WorldWideScience
 
 
1

Electrocoagulation of palm oil mill effluent.  

Science.gov (United States)

Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

Agustin, Melissa B; Sengpracha, Waya P; Phutdhawong, Weerachai

2008-09-01

2

PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO) with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB) and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of...

Chiew Wei Puah; Yuen May Choo; Soon Hock Ong

2013-01-01

3

A Study of Biomass Fuel Briquettes from Oil Palm Mill Residues  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study presents a systematic approach in utilizing the large amount of oil palm mill residues that are loosely-bounded and have low energy density. The rate of waste materials (palm kernel shell, palm fiber and empty fruit bunches) generated by oil palm mills amounted to about 34 million tonnes in 2010. Efforts have been made to increase the energy density of the loosely-bounded waste materials, in which solid fuel briquettes made of densified oil palm residues would contribute towa...

Shiraz Aris, M.; Chin Yee Sing

2013-01-01

4

Co-Composting of Palm Oil Mill Sludge-Sawdust  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40°C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along...

Abu Zahrim Yaser; Rakmi Abd Rahman; Mohd Sahaid Kalil

2007-01-01

5

A Qualitative Approach of Identifying Major Cost Influencing Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: The oil palm industry, which heavily depends on the world market, is an export oriented industry. Worlds palm oil consumption was growing over the years. In addition, Indonesia and Malaysia dominated the oil palm industry. The oil palm industry in Malaysia is very competitive and become one of the major economic sectors contributing to the total revenue of the country. In year 2009, there was a total of 22.40 million tons of oil palm products including palm oil, palm kernel oil, palm kernel cake, oleo-chemicals and finished products, equivalent to RM 49.59 billion of export revenue. However, cost of production for Crude Palm Oil (CPO varies in a big gap. Therefore, it is essential to identify the major cost influencing factors in the production of CPO. Approach: The study system started with collection of Fresh Fruits Bunches (FFB from oil palm plantation to the production of CPO at palm oil mills. Two palm oil mills of different production capacity were chosen for this study. Statistical analysis was done to identify the major cost influencing factors of production cost for CPO. Results: The production cost of CPO for small scale palm oil mills preferably lied between RM 45 to RM 50 per metric tons while large scale palm oil mills lied below RM 45 per metric tons. Conclusion: Palm oil mills with higher production capacity were efficient in producing CPO than lower production capacity palm oil mills. Thus, the production cost of CPO was lower compared to that of small scale palm oil mills.

Elaine L.Y. Man

2011-01-01

6

The possibility of palm oil mill effluent for biogas production  

Directory of Open Access Journals (Sweden)

Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ?40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

EDWI MAHAJOENO

2008-01-01

7

Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 m...

Vijaya Subramaniam; Ngan, Ma A.; May, Choo Y.; Sulaiman, Nik M. K.

2008-01-01

8

Adsorption of residual oil from palm oil mill effluent using rubber powder  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME). POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Ma...

Ahmad, A. L.; Bhatia, S.; Ibrahim, N.; Sumathi, S.

2005-01-01

9

Phytoremediations of Palm Oil Mill Effluent (POME) by Using Aquatic Plants and Microalge for Biomass Production  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Phytoremediation by using aquatic plants and microalgae was evaluated in study to reduce waste load of Palm Oil Mill Effluent (POME). This study was aimed to utilize the aquatic plants i.e. water hyacinth (Eichhornia crassipes) and water lily (Nymphaea sp.) and alga Spriulina sp. to reduce COD and nutrients content in palm oil mill effluent. The phytoremediation was conducted in a sequence process. The aquatic plants were used in the first stage of remediation by varying ...

Danny Soetrisnanto; Marcelinus Christwardana; Hadiyanto

2013-01-01

10

Co-composting of palm oil mill sludge-sawdust.  

Science.gov (United States)

Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components. PMID:19093514

Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

2007-12-15

11

The possibility of palm oil mill effluent for biogas production  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.). The aims of the...

EDWI MAHAJOENO; BIBIANA WIDIYATI LAY; SURJONO HADI SUTJAHJO; SISWANTO

2008-01-01

12

Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.  

Science.gov (United States)

Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose. PMID:24908052

Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali

2014-08-01

13

Screening of thermotolerant microorganisms and application for oil separation from palm oil mill wastewater  

Directory of Open Access Journals (Sweden)

Full Text Available The characteristics of palm oil mill wastewater (POMW were brown color, pH 3.8-4.3, temperature 48-55oC, total solids 68.2-82.1 g/l, suspended solids 26.2-65.6 g/l, oil and grease 19.1-25.1 g/l, COD 49.9-160.7g/l and BOD 32.5-75.3 g/l. After centrifugation (3,184 xg of 50 ml POMW for 10 min, the POMW was separated into 3 layers: top (oil, middle (supernatant and bottom layer (sediment. The sediment containeddry weight 1.19 g and oil and grease 1.07 g. In order to release oil and grease trapped in palm fiber debris in the POMW, cellulase- and/or xylanase-enzyme-producing and thermotolerant microorganisms wereisolated. The isolates SO1 and SO2 were isolated from soil near the first anaerobic pond of the palm oil mill. They were aerobic, Gram positive, rod shaped, thermotolerant microorganisms and produced cellulase 12.11 U/ml (3 days and 7.2 U/ml (4 days, and xylanase 50.98 U/ml (4 days and 20.42 U/ml (4 days, respectivelyin synthetic medium containing carboxymethycellulose as a carbon source. When these 2 isolates were added into the steriled POMW under shaking condition for 7 days, after centrifugation at 3,184 xg the isolate SO1gave the better % reduction of dry weight (64.66 % and of oil and grease in the bottom layer (85.32 % of the POMW.

Aran H-Kittikun

2007-05-01

14

Screening of thermotolerant microorganisms and application for oil separation from palm oil mill wastewater  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The characteristics of palm oil mill wastewater (POMW) were brown color, pH 3.8-4.3, temperature 48-55oC, total solids 68.2-82.1 g/l, suspended solids 26.2-65.6 g/l, oil and grease 19.1-25.1 g/l, COD 49.9-160.7g/l and BOD 32.5-75.3 g/l. After centrifugation (3,184 xg) of 50 ml POMW for 10 min, the POMW was separated into 3 layers: top (oil), middle (supernatant) and bottom layer (sediment). The sediment containeddry weight 1.19 g and oil and grease 1.07 g. In order to release oil and grease t...

Aran H-Kittikun; Treetippa Laohaprapanon; Poonsuk Prasertsan

2007-01-01

15

Adsorption of residual oil from palm oil mill effluent using rubber powder  

Directory of Open Access Journals (Sweden)

Full Text Available A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME. POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

A.L. Ahmad

2005-09-01

16

Adsorption of residual oil from palm oil mill effluent using rubber powder  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME). POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing o [...] f sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

A.L., Ahmad; S., Bhatia; N., Ibrahim; S., Sumathi.

2005-09-01

17

Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Treatment of palm oil mill effluent (POME) has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water....

Wong Pui Wah; Nik Meriam Sulaiman; Meenakshisundaram Nachiappan; Balaraman Varadaraj

2002-01-01

18

A Review of Biofilm Treatment Systems in Treating Downstream Palm Oil Mill Effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available The palm oil industry is a vital economic backbone of Malaysia since it is one of the world’s largest producer and exporter of palm oil despite creating enormous environmental problems, one being the huge generation of Palm Oil Mill Effluent (POME during the oil extraction process. This highly polluting wastewater contains high concentrations of Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD. Due to the high organic content of POME, biological treatment method seems to be a preferable solution. Therefore, a series of treatment comprising of fermentation, algae, biofilm and membrane system is proposed as one of the possible option to treat POME. This paper also reviews few configurations and modes of operation of several biofilm treatment systems as well as focusing on the application of a Fluidized Bed Biofilm Reactor (FBBR in treating POME further down the proposed treatment chain.

M.S. Takriff

2014-01-01

19

Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME), this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%). The objective of the ...

Ganang Dwi Hartanto; Muhamad Maulana Azimatun Nur; Hadiyanto, H.

2012-01-01

20

Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach  

Directory of Open Access Journals (Sweden)

Full Text Available Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 mills identifies the potential impacts associated with the production of palm oil using the life cycle assessment approach and evaluates opportunities to overcome the potential impacts. Most of the impact categories show savings rather than impact. Within the system boundary there are only two main parameters that are causing the potential impacts to the environment; they are the Palm Oil Mill Effluent (POME followed by the boiler ash. The impact categories that the POME contributes to are under the Respiratory Organics and Climate Change. Both these impact categories are related to air emissions. The main air emission from the POME ponds during the anaerobic digestion is the biogas which consists of methane, carbon dioxide and traces of hydrogen sulfide. An alternate scenario was conducted to see how the impact will be if the biogas was harvested and used as energy and the results shows that when the biogas is harvested, the impact from the POME is removed. The other significant impact is the boiler ash. This is the ash that is produced when the biomass is burnt in the boiler. This potential impact contributes to the ecotoxicity impact category. This is mainly because of the disposal of this ash which in most cases was used for land application in the roads leading to the mil or in the plantations. If the parameters causing these two potential impacts are curbed, then this will be a further plus point for the Malaysian oil palm industry which is already avoiding fossil fuel based energy and chemical use for processing.

Vijaya Subramaniam

2008-01-01

 
 
 
 
21

An Experimental Investigation on the Handling and Storage Properties of Biomass Fuel Briquettes Made from Oil Palm Mill Residues  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study is about experimental investigation on solid fuel briquettes made of oil palm mill residues that exhibit optimum handling and storage properties. One of the major technical challenges in utilizing biomass waste material as a solid fuel is the handling and storage issues of loose and wet waste material. The solid biomass fuel briquettes made from different types and combinations of palm oil mill residues were explored for optimum storage and handling features. A solution to im...

Mohd. Shiraz Aris; Chin Yee Sing

2012-01-01

22

Factors affecting treatment of palm oil mill effluent using enzyme from Aspergillus niger ATCC 6275  

Directory of Open Access Journals (Sweden)

Full Text Available Powdered enzyme was produced by freeze-drying the enzyme solution extracted from 3 days culture of Aspergillus niger ATCC 6275 on palm cake with the addition of 0.2% glucose and 2% urea. The product yield was 38% by weight. The half-life of the enzyme was 9 months keeping at 4ºC. The enzyme was tested with decanter effluent with different characteristics from two palm oil mills. The decanter effluent possessing high suspended solid (SS and low oil (9.5 g/l content was selected for studying the factors affecting the separation of SS and oil as bulking solid. Results indicated that the effluent must contain oil not less than 15 g/l so that the bulking solid would occur from the reaction of the enzyme (with xylanase activity of 200 U/ ml after incubation at 40ºC for 6 h. Minimum concentrations of the enzyme from A. niger ATCC 6275 and commercial xylanase (Meicellase were 200 and 600 U/ml, respectively. The optimum pH was 4.5. Treatment of palm oil mill effluent by the enzyme from A. niger ATCC 6275 for 3 h under the optimum conditions resulted in 78% separation of suspended solids with oil & grease removal of 95% and COD reduction of 35%.

Chantaphaso, S.

2001-11-01

23

Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.  

Science.gov (United States)

A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27l/g COD, and the biogas production rate per reactor volume was 6.23l/ld, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. PMID:25479389

Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2015-02-01

24

Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor  

Directory of Open Access Journals (Sweden)

Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

Vivian Wongistani

2012-04-01

25

Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production  

DEFF Research Database (Denmark)

The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co-digestion of treated EFB by NaOH presoaking and hydrothermal treatment with POME, which resulted in 98% improvement inmethane yield comparing with co-digesting untreated EFB. The maximum methane production of co-digestion treated EFB with POME was 82.7m3 CH4/ton of mixed treated EFB and POME (6.8:1), corresponding to methane yield of 392mL CH4/gVS-added. The electricity production of 1ton mixture of treated EFB and POME would be 1190MJ or 330kWh of electricity. The study shows that there is a great potential to co-digestion treated EFB with POME for bioenergy production.

O-Thong, Sompong; Boe, Kanokwan

2012-01-01

26

Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste  

International Nuclear Information System (INIS)

Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

27

Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste  

Energy Technology Data Exchange (ETDEWEB)

Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

Foo, K.Y.; Hameed, B.H. [School of Chemical Engineering, Engineering Campus, University of Science Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

2010-06-15

28

Enzymatic saccharification of hemicellulose extracted from palm oil mill wastes  

Directory of Open Access Journals (Sweden)

Full Text Available Various parameters affecting the extraction of hemicellulose from palm cake by alkali method and sterilizer condensate by solvent method were investigated. For extraction of hemicellulose from palm cake, the optimal ratio of palm cake to sodium hydroxide (NaOH (1.5% conc. was 1:10. However, potassium hydroxide (KOH was a better source of alkali than NaOH and the optimum ratio of palm cake to 12% KOH was 1:50 (w/v. Temperature over 100ºC (100 and 121ºC extracted significantly higher hemicellulose than at 80ºC after 20 min treatment. The addition of ethanol to the extracted solution in the ratio of 1:1 (v/v gave the highest hemicellulose yield of 8.67 g/100 g palm cake. For extraction of hemicellulose from sterilizer condensate, the optimum ratio of ethanol to the condensate was 2:1 (v/v, which gave a hemicellulose yield of 6.42 g/100 ml. The enzymatic saccharification of the hemicelllulose extracted from palm cake (HEPC and from sterilizer condensate (HESC was 3-10 times lower than that of xylan. The enzyme from Aspergillus niger ATCC 6275 and Meicellase gave higher saccharification rates than that of Sumyzyme. The contents of reducing sugars in xylan, HEPC and HESC were 96.4, 36.2 and 20.6%, respectively and 75.3, 67.9 and 97.6% of these values could be hydrolysed by the enzymes. Hence, palm cake was a better source of substrate for extraction of hemicellulose while hemicellulose extracted from sterilizer condensate gave higher percentage of enzymatic saccharification.

Poonsuk Prasertsan

2001-11-01

29

Reduction of Methane Released from Palm Oil Mill Lagoon in Malaysia and Its Countermeasures  

Energy Technology Data Exchange (ETDEWEB)

Palm oil industry in Malaysia is one of the potential candidates for the CDM project because large amount of methane is emitted from the lagoons and open digesting tank of the wastewater treatment system. Therefore the first objective of the project is to investigate the actual GHG emission from the lagoons and open digesting tank in palm oil mills in order to establish the baseline for CDM project. Results indicated that methane contribution to biogas released from the open digesting tank and lagoon systems were 35% and 45%, respectively. These values are much lower than the reported value of 65% obtained by complete anaerobic condition of lab-scale experiments. Based on actual methane release measurement and information gathered from palm oil mill about wastewater treatment, significant amount of methane emission to the atmosphere can be reduced with the installation of new closed digesting tank system converted from the open digesting tank such as just by covering it with applying CDM. It is estimated that a total of RM2.6 million could be obtained from the selling of electricity generated from biogas generation and Certified Emission Reduction (CER)

Shirai, Y.; Wakisaka, M.; Yacob, S. [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, 808-0196 Kitakyushu-shi (Japan); Hassan, Mohd Ali [Department of Biotechnology, Faculty of Food Science and Biotechnology, University Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Suzuki, S. [EX Corporation, 17-22, Takada 2 chome, Toshima-ku, Tokyo 171-0033 (Japan)

2003-07-01

30

Evaluation of Technological Content of Wastewater Treatment of Palm Oil Mill in Lampung Province, Indonesia  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil industry is the most important economic sector in Lampung Province, Indonesia. There are 13 units of palm oil mills (POMs operating in Lampung, producing about 1,094,586 tons of palm oil mill effluent (POME a year. So far, the POME has been treated by the ponding system. However, the system has still caused environmental problems due to greenhouse gas emissions. Methane capture technology of which methane is converted to electrical energy is thus proposed. The objective of this study was to evaluate the conditions of POME treatment technology of POMs in Lampung. Technological content analysis was performed to identify the conditions of technoware, humanware, infoware and orgaware (THIO being applied at POMs. The results showed that: (1 technological condition of POME treatment at 13 POM's in Lampung was almost equal among state-owned enterprises (SOE' s, non-public companies, and public companies, (2 the value of technology contribution coefficient of PTPN V Tandun, as a reference POM unit,was higher than that of the technology contribution coefficient of the POMs in Lampung, and (3 enhancing performance technology elements of technoware, humanware, infoware, and orgaware to apply methane capture technology are absolutely needed by all the POMs in Lampung.

Sarono

2014-01-01

31

A Study on Zeolite Performance in Waste Treating Ponds for Treatment of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME. This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of alternative methods is needed. POME treatment using zeolite shows a potential to overcome the problem. Samples collected from selected ponds are tested and analyzed using water analyzer method. Result from adsorption by zeolite shows a significant reduction of COD, BOD, Fe, Zn, Mn and turbidity. This shows that zeolite is highly potential to be applied as adsorbent in the POME treatment plants. The results here may lead to lower maintenance cost, lower quantity of treatment ponds and lesser land occupied for the treatment of POME in Malaysia.

Shamsul Izhar

2013-07-01

32

Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review.  

Science.gov (United States)

The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. PMID:25463585

Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

2015-02-01

33

Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.  

Science.gov (United States)

Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification. PMID:11794647

Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K

2001-01-01

34

Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

Charles Ogugua Nwuche

2011-02-01

35

Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst  

Directory of Open Access Journals (Sweden)

Full Text Available The current work reported on the use of different formulations of Cu/TiO2 photocatalysts for the UV-irradiation of palm oil mills effluent (POME. Different copper loadings, viz. 2 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt% were doped onto titania. XRD pattern confirmed the presence of anatase TiO2 as primary phase due to mild calcination temperature (573 K. Photo-decomposition of POME over 20 wt% Cu/TiO2 exhibited the highest conversion (27.0% attributed to its large pore diameter (20.0 nm. In addition, optimum loading was 0.83 g/l. © 2014 BCREC UNDIP. All rights reservedReceived: 5th January 2014; Revised: 8th April 2014; Accepted: 8th April 2014[How to Cite: Hoong, N.K., Deraman, M.R., Ang, C.H., Chong, S.K., Kong, Z.Y., Khan, M.R., Cheng, C.K., (2014. Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 121-127. (doi:10.9767/bcrec.9.2.6011.121-127][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6011.121-127

Kim Hoong Ng

2014-07-01

36

Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora  

Energy Technology Data Exchange (ETDEWEB)

Anaerobic production of hydrogen from palm oil mill effluent (POME) by microflora was investigated in 5-l bioreactor at 60{sup o}C and pH 5.5. POME sludge was collected from the anaerobic pond of a POME treatment plant at a palm oil mill and used as a source of inocula. A batch reactor was found to yield a total of 4708ml H{sub 2}/(l POME) and the maximum evolution rate was 454ml-H{sub 2}/(l POMEh). A fed batch process was conducted after 50h. Two liters of reaction medium was removed and 2l of fresh POME was added to the reactor every 24h (15 times). The reproducibility of the fed batch process checked by changing the feeding time every 8h (10 times). A yield of 2382ml H{sub 2}/(l POME) and 2419ml H{sub 2}/(l POME) at maximum evolution rate of 313ml H{sub 2}/(l POMEh) and 436ml H{sub 2}/(l POMEh) were obtained, respectively. Throughout the study, methane gas was not observed in the evolved gas mixture. (author)

Atif, A.A.Y.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia); Ngan, M.A.; Morimoto, M. [Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor (Malaysia); Iyuke, S.E. [School of Process and Materials Engineering, Faculty of Engineering and the Built Environment, Witwaterstand, Private Bag 3, Wits 2050, Johannesburg (South Africa); Veziroglu, N.T. [Clean Energy Research Institute, College of Engineering, University of Miami, Coral Gables, FI 33124 (United States)

2005-11-01

37

Phytoremediations of Palm Oil Mill Effluent (POME by Using Aquatic Plants and Microalge for Biomass Production  

Directory of Open Access Journals (Sweden)

Full Text Available Phytoremediation by using aquatic plants and microalgae was evaluated in study to reduce waste load of Palm Oil Mill Effluent (POME. This study was aimed to utilize the aquatic plants i.e. water hyacinth (Eichhornia crassipes and water lily (Nymphaea sp. and alga Spriulina sp. to reduce COD and nutrients content in palm oil mill effluent. The phytoremediation was conducted in a sequence process. The aquatic plants were used in the first stage of remediation by varying height of culture (5-15 cm, length of remediation (3-8 days and type of plants (water hyacinth and water lily. The effluent of the first stage was then transferred to the second remediation where microalgae Spriulina use this effluent as medium growth for 15 days. The results showed that the aquatic plants was able to reduce COD, N, P up to 50, 88 and 64%, respectively, while microalgae could reduce the COD, N, P up to 50.79, 96.5 and 85.92%, respectively. The maximum growth rate of Spirulina platensis was 0.412 day-1, while the correlation between Optical Density (OD and dry weight-g L-1 was shown as dry weight (g L-1 = 0.782.OD. In conclusion, two stage phytoremediation process gives promising method to reduce waste load and producing high value able biomass of algae.

Danny Soetrisnanto

2013-01-01

38

Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.  

Science.gov (United States)

The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified. PMID:24012093

Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

2013-11-01

39

An Experimental Investigation on the Handling and Storage Properties of Biomass Fuel Briquettes Made from Oil Palm Mill Residues  

Directory of Open Access Journals (Sweden)

Full Text Available This study is about experimental investigation on solid fuel briquettes made of oil palm mill residues that exhibit optimum handling and storage properties. One of the major technical challenges in utilizing biomass waste material as a solid fuel is the handling and storage issues of loose and wet waste material. The solid biomass fuel briquettes made from different types and combinations of palm oil mill residues were explored for optimum storage and handling features. A solution to improving the handling and storage properties of loosely-bound oil palm mill residues is proposed in this work via a densification process known as fuel briquetting. Raw oil palm waste material was pulverized and compacted with a 159 MPa pressing pressure to form 40 mm diameter solid fuel briquettes. It was found that a fuel briquette with a 60:40 palm kernel shell to mesocarp fiber ratio using waste paper as its binding agent gave the best mechanical properties without sacrificing the combustion properties of the solid fuel.

Mohd. Shiraz Aris

2012-01-01

40

Integration of biological method and membrane technology in treating palm oil mill effluent.  

Science.gov (United States)

Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water. PMID:18575108

Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

2008-01-01

 
 
 
 
41

Synthetic Polyelectrolytes Based on Acrylamide and Their Application as a Flocculent in the Treatment of Palm Oil Mill Effluent  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Five cationic polyacrylamides of varying molecular weights but similar charge density were synthesized using free radical polymerization and Mannich reaction, characterized by different methods (infra red (IR) spectroscopy, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), viscosity measurements and conductometric titration) and applied as flocculants to palm oil mill effluents (POME). Flocculent performance was assessed by determining the polyelectrolyte dosa...

Ariffin, A.; Shatat, Raid S. A.; Nik Norulaini, A. R.; Mohd Omar, A. K.

2004-01-01

42

Particulate emission factor: A case study of a palm oil mill boiler  

International Nuclear Information System (INIS)

A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm3 (at 7 % O2) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm3, the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cycloneschievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

43

Direct Fermentation of Palm Oil Mill Effluent to Acetone-butanol-ethanol by Solvent Producing Clostridia  

Directory of Open Access Journals (Sweden)

Full Text Available Studies on direct use of palm oil mill effluent (POME as fermentation medium for acetone-butanol-ethanol (ABE production by Clostridium acetobutylicum NCIMB 13357 and C. saccharoperbutylacetonicum N1-4 have been carried out in batch culture system. Investigations were carried out on the effect of concentration of sedimented POME, the effect of initial culture pH and the use of immobilized cells for ABE production. It was found that C. acetobutylicum NCIMB13357 grown in 90% sedimented POME with initial pH 5.8 produced highest total ABE (4 g L-1. However, butanol production was maximum (1.82 gL-1 in the culture with the initial pH of 6.0. Results obtained from these experiment with immobilized cells of C. saccharoperbutylacetonicum N1-4 indicated that ABE production from POME could be improved when high concentrations of cells at solventogenic growth phase were used.

Mohd Sahaid Kalil

2003-01-01

44

Kinetic studies of controlled-release formulations of diuron containing palm oil mill effluent  

International Nuclear Information System (INIS)

Controlled-release formulations of diuron herbicide containing sodium alginate as binder and kaolin or palm oil mill effluent (POME) as fillers were studied. Small ratios of alginates to kaolin or POME in the formulation produce less spherical granular products. The kinetic of release in static water was studied spectrophotometrically at 248nm. Both products with two different fillers showed good first order plots with rate constants about ax10-1 day-1. Preliminary screening on several species of weeds in one square meter boxes in glasshouse showed good effectiveness of the slow release products. Further studies are being carried out especially with the POME formulations which contain quite high major nutrients. (author). 7 refs, 3 figs, 4 tabs

45

Cellulases Production in Palm Oil Mill Effluent: Effect of Aeration and Agitation  

Directory of Open Access Journals (Sweden)

Full Text Available Effect of aeration (0.5, 1.0 and 1.5 vvm and agitation rate (100, 300 and 500 rpm on cellulase production in submerged culture of Pycnoporus sanguineus was studied in a 2.5 L stirred-tank bioreactor using Palm Oil Mill Effluent (POME as a substrate. Maximum cell biomass (3.16 g L-1 and cellulase activity (0.1748 FPU mL-1 was obtained at aeration rate of 1.0 vvm and agitation speed of 300 rpm. Volumetric mass transfer coefficient (kLa was found to be dependent on aeration and agitation rate, with maximum kLa (124.2 h-1 attained at 300 rpm and 1.5 vvm.

M.D. Mashitah

2010-01-01

46

Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent.  

Science.gov (United States)

Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively. PMID:19560338

Wong, Yee Shian; Kadir, Mohd Omar A B; Teng, Tjoon Tow

2009-11-01

47

Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.  

Science.gov (United States)

This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

2014-11-01

48

Concurrent bioelectricity generation and palm oil mill effluent treatment using microbial fuel cell  

International Nuclear Information System (INIS)

Microbial fuel cell (MFC) provides promising microbial environmental technology to generate bio energy while treating organic wastewaters at the same time. In this study, a dual-chamber MFC system was developed to evaluate the continuous bioelectricity production while treating palm oil mill effluent (POME). A maximum power density of 622 mW/ m2 was generated with continuous feeding of 200 ppm POME. Meanwhile, a COD removal efficiency of 23% and coulombic efficiency of 32 % was recorded. Direct 16S rDNA analyses showed predomination by Geobacter-related sequences at the MFC anode electrode. It is shown that electrochemically-active bacteria originated from POME can be enriched to concurrently generate electricity and treat POME. (author)

49

A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.  

Science.gov (United States)

During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products. PMID:18804158

Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

2009-01-01

50

Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

Wong Pui Wah

2002-11-01

51

Morphological Characterization of Photosynthetic Microbial Granule from Palm Oil Mill Effluent (POME)  

International Nuclear Information System (INIS)

Presently, global warming is the most highlighted subjects in the environmental issues which relates closely to greenhouse gases (GHG) emissions. In 2007, the Intergovernmental Panel on Climate Change (IPCC) assigns only methane (CH4) emissions to wastewater treatment rather than GHG emissions specifically carbon dioxide (CO2) gas from the aerobic treatment processes. Focusing on the palm oil industry in Malaysia, the most commonly used treatment of palm oil mill effluent (POME) which is the conventional pounding system, has caused excessive generation of GHG such as CH4 and CO2 gases. To develop a novel, innovative and environmental-friendly mitigation method, this study explores into the possibility of growing the photosynthetic bacteria in the form of granules via the aerobic granulation process with potential applications in reducing CO2 gases. The cultivation of photosynthetic microbial granules was investigated using POME as the substrate in a sequencing batch reactor (SBR) system via the sequencing cycle of feeding, reacting, settling and decanting. Evidence of the formation of granule was based on microscopic examination of the morphological changes during the development of the granule in the SBR system over a period of 90 days. It shows changes from dispersed loose structure of the sludge merging into small flocs of irregular shapes and finally into dense and compact granular form. The granule was formed by applying an organic loading rate (OLR) at 2.75 kg COD/ m3.day, hydraulic retention time (HRT) at 4 h and superficial air velocity of 2.07 cm/ s. The biomass concentration began to decreased first (initial sludge biomass = 16750 mg/ L) and then increased steadily to a constant value of 32000 mg/ L after 90 days. Besides, the results also demonstrated a good accumulation of biomass as the settleability between raw sludge and granule increased from 0.03 cm/ s to 0.94 cm/ s. The maximum settling velocity obtained in the reactor was approximately 2.0 cm/ s. (author)

52

Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

Ganang Dwi Hartanto

2012-07-01

53

Techno-economic Evaluation on Enhancing Cogeneration Plant Capacity: Case Study of Palm Oil Mill Cogeneration Plant  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The aim of the study is to apply techno-economic evaluation for selecting a feasible alternative to enhance a co-generation power generation capacity of a palm oil mill. The co-generation plant is using Empty Fruit Bunch (EFB) as fuel. The basis of the technical evaluation is to compare three alternatives on increasing the co-generation power generation capacity. Alternative 1 is to consider installing a new high capacity boiler to the current cogeneration ...

Mohd Amin Abd Majid; Zulkipli Ghazali; Nazri Talib Shin Min

2014-01-01

54

Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata.  

Science.gov (United States)

Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds. PMID:24327114

Neoh, Chin Hong; Lam, Chi Yong; Lim, Chi Kim; Yahya, Adibah; Ibrahim, Zaharah

2014-03-01

55

Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.  

Science.gov (United States)

The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria. PMID:22876480

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2012-07-01

56

Anaerobic treatment of palm oil mill effluent using combined high-rate anaerobic reactors.  

Science.gov (United States)

Combined system of high-rate anaerobic reactors for treating palm oil mill effluent (POME) was developed and investigated in this study. The system composed of one common primary hybrid reactor which was shared by two different secondary filter reactors. An overall COD removal efficiency of 93.5% was achieved in both systems. The secondary reactors contributed not only in enhancing the COD removal efficiency, but also ensured the performance stability of the entire system. Biomass remained intact in the secondary reactor in contrast to the primary reactor in which occasional washout of biomass was observed. The pH of POME was adjusted at the beginning of the operation, as the process continued POME did not require the external pH adjustment as the pH was maintained in desired range. The biogas was produced up to 110 l/d with the yield of 0.171-0.269 l [CH?]/g [COD removed] and 59.5-78.2% content of methane. PMID:23489567

Choi, Won-Ho; Shin, Chang-Ha; Son, Sung-Min; Ghorpade, Praveen A; Kim, Jeong-Joo; Park, Joo-Yang

2013-08-01

57

The particulate matter dispersion studies from a local palm oil mill  

International Nuclear Information System (INIS)

The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

58

Carbon Mobilization in Oil Palm Plantation and Milling Based on a Carbon-Balanced Model – A Case Study in Thailand  

Directory of Open Access Journals (Sweden)

Full Text Available Damage to agricultural areas and household properties occurs more frequently all year round from extreme weather, which is believed to be due to climate change caused by the increase of greenhouse gases – particularly, CO2. In order to help reduce its concentration in the atmosphere, palm oil is a renewable energy which can be used for this purpose. In this study, the carbon mobilization of palm oil was investigated, from oil palm plantation process to the milling process, so as to determine the associated Carbon Equivalence (CE and the effects on human and land space. A carbon-balanced model (CBM is proposed herewith to indicate the main paths of carbon emission, fixation, and reduction. The net equivalent carbon emission was found to be 56 kg CE per ton of Crude Palm Oil (CPO produced, resulting in the emission flux of 175 kg CE/ha-y. The plantation activity that emits the highest CO2 levels is fertilizer application, accounting for about 84% of the total. All bio-residues produced from CPO production were found to be utilized for human use, thereby decreasing the carbon emission. Their use ranged from biogas and electricity generation to soil conditioning, and the utilization of the bio-residues resulted in total carbon reduction of 212 kg CE per ton of CPO. Carbon fixation as a main product (CPO was found to be an average of 812 kg CE per ton of CPO, equivalent to 2543 kg CE/ha-y. Overall, as the total fixation is 14 times higher than that of the total emissions, the production of CPO generates and introduces a very small amount of waste into the environment. To satisfy the need for palm oil as renewable energy and other end-user products the expansion of the plantation areas may result in competition of agricultural land with other cash crops.

Withida Patthanaissaranukool

2011-07-01

59

BIOMETHANATION OF PALM OIL MILL EFFLUENT (POME BY ULTRASONICASSISTED MEMBRANE ANAEROBIC SYSTEM (UMAS  

Directory of Open Access Journals (Sweden)

Full Text Available This study mainly focussed on methane production (CH4 from palm oil mill effluent (POME by using Ultrasonic Membrane Anaerobic System (UMAS. Design of anaerobic reactor was applied in order to design experimental work which was 100 L volume digester of Ultrasonic Membrane Anaerobic System (UMAS. The parameters of UMAS such as COD, BOD, pH, TSS and VSS were studied. Reactor was operated under ambient temperature within the range ~30 to 35 ?C. POME continuous up-flow feeding from the side flow into the anaerobic reactor and effluent samples has taken from the reactor after 5 hours for analysis of the parameters at each batch of HRT. The start-up of the UMAS reactor was involved step increasing in influent organic volumetric loading rates from higher retention time to lower retention time of 392.16, 128.21, 119.05, 111.11, and 98.04 days. The acclimatization was done within 4 to 9 days to allow all the microorganisms present in the mixed liquor perfectly acclimatized to the new environmental. Mixture of methane and carbon dioxide gases produced was collected by using syringe. NaOH or KOH was filled in the syringe in order to adsorb the carbon dioxide (CO2 from the methane gas. The developed UMAS was effective process that has more excellent performance in methane production by encountering the membrane fouling hence decreased the retention time. The amount of methane gas obtained was about 92 %. The COD content can be reduced up to 87.22 % reduction from the original by complete treatment.

