WorldWideScience
1

Electrocoagulation of Palm Oil Mill Effluent  

OpenAIRE

Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as we...

Weerachai Phutdhawong; Sengpracha, Waya P.; Agustin, Melissa B.

2008-01-01

2

Electrocoagulation of palm oil mill effluent.  

Science.gov (United States)

Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

Agustin, Melissa B; Sengpracha, Waya P; Phutdhawong, Weerachai

2008-09-01

3

Electrocoagulation of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Electrocoagulation (EC is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME.

Weerachai Phutdhawong

2008-09-01

4

Aerobic treatment of palm oil mill effluent.  

Science.gov (United States)

In this study treatment of palm oil mill effluent (POME) was investigated using aerobic oxidation based on an activated sludge process. The effects of sludge volume index, scum index and mixed liquor suspended solids during the acclimatizing phase and biomass build-up phase were investigated in order to ascertain the reactor stability. The efficiency of the activated sludge process was evaluated by treating anaerobically digested and diluted raw POME obtained from Golden Hope Plantations, Malaysia. The treatment of POME was carried out at a fixed biomass concentration of 3900+/-200mg/L, whereas the corresponding sludge volume index was found to be around 105+/-5mL/g. The initial studies on the efficiency of the activated sludge reactor were carried out using diluted raw POME for varying the hydraulic retention time, viz: 18, 24, 30 and 36h and influent COD concentration, viz: 1000, 2000, 3000, 4000 and 5000mg/L, respectively. The results showed that at the end of 36h of hydraulic retention time for the above said influent COD, the COD removal efficiencies were found to be 83%, 72%, 64%, 54% and 42% whereas at 24h hydraulic retention time they were 57%, 45%, 38%, 30% and 27%, respectively. The effectiveness of aerobic oxidation was also compared between anaerobically digested and diluted raw POME having corresponding CODs of 3908 and 3925mg/L, for varying hydraulic retention time, viz: 18, 24, 30, 36, 42, 48, 54 and 60h. The dissolved oxygen concentration and pH in the activated sludge reactor were found to be 1.8-2.2mg/L and 7-8.5, respectively. The scum index was found to rise from 0.5% to 1.9% during the acclimatizing phase and biomass build-up phase. PMID:16584834

Vijayaraghavan, K; Ahmad, Desa; Ezani Bin Abdul Aziz, Mohd

2007-01-01

5

PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT  

OpenAIRE

The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO) with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB) and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of...

Chiew Wei Puah; Yuen May Choo; Soon Hock Ong

2013-01-01

6

A Study of Biomass Fuel Briquettes from Oil Palm Mill Residues  

OpenAIRE

This study presents a systematic approach in utilizing the large amount of oil palm mill residues that are loosely-bounded and have low energy density. The rate of waste materials (palm kernel shell, palm fiber and empty fruit bunches) generated by oil palm mills amounted to about 34 million tonnes in 2010. Efforts have been made to increase the energy density of the loosely-bounded waste materials, in which solid fuel briquettes made of densified oil palm residues would contribute towa...

Shiraz Aris, M.; Chin Yee Sing

2013-01-01

7

Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills  

OpenAIRE

Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME) into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm o...

Madaki, Yahaya S.

2013-01-01

8

PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT  

Directory of Open Access Journals (Sweden)

Full Text Available The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of Greenhouse Gas (GHG such as methane and carbon dioxide emissions by avoiding the formation of liquid biomass in the form of Palm Oil Mill Effluent (POME. The attributional Life Cycle Assessment (LCA shows the improved milling process contributes to significant reduction of GHG emission from palm oil mills as compared to the process of capturing biogas from POME. The palm based food source contains phytonutrients, namely carotenoids, tocols (tocopherol and tocotrienols and water soluble polyphenols.

Chiew Wei Puah

2013-01-01

9

Co-Composting of Palm Oil Mill Sludge-Sawdust  

OpenAIRE

Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40°C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the pr...

Abu Zahrim Yaser; Rakmi Abd Rahman; Mohd Sahaid Kalil

2007-01-01

10

Coagulation of Palm Oil Mill Effluent (POME) at High Temperature  

OpenAIRE

Aluminum sulfate or alum is traditionally used as a coagulant in wastewater treatment since it has proven its effectiveness in the removal suspended solid. In the current study, coagulation process is used as a pre-treatment to remove the high content of the suspended solids for membrane distillation treatment in raw Palm Oil Mill Effluent (POME) at high temperature. The performance in term of percentage suspended solids removal was evaluated to identify the ...

Ismail, S.; Idris, I.; Ng, Y. T.; Ahmad, A. L.

2014-01-01

11

Potency of Palm Oil Plantation and Mill Byproduct as Ruminant Feed in Paser Regency, East Kalimantan  

OpenAIRE

By-product produced from plantation and palm oil mill can be utilized for energy and protein source of ruminant feed. Thus, it still has potency for further exploration. The objective of the research was to investigate the nutrient value of palm oil plantation and mill’s by-product used to formulate ruminant feed. The research located in 66,118.5 ha of palm oil plantation in Paser regency, East Kalimantan province. The research was carried out in palm oil plantation and mill of PTPN XIII co...

Hamdi Mayulu; Sunarso, S.; Sutrisno, C. I.; Sumarsono, S.; Christiyanto, M.; Isharyudono, K.

2013-01-01

12

A Qualitative Approach of Identifying Major Cost Influencing Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: The oil palm industry, which heavily depends on the world market, is an export oriented industry. Worlds palm oil consumption was growing over the years. In addition, Indonesia and Malaysia dominated the oil palm industry. The oil palm industry in Malaysia is very competitive and become one of the major economic sectors contributing to the total revenue of the country. In year 2009, there was a total of 22.40 million tons of oil palm products including palm oil, palm kernel oil, palm kernel cake, oleo-chemicals and finished products, equivalent to RM 49.59 billion of export revenue. However, cost of production for Crude Palm Oil (CPO varies in a big gap. Therefore, it is essential to identify the major cost influencing factors in the production of CPO. Approach: The study system started with collection of Fresh Fruits Bunches (FFB from oil palm plantation to the production of CPO at palm oil mills. Two palm oil mills of different production capacity were chosen for this study. Statistical analysis was done to identify the major cost influencing factors of production cost for CPO. Results: The production cost of CPO for small scale palm oil mills preferably lied between RM 45 to RM 50 per metric tons while large scale palm oil mills lied below RM 45 per metric tons. Conclusion: Palm oil mills with higher production capacity were efficient in producing CPO than lower production capacity palm oil mills. Thus, the production cost of CPO was lower compared to that of small scale palm oil mills.

Elaine L.Y. Man

2011-01-01

13

Palm Oil Mill Biogas Producing Process Effluent Treatment: A Short Review  

Directory of Open Access Journals (Sweden)

Full Text Available Biogas generation from palm oil mill effluent treatment plant is becoming the future trend for the palm oil millers. Therefore, the efficient treatment of biogas producing process effluent is equally important to minimize the detrimental effect towards human and environment. In addition, stricter regulations in the future, increasing in public awareness and towards water reuse also motivated investigation on this important topic. This study aims to discuss several treatment systems for palm oil mill biogas producing process effluent. Integrated treatment system is vital for treating palm oil mill biogas producing process effluent.

A.Y. Zahrim

2014-01-01

14

Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent  

OpenAIRE

Problem statement: Palm oil mill effluent discharged by the oil palm industries is considered as the mixed of high polluted effluent which is abundant (about 20 million tonnes year-1) and its effect contributes to the serious environmental problems through the pollution of water bodies. Approach: The aim of this study was to identify the potential of low cost substrate such as Palm Oil Mill Effluent (POME) for the production of cellulase enzyme by liquid state bioconversion. The filamentous f...

Daoud, Jamal I.; Alam, Md Z.

2010-01-01

15

Evaluation of Technological Content of Wastewater Treatment of Palm Oil Mill in Lampung Province, Indonesia  

OpenAIRE

Palm oil industry is the most important economic sector in Lampung Province, Indonesia. There are 13 units of palm oil mills (POMs) operating in Lampung, producing about 1,094,586 tons of palm oil mill effluent (POME) a year. So far, the POME has been treated by the ponding system. However, the system has still caused environmental problems due to greenhouse gas emissions. Methane capture technology of which methane is converted to electrical energy is thus proposed. The objective of this stu...

Sarono; Gumbira-sa Id, E.; Ono Suparno; Suprihatin; Udin Hasanudin

2014-01-01

16

The possibility of palm oil mill effluent for biogas production  

Directory of Open Access Journals (Sweden)

Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ?40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

EDWI MAHAJOENO

2008-01-01

17

A Review of Biofilm Treatment Systems in Treating Downstream Palm Oil Mill Effluent (POME)  

OpenAIRE

The palm oil industry is a vital economic backbone of Malaysia since it is one of the world’s largest producer and exporter of palm oil despite creating enormous environmental problems, one being the huge generation of Palm Oil Mill Effluent (POME) during the oil extraction process. This highly polluting wastewater contains high concentrations of Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Due to the high organic content of POME, biol...

Takriff, M. S.; Jaafar, N. L.; Abdullah, S. R. S.

2014-01-01

18

Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach  

OpenAIRE

Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 m...

Vijaya Subramaniam; Ngan, Ma A.; May, Choo Y.; Sulaiman, Nik M. K.

2008-01-01

19

Adsorption of residual oil from palm oil mill effluent using rubber powder  

OpenAIRE

A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME). POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Ma...

Ahmad, A. L.; Bhatia, S.; Ibrahim, N.; Sumathi, S.

