for a 50 mm thickness and 130 kg/m3 for a 30 mm thickness. In contrast, the density of oil palm fibre is 75 kg/m3 for a 50 mm thickness and 65 kg/m3 for a 30 mm thickness. An impedance tube was used to test the thicknesses of both samples based on international standards. The results show that the date palm fibre exhibits two Acoustic Absorption Coefficient (AAC peaks: 0.93 at 1356 Hz and 0.99 at 4200-4353 Hz for the 50-mm-thick sample. In contrast, the 30-mm-thick sample has a single AAC peak of 0.83 at 2381.38-2809.38 Hz. However, the 50-mm-thick oil palm fibre has an AAC peak of 0.75 at 1946.88-2178.13 Hz and the 30-mm-thick oil palm fibre has an acoustic absorption coefficient peak 0.59 at 3225-3712.5 Hz. Thus, the date palm fibre has a higher acoustic absorption coefficient for high and low frequencies than does oil palm fibre. Both fibres are promising for use as sound absorber materials to protect against environmental noise pollution.

  12. Optimum stearin adulteration in palm oil crystallization

    Directory of Open Access Journals (Sweden)

    Inthamanee, C.

    2001-11-01

    Full Text Available Stearin adulteration in refined palm oil crystallization was investigated for industrial separation of stearin and olein. The important standard properties of olein are the iodine value which must be higher than 55-57, and the cloud point which must be lower than 9ºC. The crystallization temperature is the most important parameter of the process to obtain the standard olein properties and should not exceed 20ºC. Longer crystallization time is possibly the cause of lower yields but higher quality. The stearin adulteration at the ratio of 1:9 leads to higher yields, but the quality of stearin adulteration shows unimportant effects. The uniformity of heat and mass transfer in the crystallization process are important factors in obtaining higher yields and quality of olein.

  13. The Kalimantan Border Oil Palm Mega-project

    International Nuclear Information System (INIS)

    A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil pad doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil buyers, investors and government bodies outside Indonesia about the undiminished threats to the tropical rainforests and indigenous peoples related to Indonesia's oil palm expansion plans and the government's overall development agenda for Kalimantan

  14. Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery

    OpenAIRE

    Panu Srestasathiern; Preesan Rakwatin

    2014-01-01

    Oil palm tree is an important cash crop in Thailand. To maximize the productivity from planting, oil palm plantation managers need to know the number of oil palm trees in the plantation area. In order to obtain this information, an approach for palm tree detection using high resolution satellite images is proposed. This approach makes it possible to count the number of oil palm trees in a plantation. The process begins with the selection of the vegetation index having the highest discriminati...

  15. How Unilever palm oil suppliers are burning up Borneo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    New evidence shows expansion by Unilever palm oil suppliers is driving species extinction in Central Kalimantan, and fuelling climate change. In November 2007, Greenpeace released 'Cooking the Climate', an 82-page report summarizing the findings of a two-year investigation that revealed how the world's largest food, cosmetic and biofuel companies were driving the wholesale destruction of Indonesia's rainforests and peatlands through growing palm oil consumption. This follow-up report provides further evidence of the expansion of the palm oil sector in Indonesia into remaining rainforests, orang-utan habitat and peatlands in Kalimantan. It links the majority of the largest producers in Indonesia to Unilever, probably the largest palm oil corporate consumer in the world.

  16. Cultivation of oyster mushroom (Pleurotus ostreatus on oil palm residues

    Directory of Open Access Journals (Sweden)

    Tongwised, A.

    2001-11-01

    Full Text Available This study is aimed to use oil palm residues to cultivate the oyster mushroom, Pleurotus ostreatus, which is one of the most important mushrooms cultivated worldwide. Spawn was prepared on sorghum seeds and inoculated on substrate in plastic bags. Oil palm fronds were cut and used to grow Pleurotus ostreatus. The first fructification occurred 20 days after waterring. The biological efficiency reached at 28.6%. When sawdust of para rubber logs was added to the cut oil palm fronds at the rate of 1:1 (vol : vol., the biological efficiency reached at 39.3%.Supplementary material at the rate of 5% was also added into the combination of cut oil palm frond and sawdust. The result showed that rice bran, corn meal or oil palm-kernel meal give yields between 142.2-165.0 g/bag (B.E. = 42.8-49.6, which were not statistically different. Oil palm pericarp waste was also used as main substrate for P. ostreatus cultivation. The average yield obtained during 40 days havesting period was 112.6 g/bag (B.E. = 64.3%. Addition of sawdust or rice bran into pericarp waste decreased the yield of the basidiocarps. Palm-kernel meal at the rate of 5-20% was used as a supplement material. Addition of 20% palmkernel meal into sawdust supported higher yield. The biological efficiency reached 55.8%. From the above results, four formulae of the substrate were prepared. Treatment of oil palm pericarp waste + 3% rice bran + 3% corn meal + 0.75% Ca(OH2 supported higher yield of the basidiocarps. The average yield obtained from 950 g of substrate was 190.2 g during 60 days havesting (B.E. = 57.2%. Using 6% palm-kernel substitute 3% rice bran + 3% corn meal supported the same yield (B.E. = 56.2% Using sawdust as the main substrate, the yield achieved was less than that obtained with oil palm pericarp waste. The average yield from treatment of sawdust + 3% rice bran + 3% corn meal + 0.75% Ca (OH2 was 154.0 g/bag (B.E. = 46.3% while treatment of sawdust + 6% palm-kernel meal + 0.75% Ca (OH2 was 153.2 g/bag. (B.E. = 46.1% From the above results it is suggested that oil palm residues can be used as an alternative substrate for P. ostreatus production.

  17. The Kalimantan Border Oil Palm Mega-project

    Energy Technology Data Exchange (ETDEWEB)

    Wakker, E. [AIDEnvironment, Amsterdam (Netherlands)

    2006-04-15

    A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil buyers, investors and government bodies outside Indonesia about the undiminished threats to the tropical rainforests and indigenous peoples related to Indonesia's oil palm expansion plans and the government's overall development agenda for Kalimantan.

  18. Microbial communities and their performances in anaerobic hybrid sludge bed-fixed film reactor for treatment of palm oil mill effluent under various organic pollutant concentrations.

    Science.gov (United States)

    Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2?g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9?g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30?L CH?/g COD(removed). It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 10? copies rDNA/g VSS and 1.65?g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 10? copies rDNA/g VSS and 0.34?g COD-CH?/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723

  19. Preliminary Study of Moulded Laminated Veneer Oil Palm (MLVOP)

    OpenAIRE

    Izran Bin Kamal; Abdul Hamid Saleh; Noor Azrieda Abdul Rashid; Abdul Khalil, H. P. S.; Ahmad Shakri bin Mat Seman; Siti Zalifah Mahmud

    2011-01-01

    This research was undertaken to study the suitability of oil palm trunk to be utilized as a raw material for moulded laminated veneer oil palm (MLVOP).  The trunks were converted into veneers by rotary peeling machine.  The veneers were segregated into two veneer qualities namely superior (S) and inferior (I). The methods of segregating veneers quality were defined. The superior veneers were obtained by peeling the billets until their diameters left approximately 12 inches, meanwhile the in...

  20. Production of haploids and doubled haploids in oil palm

    OpenAIRE

    Croxford Adam E; Alfiko Yuzer; Mienanti Devi; Sitorus Andrew C; Wening Sri; Nelson Stephen; Wilkinson Mike J; Dunwell Jim M; Ford Caroline S; Forster Brian P; Ds, Caligari Peter

    2010-01-01

    Abstract Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H) and doubled haploid (DH) palms. We secured over 1,0...

  1. Biodiesel Production from Crude Palm Oil by Transesterification Process

    OpenAIRE

    Alkabbashi, A. N.; Alam, Md Z.; Mirghani, M. E. S.; Al-fusaiel, A. M. A.

    2009-01-01

    An overflow system for batch esterification of Crude Palm Oil (CPO) to obtain Palm Oil Biodiesel (POB) was developed using a batch reactor (shake flask). The alkali catalyst of potassium hydroxide had been used to carry the transestrication process with methanol; ultimately, 2 layers were form from the reaction-the lower layer of glycerol and the upper layer of methyl esters; the later layer is the targeted biodiesel. Optimization of the process was held for determining of the best possible y...

  2. Enzymatic Destruction Kinetics of Oil Palm Fruits by Microwave Sterilization

    OpenAIRE

    Maya Sarah; Mohd. Rozainee Taib

    2013-01-01

    Microwave sterilization of oil palm fruit is carried out to deactivate lipase and soften the fruits. This study is aims to determine enzymatic destruction kinetics from microwave sterilization of oil palm fruits such as decimal reduction time (D-value), temperature sensitivity (z-value), kinetic constant (k) and activation energy (Ea). Three power levels (medium, medium high and high) of the microwave oven were used and lipase assayed was conducted to determine the lipase activity. Microwave ...

  3. Shear strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Highlights: ? Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ? The palm oil clinker concrete can be classified as lightweight concrete. ? Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ? The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (?). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ? ? 1. However, a 0.5 safety factor should be included in the formula for ? < 1

  4. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ...Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension...Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a...

  5. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ...Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension...Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a...

  6. Chicken meat nutritional value when feeding red palm oil, palm oil or rendered animal fat in combinations with linseed oil, rapeseed oil and two levels of selenium

    OpenAIRE

    Nyquist, Nicole F.; Rødbotten, Rune; Thomassen, Magny; Haug, Anna

    2013-01-01

    Chicken meat nutritional value with regard to fatty acid composition and selenium content depends on the choice of dietary oil and selenium level used in the chickens’ feed. The objective of this study was to investigate the effect of replacing commonly used rendered animal fat as a dietary source of saturated fatty acids and soybean oil as a source of unsaturated fatty acids, with palm oil and red palm oil in combinations with rapeseed oil, linseed oil and two levels of selenium enriched y...

  7. Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre

    OpenAIRE

    Lamyaa Abd ALRahman; Raja Ishak Raja; Roslan Abdul Rahman; Zawawi Ibrahim

    2014-01-01

    This study investigated and compared the acoustic characteristics of two natural organic fibres: date palm fibre and oil palm fibre, these materials eligible for acoustical absorption. During the processing stage, both fibre sheets are treated with latex. The two fibres are compressed after latex treatment Circular samples (100 mm in diameter and 28 mm, based on the measurement tube requirements) are cut out of the sheets. The density of the date palm fibre sheet is 150 kg/m3 for a 50 mm thic...

  8. Comparative Determination of Antinutritional Factors in Groundnut Oil and Palm Oil

    OpenAIRE

    Inuwa, H. M.; Aina, V. O.; Baba Gabi; Aimola, I.; Amao Toyi

    2011-01-01

    The research was aimed at determining the degree of antinutritional factors in palm oil and groundnut oil and to know the effect of these factors on the nutritional value of these oils and to know the possible preventive measures. Antinutritional factors are substances found in most food substances which are poisonous to humans and in some ways limit the nutrient availability to the body. The groundnut oil and palm oil were extracted using the soxhlet extraction method. Oxalate and phytate we...

  9. Palm oil boom in Indonesia: from plantation to downstream products and biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Sri J. [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta (Indonesia)

    2008-06-15

    Indonesia has been the biggest producer of palm oil (PO) in the world since 2005. The total production in 2007 was 17.0 and 1.9 million tons of crude palm oil (CPO) and crude palm kernel oil (CPKO), respectively. More than 70% of the CPO was exported and 87% of the domestic consumption was used for food. The production and subsequent refining and fractionation of CPO and CPKO generated biomass by-products that consists of trunk, frond, empty fruit bunch (EFB), fiber, shell, and palm kernel meal (PKM), and discharged wastes of palm oil mill effluent (POME) as well as palm fatty acid distillate (PFAD). The amount of by-products and wastes produced has been growing very rapidly and efforts to diversify and improve their utilization are a great challenge. As claimed in many research reports, the by-products and wastes could be potentially utilized as sources of energy, animal feed, chemicals, paper pulp, advanced materials, medicines and food ingredients. A more important role may be played by PO as the Indonesian Government took further steps in 2006 to become the world's largest producer of biodiesel. As a starting point, Presidential Instruction No. 1/2006 for the Production and Use of Biofuel as Alternative Fuel was issued in January 2006. Responding to this Presidential Instruction, at least 15 companies are planning to establish new larger biodiesel refineries to enhance the currently produced 82.5 million L of biodiesel. It is planned to start production in 2008/2009 with two new refineries that have a total capacity of ca. 1,600 million L/year. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Thermal stability evaluation of palm oil as energy transport media

    International Nuclear Information System (INIS)

    The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

  11. Analysis of total hydrogen content in palm oil and palm kernel oil using thermal neutron moderation method

    International Nuclear Information System (INIS)

    A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditional methods in Ghana. An equipment consisting of an 241Am-Be neutron source and 3He neutron detector was used in the investigation. The equipment was originally designed for detection of liquid levels in petrochemical and other process industries. Standards in the form of liquid hydrocarbons were used to obtain calibration lines for thermal neutron reflection parameter as a function of hydrogen content. Measured reflection parameters with respective hydrogen content with or without heat treatment of the three edible palm oils available on the market were compared with a brand cooking oil (frytol). The average total hydrogen content in the local oil samples prior to heating was measured to be 11.62 w% which compared well with acceptable value of 12 w% for palm oils in the sub-region. After heat treatment, the frytol oil (produced through bleaching process) had the least loss of hydrogen content of 0.26% in comparison with palm kernel oil of 0.44% followed by dzomi of 1.96% and by amidze of 3.22%. (author)

  12. Effects of Fires in Juvenile Oil Palm Fields on Yield and Oil Palm Breeding

    OpenAIRE

    Claude Bakoumé; Madi Galdima; Sylvain Rafflegeau; Albert Flori

    2011-01-01

    Fires in juvenile oil palm (Elaeis guinenesis Jacq.) fields cause the death and/or reduce the yield. The magnitude of the loss of yield in subsequent years has been assessed for the first time on four of the 25 progenies that composed the 20th genetic trial laid out at La Dibamba (Cameroon) in 1993 which was accidentally victim of fires in 1996. Records of bunch production during the first five years of harvesting (1996-2000) showed that in the first two years after fires, total bunch weight ...

  13. Avian species diversity in oil palm plantations of Agusan Del Sur and Compostela Valley, Philippines

    OpenAIRE

    Cagod, Beverly M.; Nun?eza, Olga M.

    2012-01-01

    Oil palm trees have become the most expanding equatorial crops in the world and theirproduct, palm oil, is produced, traded and used more than any other vegetable oil worldwide. Theexpansion of oil palm cultivation, however, is frequently cited as a major factor causing deforestationthat may result in biodiversity losses in tropical countries. In this study, an assessment of the avifaunain oil palm plantations in Agusan del Sur and Compostela Valley, Mindanao, Philippines was done fromApril 2...

  14. Sustainability of smallholder palm oil production in Indonesia

    OpenAIRE

    Bertule, Maija; Degn, Lasse Twiggs

    2009-01-01

    Palm oil is a widely used commodity and is part of a number of daily products. It is the most used vegetable oil, not just for food consumption, but also for soap and cosmetics. Recently the search for co2 neutral fuels have spurred demand for palm oil to be used in diesel cars. The large demand have led to a dramatic increase in production in Malaysia and Indonesia, and those two producers make up over total production. This dramatic increase in plantations have led to severe environmental p...

  15. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Science.gov (United States)

    2010-04-01

    ...2010-04-01 2009-04-01 true Cocoa butter substitute from coconut oil...Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm...both oils. The food additive, cocoa butter substitute from coconut...

  16. An Econometric Analysis of the Link between Biodiesel Demand and Malaysian Palm Oil Market

    Directory of Open Access Journals (Sweden)

    Shri Dewi AP Applanaidu

    2011-01-01

    Full Text Available The objective of this study is to describe the important factors affecting Malaysian palm oil industry especiallybiodiesel demand. To that end a market model representing palm oil production, import, world excess demand,domestic consumption, export demand, rest of the world excess supply and palm oil prices is formulated. Asystem of equations of eight structural equations and four identities is estimated by two stage least squaresmethod using annual data for the period 1976-2008. The domestic price equation is formed to investigate the linkbetween biodiesel demand and the Malaysian palm oil market. The domestic price is significantly affected byMalaysian ending stock, world palm oil price, biodiesel demand and lagged domestic price. The elasticity ofMalaysian palm oil domestic price with respect to biodiesel demand is then obtained. Results suggest thatbiodiesel demand has a positive impact on the Malaysian palm oil domestic price. Thus, significant growth inbiodiesel demand is important in explaining Malaysian palm oil price determination.

  17. Neutron Backscattered Technique for Quantification of Oil Palm Fruit Oil Content

    International Nuclear Information System (INIS)

    Non-destructive and real time method becomes a well-liked method to researchers in the oil palm industry since 2000. This method has the ability to detect oil content in order to increase the production of oil palm for better profit. Hence, this research investigates the potential of neutron source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical formula C55H96O6. For this paper, oil palm loose fruit was being used and divided into three groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each group were collected from a private plantation in Malaysia. Each sample was scanned using neutron backscattered technique. The higher neutron count, the more hydrogen content, and the more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r2=0.98. This research proves that neutron backscattered technique can be used as a non-destructive and real time grading system for palm oil. (author)

  18. Electrical Conductivity of Carbon Pellets from Mixtures of Pyropolymer from Oil Palm Bunch and Cotton Cellulose

    Science.gov (United States)

    Deraman, Mohamad; Zakaria, Sarani; Omar, Ramli; Aziz, Astimar A.

    2000-12-01

    Self-adhesive carbon grains (sacg1) and heat-treated kraft lignin (htkl) were prepared from the oil palm empty fruit bunch, a potential precursor for carbon products due to its large availability from palm oil mills, and sacg was prepared from cellulose (sacg2). Pellets were prepared from mixtures of sacg1 and htkl, as well as sacg1 and sacg2, with varying percentages of htkl (Phtkl%) and sacg2 (Psacg2%). After carbonization up to 1000°C, the measured electrical conductivities, ? (?{\\cdot}cm)-1, of the respective pellets follow the equations ?=4.13Phtkl+2.43 and ?=0.53Psacg2+2.55, respectively, indicating that htkl has improved in its conducting phase compared to sacg2.