N.H. Abdurahman

2015-02-01

60

Lipase Production from Palm Oil Mill Effluent by Aspergillus terreus Immobilized on Luffa Sponge  

Directory of Open Access Journals (Sweden)

Full Text Available An integrated treatment and valorization of Palm Oil Mill Effluent (POME by Aspergillus terreus IMI 282743 immobilized on Luffa sponge was investigated. Effects of POME concentrations and nitrogen supplementation on Chemical Oxygen Demand (COD reduction, microbial lipase and biomass production were evaluated in batch cultures. A 50% POME promoted the highest lipolytic activities in both immobilized and free cell cultures. In the former, the maximum lipase activity was 5.14 U mL-1 but in the non-immobilized batch, it was only 2.10 U mL-1. Lipase activities were low in the 25 and 100% POME due to overdilution and presence of inhibitory compounds, respectively. The pH was unchanged in the 100% POME but in other cultures, there were significant increase in the pH values. The pH of the 75% POME increased after a 48 h lag but in the 25 and 50% POME, the pH rose from 4-6.43 within a period of 96 h. COD did not change in the 100% POME but in the 75% POME, a 60.7% reduction was achieved. The COD of both the 50 and 25% POME decreased by 45% respectively. The immobilized biomass concentration was highest in the 75% POME (0.83 g L-1 but in the 25 and 100% POME, it was 0.27 and 0.63 g L-1, respectively. Supplementation of the 50% POME with a mixture of ammonium sulphate and yeast extract increased lipase production to10.6 U mL-1, biomass concentration to 3.7 g L-1 while the COD decreased by 80%. Lipase production from POME could be economically competitive to present industrial processes and provides additional incentive of treatment that is cheap and sustainable.

Charles O. Nwuche

2013-01-01

 
 
 
 
61

Adsorption isotherm studies of BOD, TSS and colour reduction from palm oil mill effluent (POME) using boiler fly ash  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Palm oil is one of the two most important vegetable oils in the world's oil and fats market. The extraction and purification processes generate different kinds of waste generally known as palm oil mill effluent (POME). Earlier studies had indicated the possibility of using boiler fly ash to adsorb i [...] mpurities and colour in POME treatment. The adsorption treatment of POME using boiler fly ash was further investigated in detail in this work with regards to the reduction of BOD, colour and TSS from palm oil mill effluent. The amount of BOD, colour and TSS adsorbed increased as the weight of the boiler fly ash used was increased. Also, the smaller particle size of 425µm adsorbed more than the 850µm size. Attempts were made to fit the experimental data with the Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The R² values, which ranged from 0.8974-0.9898, 0.8848-0.9824 and 0.6235-0.9101 for Freundlich, Langmuir and Dubinin-Radushkevich isotherms respectively, showed that Freundlich isotherm gave a better fit followed by Langmuir and then Dubinin-Radushkevich isotherm. The sorption trend could be put as BOD > Colour > TSS. The apparent energy of adsorption was found to be 1.25, 0.58 and 0.97 (KJ/mol) for BOD, colour and TSS respectively, showing that sorption process occurs by physiosorption. Therefore, boiler fly ash is capable of reducing BOD, Colour and TSS from POME and hence could be used to develop a good adsorbent for POME treatment.

J.C, Igwe; C.O, Onyegbado; A.A, Abia.

2010-09-01

62

Techno-economic Evaluation on Enhancing Cogeneration Plant Capacity: Case Study of Palm Oil Mill Cogeneration Plant  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of the study is to apply techno-economic evaluation for selecting a feasible alternative to enhance a co-generation power generation capacity of a palm oil mill. The co-generation plant is using Empty Fruit Bunch (EFB as fuel. The basis of the technical evaluation is to compare three alternatives on increasing the co-generation power generation capacity. Alternative 1 is to consider installing a new high capacity boiler to the current cogeneration system and maintaining the current turbine. Alternative 2 is to install a new high efficiency back pressure steam turbine and maintain the current boiler. While Alternative 3, is to install high capacity an extraction steam turbine and maintain the current boiler. Present worth analysis is used for economic evaluation. Both the capital and operational expenditures are taken into account in assessing the present worth of the alternatives. Results from the technical and economic analysis have identified Alternative 2 as the most feasible alternative. Since substantial quantity EFB are available in Malaysia and being used as fuel for power generation at the palm oil mills, the approach could be useful for enhancement of co-generation capacity of the mills.

Mohd Amin Abd Majid

2014-01-01

63

Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent  

International Nuclear Information System (INIS)

An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

64

Biosynthesis and Characterization of Polyhydroxyalkanoates Copolymers Produced by Pseudomonas putida Bet001 Isolated from Palm Oil Mill Effluent  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C8?0) to oleic acid (C18?1) were used as sole carbon and energy source....

Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

2012-01-01

65

Optimization of Electricity Generation and Palm Oil Mill Effluent (POME Treatment from Microbial Fuel Cell  

Directory of Open Access Journals (Sweden)

Full Text Available Natural micro-flora of Palm Oil Mill Effluent (POME sludge was grown in dual-chamber Microbial Fuel Cells (MFC to produce electricity by providing glucose at different concentration. A greater strength of Open Circuit Voltage (OCV was observed with optimal biomass metabolism activity, as increasing glucose concentrations. The time Response Constant (RC of OCV was taken everyday to estimate the total time needed to achieve steady state voltage at zero current. The lower value of RC indicates that the strength of OCV value is high and the biomass attached to the anode could be active in producing electrons. At 3 750 mg-COD L-1 with 10% added POME and 10 000 mg-COD L-1 synthetic wastewater, the values of RC for each medium were found as 3.36 and 1.95 h, respectively. The removal efficiency of COD was achieved 72.2% for 10% POME and 89.9% for synthetic wastewater. The initial COD level was found proportionally to the COD removal and maximum power density in the MFC system. However, the results shown that relation between RC value and initial COD level were inversely proportional. The highest power density (with present current density in POME added and synthetic medium were 3.155 mW m-2 (9.322 mA m-2 and 1.780 mW m-2 (3.996 mA m-2, respectively. The optimal power density that conducted in different level of COD was occurred at day 2 before its start decrease at next consecutive day. The effects of electrochemical parameters to power densities at different initial COD level were also studied using polarization model. From the simulated data, averaged power densities (with present current densities that could achieved at COD 3750 and 10000 mg L-1 were estimated 2.61 mW m-2 (4.5 and 1.38 mA m-2 (3.5 mA m-2, respectively. The total losses due to current limitation were eliminated about 15-55 % at high initial COD level based on results mention above. The end of study showed that the maximum power density kept on increased although COD value had reached to the lower level and this could be due to the hydrolysis of inactive of the living cells undergone lysis, has contributed to COD level in the system.

Siti Norhana Shari

2010-01-01

66

Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T and Geobacillus thermoleovorans (DSM 5366T on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile.

Salleh Abu

2007-08-01

67

Effect of temperature on the anaerobic digestion of palm oil mill effluent  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english Two continuous stirred tank reactors (CSTRs) each fed with palm oil mill effluent (POME), operated at 37ºC and 55ºC, respectively, were investigated for their performance under varies organic loading rates (OLRs). The 37ºC reactor operated successfully at a maximum OLR of 12.25 g[COD]/L/day and a hy [...] draulic retention time (HRT) of 7 days. The 55ºC reactor operated successfully at the higher loading rate of 17.01 g[COD]/L/day and had a HRT of 5 days. The 37ºC reactor achieved a 71.10% reduction of chemical oxygen demand (COD), a biogas production rate of 3.73 L of gas/L[reactor]/day containing 71.04% methane, whereas the 55ºC reactor achieved a 70.32% reduction of COD, a biogas production rate of 4.66 L of gas/L[reactor]/day containing 69.53% methane. An OLR of 9.68 g[COD]/L/day, at a HRT of 7 days, was used to study the effects of changing the temperature by 3ºC increments. The reactor processes were reasonably stable during the increase from 37ºC to 43ºC and the decrease from 55ºC to 43ºC. When the temperature was increased from 37ºC to 46ºC, the total volatile fatty acid (TVFA) concentration and biogas production was 2,059 mg as acetic acid/L and 1.49 L of gas/L[reactor]/day at day 56, respectively. When the temperature was reduced from 55ºC to 40ºC, the TVFA concentration and biogas production was 2,368 mg as acetic acid/L and 2.01 L of gas/L[reactor]/day at day 102, respectively. By first reducing the OLR to 4.20 g[COD]/L/day then slowly increasing the OLR back to 9.68 g[COD]/L/day, both reactors were restored to stable conditions at 49ºC and 37ºC respectively. The initial 37ºC reactor became fully acclimatized at 55ºC with an efficiency similar to that when operated at the initial 37ºC whereas the 55ºC reactor also achieved stability at 37ºC but with a lower efficiency

Wanna, Choorit; Pornpan, Wisarnwan.

2007-07-15

68

Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.  

Science.gov (United States)

Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported. PMID:25058299

Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

2014-10-01

69

Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.  

Science.gov (United States)

In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status. PMID:24372356

Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

2014-01-22

70

Biomethanation of Palm Oil Mill Effluent (POME By Ultrasonic Membrane Anaerobic System (UMAS Using Pome as Substrate  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil mill effluent (POME with average chemical oxygen demand (COD and biochemical oxygen demand (BOD of 70,000 and 30,000 mg/L, respectively, can cause serious environmental hazard if discharged untreated. There are conventional palm oil mill effluent (POME treatment systems that require large footprint, long HRT and fail to meet the Malaysia Department of Environment (DOE discharge limit. In this study, the potential of ultrasonic-assisted membrane anaerobic system (UMAS was evaluated as alternative and cost effective method for treating POME wastewater to avoid fouling. This study also is an initiative to implement concept waste to energy by capturing methane gas. Throughout the experiment, the removal efficiency of COD was 95.55% with HRT of 6 days. The BOD removal efficiency was 71.58% while TSS removal rate was from 91 to 99.5%.The methane gas production efficiency was 94.14%. The UMAS treatment efficiency was greatly improved by UMAS introduction. The membrane fouling and polarization at the membrane surface was significantly reduced.

Abdurahman.H.Nour*1,

2014-01-01

71

Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production.  

Science.gov (United States)

Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 ?m) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. PMID:23026328

Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin

2012-12-01

72

The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME. Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS and volatile solid (VS, M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS and volatile solid (VS decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas.

Irvan Matseh

2012-10-01

73

Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Macro and micro nutrients are important ingredients for successful anaerobic digestion. The presence or lack of nutrients can enhance or limit the functioning of the fermentation process. Micro-nutrients most often reported as stimulatory are trace metals such as nickel, cobalt, iron, and zinc. The purpose of this research is to study the effect of nickel and cobalt as trace metals on digestion performance and biogas produced from the fermentation of palm oil mill effluent (POME. Anaerobic digestion was performed in a two litres stirred tank reactor and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from a fat pit of palm oil mill’s waste water treatment facility belongs to one of the palm oil company in North Sumatera which has VS concentration of 26,300 mg/L and COD value of 42,000 mg/L. To gain precise results, complete recording and reliable equipment of digester were employed. Supporting materials were also needed such as sodium bicarbonate, ammonium bicarbonate, and hydrochloric acid solution. Variables observed were included M-alkalinity, total solid (TS, volatile solid (VS, and biogas production. Hydraulic retention time (HRT was maintained at 6 days. Experimental results concluded that the reduction of trace metals concentration did not affect the TS and VS concentration and M-alkalinity. doi: http://dx.doi.org/10.12777/ijwr.2.2.2012.16-19 [ How to cite this article: Irvan, M. (2012. Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent. International Journal of Waste Resources (IJWR, 2(2, 16-19. doi: http://dx.doi.org/10.12777/ijwr.2.2.2012.16-19

Irvan Matseh

2012-10-01

74

Effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge mixed with shredded palm empty fruit bunches and decanter cake  

Directory of Open Access Journals (Sweden)

Full Text Available The effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge (POMS mixed with shredded palm empty fruit bunches (PEFB and decanter cake (DC was studied using the mixed culture LDD1 as an inoculum. Three piles of 50 kg mixture (POMS:PEFB:DC = 2:1:1 with different inoculum sizes of 0.0075% (treatment A, 0.015% (treatment B, and 0.030% (treatment C were set up. The physicochemical parameters were measured during the composting. All the compost appeared dark brown in color, crumbly, attained an ambient temperature and had the C/N ratio of 11:1 after 40 days fermentation, indicating the maturity of the compost. The optimal inoculum size was found to be 0.030% (w/w. For enzyme production, the highest carboxymethylcellulase (CMCase activity was 3.23 Unit/g substrates at 12 days incubation whereas the highest xylanase activity was 3.11 Unit/g substrates at 6 days incubation. At the end of 60 days fermentation, the compost (treatment C had a TN-P2O5 -K2O of 3.10-1.29-2.01% (dry basis. Therefore, the compost quality complied with the national compost standard set by the Ministry of Agriculture, Thailand.

Tanawut Nutongkaew

2014-06-01

75

Waste to Wealth: Hidden Treasures in the Oil Palm Industry  

International Nuclear Information System (INIS)

The palm oil industry plays an important role in the creation of waste to wealth using the abundant oil palm biomass resources generated from palm oil supply chain i.e. upstream to downstream activities. The oil palm biomass and other palm-derived waste streams available are oil palm trunks (felled), fronds (felled and pruned), shell, mesocarp fibers, empty fruit bunches (EFB), palm oil mill effluent (POME), palm kernel expelled (PKE), palm fatty acid distillates (PFAD), used frying oil (UFO), residual oil from spent bleaching earth (SBE) and glycerol. For 88.5 million tonnes of fresh fruit bunches (FFB) processed in 2008, the amount of oil palm biomass generated was more than 25 million tones (dry weight basis) with the generation of 59 million tonnes of POME from 410 palm oil mills. Oil palm biomass consists of mainly lignocellulose materials that can be potentially and fully utilized for renewable energy, wood-based products and high value-added products such as pytonutrients, phenolics, carotenes and vitamin E. Oil palm biomass can be converted to bio energy with high combustible characteristics such as briquettes, bio-oils, bio-producer gas, boiler fuel, biogas and bio ethanol. Oil palm biomass can also be made into wood-based products such as composite and furniture, pulp and paper and planting medium. The recovery of phenolics from POME as valuable antioxidants has potential drug application. Other possible applications for oil palm biomass include fine chemica for oil palm biomass include fine chemicals, dietary fibers, animal feed and polymers. There must be a strategic and sustainable resource management to distribute palm oil and palm biomass to maximize the use of the resources so that it can generate revenues, bring benefits to the palm oil industry and meet stringent sustainability requirements in the future. (author)

76

Biodiesel production from palm oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Methyl ester was produced from many sources of oil palm products, namely used frying oil, RBD palm oil, degummed and deacidified palm oil, palm stearin and superhard palm stearin. Production process was a conventional transesterification batch process using methanol as reactant and sodium hydroxide as catalyst. Production procedure consisted of oil preparation, solvent preparation, reaction step, glycerol separation, washing step and finishing step. Thin layer chromatograph was used to determ...

Kiatsimkul, P.; Bunyakan, C.; Klinpikul, S.; Tongurai, C.

2001-01-01

77

Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Problem statement: Refined Glycerin Wash Water (RGWW) from the oleochemical industry contains high Chemical Oxygen Demand (COD) and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl) that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME) for its treatment and methane recovery. Approach: A large 5...

Sulaiman, A.; Zakaria, M. R.; Hassan, M. A.; Shirai, Y.; Busu, Z.

2009-01-01

78

Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Anaerobic treatment of palm oil mill effluent (POME) with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB) reactor and an up-flowanaerobic filter (UFAF) reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane produc...

Sumate Chaiprapat; Poonsuk Prasertsan; Piyarat Boonsawang; Ronnachai Chaisri

2007-01-01

79

The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water  

Digital Repository Infrastructure Vision for European Research (DRIVER)

An attempt was made to reclaim and recover palm oil mill effluent (POME) for water reuse using tubular ultrafiltration (UF) and reverse osmosis (RO) membranes. The reclaimed water was compared with the final discharged water of the local mill. The raw POME was first subjected to a physical pre-treatment process to remove the content of organic matter and suspended solids. The pre-treatment process was coupled with membrane technology (UF and RO) to reclaim the clean water from POME. From the ...

Nazatul Shima Azmi; Khairul Faezah Md. Yunos; Azhari Samsu Baharuddin; Zanariah Md Dom

2013-01-01

80

Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3  

Directory of Open Access Journals (Sweden)

Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

Benjamas Cheirsilp

2013-04-01

 
 
 
 
81

UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent.  

Science.gov (United States)

The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C. PMID:22466006

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2012-07-30

82

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

Energy Technology Data Exchange (ETDEWEB)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH{sub 4}/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH{sub 4}/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH{sub 4}/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark); Angelidaki, Irini, E-mail: ria@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark)

2011-05-15

83

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

DEFF Research Database (Denmark)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8gVS/(L-reactor.d). Similar methane yields of 436–438mL-CH4/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6gVS/(L-reactor.d), with the methane yield of 600 and 555mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

Fang, Cheng; O-Thong, Sompong

2011-01-01

84

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

International Nuclear Information System (INIS)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH4/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

85

Synthetic Polyelectrolytes Based on Acrylamide and Their Application as a Flocculent in the Treatment of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Five cationic polyacrylamides of varying molecular weights but similar charge density were synthesized using free radical polymerization and Mannich reaction, characterized by different methods (infra red (IR spectroscopy, differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA, viscosity measurements and conductometric titration and applied as flocculants to palm oil mill effluents (POME. Flocculent performance was assessed by determining the polyelectrolyte dosage and the removal efficiency of the resulting supernatants using turbidity, suspended solids (SS and chemical oxygen demand (COD as indicators. It was found that varying in the molecular weight of the cationic polyacrylamide from 20X103 to 1.5X106 g mol-1 affects flocculent performance significantly. Polyelectrolyte adsorption increased as the molecular weight of the polyelectrolyte increased. High molecular weight cationic polyacrylamide (1.5X106 g mol-1 is the most effective polymer as it obtains a high removal efficiency (% with a dosage as low as 60 mg L-1 at pH 3 of POME. The very high molecular weight cationic polyacrylamide (over 5 million g mol-1 produced very poor floc formation this is because polyelectrolytes having very high molecular weights do not dissolve readily but tend to form gel lumps.

A. Ariffin

2004-01-01

86

Sterilization of Oil Palm Fresh Fruit Using Microwave Technique  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Dramatically increasing rate of free fatty acid (FFA) in long storage oil palm fruit is one of the most crucial problems of oil palm mill industries. The aim of this paper is to study the possibility of oil palm fruits sterilization by using microwave irradiation in order of halting enzymatic lipolysis reaction which caused of FFA production. The results indicate that microwave heating can be interrupted the FFA produced reaction and the optimum condition heating temperature of the fruits mes...

Umudee, I.; Chongcheawchamnan, M.; Kiatweerasakul, M.; Tongurai, C.

2013-01-01

87

Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge  

Energy Technology Data Exchange (ETDEWEB)

Thermoanaerobacterium-rich sludge acclimated with palm oil mill effluent (POME) in an anaerobic sequencing batch reactor operating at 60 C was used as a seed in batch experiments to investigate the effects of C/N (carbon/nitrogen) ratio, C/P (carbon/phosphate) ratio and iron concentration in POME on fermentative hydrogen production. A central composite design was performed with the aim of optimizing the hydrogen yield together with POME degradation using response surface methodology (RSM). The RSM results indicated that the presence of 257 mg Fe{sup 2+}/l, a C/N ratio of 74 and a C/P ratio of 559 were optimal for simultaneous hydrogen production and COD (chemical oxygen demand) removal. C/N ratio, C/P ratio and iron concentration all had an individual effect on hydrogen production and COD removal, while iron concentration and C/N ratio had the greatest interactive effect on hydrogen production (P<0.05) while C/N and C/P ratio gave more profound interactive effect on COD removal (P<0.05). The predicted maximum simultaneous hydrogen production and COD removal were 6.5 l H{sub 2}/l-POME and 58%, respectively. In a confirmation experiment under optimized conditions highly reproducible results were obtained, with a hydrogen production and COD removal efficiency of 6.33{+-}0.142lH{sub 2}/l-POME and 44{+-}1.5%, respectively. The total carbohydrate conversion was 92{+-}2.7%. The hydrogen production rate reached 25.9mmolH{sub 2}/l/day and increased by 60% as compared with the use of raw POME. Thermoanaerobacterium spp. were found to be dominant and present at a higher population density under optimized conditions than in raw POME fermentation. Optimization of the culture cultivation conditions in POME resulted in a simultaneous increase in biohydrogen production and COD reduction. (author)

O-Thong, Sompong [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hatyai 90112, Songkhla (Thailand); Department of Biology, University of Bergen, P.O. Box 7800, N-5020, Bergen (Norway); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hatyai 90112, Songkhla (Thailand); Intrasungkha, Nugul [Department of Biology, Faculty of Science, Thaksin University, Songkhla (Thailand); Dhamwichukorn, Srisuda [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Birkeland, Nils-KAare [Department of Biology, University of Bergen, P.O. Box 7800, N-5020, Bergen (Norway); Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020, Bergen (Norway)

2008-02-15

88

Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process  

Energy Technology Data Exchange (ETDEWEB)

The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l{sup -1} d{sup -1} gave a maximum hydrogen yield of 0.27 l H{sub 2} g COD{sup -1} with a volumetric hydrogen production rate of 9.1 l H{sub 2} l{sup -1} d{sup -1} (16.9 mmol l{sup -1}h{sup -1}). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 {+-} 3.5%, 92 {+-} 3%, 57 {+-} 2.5% and 78 {+-} 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l{sup -1} d{sup -1}) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME). (author)

Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); Palm Oil Product and Technology Research Center, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110 (Thailand); Birkeland, Nils-Kaare [Department of Biology and Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020 Bergen (Norway)

2009-09-15

89

Systematic approach for synthesis of palm oil-based biorefinery  

Energy Technology Data Exchange (ETDEWEB)

Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

2012-11-01

90

A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) reactor  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organi...

S A Habeeb, Ab Aziz Abdul Latiff

2011-01-01

91

Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water  

Science.gov (United States)

This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett-Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

Selmani, Nabila; Mirghani, Mohamed E. S.; Zahangir Alam, Md

2013-06-01

92

Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor  

Energy Technology Data Exchange (ETDEWEB)

Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.

Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

2011-12-30

93

Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor  

International Nuclear Information System (INIS)

Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ? Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ? The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ? The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ? SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO–CKD concentration.

94

PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english 16S ribosomal RNA (rRNA)-targeted fluorescent in situ hybridization combined with polymerase chain reaction (PCR)-cloning, light microscopy using Gram stains, scanning electron microscopy and denatured gradient gel electrophoresis were used to reveal the distribution of methanogens within an anaerob [...] ic closed digester tank fed with palm oil mill effluent. For specific detection of methanogens, 16S rRNA-cloning analysis was conducted followed by restriction fragment length polymorphism (RFLP) for presumptive identification of methanogens. To cover the drawbacks of the PCR-cloning study, the organization of the microorganisms was visualized in the activated sludge sample by using fluorescent oligonucleotide probes specific to several different methanogens, and a probe for bacteria. In situ hybridization with methanogens and bacterial probes and denatured gradient gel electrophoresis within activated sludge clearly confirmed the presence of Methanosaeta sp. and Methanosarcina sp. cells. Methanosaeta concilii was found to be the dominant species in the bioreactor. These results revealed the presence of possibly new strain of Methanosaeta in the bioreactor for treating palm oil mill effluent called Methanosaeta concilii SamaliEB (Gene bank accession number: EU580025). In addition, fluorescent hybridization pictured the close association between the methanogens and bacteria and that the number of methanogens was greater than the number of bacteria.

Meisam, Tabatabaei; Mohd Rafein, Zakaria; Raha Abdul, Rahim; André-Denis G., Wright; Yoshihito, Shirai; Norhani, Abdullah; Kenji, Sakai; Shinya, Ikeno; Masatsugu, Mori; Nakamura, Kazunori; Alawi, Sulaiman; Mohd Ali, Hassan.

2009-07-15

95

The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water  

Directory of Open Access Journals (Sweden)

Full Text Available An attempt was made to reclaim and recover palm oil mill effluent (POME for water reuse using tubular ultrafiltration (UF and reverse osmosis (RO membranes. The reclaimed water was compared with the final discharged water of the local mill. The raw POME was first subjected to a physical pre-treatment process to remove the content of organic matter and suspended solids. The pre-treatment process was coupled with membrane technology (UF and RO to reclaim the clean water from POME. From the combined techniques of UF (5 bar and RO (30 bar the results showed that the turbidity and BOD5 were reduced by 99% and 98.9%, respectively. Compared to the final discharged POME, this suggested method gives a significant difference in BOD5 and turbidity. The final permeate of RO was found to comply with the standards for water reuse. Therefore, the combined UF and RO method is a viable alternative and has a great potential for use in the palm oil industry.

Nazatul Shima Azmi

2013-02-01

96

Material-mass Balance of Smallholder Oil Palm Processing in the Niger Delta, Nigeria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study evaluates the material-mass balance of smallholder oil palm processing in Niger Delta Nigeria. Ten smallholder oil palm processing mills were randomly sampled. Measuring scale was used to measure the weight of the Fresh Fruit Bunch (FFB) and all the processing intermediates/products including Threshed Fresh Fruit (TFF), Palm Pressed Fibre (PPF), Palm Kernel Shell (PKS), Empty Fruit Bunch (EFB), Crude Palm Oil (CPO), chaff and nut. During the study period (13-22 April 2012), 8 of th...

Ohimain, Elijah I.; Izah, Sylvester C.; Obieze, Francis A. U.

2013-01-01

97

A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor  

Directory of Open Access Journals (Sweden)

Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

2011-07-01

98

A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) Reactor  

Energy Technology Data Exchange (ETDEWEB)

Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR) and hydraulic retention time (HRT) of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28{+-}2 C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37{+-}1 C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD) removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

Habeeb, S.A.; Latiff, AB. Aziz Abdul; Daud, Zawawi; Ahmad, Zulkifli [Faculty of Civil and Enviromental Engineering, University Tun Hussein Onn (Malaysia)

2011-07-01

99

Life cycle assessment of two palm oil production systems  

International Nuclear Information System (INIS)

In 2009 approx. 40 Mt of palm oil were produced globally. Growing demand for palm oil is driven by an increasing human population as well as subsidies for biodiesel and is likely to increase further in coming years. The production of 1 t crude palm oil requires 5 t of fresh fruit bunches (FFB). On average processing of 1 t FFB in palm oil mills generates 0.23 t empty fruit bunches (EFB) and 0.65 t palm oil mill effluents (POME) as residues. In this study it is assumed that land use change does not occur. In order to estimate the environmental impacts of palm oil production a worst and a best case scenario are assessed and compared in the present study using 1000 kg of FFB as functional unit. The production and treatment of one t FFB causes more than 460 kg CO2eq in the worst case scenario and 110 kg CO2eq in the best case scenario. The significant greenhouse gas (GHG) emission reduction is achieved by co-composting residues of the palm oil mill. Thus treating those residues appropriately is paramount for reducing environmental impacts particularly global warming potential (GWP) and eutrophication potential (EP). Another important contributor to the EP but also to the human toxicity potential (HTP) is the biomass powered combined heat and power (CHP) plant of palm oil mills. Frequently CHP plants of palm oil mills operate without flue gas cleaning. The CHP plant emits heavy metals and nitrogen oxides and these account for 93% of the HTP of the advanced palm oil production system, of which heavy metal emissions to air are responsible for 79%. The exact emission reduction potential from CHP plants could not be quantified due to existing data gaps, but it is apparent that cleaning the exhaust gas would reduce eutrophication, acidification and toxicity considerably. -- Highlights: ? We have estimated the environmental impacts of two palm oil production systems. ? Residues from palm oil mills are a wasted resource rather than waste. ? Co-composting of EFB and POME reduces greenhouse gas emission significantly. ? Flue gas cleaning would abate the eutrophication and human toxicity potential.

100

Pengaruh Jumlah Palm Oil Fly Ash Terhadap Microstruktur Dan Sifat Mekanis Metal Matrix Composite (MMC) Dengan Metode Stir Casting  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The processing of palm oil in the MCC source utilizing energy resource derived from palm oil shell and fiber in which the process of fuel shell and fiber combustion in the boiler combustion chamber producing the remaining results in the form of palm oil fly ash which are quite plenty . This palm oil fly ash is usually left alone in the area of oil palm mills that certainly can cause environmental pollution and inconvenience to workers . Therefore, this study aims to look int...

Daulay, Ramadhan

2014-01-01

 
 
 
 
101

Coconut, date and oil palm genomics  

Science.gov (United States)

A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...

102

Biodiesel production from palm oil  

Directory of Open Access Journals (Sweden)

Full Text Available Methyl ester was produced from many sources of oil palm products, namely used frying oil, RBD palm oil, degummed and deacidified palm oil, palm stearin and superhard palm stearin. Production process was a conventional transesterification batch process using methanol as reactant and sodium hydroxide as catalyst. Production procedure consisted of oil preparation, solvent preparation, reaction step, glycerol separation, washing step and finishing step. Thin layer chromatograph was used to determine the composition of product and nearly 100% methyl ester was obtained at a suitable condition. Molar ratio of oil: methanol was about 1:6, which equal to 20% by weight of methanol. Sodium hydroxide was 0.5-1 %wt. of oil. The production temperature was 60-80ºC, mixing time was only 15-30 minutes and reaction time was 3-4 hours. Many fuel properties of methyl ester were very close to high-speed diesel such as viscosity, density, heating value and boiling point range. Pour point of methyl ester was higher than diesel owing to the high composition of saturated methyl ester that has a high melting point.

Kiatsimkul, P.

2001-11-01

103

Flexural strength of palm oil clinker concrete beams  

International Nuclear Information System (INIS)

Highlights: • Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. • The palm oil clinker concrete can be classified as lightweight concrete. • Full scale reinforced palm oil clinker concrete beams were tested. • The palm oil clinker concrete beam can provide ample warning to the imminence of failure. - Abstract: This paper presents an experimental program on the flexural behaviour of reinforced concrete beams produced from palm oil clinker (POC) aggregates. POC is obtained from by-product of palm oil milling. Utilisation of POC in concrete production not only solves the problem of disposal of this solid waste but also helps to conserve natural resources. An experimental work was conducted involving eight under-reinforced beams with varying reinforcement ratios (0.34–2.21%) which were fabricated and tested. The data presented include the deflection characteristics, cracking behaviour and ductility indices. It was found that although palm oil clinker concrete (POCC) has a low modulus of elasticity, the test results revealed that the deflection of singly reinforced POCC beams, with reinforcement ratio less than 0.524, under the design service load is acceptable as the span-deflection ratios range between 250 and 257 and these values are within the allowable limit provided by BS 8110. In addition, the results reported in this paper indicate that the BS8110 based design equations can be used for the prediction of the flexural capacity of POCC beams with reinforcement ratio up to 2.23%

104

BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF WASTEWATER FROM PALM OIL MILL INDUSTRY / PRODUCCIÓN DE BIOGÁS MEDIANTE DIGESTIÓN ANAEROBIA DE AGUAS RESIDUALES PROVENIENTES DE LA INDUSTRIA PALMERA  

Scientific Electronic Library Online (English)

Full Text Available SciELO Colombia | Language: English Abstract in portuguese O impacto ambiental gerado pelo uso de combustíveis fósseis, incentiva à sociedade a procurar novas fontes de energia renováveis, tais como o biodiesel. Na Colômbia, a matéria-prima mais utilizada para produzir biodiesel é o óleo de palma, devido a isso a sua produção tem aumentado drasticamente nos [...] últimos anos, gerando efluentes com alta carga contaminante para o meio ambiente como consequência do processo. Dado que as características físico químicas destes efluentes são propícias para a produção de biogás mediante digestão anaeróbia, este trabalho avalia a produção de metano a partir de água residual de uma empresa extratora de óleo de palma colombiana. Foram realizados experimentos de digestão anaeróbia em modo batch para avaliar a influência do pH e a relação inoculo/substrato utilizando dois inóculos diferentes. Encontrou-se que a mistura 1:1 v/v lodo anaerobio de tratamento de águas residuais urbanas e esterco de porco usada como inóculo, gerou a maior produção de metano acumulado, atingindo 2740 mL de metano (0,343 m³ CH4/kg SV), usando uma relação de 2 g SV de inóculo/g SV de substrato, sem necessidade de neutralizar o pH do sistema. Abstract in spanish El impacto ambiental generado por el uso de combustibles fósiles, incentiva a la sociedad a buscar nuevas fuentes de energía renovables tales como el biodiesel. En Colombia, la materia prima más utilizada para producir biodiesel es el aceite de palma, con lo que su producción ha aumentado drásticame [...] nte en los últimos años, generando efluentes con alta carga contaminante para el medio ambiente como consecuencia del proceso. Dado que las características físico-químicas de estos efluentes son propicias para la producción de biogas mediante digestión anaerobia, este trabajo evalúa la producción de metano a partir de agua residual de una empresa extractora de aceite de palma colombiana. Se realizaron experimentos de digestión anaerobia en modo batch para evaluar la influencia del pH y la relación inóculo/ sustrato utilizando dos inóculos diferentes. Se encontró que la mezcla 1:1 v/v lodo anaerobio de planta de tratamiento de aguas residuales urbanas y estiércol de cerdo usada como inóculo, generó la mayor producción de metano acumulado, alcanzando 2740 mL de metano (0.343 m³ CH4/kg SV), usando una relación de 2 g SV de inóculo/g SV de sustrato, sin necesidad de neutralizar el pH del sistema. Abstract in english The environmental impact caused by the fossil fuel use encourages society to look for new sources of renewable energy, such as biodiesel. During the last years, palm oil production has dramatically increased in Colombia, since it is the main raw material for biodiesel production. As consequence of t [...] he process, palm oil mill effluents with high content of pollutants are released to the environment. Since these effluents have physicochemical characteristics that make them suitable for the production of biogas by anaerobic digestion of residual water, this research evaluates the production of methane using wastewater as substrate from a Colombian palm oil mill. Anaerobic digestion experiments were conducted in batch mode to evaluate the influence of pH and inoculum to substrate ratio, by using two differents inoculums. It was found that the most suitable inoculum was a mixture of 1:1 v/v urban Wastewater Treatment Plant (WWTP) anaerobic sludge/pig manure at a ratio 2 g Volatile Solids (VS) inoculum/g VS substrate, which presented the highest accumulated methane production, reaching 2740 mL methane (0.343 m³ CH4/kg VS) without neutralizing pH.