2005-01-01

20

Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills  

Directory of Open Access Journals (Sweden)

Full Text Available Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm oil mills operators on current advance POME treatment technology (PTT in relation to achieving zero discharge concepts. The survey attempted to identify the key issues about the PTT in respect to feasibility of zero discharge concepts in palm oil mills. The results shows that, although palm oil mills generate a lot of different types of wastes during processing of Fresh Fruit Bunches, according to the operators and available literature, POME is the most difficult waste to manage. The results also shows that, palm oil mills cannot meet up with the new discharge limits of 20ppm of BOD and zero emission using only conventional open or closed pounding system

Yahaya S. Madaki

2013-10-01

21

Adsorption Chromatography of Carotenes from Extracted Oil of Palm Oil Mill Effluent  

OpenAIRE

Carotenes is one of the most important vitamin A precursor in human nutrition which has numerous advantages. Palm Oil Mill Effluent (POME) is wastewater which consists of carotenes in the oil and grease content. Therefore, adsorption chromatography is used to separate the carotenes from the oil and grease in POME. Several types of adsorbents, temperatures and mass loading were studied in the experiments. The 40°C and oil:adsorbent ratio of 1:5 was recommended to be the most suitable temperat...

Mashitah, M. D.; Abd Shukor, S. R.; Chan, C. Y.; Ahmad, A. L.

2010-01-01

22

Evaluation of Hybrid Membrane Bioreactor (MBR) For Palm Oil Mill Effluent (POME) Treatment  

OpenAIRE

The pollution load of palm oil mill effluent (POME) is in the range of 50,000 mg COD/L. With more than 500 palm oil mills, Malaysia produces some 13.9 million tonnes of crude palm oil annually and generates around 35 x 106 m3 POME. Typically, raw POME is difficult to degrade because it contains significant amounts of oil (tryacylglycerols) and degradative products such as di-and monoacylglycerols and fatty acids. The fatty acids composition (C12 – C20) of each of this fraction are diffe...

Ahmad, Z.; Ujang, Z.; Olsson, G.; Abdul Latiff, A. A.

2009-01-01

23

Palm Oil Mill Biogas Producing Process Effluent Treatment: A Short Review  

OpenAIRE

Biogas generation from palm oil mill effluent treatment plant is becoming the future trend for the palm oil millers. Therefore, the efficient treatment of biogas producing process effluent is equally important to minimize the detrimental effect towards human and environment. In addition, stricter regulations in the future, increasing in public awareness and towards water reuse also motivated investigation on this important topic. This study aims to discuss several treatment systems for palm o...

Zahrim, A. Y.

2014-01-01

24

Phytoremediations of Palm Oil Mill Effluent (POME) by Using Aquatic Plants and Microalge for Biomass Production  

OpenAIRE

Phytoremediation by using aquatic plants and microalgae was evaluated in study to reduce waste load of Palm Oil Mill Effluent (POME). This study was aimed to utilize the aquatic plants i.e. water hyacinth (Eichhornia crassipes) and water lily (Nymphaea sp.) and alga Spriulina sp. to reduce COD and nutrients content in palm oil mill effluent. The phytoremediation was conducted in a sequence process. The aquatic plants were used in the first stage of remediation by varying height of culture (5-...

Danny Soetrisnanto; Marcelinus Christwardana; Hadiyanto

2013-01-01

25

A Study on Zeolite Performance in Waste Treating Ponds for Treatment of Palm Oil Mill Effluent  

OpenAIRE

Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of al...

Shamsul Izhar; Syafiie Syam; Shazryenna Dalang; Halim Shah Ismail, M.

2013-01-01

26

Anaerobic degradation of palm oil mill effluent (POME).  

Science.gov (United States)

The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions. PMID:22105121

Yoochatchaval, W; Kumakura, S; Tanikawa, D; Yamaguchi, T; Yunus, M F M; Chen, S S; Kubota, K; Harada, H; Syutsubo, K

2011-01-01

27

Co-composting of palm oil mill sludge-sawdust.  

Science.gov (United States)

Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components. PMID:19093514

Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

2007-12-15

28

Co-Composting of Palm Oil Mill Sludge-Sawdust  

Directory of Open Access Journals (Sweden)

Full Text Available Composting of Palm Oil Mill Sludge (POMS with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40°C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7. The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.

Abu Zahrim Yaser

2007-01-01

29

Hydrogen production from palm oil mill effluent by fermentation  

Energy Technology Data Exchange (ETDEWEB)

Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

2003-09-01

30

Adsorption Chromatography of Carotenes from Extracted Oil of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Carotenes is one of the most important vitamin A precursor in human nutrition which has numerous advantages. Palm Oil Mill Effluent (POME is wastewater which consists of carotenes in the oil and grease content. Therefore, adsorption chromatography is used to separate the carotenes from the oil and grease in POME. Several types of adsorbents, temperatures and mass loading were studied in the experiments. The 40°C and oil:adsorbent ratio of 1:5 was recommended to be the most suitable temperature and mass loading for separation of carotenes by adsorption chromatography. Silica gel also shows better quality of adsorbent in separation of carotenes in hexane fractions.

M.D. Mashitah

2010-01-01

31

Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt  

OpenAIRE

Problem Statement: Oil palm production is a major agricultural industry in Malaysia. In 2006, palm oil mills in Malaysia produced more than 58 million tonnes of Palm Oil Mill Effluent (POME). Existing treatment in a series of open lagoons at high ambient temperatures, results in the uncontrolled production of methane and carbon dioxide, which are both green house gases (GHGs). With the increased worldwide concern on environmentally friendly production processes particularly the emission of me...

Saifuddin, N.; Fazlili, S. A.

2009-01-01

32

Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.  

Science.gov (United States)

Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose. PMID:24908052

Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali

2014-08-01

33

A Study of Biomass Fuel Briquettes from Oil Palm Mill Residues  

Directory of Open Access Journals (Sweden)

Full Text Available This study presents a systematic approach in utilizing the large amount of oil palm mill residues that are loosely-bounded and have low energy density. The rate of waste materials (palm kernel shell, palm fiber and empty fruit bunches generated by oil palm mills amounted to about 34 million tonnes in 2010. Efforts have been made to increase the energy density of the loosely-bounded waste materials, in which solid fuel briquettes made of densified oil palm residues would contribute towards a more efficient utilization of the waste material. This work focused on determining a fuel briquette with an optimum ratio of waste materials mixtures that has considerably high heating value and good mechanical properties. As part of the densification process, the waste material was pulverized and then compacted using a 200 kN force into 40 mm diameter briquettes. The heating values, proximate analysis, ultimate analysis and burning profile of the briquettes were studied. The end result was an optimised solid fuel with relatively high energy content made from a suitable mixing ratio of the different palm oil mill residues and an appropriate binder to ensure acceptable mechanical strength.

M. Shiraz Aris

2013-01-01

34

Potency of Palm Oil Plantation and Mill Byproduct as Ruminant Feed in Paser Regency, East Kalimantan  

Directory of Open Access Journals (Sweden)

Full Text Available By-product produced from plantation and palm oil mill can be utilized for energy and protein source of ruminant feed. Thus, it still has potency for further exploration. The objective of the research was to investigate the nutrient value of palm oil plantation and mill’s by-product used to formulate ruminant feed. The research located in 66,118.5 ha of palm oil plantation in Paser regency, East Kalimantan province. The research was carried out in palm oil plantation and mill of PTPN XIII comprising productive plants (TM in +14,000 ha arranged in 9 divisions (afdeling. Measured variables consisted of: 1 dry mass production (mass of midrib every cutting and frond (kg;                        2 Centrosema sp mass production (kg; 3 mass of empty fruit bunches (kg; palm pressed fiber (PPF (kg, palm kernel cake (PKC (kg dan palm oil sludge (POS (kg; 4 nutrient content analyzed under proximate analysis in accordance with the procedure of Ruminant Feed Nutrient Laboratory, Faculty of Livestock, Diponegoro University. The result showed that total dry matter (DM production was 14.82 ton/ha/year, consisting: midrib 29.09% (crude protein (CP 3.16% and crude fiber (CF 37.85%, frond 10.31% (CP 6.53% dan CF 30.39%, Centrosema sp. 2.48% (CP 22.58% and CF 35.12, EFB 24.31% (CP 7.01% and CF 40.22%, PPF 1.23% (CP 5.56% and CF 50.36%, PKC 1.29% (CP 15.49% and CF10.45 and POS 1.20% (CP 17.86% and CF 45.99%. This could be concluded that palm oil plantation and mill’s by-product was recommended for ruminant feed as it had huge amount and appropriate nutrient contentDoi: 10.12777/ijse.5.2.56-60 [How to cite this article: Mayulu, H., Sunarso, C. I. Sutrisno, Sumarsono, M. Christiyanto, K. Isharyudono. (2013.  Potency of Palm Oil Plantation and Mill Byproduct as Ruminant Feed in Paser Regency, East Kalimantan, 5(2,56-60. Doi: 10.12777/ijse.5.2.56-60

Hamdi Mayulu

2013-10-01

35

Screening of thermotolerant microorganisms and application for oil separation from palm oil mill wastewater  

Directory of Open Access Journals (Sweden)

Full Text Available The characteristics of palm oil mill wastewater (POMW were brown color, pH 3.8-4.3, temperature 48-55oC, total solids 68.2-82.1 g/l, suspended solids 26.2-65.6 g/l, oil and grease 19.1-25.1 g/l, COD 49.9-160.7g/l and BOD 32.5-75.3 g/l. After centrifugation (3,184 xg of 50 ml POMW for 10 min, the POMW was separated into 3 layers: top (oil, middle (supernatant and bottom layer (sediment. The sediment containeddry weight 1.19 g and oil and grease 1.07 g. In order to release oil and grease trapped in palm fiber debris in the POMW, cellulase- and/or xylanase-enzyme-producing and thermotolerant microorganisms wereisolated. The isolates SO1 and SO2 were isolated from soil near the first anaerobic pond of the palm oil mill. They were aerobic, Gram positive, rod shaped, thermotolerant microorganisms and produced cellulase 12.11 U/ml (3 days and 7.2 U/ml (4 days, and xylanase 50.98 U/ml (4 days and 20.42 U/ml (4 days, respectivelyin synthetic medium containing carboxymethycellulose as a carbon source. When these 2 isolates were added into the steriled POMW under shaking condition for 7 days, after centrifugation at 3,184 xg the isolate SO1gave the better % reduction of dry weight (64.66 % and of oil and grease in the bottom layer (85.32 % of the POMW.