  19. Morphometry of Lipid Bodies in Embryo, Kernel and Mesocarp of Oil Palm: Its Relationship to Yield

    OpenAIRE

    Li Sim Ho; Anusha Nair; Hirzun Mohd Yusof; Harikrishna Kulaveerasingam; Mohamad Sanusi Jangi

    2014-01-01

    Oil palm drupe which has thick fleshy mesocarp contains rich oil, where storage of oil in it can make up to 80% of its dry mass [1]. Ongoing research interest in oil palms has been focused on the mechanisms of oil production in oil palm drupes, while investigation on the ultrastructural morphometry of its oil storage entity, namely lipid body, has received limited attention. By employing microscopy techniques, this study investigated the morphometric of lipid bodies in ...

  20. Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations

    OpenAIRE

    Dileep Kumar. M; Noor Azizi Ismail; Govindarajo, Normala S.

    2014-01-01

    Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enfor...

  1. Palm oil - towards a sustainable future? : Challanges and opportunites for the Swedish food industry

    OpenAIRE

    Nilsson, Sara

    2013-01-01

    The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and health issues. The food industry also competes with increasing palm oil demands from the energy sector. This case study identifies and analyzes different perspectives regarding sustainable palm oil as a food commodity in Sweden through interviews with palm oil experts in different businesses and organizations. This study focuses on ho...

  2. Determinants of Indonesian Palm Oil Export: Price and Income Elasticity Estimation

    OpenAIRE

    Ambiyah Abdullah

    2011-01-01

    For Indonesian economy, palm oil is considered as one of important commodities. It provides a large amount of export revenue and job opportunities. From year 2000 to 2009, palm oil production in Indonesia has increased every year. In , 2008 about 70% of its production was exported. Recently, Indonesia has become the largest palm oil exporter and has 48% of the worlds market share. The aim of present study was to estimate the determinants of both crude palm oil exports (HS = 151110) and refine...

  3. Collection of Oil Palm (Elaeis guineensis Jacq.) Germplasm in the Northern Regions of Ghana

    OpenAIRE

    Sapey, E.; Adusei-fosu, K.; Agyei-dwarko, D.; Okyere-boateng, G.

    2012-01-01

    Oil palm germplasm collection was carried out in the Northern Regions of Ghana for evaluation, screening for drought tolerance and further incorporation into breeding programmes of Ghana’s Council for Scientific and Industrial Research (C.S.I.R)-Oil Palm Research Institute (O.P.R.I). The study highlights the collection of 22 oil palm (Elaeis guineensis) accessions from 5 locations in the Northern Regions of Ghana. The Northern Regions are not suitable for oil palm cultivation due to unfavou...

  4. BVOC fluxes from oil palm canopies in South East Asia

    Science.gov (United States)

    Misztal, P. K.; Cape, J. N.; Langford, B.; Nemitz, E.; Helfter, C.; Owen, S.; Heal, M. R.; Hewitt, C. N.; Fowler, D.

    2009-04-01

    Fluxes by virtual disjunct eddy covariance were measured for the first time in South-East Asia in 2008 from an oil palm plantation. Malaysia and Indonesia account for more than 80% of world oil palm production. Our in situ findings suggest much higher isoprene emissions from oil palms than from rainforest, which is consistent with earlier lab-based predictions of emissions from oil palms (Wilkinson et al., 2006). 50% of global biogenic VOC emissions are estimated to derive from tropical rainforests (Guenther et al., 1995) although in fact a large portion of the emission may derive from oil palms in the tropics. Isoprene and monoterpenes are regarded as the most important biogenic VOCs for the atmospheric chemistry. Overall, maximum isoprene emissions from oil palms were recorded at 11:00 local time, with a mean value of 13 mg m-2 h-1. At the rainforest, the maximum fluxes of isoprene were observed later in the day, at about 13:00 with an average of 2.5 mg m-2 h-1. Initial flux results for total monoterpenes indicate that their mass emission ratio with respect to isoprene was about 1:9 at the rainforest and 1:18 at the oil palm plantation. The results are presented with reference to temperature, photosynthetic radiation and meteorological drivers as well as in comparison with CO2 and H2O fluxes. Empirical parameters in the Guenther algorithm for MEGAN (Guenther et al, 2006), which was originally designed for the Amazon region, have been optimised for this oil palm study. The emission factor obtained from eddy covariance measurements was 18.8 mg m-2 h-1, while the one obtained from leaf level studies at the site was 19.5 mg m-2 h-1. Isoprene fluxes from both Amazonia (Karl et al., 2007) and from rainforest in Borneo 2008 seem to be much lower than from oil palms. This can have consequences for atmospheric chemistry of land use change from rainforest to oil palm plantation, including formation of ozone, SOA and particles and indirect effects on the removal rate of greenhouse gases and pollutants by decreasing OH budgets. Global models predicting atmospheric changes and bottom-up estimates from the tropics must be constrained by direct measurements such as presented here, taking separate account of these major contributions from oil palm plantations and tropical rainforests. References: Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T.E. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, 1995: A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. Discuss., 6, 107-173. Karl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo, 2007: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research 112, D18302. Wilkinson, M. J., S. M. Owen, M. Possell, J. Hartwell, P. Gould, A. Hall, C. Vickers, and C. N. Hewitt, 2006: Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant Journal 47, 960-968.

  5. DETERMINATION OF ANTIOXIDANTS IN OIL PALM EMPTY FRUIT BUNCHES

    OpenAIRE

    Ng Mei Han; Choo Yuen May

    2012-01-01

    The oil palm Fresh Fruit Bunches (FFB) undergoes sterilization before being threshed to separate the fruits from the bunch. Upon threshing, the fruits were pressed for its oil while the now Empty Fruit Bunch (EFB) will be discarded or used as biomass. It is believed that the EFB contains small amount of oil as well as phytonutrients which contain antioxidative property. This study reports on the extraction and analyses of various types of phenolic compounds, which have been known to exhibit a...

  6. Remotely sensed evidence of tropical peatland conversion to oil palm

    OpenAIRE

    Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

    2011-01-01

    Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ?880,000 ha) ...

  7. Palm oil transesterified by metanolysis as diesel engine biofuel

    International Nuclear Information System (INIS)

    This paper reviews a general background of biodiesel and its potentialities and possibilities as automotive fuel. The paper also compares the colombian production capacity in the world context, and shows its advantages and disadvantages as diesel engine biofuel. The paper discusses some relevant processing techniques of crude palm oil, the methanol transesterification technique being found to be the most suitable one. Finally it shows the results of some important physicochemical characterization of a crude palm oil transesterificated with methanol at the Universidad de Antioquia

  8. SYNGAS FOR METHANOL PRODUCTION FROM PALM OIL BIOMASS RESIDUES GASIFICATION

    OpenAIRE

    Antonio Jose Bula

    2012-01-01

    In Colombia, Biodiesel is produced from palm oil and methanol; this methanol could be obtained from gasification of the raw palm oil residuals. The complete process includes: pre-treatment of the biomass, gasification, the cleaning and conditioning of the gas and finally the synthesis of methanol. In this article, a review of the gasification stage is carried...

  9. Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid

    Directory of Open Access Journals (Sweden)

    Abdul Rajab

    2011-04-01

    Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

  10. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  11. Enzymatic Destruction Kinetics of Oil Palm Fruits by Microwave Sterilization

    Directory of Open Access Journals (Sweden)

    Maya Sarah

    2013-06-01

    Full Text Available Microwave sterilization of oil palm fruit is carried out to deactivate lipase and soften the fruits. This study is aims to determine enzymatic destruction kinetics from microwave sterilization of oil palm fruits such as decimal reduction time (D-value, temperature sensitivity (z-value, kinetic constant (k and activation energy (Ea. Three power levels (medium, medium high and high of the microwave oven were used and lipase assayed was conducted to determine the lipase activity. Microwave sterilization of oil palm fruits depends on the destruction kinetic parameters such as D-value, z-value and Ea. It required only 8.333 to 16.949 minutes to deactivate the lipase, and the process is not temperature sensitive which is indicated by z-value. The z-value indicated requirement to increase temperature up to 71.5, 77.0 and 83.0oC respectively from initial maximum temperature to reduce the D-value. Minimum energy required to start the destruction process of lipase was 13.927 to 14.049 kJ/mole obtained from microwave sterilization of 1 kg oil palm fruits at all power levels. Oil quality observed from free fatty acid (FFA concentration that indicated FFA below 3.5%.

  12. Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers

    International Nuclear Information System (INIS)

    Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

  13. Investigation on the Use of Palm Olein as Lubrication Oil

    Directory of Open Access Journals (Sweden)

    U. RATCHEL

    2006-01-01

    Full Text Available The research work is on the possibility of producing lubricating oil from vegetable oil with palm olein as a case study. The sample analysed was obtained from Vandeikya Local Government Area of Benue State. Some of the physical and chemical properties such as viscosity, flash/fire point, pour point and specific gravity were analysed. This sample was bleached to remove the red colour (carotene and gummy materials. The bleached sample was tested to determine the above mentioned properties. Comparison of the crude palm olein and the bleached sample with the conventional lubricants obtained from Elf Plc, Kaduna and Unipetrol Plc, Kaduna was made. Finally, it was discovered that the crude palm olein and the bleached sample exhibit a good base as a lubricant.

  14. The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK

    OpenAIRE

    Singh, Rajinder; Leslie Low, Eng-ti; Ooi, Leslie Cheng-li; Ong-abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W.

    2013-01-01

    A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the map...

  15. Bioactive Compounds of Palm Fatty Acid Distillate (PFAD from Several Palm Oil Refineries

    Directory of Open Access Journals (Sweden)

    Teti Estiasih

    2013-09-01

    Full Text Available This research studied the characteristics of Palm Fatty Acids Distillates (PFADs from several palm oil refineries. It was aimed to know the potency of PFAD as bioactive compounds source, including vitamin E (mainly tocotrienols, phytosterols, squalene and possibly co-enzyme Q10 and polycosanol. Sampling was conducted at 6 palm oil refineries. The results showed that PFAD was dominated by free fatty acids of 85-95% with low oxidation level indicated by peroxide value of 1-10 meq/kg and anisidin value of 6-31. Bioactive compounds found were vitamin E 60-200 ppm, phytosterols 400-7500 ppm and squalene 400-2800 ppm, meanwhile polycosanol and co-enzyme Q10 were not found. Vitamin E was dominated by tocotrienols and ? tocotrienol was the major vitamin E, followed by ? and ? tocotrienols. Phytosterols in PFADs from several palm oil refineries had variety in quantity and composition. Generally it was dominated by &beta sitosterol, followed by stigmasterol and campesterol

  16. The gene MT3-B can differentiate palm oil from other oil samples.

    Science.gov (United States)

    Zhang, Li; Wu, Gang; Wu, Yuhua; Cao, Yinglong; Xiao, Ling; Lu, Changming

    2009-08-26

    The practice of blending cheap palm oil with more expensive oils is currently rampant owing to the increased global price of oil and the price gap between types of oils. This adulteration poses a serious threat to the trade of edible oil and negatively affects consumers. The aim of this study was to identify the presence of palm oil as an additive in more expensive oils using a PCR-based technique. A taxon-specific gene, MT3-B, was found by searching the GenBank database. MT3-B showed high oil palm (Elaeis guineensis Jacq.) specificity, low intraspecies variability, and a low copy number. On the basis of the MT3-B sequence, conventional and real-time PCR assays were established to detect palm oil contamination by amplifying an amplicon of 109 bp. The lowest copy number that the conventional PCR method could detect was five haploid copies; the limit of detection (LOD) for the real-time PCR assay was estimated to be five haploid copies. Experimental results demonstrated that the PCR-based methods were specific, sensitive, and reliable and could successfully detect the palm oil component of mixed oil samples. PMID:19627088

  17. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  18. Large estragole fluxes from oil palms in Borneo

    Science.gov (United States)

    During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole in ambient air above oil palm canopies flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the Afric...

  19. Syngas production from downdraft gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Study on gasification of OPF (oil palm fronds) is scarce although the biomass constitutes more than 24% of the total oil palm waste. The lack of research related to gasification of oil palm fronds calls for a study on gasification behaviour of the fuel. In this paper the effects of reactor temperature and ER (equivalence ratio) on gas composition, calorific value and gasification efficiency of downdraft gasification of OPF were investigated. The heating value of syngas and the values of cold gas and carbon conversion efficiencies of gasification obtained were found to be comparable with woody biomass. The study showed that oxidation zone temperature above 850 °C is favourable for high concentration of the fuel components of syngas CO, H2 and CH4. Average syngas lower heating value of 5.2 MJ/Nm3 was obtained for operation with oxidation zone temperatures above 1000 °C, while no significant change in heating value was observed for temperature higher than 1100 °C. The average and peak heating values of 4.8 MJ/Nm3 and 5.5 MJ/Nm3, and cold gas efficiency of 70.2% at optimum equivalence ratio of 0.37 showed that OPF have a high potential as a fuel for gasification. - Highlights: • Kinetic study of pyrolysis and combustion of OPF (oil palm fronds) was done. • Experimental study on syngas production utilizing OPF and parametric study was done. • OPF was found to have a comparable performance with wood in downdraft gasification

  20. Use of calcium oxide in palm oil methyl ester production

    Directory of Open Access Journals (Sweden)

    Kulchanat Prasertsit

    2014-04-01

    Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

  1. Large estragole fluxes from oil palms in Borneo

    Science.gov (United States)

    Misztal, P. K.; Owen, S. M.; Guenther, A. B.; Rasmussen, R.; Geron, C.; Harley, P.; Phillips, G. J.; Ryan, A.; Edwards, D. P.; Hewitt, C. N.; Nemitz, E.; Siong, J.; Heal, M. R.; Cape, J. N.

    2010-05-01

    During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mg m-2 h-1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus), which pollinates oil palms (Elaeis guineensis). There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y-1. The observed ecosystem mean fluxes (0.44 mg m-2 h-1) and mean ambient volume mixing ratios (3.0 ppbv) of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene), the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

  2. Large estragole fluxes from oil palms in Borneo

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2010-05-01

    Full Text Available During two field campaigns (OP3 and ACES, which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0 in ambient air above oil palm canopies (0.81 mg m?2 h?1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus, which pollinates oil palms (Elaeis guineensis. There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y?1. The observed ecosystem mean fluxes (0.44 mg m?2 h?1 and mean ambient volume mixing ratios (3.0 ppbv of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene, the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

  3. Large estragole fluxes from oil palms in Borneo

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2010-01-01

    Full Text Available During two field campaigns (OP3 and ACES, which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0 in ambient air above oil palm canopies (0.81 mg m?2 h?1 and 3.2 ppbv for mean midday fluxes and mixing ratios, respectively and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus, which pollinates oil palms (Elaeis guineensis. There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y?1. The observed ecosystem mean fluxes (0.44 mg m?2 h?1 and mean ambient volume mixing ratios (3.0 ppbv of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene, the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a combination of a modified G06 algorithm for emission and a canopy resistance approach for deposition. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

  4. Oil palm biomass as an adsorbent for heavy metals.

    Science.gov (United States)

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent. PMID:24984835

  5. Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME.

    Science.gov (United States)

    Ngarmkam, Worawan; Sirisathitkul, Chitnarong; Phalakornkule, Chantaraporn

    2011-03-01

    Magnetic separation combined with adsorption by activated carbon has been found to be a useful method for removing pollutants. In this paper, the use of palm shell as a source of activated carbon for the removal and recovery of oil from palm oil mill effluent (POME) is studied. In the first part of the study, the properties of samples of activated carbon prepared from palm shell under a variety of different conditions were characterized for their hydrophobicity, surface areas and pore size distribution. The most effective of the activated carbon samples was prepared by impregnation with ZnCl(2) followed by combined physical/chemical activation under carbon dioxide flow at 800 °C. Four grams of these samples adsorbed 90% of the oil from 50 mL POME. In the second part, the palm shell-based carbon samples were given magnetic properties by the technique of iron oxide deposition. Ninety-four percent of the activated carbon/iron oxide composite containing the adsorbed oil could be extracted from the POME by a magnetic bar of 0.15 T. Four grams of the composite can remove 85% of oil from 50 mL POME and a total of 67% of the initial oil can then be recovered by hexane extraction. Powder X-ray diffractometry showed the presence of magnetite and maghemite in the activated carbon/iron oxide composite. PMID:20932635

  6. Production of haploids and doubled haploids in oil palm

    Directory of Open Access Journals (Sweden)

    Croxford Adam E

    2010-10-01

    Full Text Available Abstract Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H and doubled haploid (DH palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest.

  7. Mutation induction in oil palm cultures using gamma irradiation

    International Nuclear Information System (INIS)

    Induced mutations have played an important role in the improvement of wide range of food crops, ornamental plants and oil crops such as sesame and sunflower. Based on these successes an attempt was made to employ the mutagenesis techniques to broaden the genetic variation in breeding materials of oil palm. Traits of interest are high yield, dwarfness and disease resistance. Embryogenic callus initiated from several high yielding clones were exposed to gamma irradiation for optimum dose determination. (Author)

  8. RED PALM OIL - HEALTH BENEFITS AND THEIR MOLECULAR EXECUTORS

    OpenAIRE

    Sonam Chawla and Shweta Saxena*

    2013-01-01

    Red palm oil (RPO) has been a nutritional vantage amidst mankind since ancient times, but the dietary and healing benefits are now being rediscovered in various aspects of human health. Owing to its compositional richness, RPO is even being recommended as vitamin supplement besides being used as healthy cooking oil loaded with micronutrients and antioxidants. Recent research studies have dissected the molecular mechanisms underlying biological actions of RPO as well as its tocotrienols rich f...