Debora-Alcida, Nabarlatz; Ligia-Patricia, Arenas-Beltrán; Diana-Milena, Herrera-Soracá; Diana-Andrea, Niño-Bonilla.

2013-01-01

105

Effect of solids retention time on membrane fouling intensity in two-stage submerged anaerobic membrane bioreactors treating palm oil mill effluent.  

Science.gov (United States)

Submerged anaerobic membrane bioreactors (SAnMBRs) treating palm oil mill effluent were analysed in terms of membrane fouling dynamics when working at three different sludge retention times (SRTs of 15, 30 and 60 d). The average permeate flux was fixed at 2.4 L x m(-2) x h(-1). During operation, the membrane was regenerated by using two steps: membrane wiping during each experiment as soon as trans-membrane pressure reached 125-130 mbars, and complete membrane cleaning including backwash and chemical cleaning at the end of each experiment when analysing the membrane surface and foulant material. Whatever the SRT, the cake formation was the dominant effect on membrane fouling dynamics. The concentration of suspended solids in the SAnMBRs, depending on the SRT, was then a determining criterion. Scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy indicated that fouled membrane surfaces were covered with a cake layer containing organic and inorganic elements whose concentrations were higher when working at a higher SRT; the higher concentrations of such elements gave to the cake layer a denser and more compact structure. In these experiments, the soluble fractions played a secondary role because of the dominant effect of cake layer structuring. PMID:25145221

Annop, S; Sridang, P; Puetpaiboon, U; Grasmick, A

2014-01-01

106

Isolation of anoxygenic photosynthetic bacteria from Songkhla Lake for use in a two-staged biohydrogen production process from palm oil mill effluent  

Energy Technology Data Exchange (ETDEWEB)

We are developing a process to produce biohydrogen from palm oil mill effluent. Part of this process will involve photohydrogen production from volatile fatty acids under low light conditions. We sought to isolate suitable bacteria for this purpose from Songkhla Lake in Southern Thailand. Enrichment for phototrophic bacteria from 34 samples was conducted providing acetate as a major carbon source and applying culturing conditions of anaerobic-low light (3000 lux) at 30 C. Among the independent isolates from these enrichments 19 evolved hydrogen with productivities between 4 and 326 ml l{sup -1} d{sup -1}. Isolate TN1 was the most efficient producer at a rate of 1.85 mol H{sub 2} mol acetate{sup -1} with a light conversion efficiency of 1.07%. The maximum hydrogen production rate for TN1 was determined to be 43 ml l{sup -1} h{sup -1}. Environmentally desirable features of photohydrogen production by TN1 included the absence of pH change in the cultures and no detectable residual CO{sub 2}. (author)

Suwansaard, Maneewan; Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkla 90112 (Thailand); Choorit, Wanna [School of Agricultural Technology, Walailak University, Nakhonsithammarat 80160 (Thailand); Zeilstra-Ryalls, Jill H. [Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403 (United States)

2009-09-15

107

Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester  

International Nuclear Information System (INIS)

An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

108

Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester  

Science.gov (United States)

An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

2013-06-01

109

77 FR 4300 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program  

Science.gov (United States)

...reduction benefits of this technology are likely to be less than...projecting the deployment of this technology it is not considered in our...palm kernels to a separate milling facility where palm kernel...oil biodiesel, production technology for palm oil biodiesel...

2012-01-27

110

Zeolite Utilization as a Catalyst and Nutrient Adsorbent of an Organic Fertilizer Process From Palm Oil Mill Effluent as Raw Material  

Directory of Open Access Journals (Sweden)

Full Text Available Palm Oil Mill Effluent (POME cannot be directly used as an organic fertilizer source due to its high Biological Oxygen Demand (BOD thus it is not environmentally safely. To increase the high quality of organic fertilizer obtained, the liquid wastes are needed to be processed in order to decrease the BOD to degrade both the soluble and suspension materials of organic materials. The altenative process to be conducted to make a better quality of POME is by adding the adsorbent. The aim of the research was to study the effect of zeolite utilization and duration of hydrolysis process in order to increase the nutrients content and to decrease the BOD of POME. The research was conducted at the PT Sumbertama Nusa Pertiwi Jambi, Indonesia in August 2012 until February 2013. The sample of POME was taken from the inlet of the factory’s acidulating pool. There were several doses of zeolite as treatments which were 0, 5, 10, 15% and several durations of hydrolysis process which were 1,2,3 and 4 weeks. Active zeolite was added to POME and then it was fermented with different hydrolysis duration times as mentioned above. The research showed that application of zeolite and duration of hydrolysis process significantly affected the pH, N, P, K, Al, Fe, BOD of POME and the adsorption of N, P, K, Al, Fe by zeolite. It can be concluded that 10% of zeolite incubated in two weeks duration of hydrolysis process produced higher nutrient of N, P, K with BOD, Al, Fe and pH matched with the waste quality standard. The highest efficiency of N, P and K adsorbent was show by the 15% of zeolite which was incubated for two weeks of hydrolysis process.

Ida Nursanti

2013-09-01

111

Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Refined Glycerin Wash Water (RGWW from the oleochemical industry contains high Chemical Oxygen Demand (COD and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME for its treatment and methane recovery. Approach: A large 500 m3 semi-commercial closed digester tank was used to study the effect of co-digesting POME and RGWW under mesophilic condition at different RGWW percentage. The digester performance in terms of COD removal efficiency and methane production rate and stability based on total Volatile Fatty Acids (VFA accumulation, Mixed Liquor Volatile Suspended Solid (MLVSS and pH were evaluated. Results: At 1.0% of RGWW co-digested, both COD removal efficiency and methane production rate showed satisfactory results with higher than 90% and 505 m3 day-1, respectively. However, once the percentage was increased to a maximum of 5.25%, COD removal efficiency remains high but the methane production rate reduced significantly down to 307 m3 day-1. At this stage, the digester was already unstable with high total VFA recorded of 913 mg L-1 and low cells concentration of 8.58 g L-1. This was probably due to the effect of plasmolysis on the methanogens at high concentration of NaCl in the digester of nearly 4000 mg L-1. Conclusion: Co-digesting of RGWW with high NaCl content and POME is satisfactory for COD removal but not for increasing the methane production.

A. Sulaiman

2009-01-01

112

Oil palm plantation effects on water quality in Kalimantan, Indonesia  

Science.gov (United States)

Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.

Carlson, K. M.; Curran, L. M.

2011-12-01

113

Value-added Products from Palm Sludge Oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The very short chain fatty acid has been recovered from palm sludge oils, a by-product of palm oil mills using vacuum distillation method. The recovered very short chain fatty acid contains mainly C6 fatty acid which is a valuable fine chemical in perfume industry. The very short chain fatty acid perfume esters were then synthesised using ethanol with sulphuric acid as catalyst. The reaction conditions were alcohol- very short chain fatty acid volume ratio of 2:1, 1.5% wt of sulphuric acid at...

Choo Yuen May; Harrison Lau Lik Nang; Nursulihatimarsyila Abd. Wafti

2012-01-01

114

Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons w...

Hassan S.; Tesfamichael Aklilu; Mohd Nor M.F.

2014-01-01

115

Evaluation of the Quality of Palm Oil Produced by Different Methods of Processing  

Directory of Open Access Journals (Sweden)

Full Text Available Five palm oil samples obtained by different methods of processing were evaluated for quality. The palm oil samples evaluated were oils produced by traditional aqueous palm oil extraction method, palm oil press, fibre extract, Adapalm mechanized extraction method and adulterated palm oil extract. The physical quality indices analyzed were moisture content, impurities, density, smoke point, flash point and fire point, while the chemical quality indices analyzed were Free Fatty Acids (FFA, saponification value, peroxide value, iodine value, unsaponifiable matter and potash content. The Adapalm oil ( from the standard industrial oil mill had significantly(p<0.05 lower values of FFA (0.97%, moisture content (0.23%, peroxide value (07.0 mEq kg-1 and the other quality parameters showed that it is of higher quality than the rest. It was closely followed by palm oil from press extract and traditional aqueous palm oil with FFA of 3.3% and 2.6%, respectively. These were then followed by palm oil from fibre extract with FFA (2.9%, moisture content (9.3%, impurities (1.6%, peroxide value (7.4 mEq kg -1. The adulterated palm oil extract was found to have significantly higher values of moisture content (26.4%, FFA (3.9%, impurities (1.89%, potash content (3.96% and other quality indices showed that it is of the poorest quality among all the oil samples.

2006-01-01

116

Synthesis of polyhydroxyalkanoate from palm oil and some new applications.  

Science.gov (United States)

Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner. PMID:21279347

Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen

2011-03-01

117

Sterilization of Oil Palm Fresh Fruit Using Microwave Technique  

Directory of Open Access Journals (Sweden)

Full Text Available Dramatically increasing rate of free fatty acid (FFA in long storage oil palm fruit is one of the most crucial problems of oil palm mill industries. The aim of this paper is to study the possibility of oil palm fruits sterilization by using microwave irradiation in order of halting enzymatic lipolysis reaction which caused of FFA production. The results indicate that microwave heating can be interrupted the FFA produced reaction and the optimum condition heating temperature of the fruits mesocarp is 50 °C but not exceed to 80 °C, and the fruits can be storage for 7 days at ambient condition without FFA significantly generation. Conclude that heating from irradiation of microwave is capacitating for dry and clean sterilization system.

I. Umudee

2013-06-01

118

Bio-oils from Pyrolysis of Oil Palm Empty Fruit Bunches  

Directory of Open Access Journals (Sweden)

Full Text Available Problem Statement: The palm oil industry generates an abundance of oil palm biomass such as the mesocarp fibre, shell, empty fruit bunch (EFB, frond, trunk and palm oil mill effluent (POME. For 80 million tonnes of fresh fruit bunch (FFB processed last year, the amount of oil palm biomass was more than 25 million tones. The objectives of this study were to: (i Determine the effect of various pyrolysis parameters on product yields and (ii Characterise liquid product obtained under different condition. Approach: In this study, pyrolysis of oil palm Empty Fruit Bunches (EFB was investigated using quartz fluidized fixed bed reactor. The effects of pyrolysis temperatures, particle sizes and heating rates on the yield of the products were investigated. The temperature of pyrolysis and heating rate were varied in the range 300-700 °C and 10-100 °C min1 respectively. The particle size was varied in the range of Results: Under the experimental conditions, the maximum bio-oil yield was 42.28% obtained at 500 ºC, with a heating rate of 100 ºC min-1 and particle size of 91-106 µm. The calorific values of bio-oil ranged from 20-21 MJ kg-1. A great range of functional groups of phenol, alcohols, ketones, aldehydes and carboxylic acids were indicated in FTIR spectrum. Conclusion: The chemical characterisation results showed that the bio-oil obtained from oil palm EFB maybe a potentially valuable source as fuel or chemical feedstocks.

Mohamad A. Sukiran

2009-01-01

119

Value-added Products from Palm Sludge Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The very short chain fatty acid has been recovered from palm sludge oils, a by-product of palm oil mills using vacuum distillation method. The recovered very short chain fatty acid contains mainly C6 fatty acid which is a valuable fine chemical in perfume industry. The very short chain fatty acid perfume esters were then synthesised using ethanol with sulphuric acid as catalyst. The reaction conditions were alcohol- very short chain fatty acid volume ratio of 2:1, 1.5% wt of sulphuric acid at temperature of 120°C for 20 min. The yield of very short chain fatty acid esters after distillation and purification processes was 50 to 60% wt. The treated palm sludge oils, after recovering of very short chain fatty acid was subjected to esterification using solid acid catalyst followed by conventional transesterification for biodiesel production. The free fatty acid in palm sludge oils was successfully reduced from 65% to less than 2% prior to transesterification. The conversion of free fatty acid to methyl ester and final yield of biodiesel were 98 and 83%, respectively. This paper demonstrates total utilisation of palm sludge oils by producing valuable very short chain fatty acid before converting it into biodiesel.

Choo Yuen May

2012-01-01

120

Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.  

Science.gov (United States)

Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant. PMID:19487007

Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

2009-07-01

 
 
 
 
121

A case study of pyrolysis of oil palm wastes in Malaysia  

Science.gov (United States)

Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

2013-05-01

122

Contemporary land-use transitions: The global oil palm expansion  

DEFF Research Database (Denmark)

The present report aims at providing an overview of the magnitude and geographical distribution of oil palm cultivation. It also considers recent trends in the palm oil market and the future prospects for palm oil. By way of background, we briefly summarize the agroecological characteristics of oil palms. The main aim of the paper is, however, to present a quantitative overview of the extent of land transformations related to the global oil palm production.

Kongsager, Rico; Reenberg, Anette

2012-01-01

123

The Effects of Amofer Palm Oil Waste-based Complete Feed to Blood Profiles and Liver Function on Local Sheep  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Amoniation-Fermentation (amofer) technology should be conducted in order to improve the low quality of by product produced from palm oil plantations and mills (palm oil waste) which is used for constituent of feed ingredients in complete feed (CF). This technology also reforms the feed material into edible form. Before broadly applicable, it must be ensured that the feed does not have toxic effects on livestock. This research was peformed to evaluate the effects of amofer palm oil waste-ba...

Sumarsono; Imam Sutrisno, C.; , Sunarso; Hamdi Mayulu

2012-01-01

124

A high performance liquid chromatography method for determination of furfural in crude palm oil.  

Science.gov (United States)

A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. PMID:25214353

Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis

2011-09-01

125

Dioxin/ Furan Level in the Malaysian Oil Palm Environment  

International Nuclear Information System (INIS)

Environmental samples collected from oil palm premises were evaluated for dioxins/ furans contamination. The samplings were carried out at oil palm premises located in Banting (Premise A) and in Teluk Intan (Premise B), involving two environmental matrices namely ambient air and soil. The soil samples were collected in the plantations while ambient air samples were collected in the vicinity of the mills and refineries. The results of the analyses showed that the level of dioxins/ furans in ambient air were generally higher in oil palm premise located adjacent to industrial establishments. The concentration levels at premise A mill and refinery located adjacent to industrial establishments, ranged from 64.14 WHO-TEQ fg m-3 to 131.87 WHO-TEQ fg m-3, while for premise B mill and refinery located in the rural area, ranged from 9.93 WHO-TEQ fg m-3 to 16.66 WHO-TEQ fg m-3. Meanwhile for soil samples, the highest concentrations were recorded in soil collected near roads used heavily by vehicles. The concentration levels of soil samples collected at premise A and premise B plantations ranged from 1.910 WHO-TEQ pg g-1 dry weight to 3.305 WHO-TEQ pg g-1 dry weight. (author)

126

Utilization of oil palm as a source of renewable energy in Malaysia  

Energy Technology Data Exchange (ETDEWEB)

Malaysia is currently the world's largest producer and exporter of palm oil. Malaysia produces about 47% of the world's supply of palm oil. Malaysia also accounts the highest percentage of global vegetable oils and fats trade in year 2005. Besides producing oils and fats, at present there is a continuous increasing interest concerning oil palm renewable energy. One of the major attentions is bio-diesel from palm oil. Bio-diesel implementation in Malaysia is important because of environmental protection and energy supply security reasons. This palm oil bio-diesel is biodegradable, non-toxic, and has significantly fewer emissions than petroleum-based diesel (petro-diesel) when burned. In addition to this oil, palm is also a well-known plant for its other sources of renewable energy, for example huge quantities of biomass by-products are developed to produce value added products such as methane gas, bio-plastic, organic acids, bio-compost, ply-wood, activated carbon, and animal feedstock. Even waste effluent; palm oil mill effluent (POME) has been converted to produce energy. Oil palm has created many opportunities and social benefits for the locals. In the above perspective, the objective of the present work is to give a concise and up-to-date picture of the present status of oil palm industry enhancing sustainable and renewable energy. This work also aims to identify the prospects of Malaysian oil palm industry towards utilization of oil palm as a source of renewable energy. (author)

Sumathi, S.; Chai, S.P.; Mohamed, A.R. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

2008-12-15

127

Air Quality Impacts of Smallholder Oil Palm Processing in Nigeria  

Directory of Open Access Journals (Sweden)

Full Text Available Air emissions during palm oil processing by smallholders are issues of public health concern demanding urgent intervention by environmentalist. In this study, six smallholder oil palm processing mills were studied inElele,Nigeria. Air emission parameters (NO2, NH3, CO, H2S, SO2, VOC, noise and meteorology (wind speed, temperature, relative humidity and pressure were determined at three distances (10 ft,25 ftand50 ft in both wind ward and lee ward directions from the mills covering boiling and digestion activities. The emissions from biomass were found to be significantly higher than that from fossil diesel, while noise was higher during digestion. The health implications of air emissions were discussed. The study concluded by directing attentions of regulatory agencies to monitor the activities of smallholder oil palm processing to ensure the environmental sustainability of their operations. In summary, evidence during boiling activity revealed that: ·      H2S ranged from - 2.400 ppm at10 ft, - 2.067 ppm at25 ftand - 0.833 ppm at50 ftfrom the mills in the wind ward direction, and - 1.167 ppm at10 ft, - 0.567 ppm at25 ftand - 0.367 ppm at50ftdistance from the mills in lee ward direction and was significantly lower during digestion. ·      SPM ranged from 1634 - 7853 ?g/m3 at10 ft, 657 - 1110 ?g/m3 at25 ftand 81 - 854 ?g/m3 at50 ftfrom the mills in the wind ward direction, and 46 - 236 ?g/m3 at10 ft, 44 - 120 ?g/m3 at25 ftand 30 - 58 ?g/m3 at50 ftfrom the mills in lee ward direction. SPM was significantly lower during digestion. ·      VOC ranged from 67 - 13.933 ppm at10 ft, 1.033 - 13.133 ppm at25ftand 0.500 -

Elijah I. Ohimain

2013-07-01

128

Techno-economic Analysis of Electricity Generation from Biogas Using Palm Oil Waste  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In Malaysia, nearly 80 million tons of fresh fruit bunches are processed annually in 406 palm oil mills and are generating approximately 54 million tons of Palm Oil Mill Effluent (POME). This POME is known to generate biogas consisting of methane-a Green House Gas (GHG) identifiable to cause global warming. The amount of methane gas generated annually is equivalent to 19 million tons of carbon dioxide. To meet the regulatory requirement, more than 85% of the mills use solely the lagoon system...

Saad, Mohd Firdaus M.; Shahida Begum

2013-01-01

129

Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons were made with others common insulating materials, and it was found that the experimental k values for oil palm waste insulation was lower by between 4 to 56 times for rockwool and between 7 to 57 times for glass fiber at low temperatures. The value k of oil palm fiber however showed an increase at higher temperatures and was lower at lower packing densities. Although not being able to match the k values of common insulators at higher temperatures, other factors such as cost and environmental benefits of using waste material should be taken into consideration and hence encouraging its use as at least a supplement to existing insulation materials

Hassan S.

2014-07-01

130

Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances  

International Nuclear Information System (INIS)

Highlights: ? We evaluate energy and carbon equivalence from CPO production based on a CBM. ? Energy spent and produced via carbon movement from palm oil mill was determined. ? Scenarios were formulated to evaluate the potential reduction of carbon emission. ? Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of plantation. This equates to a quantity of 68 kg CE reduced per ton of FFB. Thus, utilization of palm oil biomass can have a significantly high potential as a resource to be used for climate change mitigation by reducing carbon emissions. The findings of this work can be used as a template for policy makers to use in assessing and planning their energy programs.

131

Comparison Study On Oil Palm Trunk And Oil Palm Fruit Bunch Fibre Reinforced Laterite Bricks  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The main aim of this study was to compare the physical properties and mechanical properties of Oil Palm Trunk (OPT) fibre and Oil Palm Fruit Bunches (OPFB) fibre reinforced laterite bricks. For comparison purposes, the properties such as dimension, density, water absorption and the co...

Noorsaidi Mahat; Zaiton Yaacob; Nadia Fatihah Mastan; Ahmad Faiz Abd Rashid; Zainab Zainordin; Mohamad Rohaidzat Mohamed Rashid; Husrul Nizam Husin; Natasha Khalil; Mohamat Najib Mat Noor; Wan Faizal Iskandar Wan Abdullah; Nurul Asra Abd Rahman; Suryani Ahmad

2010-01-01

132

Design and Development of Laboratory Scale Updraft Gasifier for Gasification of Oil Palm Fronds  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The huge amount of wasted Oil Palm Fronds (OPF) produced annually provides a very good opportunity for the oil palm industry in Malaysia to use it for power generation, especially in mill boilers. Recently, gasification technology is receiving more attention as it can be used to convert wasted biomass into gaseous fuel for power generation and thermal applications as well as it can be used as a fuel source for the production of other chemicals. This study addresses the design, fabrication and...

Konda, Ramzy E.; Sulaiman, Shaharin A.; Bambang Ariwahjoedi

2014-01-01

133

Least cost energy planning in Thailand:A case of biogas upgrading in palm oil industry  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Thailand is currently the world’s fourth largest producer of crude palm oil. The palm oil mill effluent is proposed to beused for biogas production. A value added option is then proposed by increasing thermal efficiency of the biogas by removingCO2 content and increasing the percentage of methane, consequently turning the biogas in to green gas. In this study, thebiogas and upgrading process for electricity generation with the subsidy or adder in the long term planning is presented. Thisana...

Artite Pattanapongchai; Bundit Limmeechokchai*

2011-01-01

134

An experimental investigation to evaluate the heating value of palm oil waste by calorimetry. Paper no. IGEC-1-040  

Energy Technology Data Exchange (ETDEWEB)

A palm oil mill produces palm oil and kernel palm oil as main products and biomass residue (fiber and shell). This excess biomass residue can be used as fuel in boilers to meet energy and process heat demand in the industries. Quality of the palm oil waste (POW) is characterized by low fixed carbon and relatively high moisture content which may affect the heating value (HV). By applying the principle of calorimetry, a bomb calorimeter is utilized to evaluate the heating value of POW. From the experimental results, it is found that higher heating value (HHV) varies with the moisture content (MC) and it is observed as a function of MC. (author)

Supeni, E.E.; Megat Mohd, M.H.; Mohd Sapuan, S.; Nor Maria, A.; Ismail, M.Y.; Thoguluva, R.V. [Univ. Putra Malaysia, Dept. of Mechanical and Manufacturing Engineering, Faculty of Engineering, Selangor D.E., (Malaysia)]. E-mail: eris@eng.upm.edu.my; Chuah, T.G. [Univ. Putra Malaysia, Dept. of Chemical and Environmental Engineering, Faculty of Engineering, Selangor D.E., (Malaysia)

2005-07-01

135

An experimental investigation to evaluate the heating value of palm oil waste by calorimetry. Paper no. IGEC-1-040  

International Nuclear Information System (INIS)

A palm oil mill produces palm oil and kernel palm oil as main products and biomass residue (fiber and shell). This excess biomass residue can be used as fuel in boilers to meet energy and process heat demand in the industries. Quality of the palm oil waste (POW) is characterized by low fixed carbon and relatively high moisture content which may affect the heating value (HV). By applying the principle of calorimetry, a bomb calorimeter is utilized to evaluate the heating value of POW. From the experimental results, it is found that higher heating value (HHV) varies with the moisture content (MC) and it is observed as a function of MC. (author)

136

Evaluation of the Lubricating Properties of Palm Oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

There has been an increase in effort to reduce the reliance on petroleum fuels for energy generation and transportation throughout the world. Among the proposed alternative fuels is biodiesel. Over the years, a little attention was paid to the industrial use of palm oil. Laboratory tests such as viscosity, fire point, flash point, pour point and densities were conducted on raw palm oil and bleached palm oil using standard procedures. The flash points of palm oil and the bleached sample are 25...

Musa, John Jiya

2010-01-01

137

Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript ...

Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-ebongue, Georges-frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent

2011-01-01

138

UV curable palm oil based inks  

International Nuclear Information System (INIS)

UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

139

Ethyl ester production from (RBD) palm oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised) palm oil by evaluating the oil’s transesterification and separation. Two catalysts were first tested (KOH and NaOH) by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering the best results and carrying out the purification stage. Raw materials and products wer...

Oscar Mauricio Martínez Ávila; Francisco José Sánchez Castellanos; Oscar Yesid Suárez Palacios

2010-01-01

140

Performance Evaluation of Palm Oil as Biodiesel  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This work involved the production of diesel from most commonly available palm fruits oil Pisifera elaeis guineensis and testing for the brake power, torque of an engine and specific fuel consumption of a conventional diesel engine utilizing the produced diesel from palm oil. The obtained results were compared with those for fossil diesel fuel. The results show that the value of brake power was 6927.21W for fossil diesel while that of biodiesel was 7135.02W. Similarly the value for brake torqu...

Lawal, Sunday A.; Babakano, Ahmed

2011-01-01

 
 
 
 
141

Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete  

Directory of Open Access Journals (Sweden)

Full Text Available Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (COPS as partial sand replacement material in concrete mix towards density and compressive strength was investigated in this study. Total of five mixes consisting various content of crushed oil palm shell as partial sand replacement ranging from 0, 25, 50, 75 and 100% were prepared in form of cubes. All the specimens were water cured before tested at 7, 14 and 28 days. Compressive strength was conducted in accordance to BSEN 12390. Generally, the compressive strength and density decrease with the increase in the crushed oil palm shell replacement level. Between 50 to 75% replacement, the mix produced possess lower density enabling it to be categorized as lightweight concrete and has the potential to be used as non-load bearing structure. The application in structural concrete material is suited for mix consisting around 25% of crushed oil palm shell.

K. Muthusamy

2013-03-01

142

Oil Palm Fruit Bunch Grading System Using Red, Green and Blue Digital Number  

Directory of Open Access Journals (Sweden)

Full Text Available This research deals with the ripeness grading of oil palm fruit bunches. The current practice in the oil palm mills is to grade the oil palm bunches manually using human graders. This method is subjective and subject to disputes. In this research, we developed an automated grading system for oil palm bunches using the RGB color model. This grading system was developed to distinguish between the three different categories of oil palm fruit bunches. The maturity or color ripening index was based on different color intensity. Our grading system employs a computer and camera to analyze and interpret images equivalent to the human eye and brain. The colors namely Red, Green and Blue (RGB of the palm oil fruit bunch were investigated using this grading system. The computer program developed and used the mean color intensity to differentiate between the different color and ripeness of the fruits such as oil palm FFB. The program results showed that the ripeness of fruit bunch could be differentiated between different categories of fruit bunches based on RGB intensity.

Meftah Salem M. Alfatni

2008-01-01

143

Analysis on Indonesian Sustainable Palm Oil (ISPO:A Qualitative Assessment the Success Factors for ISPO  

Directory of Open Access Journals (Sweden)

Full Text Available ISPO (Indonesian Sustainable Palm Oil serves as the baseline of sustainability standards for palm oil industry and is expected to improve the competitive advantage of Indonesian palm oil industry. ISPO was introduced by the government in March 2011 and currently most of plantations are in process of applying ISPO. The objective of this research is to analyze success factors affecting implementation of ISPO. Using qualitative method of in-depth interview on 20 selected experts representing actors mapped in the value chain of palm oil industry. The results depicted that; very little companies apply sustainable principles hence ISPO is needed for industrial standards, success factors affecting ISPO implementation, and necessary conditions for ISPO implementation. SWOT technique resulting 8 recommended strategies to be applied for ISPO implementation. Acknowledging ISPO applies to upstream industry (plantations and mills only, managerial implication for this research is the need to develop of a grand master plan for Indonesian palm oil Industry by developing integrated policies complementing ISPO aiming for sustainability, growing and developing downstream industry to add value to CPO product, and for upstream industry to be developed by farmers and cooperatives while big investors to develop mills and downstream industry.Keywords: Palm Oil, ISPO, Sustainable Certification, Success Factors, Qualitative

Dina Harsono

2012-09-01

144

Microwave induced pyrolysis of oil palm biomass.  

Science.gov (United States)

The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass. PMID:20970995

Salema, Arshad Adam; Ani, Farid Nasir

2011-02-01

145

Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios  

International Nuclear Information System (INIS)

Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N2O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (?3.0 to 5.3 kg CO2eq kg?1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

146

Influence of Fuel Moisture Content and Reactor Temperature on the Calorific Value of Syngas Resulted from Gasification of Oil Palm Fronds  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on dow...

Samson Mekbib Atnaw; Shaharin Anwar Sulaiman; Suzana Yusup

2014-01-01

147

Will oil palm's homecoming spell doom for Africa's great apes?  

Science.gov (United States)

Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. PMID:25017207

Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin

2014-07-21

148

Material-mass Balance of Smallholder Oil Palm Processing in the Niger Delta, Nigeria  

Directory of Open Access Journals (Sweden)

Full Text Available This study evaluates the material-mass balance of smallholder oil palm processing in Niger Delta Nigeria. Ten smallholder oil palm processing mills were randomly sampled. Measuring scale was used to measure the weight of the Fresh Fruit Bunch (FFB and all the processing intermediates/products including Threshed Fresh Fruit (TFF, Palm Pressed Fibre (PPF, Palm Kernel Shell (PKS, Empty Fruit Bunch (EFB, Crude Palm Oil (CPO, chaff and nut. During the study period (13-22 April 2012, 8 of the mills processed 90-400 bunches of Dura variety, while the remaining 2 mills processed 65-200 bunches of Tenera variety. During the batch processing of Dura variety, the proportion of the intermediate products computed in relation to the weight of the FFB (100% are as follows; TFF (66.0-75.0%, mesocarp (44.8-51.1%, nuts (19.0-27.5%, kernel (5.7-7.2%, water in mesocarp (9.0-12.1% and water in nut (2.4-3.4%, EFB (23.7-32.4%, chaff (0.8-2.4%, Palm Kernel Shell (PKS (10.0-18.8%, Palm Press Fibre (PPF (23.2-28.1% and Crude Palm Oil (CPO (9.4-12.8%. For the Tenera varieties, the compositions are as follows; TFF (70.9-72.9%, mesocarp (56.4-58.0%, nuts (14.5-14.9%, kernel (5.5-5.6%, water in mesocarp (10.1-10.4% and water in the nut (1.9-2.1%, EFB (25.7-28.2%, chaff (0.9-1.4%, PKS (6.8-7.5%, (19.1-20.3% and CPO (26.0-28.2%. This result shows that Tenera produces more oil and less wastes compared to the Dura variety. The solid wastes fractions are used as energy sources during the processing of oil palm and as filling materials for upgrading access roads to palm plantations. Except the huge volume of wastes (71.8-90.6% generated by smallholder oil palm processors is effectively utilized, the process will be unsustainable.

Elijah I. Ohimain

2013-03-01

149

Storage Stability and Sensory Evaluation of Taro Chips Fried in Palm Oil, Palm Olein Oil, Groundnut Oil, Soybean Oil and Their Blends  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Taro (Colocasia esculenta) chips fried in Palm Oil (PO), Soybean Oil (SBO), Palm Olein Oil (POO), Groundnut Oil (GO) and in 40:60 w/w blend ratio of palm oil: POO; SBO; GO were stored for 0-5 weeks in dark and in fluorescent light. Chips were subjected to weekly chemical and sensory analysis. Results showed that significant (p<0.05) differences occurred in the organoleptic properties of taro chips fried in the different oil types during storage. Chips fried in palm oil and gr...

Emmanuel-ikpeme, C. A.; Eneji, C. A.; Essiet, U.

2007-01-01

150

An experimental investigation to evaluate the heating value of palm oil waste by calorimetry  

Energy Technology Data Exchange (ETDEWEB)

Malaysia is one of the world's largest palm oil producing countries, accounting for nearly 50 per cent of the total world production. Palm oil mills produce palm oil and kernel palm oil as the main products. Excess biomass residue in the form of fiber and shell is also produced, which can be used as fuel in boilers to meet energy and process heat demand in the industries. The total biomass energy potential is estimated to be equivalent to 2 to 3 per cent of the total power produced in the country. In order to evaluate the potential of biomass solid as a fuel in the combustion system, it is necessary to know the heating value of the biomass solid. This parameter is typically a function of the fuel composition. The key parameter that influences the thermal efficiency of palm oil waste (POW) is moisture content when it is burned. This paper described how the higher heating value (HHV) of POW is determined using a calorimeter. HHV was correlated as a function of moisture content (MC) for palm oil fibre and shells. In this study, the quality of the POW was characterized by low fixed carbon and relatively high moisture content that could influence the heating value. Experimental results indicate that HHV varies with MC. A linear correlation was made between HHV and MC. 8 refs., 4 tabs., 3 figs.

Suspeni, E.E.; Megat, M.M.H.; Sapuan, M.S.; Nor Maria, A. [Putra Malaysia Univ., Selangor (Malaysia). Dept. of Mechanical and Manufacturing Engineering; Chuah, T.G. [Putra Malaysia Univ., Selangor (Malaysia). Dept. of Chemical and Environmental Engineering

2005-07-01

151

Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.  

Science.gov (United States)

Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

2014-07-01

152

Determination of Antioxidants in Oil Palm Leaves (Elaeis guineensis  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Previous findings on the occurrence of water soluble antioxidants in palm oil has brought to the question on whether these compounds is also present in other parts of the oil palm; namely its leaves. Approach: It is now believed that the water soluble antioxidants are also present in other biomass of the oil palm, namely, the leaves. This study reported on the determination of the water soluble antioxidants in oil palm leaves. Results: The results showed the analyses of the antioxidants in oil palm leaves. Conclusion: This study is thus conducted to trace the availability of these antioxidants in the leaves of the oil palm of the Elaeis guineensis variety.