Aran H-Kittikun

2007-05-01

36

Adsorption of residual oil from palm oil mill effluent using rubber powder  

Scientific Electronic Library Online (English)

Full Text Available A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME). POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing o [...] f sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

A.L., Ahmad; S., Bhatia; N., Ibrahim; S., Sumathi.

2005-09-01

37

Adsorption of residual oil from palm oil mill effluent using rubber powder  

Directory of Open Access Journals (Sweden)

Full Text Available A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME. POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

A.L. Ahmad

2005-09-01

38

Trends and Effective Use of Energy Input in the Palm Kernel Oil Mills  

OpenAIRE

This work aims at studying the importance and the efficiency of energy use in a few palm kernel oil mills selected for their representativity. Pattern of energy use, the cost of energy per unit product, energy intensity and normalized performance indicator (NPI) were determined. Results show that the medium and the large mills depend largely on fossil fuel; while the small mill depends on electricity. It was found out that the large mill has the most effective use of energy with high energy i...

Bamgboye, Ai; Jekanyinfa, So

2007-01-01

39

Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment  

Energy Technology Data Exchange (ETDEWEB)

The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m{sup 2}. Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping. (author)

Yacob, Shahrakbah; Shirai, Yoshihito; Wakisaka, Minato [Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196 (Japan); Ali Hassan, Mohd [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Subash, Sunderaj [Felda Palm Industries Sdn. Bhd., Balai Felda, Jalan Gurney Satu, 54000 Kuala Lumpur (Malaysia)

2006-07-31

40

Carbon Mobilization in Oil Palm Plantation and Milling Based on a Carbon-Balanced Model – A Case Study in Thailand  

OpenAIRE

Damage to agricultural areas and household properties occurs more frequently all year round from extreme weather, which is believed to be due to climate change caused by the increase of greenhouse gases – particularly, CO2. In order to help reduce its concentration in the atmosphere, palm oil is a renewable energy which can be used for this purpose. In this study, the carbon mobilization of palm oil was investigated, from oil palm plantation process to the milling process, so as to determin...

Withida Patthanaissaranukool; Chongchin Polprasert

2011-01-01

41

A Review of Biofilm Treatment Systems in Treating Downstream Palm Oil Mill Effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available The palm oil industry is a vital economic backbone of Malaysia since it is one of the world’s largest producer and exporter of palm oil despite creating enormous environmental problems, one being the huge generation of Palm Oil Mill Effluent (POME during the oil extraction process. This highly polluting wastewater contains high concentrations of Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD. Due to the high organic content of POME, biological treatment method seems to be a preferable solution. Therefore, a series of treatment comprising of fermentation, algae, biofilm and membrane system is proposed as one of the possible option to treat POME. This paper also reviews few configurations and modes of operation of several biofilm treatment systems as well as focusing on the application of a Fluidized Bed Biofilm Reactor (FBBR in treating POME further down the proposed treatment chain.

M.S. Takriff

2014-01-01

42

Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME)  

OpenAIRE

Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME), this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%). The objective of the ...

Ganang Dwi Hartanto; Muhamad Maulana Azimatun Nur; Hadiyanto, H.

2012-01-01

43

High-rate anaerobic treatment of palm oil mill effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil mil effluent (POME contains high amount of organic matter, oil & grease, total solids and suspended solids. Anaerobic treatment of POME was conducted at room temperature (30±2ºC and high temperature (50±0.5ºC. The effects of hydraulic retention time (HRT, organic loading rate (OLR, COD:N ratio and temperature on the anaerobic digestion of POME were investigated. The optimum conditions were found to be 10 days HRT, OLR of 9.50 kg COD m-3d-1, COD:N ratio of 65 and the optimum temperature at 50ºC. The highest COD reduction of 81.1% was achieved. Biogas production in general was greater than 0.30 m3/kg COD/d. Comparison on anaerobic treatment using POME and POME treated by thermotolerant polymer-producing fungi Rhizopus sp. ST4 revealed that the biopretreated POME gave higher COD removal (72.6% but lower biogas production (0.97 m3/m3/d or 0.27 m3/kg COD/d than the POME without pretreatment (56.1% and 1.16 m3/m3/d or 0.37 m3/kg COD/d, respectively.

Masao Ukita

2001-11-01

44

Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach  

Directory of Open Access Journals (Sweden)

Full Text Available Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 mills identifies the potential impacts associated with the production of palm oil using the life cycle assessment approach and evaluates opportunities to overcome the potential impacts. Most of the impact categories show savings rather than impact. Within the system boundary there are only two main parameters that are causing the potential impacts to the environment; they are the Palm Oil Mill Effluent (POME followed by the boiler ash. The impact categories that the POME contributes to are under the Respiratory Organics and Climate Change. Both these impact categories are related to air emissions. The main air emission from the POME ponds during the anaerobic digestion is the biogas which consists of methane, carbon dioxide and traces of hydrogen sulfide. An alternate scenario was conducted to see how the impact will be if the biogas was harvested and used as energy and the results shows that when the biogas is harvested, the impact from the POME is removed. The other significant impact is the boiler ash. This is the ash that is produced when the biomass is burnt in the boiler. This potential impact contributes to the ecotoxicity impact category. This is mainly because of the disposal of this ash which in most cases was used for land application in the roads leading to the mil or in the plantations. If the parameters causing these two potential impacts are curbed, then this will be a further plus point for the Malaysian oil palm industry which is already avoiding fossil fuel based energy and chemical use for processing.

Vijaya Subramaniam

2008-01-01

45

An Experimental Investigation on the Handling and Storage Properties of Biomass Fuel Briquettes Made from Oil Palm Mill Residues  

OpenAIRE

This study is about experimental investigation on solid fuel briquettes made of oil palm mill residues that exhibit optimum handling and storage properties. One of the major technical challenges in utilizing biomass waste material as a solid fuel is the handling and storage issues of loose and wet waste material. The solid biomass fuel briquettes made from different types and combinations of palm oil mill residues were explored for optimum storage and handling features. A solution to im...

Mohd. Shiraz Aris; Chin Yee Sing

2012-01-01

46

Biomethanation of Palm Oil Mill Effluent (POME) By Ultrasonic Membrane Anaerobic System (UMAS) Using Pome as Substrate  

OpenAIRE

Palm oil mill effluent (POME) with average chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of 70,000 and 30,000 mg/L, respectively, can cause serious environmental hazard if discharged untreated. There are conventional palm oil mill effluent (POME) treatment systems that require large footprint, long HRT and fail to meet the Malaysia Department of Environment (DOE) discharge limit. In this study, the potential of ultrasonic-assisted membrane anaerobic system (...

Abdurahman.H.Nour*1,; Nuri ‘AdilahNashrulmillah2

2014-01-01

47

Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.  

Science.gov (United States)

The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality. PMID:19227069

Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

2008-01-01

48

Factors affecting treatment of palm oil mill effluent using enzyme from Aspergillus niger ATCC 6275  

Directory of Open Access Journals (Sweden)

Full Text Available Powdered enzyme was produced by freeze-drying the enzyme solution extracted from 3 days culture of Aspergillus niger ATCC 6275 on palm cake with the addition of 0.2% glucose and 2% urea. The product yield was 38% by weight. The half-life of the enzyme was 9 months keeping at 4ºC. The enzyme was tested with decanter effluent with different characteristics from two palm oil mills. The decanter effluent possessing high suspended solid (SS and low oil (9.5 g/l content was selected for studying the factors affecting the separation of SS and oil as bulking solid. Results indicated that the effluent must contain oil not less than 15 g/l so that the bulking solid would occur from the reaction of the enzyme (with xylanase activity of 200 U/ ml after incubation at 40ºC for 6 h. Minimum concentrations of the enzyme from A. niger ATCC 6275 and commercial xylanase (Meicellase were 200 and 600 U/ml, respectively. The optimum pH was 4.5. Treatment of palm oil mill effluent by the enzyme from A. niger ATCC 6275 for 3 h under the optimum conditions resulted in 78% separation of suspended solids with oil & grease removal of 95% and COD reduction of 35%.

Chantaphaso, S.

2001-11-01

49

Direct Fermentation of Palm Oil Mill Effluent to Acetone-butanol-ethanol by Solvent Producing Clostridia  

OpenAIRE

Studies on direct use of palm oil mill effluent (POME) as fermentation medium for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum NCIMB 13357 and C. saccharoperbutylacetonicum N1-4 have been carried out in batch culture system. Investigations were carried out on the effect of concentration of sedimented POME, the effect of initial culture pH and the use of immobilized cells for ABE production. It was found that C. acetobutylicum NCIMB13357 grown in 90% sedimented POME w...

Mohd Sahaid Kalil; Pang Wey Kit; Wan Mohtar Wan Yusoff; Yoshino Sadazo; Rakmi Abdul Rahman

2003-01-01

50

Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor  

Directory of Open Access Journals (Sweden)

Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

Vivian Wongistani

2012-04-01

51

Optimization of Electricity Generation and Palm Oil Mill Effluent (POME) Treatment from Microbial Fuel Cell  

OpenAIRE

Natural micro-flora of Palm Oil Mill Effluent (POME) sludge was grown in dual-chamber Microbial Fuel Cells (MFC) to produce electricity by providing glucose at different concentration. A greater strength of Open Circuit Voltage (OCV) was observed with optimal biomass metabolism activity, as increasing glucose concentrations. The time Response Constant (RC) of OCV was taken everyday to estimate the total time needed to achieve steady state voltage at zero current. The lower value of RC indicat...