  9. Relationships among rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation.

    Science.gov (United States)

    Puan, Chong Leong; Goldizen, Anne W; Zakaria, Mohamed; Hafidzi, Mohd N; Baxter, Greg S

    2011-06-01

    The relationships between vertebrate pests and crop damage are often complex and difficult to study. In palm oil plantations rodents remain the major pests, causing substantial monetary losses. The present study examined the numerical and functional responses of rodents to changes in the availability of oil palm fruit and the damage associated with that response. For the study, 200 traps were set in pairs on a 10 × 10 trapping grid for 3 consecutive nights in each of 6 study plots at 8-week intervals in a 2569 ha oil palm plantation at Labu, Negeri Sembilan state in Peninsular Malaysia over 14 months. A total of 1292 individual rats were captured over 25 200 trap-nights. Animals were identified, aged, sexed, weighed and measured. An index of the relative abundance of rats was calculated based on trapping success. Damage to infructescences was assessed at each trap point. Regardless of the age of palms, there were positive and significant relationships between the relative abundance of rats and numbers of infructescences. The levels of damage to infructescences were significantly correlated with the relative abundance of rats. A steep increase in damage was observed with an increase in mature infructescences, indicating a feeding preference of rats for mature infructescences. For both males and females of all rat species, there were weak and non-significant correlations between body condition and infructescence numbers. These results indicated that there was a numerical and a functional response by rats to the availability of palm fruit and a resulting increase in depredation of oil palm fruits. The ways in which this information might aid in future pest control are discussed. PMID:21645277

  10. Remotely sensed evidence of tropical peatland conversion to oil palm.

    Science.gov (United States)

    Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

    2011-03-22

    Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ?880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ?140 million Mg of aboveground biomass carbon, and annual emissions of ?4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ?660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ?20%, whereas oil-palm establishment would exacerbate species losses by up to ?12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia. PMID:21383161

  11. Design and Development of Laboratory Scale Updraft Gasifier for Gasification of Oil Palm Fronds

    Directory of Open Access Journals (Sweden)

    Ramzy E. Konda

    2014-01-01

    Full Text Available The huge amount of wasted Oil Palm Fronds (OPF produced annually provides a very good opportunity for the oil palm industry in Malaysia to use it for power generation, especially in mill boilers. Recently, gasification technology is receiving more attention as it can be used to convert wasted biomass into gaseous fuel for power generation and thermal applications as well as it can be used as a fuel source for the production of other chemicals. This study addresses the design, fabrication and performance evaluation of an updraft fixed-bed-gasifier. A 50 kW updraft gasifier is designed and fabricated for gasification of Malaysian oil palm fronds. The gasifier is designed using the empirical data from literature and derived quantities. The gasifier was modified to be very flexible allowing the gasification air to be fed through several locations. The air gasification results of OPF showed volumetric percentage of 22.61-23.36% of CO, 6.48-6.68% of H2, 1.2-1.5% of CH4, 9.51-9.65% of CO2 and 59.20-58.1% of N2. The heating value of the product gas mixture varied between 4.1-4.4 MJ Nm-3 while the cold gas efficiency, carbon conversion efficiency and specific gasification rate of the gasifier was in the range of 57-59 and 95-97% and 103-109 kg m-2 h-1, respectively. The study has demonstrated that the oil palm frond waste is suitable for the designed and fabricated updraft gasifier and the produced gas from the gasification of OPF was successfully used in a domestic cooking stove.

  12. LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY

    OpenAIRE

    Shamim Ahmad, M.; Vijaya Subramaniam; Halimah Mohammad; Anis Mokhtar; Ismail, B. S.

    2014-01-01

    Life Cycle Assessment (LCA) is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefor...

  13. Planting dynamics and management of oil palm smallholdings in Cameroon: limiting factors and reason for practices

    OpenAIRE

    Rafflegeau, Sylvain

    2008-01-01

    In southern Cameroon, oil palm "smallholdings" contribute to rural development and meeting national oil and fat requirements for human consumption and soapmaking. From 1978 to 1991, 13,000 ha of selected oil palm smallholdings were set up with technical and financial support from a project. Selected oil palm smallholdings then trebled and now occupy around 40,000 ha. The latter plantations, set up without supervision or financial backing, display widely varying practices, raising two question...

  14. Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch

    OpenAIRE

    Haidi Ibrahim; Syed Salim Syed Ali; Junita Mohamad-Saleh; Zaini Abdul Halim; Norasyikin Fadilah

    2012-01-01

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Ne...

  15. Enzymatic synthesis of biodiesel via alcoholysis of palm oil.

    Science.gov (United States)

    Matassoli, André L F; Corrêa, Igor N S; Portilho, Márcio F; Veloso, Cláudia O; Langone, Marta A P

    2009-05-01

    The enzymatic alcoholysis of crude palm oil with methanol and ethanol was investigated using commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM). The effect of alcohol (methanol or ethanol), molar ratio of alcohol to crude palm oil, and temperature on biodiesel production was determined. The best ethyl ester yield was about 25 wt.% and was obtained with ethanol/oil molar ratio of 3.0, temperature of 50 degrees C, enzyme concentration of 3.0 wt.%, and stepwise addition of the alcohol after 4 h of reaction. Experiments with 1 and 3 wt.% of KOH and 3 wt.% of MgO were carried out to compare their catalytic behavior with the enzymatic transesterification results. The commercial immobilized lipase, Lipozyme TL IM, showed the best catalytic performance. PMID:19023524

  16. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO{sub 2}e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO{sub 2}e/MJ. Thus, avoided life cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. (author)

  17. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    Science.gov (United States)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  18. Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars

    International Nuclear Information System (INIS)

    Lignocellulose into fuel ethanol is the most feasible conversion route strategy in terms of sustainability. Oil palm empty fruit bunch (EFB) generated from palm oil production is a huge source of cellulosic material and represents a cheap renewable feedstock which awaits further commercial exploitation. The purpose of this study was to investigate the feasibility of using steam at 0.28 MPa and 140 °C generated from the palm oil mill boiler as a pretreatment to enhance the digestibility of EFB for sugars production. The effects of steam pretreatment or autohydrolysis on chemical composition changes, polysaccharide conversion, sugar production and morphology alterations of four different types of EFB namely fresh EFB (EFB1), sterilized EFB (EFB2), shredded EFB (EFB3) and ground EFB (EFB4) were evaluated. In this study, the effects of steam pretreatment showed major alterations in the morphology of EFB as observed under the scanning electron microscope. Steam pretreated EFB2 was found to have the highest total conversion of 30% to sugars with 209 g kg?1 EFB. This production was 10.5 fold higher than for EFB1 and 1.6 fold and 1.7 fold higher than EFB3 and EFB4, respectively. The results suggested that pretreatment of EFB by autohydrolysis using steam from the mill boiler could be considered as being a suitable pretreatment process for the production of sugars. These sugars can be utilized as potential substrates for the production of various products such as fuel ethanol. -- Highlights: ? We investigate the feasibility of steam pretreatment to enhance digestibility of EFB. ? Steam pretreatment increased sugars to 3.4 fold and caused major alteration in EFB morphology under SEM. ? Autohydrolysis which does not require the addition of chemicals is an attractive pretreatment approach to EFB.

  19. Biodiesel’s characteristics preparation from palm oil

    Directory of Open Access Journals (Sweden)

    Rachman Yusuf

    2002-06-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separatedfrom glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels’ properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  20. Effects of palm and sunflower oils on serum cholesterol and Fatty liver in rats.

    Science.gov (United States)

    Go, Ryeo-Eun; Hwang, Kyung-A; Kim, Ye-Seul; Kim, Seung-Hee; Nam, Ki-Hoan; Choi, Kyung-Chul

    2015-03-01

    Palm oil is a common cooking ingredient used in the commercial food industry as the second largest consumed vegetable oil in the world. Because of its lower cost and highly saturated nature, it usually maintains a solid form at room temperature and is used as a cheap substitute for butter. However, there has been a growing health concern about palm oil because of the link between dietary fats and coronary heart disease. Palm oil contains ?49% saturated fat, a relatively high concentration compared with other vegetable oils. Consequently, high intakes of saturated fat from palm oil induce a larger increase in plasma concentrations of total cholesterol and low-density lipoproteins. In the present study, we examined the hyperlipidemia of palm oil and the risk of cardiovascular disease (CVD) using a rat model in comparison with sunflower oil with a relatively low level of saturated fat. On in vivo examination using Sprague-Dawley (SD) rats for 22 days, there were no significant differences in serum lipid levels, suggesting that palm oil may not cause hyperlipidemia and elevate CVD risk. However, liver samples obtained from SD rats fed with palm oil showed a lot of large lipid inclusions stained with the Oil Red O working solution, but not much lipid accumulation was observed in rats treated with sunflower oil. In addition, lipid accumulation in the mixed oil group fed the combination of palm and sunflower (1:1) oil was shown to be at an intermediary level between the palm oil group and sunflower oil group. Taken together, these results indicate that palm oil, a highly saturated form of vegetable oil, may induce dysfunction of the liver lipid metabolism before affecting serum lipid levels. On the other hand, sunflower oil, a highly unsaturated vegetable oil, was shown to be well metabolized in liver. PMID:25393932

  1. Oil palm BVOC emissions and their potential for aerosol formation

    Science.gov (United States)

    Misztal, Pawel K.; Nemitz, Eiko; Cape, J. Neil; Langford, Ben; Phillips, Gavin J.; Dimarco, Chiara; Coyle, Mhairi; Owen, Susan; Heal, Mathew R.; Hewitt, C. Nicholas

    2010-05-01

    During ambient measurements at oil palm plantation (OP3/ACES projects) which took place from May to June 2008 we recorded by direct eddy covariance technique with proton transfer reaction mass spectrometry (PTR-MS) large emission fluxes of isoprene (mid-day mean 8.6 mg m-2 h-1), estragole (0.81 mg m-2 h-1), acetone (0.1 mg m-2 h-1), hexanals (0.05 mg m-2 h-1) and remaining compounds (~ 1 mg m-2 h-1). However, secondary products of isoprene oxidation such as MVK+MACR exhibited high deposition rates (1 cm s-1) which were close to maximal theoretical values. In addition, methanol and, to some extent, other VOC compounds exhibited negative fluxes during the day. Despite several times higher emissions of isoprene from oil palm than from a nearby rainforest, it is uncertain how these differences would impact on the formation of aerosols. There have been recently many speculations about actual contribution of isoprene emissions to aerosol formation, for example whether they could inhibit the creation of aerosols due to scavenging of hydroxyl radicals, in contradiction to an earlier OH-radical recycling hypothesis. Regardless, mass aerosol yields from isoprene have been thought low (up to ~2%), which can however make up significant overall loading at large emissions such as encountered at oil palm. Although oil palm was not found to be a monoterpene emitter, it appears that the largest contributor to aerosol production from oil palms might be floral emissions of estragole with its aerosol yield from photooxidation of this compound being similar to that of monoterpenes (~40%). In addition, other VOCs might have also an effect. We show the parameterisation for emission and deposition of particular VOCs and relate them to aerosol yields found in literature. Overall, it seems that the net aerosol formation potential with regards to VOCs emitted from oil palm may not be much different to that of rainforest, despite differences in the VOC mix emitted by these land uses.

  2. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK.

    Science.gov (United States)

    Singh, Rajinder; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Ting, Ngoot-Chin; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Manaf, Mohamad Arif Abdul; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2013-08-15

    A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation. PMID:23883930

  3. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds

    OpenAIRE

    Singh, Rajinder; Ong-abdullah, Meilina; Low, Eng-ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-li; Ooi, Siew–eng; Chan, Kuang-lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W.

    2013-01-01

    Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at le...

  4. Correlation, path coefficient analysis and heritability for agronomic characters of oil palm (Elaeis guineensis Jacq.

    Directory of Open Access Journals (Sweden)

    Chaumongkol, Y.

    2001-11-01

    Full Text Available A study of correlation, path coefficient analysis and heritablity for some agronomic characters of oil palm was investigated during February 1998 to January 2002. The oil palm population used in this experiment was derived from F1 tenera hybrids which were collected from various oil palm plantations in Southern Thailand. One good performance bunch (i.e., big bunch, thin shell was selected from each plantation and four to six seeds per selected bunch were used for cultivation. One thousand thirty eight plants were grown at Klong Hoi Khong Research Station, Faculty of Natural Resources, Prince of Songkla University, Songkhla, in 1989. Forty five palms consisted of Dura, Tenera and Pisifera types with 18, 18 and 9 plants respectively, were selected by randomization and tagged for investigation. The oil palm bunch yield and yield component characters were observed from individual palm for 4 years (February 1998 to January 2002. The bunch composition characters were analysed from a single bunch of each palm, sampled between June to October 1999. The results showed that in F2 plants of oil palm, the correlation and the path coefficient between characters relating to oil yield and %oil/bunch varied according to oil palm types (Dura, Tenera and Pisifera. In Dura and Tenera palms, the characters which gave highly positive correlation with a large direct and indirect positive effects on oil yield and %oil/bunch were total bunch weight, %oil/bunch, %fruit/bunch and %oil/fruit. In case of Pisifera palms, the characters which gave highly positive correlation with a large direct and indirect positive effects on oil yield and %oil/bunch were total bunch weight, number of bunches, single bunch weight, %oil/bunch and %fruit/bunch. However, from all investigated characters in F2 plants, only %mesocarp/fruit, %oil/fruit and %fruit/bunch showed the high values of broad sense heritabilities.

  5. Neural Network in Modeling Malaysian Oil Palm Yield

    Directory of Open Access Journals (Sweden)

    Zuhaimy Ismail

    2011-01-01

    Full Text Available Problem statement: Forecasting of palm oil yield has become an important element in the management of oil palm industry for proper planning and decision making. The importance of yield forecasting has led us to explore modeling of palm oil yield for Malaysia using the most recent development of Artificial Neural Network (ANN. The main issue in yield forecasting is to predict the future value with the minimum error. Approach: Artificial neural networks are computing systems containing many interconnected nonlinear neurons, capable of extracting linear and nonlinear regularity in a given data set. It is an artificial intelligence model originally designed to replicate the human brains learning process, a network with many elements or neurons that are connected by communications channels or connectors. The ANN can perform a particular function when certain values are assigned to the connections or weights between elements. In this study, a secondary data set from the Malaysian Palm Oil Board (MPOB on the foliar nutrient composition, fertilizer trials and Fresh Fruit Bunch (FFB yield were taken and analyzed. The foliar nutrient composition variables are the nitrogen N, phosphorus P, potassium K, calcium Ca and magnesium Mg concentration, while the fertilizer trials data are the N, P, K and Mg fertilizers and are measured in kg per palm per year. The foliar composition data was presented in the form of measured values whiles the fertilizer data in ordinal levels, from zero to three. Results: Two experiments were conducted to demonstrate the implementation ANN and for both experiment, the result demonstrated that the number of hidden nodes produces an effect to the overall forecast performance of the ANN architecture. From the first experiment, it shows that the number of runs does not affect the ANN performance, but changing the momentum to learning rates, due to shows a significant improvement in the forecast result. The experimental result will be in the form of statistical analysis, the best neural network performance, the residual analysis and the effect on the learning rate on the NN performance. Conclusion: This study showed that modeling of oil palm yield using neural network requires data to be prepared or modified to satisfy the requirement of the parameters involved. This analysis yields the conclusion that only the number of hidden nodes has a significant influence on the NN performance and there is no effect resulting from the number of runs or the momentum term value on the neural networks performance.

  6. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    Science.gov (United States)

    Begum, Shahida; P, Kumaran; M, Jayakumar

    2013-06-01

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  7. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    International Nuclear Information System (INIS)

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane – a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  8. Physicochemical properties of phosphate ester from palm kernel oil

    Science.gov (United States)

    Adawiyah Norzali, Nor Rabbi'atul; Badri, Khairiah Haji; Ahmad, Ishak

    2013-12-01

    The physicochemical properties of phosphate ester from palm kernel oil have been studied. The phosphate ester was synthesized via ring-opening of epoxidized palm kernel oil with phosphoric acid. The amount of phosphoric acid (H3PO4) was varied at 0, 2.5, 5.0 and 7.5 wt%. Acid values of PKO and EPKO were 1.85 and 1.87 mg KOH/g respectively. However, the acid values increased with increasing amount of H3PO4 with values of 10.62 mg KOH/g, 31.34 mg KOH/g and 110.95 mg KOH/g respectively. The hydrolysis of the EPKO has successfully converted it to PEPKO with hydroxyl value of 16.16 mg KOH/g, 26.90 and 35.33 mg KOH/g at H3PO4 of 2.5, 5.0, and 7.5wt%.

  9. Some chemical properties of irradiated empty fruit bunch and palm press fiber of oil palm byproducts

    International Nuclear Information System (INIS)

    Effect of irradiation and alkali treatment for digestibility of oil palm by-products by commercial enzymes was investigated to obtain the informations about formation of carbohydrate polymers or sugar components for producing animal feed from cellulosic by-products. According to the colorimetric analysis, produced reducing sugar from holocellulose of Empty Fruit Bunch (EFB) and Palm Press Fiber (PPF) by Cellulase ONOZUKA 3S were about ten times higher than those from raw samples. The results show that the digestibility of EFB and PPF increased significantly by delignification. The differences of digestibility between irradiated and unirradiated samples were shown clearly by the combination of enzymatic degradation and the HPLC analysis. By irradiation, digestibility of EFB was significantly increased. Higher dose is more effective for the digestion of EFB by enzyme. Alkali treatment is also quite effective to enzymatic degradation. The difference of neutral sugar component was observed between alkali treated and untreated samples. These results suggest that the combination of alkali treatment and irradiation is effective for digestion by enzyme. The analysis of products by HPLC after enzymatic degradation is useful method to examine the digestibility and the sugar composition of oil palm by-products. (author)

  10. Auto Guided Oil Palm Planter by using multi-GNSS

    Science.gov (United States)

    Nur Aini, I.; W, Aimrun; Amin, M. S. M.; Ezrin, M. H.; Shafri, H. Z.

    2014-06-01

    Planting is one of the most important operations in plantation because it could affect the total area of productivity since it is the starting point in cultivation. In oil palm plantation, lining and spacing of oil palm shall be laid out and coincided with the topographic area and a system of drains. Conventionally, planting of oil palm will require the polarization process in order to prevent and overcome the lack of influence of the sun rise and get a regular crop row. Polarization is done after the completion of the opening area by using the spike wood with 1 m length painted at the top and 100 m length of wire. This process will generally require at least five persons at a time to pull the wire and carry the spikes while the other two persons will act as observer and spikes craftsmen respectively with the ability of the team is 3ha/day. Therefore, the aim of this project is to develop the oil palm planting technique by using multi- GNSS (Global Navigation Satellite System). Generally, this project will involve five main steps mainly; design of planting pattern by using SOLIDWORKS software, determine the boundary coordinate of planting area, georeference process with ArcGIS, stakeout process with Tracy software and finally marking up the location with the wooden spikes. The results proved that the multi- GNSS is capable to provide the high accuracy with less than 1 m in precise positioning system without augmentation data. With the ability of one person, time taken to complete 70 m × 50 m planting area is 290 min, which is 25 min faster than using GPS (Global Positioning System) only.