Ng M. Han

2010-01-01

153

Noise exposure in oil mills  

Directory of Open Access Journals (Sweden)

Full Text Available Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM (Model-824, Larson and Davis, USA, equivalent SPL was measured at operator?s ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m x 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis, USA, equivalent SPL and noise spectrum at each reading was obtained. Noise survey map of equivalent SPL was drawn for each oil mill by drawing contour lines on the sketch of the oil mill between the points of equal SPL. The floor area in the oil mill where SPL exceeded 85 dBA was identified from the noise survey map of each oil mill to determine the causes of high level of noise. Subjective assessment was done during the rest period of workers and it was assessed with personal interview with each worker separately. Demographic information, nature of work, working hours, rest period, experience of working in the mill, degree of noise annoyance, activity interference, and psychological and physiological effects of machine noise on the worker were asked during the interview. These details were noted in a structured form. Statistical Analysis Used: Nil. Results: The noise survey conducted in three renowned oil mills of north-eastern region of India revealed that about 26% of the total workers were exposed to noise level of more than 85 dBA. Further, 10% to 30% floor areas of workrooms, where oil expellers are provided have the SPL of more than 85 dBA. The noise in the oil mills was dominated by low frequency noise. The predominant noise sources in the oil mills were seed cleaner and power transmission system to oil expellers. Poor maintenance of machines and use of bamboo stick to prevent the fall of belt from misaligned pulleys were the main reason of high noise. Noise emitted by the electric motor, table ghani and oil expellers in all the oil mills was well within 85 dBA. Subjective response indicated that about 63% of the total workers felt that noise interfered with their conversation. About 16% each were of the opinion that noise interfered in their work and harmed their hearing. About 5% of workers stated that the workroom noise gave them headaches. Conclusions: The workers engaged in the workrooms of the oil mills are exposed to high noise, which will have detrimental effect on their health. Th

Prasanna Kumar G

2008-01-01

154

Simulation of oil palm growth and yield.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A dynamic model is presented to simulate growth and yield formation of oil palm (Elaeis quineensis Jacq.) in dependence of weather data and plant characteristics. From incoming amounts of light, light interception of the foliage and photosynthetic characteristics of individual leaflets, daily rates of crop photosynthesis are calculated. After subtraction of respiration requirements, remaining assimilates are allocated to the various plant tissues. The demand for vegetative growth is met first...

Kraalingen, D. W. G.; Breure, C. J.; Spitters, C. J. T.

1989-01-01

155

Oil palm production and cooperatives in the Philippines  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The promotion of oil palm production as an agribusiness development policy is a major issue in response to the increasing demand of palm oil in the Philippines. This paper focused on oil palm production cooperatives composed of agrarian reform beneficiaries (ARBs) as members who were granted the Certificate of Land Ownership Award (CLOA). The paper scrutinized the difference of farm incomes with the land titles between the Individual CLOA and the Collective CLOA under the Agribusiness Venture...

Nozawa, Katsumi

2011-01-01

156

Polygon Sawing: An Optimum Sawing Pattern for Oil Palm Stems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The shortage in wood supply makes the effort to find alternative for wood material become more and more important. It was reported that the outer parts of oil palm stems could be used as solid wood after being properly treated. Being a monocotyledon, oil palm stems have a contradictory characteristic to the conventional hardwoods and softwoods and thus the sawing patterns suitable for hardwoods and softwoods should not be suitable for the oil palm stems. Two modified sawing patterns (polygon ...

Edi Suhaimi Bakar; Fauzi Febrianto; Imam Wahyudi; Zaidon Ashaari,

2006-01-01

157

Clean technology for the crude palm oil industry in Thailand  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The aims of this study were to assess the potential contribution of clean(er) technology to improve the environmental performance of the crude palm oil industry inThailand, to analyse implementation barriers for cleaner production in crude palm oil industry, and to provide recommendations for overcoming these barriers. As such the overall aim was to generate ideas for moving the crude palm oil industry towards...

Chavalparit, O.

2006-01-01

158

Land-Use Implications to Energy Balances and Greenhouse Gas Emissions on Biodiesel from Palm Oil Production in Indonesia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The objectives of this study are to identify the energy balance of Indonesian palm oil biodiesel production, including the stages of land use change, transport and milling and biodiesel processing, and to estimate the amount of greenhouse gas emissions from different production systems, including large and small holder plantations either dependent or independent, located in Kalimantan and in Sumatra. Results show that the accompanied implications of palm oil biodiesel produced in Kalimantan a...

Harsono, Soni; Subronto, Bronto

2013-01-01

159

Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied....

Herawan, S. G.; Hadi, M. S.; Ayob, Md R.; Putra, A.

2013-01-01

160

IMPACT OF CPO EXPORT DUTIES ON MALAYSIAN PALM OIL INDUSTRY  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In January 2013, Malaysia reduced the export duty structure to be in line with the Indonesia?s duty structure. Both countries export crude and processed palm oil. Since Malaysia and Indonesia are close competitors and they compete in the same market, a change in export duty rate in one country will affect the other. Indonesia, as the world?s biggest palm oil producer, has drastically widened the values between the crude palm oil and refined palm oil export taxes since October 2011, to encou...

Ibragimov Abdulla; Fatimah Mohamed Arshad; Bala, B. K.; Kusairi Mohd Noh; Muhammad Tasrif

2014-01-01

 
 
 
 
161

21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.  

Science.gov (United States)

...2010-04-01 2009-04-01 true Cocoa butter substitute from coconut oil, palm... Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm...or both oils. The food additive, cocoa butter substitute from coconut...

2010-04-01

162

Exploring Opportunities for Sustainability in the Malaysian Palm Oil Industry  

DEFF Research Database (Denmark)

The global thirst for vegetable oil can be regarded as one of the greatest environmental challenges of the 21st Century and interest has intensified with the prospect of biofuels. Palm oil has risen to become the dominant player on the vegetable oil market – and the main recipient of environmental scrutiny. Focusing specifically on the Malaysian context, this paper analyses the major environmental, social and economic impacts associated with palm oil production. Drawing on recently published research, publicly available data and a comparison made with a recent sustainability initiative undertaken by the hydropower industry – an equally controversial and highly scrutinised sector – it is argued that the full extent of the impacts of palm oil should be acknowledged by those on both sides of the debate. Moreover, it is argued that by moving towards a less polarised version of the palm oil narrative and one based on scientific evidence is more likely to lead to greater opportunities for sustainable palm oil.

Padfield, Rory; Hansen, Sune Balle

2011-01-01

163

Transesterification of Palm Oil for the Production of Biodiesel  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Palm oil is known as an important source of edible oil with significant values of renewable energy. Depletion of petroleum had captured much attention on producing biodiesel from the palm oil. Approach: The most concerning methods for the production of biodiesel were discussed, namely transesterification (alkali and acid, enzymetic approach and supercritical alcohol. Results: The results showed the vis-a-vis of the methods for possible consideration of research. Conclusion: Concerning the importance of this vegetable oil, the contribution of palm oil towards diminution of fossil fuel, possible methods for the production of biodiesel and the opportunity for the futures is very much important.

Khalizani Khalid

2011-01-01

164

OIL PALM FIBERS AS PAPERMAKING MATERIAL: POTENTIALS AND CHALLENGES  

Directory of Open Access Journals (Sweden)

Full Text Available This paper reviews the physical and chemical characteristics of fibers from the stem, fronds, and empty fruit bunches of oil palm tree in relation to their papermaking properties. Challenges regarding the use of this nonwood material for papermaking are raised, and possible solutions to them are given. A vision for the complete utilization of oil palm biomass is also outlined.

Wan Rosli Wan Daud

2011-02-01

165

Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.  

Science.gov (United States)

This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill. PMID:22482288

Chuen, Onn Chiu; Yusoff, Sumiani

2012-03-01

166

Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses  

International Nuclear Information System (INIS)

Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

167

Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD) in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measu...

Abdul Rajab; Umar K.; Hamdani, D.; Aminuddin S.; Suwarno; Abe, Y.; Tsuchie, M.; Kozako, M.; Ohtsuka, S.; Hikita, M.

2011-01-01

168

Storage Stability and Sensory Evaluation of Taro Chips Fried in Palm Oil, Palm Olein Oil, Groundnut Oil, Soybean Oil and Their Blends  

Directory of Open Access Journals (Sweden)

Full Text Available Taro (Colocasia esculenta chips fried in Palm Oil (PO, Soybean Oil (SBO, Palm Olein Oil (POO, Groundnut Oil (GO and in 40:60 w/w blend ratio of palm oil: POO; SBO; GO were stored for 0-5 weeks in dark and in fluorescent light. Chips were subjected to weekly chemical and sensory analysis. Results showed that significant (p<0.05 differences occurred in the organoleptic properties of taro chips fried in the different oil types during storage. Chips fried in palm oil and groundnut oil blend had the most desired flavour, taste and stability. The highest off-flavour rating was for chips fried in soybean oil while chips fried in palm oil: groundnut oil blend had the least rating (p<0.05. The overall acceptability of chips was not significantly (p>0.05 affected by dark storage. Peroxide Value (PV was highest in soybean oil fried chips (p>0.05 during storage. Peroxide Value (PV increased at a slower rate in chips fried in palm oil, palm olein oil/blends.

C.A. Emmanuel-Ikpeme

2007-01-01

169

Gas Exchange Responses of Oil Palm to Ganoderma boninense Infection  

Directory of Open Access Journals (Sweden)

Full Text Available A comparison of physiological parameters was carried out between healthy and Ganoderma infected 17-year old oil palms grown under the same field conditions. Results from gas exchange measurements indicate that stomatal conductance was significantly reduced in infected palms. This led to significant reductions in transpiration rate and intercellular CO2 concentration in the infected palms. The relative leaf chlorophyll content and quantum efficiency of PS II were also significantly reduced in the infected palms. The results indicate that infected palms were under water stress that was induced by injury to their root and vascular transport system and not related to soil water deficits.

M.H. Haniff

2005-01-01

170

Re-esterified Palm Oils, Compared to Native Palm Oil, do not Alter Fat Absorption, Postprandial Lipemia or Growth Performance in Broiler Chicks  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Re-esterified palm oils are obtained from the chemical esterification of palm acid oils (rich in free fatty acids) with glycerol, both economically interesting by-products from oil refining and biodiesel industries, respectively. Thus, re-esterified palm oils could be an economically interesting alternative to native palm oil in broiler chick diets. However, because they may have different physicochemical properties than have their corresponding native oil, we assessed the effect of fatty aci...

Vilarrasa, E.; Tres, A.; Baye?s-garci?a, L.; Parella, T.; Esteve-garcia, E.; Barroeta, A. C.

2014-01-01

171

Effects of Chemical Inter esterification on the Physicochemical Properties of Palm Stearin, Palm Kernel Oil and Soybean Oil Blends  

International Nuclear Information System (INIS)

Palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) blends were formulated according to Design Expert 8.0.4 (2010). All the sixteen oil blends were subjected to chemical inter esterification (CIE) using sodium methoxide as the catalyst. The effects of chemical inter esterification on the slip melting point (SMP), solid fat content (SFC), triacylglycerol (TAG) composition and polymorphism were investigated. Palm based trans-free table margarine containing PS/PKO/SBO [49/20/31, (w/w)], was optimally formulated through analysis of multiple ternary phase diagrams and was found to have quite similar SMP and SFC profiles as compared with commercial table margarine. This study has shown that blending and chemical inter esterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their blends. (author)

172

Environmental impacts and improvement prospects for environmental hotspots in the production of palm oil derived biodiesel in Malaysia  

DEFF Research Database (Denmark)

Palm oil is the largest and fastest growing vegetable oil on the world market and the prospects of biodiesel production will further spur the expansion. In order to contribute to the knowledge base on current environmental impacts and potential improvements in the palm oil industry this study sets out to generate LCI data for central, yet underexplored elements in the production of biodiesel with a focus on greenhouse gasses (GHG). The research follows an attributional modelling framework, but does include system expansion to account for the use of residues from the palm oil production. The reference flow of the study is 1 MJ palm oil derived biodiesel, which has been chosen to facilitate comparisons of the results to fossil diesel and other biodiesels. The impact focus is on global warming potential with extensive quantification of GHG emissions and potential reduction. Other impact categories are included mainly with the purpose of documenting whether the proposed GHG reduction initiatives result in problem shifting. Land use changes (LUC) are the most controversial aspect of palm oil production with large potential GHG emissions and impacts on biodiversity. With global warming and extinction of animals and plants in tropical areas being easily communicated to the public, palm oil has been the target of numerous scare campaigns. Conversely, the palm oil industry is adamant that palm oil and oil palm plantations are sequestering carbon and supporting a wide range of flora and fauna. Through critical selection of literature data, field studies and application of state-of-the-art LCA methodology, this study is quantifying the GHG emissions from palm oil related LUC for the two most common previous land uses in Malaysia, namely logged-over forest and rubber plantations. In order to be able to assess the impacts from average palm oil production in Malaysia, a Malaysian average LUC scenario was set up and assessed. Solid residues from the production of palm oil constitute two tons dry weight organic matter per ton palm oil produced. Current use of this potential resource is limited to mulching of plantation residues and empty fruit bunches (EFB) from the mills and use of press fibre and kernel shells in the mill boilers. The mill wastewater called palm oil mill effluent (POME) is treated anaerobically in open lagoons emitting large amounts of methane. In recent years it is becoming more popular to sell kernel shells for use in industrial boilers, and biogas plants with methane capture for the POME treatment are slowly making their entry, but the potential uses and environmental benefits of such uses have only been sporadically explored. Residue energy recovery for substitution of fossil fuels is explored here through application of biomass power plants, pyrolysis and biogas production. Modelling the results of the LUC study and the residue use study into a GaBi model, various scenarios were set up to test the environmental potentials of management decisions in respect to LUC choices, yield optimization and residue use. The study also includes an assessment of the management practices of corporations and smallholders and an economic feasibility study to assess financial aspect of environmental improvements. The results show that biodiesel production from conventionally produced palm oil with national average LUC emissions emits only marginally less GHG than the life cycle emissions of fossil diesel. This study, however, shows that significant environmental improvements are available with currently available technologies to bring the impacts well below the fossil diesel emissions, and do so with economic profitability. Residue use shows a big potential for improvement. The conventional residue management causes net GHG emissions where the prospective fossil fuel substitutions through residue energy recovery alone is so significant that net GHG emissions from the PME production process can become close to CO2 neutral when not including LUC. An added bonus for the palm oil industry is that such improvements are likely to result

Hansen, Sune Balle

2012-01-01

173

Using of mucilage palm oil in the toilet soap production.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Mucilage palm oil (M.P.O.) was obtained from physical refining step for crude palm oil. The components of M.P.O. were high content of free fatty acids (82.2%) with simple amount of neutral oil (11.9%), while the residual content (unsaponifiable matter and impurities) was 2.1% and in addition to 3.8% water. The results indicated that the colours of M.P.O., tallow and palm kemel oil improved after bleaching. Eight soap samples (n.os 1-8) were prepared from bleached fatty ...

Girgis, Adel Y.

1999-01-01

174

Supercritical Fluid Extraction of Palm Kernel Oil from Palm Kernel Cake  

Directory of Open Access Journals (Sweden)

Full Text Available Supercritical fluid carbon dioxide (SC-CO2 at pressure 19.8 MPa and temperature 51C with different amount of ethanol (0-100 mL was studied the extraction of palm kernel oil from palm kernel cake. The amount of oil produced from SFE and Modified ethanol-CO2 are proportional to the amount of ethanol. It was found that a-tocopherol, a-tocotrienol, sterols and fatty acid such lauric acid, myristic acid and oleic acid were present in all of the palm kernel oil sample.

Rosalam Sarbatly

2012-01-01

175

Supercritical Fluid Extraction of Palm Kernel Oil from Palm Kernel Cake  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Supercritical fluid carbon dioxide (SC-CO2) at pressure 19.8 MPa and temperature 51C with different amount of ethanol (0-100 mL) was studied the extraction of palm kernel oil from palm kernel cake. The amount of oil produced from SFE and Modified ethanol-CO2 are proportional to the amount of ethanol. It was found that a-tocopherol, a-tocotrienol, sterols and fatty acid such lauric acid, myristic acid and oleic acid were present in all of the palm kernel oil sample.

Rosalam Sarbatly; Awang Bono; Duduku Krishnaiah; Siti Fadhilah

2012-01-01

176

Characteristic of oil palm residue for energy conversion system  

International Nuclear Information System (INIS)

Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 106 ty-1) of palm oil from 38.6 x 106 ty- 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 106 ty- 1), shell (2.3 x 106 ty- 1 ), and empty fruit bunches (8.8 x 106 ty- 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

177

Molecular defense response of oil palm to Ganoderma infection.  

Science.gov (United States)

Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganodermaboninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. PMID:25457484

Ho, C-L; Tan, Y-C

2014-11-12

178

Performance Evaluation of Palm Oil as Biodiesel  

Directory of Open Access Journals (Sweden)

Full Text Available This work involved the production of diesel from most commonly available palm fruits oil Pisifera elaeis guineensis and testing for the brake power, torque of an engine and specific fuel consumption of a conventional diesel engine utilizing the produced diesel from palm oil. The obtained results were compared with those for fossil diesel fuel. The results show that the value of brake power was 6927.21W for fossil diesel while that of biodiesel was 7135.02W. Similarly the value for brake torque for fossil diesel was 44.1Nm and that of biodiesel was 45.42Nm. The average value obtained for the specific fuel consumption in the three experiments conducted for fossil diesel and biodiesel were 69.09 and 129.21 l/kWh respectively. It was discovered that the values of brake power, torque power and specific fuel consumption for bio diesel fuel were higher than those of fossil diesel fuel.

Sunday A. LAWAL

2011-06-01

179

Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel  

DEFF Research Database (Denmark)

This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.

Hansen, Sune Balle; Olsen, Stig Irving

2012-01-01

180

Cellulase Production by Pycnoporus sanguineus on Oil Palm Residues through Pretreatment and Optimization Study  

Directory of Open Access Journals (Sweden)

Full Text Available The ever expanding trend of the palm oil industries in Malaysia brings about environmental concern with various parties calling for global practice of sustainable palm oil production. In as much as researches in processing technologies are ongoing, utilization of palm oil industries’ residues as a substrate for cellulases production has received little attention. This study addressed on the effect of pressed pericarp fibers sterilization on cellulase production by Pycnoporus sanguineus grown in shake flask culture using a statistical approach. Optimum condition was obtained in 70% (v/v palm oil mill effluent supplemented with 6 g L-1 sterilized palm pressed fibers at pH 6.77 and 350 rpm with CMCase, FPase and ?-glucosidase activities and net changes of biomass and suspended solid at 50.11, 29.01, 5.58 IU mL-1 and 2.49 g L-1, respectively. Under such conditions, the predicted maximum growth and cellulolytic enzyme production were in good agreement with the experimental data with 0.016-0.358% error.

M.D. Mashitah

2010-01-01

 
 
 
 
181

Transesterification of Palm Oil for the Production of Biodiesel  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Problem statement: Palm oil is known as an important source of edible oil with significant values of renewable energy. Depletion of petroleum had captured much attention on producing biodiesel from the palm oil. Approach: The most concerning methods for the production of biodiesel were discussed, namely transesterification (alkali and acid), enzymetic approach and supercritical alcohol. Results: The results showed the vis-a-vis of the methods...

Khalizani Khalid; Khalisanni Khalid

2011-01-01

182

Oil palm vegetation liquor: a new source of phenolic bioactives  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Waste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products annually. This aqueous stream is rich in phenolic antioxidants, which were investigated for their composition and potential in vitro biological activity. We have identified three isomers of caffeoylshikimic acid as major components of oil palm phenolics (OPP). The 2,2-diphenyl-...

Sambandan, T. G.; Rha, Chokyun; Sambanthamurthi, Ravigadevi; Tan, Yewai; Sundram, Kalyana; Abeywardena, Mahinda; Sinskey, Anthony J.; Subramaniam, Krishnan; Leow, Soon-sen; Hayes, Kenneth C.; Wahid, Mohd Basri

2011-01-01

183

The hidden carbon liability of Indonesian palm oil  

Energy Technology Data Exchange (ETDEWEB)

This report highlights the urgent need for global palm oil consumers and investors to support Unilever's call for an immediate moratorium on deforestation and peatland clearance in Indonesia. This report focuses on Unilever, which shares major institutional investors with other leading corporations including Nestle, Procter and Gamble and Kraft. Not only do these corporations share investors, they also share growing carbon liability within their raw material supply chains through the expansion in the palm oil sector in Indonesia. Unilever has recognised the global problems associated with palm oil expansion and the need for drastic reform to this sector. Unilever has taken a bold move in calling for an immediate moratorium on deforestation and peatland clearance. While Unilever's position is strengthened by its status as the largest palm oil consumer in the world, this report shows how, unless companies like Nestle, Procter and Gamble and Kraft support its call for a halt to deforestation, the palm oil industry will continue to present a massive carbon liability over the coming years. This report uses Unilever's palm oil supply chains as a case study to help quantify the carbon liability and collateral risks associated with the Indonesian palm oil sector. It shows how, by buying palm oil from suppliers who account for more than one-third of Indonesia's palm oil production, Unilever and its competitors are increasing their potential carbon liability and thus leaving investors exposed to potentially significant levels of hidden risk, compromising long-term financial and brand stability.

NONE

2008-05-15

184

An experimental investigation on feeding of oil palm shell (OPS) and oil palm fronds (OPF)  

Science.gov (United States)

Interest in producing energy to reduce green house gas emissions using biomass as a feedstock is increasing worldwide. In a fluidized bed reactor, the feeding of the feedstock plays an important role in the burning process. In this study, feeding tests were carried out using gravitational method for oil palm shell (OPS) and oil palm fronds (OPF). The design of the feeder of 150 g/h is also presented. The objective of this paper is to study the feed rate of the samples used and to find the relationship between the physical characteristic of the samples (the shape of the samples, particle size and moisture content) and the feed rate. The result shows that the feed rate of OPS and OPF was around 120 g/h and 90 g/h, respectively. After grinding and sieving, OPS appeared to be more granular compared to OPF making it easier to feed. Other characteristics and results are also discussed in this paper.

Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

2013-05-01

185

Ethyl ester production from (RBD palm oil  

Directory of Open Access Journals (Sweden)

Full Text Available This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised palm oil by evaluating the oil’s transesterification and separation. Two catalysts were first tested (KOH and NaOH by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering the best results and carrying out the purification stage. Raw materials and products were characterised for comparing the latter with those obtained by traditional means and verifying the quality of the esters so produced; minimum differences were found bet-ween both. The proposed methodology thus allows esters to be used as raw material in petrochemical industry applications. A more profitable process can be obtained compared to those used today, given the amounts of separation agent so established (1% H3PO4 solution, in water. The overall process achieved 74.4% yield, based on the oil being used.

Oscar Mauricio Martínez Ávila

2010-07-01

186

Cultivation of oyster mushroom (Pleurotus ostreatus) on oil palm residues  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study is aimed to use oil palm residues to cultivate the oyster mushroom, Pleurotus ostreatus, which is one of the most important mushrooms cultivated worldwide. Spawn was prepared on sorghum seeds and inoculated on substrate in plastic bags. Oil palm fronds were cut and used to grow Pleurotus ostreatus. The first fructification occurred 20 days after waterring. The biological efficiency reached at 28.6%. When sawdust of para rubber logs was added to the cut oil palm fronds at the rate o...

Tongwised, A.; Petcharat, V.

2001-01-01

187

Electron beam pasteurised oil palm waste: a potential feed resource  

International Nuclear Information System (INIS)

Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

188

Biodiesel fuels from palm oil, palm oil methylester and ester-diesel blends  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace metal composition in relation to corrosion. Also the bond structure/stability of the samples in relation to diesel were monitored with a Fourier transform infrared s...

Martins, C. M. A. O.; Ajibola, V. O.; Ajiwe, V. I. E.

2003-01-01

189

Effect of Palm Oil on Serum Lipid Profile in Rats  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil is considered as plant oil in which two types of cooking oil, palm seed oil and palm oil are derived. Palm oil has almost 50% saturated fatty acid and 50% poly unsaturated fatty acid. It is considered to be useful due to metabolites products such as prostacycline and antithrombois in cardiovascular disease (C.V.D and variation in lipoprotein. In the present study we examined the effect of 12% palm oil on 30 days old male rats (149.3±10.7 g for 60 days. The changes of weight and food intake were recorded. The result showed that the mean value of rats weight was increased with energy intake in diet (p< 0.05. The serum levels of cholesterol, and HDL-C were increased significantly (p< 0.05, while the levels of triglyceride and LDL-C were decreased but statistically not significant. In conclusion, using palm oil can be useful for prevent of cardiovascular disease.

Karaji-Bani, M.

2006-01-01

190

Bioactive Compounds of Palm Fatty Acid Distillate (PFAD) from Several Palm Oil Refineries  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This research studied the characteristics of Palm Fatty Acids Distillates (PFADs) from several palm oil refineries. It was aimed to know the potency of PFAD as bioactive compounds source, including vitamin E (mainly tocotrienols), phytosterols, squalene and possibly co-enzyme Q10 and polycosanol. Sampling was conducted at 6 palm oil refineries. The results showed that PFAD was dominated by free fatty acids of 85-95% with low oxidation level indicated by peroxide value of 1-10 meq/kg and anisi...

Teti Estiasih1); Kgs. Ahmadi2); Tri Dewanti Widyaningsih; Jaya Mahar Maligan; Ahmad Zaki Mubarok; Elok Zubaidah; Jhauharotul Mukhlisiyyah; Risma Puspitasari

2013-01-01

191

Optimum stearin adulteration in palm oil crystallization  

Directory of Open Access Journals (Sweden)

Full Text Available Stearin adulteration in refined palm oil crystallization was investigated for industrial separation of stearin and olein. The important standard properties of olein are the iodine value which must be higher than 55-57, and the cloud point which must be lower than 9ºC. The crystallization temperature is the most important parameter of the process to obtain the standard olein properties and should not exceed 20ºC. Longer crystallization time is possibly the cause of lower yields but higher quality. The stearin adulteration at the ratio of 1:9 leads to higher yields, but the quality of stearin adulteration shows unimportant effects. The uniformity of heat and mass transfer in the crystallization process are important factors in obtaining higher yields and quality of olein.

Inthamanee, C.

2001-11-01

192

Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre  

Directory of Open Access Journals (Sweden)

Full Text Available This study investigated and compared the acoustic characteristics of two natural organic fibres: date palm fibre and oil palm fibre, these materials eligible for acoustical absorption. During the processing stage, both fibre sheets are treated with latex. The two fibres are compressed after latex treatment Circular samples (100 mm in diameter and 28 mm, based on the measurement tube requirements are cut out of the sheets. The density of the date palm fibre sheet is 150 kg/m3 for a 50 mm thickness and 130 kg/m3 for a 30 mm thickness. In contrast, the density of oil palm fibre is 75 kg/m3 for a 50 mm thickness and 65 kg/m3 for a 30 mm thickness. An impedance tube was used to test the thicknesses of both samples based on international standards. The results show that the date palm fibre exhibits two Acoustic Absorption Coefficient (AAC peaks: 0.93 at 1356 Hz and 0.99 at 4200-4353 Hz for the 50-mm-thick sample. In contrast, the 30-mm-thick sample has a single AAC peak of 0.83 at 2381.38-2809.38 Hz. However, the 50-mm-thick oil palm fibre has an AAC peak of 0.75 at 1946.88-2178.13 Hz and the 30-mm-thick oil palm fibre has an acoustic absorption coefficient peak 0.59 at 3225-3712.5 Hz. Thus, the date palm fibre has a higher acoustic absorption coefficient for high and low frequencies than does oil palm fibre. Both fibres are promising for use as sound absorber materials to protect against environmental noise pollution.

Lamyaa Abd ALRahman

2014-02-01

193

The Kalimantan Border Oil Palm Mega-project  

International Nuclear Information System (INIS)

A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil pad doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil buyers, investors and government bodies outside Indonesia about the undiminished threats to the tropical rainforests and indigenous peoples related to Indonesia's oil palm expansion plans and the government's overall development agenda for Kalimantan

194

How Unilever palm oil suppliers are burning up Borneo  

Energy Technology Data Exchange (ETDEWEB)

New evidence shows expansion by Unilever palm oil suppliers is driving species extinction in Central Kalimantan, and fuelling climate change. In November 2007, Greenpeace released 'Cooking the Climate', an 82-page report summarizing the findings of a two-year investigation that revealed how the world's largest food, cosmetic and biofuel companies were driving the wholesale destruction of Indonesia's rainforests and peatlands through growing palm oil consumption. This follow-up report provides further evidence of the expansion of the palm oil sector in Indonesia into remaining rainforests, orang-utan habitat and peatlands in Kalimantan. It links the majority of the largest producers in Indonesia to Unilever, probably the largest palm oil corporate consumer in the world.

NONE

2008-04-15

195

Cultivation of oyster mushroom (Pleurotus ostreatus on oil palm residues  

Directory of Open Access Journals (Sweden)

Full Text Available This study is aimed to use oil palm residues to cultivate the oyster mushroom, Pleurotus ostreatus, which is one of the most important mushrooms cultivated worldwide. Spawn was prepared on sorghum seeds and inoculated on substrate in plastic bags. Oil palm fronds were cut and used to grow Pleurotus ostreatus. The first fructification occurred 20 days after waterring. The biological efficiency reached at 28.6%. When sawdust of para rubber logs was added to the cut oil palm fronds at the rate of 1:1 (vol : vol., the biological efficiency reached at 39.3%.Supplementary material at the rate of 5% was also added into the combination of cut oil palm frond and sawdust. The result showed that rice bran, corn meal or oil palm-kernel meal give yields between 142.2-165.0 g/bag (B.E. = 42.8-49.6, which were not statistically different. Oil palm pericarp waste was also used as main substrate for P. ostreatus cultivation. The average yield obtained during 40 days havesting period was 112.6 g/bag (B.E. = 64.3%. Addition of sawdust or rice bran into pericarp waste decreased the yield of the basidiocarps. Palm-kernel meal at the rate of 5-20% was used as a supplement material. Addition of 20% palmkernel meal into sawdust supported higher yield. The biological efficiency reached 55.8%. From the above results, four formulae of the substrate were prepared. Treatment of oil palm pericarp waste + 3% rice bran + 3% corn meal + 0.75% Ca(OH2 supported higher yield of the basidiocarps. The average yield obtained from 950 g of substrate was 190.2 g during 60 days havesting (B.E. = 57.2%. Using 6% palm-kernel substitute 3% rice bran + 3% corn meal supported the same yield (B.E. = 56.2% Using sawdust as the main substrate, the yield achieved was less than that obtained with oil palm pericarp waste. The average yield from treatment of sawdust + 3% rice bran + 3% corn meal + 0.75% Ca (OH2 was 154.0 g/bag (B.E. = 46.3% while treatment of sawdust + 6% palm-kernel meal + 0.75% Ca (OH2 was 153.2 g/bag. (B.E. = 46.1% From the above results it is suggested that oil palm residues can be used as an alternative substrate for P. ostreatus production.

Tongwised, A.

2001-11-01

196

The Kalimantan Border Oil Palm Mega-project  

Energy Technology Data Exchange (ETDEWEB)

A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil buyers, investors and government bodies outside Indonesia about the undiminished threats to the tropical rainforests and indigenous peoples related to Indonesia's oil palm expansion plans and the government's overall development agenda for Kalimantan.

Wakker, E. [AIDEnvironment, Amsterdam (Netherlands)

2006-04-15

197

How will climate change affect oil palm fungal diseases?  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Palm oil is a very important commodity. It is added to numerous products and is a biofuel. However, oil palms (OP) are subjected to fungal diseases of which Fusarium wilt and Ganoderma rots are the most important. Considerations of how climate change (CC) affects tropical economic plants are limited and for OP are even fewer. The margin for adapting to higher temperatures and changing humidity is reduced in tropical OP. Land will become increasingly unsuitable for growing OP and t...

Paterson, R. R. M.; Sariah, M.; Lima, Nelson

2013-01-01

198

CELLULOSE PHOSPHATE FROM OIL PALM BIOMASS AS POTENTIAL BIOMATERIALS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The present study investigates cellulose phosphate from oil palm biomass (OPEFB-CP) as a potential biomaterial. To this effect, oil palm biomass microcrystalline cellulose (OPEFB-MCC) was phosphorylated using the H3PO4/ P2O5/ Et3PO4/ hexanol method. Characterization of OPEFB-CP was performed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetry (TG), and X-ray diffraction (XRD). The cytotoxicity evaluation of ...

Wan Rosli Wan Daud; Mohamad Haafiz Mohamah Kassim; Md. Azman Seeni Mohamded

2011-01-01

199

Nonlinear Growth Models for Modeling Oil Palm Yield Growth  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study provided the basic needs of parameters estimation for nonlinear growth model such as partial derivatives of each model, determination of initial values for each parameter and statistical tests of industrial usage. Twelve nonlinear growth models and its partial derivatives for oil palm yield growth are presented in this study. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating oil palm yield growth data. The best model was selected bas...

Azme Khamiz; Zuhaimy Ismail; khalid Haron; Ahmed Termizi Muhammad

2005-01-01

200

Enzymatic Destruction Kinetics of Oil Palm Fruits by Microwave Sterilization  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Microwave sterilization of oil palm fruit is carried out to deactivate lipase and soften the fruits. This study is aims to determine enzymatic destruction kinetics from microwave sterilization of oil palm fruits such as decimal reduction time (D-value), temperature sensitivity (z-value), kinetic constant (k) and activation energy (Ea). Three power levels (medium, medium high and high) of the microwave oven were used and lipase assayed was conducted to determine the lipase activity. Microwave ...

Maya Sarah; Mohd. Rozainee Taib

2013-01-01

 
 
 
 
201

Oxygen enriched air using membrane for palm oil wastewater treatment  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A research aimed to explore new method of aeration using oxygen enriched air performance on BOD reduction of palm oil wastewater was conducted. The oxygen enriched air was obtained from an Oxygen Enriched System (OES) developed using asymmetric polysulfone hollow fiber membrane with composition consisting of PSF: 22%, DMAc: 31.8%, THF: 31.8%, EtOH: 14.4%. Palm oil wastewater samples were taken from facultative pond effluent. These samples were tested for its initial biochemical oxygen demand ...