Siti Norhana Shari; Siti Kartom Kamarudin; Nurina Anuar; Manal Ismail; Wan Ramli Wan Daud; Jamaliah Md. Jahim; Swee Su Lim

2010-01-01

52

Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment.  

Science.gov (United States)

Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated. PMID:15894045

Yacob, Shahrakbah; Hassan, Mohd Ali; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

2005-06-01

53

Trends and Effective Use of Energy Input in the Palm Kernel Oil Mills  

Directory of Open Access Journals (Sweden)

Full Text Available This work aims at studying the importance and the efficiency of energy use in a few palm kernel oil mills selected for their representativity. Pattern of energy use, the cost of energy per unit product, energy intensity and normalized performance indicator (NPI were determined. Results show that the medium and the large mills depend largely on fossil fuel; while the small mill depends on electricity. It was found out that the large mill has the most effective use of energy with high energy intensity. The annual cost of energy per unit product of N8,360,000 ($64,307.69; N12,262,250 ($94,325 and N13,353,870 ($102, 722.08 were obtained for small, medium and large mills respectively. The NPI results show that there was no wastage of energy through space heating in energy supplied for production within the factory site.

Bamgboye, AI.

2007-01-01

54

Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.  

Science.gov (United States)

The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

2013-01-01

55

Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.  

Science.gov (United States)

Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. PMID:21712603

Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

2011-01-01

56

Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste  

International Nuclear Information System (INIS)

Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

57

Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production  

DEFF Research Database (Denmark)

The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co-digestion of treated EFB by NaOH presoaking and hydrothermal treatment with POME, which resulted in 98% improvement inmethane yield comparing with co-digesting untreated EFB. The maximum methane production of co-digestion treated EFB with POME was 82.7m3 CH4/ton of mixed treated EFB and POME (6.8:1), corresponding to methane yield of 392mL CH4/gVS-added. The electricity production of 1ton mixture of treated EFB and POME would be 1190MJ or 330kWh of electricity. The study shows that there is a great potential to co-digestion treated EFB with POME for bioenergy production.

O-Thong, Sompong; Boe, Kanokwan

2012-01-01

58

Enzymatic saccharification of hemicellulose extracted from palm oil mill wastes  

Directory of Open Access Journals (Sweden)

Full Text Available Various parameters affecting the extraction of hemicellulose from palm cake by alkali method and sterilizer condensate by solvent method were investigated. For extraction of hemicellulose from palm cake, the optimal ratio of palm cake to sodium hydroxide (NaOH (1.5% conc. was 1:10. However, potassium hydroxide (KOH was a better source of alkali than NaOH and the optimum ratio of palm cake to 12% KOH was 1:50 (w/v. Temperature over 100ºC (100 and 121ºC extracted significantly higher hemicellulose than at 80ºC after 20 min treatment. The addition of ethanol to the extracted solution in the ratio of 1:1 (v/v gave the highest hemicellulose yield of 8.67 g/100 g palm cake. For extraction of hemicellulose from sterilizer condensate, the optimum ratio of ethanol to the condensate was 2:1 (v/v, which gave a hemicellulose yield of 6.42 g/100 ml. The enzymatic saccharification of the hemicelllulose extracted from palm cake (HEPC and from sterilizer condensate (HESC was 3-10 times lower than that of xylan. The enzyme from Aspergillus niger ATCC 6275 and Meicellase gave higher saccharification rates than that of Sumyzyme. The contents of reducing sugars in xylan, HEPC and HESC were 96.4, 36.2 and 20.6%, respectively and 75.3, 67.9 and 97.6% of these values could be hydrolysed by the enzymes. Hence, palm cake was a better source of substrate for extraction of hemicellulose while hemicellulose extracted from sterilizer condensate gave higher percentage of enzymatic saccharification.

Poonsuk Prasertsan

2001-11-01

59

Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

Masao Ukita

2001-11-01

60

Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.  

Science.gov (United States)

Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry. PMID:20609579

Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

2010-11-01

61

Evaluation of Technological Content of Wastewater Treatment of Palm Oil Mill in Lampung Province, Indonesia  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil industry is the most important economic sector in Lampung Province, Indonesia. There are 13 units of palm oil mills (POMs operating in Lampung, producing about 1,094,586 tons of palm oil mill effluent (POME a year. So far, the POME has been treated by the ponding system. However, the system has still caused environmental problems due to greenhouse gas emissions. Methane capture technology of which methane is converted to electrical energy is thus proposed. The objective of this study was to evaluate the conditions of POME treatment technology of POMs in Lampung. Technological content analysis was performed to identify the conditions of technoware, humanware, infoware and orgaware (THIO being applied at POMs. The results showed that: (1 technological condition of POME treatment at 13 POM's in Lampung was almost equal among state-owned enterprises (SOE' s, non-public companies, and public companies, (2 the value of technology contribution coefficient of PTPN V Tandun, as a reference POM unit,was higher than that of the technology contribution coefficient of the POMs in Lampung, and (3 enhancing performance technology elements of technoware, humanware, infoware, and orgaware to apply methane capture technology are absolutely needed by all the POMs in Lampung.

Sarono

2014-01-01

62

Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.  

Science.gov (United States)

The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. PMID:25463585

Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

2015-02-01

63

A Qualitative Approach of Identifying Major Cost Influencing Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil  

OpenAIRE

Problem statement: The oil palm industry, which heavily depends on the world market, is an export oriented industry. Worlds palm oil consumption was growing over the years. In addition, Indonesia and Malaysia dominated the oil palm industry. The oil palm industry in Malaysia is very competitive and become one of the major economic sectors contributing to the total revenue of the country. In year 2009, there was a total of 22.40 million tons of oil palm products including p...

Man, Elaine L. Y.; Adam Baharum

2011-01-01

64

Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.  

Science.gov (United States)

Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification. PMID:11794647

Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K

2001-01-01

65

Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

Charles Ogugua Nwuche

2011-02-01

66

Isolation of lipase producing fungi from palm oil Mill effluent (POME) dump sites at Nsukka  

Scientific Electronic Library Online (English)

Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42%) and was present in all the samples assayed. Mucor sp. was the least encountered [...] (8.3%).The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL) and Aspergillus (6.25 -7.54 u/mL) spp. were the highest lipase producers while Mucor (5.72 u/mL) was the least.

Charles Ogugua, Nwuche; James Chukwuma, Ogbonna.

2011-02-01

67

Methane Emission from Digestion of Palm Oil Mill Effluent (POME) in a Thermophilic Anaerobic Reactor  

OpenAIRE

As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG) have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the resea...

Vivian Wongistani; Yoshimasa Tomiuchi; Bambang Trisakti; Irvan, I.

2012-01-01

68

Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME)  

OpenAIRE

Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME) for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w) and H2O2: Fe2+ ratios (molar ratio) used to oxidize carbohydrate and high molec...

Supawadee Sinnaraprasat; Prayoon Fongsatitkul

2011-01-01

69

Phototreatment of Palm Oil Mill Effluent (POME) over Cu/TiO2 Photocatalyst  

OpenAIRE

The current work reported on the use of different formulations of Cu/TiO2 photocatalysts for the UV-irradiation of palm oil mills effluent (POME). Different copper loadings, viz. 2 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt% were doped onto titania. XRD pattern confirmed the presence of anatase TiO2 as primary phase due to mild calcination temperature (573 K). Photo-decomposition of POME over 20 wt% Cu/TiO2 exhibited the highest conversion (27.0%) attributed to its large pore diameter (20.0...

Kim Hoong Ng; Mohd Rizauddin Deraman; Chun How Ang; Soo Kee Chong; Zi Ying Kong; Khan, Maksudur R.; Chin Kui Cheng

2014-01-01

70

Cellulases Production in Palm Oil Mill Effluent: Effect of Aeration and Agitation  

OpenAIRE

Effect of aeration (0.5, 1.0 and 1.5 vvm) and agitation rate (100, 300 and 500 rpm) on cellulase production in submerged culture of Pycnoporus sanguineus was studied in a 2.5 L stirred-tank bioreactor using Palm Oil Mill Effluent (POME) as a substrate. Maximum cell biomass (3.16 g L-1) and cellulase activity (0.1748 FPU mL-1) was obtained at aeration rate of 1.0 vvm and agitation speed of 300 rpm. Volumetric mass transfer coefficient (kLa) was found to be dependent on aeration and agitation r...

Mashitah, M. D.; Fadzilah, K.

2010-01-01

71

Isolation of lipase producing fungi from palm oil Mill effluent (POME) dump sites at Nsukka  

OpenAIRE

In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42%) and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%).The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL) and Aspergillus (6.25 -7.54 u/mL) spp. were the highest lipase producers while Mucor (5.72 u/mL) was the least.

Charles Ogugua Nwuche; James Chukwuma Ogbonna

2011-01-01

72

Evaluation of Hybrid Membrane Bioreactor (MBR For Palm Oil Mill Effluent (POME Treatment  

Directory of Open Access Journals (Sweden)

Full Text Available The pollution load of palm oil mill effluent (POME is in the range of 50,000 mg COD/L. With more than 500 palm oil mills, Malaysia produces some 13.9 million tonnes of crude palm oil annually and generates around 35 x 106 m3 POME. Typically, raw POME is difficult to degrade because it contains significant amounts of oil (tryacylglycerols and degradative products such as di-and monoacylglycerols and fatty acids. The fatty acids composition (C12 – C20 of each of this fraction are different from one another and contribute to the high value of pollution load in POME. Thus POME has to be treated, usually in a series of anaerobic and aerobic treatment steps, for the organic matter to be degraded before the effluent is allowed to be discharged into public waterways. The objective of this study was to observe the performance of a hybrid membrane bioreactor (MBR for POME. The raw POME was introduced into sequencing processes of anaerobic, anoxic and aerobic in order to achieve biological nutrient removal and the membrane modules were submerged into the aerobic zone. The critical flux of MBR using the flux-step method based on transmembrane pressure (TMP was conducted as well as flux and permeability studies for assessing fouling in a membrane bioreactor operating at constant flux. The reactor was operated at a mixed liquor suspended solid (MLSS concentration of 4000 to 8000 mg/l. The removal efficiency of COD, SS, TN and TP achieved were 94%, 98%, 83% and 64% respectively. The hybrid MBR was found to be able to degrade POME significantly and high quality effluent could be reused for various other applications.Keywords:

Z. Ahmad

2009-12-01

73

The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent  

OpenAIRE

The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME). Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS) and volatile s...