  11. Palm oil trans-esterification with methanol via hetereogeneous catalysis

    OpenAIRE

    Julian Andrés Parra Garrido; Alberto Ricardo Albis Arrieta; Francisco José Sánchez Castellanos

    2010-01-01

    Four different solid catalyst' catalytic activity was studied in refined palm oil methanolysis: barium hydroxide, calcium oxide, magenesium oxide and tin oxide (IV). The last two presented low catalytic activity; they were thus discarded. The catalysts were used in powder form suspended in the reaction medium. HPLC was used for testing catalyic activity by measuring the glycerlo produced at the end of the reaction. Experiments were conducted at different pressures: 75 kPa (the pressure in Bog...

  12. LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY

    Directory of Open Access Journals (Sweden)

    M. Shamim Ahmad

    2014-01-01

    Full Text Available Life Cycle Assessment (LCA is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefore.establishing baseline information for the complete environmental profile of the palm oil plywood is essential. Data from this study on the environmental impact for the production of palm plywood would help to develop sustainable palm plywood product. The results will provide information to identify ways and measures to reduce the environmental impacts. Most foreground data were collected directly from numbers oil palm plywood factories which represent 40% of the palm plywood industry in Peninsular Malaysia. Data gaps were filled by information obtained through questionnaires which were developed specifically for data collection, literature, public database or further calculated from obtained data. The outputs and inputs from production activities were quantified on the basis of functional unit of production of 1 m3from different types of oil palm based plywood i.e., Moisture Resistant (MR, Weather Boiling Proof (WBP Grade 1 and Weather Boiling Proof (WBP Grade 2. The life cycle impact assessment was carried out using SimaPro 7.1 software and the eco-indicator 99 methodology. The weighting results of LCA for the production of 1 cubic meter of oil palm based plywood showed significant impact in descending order i.e., fossil fuel, respiratory inorganic and climate change. The most significant process contributing to these environmental impacts came from the production and usage of adhesives, transportation of oil palm trunks from plantation to factory and generation and usage of electricity from the grid. The ways to mitigate the environmental impacts are by using substitutes for inorganic chemical adhesives such as groundnut shell lignin adhesive, modified phenol formaldehyde adhesive and developing wood adhesive made from pyrolisis oil of oil palm biomass, establishing a collecting centre for oil palm trunk transportation and efficient use of oil palm biomass as an energy source. The study helped establishing baseline information for the complete environmental profile of the palm oil industry from cradle to grave which starts at the oil palm germinated seeds to the production of palm plywood.

  13. Conservation value and permeability of neotropical oil palm landscapes for orchid bees.

    Science.gov (United States)

    Livingston, George; Jha, Shalene; Vega, Andres; Gilbert, Lawrence

    2013-01-01

    The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2 km from forest, and oil palm sites greater than 5 km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features. PMID:24147137

  14. Oil palm plantations in Indonesia: The implications for migration, settlement/resettlement and local economic development

    OpenAIRE

    Budidarsono, S.; Susanti, A.; Zoomers, E. B.

    2013-01-01

    5. Concluding remarks It is not difficult for policy makers to show that oil palms are an economically rentable crop with a huge potential for further economic growth. In addition to national demands, the growing worldwide interest in biofuels as an alternative to fossil fuels will increase demand for its feedstock and lead to the expansion of oil palm plantations in climatically suitable regions. On the basis of a cost–benefit analysis of various crops, oil palm will probably cont...

  15. Financial assessment of oil palm cultivation on peatland in Selangor, Malaysia

    OpenAIRE

    Noormahayu, M. N.; Khalid, A. R.; Elsadig, M. A.

    2009-01-01

    Oil palm plantations on peat soils are generally believed to have greater environmental impacts than those on other soil types. Nonetheless, Malaysia operates substantial incentives to maximise palm oil production, which in practice encourage the establishment of plantations on peatland. This paper explores the social and economic basis of oil palm cultivation on one peatland estate at Sungai Panjang in the state of Selangor, peninsular Malaysia. Data were obtained by conducting a questionnai...

  16. A participatory diagnostic study of the oil palm (Elaeis guineensis) seed system in Benin

    OpenAIRE

    Akpo, E.; Vissoh, P. V.; Tossou, R. C.; Crane, T.; Kossou, D. K.; Richards, P.; Stomph, T. J.; Struik, P. C.

    2012-01-01

    A participatory diagnostic study of the oil palm (Elaeis guineensis Jacq.) seed system (OPSS) was conducted along a gradient of rainfall and distance to the oil palm research centre across the oil palm growing belt of Benin. The objective was to identify, jointly with key actors, the constraints in the OPSS and to assess the performance of the OPSS from a farmers’ perspective. The methodology included introductory community meetings, group discussions, individual in-depth interviews, field ...

  17. Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana

    OpenAIRE

    Adjei-nsiah, S.; Sakyi-dawson, O.; Kuyper, T. W.

    2012-01-01

    We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to alleviate poverty because of overriding institutional constraints at the larger-than-farm level. Oil palm was selected for the study for three main reasons: (1) It is considered a national priority...

  18. Sustainable Management of a Matured Oil Palm Plantation in UPM Campus, Malaysia Using Airborne Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kamaruzaman Jusoff

    2009-10-01

    Full Text Available Accurate and reliable near-real time information is needed for a sustainable oil palm plantation management, especially on plant quality and health. Airborne remote sensing provides the effective recent agricultural crop information for the oil palm plantation industry planning, management and sustainable development. A study on the characteristic of a matured oil palm plantation in UPM campus was conducted using airborne hyperspectral remote sensing technique. Airborne hyperspectral remote sensing can be used as an effective tool in monitoring the characteristic of oil palm plantation in order to predict and manage the oil palm production. The general objective of this study is to assess the capability and usefulness of UPM-APSB’s AISA airborne hyperspectral sensor to determine the characteristic of a matured oil palm plantation for its sustainable development while the specific objective is to identify, classify and produce the thematic map of matured oil palm plantation in the study site. The age of the oil palm plantation used in this study is 27 years old. Sobel filtering was used to enhance the image. Spectral Angle Mapper (SAM analysis was then used to classify the characteristic of the plantation within the study area. A thematic map of 27 years old matured oil palm plantation was produced and the characteristic of the oil palm plantation in the study site was identified as 173 healthy, 7 dead, 9 stressed oil palm trees and open areas in the plantation with a mapping accuracy of 93.33%. This has shown that UPM-APSB’s AISA airborne hyperspectral sensor is capable of mapping a matured oil palm plantation with such characteristics for its sustainable management and future development.

  19. Employment and Income of Workers on Indonesian Oil Palm Plantations: Food Crisis at the Micro Level

    OpenAIRE

    Sinaga, Hariati

    2013-01-01

    The importance of oil palm sector for Indonesia is inevitable as the country currently serves as the world’s largest producer of crude palm oil. This paper focuses on the situation of workers on Indonesian oil palm plantations. It attempts to investigate whether the remarkable development of the sector is followed by employment opportunities and income generation for workers. This question is posed within the theoretical framework on the link between trade liberalisation and labour rights, ...

  20. Conservation Value and Permeability of Neotropical Oil Palm Landscapes for Orchid Bees

    Science.gov (United States)

    Livingston, George; Jha, Shalene; Vega, Andres; Gilbert, Lawrence

    2013-01-01

    The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2km from forest, and oil palm sites greater than 5km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features. PMID:24147137

  1. PALM AND PARTIALLY HYDROGENATED SOYBEAN OILS ADVERSELY ALTER LIPOPROTEIN PROFILES COMPARED WITH SOYBEAN AND CANOLA OILS IN MODERATELY HYPERLIPIDEMIC SUBJECTS

    Science.gov (United States)

    Background: Partially-hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil has reemerged as a potential substitute due to favorable physical characteristics. Objective: To assess the effect of palm oil relative to both partially-hydrogenated fat and oils high in mon...

  2. How the palm oil industry is cooking the climate

    International Nuclear Information System (INIS)

    Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands mayuction, emissions from these peatlands may trigger a 'climate bomb'

  3. The use of 32P and 15N to estimate fertilizer efficiency in oil palm

    International Nuclear Information System (INIS)

    Improving efficiency of use of fertilizers has attracted a great deal of interest on oil-palm estates because of increasing input costs. It is assumed that higher efficiency of use of fertilizers for estate crops, including oil palm, would result in significant savings and less environmental pollution. One way to enhance efficiency of use of fertilizers by oil palm is to apply them where the most active roots are located. Previous work has indicated the possibility of determining the most active roots of tea and chinchona by using 32P. In this experiment, 32P was again used, to determine the locations of the most active roots of oil palm trees

  4. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production.

    Science.gov (United States)

    Craft, Brian D; Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric

    2012-01-01

    Recently, organic and inorganic chlorinated compounds were detected in crude and commercially refined palm oils. Further, the predominant formation mechanism of monochloropropanediol (MCPD) diesters at high temperatures (>170-180°C) was revealed. The present study involved the development and comparison of solutions to mitigate MCPD diester levels in oils from various stages of palm oil production. Partially refined palm oil samples and oil extracted from fresh palm fruits were submitted to bench-top deodorisation experiments. Application of glycerol and ethanol as refining aids during the deodorisation of refined-bleached palm oil proved to be moderately effective; about 25%-35% reduction of MCPD diester levels was achieved. Washing crude palm oil with ethanol-water (1:1) prior to deodorisation was also an effective strategy yielding an ?30% reduction of MCPD diester contents. Washing palm fruit pulp before oil extraction, however, was most impactful, resulting in a 95% reduction of MCPD diesters when compared to the deodorised control oil. This suggests that intervention upstream in the process chain is most efficient in reducing levels of these contaminants in refined oils. Following the study, a root-cause analysis was performed in order to map the parameters potentially responsible for the occurrence of MCPD diesters in refined palm oil and related fractions. PMID:22168150

  5. Utilization of crude and refined palm and palm kernel oils in broiler diets.

    Science.gov (United States)

    Valencia, M E; Watkins, S E; Waldroup, A L; Waldroup, P W; Fletcher, D L

    1993-12-01

    Four experiments were conducted to evaluate the use of crude and refined palm (PAO) and palm kernel oil (PKO) in diets for broiler chickens. In Experiment 1, refined PAO and PKO were compared with corn oil (CO) and poultry oil (PO) at levels up to 10%. In Experiment 2, refined PAO and PKO were compared with PO at levels up to 8%. In Experiments 3 and 4, crude PAO and PKO were compared with PO at levels up to 8%. Diets were formulated based on the energy level assigned to PAO; other oils were added in amounts calculated to be isocaloric with an inert filler as required. Live production variables were measured. Samples of birds were processed to determine carcass characteristics, and fatty acid composition of adipose tissue was determined. In all studies, broilers fed crude or refined sources of PAO and PKO grew as well and utilized their feed as efficiently as those fed diets with isocaloric amounts of CO or PO. There were minimal interactions of source and dietary level of oil in any of the studies. Dressing percentage and quantity of abdominal fat were not influenced by source of supplemental oil; however, the fatty acid profile of adipose tissue was altered by the source of supplemental oil. There were only minor differences in fatty acid content of adipose tissue of broilers fed PAO (either crude or refined) versus those fed PO. However, increasing levels of PKO resulted in increased deposition of saturated fatty acids, especially lauric and myristic acid, and decreased concentrations of both monoenoic and polyunsaturated fatty acids. The resulting change in hardness of adipose tissue may prove to be advantageous in marketing. PMID:8309869

  6. Kinetics of palm kernel oil and ethanol transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Ahiekpor, Julius C. [Centre for Energy, Environment and Sustainable Development (CEESD), P.O. Box FN 793, Kumasi (Ghana); Kuwornoo, David K. [Faculty of Chemical and Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana)

    2010-07-01

    Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, there are no available data on the kinetics and mechanisms of transesterification of local vegetable oils. The need for local production of biodiesel necessitates that the mechanism and kinetics of the process is well understood, since the properties of the biodiesel depends on the type of oil use for the transesterification process. The objective of this work is to evaluate the appropriate kinetics mechanism and to find out the reaction rate constants for palm kernel oil transesterification with ethanol when KOH was used as a catalyst. In this present work, 16 biodiesel samples were prepared at specified times based on reported optimal conditions and the samples analysed by gas chromatography. The experimental mass fractions were calibrated and fitted to mathematical models of different proposed mechanisms in previous works.The rate data fitted well to second-order kinetics without shunt mechanism. It was also observed that, although transesterification reaction of crude palm kernel oil is a reversible reaction, the reaction rate constants indicated that the forward reactions were the most prominent.

  7. Kinetics of palm kernel oil and ethanol transesterification

    Directory of Open Access Journals (Sweden)

    Julius C. Ahiekpor, David K. Kuwornoo

    2010-11-01

    Full Text Available Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, there are no available data on the kinetics and mechanisms of transesterification of local vegetable oils. The need for local production of biodiesel necessitates that the mechanism and kinetics of the process is well understood, since the properties of the biodiesel depends on the type of oil use for the transesterification process. The objective of this work is to evaluate the appropriate kinetics mechanism and to find out the reaction rate constants for palm kernel oil transesterification with ethanol when KOH was used as a catalyst. In this present work, 16 biodiesel samples were prepared at specified times based on reported optimal conditions and the samples analysed by gas chromatography. The experimental mass fractions were calibrated and fitted to mathematical models of different proposed mechanisms in previous works.The rate data fitted well to second-order kinetics without shunt mechanism. It was also observed that, although transesterification reaction of crude palm kernel oil is a reversible reaction, the reaction rate constants indicated that the forward reactions were the most prominent.

  8. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.

    Science.gov (United States)

    Arthur, Richard; Glover, Kwasi

    2012-05-01

    The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020. PMID:22406099

  9. Effects of Mixing Canola and Palm Oils with Sunflower Oil on the Formation of Trans Fatty Acids during Frying

    OpenAIRE

    Abd El Hakeem, Bothaina S.; El-agaimy, Magdy A. S.; Farag, Radwan S.

    2010-01-01

    GLC analysis was conducted to indicate the formation of trans- C18 fatty acids of sunflower, canola and palm oils during frying. Blends of sunflower oil and palm oil or canola oil were obtained by mixing sunflower oil with palm or canola oils at the volume ratios of 60: 40, 40: 60 and 20: 80 (v/v), then heated at 180?C ± 5?C for 5, 10, 15 and 20 h in the atmospheric oxygen. GLC results demonstrate that the formation of trans C18-fatty acids was generally dependent upon the frying time and oi...

  10. Evaluation of the Lubricating Properties of Palm Kernel Oil

    Directory of Open Access Journals (Sweden)

    John J MUSA

    2009-07-01

    Full Text Available The search for renewable energy resources continues to attract attention in recent times as fossil fuels such as petroleum, coal and natural gas, which are been used to meet the energy needs of man are associated with negative environmental impacts such as global warming. Biodiesel offered reduced exhaust emissions, improved biodegradability, reduced toxicity and higher carotene rating which can improve performance and clean up emissions. Standard methods were used to determine the physical and chemical properties of the oil, which includes the Density, Viscosity, flash/fire point, carbon residue, volatility and Specific Gravity were determined by chemical experimental analysis. The flash/fire points of the Heavy duty oil (SAE 40 and Light duty oil (SAE 30 is 260/300(°C and 243/290(°C respectively while the pour points of the samples are 22°C for palm kernel oil while 9°C and 21°C for SAE 40and SAE 30 respectively.

  11. Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations

    Directory of Open Access Journals (Sweden)

    Dileep Kumar M.

    2014-10-01

    Full Text Available Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enforcement in Malaysia, have been living inremotely located inhabitations engaging in ‘dirty, dangerous and distance’ wise oil palm plantations. Though thelarger oil palm plantation companies ensure minimum living and working conditions for the foreign workers,vastly located small holding plantations never follow such minimum and fair working environment. Theseconditions to be correlated with the term “precarious working conditions’ in small holding oil palm plantations.Due to lack of availability of the locals to engage in oil palm work, the plantations have to depend on foreignworkers do all these ‘dirty, dangerous and distance’ workers in oil palm plantations. Except a few literatureavailable from Amnesty international and local NGOs, there is less evidence to prove the existence of suchexploitative working conditions in oil palm plantations. In order to explore precarious working conditions in oilpalm plantations thus a qualitative research study is conducted in the Sabah region of the Eastern Part ofMalaysia. The study followed, triangulation method through interviews with the migrated foreign workers, (legaland illegal, focus group discussions and Delphi technique with the identification of experts in the field to arriveat the factors and categories related to the theme ‘precarious working conditions’ in oil palm plantations. Theoutcome of the study fixes the variables that need to be concentrated for a higher level research throughquantitative research.

  12. Energy Contribution of Oil Cakes Used as Fuel in Waste Boilers: Case of an Oil Mill in Cote D’ivoire

    OpenAIRE

    Guessan, R. K. N.; Koffi, B. K.; Tanoh, A.

    2010-01-01

    Cote d’Ivoire is the second palm oil producer country in Africa. The oil mills are generally located near the farms which are in rural areas. In fact, Côte d’Ivoire is self-sufficient in electricity; but the electric distribution network is not wide enough. So that it is difficult to access public electricity for most of rural areas. Therefore, to produce electricity traditional fuels group are used. Moreover, the cost of electricity production by turbo-alternators using traditiona...

  13. Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production

    International Nuclear Information System (INIS)

    Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m3 ha?1 y?1 of ethanol and 4 Mg ha?1 y?1 of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradão (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in São Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradão, and Degraded Grassland of JSEB was respectively 4, 7.7 and ?7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. -- Highlights: ? LCA of ethanol and biodiesel joint production system. ? Sugarcane based biorefinery assessment in Brazil. ? Original Brazilian LCI data on ethanol and palm oil biodiesel production. ? Biofuel LCA with LUC sensitivity analisis for the Brazilian Cerrado Region.

  14. Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.

    Science.gov (United States)

    Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

    2014-10-30

    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. PMID:25459850

  15. Regioisomerism of triacylglycerols in lard, tallow, yolk, chicken skin, palm oil, palm olein, palm stearin, and a transesterified blend of palm stearin and coconut oil analyzed by tandem mass spectrometry.