Ramlah Mohd Tajuddin; Ahmad Fauzi Ismail; Mohd Razman Salim

2002-01-01

202

Polygon Sawing: An Optimum Sawing Pattern for Oil Palm Stems  

Directory of Open Access Journals (Sweden)

Full Text Available The shortage in wood supply makes the effort to find alternative for wood material become more and more important. It was reported that the outer parts of oil palm stems could be used as solid wood after being properly treated. Being a monocotyledon, oil palm stems have a contradictory characteristic to the conventional hardwoods and softwoods and thus the sawing patterns suitable for hardwoods and softwoods should not be suitable for the oil palm stems. Two modified sawing patterns (polygon sawing and cobweb sawing plus one ordinary sawing pattern (life sawing were compared in the sawing of oil palm stems. The purpose of this study was to find the most suitable sawing pattern for oil palm stems. The cobweb sawing provided the highest outer lumber recovery (35% followed by polygon sawing (27% and life sawing (23%. The polygon sawing provided the highest occurrence of wide lumbers, followed by the cobweb sawing and life sawing. The cobweb sawing need more than twice effective sawing time (15.4 min than the life sawing and polygon sawing. In overall, the polygon sawing was the most suitable pattern for the sawing of oil palm stem.

Edi Suhaimi Bakar

2006-01-01

203

Shear strength of palm oil clinker concrete beams  

International Nuclear Information System (INIS)

Highlights: ? Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ? The palm oil clinker concrete can be classified as lightweight concrete. ? Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ? The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (?). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ? ? 1. However, a 0.5 safety factor should be included in the formula for ? < 1

204

Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.  

Science.gov (United States)

In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

Chew, Thiam Leng; Bhatia, Subhash

2008-11-01

205

Chicken meat nutritional value when feeding red palm oil, palm oil or rendered animal fat in combinations with linseed oil, rapeseed oil and two levels of selenium  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Chicken meat nutritional value with regard to fatty acid composition and selenium content depends on the choice of dietary oil and selenium level used in the chickens’ feed. The objective of this study was to investigate the effect of replacing commonly used rendered animal fat as a dietary source of saturated fatty acids and soybean oil as a source of unsaturated fatty acids, with palm oil and red palm oil in combinations with rapeseed oil, linseed oil and two levels of selenium enriched y...

Nyquist, Nicole F.; Rødbotten, Rune; Thomassen, Magny; Haug, Anna

2013-01-01

206

Use of calcium oxide in palm oil methyl ester production  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Introducing an untreated calcium oxide (CaO) as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ra...

Kulchanat Prasertsit; Patthanun Phoosakul; Sutham Sukmanee

2014-01-01

207

Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil  

Energy Technology Data Exchange (ETDEWEB)

In this study, potassium hydroxide catalyst supported on palm shell activated carbon was developed for transesterification of palm oil. The Central Composite Design (CCD) of the Response Surface Methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst loading and methanol to oil molar ratio on the production of biodiesel using activated carbon supported catalyst. The highest yield was obtained at 64.1 C reaction temperature, 30.3 wt.% catalyst loading and 24:1 methanol to oil molar ratio. The physical and chemical properties of the produced biodiesel met the standard specifications. This study proves that activated carbon supported potassium hydroxide is an effective catalyst for transesterification of palm oil. (author)

Baroutian, Saeid; Aroua, Mohamed Kheireddine; Raman, Abdul Aziz Abdul; Sulaiman, Nik Meriam Nik [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2010-11-15

208

Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study investigated and compared the acoustic characteristics of two natural organic fibres: date palm fibre and oil palm fibre, these materials eligible for acoustical absorption. During the processing stage, both fibre sheets are treated with latex. The two fibres are compressed after latex treatment Circular samples (100 mm in diameter and 28 mm, based on the measurement tube requirements) are cut out of the sheets. The density of the date palm fibre sheet is 150 kg/m3 for a 50 mm thic...

Lamyaa Abd ALRahman; Raja Ishak Raja; Roslan Abdul Rahman; Zawawi Ibrahim

2014-01-01

209

Thermal stability evaluation of palm oil as energy transport media  

International Nuclear Information System (INIS)

The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

210

Palm oil boom in Indonesia: from plantation to downstream products and biodiesel  

Energy Technology Data Exchange (ETDEWEB)

Indonesia has been the biggest producer of palm oil (PO) in the world since 2005. The total production in 2007 was 17.0 and 1.9 million tons of crude palm oil (CPO) and crude palm kernel oil (CPKO), respectively. More than 70% of the CPO was exported and 87% of the domestic consumption was used for food. The production and subsequent refining and fractionation of CPO and CPKO generated biomass by-products that consists of trunk, frond, empty fruit bunch (EFB), fiber, shell, and palm kernel meal (PKM), and discharged wastes of palm oil mill effluent (POME) as well as palm fatty acid distillate (PFAD). The amount of by-products and wastes produced has been growing very rapidly and efforts to diversify and improve their utilization are a great challenge. As claimed in many research reports, the by-products and wastes could be potentially utilized as sources of energy, animal feed, chemicals, paper pulp, advanced materials, medicines and food ingredients. A more important role may be played by PO as the Indonesian Government took further steps in 2006 to become the world's largest producer of biodiesel. As a starting point, Presidential Instruction No. 1/2006 for the Production and Use of Biofuel as Alternative Fuel was issued in January 2006. Responding to this Presidential Instruction, at least 15 companies are planning to establish new larger biodiesel refineries to enhance the currently produced 82.5 million L of biodiesel. It is planned to start production in 2008/2009 with two new refineries that have a total capacity of ca. 1,600 million L/year. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

Santosa, Sri J. [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta (Indonesia)

2008-06-15

211

Analysis of total hydrogen content in palm oil and palm kernel oil using thermal neutron moderation method  

International Nuclear Information System (INIS)

A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditional methods in Ghana. An equipment consisting of an 241Am-Be neutron source and 3He neutron detector was used in the investigation. The equipment was originally designed for detection of liquid levels in petrochemical and other process industries. Standards in the form of liquid hydrocarbons were used to obtain calibration lines for thermal neutron reflection parameter as a function of hydrogen content. Measured reflection parameters with respective hydrogen content with or without heat treatment of the three edible palm oils available on the market were compared with a brand cooking oil (frytol). The average total hydrogen content in the local oil samples prior to heating was measured to be 11.62 w% which compared well with acceptable value of 12 w% for palm oils in the sub-region. After heat treatment, the frytol oil (produced through bleaching process) had the least loss of hydrogen content of 0.26% in comparison with palm kernel oil of 0.44% followed by dzomi of 1.96% and by amidze of 3.22%. (author)

212

Effects of Fires in Juvenile Oil Palm Fields on Yield and Oil Palm Breeding  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Fires in juvenile oil palm (Elaeis guinenesis Jacq.) fields cause the death and/or reduce the yield. The magnitude of the loss of yield in subsequent years has been assessed for the first time on four of the 25 progenies that composed the 20th genetic trial laid out at La Dibamba (Cameroon) in 1993 which was accidentally victim of fires in 1996. Records of bunch production during the first five years of harvesting (1996-2000) showed that in the first two years after fir...

Claude Bakoumé; Madi Galdima; Sylvain Rafflegeau; Albert Flori

2011-01-01

213

Avian species diversity in oil palm plantations of Agusan Del Sur and Compostela Valley, Philippines  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm trees have become the most expanding equatorial crops in the world and theirproduct, palm oil, is produced, traded and used more than any other vegetable oil worldwide. Theexpansion of oil palm cultivation, however, is frequently cited as a major factor causing deforestationthat may result in biodiversity losses in tropical countries. In this study, an assessment of the avifaunain oil palm plantations in Agusan del Sur and Compostela Valley, Mindanao, Philippines was done fromApril 2...

Cagod, Beverly M.; Nun?eza, Olga M.

2012-01-01

214

Linking Agricultural Trade, Land Demand and Environmental Externalities: Case of Oil Palm in South East Asia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Reduction of support measures affecting soybean oil in the major soybean producing countries, as a consequence of WTO rules, coupled with rising demand for palm oil in non-traditional palm oil importing countries may lead to pronounced increases in agricultural land demand for oil palm expansion in Malaysia and Indonesia – two main palm oil producing and exporting countries. However, it is expected that the effects on agricultural land demand and consequently impact upon the environment wil...

Othman, Jamal

2003-01-01

215

Biodiesel’s characteristics preparation from palm oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester) by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH) as cataly...

Rachman Yusuf; Tilani Hamid S.

2002-01-01

216

Effect of Red Palm Oil and Refined Palm Olein on Nutrient Digestion in the Rat  

Directory of Open Access Journals (Sweden)

Full Text Available A nutritional evaluation was carried out to determine the effects of red palm oil and refined palm olein on digestion of nutrients in animals. Four-week-old Wistar albino rats (n = 8 per group were maintained for 28 days on standard dry rat food supplemented (10, 20 and 30% by weight with red palm oil (RPO and refined palm olein (REFPO. The digestion of nutrients (measured from the differences between nutrient intake and fecal nutrient by rats fed 10% oil-supplemented diets was comparable to that of the control (p>0.01. There were inverse dose-effect relationships between the level of dietary fat and digestion of protein, fat, carbohydrate, calcium, potassium, sodium, magnesium, manganese and copper. In comparison with other experimental groups, animals fed 30% oil diets exhibited the lowest digestion of proximate nutrients (p<0.01 and minerals (p<0.001 in addition to exhibiting the poorest feed utilization (p<0.01. In general, no significant variations were observed (among the parameters measured between RPO-fed and REFPO-fed rats, for each level of test dietary fat (p>0.01. The above findings suggest that consumption of palm in moderate amounts may impact growth and development through effects on nutrient retention.

D.O. Edem

2003-01-01

217

Sustainability of smallholder palm oil production in Indonesia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Palm oil is a widely used commodity and is part of a number of daily products. It is the most used vegetable oil, not just for food consumption, but also for soap and cosmetics. Recently the search for co2 neutral fuels have spurred demand for palm oil to be used in diesel cars. The large demand have led to a dramatic increase in production in Malaysia and Indonesia, and those two producers make up over total production. This dramatic increase in plantations have led to severe environmental p...

Bertule, Maija; Degn, Lasse Twiggs

2009-01-01

218

Comparison Study On Oil Palm Trunk And Oil Palm Fruit Bunch Fibre Reinforced Laterite Bricks  

Directory of Open Access Journals (Sweden)

Full Text Available The main aim of this study was to compare the physical properties and mechanical properties of Oil Palm Trunk (OPT fibre and Oil Palm Fruit Bunches (OPFB fibre reinforced laterite bricks. For comparison purposes, the properties such as dimension, density, water absorption and the compressive strength of both types of bricks were determined. The effects of the incorporation of various amounts of fibres on the above properties were analysed. The tests were carried out according to BS 3821: 1985 for clay bricks.The samples were pressed at the factory Majpadu Bricks Sdn. Bhd., Malaysia and tested at the Material Testing Laboratory, Universiti Teknologi MARA, Shah Alam, Malaysia.The findings of this research were, firstly, the dimension of bricks content with OPFB fibres were less accurate than bricks with OPT fibres. Secondly, the density of bricks with OPFB fibres was higher than the density of bricks with OPT fibres. Thirdly, in compressive strength of the bricks with OPFB fibres was higher than bricks with OPT fibres, with the maximum fibre content identified as 3 percent fibres. Finally, the water absorption of bricks with OPFB fibres was lower than the water absorption of bricks with OPT fibres. It can be concluded that the bricks with OPFB fibres had better physical and mechanical properties than bricks with OPT fibres.

Noorsaidi Mahat

2010-06-01

219

Following basal stem rot in young oil palm plantings  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base materia...

Panchal, G.; Bridge, P. D.

2005-01-01

220

Neutron Backscattered Technique for Quantification of Oil Palm Fruit Oil Content  

International Nuclear Information System (INIS)

Non-destructive and real time method becomes a well-liked method to researchers in the oil palm industry since 2000. This method has the ability to detect oil content in order to increase the production of oil palm for better profit. Hence, this research investigates the potential of neutron source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical formula C55H96O6. For this paper, oil palm loose fruit was being used and divided into three groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each group were collected from a private plantation in Malaysia. Each sample was scanned using neutron backscattered technique. The higher neutron count, the more hydrogen content, and the more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r2=0.98. This research proves that neutron backscattered technique can be used as a non-destructive and real time grading system for palm oil. (author)

 
 
 
 
221

Sustainable Management of a Matured Oil Palm Plantation in UPM Campus, Malaysia Using Airborne Remote Sensing  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Accurate and reliable near-real time information is needed for a sustainable oil palm plantation management, especially on plant quality and health. Airborne remote sensing provides the effective recent agricultural crop information for the oil palm plantat...

Kamaruzaman Jusoff

2009-01-01

222

SOIL FERTILITY AND NUTRIENT MANAGEMENT ON SPODOSOL FOR OIL PALM  

Directory of Open Access Journals (Sweden)

Full Text Available The research was carried out in Oil Palm Plantation in Ngabang, Landak Distric, West Kalimantan in May 2008. Composite soil samples were taken from the soils, in which the oil palms indicated the nutrient disorders. The aims of the research were to study the soil fertility and nutrient management of Spodosols for oil palm crops. The results indicated that spodic horizons in the oil palm plantation varied between 30 and 70 cm. Besides spodic horizons, the albic horizon, the horizon that can’t be penetrated by the crops root, was also found. The texture is sandy with the sand content about 69-98 %. The soil has acidic properties, C organic varied from low to high, low phosphate, potassium, magnesium and Cation Exchange Capacity. In contrast, in the spodic horizon, the content of organic carbon, total nitrogen and CEC were higher, as well exchangeable Aluminum. There was close relationship between soil organic carbon and nitrogen and CEC in the soil. It is advice not to use spodosols for food crop and estate crops. The application of slow release fertilizers combined with organic fertilizers is highly input when oil palm planted on the Spodosol.

Djadja Subardja

2010-10-01

223

Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enfor...

Dileep Kumar. M; Noor Azizi Ismail; Govindarajo, Normala S.

2014-01-01

224

Collection of Oil Palm (Elaeis guineensis Jacq.) Germplasm in the Northern Regions of Ghana  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm germplasm collection was carried out in the Northern Regions of Ghana for evaluation, screening for drought tolerance and further incorporation into breeding programmes of Ghana’s Council for Scientific and Industrial Research (C.S.I.R)-Oil Palm Research Institute (O.P.R.I). The study highlights the collection of 22 oil palm (Elaeis guineensis) accessions from 5 locations in the Northern Regions of Ghana. The Northern Regions are not suitable for oil palm cultivation due to unfavou...

Sapey, E.; Adusei-fosu, K.; Agyei-dwarko, D.; Okyere-boateng, G.

2012-01-01

225

Palm oil - towards a sustainable future? : Challanges and opportunites for the Swedish food industry  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and health issues. The food industry also competes with increasing palm oil demands from the energy sector. This case study identifies and analyzes different perspectives regarding sustainable palm oil as a food commodity in Sweden through interviews with palm oil experts in different businesses and organizations. This study focuses on ho...

Nilsson, Sara

2013-01-01

226

The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters  

Directory of Open Access Journals (Sweden)

Full Text Available Waste-to-energy represents a challenge for the oil palm industry worldwide. Bio-pellet production is an alternative way of adding value to oil palm biomass. This would mean that a product having major energy density becomes more mechanically stable and achieves better performance during combustion. This paper deals with oil palm shell pelleting; using binding agents having up to 25% mass keeping average particle size less than 1mm and moisture content up to 18.7% (d.b. were evaluated. An experimental factorial design used binding agent mass percentage, milled shell particle size and moisture content as factors. Pellet density response surfaces and durability index were obtained. Pellet performance during thermal-chemical transformation was also evaluated by using thermogravimetry equipment. The results led to technical evaluation of scale-up at industrial production level.

Nelson Arzola

2012-04-01

227

Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.  

Science.gov (United States)

The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives. PMID:18605208

Awang, Mariyamni; Seng, Goh Meng

2008-01-01

228

BVOC fluxes from oil palm canopies in South East Asia  

Science.gov (United States)

Fluxes by virtual disjunct eddy covariance were measured for the first time in South-East Asia in 2008 from an oil palm plantation. Malaysia and Indonesia account for more than 80% of world oil palm production. Our in situ findings suggest much higher isoprene emissions from oil palms than from rainforest, which is consistent with earlier lab-based predictions of emissions from oil palms (Wilkinson et al., 2006). 50% of global biogenic VOC emissions are estimated to derive from tropical rainforests (Guenther et al., 1995) although in fact a large portion of the emission may derive from oil palms in the tropics. Isoprene and monoterpenes are regarded as the most important biogenic VOCs for the atmospheric chemistry. Overall, maximum isoprene emissions from oil palms were recorded at 11:00 local time, with a mean value of 13 mg m-2 h-1. At the rainforest, the maximum fluxes of isoprene were observed later in the day, at about 13:00 with an average of 2.5 mg m-2 h-1. Initial flux results for total monoterpenes indicate that their mass emission ratio with respect to isoprene was about 1:9 at the rainforest and 1:18 at the oil palm plantation. The results are presented with reference to temperature, photosynthetic radiation and meteorological drivers as well as in comparison with CO2 and H2O fluxes. Empirical parameters in the Guenther algorithm for MEGAN (Guenther et al, 2006), which was originally designed for the Amazon region, have been optimised for this oil palm study. The emission factor obtained from eddy covariance measurements was 18.8 mg m-2 h-1, while the one obtained from leaf level studies at the site was 19.5 mg m-2 h-1. Isoprene fluxes from both Amazonia (Karl et al., 2007) and from rainforest in Borneo 2008 seem to be much lower than from oil palms. This can have consequences for atmospheric chemistry of land use change from rainforest to oil palm plantation, including formation of ozone, SOA and particles and indirect effects on the removal rate of greenhouse gases and pollutants by decreasing OH budgets. Global models predicting atmospheric changes and bottom-up estimates from the tropics must be constrained by direct measurements such as presented here, taking separate account of these major contributions from oil palm plantations and tropical rainforests. References: Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T.E. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, 1995: A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. Discuss., 6, 107-173. Karl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo, 2007: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research 112, D18302. Wilkinson, M. J., S. M. Owen, M. Possell, J. Hartwell, P. Gould, A. Hall, C. Vickers, and C. N. Hewitt, 2006: Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant Journal 47, 960-968.

Misztal, P. K.; Cape, J. N.; Langford, B.; Nemitz, E.; Helfter, C.; Owen, S.; Heal, M. R.; Hewitt, C. N.; Fowler, D.

2009-04-01

229

Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors.  

Science.gov (United States)

The main objective of this research was to investigate the main characteristics of the thermo-chemical conversion of oil palm stone (OPS) and palm kernel cake (PKC). A series of combustion and pyrolysis tests were carried out in two fixed-bed reactors. The effects of heating rate at the temperature of 700 degrees C on the yields and properties of the pyrolysis products were investigated. The results from the combustion experiments showed that the burning rates increased with an increase in the air flow rate. In addition, the FLIC code was used to simulate the combustion of the oil palm stone to investigate the effect of primary air flow on the combustion process. The FLIC modelling results were in good agreement with the experimental data in terms of predicting the temperature profiles along the bed height and the composition of the flue gases. PMID:20153960

Razuan, R; Chen, Q; Zhang, X; Sharifi, V; Swithenbank, J

2010-06-01

230

DETERMINATION OF ANTIOXIDANTS IN OIL PALM EMPTY FRUIT BUNCHES  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The oil palm Fresh Fruit Bunches (FFB) undergoes sterilization before being threshed to separate the fruits from the bunch. Upon threshing, the fruits were pressed for its oil while the now Empty Fruit Bunch (EFB) will be discarded or used as biomass. It is believed that the EFB contains small amount of oil as well as phytonutrients which contain antioxidative property. This study reports on the extraction and analyses of various types of phenolic compounds, which have been known to exhibit a...

Ng Mei Han; Choo Yuen May

2012-01-01

231

Metabolites Profiling of Heat Treated Whole Palm Oil Extract  

Directory of Open Access Journals (Sweden)

Full Text Available The chemically complex and diverse nature of the plant metabolome require several platform technologies to profile the entire range of metabolites. An ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS technique was used to profile and identify a set of small-molecule metabolites found in heat treated whole palm oil extract. An investigation was carried out on the effect of heat treatment on the yield, quality and metabolites profile for whole palm oil extract. Palm fruits were collected, cleaned and sterilized for 0, 20, 40 and 60 min. The pulps were then stripped from the sterilized fruits and later was pressed using laboratory scale expeller. The resulting puree was centrifuged at 4000 rpm for 20 min. The result shows that there was a significantly difference between sterilization time of 0 and 40 min in yield and quality. Of all, the highest oil yield of 19.90.21% (w/w was obtained at 40 min of sterilization with DOBI value of 5.950.08 and FFA of 1.440.22%. The MarkerView software version 1.2.0.1 analysis of the UPLC-ESI-MS/MS preliminary experimental data demonstrated the distribution and identity of several compounds in the whole palm oil extract for 40 min sterilization and 0 min sterilization. This study have demonstrated the potential of UPLC-ESI-MS/MS to identify, characterize and profile the metabolites in heat treated whole palm oil extract for further research in developing health application of phytochemicals from palm oil.

M.R. Sarmidi

2011-01-01

232

Effect of carvacrol on the oxidative stability of palm oil during frying  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Fats and oils deteriorate physically and chemically at frying temperatures due to several reasons. The objective of this study was to assess the effect of carvacrol on the oxidative stability of palm oil during a repeated frying process. Potatoes were serially fried in carvacrol-added palm oil, BHT-added palm oil and a control oil (without any antioxidants). After each tenth frying cycle, several chemical analyses were carried out on collected samples to evaluate deterioration in the oils. Th...

I?nanc?, T.; Maskan, M.

2014-01-01

233

PROPERTIES OF BINDERLESS PARTICLEBOARD PANELS MANUFACTURED FROM OIL PALM BIOMASS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The objective of the study was to investigate physical and mechanical properties of experimental particleboard panels manufactured from oil palm (Elaeis guineensis) biomass without using any adhesives. Different parts of oil palm, including the core and mid sections of trunks, fronds, bark, and leaves, were used to make the panels with an average target density of 0.80g/cm3. Based on the test results, it seems that panels made from bark and leaves did not have satisfactory strength and dimens...

Rokiah Hashim; Wan Noor Aidawati Wan Nadhari,; Othman Sulaiman,; Masatoshi Sato,; Salim Hiziroglu; Fumio Kawamura,; Tomoko Sugimoto,; Tay Guan Seng; ,Ryohei Tanaka

2012-01-01

234

Remotely sensed evidence of tropical peatland conversion to oil palm  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ?880,000 ha) ...

Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

2011-01-01

235

Palm oil transesterified by metanolysis as diesel engine biofuel  

International Nuclear Information System (INIS)

This paper reviews a general background of biodiesel and its potentialities and possibilities as automotive fuel. The paper also compares the colombian production capacity in the world context, and shows its advantages and disadvantages as diesel engine biofuel. The paper discusses some relevant processing techniques of crude palm oil, the methanol transesterification technique being found to be the most suitable one. Finally it shows the results of some important physicochemical characterization of a crude palm oil transesterificated with methanol at the Universidad de Antioquia

236

Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data  

Science.gov (United States)

The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

2014-10-01

237

Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid  

Directory of Open Access Journals (Sweden)

Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

Abdul Rajab

2011-04-01

238

Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia  

Energy Technology Data Exchange (ETDEWEB)

Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

2011-02-15

239

Enzymatic Destruction Kinetics of Oil Palm Fruits by Microwave Sterilization  

Directory of Open Access Journals (Sweden)

Full Text Available Microwave sterilization of oil palm fruit is carried out to deactivate lipase and soften the fruits. This study is aims to determine enzymatic destruction kinetics from microwave sterilization of oil palm fruits such as decimal reduction time (D-value, temperature sensitivity (z-value, kinetic constant (k and activation energy (Ea. Three power levels (medium, medium high and high of the microwave oven were used and lipase assayed was conducted to determine the lipase activity. Microwave sterilization of oil palm fruits depends on the destruction kinetic parameters such as D-value, z-value and Ea. It required only 8.333 to 16.949 minutes to deactivate the lipase, and the process is not temperature sensitive which is indicated by z-value. The z-value indicated requirement to increase temperature up to 71.5, 77.0 and 83.0oC respectively from initial maximum temperature to reduce the D-value. Minimum energy required to start the destruction process of lipase was 13.927 to 14.049 kJ/mole obtained from microwave sterilization of 1 kg oil palm fruits at all power levels. Oil quality observed from free fatty acid (FFA concentration that indicated FFA below 3.5%.

Maya Sarah

2013-06-01

240

Separation of Coenzyme Q10 in Palm Oil by Supercritical Fluid Chromatography  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Palm oil is known to host a variety of phytonutrients; some having antioxidant property such as the carotenes and vitamin E. These antioxidants are also present in the oil recovered from the palm-pressed fibre. Study was carried out to investigate the presence of coenzyme Q10, yet another non-glyceride compound which possesses antioxidant property in crude palm oil (CPO) and palm fibre oil. Separation of coenzyme Q10 in CPO and palm fibre oil was carried out using supercritical fluid chromato...

Han, Ng M.; May, Choo Y.; Ngan, Ma A.; Hock, Chuah C.; Hashim, Mohd A.

2006-01-01

 
 
 
 
241

Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers  

International Nuclear Information System (INIS)

Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

242

Investigation on the Use of Palm Olein as Lubrication Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The research work is on the possibility of producing lubricating oil from vegetable oil with palm olein as a case study. The sample analysed was obtained from Vandeikya Local Government Area of Benue State. Some of the physical and chemical properties such as viscosity, flash/fire point, pour point and specific gravity were analysed. This sample was bleached to remove the red colour (carotene and gummy materials. The bleached sample was tested to determine the above mentioned properties. Comparison of the crude palm olein and the bleached sample with the conventional lubricants obtained from Elf Plc, Kaduna and Unipetrol Plc, Kaduna was made. Finally, it was discovered that the crude palm olein and the bleached sample exhibit a good base as a lubricant.

U. RATCHEL

2006-01-01

243

The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the map...

Singh, Rajinder; Leslie Low, Eng-ti; Ooi, Leslie Cheng-li; Ong-abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W.

2013-01-01

244

Nonlinear Growth Models for Modeling Oil Palm Yield Growth  

Directory of Open Access Journals (Sweden)

Full Text Available This study provided the basic needs of parameters estimation for nonlinear growth model such as partial derivatives of each model, determination of initial values for each parameter and statistical tests of industrial usage. Twelve nonlinear growth models and its partial derivatives for oil palm yield growth are presented in this study. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating oil palm yield growth data. The best model was selected based on the model performance and it can be used to estimate the oil palm yield at any age of oil palm. This study found that the Gompertz, logistic, log-logistic, Morgan-Mercer-Flodin and Chapman-Richard growth models have the ability for quantifying a growth phenomenon that exhibit a sigmoid pattern over time. Based on the statistical testing and goodness of fit, the best model is the Logistic model and followed by the Gompertz model, Morgan-Mercer-Flodin, Chapman-Richard (with initial stage and Log-logistic growth models.

Azme Khamiz

2005-01-01

245

Large estragole fluxes from oil palms in Borneo  

Science.gov (United States)

During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole in ambient air above oil palm canopies flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the Afric...

246

Bio ethanol production from oil palm empty fruit bunches  

International Nuclear Information System (INIS)

Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

247

Use of calcium oxide in palm oil methyl ester production  

Directory of Open Access Journals (Sweden)

Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

Kulchanat Prasertsit

2014-04-01

248

Large estragole fluxes from oil palms in Borneo  

Directory of Open Access Journals (Sweden)

Full Text Available During two field campaigns (OP3 and ACES, which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0 in ambient air above oil palm canopies (0.81 mg m?2 h?1 and 3.2 ppbv for mean midday fluxes and mixing ratios, respectively and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus, which pollinates oil palms (Elaeis guineensis. There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y?1. The observed ecosystem mean fluxes (0.44 mg m?2 h?1 and mean ambient volume mixing ratios (3.0 ppbv of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene, the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a combination of a modified G06 algorithm for emission and a canopy resistance approach for deposition. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

P. K. Misztal

2010-01-01

249

Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME.  

Science.gov (United States)

Magnetic separation combined with adsorption by activated carbon has been found to be a useful method for removing pollutants. In this paper, the use of palm shell as a source of activated carbon for the removal and recovery of oil from palm oil mill effluent (POME) is studied. In the first part of the study, the properties of samples of activated carbon prepared from palm shell under a variety of different conditions were characterized for their hydrophobicity, surface areas and pore size distribution. The most effective of the activated carbon samples was prepared by impregnation with ZnCl(2) followed by combined physical/chemical activation under carbon dioxide flow at 800 °C. Four grams of these samples adsorbed 90% of the oil from 50 mL POME. In the second part, the palm shell-based carbon samples were given magnetic properties by the technique of iron oxide deposition. Ninety-four percent of the activated carbon/iron oxide composite containing the adsorbed oil could be extracted from the POME by a magnetic bar of 0.15 T. Four grams of the composite can remove 85% of oil from 50 mL POME and a total of 67% of the initial oil can then be recovered by hexane extraction. Powder X-ray diffractometry showed the presence of magnetite and maghemite in the activated carbon/iron oxide composite. PMID:20932635

Ngarmkam, Worawan; Sirisathitkul, Chitnarong; Phalakornkule, Chantaraporn

2011-03-01

250

Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.  

Science.gov (United States)

In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol. PMID:18930392

Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

2009-02-01

251

Production of fatty alcohol from palm oil methyl ester  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Fatty alcohol is an important raw material for the production of surfactants, and is currently in demand by markets and has a high potential for growth. Moreover, fatty alcohol can be made from methylester that is produced from fats and natural oil. The production of fatty alcohol involved hydrogenation using the suspension method process and methyl ester in palm oil as the raw material. Copper chromite was used as the catalyst for the hydrogenationreaction and the experiment was proceeded in...

Tongurai, C.; Sahutsarungsi, S.; Bunyakan, C.

2007-01-01

252

Investigation on the Use of Palm Olein as Lubrication Oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The research work is on the possibility of producing lubricating oil from vegetable oil with palm olein as a case study. The sample analysed was obtained from Vandeikya Local Government Area of Benue State. Some of the physical and chemical properties such as viscosity, flash/fire point, pour point and specific gravity were analysed. This sample was bleached to remove the red colour (carotene) and gummy materials. The bleached sample was tested to determine the above mentioned properties. Com...

Ratchel, U.; Nasir, A.; Abolarin, M. S.; Hassan, A. B.

2006-01-01

253

Mutation induction in oil palm cultures using gamma irradiation  

International Nuclear Information System (INIS)

Induced mutations have played an important role in the improvement of wide range of food crops, ornamental plants and oil crops such as sesame and sunflower. Based on these successes an attempt was made to employ the mutagenesis techniques to broaden the genetic variation in breeding materials of oil palm. Traits of interest are high yield, dwarfness and disease resistance. Embryogenic callus initiated from several high yielding clones were exposed to gamma irradiation for optimum dose determination. (Author)

254

Biodiesel fuels from palm oil, palm oil methylester and ester-diesel blends  

Directory of Open Access Journals (Sweden)

Full Text Available Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace metal composition in relation to corrosion. Also the bond structure/stability of the samples in relation to diesel were monitored with a Fourier transform infrared spectrometer. Results confirmed that most methylester blends with diesel fell within the grade 2D while the oil, methylester and 90:10 blend fell into 4D grade diesel fuels. From bond structure/stability comparison, all the samples were stable at 28 oC and had similarity in structure with diesel. All samples are commercializable. The trace metal composition of most samples was below that of the diesel with exception of Mn, Pb and Zn. The total acid numbers of all samples were below that of diesel and would not cause corrosion. It is recommended that processing of these samples should be done to conserve fossil fuel and as alternative diesel fuels in diesel engines.

C.M.A.O. Martins

2003-06-01

255

Remotely sensed evidence of tropical peatland conversion to oil palm.  

Science.gov (United States)

Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ?880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ?140 million Mg of aboveground biomass carbon, and annual emissions of ?4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ?660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ?20%, whereas oil-palm establishment would exacerbate species losses by up to ?12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia. PMID:21383161

Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

2011-03-22

256

Design and Development of Laboratory Scale Updraft Gasifier for Gasification of Oil Palm Fronds  

Directory of Open Access Journals (Sweden)

Full Text Available The huge amount of wasted Oil Palm Fronds (OPF produced annually provides a very good opportunity for the oil palm industry in Malaysia to use it for power generation, especially in mill boilers. Recently, gasification technology is receiving more attention as it can be used to convert wasted biomass into gaseous fuel for power generation and thermal applications as well as it can be used as a fuel source for the production of other chemicals. This study addresses the design, fabrication and performance evaluation of an updraft fixed-bed-gasifier. A 50 kW updraft gasifier is designed and fabricated for gasification of Malaysian oil palm fronds. The gasifier is designed using the empirical data from literature and derived quantities. The gasifier was modified to be very flexible allowing the gasification air to be fed through several locations. The air gasification results of OPF showed volumetric percentage of 22.61-23.36% of CO, 6.48-6.68% of H2, 1.2-1.5% of CH4, 9.51-9.65% of CO2 and 59.20-58.1% of N2. The heating value of the product gas mixture varied between 4.1-4.4 MJ Nm-3 while the cold gas efficiency, carbon conversion efficiency and specific gasification rate of the gasifier was in the range of 57-59 and 95-97% and 103-109 kg m-2 h-1, respectively. The study has demonstrated that the oil palm frond waste is suitable for the designed and fabricated updraft gasifier and the produced gas from the gasification of OPF was successfully used in a domestic cooking stove.

Ramzy E. Konda

2014-01-01

257

LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Life Cycle Assessment (LCA) is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefor...

Shamim Ahmad, M.; Vijaya Subramaniam; Halimah Mohammad; Anis Mokhtar; Ismail, B. S.

2014-01-01

258

Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Ne...

Haidi Ibrahim; Syed Salim Syed Ali; Junita Mohamad-Saleh; Zaini Abdul Halim; Norasyikin Fadilah

2012-01-01

259

Following basal stem rot in young oil palm plantings.  