Irvan Matseh

2012-01-01

74

Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.  

Science.gov (United States)

A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. PMID:25479389

Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2015-02-01

75

Screening and application of thermotolerant microorganisms and their flocculant for treatment of palm oil mill effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Among fifteen thermotolerant polymer-producing isolates, three strains SM 29, WD 90, and SM 38 produced polymer posessing very high flocculating activities (24.81, 14.63 and 10.84, respectively and flocculation rates (94.29, 90.69 and 87.84, respectively. These three strains were identified to be Bacillus subtilis WD90, Bacillus subtilis SM 29, and Enterobacter agglomerans SM 38. Treatment of palm oil mill effluent (POME by these three selected strains under aerobic condition at 45ºC for 48 h revealed that neither oil separation nor flocculation of solids was observed. However, all three strains were able to decolorize the POME from dark brown to very light yellow. Flocculant produced from the three selected isolates could not separate the suspended solids and oil from the POME.

Saithong Kaewchai

2002-07-01

76

Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Palm oil mill effluent discharged by the oil palm industries is considered as the mixed of high polluted effluent which is abundant (about 20 million tonnes year-1 and its effect contributes to the serious environmental problems through the pollution of water bodies. Approach: The aim of this study was to identify the potential of low cost substrate such as Palm Oil Mill Effluent (POME for the production of cellulase enzyme by liquid state bioconversion. The filamentous fungus Trichoderma harzianum was used for liquid state bioconversion of POME for cellulase production. Statistical optimization was carried out to evaluate the physico-chemical parameters (factors for maximum cellulase production by 2-level fractional factorial design with six central points. The polynomial regression model was developed using the experimental data including the effects of linear, quadratic and interaction of the factors. The factors involved were substrate (POME and co-substrate (wheat flour concentrations, temperature, pH, inoculum and agitation. Results: Statistical analysis showed that the optimum conditions were: Temperature of 30°C, substrate concentration of 2%, wheat flour concentration of 3%, pH of 4, inoculum of 3% and agitation of 200 rpm. Under these conditions, the model predicted the enzyme production to be about 14 FPU mL-1. Analysis Of Variance (ANOVA of the design showed a high coefficient of determination (R2 value of 0.999, thus ensuring a high satisfactory adjustment of the quadratic model with the experimental data. Conclusion/Recommendations: This study indicates a better solution for waste management through the utilization of POME for cellulase production that could be used in the industrial applications such as bioethanol production.

Jamal I. Daoud

2010-01-01

77

Phytoremediations of Palm Oil Mill Effluent (POME by Using Aquatic Plants and Microalge for Biomass Production  

Directory of Open Access Journals (Sweden)

Full Text Available Phytoremediation by using aquatic plants and microalgae was evaluated in study to reduce waste load of Palm Oil Mill Effluent (POME. This study was aimed to utilize the aquatic plants i.e. water hyacinth (Eichhornia crassipes and water lily (Nymphaea sp. and alga Spriulina sp. to reduce COD and nutrients content in palm oil mill effluent. The phytoremediation was conducted in a sequence process. The aquatic plants were used in the first stage of remediation by varying height of culture (5-15 cm, length of remediation (3-8 days and type of plants (water hyacinth and water lily. The effluent of the first stage was then transferred to the second remediation where microalgae Spriulina use this effluent as medium growth for 15 days. The results showed that the aquatic plants was able to reduce COD, N, P up to 50, 88 and 64%, respectively, while microalgae could reduce the COD, N, P up to 50.79, 96.5 and 85.92%, respectively. The maximum growth rate of Spirulina platensis was 0.412 day-1, while the correlation between Optical Density (OD and dry weight-g L-1 was shown as dry weight (g L-1 = 0.782.OD. In conclusion, two stage phytoremediation process gives promising method to reduce waste load and producing high value able biomass of algae.

Danny Soetrisnanto

2013-01-01

78

Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst  

Directory of Open Access Journals (Sweden)

Full Text Available The current work reported on the use of different formulations of Cu/TiO2 photocatalysts for the UV-irradiation of palm oil mills effluent (POME. Different copper loadings, viz. 2 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt% were doped onto titania. XRD pattern confirmed the presence of anatase TiO2 as primary phase due to mild calcination temperature (573 K. Photo-decomposition of POME over 20 wt% Cu/TiO2 exhibited the highest conversion (27.0% attributed to its large pore diameter (20.0 nm. In addition, optimum loading was 0.83 g/l. © 2014 BCREC UNDIP. All rights reservedReceived: 5th January 2014; Revised: 8th April 2014; Accepted: 8th April 2014[How to Cite: Hoong, N.K., Deraman, M.R., Ang, C.H., Chong, S.K., Kong, Z.Y., Khan, M.R., Cheng, C.K., (2014. Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 121-127. (doi:10.9767/bcrec.9.2.6011.121-127][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6011.121-127

Kim Hoong Ng

2014-07-01

79

Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora  

Energy Technology Data Exchange (ETDEWEB)

Anaerobic production of hydrogen from palm oil mill effluent (POME) by microflora was investigated in 5-l bioreactor at 60{sup o}C and pH 5.5. POME sludge was collected from the anaerobic pond of a POME treatment plant at a palm oil mill and used as a source of inocula. A batch reactor was found to yield a total of 4708ml H{sub 2}/(l POME) and the maximum evolution rate was 454ml-H{sub 2}/(l POMEh). A fed batch process was conducted after 50h. Two liters of reaction medium was removed and 2l of fresh POME was added to the reactor every 24h (15 times). The reproducibility of the fed batch process checked by changing the feeding time every 8h (10 times). A yield of 2382ml H{sub 2}/(l POME) and 2419ml H{sub 2}/(l POME) at maximum evolution rate of 313ml H{sub 2}/(l POMEh) and 436ml H{sub 2}/(l POMEh) were obtained, respectively. Throughout the study, methane gas was not observed in the evolved gas mixture. (author)

Atif, A.A.Y.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia); Ngan, M.A.; Morimoto, M. [Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor (Malaysia); Iyuke, S.E. [School of Process and Materials Engineering, Faculty of Engineering and the Built Environment, Witwaterstand, Private Bag 3, Wits 2050, Johannesburg (South Africa); Veziroglu, N.T. [Clean Energy Research Institute, College of Engineering, University of Miami, Coral Gables, FI 33124 (United States)

2005-11-01

80

Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.  

Science.gov (United States)

Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587?mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

2015-01-01

81

Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture  

Energy Technology Data Exchange (ETDEWEB)

A batch study was conducted to determine the fate of carbohydrate and oil that are present in palm oil mill effluent (POME) during the biohydrogen fermentation process. Sucrose and crude palm oil (CPO) were chosen as substrates and the kinetic profile indicated that mainly sucrose was metabolised by the mixed sludge. The hydrogen yield based on the COD of sucrose added was 146 cm{sup 3} g{sup -1} which is equivalent to a hydrogen to hexose mole ratio of 2.5. The free fatty acids from hydrolysed CPO were not metabolised further which render insignificant generation of hydrogen and volatile fatty acids from oil-based substrate. The average continuous biohydrogen production rate (HPR) from a unit volume of POME under thermophilic condition at 55 C was 2.64 m{sup 3} m{sup -3} d{sup -1} at a hydraulic retention time (HRT) of 4 days. Hydrogen constitutes up to 52% of the total biogas and methane was not detected over the 60 day continuous operation. The hydrogen yield (i.e. based on mole ratio of hydrogen to hexose) was 1.72 with an average carbohydrate conversion efficiency of 58%. These limit the potential of recovering more hydrogen energy from POME under current operating conditions. (author)

Ismail, Isnazunita [Environment and Bioprocess Technology Centre, SIRIM Berhad, 40911 Shah Alam, Selangor D.E. (Malaysia); Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Hassan, Mohd. Ali; Abdul Rahman, Nor Aini [Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Soon, Chen Sau [Environment and Bioprocess Technology Centre, SIRIM Berhad, 40911 Shah Alam, Selangor D.E. (Malaysia)

2010-01-15

82

Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.  

Science.gov (United States)

Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved. PMID:24074024

Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

2013-11-01

83

Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.  

Science.gov (United States)

The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified. PMID:24012093

Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

2013-11-01

84

An Experimental Investigation on the Handling and Storage Properties of Biomass Fuel Briquettes Made from Oil Palm Mill Residues  

Directory of Open Access Journals (Sweden)

Full Text Available This study is about experimental investigation on solid fuel briquettes made of oil palm mill residues that exhibit optimum handling and storage properties. One of the major technical challenges in utilizing biomass waste material as a solid fuel is the handling and storage issues of loose and wet waste material. The solid biomass fuel briquettes made from different types and combinations of palm oil mill residues were explored for optimum storage and handling features. A solution to improving the handling and storage properties of loosely-bound oil palm mill residues is proposed in this work via a densification process known as fuel briquetting. Raw oil palm waste material was pulverized and compacted with a 159 MPa pressing pressure to form 40 mm diameter solid fuel briquettes. It was found that a fuel briquette with a 60:40 palm kernel shell to mesocarp fiber ratio using waste paper as its binding agent gave the best mechanical properties without sacrificing the combustion properties of the solid fuel.

Mohd. Shiraz Aris

2012-01-01

85

Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.  

Science.gov (United States)

Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%). PMID:17141409

Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

2007-06-25

86

Integration of biological method and membrane technology in treating palm oil mill effluent.  