    Science.gov (United States)

    Kallio, H; Yli-Jokipii, K; Kurvinen, J P; Sjövall, O; Tahvonen, R

    2001-07-01

    Triacylglycerols (TAG) of lard, tallow, egg yolk, chicken skin, palm oil, palm olein, palm stearin, and a transesterified blend of palm stearin and coconut oil (82:18) were investigated by chemical ionization and collision-induced dissociation tandem mass spectrometry. Accurate molecular level information of the regioisomeric structures of individual TAGs was achieved. When existing in a TAG molecule of lard, palmitic acid occupied 90-100% of the sn-2 position. Within the major fatty acid combinations in tallow TAGs, the secondary position sn-2 was preferentially occupied in the decreasing order by oleoyl > palmitoyl > stearoyl residues, the order in saturated TAGs being myristoyl > stearoyl = palmitoyl. TAGs in egg yolk were more asymmetric than in chicken skin, with linoleic acid highly specifically attached in the yolk sn-2 carbon. Nearly 50% of yolk TAGs contained 52 carbon atoms with two or three double bonds. Linoleic, oleic, and palmitic acids were in the sn-2 location in decreasing quantities in palm oil and its fractions. Triacylglycerols of equal molecular weight behaved similarly in the fractionation process. Randomization of the parent oil TAGs was seen in the transesterified oil. The tandem mass spectrometric analysis applied provided detailed information of the distribution of fatty acids in individual combinations in TAGs. PMID:11453776

  16. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    OpenAIRE

    Hewitt, C. N.; Mackenzie, A. R.; Di Carlo, P.; Di Marco, C. F.; Dorsey, J. R.; Evans, M.; Fowler, D.; Gallagher, M. W.; Hopkins, J. R.; Jones, C. E.; Langford, B.; Lee, J. D.; Lewis, A. C.; Lim, S. F.; Mcquaid, J.

    2009-01-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is p...

  17. Simulation of thin-film deodorizers in palm oil refining

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Meirelles, Antonio J.A.

    2010-01-01

    As the need for healthier fats and oils (natural vitamin and trans fat contents) and interest in biofuels are growing, many changes in the world's vegetable oil market are driving the oil industry to developing new technologies and recycling traditional ones. Computational simulation is widely used in the chemical and petrochemical industries as a tool for optimization and design of (new) processes, but that is not the case for the edible oil industry. Thin-film deodorizers are novel equipment developed for steam deacidification of vegetable oils, and no work on the simulation of this type of equipment could be found in the open literature. This paper tries to fill this gap by presenting results from the study of the effect of processing variables, such as temperature, pressure and percentage of stripping steam, in the final quality of product (deacidified palm oil) in terms of final oil acidity, the tocopherol content and neutral oil loss. The simulation results have been evaluated by using the response surface methodology. The model generated by the statistical analysis for tocopherol retention has been validated by matching its results with industrial data published in the open literature.

  18. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    Science.gov (United States)

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). PMID:21855329

  19. Least cost energy planning in Thailand:A case of biogas upgrading in palm oil industry

    Directory of Open Access Journals (Sweden)

    Artite Pattanapongchai

    2011-12-01

    Full Text Available Thailand is currently the world’s fourth largest producer of crude palm oil. The palm oil mill effluent is proposed to beused for biogas production. A value added option is then proposed by increasing thermal efficiency of the biogas by removingCO2 content and increasing the percentage of methane, consequently turning the biogas in to green gas. In this study, thebiogas and upgrading process for electricity generation with the subsidy or adder in the long term planning is presented. Thisanalysis uses the MARKAL-based least-cost energy system as an analytical tool. The objective of this study is to investigateupgrading biogas with a selected water scrubbing technique featuring least-cost energy planning. The co-benefit aspect ofbiogas and biogas upgrading project is analyzed by given an adder of 0.3 Baht/kWh. The target of total electricity generationfrom biogas is 60 MW in 2012. The result shows that green gas will account for approximately 44.91 million m3 in 2012 andincrease to 238.89 million m3 in 2030. The cumulative CO2 emission during 2012-2030 is 2,354.92 thousand tonnes of CO2.Results show that under the given adders the upgrading project is competitive with the conventional technologies in electricitygeneration planning.

  20. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    Science.gov (United States)

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range. PMID:20674345

  1. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    Science.gov (United States)

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. PMID:25278112

  2. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Directory of Open Access Journals (Sweden)

    Yick Ching Wong

    2014-11-01

    Full Text Available Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA and triacylglycerol (TAG assembly, along with the tricarboxylic acid cycle (TCA and glycolysis pathway at 16 Weeks After Anthesis (WAA exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01, and rice (p-value < 0.01 arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01 throughout mesocarp development to transcriptome (RNA sequencing data, and improved correlation over quantitative real-time PCR (qPCR (r2 = 0.721, p < 0.01 of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  3. Upgrading of oil palm wastes to animal feeds

    International Nuclear Information System (INIS)

    A huge amount of agricultural wastes are discarded or burned causing the serious environmental pollution problems in the world. Upgrading of these wastes into useful end-products is suggested not only to recycle the agro-resources but also to reduce pollution. Empty fruit bunch (EFB), stalk material after fruit stripping, is a major cellulosic waste of the palm oil industry. The current availability of EFB in Malaysia is estimated to be 3 million tones per year. EFB is normally incinerated to produce bunch ash. Burning and incineration processes emit considerable amount of smokes and pollutants thus affecting surrounding areas. Recently, it has been realized that there is a need to utilize these by-products effectively in order to improve the economic situation of the oil palm industry as well as to reduce pollution problems. EFB is a valuable and useful biomass. This paper describes the production of animal feed and mushroom from oil palm wastes by radiation and fermentation treatment. The process is as follows: decontamination of microorganisms in fermentation media of EFB by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 30 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, Coprinus cinereus and Pleurotus sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased and the crude fiber content decreased after solid state fermentation. P.sajor-caju was suitable for the mushroom production on EFB with rich bran and the residue can be used as the ruminant animal feeds. It is expected that the process is applicable to other cellulosic wastes such as sugar cane bagasse, rice straw, etc. produced in other Asian countries, and contribute to reduce the environmental pollution problems. (author)

  4. How the palm oil industry is cooking the climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands may trigger a 'climate bomb'.

  5. Biodiesel Production from Crude Palm Oil by Transesterification Process

    Directory of Open Access Journals (Sweden)

    A.N. Alkabbashi

    2009-01-01

    Full Text Available An overflow system for batch esterification of Crude Palm Oil (CPO to obtain Palm Oil Biodiesel (POB was developed using a batch reactor (shake flask. The alkali catalyst of potassium hydroxide had been used to carry the transestrication process with methanol; ultimately, 2 layers were form from the reaction-the lower layer of glycerol and the upper layer of methyl esters; the later layer is the targeted biodiesel. Optimization of the process was held for determining of the best possible yield of biodiesel at the end of the reaction which was 93.6%. This was carried by finding the optimal values of reaction time of 60 min, reaction temperature of 60°C, agitation speed of 250 rpm, molar ratio of methanol to oil of 10:1 (m/m and dosage of the catalyst of 1.4 (%wt. Other experimental design and analytical tests were conducted including: density of POB at room temperature, 0.8498 kg L-1, surface tension at STP of 26.96 mN m-1, with Huh-Mason correction of 0.1 and finally free fatty acid percentage of 0.12% (equivalent to acid value of 0.26 mg KOH g-1.

  6. Technological and Financial Assessment of Small Scale Palm Oil Production in Kwaebibrem District, Ghana

    Directory of Open Access Journals (Sweden)

    S. Adjei-Nsiah

    2012-05-01

    Full Text Available A study was carried out in the Kwaebibrim District of the Eastern Region of Ghana to study the production practices and the profitability of palm oil production among small scale processors using focus group discussions, semi-structured interviews and participant observations. Three categories of processing equipment namely digester screw press combined, digester with separate hand operated hydraulic press and digester with separate hand operated screw press were found in the district with the latter constituting about 80% of the processing equipment used by the processors. The major activities involved in the processing of fruits into oil are removal of the fruit containing spikelets from the fresh fruit bunches, fruit loosening and storage, boiling and digestion of fruits and pressing and clarifying of the oil produced. Fruits are usually stored for a period ranging from one to four weeks before processing leading often to high levels of free fatty acids in the oil produced. Due to scarcity of firewood in the district, waste lorry tyres and mesocarp fibres are used in place of firewood generating a lot of smoke with serious health risk to processors and other mill workers and the environment. Constraints in the small scale processing industry include inaccessibility to remunerative market especially during the peak fruit production period of February to May, lack of credit and skills and knowledge in good processing practices. The financial appraisal of palm oil production shows that in the peak fruit production period of April-May, processors make a loss of 38% of every cedi in sale in their operations and that the production of palm oil can be a profitable venture only during the lean fruit production season (from September – December when oil is relatively scarce. The study suggests that to improve the income of small scale processors, there is the need to help the processors change their practices through research but at the same time it also requires work to create entry into the existing value chains through policy (e.g. bye-laws.  

  7. Palm Oil Factory Wastewater Treatment Using Electrochemical Technique

    International Nuclear Information System (INIS)

    A study was carried out to determine the suitability of palm oil factory wastewater treatment using electrochemical technique with stainless steel as both working and counter electrode in 0.1 M NaCl. Treated liquid samples were later analysed using UV-Vis and COD determination. While solid samples formed during the electrolysis process were analyse using FTIR and CHNS analyser. Results obtained showed than electrochemical technique with the above condition able to reduced color and COD level of the wastewater up to 50 % and 80 % respectively after 3 hour electrolysis time with 10 V applied voltage. (author)

  8. UV-curable acrylated coating from epoxidized palm oil

    Science.gov (United States)

    Rahman, Nurliyana Abd; Badri, Khairiah Haji; Salleh, Nik Ghazali Nik

    2014-09-01

    The properties of coating film prepared from the incorporation of acrylated palm oil (EPOLA) in commercial epoxy acrylate have been studied. A series of different amount of EPOLA was mixed with commercial epoxy acrylate. The blended acrylates passed through UV light to produce a non-tacky film. The conversion of acrylate double bond was monitored by FTIR. The effect of EPOLA concentration onto coated films were investigated by determination of the pendulum hardness and gel content. The higher the amount of EPOLA, the lower the pendulum hardness and the gel content but to a level acceptable for usage in the high-end applications.

  9. Synthesis of hyper branched polyol from palm oil oleic acid

    International Nuclear Information System (INIS)

    Hyper branched polyol from oleic acid of palm oil has been synthesized by a two-step reaction. Dipentaerythritol was initially reacted with 2, 2-bis (hydroxymethyl) propionic acid in a solution medium aided by p-toluene sulfonic acid as a catalyst. This mixture was then used as core and reacted with the oleic acid. Optimization parameters such as processing temperature and reaction time, and chemical analysis (for example OHV, AV, FTIR, NMR and GPC) of the macromolecule synthesized is presented in this paper. (author)

  10. Chemical Analyses of Palm Kernel Oil-Based Polyurethane Prepolymer

    OpenAIRE

    Khairiah Haji Badri; Chee Sien Wong

    2012-01-01

    Polyurethane (PU) was prepared from palm kernel oil-based monoester polyol (PKO-p) via prepolymerization method at NCO/OH ratio of 200/100, 150/100, 100/100, and 75/100 at ambient temperature under nitrogen gas atmosphere. The structure of the synthesized prepolymerized PKO-p PU was determined using FTIR and 13C NMR. The disapperance of NCO peak in the FTIR spectrum at 2270 cm–1 - 2250 cm–1 cm showed that MDI has complet...

  11. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    International Nuclear Information System (INIS)

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: ?Palm oil and related products represent the second largest export of Malaysia. ?Malaysia has an abundance of energy resources, both renewable and non-renewable. ?Forest and oil palm residues are the main renewable energy option for Malaysia. ?Efforts were undertaken to encourage the utilization of renewable resources.

  12. Biodegradation of oil palm empty fruit bunch by composite micro-organisms

    International Nuclear Information System (INIS)

    A comparison study on the comparative biodegradation ability on EFB by five groups of composite micro-organisms [Organomine, Thomas, Ohres C, Ohres II and micro-organisms from POME (palm oil mill effluent)] has been performed with the aim of producing a compost at a faster rate than that by natural biodegradation. The experiment was carried out by mixing 50 gram EFB (dry weight basis) with 3% ammonium sulphate to which was added 1% composite micro-organisms and water to produce a composting media of moisture content about 60%. Respiration of composite micro-organisms as well as from decomposition of EFB releasing CO sub 2. The choice of useful micro-organisms was based on its ability to degrade EFB as reflected by higher evolution rate of CO sub 2 released and retaining higher percentage of nitrogen in the final product

  13. Comparative Determination of Antinutritional Factors in Groundnut Oil and Palm Oil

    Directory of Open Access Journals (Sweden)

    H.M. Inuwa

    2011-08-01

    Full Text Available The research was aimed at determining the degree of antinutritional factors in palm oil and groundnut oil and to know the effect of these factors on the nutritional value of these oils and to know the possible preventive measures. Antinutritional factors are substances found in most food substances which are poisonous to humans and in some ways limit the nutrient availability to the body. The groundnut oil and palm oil were extracted using the soxhlet extraction method. Oxalate and phytate were determined using titration method and aflatoxin was determined using thin layer chromatography. Tannin, trypsin inhibitor, cyanogenic glycosides, hemagglutinin and alkaloids were determined using different procedures. The lethal level of anti-nutritional factors is 50-60 mg/kg for cyanogenic glycosides and phytate and 2.5 g/kg for oxalate and trypsin inhibitor, the lethal doses of these substances were higher compared to the amount that can be possibly found in a food substance at a time from the findings of this research work, groundnut oil contains a higher concentration of the analyzed anti-nutritional factors compared to palm oil.

  14. Biodiversity of Termite (Insecta: Isoptera) in Tropical Peat Land Cultivated with Oil Palms

    OpenAIRE

    King, Jie-hung P.; Bong, Choon-fah J.; Thian-Woei Kon; Leong, Chan-teck S.

    2012-01-01

    Termites are the major decomposers in tropical region but yet their occurrences in oil palm plantation especially in peat soil are generally treated as pest. Study of termite species in peat land was conducted in selected oil palm plantations in North Sarawak with 5-7 years old palms and South Sarawak with 13-15 years old palms with two sites in each area. Results of quadrate (25x25x30 cm) sampling showed termite was significantly higher in relative density with increasing depth of soil (0-10...

  15. Interactions in interesterified palm and palm kernel oils mixtures. I-Solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Simões, Ilka S.

    2001-12-01

    Full Text Available Palm oil (PO and palm kernel oil (PKO compositions (100/0, 80/20, 60/40, 50/50, 40/60, 20/80 and 0/100 were interesterified in laboratory scale under predetermined conditions (0.4% sodium metoxide, 20 minutes, 100oC. The fourteen samples, before and after interesterification, were characterized by solid fat content (SFC and consistency. Results showed a presence of eutectic system at PO and PKO compositions, mainly at 80/20, 60/40 and 50/50 fractions, proved through isosolids and isoconsistency diagrams. The incompatibility among the oils was decreased after reaction and improved the composition plasticity, demonstrated by the increment of solids value and yield value at room temperature.Se interesterificaron, en el laboratorio, mezclas de aceite de palma (PO y aceite de palmiste (PKO: 100/0, 80/20, 60/40, 50/50, 40/60, 20/80 y 0/100 en condiciones predefinidas (0.4% metóxido de sodio, 20 minutos, 100oC. Las catorce muestras fueron caracterizadas antes y después de la interesterificación por su contenido de grasa sólida (SFC y su consistencia. Los resultados mostraron la presencia de un sistema eutéctico en las mezclas de PO y PKO, principalmente en las proporciones 80/20, 60/40 y 50/50, demostrado por los diagramas de isosólidos y de isoconsistencia. La incompatibilidad entre los aceites disminuyó después de la interesterificación y la plasticidad de las mezclas mejoró, hecho demostrado por el incremento del contenido de sólidos y del límite de fluidez a temperatura ambiente.

  16. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    Science.gov (United States)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  17. Virgin Coconut Oil Prevents Blood Pressure Elevation and Improves Endothelial Functions in Rats Fed with Repeatedly Heated Palm Oil

    OpenAIRE

    Hj Mohd Saad Qodriyah; Kamsiah Jaarin; Yusof Kamisah; Badlishah Sham Nurul-Iman

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42?mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42?mL/kg, oral) (5HPO + VCO). Blood pressure was significantly in...

  18. The Relationship Between Palm Oil Index Development and Mechanical Properties in the Ripening Process of Tenera Variety Fresh Fruit Bunches

    OpenAIRE

    Afshin Keshvadi; Johari Bin Endan, Haniff Harun

    2011-01-01

    This research has done to determine of the relationship between palm oil development in mesocarp and kernel and Mechanical properties of fresh fruit bunches during the ripening process. For this purpose, Tenera oil palm (Elaeis guineensis) variety (A cross between Dura and Pisifera) on 8 year- old palms planted in 2003 at the Malaysian Palm Oil Board (MPOB) research station were selected. Fresh fruit bunches were harvested and were divided into three regions (Top, Middle and Bottom) where the...

  19. Applications of Supercritical Fluid Extraction (SFE) of Palm Oil and Oil from Natural Sources

    OpenAIRE

    Mohd Omar Ab Kadir; Sahena Ferdosh; Mohd Yazid Abdul Manap; Nik Norulaini Nik Ab Rahman; Mohammed Jahurul Haque Akanda; Mohammed Zaidul Islam Sarker

    2012-01-01

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO2) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be ext...

  20. Spatial Variability of Orange Spotting Disease in Oil Palm

    Directory of Open Access Journals (Sweden)

    M.H.A. Husni

    2012-01-01

    Full Text Available Orange Spotting (OS disease which is caused by Cadang-Cadang Coconut Viroid (CCCVd is an emerging problem in oil palm. This study was aimed at quantifying the spatial variability of OS disease severity as an effort to augment the effectiveness of OS phytopathometry appraisal. A 4.2 ha study plot was established in a commercial oil palm plantation at Sungai Buloh, Selangor. A total of 587 geo-referenced trees were visually observed for OS disease symptoms. OS disease severity data were first subjected to exploratory analysis and followed by variography and interpolation analyses to assess spatial variability. The incidence OS disease in the study area was 74.3%. Measured OS disease severity ranged from 0-92.3%. The spatial structure of OS disease severity was described by an exponential model with an effective range of 29.1 m. OS disease severity exhibited a strong spatial dependence with a nugget to sill ratio of 0.15. The spatial variability map of OS disease severity revealed spatial clustering of kriged values, where 73% of the study area showed low severity (1-30%, 25% showed moderate severity (30-60% and approximately 2% showed high severity (> 60%. This study demonstrates the utility of geo-spatial information in understanding the OS disease severity scale which could assist in site-specific disease monitoring and intervention.