Science.gov (United States)

The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base material at a greater frequency than would be expected by comparison with current infection levels. Comparisons are made between the height of the frond base infected, the number of frond bases infected, and subsequent development of basal stem rot. The preliminary results suggest that the development of basal stem rot may be more likely to occur when young lower frond bases are infected. PMID:15750744

Panchal, G; Bridge, P D

2005-01-01

260

Biodiesel’s characteristics preparation from palm oil  

Directory of Open Access Journals (Sweden)

Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separatedfrom glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels’ properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

Rachman Yusuf

2002-06-01

 
 
 
 
261

Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars  

International Nuclear Information System (INIS)

Lignocellulose into fuel ethanol is the most feasible conversion route strategy in terms of sustainability. Oil palm empty fruit bunch (EFB) generated from palm oil production is a huge source of cellulosic material and represents a cheap renewable feedstock which awaits further commercial exploitation. The purpose of this study was to investigate the feasibility of using steam at 0.28 MPa and 140 °C generated from the palm oil mill boiler as a pretreatment to enhance the digestibility of EFB for sugars production. The effects of steam pretreatment or autohydrolysis on chemical composition changes, polysaccharide conversion, sugar production and morphology alterations of four different types of EFB namely fresh EFB (EFB1), sterilized EFB (EFB2), shredded EFB (EFB3) and ground EFB (EFB4) were evaluated. In this study, the effects of steam pretreatment showed major alterations in the morphology of EFB as observed under the scanning electron microscope. Steam pretreated EFB2 was found to have the highest total conversion of 30% to sugars with 209 g kg?1 EFB. This production was 10.5 fold higher than for EFB1 and 1.6 fold and 1.7 fold higher than EFB3 and EFB4, respectively. The results suggested that pretreatment of EFB by autohydrolysis using steam from the mill boiler could be considered as being a suitable pretreatment process for the production of sugars. These sugars can be utilized as potential substrates for the production of various products such as fuel ethanol. -- Highlights: ? We investigate the feasibility of steam pretreatment to enhance digestibility of EFB. ? Steam pretreatment increased sugars to 3.4 fold and caused major alteration in EFB morphology under SEM. ? Autohydrolysis which does not require the addition of chemicals is an attractive pretreatment approach to EFB.

262

Re-esterified palm oils, compared to native palm oil, do not alter fat absorption, postprandial lipemia or growth performance in broiler chicks.  

Science.gov (United States)

Re-esterified palm oils are obtained from the chemical esterification of palm acid oils (rich in free fatty acids) with glycerol, both economically interesting by-products from oil refining and biodiesel industries, respectively. Thus, re-esterified palm oils could be an economically interesting alternative to native palm oil in broiler chick diets. However, because they may have different physicochemical properties than have their corresponding native oil, we assessed the effect of fatty acid (FA) positional distribution within acylglycerol molecules and the effect of acylglycerol composition on FA apparent absorption, and their possible consequences on the evolution of postprandial lipemia and growth performance in broiler chicks. Seventy-two 1-day-old female broiler chicks were randomly distributed into 18 cages. The three treatments used were the result of a basal diet supplemented with 6 wt% of native palm oil (N-TAG), re-esterified palm oil (E-TAG), or re-esterified palm oil high in mono- and diacylglycerols (E-MDAG). Chemical esterification raised the fraction of palmitic acid at the sn-2 position from 9.63 mol% in N-TAG oil to 17.9 mol% in E-TAG oil. Furthermore, E-MDAG oil presented a high proportion of mono- (23.1 wt%) and diacylglycerols (51.2 wt%), with FA mainly located at the sn-1,3 positions, which resulted in a lower gross-energy content and an increased solid-fat index at the chicken's body temperature. However, re-esterified palm oils did not alter fat absorption, postprandial lipemia, or growth performance, compared to native palm oil, so they can be used as alternative fat sources in broiler chick diets. PMID:24934588

Vilarrasa, E; Tres, A; Bayés-García, L; Parella, T; Esteve-Garcia, E; Barroeta, A C

2014-08-01

263

Effects of Palm and Sunflower Oils on Serum Cholesterol and Fatty Liver in Rats.  

Science.gov (United States)

Abstract Palm oil is a common cooking ingredient used in the commercial food industry as the second largest consumed vegetable oil in the world. Because of its lower cost and highly saturated nature, it usually maintains a solid form at room temperature and is used as a cheap substitute for butter. However, there has been a growing health concern about palm oil because of the link between dietary fats and coronary heart disease. Palm oil contains ?49% saturated fat, a relatively high concentration compared with other vegetable oils. Consequently, high intakes of saturated fat from palm oil induce a larger increase in plasma concentrations of total cholesterol and low-density lipoproteins. In the present study, we examined the hyperlipidemia of palm oil and the risk of cardiovascular disease (CVD) using a rat model in comparison with sunflower oil with a relatively low level of saturated fat. On in vivo examination using Sprague-Dawley (SD) rats for 22 days, there were no significant differences in serum lipid levels, suggesting that palm oil may not cause hyperlipidemia and elevate CVD risk. However, liver samples obtained from SD rats fed with palm oil showed a lot of large lipid inclusions stained with the Oil Red O working solution, but not much lipid accumulation was observed in rats treated with sunflower oil. In addition, lipid accumulation in the mixed oil group fed the combination of palm and sunflower (1:1) oil was shown to be at an intermediary level between the palm oil group and sunflower oil group. Taken together, these results indicate that palm oil, a highly saturated form of vegetable oil, may induce dysfunction of the liver lipid metabolism before affecting serum lipid levels. On the other hand, sunflower oil, a highly unsaturated vegetable oil, was shown to be well metabolized in liver. PMID:25393932

Go, Ryeo-Eun; Hwang, Kyung-A; Kim, Ye-Seul; Kim, Seung-Hee; Nam, Ki-Hoan; Choi, Kyung-Chul

2014-11-13

264

The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK.  

Science.gov (United States)

A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation. PMID:23883930

Singh, Rajinder; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Ting, Ngoot-Chin; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Manaf, Mohamad Arif Abdul; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

2013-08-15

265

Oil palm genome sequence reveals divergence of interfertile species in old and new worlds  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at le...

Singh, Rajinder; Ong-abdullah, Meilina; Low, Eng-ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-li; Ooi, Siew–eng; Chan, Kuang-lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W.

2013-01-01

266

Improvement potential for net energy balance of biodiesel derived from palm oil: A case study from Indonesian practice  

Energy Technology Data Exchange (ETDEWEB)

Biodiesel derived from palm oil has been recognized as a high-productivity oil crop among the first generation of biofuels. This study evaluated and discussed the net energy balance for biodiesel in Indonesia by calculating the net energy ratio (NER) and net energy production (NEP) form the total energy input and output. The results of the calculation of energy input for the default scenario demonstrated that the primary energy inputs in the biodiesel production lifecycle were the methanol feedstock, energy input during the biodiesel production process, and urea production. These three items amounted to 85% of the total energy input. Next, we considered and evaluated ways to potentially improve the energy balance by utilizing by-products and biogas from wastewater treatment in the palm oil mill. This result emphasized the importance of utilizing the biomass residue and by-products. Finally, we discussed the need to be aware of energy balance issues between countries when biofuels are transported internationally. (author)

Kamahara, Hirotsugu [Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569 (Japan); Hasanudin, Udin [Department of Agroindustrial Technology, University of Lampung, Bandar Lampung, Lampung 35145 (Indonesia); Widiyanto, Anugerah [International Cooperation Center for Engineering Education Development, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Tachibana, Ryuichi [Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188 (Japan); Atsuta, Yoichi; Goto, Naohiro; Daimon, Hiroyuki [Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Fujie, Koichi [Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan)

2010-12-15

267

The Growth of One Year-Old Oil Palms Intercropped with Soybean and Groundnut  

Directory of Open Access Journals (Sweden)

Full Text Available The objective of this research was to determine appropriate annual food crops in the areas of a year-old oil palm. Field trials were arranged in a single factor of randomized completely block design. A factor to be tested was the species of annual food crops, namely, soybeans and groundnuts. Controls in this study were monocultures of oil palm, soybean and groundnuts. The results showed that soybean and groundnut could give high yields when planted between rows of one year-old oil palms, which were similar to the yield of those crops in the monoculture system. In addition, the presence of soybean and groundnut between the rows of one year-old oil palms was found not inhibiting the growth rate and development of oil palms as the main crop. On the contrary, there was a tendency that the oil palms planted with soybeans and groundnut to grow faster than those planted in monoculture.

Eka Tarwaca Susila Putra

2012-03-01

268

THE POTENTIAL OF OIL PALM TRUNK BIOMASS AS AN ALTERNATIVE SOURCE FOR COMPRESSED WOOD  

Directory of Open Access Journals (Sweden)

Full Text Available Compressed wood, which is formed by a process that increases the wood’s density, aims to improve its strength and dimensional stability. Compressed wood can be used in building and construction, especially for construction of walls and flooring. Currently, supplies of wood are becoming limited, and the oil palm tree has become one of the largest plantation species in Malaysia. Oil palm trunk could be an appropriate choice for an alternative source for compressed wood. This paper aims to review the current status of oil palm biomass, including the availability of this tree, in order to illustrate the potential of oil palm biomass as an alternative source for compressed wood. Up to the present there has been insufficient information regarding the manufacturing conditions and properties of compressed wood from oil palm trunk. This paper will cover the background of compressed wood and the possibilities of producing compressed wood using oil palm trunk as a raw material.

Othman Sulaiman,

2012-06-01

269

Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia  

International Nuclear Information System (INIS)

One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane – a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

270

Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia  

Science.gov (United States)

One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

Begum, Shahida; P, Kumaran; M, Jayakumar

2013-06-01

271

STEAM EXPLOSION PULPING OF OIL PALM EMPTY FRUIT BUNCH FIBER  

Directory of Open Access Journals (Sweden)

Full Text Available Steam explosion pulping was evaluated for oil palm empty fruit bunches fiber. The fiber morphology was observed by SEM and TEM. Results indicated that lignin was molten and the cell wall damaged after the steam explosion pulping and that the fiber was partly separated at the same time. The results of handsheet tests showed that the steam exploded pulp had a high yield (78.2%, good physical properties (especially for ring crush 8.6 N•m/g, and low effluent load (SS=910 mg/L; BOD5=3952 mg/L; CODCr=8140 mg/L. The SEP pulp from oil palm EFB fiber was very suitable for packaging paper when combined with American OCC pulp.

Xiwen Wang,

2012-01-01

272

Auto Guided Oil Palm Planter by using multi-GNSS  

Science.gov (United States)

Planting is one of the most important operations in plantation because it could affect the total area of productivity since it is the starting point in cultivation. In oil palm plantation, lining and spacing of oil palm shall be laid out and coincided with the topographic area and a system of drains. Conventionally, planting of oil palm will require the polarization process in order to prevent and overcome the lack of influence of the sun rise and get a regular crop row. Polarization is done after the completion of the opening area by using the spike wood with 1 m length painted at the top and 100 m length of wire. This process will generally require at least five persons at a time to pull the wire and carry the spikes while the other two persons will act as observer and spikes craftsmen respectively with the ability of the team is 3ha/day. Therefore, the aim of this project is to develop the oil palm planting technique by using multi- GNSS (Global Navigation Satellite System). Generally, this project will involve five main steps mainly; design of planting pattern by using SOLIDWORKS software, determine the boundary coordinate of planting area, georeference process with ArcGIS, stakeout process with Tracy software and finally marking up the location with the wooden spikes. The results proved that the multi- GNSS is capable to provide the high accuracy with less than 1 m in precise positioning system without augmentation data. With the ability of one person, time taken to complete 70 m × 50 m planting area is 290 min, which is 25 min faster than using GPS (Global Positioning System) only.

Nur Aini, I.; W, Aimrun; Amin, M. S. M.; Ezrin, M. H.; Shafri, H. Z.

2014-06-01

273

Palm oil trans-esterification with methanol via hetereogeneous catalysis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Four different solid catalyst' catalytic activity was studied in refined palm oil methanolysis: barium hydroxide, calcium oxide, magenesium oxide and tin oxide (IV). The last two presented low catalytic activity; they were thus discarded. The catalysts were used in powder form suspended in the reaction medium. HPLC was used for testing catalyic activity by measuring the glycerlo produced at the end of the reaction. Experiments were conducted at different pressures: 75 kPa (the pressure in Bog...

Julian Andrés Parra Garrido; Alberto Ricardo Albis Arrieta; Francisco José Sánchez Castellanos

2010-01-01

274

A participatory diagnostic study of the oil palm (Elaeis guineensis) seed system in Benin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A participatory diagnostic study of the oil palm (Elaeis guineensis Jacq.) seed system (OPSS) was conducted along a gradient of rainfall and distance to the oil palm research centre across the oil palm growing belt of Benin. The objective was to identify, jointly with key actors, the constraints in the OPSS and to assess the performance of the OPSS from a farmers’ perspective. The methodology included introductory community meetings, group discussions, individual in-depth interviews, field ...

Akpo, E.; Vissoh, P. V.; Tossou, R. C.; Crane, T.; Kossou, D. K.; Richards, P.; Stomph, T. J.; Struik, P. C.

2012-01-01

275

Impact of agricultural extension services on poverty status of the palm oil processors in Southwestern, Nigeria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study measured the impact of extension on oil palm processing in Ondo and Osun states of Nigeria. Specifically, the study compares the net returns of farmers visited by extension workers (FV) with those not visited (FNV), examines the poverty profile of the palm oil processors, determines the effect of extension services on poverty level, and determines the effects of extension on palm oil processing. A multistage sampling technique was used. A sample of five (5) Ondo and Osun states’ ...

Et Al, Olagunju F. I.

2013-01-01

276

The development of epoxidised palm oil acrylate (EPOLA) and its applications  

International Nuclear Information System (INIS)

The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets)

277

Dual resonant frequencies effects on an induction-based oil palm fruit sensor.  

Science.gov (United States)

As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970

Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

2014-01-01

278

Spatial Variability of Soil Inorganic N in a Mature Oil Palm Plantation in Sabah, Malaysia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The identification and understanding of soil factors influencing yield variability of oil palm enable their efficient management. Soil samples were therefore collected from a fertilizer response trial on oil palm to study the spatial inorganic N distribution and some selected soil chemical properties as affected by long-term N fertilizer applications. The experiment was conducted on mature oil palms grown on Kumansi family (Typic Paleudults) soil in Tawau, Sabah, Malaysia. The soil samples we...

Anuar, Abdul R.; Goh, Kah J.; Heoh, Tee B.; Ahmed, Osumanu H.

2008-01-01

279

PROPERTIES OF BINDERLESS PARTICLEBOARD PANELS MANUFACTURED FROM OIL PALM BIOMASS  

Directory of Open Access Journals (Sweden)

Full Text Available The objective of the study was to investigate physical and mechanical properties of experimental particleboard panels manufactured from oil palm (Elaeis guineensis biomass without using any adhesives. Different parts of oil palm, including the core and mid sections of trunks, fronds, bark, and leaves, were used to make the panels with an average target density of 0.80g/cm3. Based on the test results, it seems that panels made from bark and leaves did not have satisfactory strength and dimensional stability. However, the panels having particles from the core portion of the trunks exhibited the highest modulus of rupture and internal bond strength but lowest in thickness swelling and water absorption values among the samples. The panels made with particles of mid-section of trunks and fronds followed the samples having core portion trunks material. Three types of raw material, namely fronds, mid-, and core-parts of the trunks appeared as though they could have potential to manufacture particleboard panels with acceptable properties based on requirements stated in Japanese Industrial Standard (JIS. Similar to the above findings, surface quality of the samples were also found acceptable for the panels made from three types of particles. Based on the results of this work, oil palm in the form of biomass could be considered as an environmentally friendly alternative raw material to manufacture binderless particleboard panels.

Rokiah Hashim,

2012-01-01

280

How the palm oil industry is cooking the climate  

International Nuclear Information System (INIS)

Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands mayuction, emissions from these peatlands may trigger a 'climate bomb'

 
 
 
 
281

Effect of Different Vegetable Oils (Red Palm Olein, Palm Olein, Corn Oil and Coconut Oil on Lipid Profile in Rat  

Directory of Open Access Journals (Sweden)

Full Text Available The objective of the study was to evaluate the effects of different vegetable oils [red palm olein (RPO, palm olein (PO, corn oil (CO and coconut oil (COC] on lipid profile in rat. Sixty six Sprague Dawley male rats were randomly divided into eleven groups of 6 rats per group and were treated with 15% concentrations of RPO, PO, CO and COC for 4 and 8 weeks. Rats in control group were given normal rat pellet only while in treated groups 15% of additional vegetable oils were given. The results at 4 weeks showed a decline in Low Density Lipoprotein Cholesterol (LDL-C values at RPO and PO groups whereas in CO and COC groups the LDL-C were increased compared to the control group. The High Density Lipoprotein Cholesterol (HDL-C values increased in RPO and PO groups whereas it was declined in CO and COC groups compared to the control group. At 8 weeks, there was no significant difference (P ? 0.05 in HDL-C of rats treated with vegetable oils compared to the control group. However, the LDL-C in RPO and PO was significantly decreased (P ? 0.05 in the LDL-C and there was no significant difference (P?0.05 for CO and COC groups compared to the control groups. The mean value of the LDL-C after 8 weeks in the control group, RPO, PO, CO, and COC groups were 66.1 mg/dl, 31.9 mg/dl, 41.1 mg/dl, 50.41 mg/dl and 54.31 mg/dl respectively. There was significant decreased (P ? 0.05 in the total cholesterol (TC in RPO group for 4 weeks compared to the control group while the TC in PO, CO and COC were within the normal range. The results of TC in all treated rats for 8 weeks were within the normal range. There was no significant difference in TC of rats treated with vegetable oils compared to the control group. Triglycerides (TG in all treated rats for 4 weeks were within the normal range whereas the TG in RPO, PO and CO groups for 8 weeks were significant increase (P ? 0.05 compared to the control group but there was no significant difference between the control group and COC group.

Aminah Abdullah

2011-06-01

282

The use of 32P and 15N to estimate fertilizer efficiency in oil palm  

International Nuclear Information System (INIS)

Improving efficiency of use of fertilizers has attracted a great deal of interest on oil-palm estates because of increasing input costs. It is assumed that higher efficiency of use of fertilizers for estate crops, including oil palm, would result in significant savings and less environmental pollution. One way to enhance efficiency of use of fertilizers by oil palm is to apply them where the most active roots are located. Previous work has indicated the possibility of determining the most active roots of tea and chinchona by using 32P. In this experiment, 32P was again used, to determine the locations of the most active roots of oil palm trees

283

Oil Palm Biomass As Potential Substitution Raw Materials For Commercial Biomass Briquettes Production  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Palm oil industry generates vast amount of palm biomass. Converting palm biomass into a uniform and solid fuel through briquetting process appears to be an attractive solution in upgrading its properties and add value. In this study, raw materials including empty fruit bunch (EFB), in powder and fibre forms, palm kernel expeller (PKE) and sawdust were densified into briquettes at high temperature and pressure using screw extrusion technology. The briquettes were analysed to determine its phys...

Nasrin, A. B.; Ma, A. N.; Choo, Y. M.; Mohamad, S.; Rohaya, M. H.; Azali, A.; Zainal, Z.

2008-01-01

284

Application of lidar and optical data for oil palm plantation management in Malaysia  

Science.gov (United States)

Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.

Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman

2012-11-01

285

Effects of Mixing Canola and Palm Oils with Sunflower Oil on the Formation of Trans Fatty Acids during Frying  

Directory of Open Access Journals (Sweden)

Full Text Available GLC analysis was conducted to indicate the formation of trans- C18 fatty acids of sunflower, canola and palm oils during frying. Blends of sunflower oil and palm oil or canola oil were obtained by mixing sunflower oil with palm or canola oils at the volume ratios of 60: 40, 40: 60 and 20: 80 (v/v, then heated at 180?C ± 5?C for 5, 10, 15 and 20 h in the atmospheric oxygen. GLC results demonstrate that the formation of trans C18-fatty acids was generally dependent upon the frying time and oil mixing ratios. Furthermore, mixing sunflower oil with oils rich in monounsaturated fatty acids (palm or canola oils lowered the formation of trans-C18 fatty acids during frying.

Bothaina S. Abd El Hakeem

2010-07-01

286

Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.  

Science.gov (United States)

The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020. PMID:22406099

Arthur, Richard; Glover, Kwasi

2012-05-01

287

Organoleptic Study of Deacidified and Deodourised Palm Oil  

Directory of Open Access Journals (Sweden)

Full Text Available Deficiency of vitamin A has long been identified as a serious and preventable nutritional disorder, associated with increased risk of mortality and morbidity amongst children. The present study was conducted with the objectives (i to perform organoleptic testing of food products cooked in Deacidified and Deodourised Palm oil (DDPO, by sensory evaluation method and (ii to compare the characteristics of these food products with the same products cooled in routinely used oil. Eleven commonly used weaning food items were prepared with routinely used oil (Group a. The same recipes were also prepared with DDPO (Group B. A food testing panel conducted with sensory evaluation for assessing the acceptability of the various food items. It was observed that with respect to all characteristics there was no significant difference in the recipes made with the two types of oil. Results indicated that DDPO can be used in India for preparation of weaning foods which are routinely given to young children.

Umesh Kapil

2014-11-01

288

Evaluation of the Lubricating Properties of Palm Kernel Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The search for renewable energy resources continues to attract attention in recent times as fossil fuels such as petroleum, coal and natural gas, which are been used to meet the energy needs of man are associated with negative environmental impacts such as global warming. Biodiesel offered reduced exhaust emissions, improved biodegradability, reduced toxicity and higher carotene rating which can improve performance and clean up emissions. Standard methods were used to determine the physical and chemical properties of the oil, which includes the Density, Viscosity, flash/fire point, carbon residue, volatility and Specific Gravity were determined by chemical experimental analysis. The flash/fire points of the Heavy duty oil (SAE 40 and Light duty oil (SAE 30 is 260/300(°C and 243/290(°C respectively while the pour points of the samples are 22°C for palm kernel oil while 9°C and 21°C for SAE 40and SAE 30 respectively.

John J MUSA

2009-07-01

289

Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations  

Directory of Open Access Journals (Sweden)

Full Text Available Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enforcement in Malaysia, have been living inremotely located inhabitations engaging in ‘dirty, dangerous and distance’ wise oil palm plantations. Though thelarger oil palm plantation companies ensure minimum living and working conditions for the foreign workers,vastly located small holding plantations never follow such minimum and fair working environment. Theseconditions to be correlated with the term “precarious working conditions’ in small holding oil palm plantations.Due to lack of availability of the locals to engage in oil palm work, the plantations have to depend on foreignworkers do all these ‘dirty, dangerous and distance’ workers in oil palm plantations. Except a few literatureavailable from Amnesty international and local NGOs, there is less evidence to prove the existence of suchexploitative working conditions in oil palm plantations. In order to explore precarious working conditions in oilpalm plantations thus a qualitative research study is conducted in the Sabah region of the Eastern Part ofMalaysia. The study followed, triangulation method through interviews with the migrated foreign workers, (legaland illegal, focus group discussions and Delphi technique with the identification of experts in the field to arriveat the factors and categories related to the theme ‘precarious working conditions’ in oil palm plantations. Theoutcome of the study fixes the variables that need to be concentrated for a higher level research throughquantitative research.

Dileep Kumar M.

2014-10-01

290

Energy Contribution of Oil Cakes Used as Fuel in Waste Boilers: Case of an Oil Mill in Cote D’ivoire  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Cote d’Ivoire is the second palm oil producer country in Africa. The oil mills are generally located near the farms which are in rural areas. In fact, Côte d’Ivoire is self-sufficient in electricity; but the electric distribution network is not wide enough. So that it is difficult to access public electricity for most of rural areas. Therefore, to produce electricity traditional fuels group are used. Moreover, the cost of electricity production by turbo-alternators using traditiona...

Guessan, R. K. N.; Koffi, B. K.; Tanoh, A.

2010-01-01

291

Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.  

Science.gov (United States)

Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. PMID:25459850

Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

2014-10-30

292

Segregation, correlation and heritability of agronomic characters in F2 progenies of oil palm  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study aimed at evaluating the segregation, correlation and heritability of certain agronomic characters in F2 plants of oil palm (Elaeis guineensis Jacq.) which were collected and planted in 1989 at Klong Hoi Khong Research Station, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Southern Thailand. The 1,038 palms collected at the age of thirteen-years derived from F1 Tenera hybrid plants were selected from oil palm plantations in different areas in Southern Thailan...

Chaumongkol, Y.; Nilnond, C.; Tongkum, P.; Juntaraniyom, T.; Songsri, N.; Eksomtramage, T.

2001-01-01

293

Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution  

Digital Repository Infrastructure Vision for European Research (DRIVER)

More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is p...

Hewitt, C. N.; Mackenzie, A. R.; Di Carlo, P.; Di Marco, C. F.; Dorsey, J. R.; Evans, M.; Fowler, D.; Gallagher, M. W.; Hopkins, J. R.; Jones, C. E.; Langford, B.; Lee, J. D.; Lewis, A. C.; Lim, S. F.; Mcquaid, J.

2009-01-01

294

Oil Palm (Elaeis guineensis) Trunk as a Resource of Starch and Other Sugars  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Large quantities of oil palm trunks are available annually during the replanting activities when the oil palm tree passed their economic age, on an average after 25 years are replace with young trees. Basically the oil palm trunks contains about 18- 21% of lignin, 65-80% of holocellulose (a-cellulose and hemicellulose) and quite significant amount starch. This work is aimed to determine the total extractable starch and sugars content from oil palm trunks by using steeping method and dilute ac...

Tey, B. T.; Tan, S. E.; Tor, E. S.; Chin, K. L.; Wong, L. J.; Ng, P. S. H.; Maminski, M.

2011-01-01

295

Simulation of thin-film deodorizers in palm oil refining  

DEFF Research Database (Denmark)

As the need for healthier fats and oils (natural vitamin and trans fat contents) and interest in biofuels are growing, many changes in the world's vegetable oil market are driving the oil industry to developing new technologies and recycling traditional ones. Computational simulation is widely used in the chemical and petrochemical industries as a tool for optimization and design of (new) processes, but that is not the case for the edible oil industry. Thin-film deodorizers are novel equipment developed for steam deacidification of vegetable oils, and no work on the simulation of this type of equipment could be found in the open literature. This paper tries to fill this gap by presenting results from the study of the effect of processing variables, such as temperature, pressure and percentage of stripping steam, in the final quality of product (deacidified palm oil) in terms of final oil acidity, the tocopherol content and neutral oil loss. The simulation results have been evaluated by using the response surface methodology. The model generated by the statistical analysis for tocopherol retention has been validated by matching its results with industrial data published in the open literature.

Ceriani, Roberta; Meirelles, Antonio J.A.

2010-01-01

296

In vitro growth of Ganoderma boninense isolates on novel palm extract medium and virulence on oil palm (Elaeis guineensis) seedlings  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Aims: Basal stem rot (BSR) disease caused by Ganoderma pathogenic fungi, especially Ganoderma boninense is thriving rapidly in both areas with coastal and inland soils. The objectives of this study were to isolate and characterize Ganoderma isolates collected from various locations in Peninsular Malaysia through the comparison of their growth rate in vitroly on conventional and novel palm extract media, and to determine the degree of virulence caused by the isolatesin oil palm seedlings. Meth...

Kok, S. M.; Wong, W. C.; Tung, H. J.; Goh, K. J.; Goh, Y. K.

2013-01-01

297

Oil Palm (Elaeis guineensis Trunk as a Resource of Starch and Other Sugars  

Directory of Open Access Journals (Sweden)

Full Text Available Large quantities of oil palm trunks are available annually during the replanting activities when the oil palm tree passed their economic age, on an average after 25 years are replace with young trees. Basically the oil palm trunks contains about 18- 21% of lignin, 65-80% of holocellulose (a-cellulose and hemicellulose and quite significant amount starch. This work is aimed to determine the total extractable starch and sugars content from oil palm trunks by using steeping method and dilute acid hydrolysis. The effect of different oil palm trunk powder size on starch, xylose and glucose yield was evaluated. The effect of extraction parameter for each extraction method on the yield of starch and sugars were studied. The highest starch yield was obtained when steeped in the presence of lactic acid, while the highest xylose yield was obtained by 60 min hydrolysis of 60 mesh of oil palm powder with 2% sulfuric acid. For glucose yield, hydrolysis efficiency of 82% was obtained for conversion of oil palm trunk to glucose using two-stage concentrated sulfuric acid hydrolysis. Conclusively oil palm trunk can be considered as a resource of substantial amounts of starch and sugars.

B.T. Tey

2011-01-01

298

DETERMINATION OF ANTIOXIDANTS IN OIL PALM EMPTY FRUIT BUNCHES  

Directory of Open Access Journals (Sweden)

Full Text Available The oil palm Fresh Fruit Bunches (FFB undergoes sterilization before being threshed to separate the fruits from the bunch. Upon threshing, the fruits were pressed for its oil while the now Empty Fruit Bunch (EFB will be discarded or used as biomass. It is believed that the EFB contains small amount of oil as well as phytonutrients which contain antioxidative property. This study reports on the extraction and analyses of various types of phenolic compounds, which have been known to exhibit antioxidant property, from the EFB. Different methods were employed in order to extract the Soluble Free (SF, Insoluble Bound (ISB and Esterified Free (EF phenolics in the EFB. Analyses of these phenolics were carried out spectrophotometricaly. The concentrations of the SF, ISB and EF phenolics varies among the wet and dried EFB extracts. All the extracts from both wet and dried EFB exhibit radical scavenging activities.

Ng Mei Han

2012-01-01

299

Least cost energy planning in Thailand:A case of biogas upgrading in palm oil industry  

Directory of Open Access Journals (Sweden)

Full Text Available Thailand is currently the world’s fourth largest producer of crude palm oil. The palm oil mill effluent is proposed to beused for biogas production. A value added option is then proposed by increasing thermal efficiency of the biogas by removingCO2 content and increasing the percentage of methane, consequently turning the biogas in to green gas. In this study, thebiogas and upgrading process for electricity generation with the subsidy or adder in the long term planning is presented. Thisanalysis uses the MARKAL-based least-cost energy system as an analytical tool. The objective of this study is to investigateupgrading biogas with a selected water scrubbing technique featuring least-cost energy planning. The co-benefit aspect ofbiogas and biogas upgrading project is analyzed by given an adder of 0.3 Baht/kWh. The target of total electricity generationfrom biogas is 60 MW in 2012. The result shows that green gas will account for approximately 44.91 million m3 in 2012 andincrease to 238.89 million m3 in 2030. The cumulative CO2 emission during 2012-2030 is 2,354.92 thousand tonnes of CO2.Results show that under the given adders the upgrading project is competitive with the conventional technologies in electricitygeneration planning.

Artite Pattanapongchai

2011-12-01

300

Analysis of quality of the biogasoils of palm oil and castor oil  

International Nuclear Information System (INIS)

Biodiesel is a fuel made from raw materials of renewable origin such as vegetable oils. The objective of this work is to make a quality analysis of two types of biodiesel made from raw materials available in Colombia such as palm oil and castor oil. Biodiesel from palm oil complies with the majority of technical requirements specified by ASTM standards D-975 y D-6751. A high cloud point is the main drawback of this kind of biodiesel. This is a consequence of its highly saturated chemical nature. On the other hand, biodiesel from castor oil presents more difficulties in order to be used in diesel engines because of having a low cetane index and a high viscosity

 
 
 
 
301

Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.  

Science.gov (United States)

In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7wt.% having a heating value of 22.2±3.7MJ/kg and a negligible ash content of 0.23±0.01wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. PMID:25278112

Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

2015-02-01

302

Upgrading of oil palm wastes to animal feeds  

International Nuclear Information System (INIS)

A huge amount of agricultural wastes are discarded or burned causing the serious environmental pollution problems in the world. Upgrading of these wastes into useful end-products is suggested not only to recycle the agro-resources but also to reduce pollution. Empty fruit bunch (EFB), stalk material after fruit stripping, is a major cellulosic waste of the palm oil industry. The current availability of EFB in Malaysia is estimated to be 3 million tones per year. EFB is normally incinerated to produce bunch ash. Burning and incineration processes emit considerable amount of smokes and pollutants thus affecting surrounding areas. Recently, it has been realized that there is a need to utilize these by-products effectively in order to improve the economic situation of the oil palm industry as well as to reduce pollution problems. EFB is a valuable and useful biomass. This paper describes the production of animal feed and mushroom from oil palm wastes by radiation and fermentation treatment. The process is as follows: decontamination of microorganisms in fermentation media of EFB by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 30 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, Coprinus cinereus and Pleurotus sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased and the crude fiber content decreased after solid state fermentation. P.sajor-caju was suitable for the mushroom production on EFB with rich bran and the residue can be used as the ruminant animal feeds. It is expected that the process is applicable to other cellulosic wastes such as sugar cane bagasse, rice straw, etc. produced in other Asian countries, and contribute to reduce the environmental pollution problems. (author)

303

How the palm oil industry is cooking the climate  

Energy Technology Data Exchange (ETDEWEB)

Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands may trigger a 'climate bomb'.

NONE

2007-11-15

304

Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array  

Directory of Open Access Journals (Sweden)

Full Text Available Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA and triacylglycerol (TAG assembly, along with the tricarboxylic acid cycle (TCA and glycolysis pathway at 16 Weeks After Anthesis (WAA exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01, and rice (p-value < 0.01 arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01 throughout mesocarp development to transcriptome (RNA sequencing data, and improved correlation over quantitative real-time PCR (qPCR (r2 = 0.721, p < 0.01 of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

Yick Ching Wong

2014-11-01

305

Devolatilization studies of oil palm biomass for torrefaction process optimization  

International Nuclear Information System (INIS)

Torrefaction of palm biomass, namely Empty Fruit Bunch (EFB) and Palm Kernel Shell (PKS), was conducted using thermogravimetric analyser (TGA). The experiment was conducted in variation of temperatures of 200 °C, 260 °C and 300 °C at a constant residence time of 30 minutes. During the torrefaction process, the sample went through identifiable drying and devolatilization stages from the TGA mass loss. The percentage of volatile gases released was then derived for each condition referring to proximate analysis results for both biomass. It was observed an average of 96.64% and 87.53 % of the total moisture is released for EFB and PKS respectively. In all cases the volatiles released was observed to increase as the torrefaction temperature was increased with significant variation between EFB and PKS. At 300°C EFB lost almost half of its volatiles matter while PKS lost slightly over one third. Results obtained can be used to optimise condition of torrefaction according to different types of oil palm biomass.