Science.gov (United States)

Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water. PMID:18575108

Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

2008-01-01

87

Synthetic Polyelectrolytes Based on Acrylamide and Their Application as a Flocculent in the Treatment of Palm Oil Mill Effluent  

OpenAIRE

Five cationic polyacrylamides of varying molecular weights but similar charge density were synthesized using free radical polymerization and Mannich reaction, characterized by different methods (infra red (IR) spectroscopy, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), viscosity measurements and conductometric titration) and applied as flocculants to palm oil mill effluents (POME). Flocculent performance was assessed by determining the polyelectrolyte dosa...

Ariffin, A.; Shatat, Raid S. A.; Nik Norulaini, A. R.; Mohd Omar, A. K.

2004-01-01

88

Particulate emission factor: A case study of a palm oil mill boiler  

International Nuclear Information System (INIS)

A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm3 (at 7 % O2) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm3, the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cycloneschievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

89

Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.  

Science.gov (United States)

Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. PMID:20940036

Lam, Man Kee; Lee, Keat Teong

2011-01-01

90

Enumeration, identification and decontamination of microorganisms on empty fruit bunches (EFB) and palm press fibre (PPF) from selected palm oil mills in the Peninsular Malaysia  

International Nuclear Information System (INIS)

The PPF and EFB temporarily disposed into the environment at the mill are heavily contaminated with micro-organisms, therefore require decontamination prior to utilisation. The current methods for decontaminating PPF and EFB has been briefly reviewed (Mat Rasol et. al.,1987). They suggested that these by-products can be effectively decontaminated by gamma-irradiation and the resulting sterilised by-products could subsequently be used for conversion into animals feeds by fermentation with fungi or chemical stock. The primary objectives of the investigation are: a) to enumerate contaminating microorganisms on PPF and EFB collected from various oil palm mills in the Peninsular Malaysia, and b) to establish the inactivation curves of the PPF and EFB from the selected palm oil mills

91

Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector  

International Nuclear Information System (INIS)

A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 ?m ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

92

Kinetic studies of controlled-release formulations of diuron containing palm oil mill effluent  

International Nuclear Information System (INIS)

Controlled-release formulations of diuron herbicide containing sodium alginate as binder and kaolin or palm oil mill effluent (POME) as fillers were studied. Small ratios of alginates to kaolin or POME in the formulation produce less spherical granular products. The kinetic of release in static water was studied spectrophotometrically at 248nm. Both products with two different fillers showed good first order plots with rate constants about ax10-1 day-1. Preliminary screening on several species of weeds in one square meter boxes in glasshouse showed good effectiveness of the slow release products. Further studies are being carried out especially with the POME formulations which contain quite high major nutrients. (author). 7 refs, 3 figs, 4 tabs

93

Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent.  

Science.gov (United States)

Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively. PMID:19560338

Wong, Yee Shian; Kadir, Mohd Omar A B; Teng, Tjoon Tow

2009-11-01

94

Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment.  

Science.gov (United States)

Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed. PMID:18657414

Poh, P E; Chong, M F

2009-01-01

95

Direct Fermentation of Palm Oil Mill Effluent to Acetone-butanol-ethanol by Solvent Producing Clostridia  

Directory of Open Access Journals (Sweden)

Full Text Available Studies on direct use of palm oil mill effluent (POME as fermentation medium for acetone-butanol-ethanol (ABE production by Clostridium acetobutylicum NCIMB 13357 and C. saccharoperbutylacetonicum N1-4 have been carried out in batch culture system. Investigations were carried out on the effect of concentration of sedimented POME, the effect of initial culture pH and the use of immobilized cells for ABE production. It was found that C. acetobutylicum NCIMB13357 grown in 90% sedimented POME with initial pH 5.8 produced highest total ABE (4 g L-1. However, butanol production was maximum (1.82 gL-1 in the culture with the initial pH of 6.0. Results obtained from these experiment with immobilized cells of C. saccharoperbutylacetonicum N1-4 indicated that ABE production from POME could be improved when high concentrations of cells at solventogenic growth phase were used.

Mohd Sahaid Kalil

2003-01-01

96

Cellulases Production in Palm Oil Mill Effluent: Effect of Aeration and Agitation  

Directory of Open Access Journals (Sweden)

Full Text Available Effect of aeration (0.5, 1.0 and 1.5 vvm and agitation rate (100, 300 and 500 rpm on cellulase production in submerged culture of Pycnoporus sanguineus was studied in a 2.5 L stirred-tank bioreactor using Palm Oil Mill Effluent (POME as a substrate. Maximum cell biomass (3.16 g L-1 and cellulase activity (0.1748 FPU mL-1 was obtained at aeration rate of 1.0 vvm and agitation speed of 300 rpm. Volumetric mass transfer coefficient (kLa was found to be dependent on aeration and agitation rate, with maximum kLa (124.2 h-1 attained at 300 rpm and 1.5 vvm.

M.D. Mashitah

2010-01-01

97

A comparative study on the membrane based palm oil mill effluent (POME) treatment plant.  

Science.gov (United States)

The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost. PMID:19573986

Ahmad, A L; Chong, M F; Bhatia, S

2009-11-15

98

Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.  

Science.gov (United States)

This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

2014-11-01

99

Comparison on decolorization of palm oil mill effluent by biological, chemical and physical methods  

Directory of Open Access Journals (Sweden)

Full Text Available Decolorization of palm oil mill effluent pretreated by enzyme from Aspergillus niger ATCC 6275 was investigated. The culture filtrate after separation of suspended solids was used for decolorization by biological, chemical and physical methods. Results indicated that the chemical method (using coagulant was more effective than the biological method (using commercial peroxidase, two strains of white-rot fungi Phanerochaete chrysosporium and Coriolus versicolor and physical method (using activated carbon, pararubber seed and sand filter. Studies on the effect of coagulant concentrations on decolorization revealed that using the combination of 10 ml/l polyferric sulphate and 10 g/l calcium oxide gave the highest color removal of 84.5% and organic matter (in term of chemical oxygen demand, COD removal of 86.5%.

Chantaphaso, S.

2001-11-01

100

Concurrent bioelectricity generation and palm oil mill effluent treatment using microbial fuel cell  

International Nuclear Information System (INIS)

Microbial fuel cell (MFC) provides promising microbial environmental technology to generate bio energy while treating organic wastewaters at the same time. In this study, a dual-chamber MFC system was developed to evaluate the continuous bioelectricity production while treating palm oil mill effluent (POME). A maximum power density of 622 mW/ m2 was generated with continuous feeding of 200 ppm POME. Meanwhile, a COD removal efficiency of 23% and coulombic efficiency of 32 % was recorded. Direct 16S rDNA analyses showed predomination by Geobacter-related sequences at the MFC anode electrode. It is shown that electrochemically-active bacteria originated from POME can be enriched to concurrently generate electricity and treat POME. (author)

101

Anaerobic digestion of palm oil mill effluent and its utilization as fertilizer for environmental protection  

Energy Technology Data Exchange (ETDEWEB)

Biodegradation of palm oil mill effluent (POME) under anaerobic conditions to environmentally acceptable products was carried out. This method of digestion was chosen in preference to the aerobic mode, among other factors, efficiency of COD and BOD removal and relevance of the operation to the needs of local communities. Studies were carried out in three experimental set-ups: (i) a single stage anaerobic ponding system; (ii) a single stage anaerobic tank digester with a certain degree of mixing; and (iii) recycled spent POME sludge in a single stage anaerobic tank. Operational variables such as optimum pH, the COD/BOD removal efficiencies and the overall usefulness of the digester modes to local communities and farmers are discussed. (author)

Ugoji, E.O. [Lagos Univ. (Nigeria). Dept. of Biological Sciences

1997-02-01

102

A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.  

Science.gov (United States)

During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products. PMID:18804158

Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

2009-01-01

103

Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.  

Science.gov (United States)

Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. PMID:20231054

Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

2010-07-01

104

Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

Wong Pui Wah

2002-11-01

105

Morphological Characterization of Photosynthetic Microbial Granule from Palm Oil Mill Effluent (POME)  

International Nuclear Information System (INIS)

Presently, global warming is the most highlighted subjects in the environmental issues which relates closely to greenhouse gases (GHG) emissions. In 2007, the Intergovernmental Panel on Climate Change (IPCC) assigns only methane (CH4) emissions to wastewater treatment rather than GHG emissions specifically carbon dioxide (CO2) gas from the aerobic treatment processes. Focusing on the palm oil industry in Malaysia, the most commonly used treatment of palm oil mill effluent (POME) which is the conventional pounding system, has caused excessive generation of GHG such as CH4 and CO2 gases. To develop a novel, innovative and environmental-friendly mitigation method, this study explores into the possibility of growing the photosynthetic bacteria in the form of granules via the aerobic granulation process with potential applications in reducing CO2 gases. The cultivation of photosynthetic microbial granules was investigated using POME as the substrate in a sequencing batch reactor (SBR) system via the sequencing cycle of feeding, reacting, settling and decanting. Evidence of the formation of granule was based on microscopic examination of the morphological changes during the development of the granule in the SBR system over a period of 90 days. It shows changes from dispersed loose structure of the sludge merging into small flocs of irregular shapes and finally into dense and compact granular form. The granule was formed by applying an organic loading rate (OLR) at 2.75 kg COD/ m3.day, hydraulic retention time (HRT) at 4 h and superficial air velocity of 2.07 cm/ s. The biomass concentration began to decreased first (initial sludge biomass = 16750 mg/ L) and then increased steadily to a constant value of 32000 mg/ L after 90 days. Besides, the results also demonstrated a good accumulation of biomass as the settleability between raw sludge and granule increased from 0.03 cm/ s to 0.94 cm/ s. The maximum settling velocity obtained in the reactor was approximately 2.0 cm/ s. (author)

106

Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w and H2O2: Fe2+ ratios (molar ratio used to oxidize carbohydrate and high molecular organic compounds into simple sugars, which are further fermented into alcohol. The experiments were carried out at H2O2: Fe2+ ratios (molar ratios of 5, 10, 20, 30 and 40 and the COD: H2O2 ratios (w/w of 50, 70, 100 and 130 (initial COD about 50,000 mg/L. The total sugar concentrations and organic compounds biodegradability (BOD5/COD ratios were also used for investigating suitable conditions for Fenton's reaction. The concentration of Fenton's reagent at H2O2:Fe2+ and COD:H2O2 ratio of 20 and 130 was identified as the optimum operating condition for the highest simple sugars of about 0.865% and BOD5/COD ratios of 0.539. The alcohol productions were carried out in the continuous stirred tank reactors (CSTR under an anaerobic continuous immobilization system. At a hydraulic retention time of 12 hours and POME pH of 4.8, the maximum total ABE concentration of 495 mg/L and the ABE yield of 0.236 grams of ABE produced/gram of reducing sugars were achieved at the mixed polyvinyl alcohol (PVA and palm oil ash (POA ratio of 10 : 3.