  1. Bio-char from treated and untreated oil palm fronds

    Science.gov (United States)

    Sulaiman, Fauziah; Abdullah, Nurhayati; Rahman, Aizuddin Abdul

    2013-05-01

    The palm oil industry generates almost 94% of biomass in Malaysia, while other agricultural and forestry by-products contribute the remaining of 6%. Oil palm fronds (OPF) are estimated to be the highest available biomass amounting to 44.84 million tonnes in Malaysia. However, studies on OPF for thermochemical conversion technology which has good potential for energy conversion are still lacking. In this work, pyrolysis of OPF is conducted by using a fixed bed reactor. Samples were carbonized at slow pyrolysis temperature of around 300 to 500°C with heating rate of 10°C min-1. In addition, samples were treated for 20 min with distilled water at ambient temperature to reduce the ash content. Effectiveness of pre-treatment can be determined by observing the percentage of ash content reduction of each sample after undergoing washing pre-treatment. At 300°C, the char yields of the untreated OPF were slightly higher at 50.95% compared to the treated sample at 49.77%. Approximately all bio-char from the treated samples have better high heating value (HHV) of around 18-20 MJ kg-1 compared to the untreated samples. Besides that, all treated OPF char is more carbon rich and considered to be environmental friendly due to its low nitrogen content compared to the untreated OPF char. In this work, microscopic analysis of OPF bio-char were also studied by observing and evaluating their structure surface and morphology.

  2. RED PALM OIL - HEALTH BENEFITS AND THEIR MOLECULAR EXECUTORS

    Directory of Open Access Journals (Sweden)

    Sonam Chawla and Shweta Saxena*

    2013-09-01

    Full Text Available Red palm oil (RPO has been a nutritional vantage amidst mankind since ancient times, but the dietary and healing benefits are now being rediscovered in various aspects of human health. Owing to its compositional richness, RPO is even being recommended as vitamin supplement besides being used as healthy cooking oil loaded with micronutrients and antioxidants. Recent research studies have dissected the molecular mechanisms underlying biological actions of RPO as well as its tocotrienols rich fraction (TRF in cardiovascular health, vitamin deficiency, reproductive health and cerebral health. The present review elaborates on nutritional composition and health benefits of RPO, with a focus on the molecular executors of these actions. We include the documented as well as potential usages, of RPO for human wellbeing. This shall invoke the researchers working in the area of human nutrition to take up research programs for exploring the benefits of RPO in newer and unexplored pathological indications.

  3. Optimizing palm oil and palm stearin utilization for sensory and textural properties of chicken frankfurters.

    Science.gov (United States)

    Tan, S S; Aminah, A; Zhang, X G; Abdul, S B

    2006-03-01

    This study was designed to explore the potential of refined, bleached and deodorized (RBD) palm oil (PO) and palm stearin (POs) utilization in chicken frankfurters. A 10 points augmented simplex-centroid design was used to study the effect of chicken fat (CF), PO and POs as well as the interaction of these fats on the emulsion, textural and sensory properties of chicken frankfurters. All frankfurters were formulated to contain approx 25% fat, 52% moisture and 10% protein. No significant difference was found in end chopping temperatures of all meat batters even though the temperature of PO and POs upon incorporation into meat batters was 50°C higher than CF. Strong emulsions were formed as no fluid losses were observed in all the meat batters tested after heating. Texture profiles of the frankfurters containing PO and/or CF were quite similar, but increment of POs raised hardness, chewiness, and shear hardness of the frankfurters. Acceptability of the frankfurters was evaluated using hedonic test. Panelists found no difference in hardness preference between frankfurters made from totally CF and PO, while frankfurters made from POs were rated as hard and brittle. CF was important in determining acceptability of the frankfurters, as reduction of CF in formulation resulted in lower scores in chicken flavor, juiciness, oiliness and overall acceptance of the frankfurters. Frankfurters with sensory acceptability comparable to a commercial one were found to comprise of more than 17% CF, and less than 67% PO and 17% POs of the fat blend. PMID:22061722

  4. Prospective study for the production of oleochemicals derivates from palm and palm kernel oil in Colombia

    Directory of Open Access Journals (Sweden)

    Diana Ibeth Jaimes Moreno

    2010-03-01

    Full Text Available There are many ways get close to the future, being the prospective the one that concives the future, not like an unique reality but like a multiple one, obtained as a result of the identification of the human being future actions. For all this, the human being takes the knowledge, the yearnings and the fears that he sees for the actions he will undertake. Keeping in mind the characteristic of the palm cultivation (pereninal, of late growth, with a 25 years productive horizon, and the future of the sector captured in "Visión y estrategias de la palmicultura colombiana 2000 - 2020" together with the economic tendencies of the world, the methodology of planning denominated prospective, becomes an appropriate tool to establish the future of the oleochemical sector derived from the palm and palmist oils, which is right now very incipient in our country. Using the prospective, this article outlines the dynamics that will have the sector, starting from the definition of the keys that define the current and future behavior of the system, the position and the power that each one of the involved actors will have, and the determination of the scenarios (future representations will more probability to occur, as well as the definition of the scenario wanted and the strategies that will allow to reach it.

  5. Effects of oil and drug concentrations on droplets size of palm oil esters (POEs) nanoemulsion.

    Science.gov (United States)

    Sakeena, M H F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2011-01-01

    Aim of the present work is to study the effects of oil and drug concentrations on droplets size of a nanoemulsion. Newly introduced oil, palm oil esters (POEs) by Universiti Putra Malaysia researchers was selected for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Nanoemulsions were prepared with different concentrations of oil and drug and their effects on droplets size were studied by laser scattering spectroscopy (Nanophox). The results of droplets size analysis shows the droplets size increase with increasing concentration of oil and drug concentrations. It can be concluded from this study, that oil and drug concentrations have an effect on the droplets size of POEs nanoemulsion system. PMID:21427510

  6. Oil palm fresh fruit bunch ripeness classification based on rule- based expert system of ROI image processing technique results

    Science.gov (United States)

    Alfatni, M. S. M.; Shariff, A. R. M.; Abdullah, M. Z.; Marhaban, M. H.; Shafie, S. B.; Bamiruddin, M. D.; Saaed, O. M. B.

    2014-06-01

    There is a processing need for a fast, easy and accurate classification system for oil palm fruit ripeness. Such a system will be invaluable to farmers and plantation managers who need to sell their oil palm fresh fruit bunch (FFB) for the mill as this will avoid disputes. In this paper,a new approach was developed under the name of expert rules-based systembased on the image processing techniques results of thethree different oil palm FFB region of interests (ROIs), namely; ROI1 (300x300 pixels), ROI2 (50x50 pixels) and ROI3 (100x100 pixels). The results show that the best rule-based ROIs for statistical colour feature extraction with k-nearest neighbors (KNN) classifier at 94% were chosen as well as the ROIs that indicated results higher than the rule-based outcome, such as the ROIs of statistical colour feature extraction with artificial neural network (ANN) classifier at 94%, were selected for further FFB ripeness inspection system.

  7. Interactions in interesterified palm and palm kernel oils mixtures. II – Microscopy and Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Grimaldi, Renato

    2001-12-01

    Full Text Available Palm oil (PO and palm kernel oil (PKO compositions (100/0, 80/20, 60/40, 50/50, 40/60, 20/80 and 0/100 were interesterified in laboratory scale under predetermined conditions (0.4% sodium metoxide, 20 minutes, 100ºC. The fourteen samples, before and after interesterification, were characterized by Polarized Light Microscopy and Differential Scanning Calorimetry (DSC. Results showed the effect of various factors on the form and width of crystals. The mean area of crystals revealed the increase of crystals when PKO was added, with values varying from 2.7 x 10E3 µm2 to PO and 1.8 x 10E6 µm2 to PKO. After interesterification, the crystal widths were lower at PO/PKO 100/0, 80/20, 60/40, 20/80 fractions and were higher to anothers. The beta-prime polimorphic form was observed in the pure palm oil sample. The results showed in melting curves, onset values from –19.6ºC to more unsaturated peaks until 20.7ºC to more saturated ones. The higher values to more saturated peak in a melting curve to palm oil, 38.7 J.g-1 before and 48.4 J.g-1 after interesterification, showed a mores table saturated group. I n a genera l way, t h e interesterification promoted an increase of crystallization rate and a better compatibility between PO/PKO fractions.Fueron interesterificados en el laboratorio mezclas de aceite de palma (PO y aceite de palmiste (PKO en diferentes proporciones (100/0, 80/20, 60/40, 50/50, 40/60, 20/80 y 0/100 bajo condiciones predeterminadas (0.4% metoxido de sodio, 20 minutos, 100ºC. Las catorce muestras fueron caracterizadas antes y después de la interesterificación por Microscopía de Luz Polarizada y por Calorimetría Diferencial de Barrido (DSC. Los resultados mostraron el efecto de varios factores sobre la forma y anchura de los cristales. El área media de los cristales revela el aumento de tamaño de los mismos cuando aumenta la proporción de PKO, con valores que varían entre 2.7 x 10E3 µm2 para PO y 1.8 x 10E6 µm2 para PKO. Después de la interesterificación, la anchura de los cristales fue menor para las formulaciones de PO/PKO de 100/0, 80/20, 60/40 y 20/80, y fue mayor en las otras. La forma polimórfica b‘ se observo en la muestra de aceite de palma puro. Los resultados mostrados por las curvas de fusión, presentan valores de “onsetâ€? desde –19.6ºC para los picos correspondientes a los triglicéridos más insaturados, hasta 20.7ºC para los más saturados. Los valores mayores de entalpía de fusión de los picos más saturados del aceite de palma, es 38.7 J.g-1 antes y 48.4 J.g-1 después de la interesterificación, mostrando un grupo saturado más estable. De forma global, la interesterificación causa un incremento en el gradiente de cristalización y mejora la compatibilidad en las fracciones de PO/PKO.

  8. Financial assessment of oil palm cultivation on peatland in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    M.N. Noormahayu

    2009-02-01

    Full Text Available Oil palm plantations on peat soils are generally believed to have greater environmental impacts than those on other soil types. Nonetheless, Malaysia operates substantial incentives to maximise palm oil production, which in practice encourage the establishment of plantations on peatland. This paper explores the social and economic basis of oil palm cultivation on one peatland estate at Sungai Panjang in the state of Selangor, peninsular Malaysia. Data were obtained by conducting a questionnaire survey of 200 farmers who cultivate oil palm on peat soil. Some of the data were cross-tabulated against farmers’ ages in order to identify any age-related trends in education level, the area of land farmed, annual income and knowledge about oil palm cultivation. The Cobb-Douglas production function was used to model the financial output from oil palm in terms of the costs of chemical inputs and labour. The results indicated that cultivation of this crop gives decreasing returns to scale on peatland in Sungai Panjang, and that chemical inputs are more important than labour cost in determining the level of financial output. Finally, the financial viability of oil palm cultivation for farmers was assessed by calculating three financial indicators (NPV, BCR and IRR. This can be a profitable investment so long as growth conditions, costs, selling price and interest rate do not fluctuate substantially. Greater annual returns can be achieved over 20–25 years than over shorter periods, especially of less than 10 years.

  9. Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.

    Science.gov (United States)

    Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi

    2015-04-01

    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress. PMID:25480400

  10. MODEL PERENCANAAN PRODUKSI PADA RANTAI PASOK CRUDE PALM OIL DENGAN MEMPERTIMBANGKAN PREFERENSI PENGAMBIL KEPUTUSAN

    OpenAIRE

    Rika Ampuh Hadiguna; Machfud Machfud

    2008-01-01

    A model of production planning in Crude Palm Oil industry is discussed on this paper. An interactive model is made due to the involvement of decision makerâ??s preference in production planning. The model is built for Nucleus-Plasma palm estate system. The sources of fresh palm fruit bunches are obtained from nucleus estate, plasma estate and outsourcing. A single objective fuzzy linear programming model is built with the following steps: (1) Decision variables, parameters are identified f...

  11. Breaking the link between environmental degradation and oil palm expansion: a method for enabling sustainable oil palm expansion.

    Science.gov (United States)

    Harmen Smit, Hans; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  12. Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield

    Science.gov (United States)

    Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ?23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

  13. Energy Contribution of Oil Cakes Used as Fuel in Waste Boilers: Case of an Oil Mill in Cote D’ivoire

    Directory of Open Access Journals (Sweden)

    R.K. N Guessan

    2010-01-01

    Full Text Available Cote d’Ivoire is the second palm oil producer country in Africa. The oil mills are generally located near the farms which are in rural areas. In fact, Côte d’Ivoire is self-sufficient in electricity; but the electric distribution network is not wide enough. So that it is difficult to access public electricity for most of rural areas. Therefore, to produce electricity traditional fuels group are used. Moreover, the cost of electricity production by turbo-alternators using traditional fuel such as DDO is higher than the cost of electricity produced by the national electrical company. The principal aim of this study is to show that the use of the waste produced by the oil mill can be used as fuel for the production of electricity in order to satisfy the energy needs. Solid waste from a palm oil mill is used as fuel for boilers. Three types of composition are carried out: solid waste only (Fuel 1, oil cake only (Fuel 2, a mixture of solid waste and oil cake (Fuel 3. Physicochemical and energy studies of these fuels have been made. And that allows giving the contribution of oil cake in energy production (superheated steam, electric power in agro industrial unit.

  14. A Study on Torrefaction of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Uemura

    2012-01-01

    Full Text Available Torrefaction is a thermal pre-treatment process to pre-treat biomass at temperature range of 200-300°C under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass namely hemicellulose, cellulose and lignin. In this study, the torrefaction behaviour of Empty Fruit Bunches (EFB, Palm Mesocarp Fiber (PMF and Palm Kernel Shell (PKS were investigated. The study focuses on the relation between the lignocellulosic constituents with torrefaction process. Two different size ranges of 250-355 ?m and 355-500 ?m were used and then submitted to six final torrefaction temperatures of 200, 220, 240, 260, 280 and 300°C. The process was carried out in a thermogravimetric analyzer coupled with mass spectrometry (TGA-MS. The results implied that torrefaction was strongly depended on the thermal decomposition behaviour and composition of lignocellulosic constituents. The ultimate analysis showed that torrefaction increased the carbon content of torrefied solid, whilst decreased the hydrogen and oxygen content. Based on decomposition temperature, the TGA curves indicated that hemicellulose was more significantly decomposed than cellulose and lignin during torrefaction. Due to higher content of hemicellulose in EFB compared to others, EFB had been decomposed almost completely by torrefaction. From the mass spectrometry study, the percentile compositions of CO, CH4, CO2 and H2 in the gases product were found to be 29-33, 20-23, 1.3-1.9 and 1.7-2.1%, respectively. It can be concluded that torrefaction of oil palm biomass affected by the chemical composition and decomposition temperature of hemicellulose, cellulose and lignin.

  15. Performance measurement of the Thai oil palm farms: a non-parametric approach

    Directory of Open Access Journals (Sweden)

    Wirat Krasachat

    2001-11-01

    Full Text Available The primary purpose of this study is to measure technical efficiency in Thai oil palm farms. The study decomposes technical efficiency into its pure technical and scale components. The data envelopment analysis (DEA approach and farm-level cross-sectional survey data of Thai oil palm farms in 2000 are used. The empirical results provide valuable information on efficiency levels, and also suggest that there are significant possibilities to increase efficiency levels in the Thai oil palm farms. In addition, scale inefficiency makes a greater contribution to overall inefficiency.

  16. The feasibility of producing oil palm with altered lignin content to control Ganoderma disease

    OpenAIRE

    Paterson, R. R. M.; Moen, Sariah; Lima, Nelson

    2009-01-01

    Oil palm is a major crop which is grown for the production of vegetable oil used in foods, cosmetics and biodiesel. The palm is of major economic importance in southeast Asia where it is grown extensively in Malaysia and Indonesia. There is concern about Ganoderma rots of oil palm which need to be controlled to prevent major infection. However, the basic mechanism of white-rot infection has been ignored. White rot implies that fungi attack the lignin component of woody tissue leaving the whit...

  17. Palm Oil and Animal Fats for Increasing Dietary Energy in Rearing Pullets

    OpenAIRE

    Isika, M. A.; Agiang, E. A.; Okon, B. I.

    2006-01-01

    A total of 300 Nera chicks at 8 weeks of age were randomized into five experimental rearing diets containing 170g/kg crude protein and 2800Kcal/kg of metabolizable energy to determine the comparative advantage of palm oil and animal fat as sources of increasing dietary energy in pullets. Five diets were supplemented with 2.5% and 5.0% palm oil or broiler offal fat at the expense of maize. Birds on diets with palm oil tended to retard attainment of sexual maturity, but egg production wa...

  18. Strategic environmental assessment for sustainable expansion of palm oil biofuels in Brazilian north region

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Carolina

    2010-09-15

    Biofuels development in Brazil is a key factor for the environment and sustainable development of the country. Brazil has great potential of available areas and has favourable climate and geography for biofuel production, such as palm oil, soy, sugar cane, etc. This research aims to evaluate palm oil production and expansion in Para state, in the north of Brazil and also Amazonian territory. Degraded land will be evaluated through remote sensing, because palm oil crops should be placed in these lands, and secondly, expansion scenarios would be created. This PhD research will be a decision support tool for public policies.

  19. Oil palm research in context: identifying the need for biodiversity assessment.

    Science.gov (United States)

    Turner, Edgar C; Snaddon, Jake L; Fayle, Tom M; Foster, William A

    2008-01-01

    Oil palm cultivation is frequently cited as a major threat to tropical biodiversity as it is centered on some of the world's most biodiverse regions. In this report, Web of Science was used to find papers on oil palm published since 1970, which were assigned to different subject categories to visualize their research focus. Recent years have seen a broadening in the scope of research, with a slight growth in publications on the environment and a dramatic increase in those on biofuel. Despite this, less than 1% of publications are related to biodiversity and species conservation. In the context of global vegetable oil markets, palm oil and soyabean account for over 60% of production but are the subject of less than 10% of research. Much more work must be done to establish the impacts of habitat conversion to oil palm plantation on biodiversity. Results from such studies are crucial for informing conservation strategies and ensuring sustainable management of plantations. PMID:18270566

  20. Two-component mixture model: Application to palm oil and exchange rate

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  1. Influence of palm oil on the efficacy of glyphosate in the control of Cyperus rotondus L

    International Nuclear Information System (INIS)

    The influence of the addition of palm oil to the formulation on the efficacy of glyphosate for the control of Cyperus rotundus was evaluated in the laboratory, glass-house and field. Triton X-100 failed to maintain a stable emulsion of palm oil in the formulation 10 minutes after mixing. In glass-house experiments adding mineral oil and palm oil to the glyphosate spray mixture did not increase the herbicidal efficacy. In general, glyphosate was more effective when sprayed at the volume application rate of 100 L/ha than at 400 L/ha. In contrast to the glass-house studies, in the field trial the addition of palm oil increased the efficacy of glyphosate. (author)

  2. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  3. Oil Palm (Elaeis guineensis Roots Response to Mechanization in Bernam Series Soil

    Directory of Open Access Journals (Sweden)

    Zuraidah Yahya

    2010-01-01

    Full Text Available Problem statement: Field practices involving the use of mechanization in oil palm plantations could result in soil compaction which alters the soil physical properties. The gradual deterioration of soil physical conditions could restrict the growth and function of roots. This study was carried out to evaluate the response of oil palm roots to changes in soil physical properties due to mechanization in Bernam series soil belonging to the clay texture class. Approach: Compaction treatments were imposed for 6 consecutive years and a comparison was done on the effects of different trailer weights on oil palm roots growth. Roots and soil were sampled using root and soil augers at 0-30 cm depth from the harvesting and frond pile paths. Results: The results showed that the oil palm roots were affected by the mechanization treatments. Growth of oil palm roots was significantly affected by the 4T trailer weight. Palms in compacted soil produced less primary and secondary roots but this was compensated for by the production of longer and thicker tertiary and quaternary roots. Conclusion: The compaction treatments affect the soil physical properties, which in turn affect the growth and distribution of oil palm roots.