306

Devolatilization studies of oil palm biomass for torrefaction process optimization  

Science.gov (United States)

Torrefaction of palm biomass, namely Empty Fruit Bunch (EFB) and Palm Kernel Shell (PKS), was conducted using thermogravimetric analyser (TGA). The experiment was conducted in variation of temperatures of 200 °C, 260 °C and 300 °C at a constant residence time of 30 minutes. During the torrefaction process, the sample went through identifiable drying and devolatilization stages from the TGA mass loss. The percentage of volatile gases released was then derived for each condition referring to proximate analysis results for both biomass. It was observed an average of 96.64% and 87.53 % of the total moisture is released for EFB and PKS respectively. In all cases the volatiles released was observed to increase as the torrefaction temperature was increased with significant variation between EFB and PKS. At 300°C EFB lost almost half of its volatiles matter while PKS lost slightly over one third. Results obtained can be used to optimise condition of torrefaction according to different types of oil palm biomass.

Daud, D.; Abd Rahman, A.; Shamsuddin, A. H.

2013-06-01

307

Large estragole fluxes from oil palms in Borneo  

Digital Repository Infrastructure Vision for European Research (DRIVER)

During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mg m?2 h?1 and 3.2 ppbv for mean midday fluxes and mixing ratios, respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainfo...

Misztal, P. K.; Owen, S. M.; Guenther, A. B.; Rasmussen, R.; Geron, C.; Harley, P.; Phillips, G. J.; Ryan, A.; Edwards, D. P.; Hewitt, C. N.; Nemitz, E.; Siong, J.; Heal, M. R.; Cape, J. N.

2010-01-01

308

Tool Wear Characteristics of Oil Palm Empty Fruit Bunch Particleboard  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A series of machining experiments on the Oil-Palm Empty Fruit Bunch (OPEFB) particleboard were carried out using a CNC router, to evaluate the tool wearing properties of the composite in comparison to the conventional wood-material particleboard. A single-fluted tungsten-carbide router bit (12 mm ?, 18 000 rpm), with a rake angle of 15° was used in this experiment, in which the depth of cut was 1.5 mm and feed speed was 4.5 m min-1. The router bit machined the edge of the board, ...

Jegatheswaran Ratnasingam; Tee Chew Tek; Saied Reza Farrokhpayam

2008-01-01

309

UV-curable acrylated coating from epoxidized palm oil  

Science.gov (United States)

The properties of coating film prepared from the incorporation of acrylated palm oil (EPOLA) in commercial epoxy acrylate have been studied. A series of different amount of EPOLA was mixed with commercial epoxy acrylate. The blended acrylates passed through UV light to produce a non-tacky film. The conversion of acrylate double bond was monitored by FTIR. The effect of EPOLA concentration onto coated films were investigated by determination of the pendulum hardness and gel content. The higher the amount of EPOLA, the lower the pendulum hardness and the gel content but to a level acceptable for usage in the high-end applications.

Rahman, Nurliyana Abd; Badri, Khairiah Haji; Salleh, Nik Ghazali Nik

2014-09-01

310

Acetic acid based oil palm biomass refining process  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The invention relates to a process for refining a biomass from empty fruit bunches of oil palm with a dry matter content of 5-95 wt.%, based on the total wt. of the biomass, where the process comprises the subsequent stages of (a) water extn. under atm. pressure conditions and at pH of 5-7, (b) pre hydrolysis with water, steam or a their mixt. at 100°- 200°, and (c) hydrolysis at a pH of < 7. In a further aspect of the invention, one or more valuable byproducts such as for example, vegetabl...

Harmsen, P. F. H.; Keijsers, E. R. P.; Lips, S. J. J.; Dam, J. E. G.; Engelen-smit, N. P. E.

2011-01-01

311

Utilisation of Oil Palm Ash in Foamed Concrete  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study is a part of an on-going research examining the properties of foam concrete when replacing the cement with semi-processed Oil Palm Ash (OPA). Replacements range from 25% to 65% were used for a mix having the mix ratio of (1:2:0.45) and having the target density of 1300kg/m3. All mixes were tested for their strength using the compressive, splitting tensile and flexural strengths up to the age of 28 days. Results show that a 25% replacement level exhibited higher compressive and spli...

Awang H.; Al-Mulali M. Z.; Abdul Khalil H.P.S.; Aljoumaily Z. S.

2014-01-01

312

Crystallisation and Melting Behavior of Methyl Esters of Palm Oil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The methyl esters of palm oil, which consists of saturated and unsaturated esters (0.6 to 95.9% unsaturation) of the C12 to C18 fatty acids, solidify at the two temperature ranges, -52 to -45°C and -24 to 21°C, when the esters are cooled. When the esters are heated, they melt at two distinct temperatures, -25 and -33°C and a broad peak at -9 to 28°C. The heating thermograms also showed an exothermic crystallisation peak in between two endothermic melting peaks, indicating the occurrence o...

Foon, Cheng S.; Liang, Yung C.; Dian, Noor L. H. M.; May, Choo Y.

2006-01-01

313

Palm Oil Factory Wastewater Treatment Using Electrochemical Technique  

International Nuclear Information System (INIS)

A study was carried out to determine the suitability of palm oil factory wastewater treatment using electrochemical technique with stainless steel as both working and counter electrode in 0.1 M NaCl. Treated liquid samples were later analysed using UV-Vis and COD determination. While solid samples formed during the electrolysis process were analyse using FTIR and CHNS analyser. Results obtained showed than electrochemical technique with the above condition able to reduced color and COD level of the wastewater up to 50 % and 80 % respectively after 3 hour electrolysis time with 10 V applied voltage. (author)

314

An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources  

International Nuclear Information System (INIS)

Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: ?Palm oil and related products represent the second largest export of Malaysia. ?Malaysia has an abundance of energy resources, both renewable and non-renewable. ?Forest and oil palm residues are the main renewable energy option for Malaysia. ?Efforts were undertaken to encourage the utilization of renewable resources.

315

Comparative Determination of Antinutritional Factors in Groundnut Oil and Palm Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The research was aimed at determining the degree of antinutritional factors in palm oil and groundnut oil and to know the effect of these factors on the nutritional value of these oils and to know the possible preventive measures. Antinutritional factors are substances found in most food substances which are poisonous to humans and in some ways limit the nutrient availability to the body. The groundnut oil and palm oil were extracted using the soxhlet extraction method. Oxalate and phytate were determined using titration method and aflatoxin was determined using thin layer chromatography. Tannin, trypsin inhibitor, cyanogenic glycosides, hemagglutinin and alkaloids were determined using different procedures. The lethal level of anti-nutritional factors is 50-60 mg/kg for cyanogenic glycosides and phytate and 2.5 g/kg for oxalate and trypsin inhibitor, the lethal doses of these substances were higher compared to the amount that can be possibly found in a food substance at a time from the findings of this research work, groundnut oil contains a higher concentration of the analyzed anti-nutritional factors compared to palm oil.

H.M. Inuwa

2011-08-01

316

Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia  

Science.gov (United States)

The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

2013-11-01

317

A Gate-to-gate Case Study of the Life Cycle Assessment of an Oil Palm Seedling  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting poin...

Muhamad, Halimah; Sahid, Ismail Bin; Surif, Salmijah; Ai, Tan Yew; May, Choo Yuen

2012-01-01

318

Functional palm oil-based margarine by enzymatic interesterification  

DEFF Research Database (Denmark)

Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme was a sn-1, 3 specific lipase and immobilized on granulated silica. The interesterified products were analyzed for triacylglycerol by gas chromatography and solid fat content. C44 and C46 of the substrate were within the range of 0.1-0.3 %, however, after enzymatic interesterification, the TAG contents were increased to 5-14% and 10-18% respectively. The change in the TAG content indicated a presence of enzymatic activity in the substrate, which served as a tool in monitoring the conversion degree of the reaction. Even though the enzymatic interesterification increased the SFC of the products at 5 to 30 ?C, beyond 35 ?C, the SFCs were lower than the substrate. This is a good characteristic since the modification process enabled a reduction in SFC at body temperature. Based on the SFC of the earlier described formulation, POS/PKO/FO (0.55/0.15/0.30, w/w/w %) blend was predicted to have a similar SFC profile as a commercial table margarine.

Ibrahim, Nuzul Amri Bin; Xu, Xuebing

319

Key fuel properties of palm oil alkyl esters  

Energy Technology Data Exchange (ETDEWEB)

Methyl esters of vegetable oils have been successfully evaluated as diesel substitute. In the present study, other alkyl esters, namely ethyl and isopropyl esters of crude palm oil and crude palm stearin were synthesized via chemical transesterification reactions and subsequently evaluated for their fuel properties. Generally, these alkyl esters exhibit higher viscosity (4.4x10{sup -6}m{sup 2}/s-5.2x10{sup -6}m{sup 2}/s) compared to that of petroleum diesel (4.0x10{sup -6} m{sup 2}/s). However, compared to petroleum diesel, these alkyl esters exhibit acceptable gross heat of combustion (39-41 MJ/kg). Originated from renewable origin, the low sulfur content in alkyl esters emits much lower SO{sub 2}. These alkyl esters are much safer than petroleum diesel in terms of safety for storage and transportation as they possess high flash points. They may find applications in the fuel industry besides utilization as oleochemicals. Short communication only. 12 refs., 2 tabs.

Choo Yuen May; Yung Chee Liang; Cheng Sit Foon; Ma Ah Ngan; Chuah Cheng Hook; Yusof Basiron [Malaysian Palm Oil Board (MPOB), Kualalumpur (Malaysia). Engineering Processing Research Division

2005-09-01

320

Spatial Variability of Orange Spotting Disease in Oil Palm  

Directory of Open Access Journals (Sweden)

Full Text Available Orange Spotting (OS disease which is caused by Cadang-Cadang Coconut Viroid (CCCVd is an emerging problem in oil palm. This study was aimed at quantifying the spatial variability of OS disease severity as an effort to augment the effectiveness of OS phytopathometry appraisal. A 4.2 ha study plot was established in a commercial oil palm plantation at Sungai Buloh, Selangor. A total of 587 geo-referenced trees were visually observed for OS disease symptoms. OS disease severity data were first subjected to exploratory analysis and followed by variography and interpolation analyses to assess spatial variability. The incidence OS disease in the study area was 74.3%. Measured OS disease severity ranged from 0-92.3%. The spatial structure of OS disease severity was described by an exponential model with an effective range of 29.1 m. OS disease severity exhibited a strong spatial dependence with a nugget to sill ratio of 0.15. The spatial variability map of OS disease severity revealed spatial clustering of kriged values, where 73% of the study area showed low severity (1-30%, 25% showed moderate severity (30-60% and approximately 2% showed high severity (> 60%. This study demonstrates the utility of geo-spatial information in understanding the OS disease severity scale which could assist in site-specific disease monitoring and intervention.

M.H.A. Husni

2012-01-01

 
 
 
 
321

Isolation and Characterization of Diazotrophic Rhizobacteria of Oil Palm Roots  

Directory of Open Access Journals (Sweden)

Full Text Available Beneficial rhizobacteria were isolated from two different compartments of oil palm roots; the rhizosphere or rhizoplane and the inner root tissues. The root samples were collected from oil palm plantation at Felda Lepar 9, Temerloh Pahang (Block 17, Square 6 (soil pH 4.30; 10:25 0.01M CaCl2. Identification of the isolates was conducted by classical biochemical and physiological tests. Acetylene Reduction Assay (ARA test was also conducted to quantify the ability of the isolates to fix atmospheric N2. Twenty-nine strains of rhizobacteria were isolated from root samples and were maintained aerobically on N-free solid media. Seven of the isolates were identified as Gram negative while the rest were Gram positive. The isolates were successfully identified as Paenibacillus durus (formerly P. azotofixans, Paenibacillus polymyxa, Azospirillum lipoferum, Herbaspirillum seropedicae and Acetobacter diazotrophicus. The N2 fixation capacities of the isolates ranged from 7.0 x 10-12 to 1.0 x 10-8 mol C2H4/cfu/hour.

Azlin, C. O.

2005-01-01

322

Neural Network Model for Oil Palm Yield Modeling  

Directory of Open Access Journals (Sweden)

Full Text Available This research presents a study on the development of a model for oil palm yield using neural network approach. The structure of this neural network requires the identification of the input variables and the output. We identified that the percentages of nitrogen, phosphorus, potassium, calcium and magnesium in leave were used as input variables and fresh fruit bunch was used as the target variable. An investigation of the combinations of activation function in the input layer to the hidden layer and the hidden layer to the output layer found that each combination also affects the neural network performance. The effect of the learning rate, momentum term, number of runs and number of hidden nodes was also investigated. The number of hidden nodes was found to significantly affect the neural network performance. However, the learning rate, momentum term and number of runs were found to have an insignificant effect on the neural network performance. Using R2 values the suitability of the models were measured. Results demonstrate that the neural network model outperformed regression analysis, which can be considered as alternative in modeling of oil palm yield.

Azme Khamis

2006-01-01

323

Bio-char from treated and untreated oil palm fronds  

Science.gov (United States)

The palm oil industry generates almost 94% of biomass in Malaysia, while other agricultural and forestry by-products contribute the remaining of 6%. Oil palm fronds (OPF) are estimated to be the highest available biomass amounting to 44.84 million tonnes in Malaysia. However, studies on OPF for thermochemical conversion technology which has good potential for energy conversion are still lacking. In this work, pyrolysis of OPF is conducted by using a fixed bed reactor. Samples were carbonized at slow pyrolysis temperature of around 300 to 500°C with heating rate of 10°C min-1. In addition, samples were treated for 20 min with distilled water at ambient temperature to reduce the ash content. Effectiveness of pre-treatment can be determined by observing the percentage of ash content reduction of each sample after undergoing washing pre-treatment. At 300°C, the char yields of the untreated OPF were slightly higher at 50.95% compared to the treated sample at 49.77%. Approximately all bio-char from the treated samples have better high heating value (HHV) of around 18-20 MJ kg-1 compared to the untreated samples. Besides that, all treated OPF char is more carbon rich and considered to be environmental friendly due to its low nitrogen content compared to the untreated OPF char. In this work, microscopic analysis of OPF bio-char were also studied by observing and evaluating their structure surface and morphology.

Sulaiman, Fauziah; Abdullah, Nurhayati; Rahman, Aizuddin Abdul

2013-05-01

324

Catalytic Cracking of Used Palm Oil using Composite Zeolite  

International Nuclear Information System (INIS)

The rapid expansion of human society implies greater energy demand and environmental issues. In face of depletion energy resources, research is being carried out widely in order to convert the plant oil into biofuel. In this research, the production of liquid biofuels via catalytic cracking of used palm oil in the presence of composite zeolite was studied. The performance of composite zeolite of different properties in the reaction has been evaluated. The catalytic cracking reactions were carried out in a batch reactor at reaction temperature of 350 degree Celsius for an hour. In the present study, adjusting the ratio of meso porous coating to microporous zeolite and magnesium loading on composite zeolite catalyst were found to be able to increase the gasoline fraction and overall conversion of the reaction. (author)

325

Prospective study for the production of oleochemicals derivates from palm and palm kernel oil in Colombia  

Directory of Open Access Journals (Sweden)

Full Text Available There are many ways get close to the future, being the prospective the one that concives the future, not like an unique reality but like a multiple one, obtained as a result of the identification of the human being future actions. For all this, the human being takes the knowledge, the yearnings and the fears that he sees for the actions he will undertake. Keeping in mind the characteristic of the palm cultivation (pereninal, of late growth, with a 25 years productive horizon, and the future of the sector captured in "Visión y estrategias de la palmicultura colombiana 2000 - 2020" together with the economic tendencies of the world, the methodology of planning denominated prospective, becomes an appropriate tool to establish the future of the oleochemical sector derived from the palm and palmist oils, which is right now very incipient in our country. Using the prospective, this article outlines the dynamics that will have the sector, starting from the definition of the keys that define the current and future behavior of the system, the position and the power that each one of the involved actors will have, and the determination of the scenarios (future representations will more probability to occur, as well as the definition of the scenario wanted and the strategies that will allow to reach it.

Diana Ibeth Jaimes Moreno

2010-03-01

326

Oil palm fresh fruit bunch ripeness classification based on rule- based expert system of ROI image processing technique results  

Science.gov (United States)

There is a processing need for a fast, easy and accurate classification system for oil palm fruit ripeness. Such a system will be invaluable to farmers and plantation managers who need to sell their oil palm fresh fruit bunch (FFB) for the mill as this will avoid disputes. In this paper,a new approach was developed under the name of expert rules-based systembased on the image processing techniques results of thethree different oil palm FFB region of interests (ROIs), namely; ROI1 (300x300 pixels), ROI2 (50x50 pixels) and ROI3 (100x100 pixels). The results show that the best rule-based ROIs for statistical colour feature extraction with k-nearest neighbors (KNN) classifier at 94% were chosen as well as the ROIs that indicated results higher than the rule-based outcome, such as the ROIs of statistical colour feature extraction with artificial neural network (ANN) classifier at 94%, were selected for further FFB ripeness inspection system.

Alfatni, M. S. M.; Shariff, A. R. M.; Abdullah, M. Z.; Marhaban, M. H.; Shafie, S. B.; Bamiruddin, M. D.; Saaed, O. M. B.

2014-06-01

327

Prospects for Inhibition of lignin degrading enzymes to control ganoderma white rot of oil palm  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm (OP) is prone to a rot by the fungus Ganoderma which may be capable of being controlled by enzyme inhibitors. Palm oil is used in the production of vegetable oil for foods, cosmetics, pharmaceuticals and, most recently, biodiesel. However, the fundamental process of the disease as “white rot” has been ignored by researchers. White rot fungi are capable of degrading lignin ultimately to carbon dioxide and water: Celluloses become available as nutrients for the fungus. One potentia...

Paterson, R. R. M.; Meon, Sariah; Abidin, M. A. Zainal; Lima, Nelson

2008-01-01

328

Enzymatic Biodiesel Synthesis Using a Byproduct Obtained from Palm Oil Refining  

Digital Repository Infrastructure Vision for European Research (DRIVER)

An alternative route to produce biodiesel is based on esterification of free fatty acids present in byproducts obtained from vegetable oil refining, such as palm oil fatty acid distillate (PFAD). PFAD is a byproduct of the production of edible palm oil, which contains 96?wt.% of free fatty acids. The purpose of this work was to study biodiesel synthesis via esterification of PFAD with methanol and ethanol, catalyzed by commercial immobilized lipases (Novozym 435, Lipozyme RM-IM, and Lipozym...

Dos Santos Corre?a, Igor Nascentes; Lorena Souza, Susana; Catran, Marly; Bernardes, Ota?vio Luiz; Portilho, Ma?rcio Figueiredo; Langone, Marta Antunes Pereira

2011-01-01

329

Relationship between Sampling Distance and Carbon Dioxide Emission under Oil Palm Plantation  

Directory of Open Access Journals (Sweden)

Full Text Available A carbon dioxide emission on peatland under oil palm plantation was highly varied due to many factors involved. The objectives of the research were to evaluate the effect of sampling distance from center of oil palm tree on Carbon dioxide flux, and to study the factors that cause variability of carbon dioxide flux on peatland under oil palm plantation. The study was conducted on peatland at Arang-Arang Village, Kumpek Ulu Sub-District, Muaro Jambi District, Jambi Province, on six-years old oil palm plantation. The study was conducted in the form of observational exploratory. Emission measurements were performed on 5 selected oil palm trees at points within 100, 150, 200, 250, 300, 350, and 400 cm from the center of trunk. Carbon dioxide flux was measured using (IRGA, Li-COR 820. The results showed that there was significant correlation between the distance of sampling from center of oil palm tree and Carbon dioxide flux. The farther distance from the tree, the more decreased of Carbon dioxide flux . Before applying fertilizer, variability of soil fertility was not significantly correlated with the flux of Carbon dioxide, so the difference of Carbon dioxide flux based on distance sampling can be caused by root distribution factor. After fertilizer application, variability of Carbon dioxide flux under the oil palm tree were not only affected by differences in root distribution but also greatly influenced by fertilization.

Ai Dariah

2013-05-01

330

Improvement of Murrah Buffalo Milk Production Fed Palm Oil Solid Waste Containing Ration  

Directory of Open Access Journals (Sweden)

Full Text Available A field trial was conducted to study the effect of dietary inclusion of palm oil solid waste on milk production of murrah buffalo raised under palm oil plantation. Two farms from different districts were involved in this study. Forty cows with 7–9 month pregnancy were selected from each farm and they were divided into control and treatment groups. Cows in control group were offered a mixed supplement of 1 kg copra meal + 2 kg fresh grated cassava root + mineral mix and treatments group were offered the control diet + 1 kg palm oil solid waste. The dietary supplement was offered to the cows for 2 months before and 2 months period after calving. The cows were grazed under palm oil plantation. The addition of palm oil solid waste in the diet improved (P<0.05 milk yield (8.5 l/d vs 10.5 l /d, calves weight at birth (19.6 kg vs 22.1 kg and live weight gain of the calves (0.66 kg/d vs 0.99 kg/d. Additional dietary inclusion of palm oil solid waste improved milk yield of murrah buffalo, and further improvement of milk yield was expected to achieve by higher inclusion of palm oil solid waste in the diet.

P. Mahyuddin

2010-08-01

331

Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.  

Science.gov (United States)

Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress. PMID:25480400

Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi

2014-12-01

332

Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.  

Science.gov (United States)

Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ?23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

2014-01-01

333

Energy Contribution of Oil Cakes Used as Fuel in Waste Boilers: Case of an Oil Mill in Cote D’ivoire  

Directory of Open Access Journals (Sweden)

Full Text Available Cote d’Ivoire is the second palm oil producer country in Africa. The oil mills are generally located near the farms which are in rural areas. In fact, Côte d’Ivoire is self-sufficient in electricity; but the electric distribution network is not wide enough. So that it is difficult to access public electricity for most of rural areas. Therefore, to produce electricity traditional fuels group are used. Moreover, the cost of electricity production by turbo-alternators using traditional fuel such as DDO is higher than the cost of electricity produced by the national electrical company. The principal aim of this study is to show that the use of the waste produced by the oil mill can be used as fuel for the production of electricity in order to satisfy the energy needs. Solid waste from a palm oil mill is used as fuel for boilers. Three types of composition are carried out: solid waste only (Fuel 1, oil cake only (Fuel 2, a mixture of solid waste and oil cake (Fuel 3. Physicochemical and energy studies of these fuels have been made. And that allows giving the contribution of oil cake in energy production (superheated steam, electric power in agro industrial unit.

R.K. N Guessan

2010-01-01

334

A Study on Torrefaction of Oil Palm Biomass  

Directory of Open Access Journals (Sweden)

Full Text Available Torrefaction is a thermal pre-treatment process to pre-treat biomass at temperature range of 200-300°C under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass namely hemicellulose, cellulose and lignin. In this study, the torrefaction behaviour of Empty Fruit Bunches (EFB, Palm Mesocarp Fiber (PMF and Palm Kernel Shell (PKS were investigated. The study focuses on the relation between the lignocellulosic constituents with torrefaction process. Two different size ranges of 250-355 ?m and 355-500 ?m were used and then submitted to six final torrefaction temperatures of 200, 220, 240, 260, 280 and 300°C. The process was carried out in a thermogravimetric analyzer coupled with mass spectrometry (TGA-MS. The results implied that torrefaction was strongly depended on the thermal decomposition behaviour and composition of lignocellulosic constituents. The ultimate analysis showed that torrefaction increased the carbon content of torrefied solid, whilst decreased the hydrogen and oxygen content. Based on decomposition temperature, the TGA curves indicated that hemicellulose was more significantly decomposed than cellulose and lignin during torrefaction. Due to higher content of hemicellulose in EFB compared to others, EFB had been decomposed almost completely by torrefaction. From the mass spectrometry study, the percentile compositions of CO, CH4, CO2 and H2 in the gases product were found to be 29-33, 20-23, 1.3-1.9 and 1.7-2.1%, respectively. It can be concluded that torrefaction of oil palm biomass affected by the chemical composition and decomposition temperature of hemicellulose, cellulose and lignin.

Yoshimitsu Uemura

2012-01-01

335

The Growth of One Year-Old Oil Palms Intercropped with Soybean and Groundnut  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The objective of this research was to determine appropriate annual food crops in the areas of a year-old oil palm. Field trials were arranged in a single factor of randomized completely block design. A factor to be tested was the species of annual food crops, namely, soybeans and groundnuts. Controls in this study were monocultures of oil palm, soybean and groundnuts. The results showed that soybean and groundnut could give high yields when planted between rows of one year-old oil palms, w...

Eka Tarwaca Susila Putra; Arif Faisal Simatupang; Sriyanto Waluyo Supriyanta; Didik Indradewa

2012-01-01

336

The feasibility of producing oil palm with altered lignin content to control Ganoderma disease  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm is a major crop which is grown for the production of vegetable oil used in foods, cosmetics and biodiesel. The palm is of major economic importance in southeast Asia where it is grown extensively in Malaysia and Indonesia. There is concern about Ganoderma rots of oil palm which need to be controlled to prevent major infection. However, the basic mechanism of white-rot infection has been ignored. White rot implies that fungi attack the lignin component of woody tissue leaving the whit...

Paterson, R. R. M.; Moen, Sariah; Lima, Nelson

2009-01-01

337

Strategic environmental assessment for sustainable expansion of palm oil biofuels in Brazilian north region  

Energy Technology Data Exchange (ETDEWEB)

Biofuels development in Brazil is a key factor for the environment and sustainable development of the country. Brazil has great potential of available areas and has favourable climate and geography for biofuel production, such as palm oil, soy, sugar cane, etc. This research aims to evaluate palm oil production and expansion in Para state, in the north of Brazil and also Amazonian territory. Degraded land will be evaluated through remote sensing, because palm oil crops should be placed in these lands, and secondly, expansion scenarios would be created. This PhD research will be a decision support tool for public policies.

Carvalho, Carolina

2010-09-15

338

Effects of Palm Oil – Containing Diets on Enzyme Activities of Rats  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The effect of consumption of palm oil diets on plasma activities of some enzymes used as markers of organ function was investigated in rats. Four-week old male albino rats of the Wistar strain (n = 8 per group) were maintained for 28 days on standard dry rat food (4.7% fat by weight) supplemented (10% and 20% by weight) with red palm oil (RPO), refined palm olein (REFPO) and corn oil (CO). In the study, the effects of the various dietary supplements on plasma activities of lipase (EC 3...

Edem, D. O.; Akpanabiatu, M. I.

2006-01-01

339

Performance measurement of the Thai oil palm farms: a non-parametric approach  

Directory of Open Access Journals (Sweden)

Full Text Available The primary purpose of this study is to measure technical efficiency in Thai oil palm farms. The study decomposes technical efficiency into its pure technical and scale components. The data envelopment analysis (DEA approach and farm-level cross-sectional survey data of Thai oil palm farms in 2000 are used. The empirical results provide valuable information on efficiency levels, and also suggest that there are significant possibilities to increase efficiency levels in the Thai oil palm farms. In addition, scale inefficiency makes a greater contribution to overall inefficiency.

Wirat Krasachat

2001-11-01

340

Downdraft Gasification of Oil Palm Frond: Effects of Temperature and Operation Time  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The last years saw a sharp increment in the interest laid on the renewable and the alternative energy sector, mainly due to the depletion of fossil fuel throughout the world for industrial and commercial use. Malaysia is the second largest producer of palm oil, currently holding up to 4.5 million hectares of palm oil plantation in its land. Currently produced at more than 40 million tons a year, only a small portion of Oil Palm Frond (OPF) is used as domestic animals forage and as raw m...

Sulaiman, Shaharin A.; Moni, M. N. Z.

2013-01-01

 
 
 
 
341

Influence of palm oil on the efficacy of glyphosate in the control of Cyperus rotondus L  

International Nuclear Information System (INIS)

The influence of the addition of palm oil to the formulation on the efficacy of glyphosate for the control of Cyperus rotundus was evaluated in the laboratory, glass-house and field. Triton X-100 failed to maintain a stable emulsion of palm oil in the formulation 10 minutes after mixing. In glass-house experiments adding mineral oil and palm oil to the glyphosate spray mixture did not increase the herbicidal efficacy. In general, glyphosate was more effective when sprayed at the volume application rate of 100 L/ha than at 400 L/ha. In contrast to the glass-house studies, in the field trial the addition of palm oil increased the efficacy of glyphosate. (author)

342

Two-component mixture model: Application to palm oil and exchange rate  

Science.gov (United States)

Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

2014-12-01

343

Oil Palm (Elaeis guineensis Roots Response to Mechanization in Bernam Series Soil  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Field practices involving the use of mechanization in oil palm plantations could result in soil compaction which alters the soil physical properties. The gradual deterioration of soil physical conditions could restrict the growth and function of roots. This study was carried out to evaluate the response of oil palm roots to changes in soil physical properties due to mechanization in Bernam series soil belonging to the clay texture class. Approach: Compaction treatments were imposed for 6 consecutive years and a comparison was done on the effects of different trailer weights on oil palm roots growth. Roots and soil were sampled using root and soil augers at 0-30 cm depth from the harvesting and frond pile paths. Results: The results showed that the oil palm roots were affected by the mechanization treatments. Growth of oil palm roots was significantly affected by the 4T trailer weight. Palms in compacted soil produced less primary and secondary roots but this was compensated for by the production of longer and thicker tertiary and quaternary roots. Conclusion: The compaction treatments affect the soil physical properties, which in turn affect the growth and distribution of oil palm roots.

Zuraidah Yahya

2010-01-01

344

Different palm oil production systems for energy purposes and their greenhouse gas implications  

International Nuclear Information System (INIS)

This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to biodiesel and the associated GHG emissions are also studied. This study follows the methodology suggested by the Dutch Commission on Sustainable Biomass (Cramer Commission). The results demonstrate that land use change is the most decisive factor in overall GHG emissions and that palm oil energy chains based on land that was previously natural rainforest or peatland have such large emissions that they cannot meet the 50-70% GHG emission reduction target set by the Cramer Commission. However, if CPO production takes place on degraded land, management of CPO production is improved, or if the by-product PFAD is used for electricity production, the emission reduction criteria can be met, and palm-oil-based electricity can be considered sustainable from a GHG emission point of view. Even though the biodiesel base case on logged-over forest meets the Cramer Commission's emission reduction target for biofuels of 30%, other cases, such as oil palm plantations on degraded land and improved management, can achieve emissions reductions of more than 150%, turning oil palm plantations into carbon sinks. In order for bioenergy to be sustainably produced from palm oil and its derivatives, degrad from palm oil and its derivatives, degraded land should be used for palm oil production and management should be improved

345

Fungal degradation of oil palm cellulosic wastes after radiation pasteurisation  

Energy Technology Data Exchange (ETDEWEB)

The fungal degradation ability was appreciated for upgrading of oil palm cellulosic wastes. In this work, Empty Fruit Bunch (EFB) and Palm press Fiber (PPF) were fermented in an attempt to upgrade to animal feed. However, the heavy contamination of microorganisms in EFB and PPF was observed, and they consist of largely spore forming bacteria and toxigenic moulds of Aspergillus flavus, A. versicolor, A. fumigatus and etc. Therefore, pasteurisation was necessary to be carried out before fermentation, and gamma-irradiation of ca. 10 kGy was employed. Solid-state culture media from EFB and PPF for cultivation of cellulolytic fungi were prepared by addition of some inorganic salts as nitrogen source. The degradation of crude fibre by Coprinus cinereus, Pleurotus species, Aspergillus niger, Trichoderma koningi, and T. viride was obtained in the range between 18 to 76 % after 18 to 20 days cultivation on non-alkali treated cellulosic wastes. C. cinereus could degradate crude fiber more than 50 %, and which resulted in reduction of crude fibre content to 20{approx}28 % and giving to 10-13 % crude protein content. Release of reducing sugars was obtained as 40 to 145 mg glucose/g after saccharification of precultivated alkali-treated EFB by C. cinereus, A. niger, T. knoningi and T. viride. (author).

Ito, Hitoshi; Kume, Tamikazu; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Mat Rasol Awang; Fajah Bt Ali

1990-10-01

346

Using of mucilage palm oil in the toilet soap production.  

Directory of Open Access Journals (Sweden)

Full Text Available Mucilage palm oil (M.P.O. was obtained from physical refining step for crude palm oil. The components of M.P.O. were high content of free fatty acids (82.2% with simple amount of neutral oil (11.9%, while the residual content (unsaponifiable matter and impurities was 2.1% and in addition to 3.8% water. The results indicated that the colours of M.P.O., tallow and palm kemel oil improved after bleaching. Eight soap samples (n.os 1-8 were prepared from bleached fatty blends of mucilage palm oil, tallow and palm kernel oil at different ratios. The results showed that the moisture contents of soap samples n.os 2,7 and 8 were high compared with the standard soap (sample n.os 1, subsequently their total fatty matters became lower than that found in the control soap (sample n.os 1. The findings marked that the unsaponifiable matter of soaps nos 2,7 and 8 were higher compared with the other soaps. No high differences were observed in the free alkali of all soaps (range from 0.06 to 0.09%. On the other hand, high differences were found in the free oil of all soap samples (n.os2-8 compared with the standard soap (sample nos 1, except soap samples n.os2,7 and 8, which record very high. The best soap samples in the colour were in the following increasing order: n.os1 > 3 > 4 > 5 > 6 > 7 > 8 > 2, respectively. The results showed that the better soap samples in the physical properties were in the following increasing order: soap nos 3> soap nos 4> soap n.os 5> soap n.os 6 compared with the standard soap (sample nos 1, where from firm structure with high foam, while the other soap samples (n.os 2,7 and 8 were poor quality (i.e., low lathering properties with deep colours. Therefore, it could be concluded that mucilage palm oil can be used as a new fatty material for toilet soap manufacturing at ratio of 40% from the fatty blend.