Supawadee Sinnaraprasat

2011-07-01

107

Comparison of ASBR and CSTR reactor for hydrogen production from palm oil mill effluent under thermophilic condition  

OpenAIRE

Hydrogen production from palm oil mill effluent (POME) by Thermoanaerobacterium thermosaccharolyticum PSU-2 was investigated both in batch and continuous reactors using anaerobic sequencing batch reactor (ASBR) and continuous stirred tank reactor (CSTR). The hydrogen production determined from batch experiment of POME at an inoculum size of 0%, 10%, 20% and 30% (v/v) was 161, 201, 246 and 296 mL H2/g-COD with COD removal efficiency of 21%, 23%, 23% and 23%, respectively...

Jiravut Seengenyoung; Sompong O-Thong; Poonsuk Prasertsan

2014-01-01

108

Techno-economic Evaluation on Enhancing Cogeneration Plant Capacity: Case Study of Palm Oil Mill Cogeneration Plant  

OpenAIRE

The aim of the study is to apply techno-economic evaluation for selecting a feasible alternative to enhance a co-generation power generation capacity of a palm oil mill. The co-generation plant is using Empty Fruit Bunch (EFB) as fuel. The basis of the technical evaluation is to compare three alternatives on increasing the co-generation power generation capacity. Alternative 1 is to consider installing a new high capacity boiler to the current cogeneration ...

Mohd Amin Abd Majid; Zulkipli Ghazali; Nazri Talib Shin Min

2014-01-01

109

Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost  

OpenAIRE

Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB) and Palm Oil Mill Effluent (POME) as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile ...

Baharuddin, Azhari S.; Razak, Mohamad N. A.; Hock, Lim S.; Ahmad, Mohd N.; Suraini Abd-Aziz; Rahman, Nor A. A.; Shah, Umi K. M.; Hassan, Mohd A.; Kenji Sakai; Yoshihito Shirai,

2010-01-01

110

Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.  

Science.gov (United States)

The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

2014-08-01

111

Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME  

Directory of Open Access Journals (Sweden)

Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

Ganang Dwi Hartanto

2012-07-01

112

Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt  

Directory of Open Access Journals (Sweden)

Full Text Available Problem Statement: Oil palm production is a major agricultural industry in Malaysia. In 2006, palm oil mills in Malaysia produced more than 58 million tonnes of Palm Oil Mill Effluent (POME. Existing treatment in a series of open lagoons at high ambient temperatures, results in the uncontrolled production of methane and carbon dioxide, which are both green house gases (GHGs. With the increased worldwide concern on environmentally friendly production processes particularly the emission of methane, it is important to develop an alternative concept for POME treatment. This study elucidates the effects of pre-treatment of palm oil mill effluent by microwave irradiation and ultrasonic on anaerobic digestion. Approach: Effects of pre-treatment on sludge characterisation parameters were monitored. The Soluble Chemical Oxygen Demand (SCOD/total COD ratio and biodegradability of soluble organic matter increased significantly after both the pre-treatments which indicated an increase in disintegration of the floc structure of the sludge. Three identical bioreactors with working volume of 5 litres were used as anaerobic digesters at 32-35°C. The reactors were separately fed with pre-treated sludge (microwave, ultrasonic and combination of microwave and ultrasonic and control sludge at different Hydraulic Retention Times (HRT to check for the production of methane. Results: The maximum SCOD/TCOD ratio reached almost 29% after 30 min of ultrasonic treatment, while it was 45% after 7 min of microwave irradiation. The BOD5/SCOD ratio also increased after the pre-treatments suggesting the biodegradability of the soluble organic material increased during the treatment. It was observed that TVFA released was increased after both the treatments, with microwave treatment showing a higher yield of TVFA. Greatest enhancement in methane production was shown by the 3 min microwave plus 10 min ultrasonic treatment. Conclusion: The microwave in combination with ultrasonic would be a rapid and economical method for sludge pre-treatment for enhancement of biogas production.

N. Saifuddin

2009-01-01

113

Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.  

Science.gov (United States)

The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria. PMID:22876480

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2012-07-01

114

Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata.  

Science.gov (United States)

Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds. PMID:24327114

Neoh, Chin Hong; Lam, Chi Yong; Lim, Chi Kim; Yahya, Adibah; Ibrahim, Zaharah

2014-03-01

115

Respirometric analysis of activated sludge models from palm oil mill effluent.  

Science.gov (United States)

Activated sludge models (ASMs) have been widely used as a basis for further model development in wastewater treatment processes. Values for parameters to be used are vital for the accuracy of the modeling approach. A continuous stirred tank reactor (CSTR), as open respirometer with continuous flow for 20 h is used in ASMs. The dissolved oxygen (DO) profile for 11 days was monitored. It was found the mass transfer coefficient K(La) is 0.3 h(-1) during lag and start feed phase and 0.01 h(-1) during stop feed phase, while the heterotrophic yield coefficient Y(H) is 0.44. Some of the chemical oxygen demand (COD) fractionations of palm oil mill effluent (POME) using respirometric test in ASM models are S(s) 50 mg/L, S(I) 16,600 mg/L, X(S) 25,550 mg/L, and X(I) 2,800 mg/L. The comparison of experimental and ASM1 from OUR concentration is found to fit well. PMID:19734044

Damayanti, A; Ujang, Z; Salim, M R; Olsson, G; Sulaiman, A Z

2010-01-01

116

Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent.  

Science.gov (United States)

A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35 degrees C for 514 d, with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m3 x d). The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand, high COD removal of 91% was obtained at two days' of hydraulic retention time (HRT), and the highest OLR of 17.5 kg COD/(m3 x d). On the other hand, only 46% COD in raw POME was transformed into biogas in which the methane content was about 70% (V/V). A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane was 56%. Volatile fatty acid (VFA) accumulation was observed in the later operation stage, and this was settled by supplementing trace metal elements. On the whole, the system exhibited good stability in terms of acidity and alkalinity. Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed. PMID:18763558

Zhang, Yejian; Yan, Li; Chi, Lina; Long, Xiuhua; Mei, Zhijian; Zhang, Zhenjia

2008-01-01

117

The particulate matter dispersion studies from a local palm oil mill  

International Nuclear Information System (INIS)

The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

118

Anaerobic treatment of palm oil mill effluent using combined high-rate anaerobic reactors.  

Science.gov (United States)

Combined system of high-rate anaerobic reactors for treating palm oil mill effluent (POME) was developed and investigated in this study. The system composed of one common primary hybrid reactor which was shared by two different secondary filter reactors. An overall COD removal efficiency of 93.5% was achieved in both systems. The secondary reactors contributed not only in enhancing the COD removal efficiency, but also ensured the performance stability of the entire system. Biomass remained intact in the secondary reactor in contrast to the primary reactor in which occasional washout of biomass was observed. The pH of POME was adjusted at the beginning of the operation, as the process continued POME did not require the external pH adjustment as the pH was maintained in desired range. The biogas was produced up to 110 l/d with the yield of 0.171-0.269 l [CH?]/g [COD removed] and 59.5-78.2% content of methane. PMID:23489567

Choi, Won-Ho; Shin, Chang-Ha; Son, Sung-Min; Ghorpade, Praveen A; Kim, Jeong-Joo; Park, Joo-Yang

2013-08-01

119

Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent  

Energy Technology Data Exchange (ETDEWEB)

A hydrogen producer was successfully isolated from anaerobic digested palm oil mill effluent (POME) sludge. The strain, designated as Clostridium butyricum EB6, efficiently produced hydrogen concurrently with cell growth. A controlled study was done on a synthetic medium at an initial pH value of 6.0 with 10 g/L glucose with the maximum hydrogen production at 948 mL H{sub 2}/L-medium and the volumetric hydrogen production rate at 172 mL H{sub 2}/L-medium/h. The supplementation of yeast extract was shown to have a significant effect with a maximum hydrogen production of 992 mL H{sub 2}/L-medium at 4 g/L of yeast extract added. The effect of pH on hydrogen production from POME was investigated. Experimental results showed that the optimum hydrogen production ability occurred at pH 5.5. The maximum hydrogen production and maximum volumetric hydrogen production rate were at 3195 mL H{sub 2}/L-medium and 1034 mL H{sub 2}/L-medium/h, respectively. The hydrogen content in the biogas produced was in the range of 60-70%. (author)

Chong, Mei-Ling; Rahim, Raha Abdul; Hassan, Mohd Ali [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shirai, Yoshihito [Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, 808-0196 Hibikimo 2-4, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (Japan)

2009-01-15

120

Carbon Mobilization in Oil Palm Plantation and Milling Based on a Carbon-Balanced Model – A Case Study in Thailand  

Directory of Open Access Journals (Sweden)

Full Text Available Damage to agricultural areas and household properties occurs more frequently all year round from extreme weather, which is believed to be due to climate change caused by the increase of greenhouse gases – particularly, CO2. In order to help reduce its concentration in the atmosphere, palm oil is a renewable energy which can be used for this purpose. In this study, the carbon mobilization of palm oil was investigated, from oil palm plantation process to the milling process, so as to determine the associated Carbon Equivalence (CE and the effects on human and land space. A carbon-balanced model (CBM is proposed herewith to indicate the main paths of carbon emission, fixation, and reduction. The net equivalent carbon emission was found to be 56 kg CE per ton of Crude Palm Oil (CPO produced, resulting in the emission flux of 175 kg CE/ha-y. The plantation activity that emits the highest CO2 levels is fertilizer application, accounting for about 84% of the total. All bio-residues produced from CPO production were found to be utilized for human use, thereby decreasing the carbon emission. Their use ranged from biogas and electricity generation to soil conditioning, and the utilization of the bio-residues resulted in total carbon reduction of 212 kg CE per ton of CPO. Carbon fixation as a main product (CPO was found to be an average of 812 kg CE per ton of CPO, equivalent to 2543 kg CE/ha-y. Overall, as the total fixation is 14 times higher than that of the total emissions, the production of CPO generates and introduces a very small amount of waste into the environment. To satisfy the need for palm oil as renewable energy and other end-user products the expansion of the plantation areas may result in competition of agricultural land with other cash crops.