  4. Different palm oil production systems for energy purposes and their greenhouse gas implications

    International Nuclear Information System (INIS)

    This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to biodiesel and the associated GHG emissions are also studied. This study follows the methodology suggested by the Dutch Commission on Sustainable Biomass (Cramer Commission). The results demonstrate that land use change is the most decisive factor in overall GHG emissions and that palm oil energy chains based on land that was previously natural rainforest or peatland have such large emissions that they cannot meet the 50-70% GHG emission reduction target set by the Cramer Commission. However, if CPO production takes place on degraded land, management of CPO production is improved, or if the by-product PFAD is used for electricity production, the emission reduction criteria can be met, and palm-oil-based electricity can be considered sustainable from a GHG emission point of view. Even though the biodiesel base case on logged-over forest meets the Cramer Commission's emission reduction target for biofuels of 30%, other cases, such as oil palm plantations on degraded land and improved management, can achieve emissions reductions of more than 150%, turning oil palm plantations into carbon sinks. In order for bioenergy to be sustainably produced from palm oil and its derivatives, degrad from palm oil and its derivatives, degraded land should be used for palm oil production and management should be improved

  5. Fungal degradation of oil palm cellulosic wastes after radiation pasteurisation

    International Nuclear Information System (INIS)

    The fungal degradation ability was appreciated for upgrading of oil palm cellulosic wastes. In this work, Empty Fruit Bunch (EFB) and Palm press Fiber (PPF) were fermented in an attempt to upgrade to animal feed. However, the heavy contamination of microorganisms in EFB and PPF was observed, and they consist of largely spore forming bacteria and toxigenic moulds of Aspergillus flavus, A. versicolor, A. fumigatus and etc. Therefore, pasteurisation was necessary to be carried out before fermentation, and gamma-irradiation of ca. 10 kGy was employed. Solid-state culture media from EFB and PPF for cultivation of cellulolytic fungi were prepared by addition of some inorganic salts as nitrogen source. The degradation of crude fibre by Coprinus cinereus, Pleurotus species, Aspergillus niger, Trichoderma koningi, and T. viride was obtained in the range between 18 to 76 % after 18 to 20 days cultivation on non-alkali treated cellulosic wastes. C. cinereus could degradate crude fiber more than 50 %, and which resulted in reduction of crude fibre content to 20?28 % and giving to 10-13 % crude protein content. Release of reducing sugars was obtained as 40 to 145 mg glucose/g after saccharification of precultivated alkali-treated EFB by C. cinereus, A. niger, T. knoningi and T. viride. (author)

  6. Using of mucilage palm oil in the toilet soap production.

    Directory of Open Access Journals (Sweden)

    Girgis, Adel Y.

    1999-06-01

    Full Text Available Mucilage palm oil (M.P.O. was obtained from physical refining step for crude palm oil. The components of M.P.O. were high content of free fatty acids (82.2% with simple amount of neutral oil (11.9%, while the residual content (unsaponifiable matter and impurities was 2.1% and in addition to 3.8% water. The results indicated that the colours of M.P.O., tallow and palm kemel oil improved after bleaching. Eight soap samples (n.os 1-8 were prepared from bleached fatty blends of mucilage palm oil, tallow and palm kernel oil at different ratios. The results showed that the moisture contents of soap samples n.os 2,7 and 8 were high compared with the standard soap (sample n.os 1, subsequently their total fatty matters became lower than that found in the control soap (sample n.os 1. The findings marked that the unsaponifiable matter of soaps nos 2,7 and 8 were higher compared with the other soaps. No high differences were observed in the free alkali of all soaps (range from 0.06 to 0.09%. On the other hand, high differences were found in the free oil of all soap samples (n.os2-8 compared with the standard soap (sample nos 1, except soap samples n.os2,7 and 8, which record very high. The best soap samples in the colour were in the following increasing order: n.os1 > 3 > 4 > 5 > 6 > 7 > 8 > 2, respectively. The results showed that the better soap samples in the physical properties were in the following increasing order: soap nos 3> soap nos 4> soap n.os 5> soap n.os 6 compared with the standard soap (sample nos 1, where from firm structure with high foam, while the other soap samples (n.os 2,7 and 8 were poor quality (i.e., low lathering properties with deep colours. Therefore, it could be concluded that mucilage palm oil can be used as a new fatty material for toilet soap manufacturing at ratio of 40% from the fatty blend.

    Mucilagos de aceite de palma (M.P.O. fueron obtenidos mediante la etapa de refinación física del aceite de palma crudo. Los componentes de M.RO. tuvieron un alto contenido en ácidos grasos libres (82.2% con cantidades pequeñas de aceites neutros (11.9%, mientras que el contenido residual (materia insaponificable e impurezas fue del 2.1% además del 3.8% de agua. Los resultados indicaron que los colores de M.RO., sebo y aceite de almendra de palma mejoraron después de la decoloración. Ocho muestras de jabón (n.os 1-8 fueron preparadas a partir de mezclas grasas decoloradas de mucilagos de aceite de palma, sebo y aceite de almendra de palma en diferentes proporciones. Los resultados mostraron que los contenidos de humedad de muestras de jabones n.os 2,7 y 8 fueron altos comparados con el jabón control (muestra n.° 1, y por tanto su materia grasa total fueron menores que la encontrada en el jabón control (muestra n.° 1. Los resultados señalaron que la materia insaponificable de los jabones n.os 2,7 y 8 fueron mayores que las obtenidas de los otros jabones. No se observaron grandes diferencias en el álcali libre de todos los jabones preparados (rango de 0.06 a 0.09%. Por otra parte, se encontraron grandes variaciones en el aceite libre de todas las muestras de jabones (n.os 2-8 comparadas con el del jabón control (muestra n.° 1, excepto las muestras de jabones n.os 2, 7 y 8, las cuales registraron valores muy altos. Las mejores muestras de jabón en cuanto al color siguieron el siguiente orden creciente: n.os 1>3>4>5>6>7>8>2. Los resultados mostraron que las mejores muestras de jabón en cuanto a las propiedades físicas siguieron el sigui

  7. Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening.

    Science.gov (United States)

    Teh, Huey Fang; Neoh, Bee Keat; Wong, Yick Ching; Kwong, Qi Bin; Ooi, Tony Eng Keong; Ng, Theresa Lee Mei; Tiong, Soon Huat; Low, Jaime Yoke Sum; Danial, Asma Dazni; Ersad, Mohd Amiron; Kulaveerasingam, Harikrishna; Appleton, David R

    2014-08-13

    Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA4 but opposite to the GA3 profile such that as ABA levels increase the resulting elevated ABA/GA3 ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles. PMID:25032485

  8. Growth and the production of penicillins in Penicillium chrysogenum with palm oil and its various fractions as carbon sources.

    Science.gov (United States)

    Tan, I K; Ho, C C

    1991-11-01

    The utilisation of palm oil and its fractions by Penicillium chrysogenum for growth and penicillin production is strain-dependent. Strain H1107 could utilise crude palm oil, its liquid (palm olein) and solid (palm stearin) fractions and its component fatty acids (oleic, palmitic, stearic and myristic) as the main carbon source; strain M223 could not. Cell-bound lipase activity was higher in H1107 than in M223. PMID:1368105

  9. Wavelet neural networks applied to pulping of oil palm fronds.

    Science.gov (United States)

    Zainuddin, Zarita; Wan Daud, Wan Rosli; Pauline, Ong; Shafie, Amran

    2011-12-01

    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained. PMID:21996481

  10. Utilisation of Oil Palm Ash in Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available This study is a part of an on-going research examining the properties of foam concrete when replacing the cement with semi-processed Oil Palm Ash (OPA. Replacements range from 25% to 65% were used for a mix having the mix ratio of (1:2:0.45 and having the target density of 1300kg/m3. All mixes were tested for their strength using the compressive, splitting tensile and flexural strengths up to the age of 28 days. Results show that a 25% replacement level exhibited higher compressive and splitting tensile strength than that of the control mix at the age of 28 days. However, the same replacement level exhibited a close strength to that of the control mix when tested for the flexural strength at the same age.

  11. Radiation curable coatings from palm oil acrylated polyester prepolymer

    International Nuclear Information System (INIS)

    Radiation (ultra-violet, UV) curable coatings were prepared by using palm oil acrylated polyester prepolymer (PEPP-1) in combination with different reactive diluents in the presence of photoinitiator Irgacure 184 (Irg184). The effects of viscosity of coating materials, radiation dose and curing behavior were investigated. The UV cured polymeric films properties such as pendulum hardness, wettability (contact angle), gel ,content, swelling character, tensile strength, elongation at break, and deformation stability were then determined. The optimum formulations were also coated on wood substrates after which the gloss and hardness of the cured film on the wood substrate were measured. Some formulations showed promising coatings properties and has a good potential application for the wood coating industry. (Author)

  12. The palm oil supply chain, deforestation and peat clearing

    Science.gov (United States)

    Boucher, D. H.

    2013-12-01

    The palm oil industry has expanded rapidly in the last two decades, particularly in Indonesia. A considerable amount of this expansion has been at the expense of forests and peatlands, resulting in considerable greenhouse gas emissions. Now the industry is faced with two new challenges. There is a possible oversupply on the global market due to recent expansion and the time lag between clearing and new production coming on line, which may depress prices considerably. Furthermore, there is increasing pressure to reduce the industry's impact on climate and biodiversity, exemplified by the commitment by the businesses of the Consumer Goods Forum to eliminate deforestation from their supply chains by 2020. This presentation will examine the interaction between these two challenges and its implications for the industry, in both southeast Asia and new regions of expansion, and how this interaction could transform the industry's mode of expansion in the coming decade.

  13. Forecasting on Crude Palm Oil Prices Using Artificial Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Karia

    2013-03-01

    Full Text Available An accurate prediction of crude palm oil (CPO prices is important especially when investors deal with ever-increasing risks and uncertainties in the future. Therefore, the applicability of the forecasting approaches in predicting the CPO prices is becoming the matter into concerns. In this study, two artificial intelligence approaches, has been used namely artificial neural network (ANN and adaptive neuro fuzzy inference system (ANFIS. We employed in-sample forecasting on daily free-on-board CPO prices in Malaysia and the series data stretching from a period of January first, 2004 to the end of December 2011. The predictability power of the artificial intelligence approaches was also made in regard with the statistical forecasting approach such as the autoregressive fractionally integrated moving average (ARFIMA model. The general findings demonstrated that the ANN model is superior compared to the ANFIS and ARFIMA models in predicting the CPO prices.

  14. Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart

    OpenAIRE

    Dinda Amit; Thomas Mathew; Sood Subeena; Narang Deepak; Maulik Subir

    2004-01-01

    Abstract Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart dise...

  15. Formulation and characterization of palm oil esters based nano-cream for topical delivery of piroxicam

    Directory of Open Access Journals (Sweden)

    Muthanna F. Abdulkarim

    2011-04-01

    Full Text Available

    Palm oil esters are high molecular weight esters oil that has been newly synthesized by University Putra Malaysia researchers. It has received a lot of attention for its pharmaceutical and chemical application. Piroxicam is a nonsteroidal anti-inflammatory drug with analgesic and antipyretic activity. It has low solubility in water as well as in oil with Log P value of 1.8. Generally, drugs with Log P value of more than 0.5 are needed to be formulated into a modified dosage form. One of these formulations is nano sized cream. Hence, the ability of formulating of these tricky drugs into dispersed system is questionable. The aim of this study is to investigate the ability of palm oil esters to be the oil phase for formulation of piroxicam into O/W nano-cream. Three points were selected from prepared pseudoternary diagram of palm oil esters and different Tween and Span mixtures. Piroxicam solubility and partition coefficient in oil and external phase was detected. Rheological properties, droplet size, structural properties and zeta potential of the dispersion system containing piroxicam were measured. O/W cream was formed with droplet size measurement by TEM of less than 100 nm. It could be concluded that palm oil esters is suitable oil for the formulation of suitable nano-cream containing piroxicam.

    Keywords: Palm oil esters; Piroxicam Solubility; partition coefficient; Rheology; Surface activity.

  16. Preliminary Study of Moulded Laminated Veneer Oil Palm (MLVOP

    Directory of Open Access Journals (Sweden)

    Izran Bin Kamal

    2011-08-01

    Full Text Available This research was undertaken to study the suitability of oil palm trunk to be utilized as a raw material for moulded laminated veneer oil palm (MLVOP.  The trunks were converted into veneers by rotary peeling machine.  The veneers were segregated into two veneer qualities namely superior (S and inferior (I. The methods of segregating veneers quality were defined. The superior veneers were obtained by peeling the billets until their diameters left approximately 12 inches, meanwhile the inferior veneers were obtained by further peeling the same billets used for obtaining superior veneers until their diameters left 4 inches. The mean densities for superior veneer as well as inferior veneer were about 478.8 kg/m3 and 385.1 kg/m3 respectively.  The mean moisture content of both superior and inferior veneers was approximately 11%. The veneers were arranged with 5 layers into three types of moulded shapes of furniture components namely i 100% S ii alternate S and I and iii surface S & core I. The suitable pressure, temperature and time were set as important parameters. The arrangements of veneer quality were pressed using V-shape mould through hot press machine with three parameters pressure 1500 psi, 2000 psi and 2500 psi. Two types of adhesives namely UF and PF were used to produce MLVOP. The mechanical properties of the composites were tested with three bending types i.e. flat bending, type-V bending, and type-OV in accordance with BS EN 310:1993. The results showed that most of the samples bonded with UF-resin have better strengths (MOR and MOE when tested with the three bending tests compared to the samples bonded with PF-resin. However, the results vary depends on the veneer arrangements.

  17. SYNGAS FOR METHANOL PRODUCTION FROM PALM OIL BIOMASS RESIDUES GASIFICATION

    Directory of Open Access Journals (Sweden)

    Antonio Jose Bula

    2012-06-01

    Full Text Available

    In Colombia, Biodiesel is produced from palm oil and methanol; this methanol could be obtained from gasification of the raw palm oil residuals. The complete process includes: pre-treatment of the biomass, gasification, the cleaning and conditioning of the gas and finally the synthesis of methanol. In this article, a review of the gasification stage is carried out, a classification of the existent gasification reactors is presented and the characteristics of three types of gasifiers are detailed. Furthermore, a summary of certain chemical and physical requirements of the gas obtained by the gasification process are introduced. Some conditions are highlighted: the ratio hydrogen to carbon monoxide (H2/CO must be close to two and, the quantities of diluted nitrogen, sulphur and water in the gas must be low. Keeping in mind these characteristics we proceeded to recommend the gasifier and gasification medium convenient for the results preferred. Finally, a chemical equilibrium – fluid dynamic model is introduced to estimate the composition of the gas produced and to study the effect of the temperature and operation pressure in the quality of the gas produced. The gasification process considers a fluidized bed gasifier and the simulated results are compared with experimental data. The results showed that the simulation approach accurately represents the gasification process and allows considering the simulation for some other biomass residues.

  18. Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Haidi Ibrahim

    2012-10-01

    Full Text Available Ripeness classification of oil palm fresh fruit bunches (FFBs during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.

  19. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle

    Science.gov (United States)

    Pohl, Christine

    2014-06-01

    With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO2) emissions. Main causes of CO2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO2 emission in the future.

  20. Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.

    Science.gov (United States)

    Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim

    2012-01-01

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043

  1. Effect of fertilizer application on yield of oil palm

    Directory of Open Access Journals (Sweden)

    Eksomtramage, T.

    2001-11-01

    Full Text Available The effects of fertilizer application rates on leaf nutrient contents and yield of oil palm were investigated at the Agricultural and Technological College Plantation in Trang province during May 1998 - June 2001. A five-year-old oil palm plantation, planted on the Na Tham soil series (Fine loamy, mixed, isohyperthermic Oxic Plinthudults with spacing 9x9x9 m, was selected for study. A randomized complete block designwith three replications with 20 palms/replication was used. The treatments included six different rates of fertilizer application. The rates of fertilizer were as follows: T1 (farmer practice, T2 (40% of application rate in T4, T3 (70% of application rate in T4, T4 (urea 2,750 g/plant; triple super phosphate 1,500 g/plant; potassium chloride 4,000 g/plant; kieserite 1,000 g/plant; borate 80 g/plant, T5 (130% of application rate in T4 and T6 (170% of application rate in T4. The high leaf nutrient contents of N, P and K at the range of 2.6-2.8%, 0.16-0.18% and 1.13-1.18%, respectively, were found in the high nutrient application rate treatments (T5, T6. However, the amounts of leaf Ca and Mg in T5 and T6 decreased from 0.75-0.80% and 0.33- 0.37% at the beginning of experiment to 0.65-0.70% and 0.22-0.24%, respectively, at the end of the experiment. Small increases of leaf sulphur and boron up to about 0.20-0.22% and 16-19 mg/kg were also found in the high rate of fertilizer treatments. Accumulated fresh fruit bunch yield (FFB increased according to increasing rate of fertilizer application. Accumulated FFB yield of 268.4 kg/plant in the low fertilizer rate (T1 (farmer practice and 278.8 kg/plant in T2 were found compared with the highest yield of 370.2 kg/plant in the highest fertilizer application treatment (T6 for the 3 years experiment. Regarding the economic return, the medium rate of fertilizer application (T3 which achieved an accumulated FFB yield of 338.0 kg/ plant gave the highest profit with the VCR (Value: Cost ratio of 2.53.