Mucilagos de aceite de palma (M.P.O. fueron obtenidos mediante la etapa de refinación física del aceite de palma crudo. Los componentes de M.RO. tuvieron un alto contenido en ácidos grasos libres (82.2% con cantidades pequeñas de aceites neutros (11.9%, mientras que el contenido residual (materia insaponificable e impurezas fue del 2.1% además del 3.8% de agua. Los resultados indicaron que los colores de M.RO., sebo y aceite de almendra de palma mejoraron después de la decoloración. Ocho muestras de jabón (n.os 1-8 fueron preparadas a partir de mezclas grasas decoloradas de mucilagos de aceite de palma, sebo y aceite de almendra de palma en diferentes proporciones. Los resultados mostraron que los contenidos de humedad de muestras de jabones n.os 2,7 y 8 fueron altos comparados con el jabón control (muestra n.° 1, y por tanto su materia grasa total fueron menores que la encontrada en el jabón control (muestra n.° 1. Los resultados señalaron que la materia insaponificable de los jabones n.os 2,7 y 8 fueron mayores que las obtenidas de los otros jabones. No se observaron grandes diferencias en el álcali libre de todos los jabones preparados (rango de 0.06 a 0.09%. Por otra parte, se encontraron grandes variaciones en el aceite libre de todas las muestras de jabones (n.os 2-8 comparadas con el del jabón control (muestra n.° 1, excepto las muestras de jabones n.os 2, 7 y 8, las cuales registraron valores muy altos. Las mejores muestras de jabón en cuanto al color siguieron el siguiente orden creciente: n.os 1>3>4>5>6>7>8>2. Los resultados mostraron que las mejores muestras de jabón en cuanto a las propiedades físicas siguieron el sigui

Girgis, Adel Y.

1999-06-01

347

Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst  

Directory of Open Access Journals (Sweden)

Full Text Available Bio gasoline conversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energy utilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reaction with ?-alumina catalyst. In this research, catalytic cracking reaction of palm oil by ?-alumina catalyst is done in a stirrer batch reactor with the oil/catalyst weight ratio variation of 100:1, 75:1, and 50:1; at suhue variation of 260 to 340oC and reaction time variation of 1 to 2 hour. Post cracking reaction, bio gasoline yield could be obtained after 2 steps batch distillation. Physical property test result such as density and viscosity of this cracking reaction product and commercial gasoline tended a closed similarity. According to result of the cracking product's density, viscosity and FTIR, it can conclude that optimum yield of the palm oil catalytic cracking reaction could be occurred when oil/catalyst weight ratio 100:1 at 340 oC in 1.5 hour and base on this bio gasoline's FTIR, GC and GC-MS identification results, its hydrocarbons content was resembled to the commercial gasoline. This palm oil catalytic cracking reaction shown 11.8% (v/v in yield and 28.0% (v/v in conversion concern to feed palm oil base and produced a 61.0 octane number's bio gasoline.

Anondho Wijanarko

2006-11-01

348

LIPASE-CATALYZED TRANSESTERIFICATION OF PALM KERNEL OIL WITH DIALKYLCARBONATES  

Directory of Open Access Journals (Sweden)

Full Text Available Lipase-catalyzed transesterifications-especially in a solvent-free medium-are important for industrial applications because such systems would have an enormous advantage by avoiding the problem of separation, toxicity and flammability of organic solvents. However, the organic solvent-free alcoholysis, especially methanolysis, does not give high conversions. The same problem also occurs when ethyl or methyl acetate are used as acyl acceptors. The main problems of lipase-catalyzed organic solvent-free alcoholysis are first, the solubility of the plant oil in the substrate or solvent and second, the fact that transesterification is an equilibrium reaction. Dialkyl carbonates, versatile compounds due to their chemical reactivity and physical properties, may provide an alternative to solve both problems. Using dialkyl carbonates transesterification is not an equilibrium reaction, because the intermediate compound immediately decomposes to carbon dioxide and an alcohol. Moreover, dialkyl carbonates (especially dimethyl carbonate are cheap and widely available. For single step lipase-catalyzed transesterification of palm kernel oil, diakyl carbonates (in this case dimethyl and diethyl carbonate gave better yields compared to those of short chain alcohols. The rate of ester formation with dialkyl carbonates as substrate was about 6-7 times higher than that obtained with short chain alcohols. The formation of esters was gradually increased by a higher enzyme amount from 5-20% (w/w of oil for 8 h reaction time. However from the economic point of view, an enzyme amount of 10% on the weight base of oil was proposed for further reaction. Generally, the highest ester formation was observed when a temperature of 60°C was used. However, in the case of dimethyl carbonate little difference was observed at reaction temperatures of 60 and 70oC and the reactions proceeded nearly identically. The esters formation increased drastically up to more than 70% when water was added up to 0.2%. However, ester formation extremely decreased when more than 0.4% water was added. Formation of ester was lower when a hydrocarbon solvent was added to the system compared to that of when dialkyl carbonates were used as substrate and solvent. Candida antarctica in the immobilized was found to be effective for transesterifying palm ker nel oil with short-chain dialkyl carbonates with or without any added organic solvents.

Tjahjono Herawan

2014-01-01

349

The study of palm oil methyl ester and its corrosiveness  

Science.gov (United States)

The present aim of this study is to determine the corrosion effect of palm oil methyl ester (POME) on aluminium alloy 5083 (AA5083). The static immersion test was carried out at 60°C for 68 days according to ASTM G-31-72. The corrosion analysis was done by using weight loss method and electrochemical test. The POME was analyzed by using Fourier Transform Infrared (FTIR) to determine its functional group. The result from weight loss method shows the decreasing in weight loss of AA5083 which signifies the ability of POME to reduce corrosion rate. The electrochemical test shows the decreasing in polarization resistance, Rp while the corrosion current densities, icorr increase. The corrosion rate reduces from 2.250mpy to 0.1946mpy. The low concentration of fatty acid C18:2 and high anti oxidant element contributes to the reduction of corrosion rate of AA5083 in POME.

Sani, W. B. Wan; Samo, K. B.; Da, T. H.; Zulkifli, M. F. R.

2012-06-01

350

Forecasting on Crude Palm Oil Prices Using Artificial Intelligence Approaches  

Directory of Open Access Journals (Sweden)

Full Text Available An accurate prediction of crude palm oil (CPO prices is important especially when investors deal with ever-increasing risks and uncertainties in the future. Therefore, the applicability of the forecasting approaches in predicting the CPO prices is becoming the matter into concerns. In this study, two artificial intelligence approaches, has been used namely artificial neural network (ANN and adaptive neuro fuzzy inference system (ANFIS. We employed in-sample forecasting on daily free-on-board CPO prices in Malaysia and the series data stretching from a period of January first, 2004 to the end of December 2011. The predictability power of the artificial intelligence approaches was also made in regard with the statistical forecasting approach such as the autoregressive fractionally integrated moving average (ARFIMA model. The general findings demonstrated that the ANN model is superior compared to the ANFIS and ARFIMA models in predicting the CPO prices.

Abdul Aziz Karia

2013-03-01

351

Combustion of palm oil solid waste in fluidized bed combustor  

International Nuclear Information System (INIS)

Results of experimental investigations of fluidized bed combustion of palm oil wastes consisting of shell, fibre and empty fruit bunches high heating value of 17450 kJ/kg and low heating value of 14500 kJ/kg. The fluidized bed combuster used has a vessel size of 486 x 106 mm3, surface area of evaporation tubes and distribution air pipes of 500 mm2 and 320 mm2 respectively. It was found that a fuel feeding rate 160 kg/h is required to achieve a steam flow rate of 600 kg/h, with the combustion efficiency 96% and boiler efficiency of 72%, emission level of flue gas NOx at less than 180 ppm, SO2 at less than 20 ppm are measured in the flue gas. (Author)

352

Utilisation of Oil Palm Ash in Foamed Concrete  

Directory of Open Access Journals (Sweden)

Full Text Available This study is a part of an on-going research examining the properties of foam concrete when replacing the cement with semi-processed Oil Palm Ash (OPA. Replacements range from 25% to 65% were used for a mix having the mix ratio of (1:2:0.45 and having the target density of 1300kg/m3. All mixes were tested for their strength using the compressive, splitting tensile and flexural strengths up to the age of 28 days. Results show that a 25% replacement level exhibited higher compressive and splitting tensile strength than that of the control mix at the age of 28 days. However, the same replacement level exhibited a close strength to that of the control mix when tested for the flexural strength at the same age.

Awang H.

2014-01-01

353

Wavelet neural networks applied to pulping of oil palm fronds.  

Science.gov (United States)

In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained. PMID:21996481

Zainuddin, Zarita; Wan Daud, Wan Rosli; Pauline, Ong; Shafie, Amran

2011-12-01

354

Shear strength of oil palm shell foamed concrete beams  

International Nuclear Information System (INIS)

Four reinforced oil palm shell foamed concrete (OPSFC) beams were fabricated, and their shear behaviour was tested. The OPSFC has a target density of approximately 1600 kg/m3 and a 28-day compressive strength of about 20 MPa. Two beams were cast with shear reinforcements while the other two were cast without such reinforcements. For comparison, four reinforced normal weight concrete (NWC) beams were also cast. The beams that contained shear links failed in flexure mode, while those without links failed in shear mode. The experimental results indicated that the shear capacities of OPSFC beams without shear links are higher than those of the NWC beams and exhibit more flexural and shear cracks.

355

Crystallisation and Melting Behavior of Methyl Esters of Palm Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The methyl esters of palm oil, which consists of saturated and unsaturated esters (0.6 to 95.9% unsaturation of the C12 to C18 fatty acids, solidify at the two temperature ranges, -52 to -45°C and -24 to 21°C, when the esters are cooled. When the esters are heated, they melt at two distinct temperatures, -25 and -33°C and a broad peak at -9 to 28°C. The heating thermograms also showed an exothermic crystallisation peak in between two endothermic melting peaks, indicating the occurrence of re-crystallisation of low melting methyl esters into higher melting point crystal and then melt again at higher temperature.

Cheng S. Foon

2006-01-01

356

Physico-chemical characteristics and nutraceutical distribution of crude palm oil and its fractions  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Crude palm oil (CRPO) was dry fractionated at 25 °C to get crude palm olein (CRPOL, 77%) and crude palm stearin (CRPS, 23%). Low and high melting crude palm stearin (LMCRPS 14.3% and HMCRPS 8.7%) were separated by further fractionation of CRPS with acetone. The physico-chemical parameters and nutraceutical distribution showed variation in different fractions. The CRPO contained 514.7 mg·Kg?1 of ?-carotene and 82.6%, 16.1%, 12.5% and 3.1% of it was distributed in CRPOL, CRPS, L...

Prasanth Kumar, P. K.; Gopala Krishna, A. G.

2014-01-01

357

SYNGAS FOR METHANOL PRODUCTION FROM PALM OIL BIOMASS RESIDUES GASIFICATION  

Directory of Open Access Journals (Sweden)

Full Text Available

In Colombia, Biodiesel is produced from palm oil and methanol; this methanol could be obtained from gasification of the raw palm oil residuals. The complete process includes: pre-treatment of the biomass, gasification, the cleaning and conditioning of the gas and finally the synthesis of methanol. In this article, a review of the gasification stage is carried out, a classification of the existent gasification reactors is presented and the characteristics of three types of gasifiers are detailed. Furthermore, a summary of certain chemical and physical requirements of the gas obtained by the gasification process are introduced. Some conditions are highlighted: the ratio hydrogen to carbon monoxide (H2/CO must be close to two and, the quantities of diluted nitrogen, sulphur and water in the gas must be low. Keeping in mind these characteristics we proceeded to recommend the gasifier and gasification medium convenient for the results preferred. Finally, a chemical equilibrium – fluid dynamic model is introduced to estimate the composition of the gas produced and to study the effect of the temperature and operation pressure in the quality of the gas produced. The gasification process considers a fluidized bed gasifier and the simulated results are compared with experimental data. The results showed that the simulation approach accurately represents the gasification process and allows considering the simulation for some other biomass residues.

Antonio Jose Bula

2012-06-01

358

Preliminary Study of Moulded Laminated Veneer Oil Palm (MLVOP  

Directory of Open Access Journals (Sweden)

Full Text Available This research was undertaken to study the suitability of oil palm trunk to be utilized as a raw material for moulded laminated veneer oil palm (MLVOP.  The trunks were converted into veneers by rotary peeling machine.  The veneers were segregated into two veneer qualities namely superior (S and inferior (I. The methods of segregating veneers quality were defined. The superior veneers were obtained by peeling the billets until their diameters left approximately 12 inches, meanwhile the inferior veneers were obtained by further peeling the same billets used for obtaining superior veneers until their diameters left 4 inches. The mean densities for superior veneer as well as inferior veneer were about 478.8 kg/m3 and 385.1 kg/m3 respectively.  The mean moisture content of both superior and inferior veneers was approximately 11%. The veneers were arranged with 5 layers into three types of moulded shapes of furniture components namely i 100% S ii alternate S and I and iii surface S & core I. The suitable pressure, temperature and time were set as important parameters. The arrangements of veneer quality were pressed using V-shape mould through hot press machine with three parameters pressure 1500 psi, 2000 psi and 2500 psi. Two types of adhesives namely UF and PF were used to produce MLVOP. The mechanical properties of the composites were tested with three bending types i.e. flat bending, type-V bending, and type-OV in accordance with BS EN 310:1993. The results showed that most of the samples bonded with UF-resin have better strengths (MOR and MOE when tested with the three bending tests compared to the samples bonded with PF-resin. However, the results vary depends on the veneer arrangements.

Izran Bin Kamal

2011-08-01

359

Use of waste ash from palm oil industry in concrete.  

Science.gov (United States)

Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively. PMID:16497498

Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

2007-01-01

360

CELLULOSE PHOSPHATE FROM OIL PALM BIOMASS AS POTENTIAL BIOMATERIALS  

Directory of Open Access Journals (Sweden)

Full Text Available The present study investigates cellulose phosphate from oil palm biomass (OPEFB-CP as a potential biomaterial. To this effect, oil palm biomass microcrystalline cellulose (OPEFB-MCC was phosphorylated using the H3PO4/ P2O5/ Et3PO4/ hexanol method. Characterization of OPEFB-CP was performed using Scanning Electron Microscopy (SEM, Energy Dispersive X-ray (EDX, Fourier Transform Infrared (FTIR spectroscopy, thermogravimetry (TG, and X-ray diffraction (XRD. The cytotoxicity evaluation of OPEFB-CP was conducted on mouse connective tissue fibroblast cells (L929 using MTS Assay analysis, and the proliferation rate of OPEFB-CP on L929 was assessed by the indirect extraction method, whilst mineralization assessment was carried out by immersion of the material in Simulated Body Fluid (SBF for 30 days. Disruption of the crystalline structure of OPEFB-MCC, changes in surface morphology of OPEFB-CP, the presence of new FTIR peaks on OPEFB-CP at 2380 cm-1 and 1380 cm-1, and a smaller rate of mass loss of OPEFB-CP are indications of a successful grafting of phosphate groups. OPEFB-CP showed non-cytotoxic in vitro biocompatibility after 72h exposure with an IC-50 value 45mg/mL and a proliferation rate of up to 8 days with no change in cells morphology below the IC-50 concentration. Apatite formation was observed on OPEFB-CP surfaces after 30 days in SBF with a Ca:P ratio of 1.85.

Wan Rosli Wan Daud

2011-03-01

 
 
 
 
361

Formulation and characterization of palm oil esters based nano-cream for topical delivery of piroxicam  

Directory of Open Access Journals (Sweden)

Full Text Available

Palm oil esters are high molecular weight esters oil that has been newly synthesized by University Putra Malaysia researchers. It has received a lot of attention for its pharmaceutical and chemical application. Piroxicam is a nonsteroidal anti-inflammatory drug with analgesic and antipyretic activity. It has low solubility in water as well as in oil with Log P value of 1.8. Generally, drugs with Log P value of more than 0.5 are needed to be formulated into a modified dosage form. One of these formulations is nano sized cream. Hence, the ability of formulating of these tricky drugs into dispersed system is questionable. The aim of this study is to investigate the ability of palm oil esters to be the oil phase for formulation of piroxicam into O/W nano-cream. Three points were selected from prepared pseudoternary diagram of palm oil esters and different Tween and Span mixtures. Piroxicam solubility and partition coefficient in oil and external phase was detected. Rheological properties, droplet size, structural properties and zeta potential of the dispersion system containing piroxicam were measured. O/W cream was formed with droplet size measurement by TEM of less than 100 nm. It could be concluded that palm oil esters is suitable oil for the formulation of suitable nano-cream containing piroxicam.

Keywords: Palm oil esters; Piroxicam Solubility; partition coefficient; Rheology; Surface activity.

Muthanna F. Abdulkarim

2011-04-01

362

Effect of fertilizer application on yield of oil palm  

Directory of Open Access Journals (Sweden)

Full Text Available The effects of fertilizer application rates on leaf nutrient contents and yield of oil palm were investigated at the Agricultural and Technological College Plantation in Trang province during May 1998 - June 2001. A five-year-old oil palm plantation, planted on the Na Tham soil series (Fine loamy, mixed, isohyperthermic Oxic Plinthudults with spacing 9x9x9 m, was selected for study. A randomized complete block designwith three replications with 20 palms/replication was used. The treatments included six different rates of fertilizer application. The rates of fertilizer were as follows: T1 (farmer practice, T2 (40% of application rate in T4, T3 (70% of application rate in T4, T4 (urea 2,750 g/plant; triple super phosphate 1,500 g/plant; potassium chloride 4,000 g/plant; kieserite 1,000 g/plant; borate 80 g/plant, T5 (130% of application rate in T4 and T6 (170% of application rate in T4. The high leaf nutrient contents of N, P and K at the range of 2.6-2.8%, 0.16-0.18% and 1.13-1.18%, respectively, were found in the high nutrient application rate treatments (T5, T6. However, the amounts of leaf Ca and Mg in T5 and T6 decreased from 0.75-0.80% and 0.33- 0.37% at the beginning of experiment to 0.65-0.70% and 0.22-0.24%, respectively, at the end of the experiment. Small increases of leaf sulphur and boron up to about 0.20-0.22% and 16-19 mg/kg were also found in the high rate of fertilizer treatments. Accumulated fresh fruit bunch yield (FFB increased according to increasing rate of fertilizer application. Accumulated FFB yield of 268.4 kg/plant in the low fertilizer rate (T1 (farmer practice and 278.8 kg/plant in T2 were found compared with the highest yield of 370.2 kg/plant in the highest fertilizer application treatment (T6 for the 3 years experiment. Regarding the economic return, the medium rate of fertilizer application (T3 which achieved an accumulated FFB yield of 338.0 kg/ plant gave the highest profit with the VCR (Value: Cost ratio of 2.53.

Eksomtramage, T.

2001-11-01

363

Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch  

Directory of Open Access Journals (Sweden)

Full Text Available Ripeness classification of oil palm fresh fruit bunches (FFBs during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.

Haidi Ibrahim

2012-10-01

364

Mapping palm oil expansion using SAR to study the impact on the CO2 cycle  

Science.gov (United States)

With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO2) emissions. Main causes of CO2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO2 emission in the future.

Pohl, Christine

2014-06-01

365

Topological and thermal properties of polypropylene composites based on oil palm biomass  

International Nuclear Information System (INIS)

Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred

366

Topological and thermal properties of polypropylene composites based on oil palm biomass  

Science.gov (United States)

Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

Bhat, A. H.; Dasan, Y. K.

2014-10-01

367

Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell  

International Nuclear Information System (INIS)

Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min?1 of gas and 10 g min?1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg?1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil. -- Highlights: • Maximum 56 wt% yield of bio-oil was obtained at 550 °C from palm kernel shell. • Two layer of bio-oil was observed up to 500 °C, while it was one layer above 500 °C. • Bio-oil from palm kernel shell provides more than 40% area ratio of phenol in GC–MS analysis. • The calorific value of palm kernel shell bio-oil is higher than other bio-oil

368

Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future  

Energy Technology Data Exchange (ETDEWEB)

For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

2009-08-15

369

Diversity of Macrofungi in Oil Palm Agroforests of Edo State, Nigeria  

Directory of Open Access Journals (Sweden)

Full Text Available A study of mushrooms associated with oil palm agroforests in Edo State, South-South of Nigeria was undertaken. A total of 49 fruit bodies belonging to 26 different species of mushrooms in the divisions Ascomycota and Basidiomycota, class Gasteromycetes, Discomycetes, Hymenomycetes were recorded from the study. The order Agaricales, family Tricholomataceae and genus Marasmius were the most abundant and commonly represented taxa. Palm Fronds (PF supported the highest number of mushroom taxa (19% followed by Fallen Palm Tree (FPT, Fruit Bunch (FB and Decomposing Palm Litters (DPL each of which supported 14% of the total species of mushrooms recorded during the study. Mushrooms irrespective of their functional role as natural decomposers were recognised by the study as pivotal to sustainable local agroforest management practices in Nigeria. Oil palm plantations surveyed during the study competes favourably with forests as sources of indigenous utility mushrooms.

O.O. Osemwegie

2009-01-01

370

Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method w...

Muniroh, M. S.; Sariah, M.; Abidin, M. A. Zainal; Lima, Nelson; Paterson, R. R. M.

2014-01-01

371

Developing a Sustainability Framework for the Second Life of Palm Oil Clinker  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Palm oil constitutes a main agricultural commodity for the country, therefore the large quantity of palm oil clinker (POC) produced as a waste at the refineries is not unexpected. Upon the discovery of the rock-like but porous POC as being strong and robust enough as substitutes of aggregates, they have since become popular alternative materials in road pavement and concrete. However, POC is also potentially viable in other civil engineering applications for a second life, and this includes b...

Chee-Ming Chan Alina Shamsuddin

2012-01-01

372

The drive for accumulation: environmental contestation and agrarian support to Mexico's oil palm expansion  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm expansion has been related to rural dispossession, environmental degradation and rural resistance. This paper explores the politics and impact of farmer-based oil palm expansion in Chiapas, Mexico. In relation to the debate on the greening of the agrarian question, this paper engages with the theses of ‘environmentalism of the poor’ and ‘green grabbing’ and point at the problematic centrality of the concept of ‘enclosure’ in these theories. The authors argue that in absen...

Castellanos Navarrete, A.; Jansen, K.

2013-01-01

373

Characterization and phylogenetic analysis of biosurfactant-producing bacteria isolated from palm oil contaminated soils  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Biosurfactant-producing bacteria were isolated from 89 different soil samples contaminated with palm oil in 35 palm oil industry sites in the south of Thailand. The phylogenetic diversity of the isolates was evaluated by 16S rRNA gene analysis. Among 1,324 colonies obtained, 134 isolates released extracellular biosurfactant when grown on low-cost substrates by a drop collapsing test. Among these, the 53 isolates that showed the highest biosurfactant production on different substra...

Kanokrat Saisa-ard; Atipan Saimmai; Suppasil Maneerat1

2014-01-01

374

Environmental and Social Impacts of Oil Palm Plantations and their Implications for Biofuel Production in Indonesia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper reviews the development of oil palm with linkages to biofuel in Indonesia and analyzes the associated environmental and socioeconomic impacts. We selected three plantation study sites in West Papua (Manokwari), West Kalimantan (Kubu Raya), and Papua (Boven Digoel) to assess the impacts. Research findings indicate that the development of oil palm in all three sites has caused deforestation, resulting in significant secondary external impacts such as water pollution, soil erosion, an...

Heru Komarudin; Rubeta Andriani; Krystof Obidzinski; Agus Andrianto

2012-01-01

375

Production of Cellulase from Oil Palm Biomass as Substrate by Solid State Bioconversion  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Solid state bioconversion (SSB) of lignocellulosic material oil palm biomass (OPB) generated from palm oil industries as waste was conducted by evaluating the enzyme production through filamentous fungus in lab-scale experiment. OPB in the form of empty fruit bunches (EFB) was used as the solid substrate and treated with the fungus Trichoderma harzianum to produce cellulase. The results presented in this study revealed that the higher cellulase activity of 0.0413 un...

Alam, Md Z.; Nurdina Muhammad; Mahmat, Mohd E.

2005-01-01

376

Determination of the Equilibrium Moisture Content of Oil Palm Fronds Feedstock for Gasification Process  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Malaysia has abundant, but unutilized oil palm fronds waste. The lack of knowledge on the characteristics of biomass is considered as one of the barriers for not utilizing it as a source of energy. Particularly, determining the moisture content of biomass and reducing it to the required level for the use of thermochemical processes, have remained as a major concern. In this study, the hygroscopic nature of oil palm fronds was investigated and the equilibrium moisture content in a specif...

Atnaw, S. M.; Moni, M. N.; Sulaiman, S. A.; Guangul, F. M.; Konda, R. E.

2013-01-01

377

Biological Pretreatment of Oil Palm Fr ond Fiber Using White-Rot Fungi for Enzymatic Saccharification  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm frond is one type of lignocellulosic biomass abundantly and daily available in Indonesia. It contains cellulosewhich can be converted to glucose, and further processed to produce different kinds of value –added products. The aimof this research is to study the effects of biological pretreatment of oil palm frond (OPF) fiber using Phanerochaete chrysosporium andTrametes versicolor on the enzymatic saccharification of the biomass. The OPF fiber (40-60 mesh sizes) was inoculated with ...

Haznan Abimanyu; Achmad Hanafi; Yanni Sudiyani; Dyah Styarin; Lucky Risanto; Sita Heris Anita; Euis Hermiati

2013-01-01

378

Phase Behaviour of Palm Oil Fatty Acid Components in Supercritical Carbon Dioxide  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In the supercritical CO2 method of extraction of palm oil, many processes in conventional method, such as degumming, deodorization, refining and bleaching processes, are eliminated. The supercritical method allows palm oil to be extracted and fractionated simultaneously, which not only reduces the cost of processing, but also provides a more environmental-friendly processing alternative. In this research, the high-pressure phase behaviour of the binary system between supercritical carbon diox...

Jamilul Firdaus Jamal Abd Nasir; Mohd Omar Abd Kadir; Norhashimah Morad

2012-01-01

379

Food Security and Emerging Innovations in Oil Palm Production in Osun State, Nigeria  

Directory of Open Access Journals (Sweden)

Full Text Available Given its enormous yield per hectare and high productivity cycle, Oil palm is considered as a stabilizing crop to global food security especially in developing countries. However, in recent years, the domestic consumption of palm oil in West Africa including Nigeria has increased more rapidly than its production with the vast majority of the farmers working at near subsistence level and employing crude production and processing techniques. This study therefore appraised the impact of emerging innovations on oil palm production in Osun state, Nigeria. Specifically, the research examined the emerging innovations in oil palm production, the impact of such innovations on the level of the farmer’s output and the factors affecting farmers’ acceptability of innovations. A three stage random sampling technique was used to collect data from 100 oil palm farmers using a well structured questionnaire out of which 90 was found useful for the study. Descriptive statistics, T test analysis and the logistic regression model were the analytical tools employed for the study. The result of the analyses showed that there are some emerging innovations in oil palm production in the study area; however, the indigenous technologies still dominates. Farmers who employed modern technologies were found to have higher output when compared to those of indigenous technologies. Farmers’ age and level of education were identified as the major factors affecting the acceptability of innovation in the study area. It is therefore recommended that the government should invest more on adult education and there should be increased awareness on the need to embrace modern technologies and innovations for the transformation of the oil palm industry in the country and consequently raise farmers’ standard of living. Younger people should also be encouraged to go into oil palm production.

F.I. Olagunju

2012-01-01

380

THE POTENTIAL OF OIL PALM TRUNK BIOMASS AS AN ALTERNATIVE SOURCE FOR COMPRESSED WOOD  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Compressed wood, which is formed by a process that increases the wood’s density, aims to improve its strength and dimensional stability. Compressed wood can be used in building and construction, especially for construction of walls and flooring. Currently, supplies of wood are becoming limited, and the oil palm tree has become one of the largest plantation species in Malaysia. Oil palm trunk could be an appropriate choice for an alternative source for compressed wood. This paper aims to rev...

Othman Sulaiman,; Nurjannah Salim,; Noor Afeefah Nordin,; Rokiah Hashim; , Mazlan Ibrahim,; Masatoshi Sato,

2012-01-01

 
 
 
 
381

ASSESSMENT OF OIL PALM PLANTATION AND TROPICAL PEAT SWAMP FOREST WATER QUALITY BY MULTIVARIATE STATISTICAL ANALYSIS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study reports the spatio-temporal changes in river and canal water quality of peat swamp forest and oil palm plantation sites of Sarawak, Malaysia. To investigate temporal changes, 192 water samples were collected at four stations of BatangIgan, an oil palm plantation site of Sarawak, during July-November in 2009 and April-July in 2010. Nine water quality parameters including Electrical Conductivity (EC), pH, Turbidity (TER), Dissolved Oxygen (DO), Temperature (TEMP), Chemical Oxygen Dem...

Seca Gandaseca; Noraini Rosli; Mohammad Shawkat Hossain; Chandra Imam Arianto

2014-01-01

382

Comparison of the Effects of Supplemental Red Palm Oil and Sunflower oil on Maternal Vitamin A Status.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Conflicting results have been reported on the ability of dietary carotenoids to improve vitamin A status in lactating women. Red palm oil is one of the richest dietary sources of beta-carotene. We aimed to determine the efficacy of red palm oil in increasing retinol and provitamin A status in pregnant and lactating women. Ninety rural, pregnant Tanzanian women from 3 randomly selected villages were recruited during their third trimester to participate in 3 dietary intervention groups: a contr...

Lietz, G.; Henry, C. J.; Mulokozi, G.; Mugyabuso, J. K.; Ballart, A.; Ndossi, G. D.; Lorri, W.; Tomkins, A.

2001-01-01

383

Land-Use Implications to Energy Balances and Greenhouse Gas Emissions on Biodiesel from Palm Oil Production in Indonesia  

Directory of Open Access Journals (Sweden)

Full Text Available The objectives of this study are to identify the energy balance of Indonesian palm oil biodiesel production, including the stages of land use change, transport and milling and biodiesel processing, and to estimate the amount of greenhouse gas emissions from different production systems, including large and small holder plantations either dependent or independent, located in Kalimantan and in Sumatra. Results show that the accompanied implications of palm oil biodiesel produced in Kalimantan and Sumatra are different: energy input in Sumatra is higher than in Kalimantan, except for transport processes; the input/output ratios are positive in both regions and all production systems. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6 to 49.2 GJ t-1 biodiesel yr-1 as well as greenhouse gas emissions (1969.6 to 5626.4 kg CO2eq t-1 biodiesel yr-1. The output to input ratios are positive in all cases. The largest greenhouse gas emissions result from land use change effects, followed by the transesterification, fertilizer production, agricultural production processes, milling and transportation. Ecosystem carbon payback times range from 11 to 42 years.

Soni HARSONO

2013-06-01

384

The Relationship between Palm Oil Quality Index Development and Physical Properties of Fresh Fruit Bunches in the Ripening Process  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil palm (Elaeis guineensis) is the most important tree crop in the rural economy of the humid rainforest of Malaysia. The oil is consumed as household food, used domestically for industrial purposes, and an important foreign exchange earning export. Normally, oil palm will be harvested after four years of planting. The oil palm yield will increase variously until the tenth year of planting. The yield will then remains at a stable stage until the twenty-fifth year. The maturity and palm oil d...

Afshin Keshvadi; Johari Bin Endan, Haniff Harun

2011-01-01

385

Feasibility of Producing Acceptable Carotene and Energy Rich Taro Crisps with Deep Palm-Oil Frying in Nigeria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Corms of a high yielding taro genotype (NCe006) were used to assess the feasibility of producing acceptable pro vitamin A and energy rich taro crisps after deep oil frying with crude red palm oil. Frying with refined palm oil was used as control. Results showed that the taro crisps produced with the crude palm oil had 44 ?g/g carotene content while the crisps fried with refined palm oil had only 0.77 ?g/g carotene content. Sensory evaluation scores by semi ...

Ukpabi, U. J.; Chijioke, U.; Mbanaso, E. N. A.

2013-01-01

386

Involvement of Inflammation and Adverse Vascular Remodelling in the Blood Pressure Raising Effect of Repeatedly Heated Palm Oil in Rats  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated p...

Ng, Chun-yi; Kamisah, Yusof; Faizah, Othman; Jubri, Zakiah; Qodriyah, Hj Mohd Saad; Jaarin, Kamsiah

2012-01-01

387

Heat-oxidation stability of palm oil blended with extra virgin olive oil.  

Science.gov (United States)

Rancimat induction time of palm oil (PO), several extra virgin olive oils (EV) and their binary blends have been determined at three different temperatures (120, 130 and 140°C). Analytical composition and oxidation stability of PO/EV blends were found to be a linear combination of the oil partners. Induction time of pure PO was always higher than those of EV oils and blends, in which induction time increased proportionally with the percentage of PO. However, induction time of 80% PO blend was similar to that of pure PO. Fatty acid composition appeared to be the most important factor affecting heat-oxidation stability and a saturated/unsaturated ratio near 1 was the optimally stable composition. Conversely, total phenols had a zero or negative role on the oxidative stability of the blends. Finally, in heat-oxidised oils significant losses of polyunsaturated fatty acids and formation of short-chain fatty acids were recorded. PMID:22953920

De Leonardis, Antonella; Macciola, Vincenzo

2012-12-01

388

Stress – Strain Behaviour of an Oil Palm Fibre Reinforced Lateritic Soil  

Directory of Open Access Journals (Sweden)

Full Text Available This paper presents the use of oil palm fibre in the reinforcement of a lateritic soil. The results show considerable improvement in the strength of the reinforced clay soil, with optimum palm fibre content of about 0.7% of the dry weight. However, further increase in fibre content did not significantly affect the strength. Stress-strain curves show inverse relation between peak stress and strain. It is therefore concluded that oil palm fibre cements soil particles and fibre together; thus, promotes stress distribution evenly and improves deformation resistance.

George Rowland Otoko

2014-08-01

389

Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand  

International Nuclear Information System (INIS)

Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transes