  2. Technical and Economic Efficiency of Palm Oil Marketing in the Niger Delta Region of Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Nkasiobi Silas Oguzor

    2013-09-01

    Full Text Available This study examined the structural performance and productive efficiency of palm oil marketing in some selected States in Southern Nigeria. Eighty districts were selected in the Niger Delta Area and data were collected from 1000 palm oil sellers randomly selected in these towns. The tools of analysis were marketing margin, Lorenz curve and Gini coefficient to measure the structural performance while the productive efficiency was measured with the use of the production function analysis using the OLS multiple regression analysis to estimate the parameters of the production function equations. All these phenomena portend a high poor structural performance in the system. The productive efficiency measurement showed that palm oil marketing was in stage one of the production surface in the area and this implies inefficient allocation and utilization of resources. Therefore palm oil marketing in the study is though profitable was grossly inefficient from the view point of market structure and productive efficiency analysis.

  3. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.

    2014-10-01

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  4. Topological and thermal properties of polypropylene composites based on oil palm biomass

    International Nuclear Information System (INIS)

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred

  5. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, 31750 Perak (Malaysia)

    2014-10-24

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  6. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell

    International Nuclear Information System (INIS)

    Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min?1 of gas and 10 g min?1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg?1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil. -- Highlights: • Maximum 56 wt% yield of bio-oil was obtained at 550 °C from palm kernel shell. • Two layer of bio-oil was observed up to 500 °C, while it was one layer above 500 °C. • Bio-oil from palm kernel shell provides more than 40% area ratio of phenol in GC–MS analysis. • The calorific value of palm kernel shell bio-oil is higher than other bio-oil

  7. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    International Nuclear Information System (INIS)

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  8. Diversity of Macrofungi in Oil Palm Agroforests of Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    O.O. Osemwegie

    2009-01-01

    Full Text Available A study of mushrooms associated with oil palm agroforests in Edo State, South-South of Nigeria was undertaken. A total of 49 fruit bodies belonging to 26 different species of mushrooms in the divisions Ascomycota and Basidiomycota, class Gasteromycetes, Discomycetes, Hymenomycetes were recorded from the study. The order Agaricales, family Tricholomataceae and genus Marasmius were the most abundant and commonly represented taxa. Palm Fronds (PF supported the highest number of mushroom taxa (19% followed by Fallen Palm Tree (FPT, Fruit Bunch (FB and Decomposing Palm Litters (DPL each of which supported 14% of the total species of mushrooms recorded during the study. Mushrooms irrespective of their functional role as natural decomposers were recognised by the study as pivotal to sustainable local agroforest management practices in Nigeria. Oil palm plantations surveyed during the study competes favourably with forests as sources of indigenous utility mushrooms.

  9. Production of Cellulase from Oil Palm Biomass as Substrate by Solid State Bioconversion

    OpenAIRE

    Alam, Md Z.; Nurdina Muhammad; Mahmat, Mohd E.

    2005-01-01

    Solid state bioconversion (SSB) of lignocellulosic material oil palm biomass (OPB) generated from palm oil industries as waste was conducted by evaluating the enzyme production through filamentous fungus in lab-scale experiment. OPB in the form of empty fruit bunches (EFB) was used as the solid substrate and treated with the fungus Trichoderma harzianum to produce cellulase. The results presented in this study revealed that the higher cellulase activity of 0.0413 unit ...

  10. EFFECTIVENESS OF A PARTICIPATORY ACTION ORIENTED TRAINING INTERVENTION APPROACH AMONG HARVESTERS IN OIL PALM PLANTATION

    OpenAIRE

    Ng Yee Guan; Shamsul Bahri Mohd Tamrin; Ismi Arif Ismail; Gede Pramudya Ananta; Zailina Hashim; Irwan Syah Mohd Yusoff; Baba Md. Deros; Shahriman Abu Bakar; Azmin Sham Rambely

    2014-01-01

    Consistent with the global demand for palm oil, the intensified upstream harvesting activities of oil palms? fresh fruit bunches, despite the harvesters evidences of various ergonomics risk factors leading to musculoskeletal disorders should be a cause for concern. Thus, this study describes the effectiveness of a modified and locally adapted Participatory Action-Oriented Training intervention program in improving the working environment of the harvesters. A training program modified and cus...

  11. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC

    OpenAIRE

    Muniroh, M. S.; Sariah, M.; Abidin, M. A. Zainal; Lima, Nelson; Paterson, R. R. M.

    2014-01-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method w...

  12. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes

    OpenAIRE

    Tan YewAi; Sundram Kalyana; Sekaran Shamala; Leow Soon-Sen; Sambanthamurthi Ravigadevi

    2011-01-01

    Abstract Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microar...

  13. Food Security and Emerging Innovations in Oil Palm Production in Osun State, Nigeria

    OpenAIRE

    Olagunju, F. I.; Jesudun, M. O.; Adenuga, A. H.; Muchie, M.; Ayinde, O. E.; Adewumi, M. O.

    2012-01-01

    Given its enormous yield per hectare and high productivity cycle, Oil palm is considered as a stabilizing crop to global food security especially in developing countries. However, in recent years, the domestic consumption of palm oil in West Africa including Nigeria has increased more rapidly than its production with the vast majority of the farmers working at near subsistence level and employing crude production and processing techniques. This study therefore appraised the impact of emerging...

  14. Developing a Sustainability Framework for the Second Life of Palm Oil Clinker

    OpenAIRE

    Chee-Ming Chan Alina Shamsuddin

    2012-01-01

    Palm oil constitutes a main agricultural commodity for the country, therefore the large quantity of palm oil clinker (POC) produced as a waste at the refineries is not unexpected. Upon the discovery of the rock-like but porous POC as being strong and robust enough as substitutes of aggregates, they have since become popular alternative materials in road pavement and concrete. However, POC is also potentially viable in other civil engineering applications for a second life, and this includes b...

  15. Characterization of oil palm MADS box genes in relation to the mantled flower abnormality

    OpenAIRE

    Syed Alwee, S.; Linden, C. G.; Schoot, J.; Folter, S.; Angenent, G. C.; Cheah, S. C.; Smulders, M. J. M.

    2006-01-01

    In vitro propagation of oil palm (Elaeis guineensis Jacq.) frequently induces a somaclonal variant called `mantled¿ abnormality, in which the stamens of both male and female flowers are transformed into carpels. This leads to a reduced yield or complete loss of the harvest of palm oil. The high frequency of the abnormality in independent lines and the high reversal rate suggest that it is due to an epigenetic change. The type of morphological changes suggest that it involves homeotic MADS bo...

  16. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.)

    OpenAIRE

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-01-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisa...

  17. Environmental and Social Impacts of Oil Palm Plantations and their Implications for Biofuel Production in Indonesia

    OpenAIRE

    Heru Komarudin; Rubeta Andriani; Krystof Obidzinski; Agus Andrianto

    2012-01-01

    This paper reviews the development of oil palm with linkages to biofuel in Indonesia and analyzes the associated environmental and socioeconomic impacts. We selected three plantation study sites in West Papua (Manokwari), West Kalimantan (Kubu Raya), and Papua (Boven Digoel) to assess the impacts. Research findings indicate that the development of oil palm in all three sites has caused deforestation, resulting in significant secondary external impacts such as water pollution, soil erosion, an...

  18. A Review of Extraction Technology for Carotenoids and Vitamin E Recovery from Palm Oil

    OpenAIRE

    Sarmidi, M. R.; Wan Alwi, S. R.; Manan, Z. A.; Othman, N.

    2010-01-01

    Carotenoids and vitamin E (tocopherols, tocotrienols) are among the 1% minor valuable components in crude palm oil (Elaeis guineensis). These components have different nutritional functions and benefits to human health. Various technologies have been developed in order to recover these components from being destroyed in commercial refining of palm oil. These include saponification, selective solvent extraction, transesterification followed by molecular distillation and further purification by...

  19. Static and Fatigue Strength of Oil Palm Wood Used in Furniture

    OpenAIRE

    Ioras, F.; Ratnasingam, J.

    2010-01-01

    A study was undertaken to evaluate the edge-wise static and fatigue strengths of oil palm wood, as the material is being promoted for furniture applications. The static and fatigue tests were conducted using a 3-point bending test-rig. The fatigue test was carried out at selected stress levels that corresponded to specific percentages of the material's ultimate strength (Modulus of Rupture (MOR)). The results showed that Oil Palm Wood (OPW) had a much lower bending and ultimate strength compa...

  20. Phase Behaviour of Palm Oil Fatty Acid Components in Supercritical Carbon Dioxide

    OpenAIRE

    Jamilul Firdaus Jamal Abd Nasir; Mohd Omar Abd Kadir; Norhashimah Morad

    2012-01-01

    In the supercritical CO2 method of extraction of palm oil, many processes in conventional method, such as degumming, deodorization, refining and bleaching processes, are eliminated. The supercritical method allows palm oil to be extracted and fractionated simultaneously, which not only reduces the cost of processing, but also provides a more environmental-friendly processing alternative. In this research, the high-pressure phase behaviour of the binary system between supercritical carbon diox...

  1. Land-Use Implications to Energy Balances and Greenhouse Gas Emissions on Biodiesel from Palm Oil Production in Indonesia

    Directory of Open Access Journals (Sweden)

    Soni HARSONO

    2013-06-01

    Full Text Available The objectives of this study are to identify the energy balance of Indonesian palm oil biodiesel production, including the stages of land use change, transport and milling and biodiesel processing, and to estimate the amount of greenhouse gas emissions from different production systems, including large and small holder plantations either dependent or independent, located in Kalimantan and in Sumatra. Results show that the accompanied implications of palm oil biodiesel produced in Kalimantan and Sumatra are different: energy input in Sumatra is higher than in Kalimantan, except for transport processes; the input/output ratios are positive in both regions and all production systems. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6 to 49.2 GJ t-1 biodiesel yr-1 as well as greenhouse gas emissions (1969.6 to 5626.4 kg CO2eq t-1 biodiesel yr-1. The output to input ratios are positive in all cases. The largest greenhouse gas emissions result from land use change effects, followed by the transesterification, fertilizer production, agricultural production processes, milling and transportation. Ecosystem carbon payback times range from 11 to 42 years.

  2. Involvement of Inflammation and Adverse Vascular Remodelling in the Blood Pressure Raising Effect of Repeatedly Heated Palm Oil in Rats

    OpenAIRE

    Ng, Chun-yi; Kamisah, Yusof; Faizah, Othman; Jubri, Zakiah; Qodriyah, Hj Mohd Saad; Jaarin, Kamsiah

    2012-01-01

    Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated p...

  3. The Relationship between Palm Oil Quality Index Development and Physical Properties of Fresh Fruit Bunches in the Ripening Process

    OpenAIRE

    Afshin Keshvadi; Johari Bin Endan, Haniff Harun

    2011-01-01

    Oil palm (Elaeis guineensis) is the most important tree crop in the rural economy of the humid rainforest of Malaysia. The oil is consumed as household food, used domestically for industrial purposes, and an important foreign exchange earning export. Normally, oil palm will be harvested after four years of planting. The oil palm yield will increase variously until the tenth year of planting. The yield will then remains at a stable stage until the twenty-fifth year. The maturity and palm oil d...

  4. Effect of frying on the rheological and chemical properties of palm oil and its blends.

    Science.gov (United States)

    Siddique, Bazlul Mobin; Muhamad, Ida Idayu; Ahmad, Anees; Ayob, Afizah; Ibrahim, Mahamad Hakimi; Ak, Mohd Omar

    2015-03-01

    The aim of this research was to determine the changes in the physicochemical properties of palm oil and its blends by FTIR and rheological measurements. Application of heat produces some chemical compounds as impurities and even toxic compounds in oils and fats that give absorbance at different region. FTIR spectra of pure palm olein shows an absorbance at 3002 cm(-1) whereas other pure oils show maximum absorption at around 3007 cm(-1) due to C-H stretching vibration of cis-double bond (=C-H). By blending of high unsaturated oils with palm olein, a clear shift of 3007 cm(-1) band to 3005 cm(-1) occurs. Viscosity of palm olein was found higher among all oils while it subsequently and substantially reduced by blending with other oils. Since it is a function of temperature, viscosity of pure oils and their blends decreases with the increase of temperature. The loss modulus (G''), for all oil blends before and after frying, in rheological experiment was found higher for all oils than the storage modulus (G'), therefore, the viscous property was found higher than elastic property of oils and blends. However, the critical stress for all oil blends was found higher than that of pure oils. PMID:25745212

  5. Avian species diversity in oil palm plantations of Agusan Del Sur and Compostela Valley, Philippines

    Directory of Open Access Journals (Sweden)

    Beverly M. Cagod

    2012-08-01

    Full Text Available Oil palm trees have become the most expanding equatorial crops in the world and theirproduct, palm oil, is produced, traded and used more than any other vegetable oil worldwide. Theexpansion of oil palm cultivation, however, is frequently cited as a major factor causing deforestationthat may result in biodiversity losses in tropical countries. In this study, an assessment of the avifaunain oil palm plantations in Agusan del Sur and Compostela Valley, Mindanao, Philippines was done fromApril 2010 to July 2010. Sampling sites were categorized based on the age/growth of palm trees. Linetransect method, mist netting and birdwatching were used to gather data on avifauna. Eighty-eightspecies were recorded. Species richness, abundance, and number of endemic species were also recordedto be higher in mature plantations than in young plantations. A significant difference was noted in birdabundance found in the different age groups of oil palm plantations in Agusan del Sur. Thirty-oneendemic species were recorded, one of which is Mindanao endemic. Three vulnerable species,Gallicolumba criniger (Mindanao bleeding-heart, Alcedo argentata (silvery kingfisher and Ficedulabasilanica (little slaty flycatcher were recorded both in the young and mature plantations. TheAethopyga primigenius (grey-hooded sunbird, a near threatened species was recorded in matureplantations only. The presence of these vulnerable species in all study sites indicates the need to protectthe degraded secondary residual forest and forest patches along the plantation.

  6. Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand

    International Nuclear Information System (INIS)

    Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transesterification into biodiesel. The results showed that the highest fossil-based energy consumption was in the transesterification process, followed by the plantation, transportation, and CPO production. A net energy value and net energy ratio (NER) of 24.0 MJ/FU and 2.5, respectively, revealed that the PME system was quite energy efficient. In addition, if all the by-products from the CPO production (such as empty fruit branches, palm kernel shells, and biogas) were considered in terms of energy sources, the NER would be more than 3.0. The PME can be a viable substitute for diesel and can decrease the need for oil imports. Based on B100 demand in 2008, PME can be substituted for 478 million liters of diesel. Moreover, with palm oil output potential and B5 implementation, it can be substituted for 1134 million liters of diesel.

  7. Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand

    International Nuclear Information System (INIS)

    Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transesterification into biodiesel. The results showed that the highest fossil-based energy consumption was in the transesterification process, followed by the plantation, transportation, and CPO production. A net energy value and net energy ratio (NER) of 24.0 MJ/FU and 2.5, respectively, revealed that the PME system was quite energy efficient. In addition, if all the by-products from the CPO production (such as empty fruit branches, palm kernel shells, and biogas) were considered in terms of energy sources, the NER would be more than 3.0. The PME can be a viable substitute for diesel and can decrease the need for oil imports. Based on B100 demand in 2008, PME can be substituted for 478 million liters of diesel. Moreover, with palm oil output potential and B5 implementation, it can be substituted for 1134 million liters of diesel. (author)

  8. FORMULATION AND EVALUATION OF NATURAL PALM OIL BASED DICLOFENAC SODIUM SUPPOSITORIES

    Directory of Open Access Journals (Sweden)

    S. Pugunes and R.E. Ugandar*

    2013-02-01

    Full Text Available The aim of the study was to formulate and evaluate natural palm oil based Diclofenac sodium suppositories. The formulated natural palm oil based suppositories were compared with suppositories of water soluble bases (PEG 4000 and 6000 and lipid soluble base (cocoa butter. The in-vitro drug release rate studies were carried out by using dissolution apparatus. The in-vitro release pattern of diclofenac sodium from the formulated suppositories F1, F2, F3 and F4, were found to be 9.51% to 73.67%, 16.73 to 84.22%, 65.04 % to 87.54% and 50.76% to 83.54% after 30 min and 3 hrs respectively. The rapid in-vitro release rate was shown by F3 (Formulation with PEG 4000 as base. F3 can be used for immediate action. The in-vitro release rate of F1 (with natural palm oil base was found to be moderate and consistent when compared with all other formulations. Natural palm oil base can be considered as a suitable base for sustained release suppositories. Natural palm oil suppository base can be used as a base for sustained release suppositories of Diclofenac sodium. It is encouraged to perform drug release kinetic studies for this respective base in future. Besides that, in-vitro release rate studies can also be included for this natural palm oil base incorporated with different classes of drugs.

  9. Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Papong, Seksan; Chom-In, Tassaneewan; Noksa-nga, Soottiwan [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-01-15

    Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transesterification into biodiesel. The results showed that the highest fossil-based energy consumption was in the transesterification process, followed by the plantation, transportation, and CPO production. A net energy value and net energy ratio (NER) of 24.0 MJ/FU and 2.5, respectively, revealed that the PME system was quite energy efficient. In addition, if all the by-products from the CPO production (such as empty fruit branches, palm kernel shells, and biogas) were considered in terms of energy sources, the NER would be more than 3.0. The PME can be a viable substitute for diesel and can decrease the need for oil imports. Based on B100 demand in 2008, PME can be substituted for 478 million liters of diesel. Moreover, with palm oil output potential and B5 implementation, it can be substituted for 1134 million liters of diesel. (author)

  10. Downdraft Gasification of Oil Palm Frond: Effects of Temperature and Operation Time

    Directory of Open Access Journals (Sweden)

    Shaharin A. Sulaiman

    2013-01-01

    Full Text Available Currently produced more than 40 million tons a year, only a small portion of oil palm frond is used as domestic animals forage and as raw material in small-scale furniture industry, while the rest is left at the plantation floor to naturally decompose. This study introduces oil palm frond as a solid biomass fuel for gasification to produce synthesis gas that can be utilized for heat and energy generation in a cleaner and more efficient manner than direct combustion. Oil palm frond was gasified in the downdraft gasifier at 700 to 1000°C reactor temperature with a controlled air supply of 180 to 200 L min-1. The effects of reactor tem