Withida Patthanaissaranukool

2011-07-01

121

Oil palm: domestication achieved?  

OpenAIRE

The natural habitat of the oil palm comprises very wet and relatively dry niches in the lowland rain forest in West and Central Africa. The domestication of the oil palm started with the extraction of fruits from wild forest resources. When forests were cleared for shifting cultivation, oil palms were not felled and in the subsequent regeneration period they obtained a favourable position resulting in semi-wild palm groves. Thinning of groves gave rise to semi-permanent or permanent intercrop...

Gerritsma, W.; Wessel, M.

1997-01-01

122

Lipase Production from Palm Oil Mill Effluent by Aspergillus terreus Immobilized on Luffa Sponge  

Directory of Open Access Journals (Sweden)

Full Text Available An integrated treatment and valorization of Palm Oil Mill Effluent (POME by Aspergillus terreus IMI 282743 immobilized on Luffa sponge was investigated. Effects of POME concentrations and nitrogen supplementation on Chemical Oxygen Demand (COD reduction, microbial lipase and biomass production were evaluated in batch cultures. A 50% POME promoted the highest lipolytic activities in both immobilized and free cell cultures. In the former, the maximum lipase activity was 5.14 U mL-1 but in the non-immobilized batch, it was only 2.10 U mL-1. Lipase activities were low in the 25 and 100% POME due to overdilution and presence of inhibitory compounds, respectively. The pH was unchanged in the 100% POME but in other cultures, there were significant increase in the pH values. The pH of the 75% POME increased after a 48 h lag but in the 25 and 50% POME, the pH rose from 4-6.43 within a period of 96 h. COD did not change in the 100% POME but in the 75% POME, a 60.7% reduction was achieved. The COD of both the 50 and 25% POME decreased by 45% respectively. The immobilized biomass concentration was highest in the 75% POME (0.83 g L-1 but in the 25 and 100% POME, it was 0.27 and 0.63 g L-1, respectively. Supplementation of the 50% POME with a mixture of ammonium sulphate and yeast extract increased lipase production to10.6 U mL-1, biomass concentration to 3.7 g L-1 while the COD decreased by 80%. Lipase production from POME could be economically competitive to present industrial processes and provides additional incentive of treatment that is cheap and sustainable.

Charles O. Nwuche

2013-01-01

123

Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria.  

Science.gov (United States)

Lactobacillus plantarum SF5.6 is one of the lactic acid bacteria (LAB) that has the highest ability of molasses melanoidin (MM) decolorization among the 2114 strains of LAB. The strains were isolated from spoilage, pickle fruit and vegetable, soil and sludge from the wastewater treatment system by using technical step of enrichment, primary screening and secondary screening. This LAB strain SF5.6 was identified by 16S rDNA analysis and carbohydrate fermentation (API 50 CH). The top five LAB strains having high MM decolorization (> 55%), namely TBSF5.8-1, TBSF2.1-1, TBSF2.1, FF4A and SF5.6 were selected to determine the optimal condition. It was found that the temperature at 30 degrees C under facultative conditions in GPY-MM medium (0.5% glucose, 0.1% peptone, 0.1% yeast extract, 0.1% sodium acetate, 0.05% MgSO4 and 0.005% MnCl2 in MM solution at pH 6) giving a high microbial growth and MM decolorization for all five strains. It was noticed that the decolorization of MM by LAB strains might be cell growth associated. L. plantarum SF5.6 grew rapidly within one day while the other strains took 2-3 days. This L. plantarum SF5.6 could rapidly decolorize MM to 60.91% without any lag phase, and it also had the ability to remove 34.00% phenolic compounds and 15.88% color from treated palm oil mill effluent. PMID:21179960

Limkhuansuwan, Vassanasak; Chaiprasert, Pawinee

2010-01-01

124

Adsorption isotherm studies of BOD, TSS and colour reduction from palm oil mill effluent (POME) using boiler fly ash  

Scientific Electronic Library Online (English)

Full Text Available Palm oil is one of the two most important vegetable oils in the world's oil and fats market. The extraction and purification processes generate different kinds of waste generally known as palm oil mill effluent (POME). Earlier studies had indicated the possibility of using boiler fly ash to adsorb i [...] mpurities and colour in POME treatment. The adsorption treatment of POME using boiler fly ash was further investigated in detail in this work with regards to the reduction of BOD, colour and TSS from palm oil mill effluent. The amount of BOD, colour and TSS adsorbed increased as the weight of the boiler fly ash used was increased. Also, the smaller particle size of 425µm adsorbed more than the 850µm size. Attempts were made to fit the experimental data with the Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The R² values, which ranged from 0.8974-0.9898, 0.8848-0.9824 and 0.6235-0.9101 for Freundlich, Langmuir and Dubinin-Radushkevich isotherms respectively, showed that Freundlich isotherm gave a better fit followed by Langmuir and then Dubinin-Radushkevich isotherm. The sorption trend could be put as BOD > Colour > TSS. The apparent energy of adsorption was found to be 1.25, 0.58 and 0.97 (KJ/mol) for BOD, colour and TSS respectively, showing that sorption process occurs by physiosorption. Therefore, boiler fly ash is capable of reducing BOD, Colour and TSS from POME and hence could be used to develop a good adsorbent for POME treatment.

J.C, Igwe; C.O, Onyegbado; A.A, Abia.

2010-09-01

125

Techno-economic Evaluation on Enhancing Cogeneration Plant Capacity: Case Study of Palm Oil Mill Cogeneration Plant  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of the study is to apply techno-economic evaluation for selecting a feasible alternative to enhance a co-generation power generation capacity of a palm oil mill. The co-generation plant is using Empty Fruit Bunch (EFB as fuel. The basis of the technical evaluation is to compare three alternatives on increasing the co-generation power generation capacity. Alternative 1 is to consider installing a new high capacity boiler to the current cogeneration system and maintaining the current turbine. Alternative 2 is to install a new high efficiency back pressure steam turbine and maintain the current boiler. While Alternative 3, is to install high capacity an extraction steam turbine and maintain the current boiler. Present worth analysis is used for economic evaluation. Both the capital and operational expenditures are taken into account in assessing the present worth of the alternatives. Results from the technical and economic analysis have identified Alternative 2 as the most feasible alternative. Since substantial quantity EFB are available in Malaysia and being used as fuel for power generation at the palm oil mills, the approach could be useful for enhancement of co-generation capacity of the mills.

Mohd Amin Abd Majid

2014-01-01

126

Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent  

International Nuclear Information System (INIS)

An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

127

Biosynthesis and Characterization of Polyhydroxyalkanoates Copolymers Produced by Pseudomonas putida Bet001 Isolated from Palm Oil Mill Effluent  

OpenAIRE

The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C8?0) to oleic acid (C18?1) were used as sole carbon and energy source....

Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

2012-01-01

128

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

OpenAIRE

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at ...

Fang, Cheng; O-thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

2011-01-01

129

Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost  

Directory of Open Access Journals (Sweden)

Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

Azhari S. Baharuddin

2010-01-01

130

Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.  

Science.gov (United States)

Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported. PMID:25058299

Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

2014-10-01

131

Palm Oil Mill Effluent Treatment Process Evaluation and Fate of Priority Components in an Open and Closed Digestion System  

Directory of Open Access Journals (Sweden)

Full Text Available The evaluation for the degradability of chemical oxygen demand (COD and biogas contents before and after closed tank reactor (CR and open tank reactor (TP were observed. COD reduction in the TP (maximum degradability rate of 60% and CR (maximum degradability rate of 85%. The variation in CH4, volatile fatty acid (VFA and total suspended (TSS contents in the effluent was more pronounced in the first six months and found stable afterward. The maximum organic loading rate (OLR of 11.5 g-COD l/d attained corresponded to 85% overall COD removal. However, there is study to degradability of COD and quantify the actual CH4 recover from the commercial scale wastewater treatment from TP and CR. The findings indicated that the CH4 content was between 49% TP which was lower than the value of 57% reported in TP. The lower VFAs were found in the CR because of variation of palm oil mill effluent quality and quantity from palm oil mill industry.

Anwar Ahmad

2014-08-01

132

Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.  

Science.gov (United States)

In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status. PMID:24372356

Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

2014-01-22

133

Biomethanation of Palm Oil Mill Effluent (POME By Ultrasonic Membrane Anaerobic System (UMAS Using Pome as Substrate  

Directory of Open Access Journals (Sweden)

Full Text Available Palm oil mill effluent (POME with average chemical oxygen demand (COD and biochemical oxygen demand (BOD of 70,000 and 30,000 mg/L, respectively, can cause serious environmental hazard if discharged untreated. There are conventional palm oil mill effluent (POME treatment systems that require large footprint, long HRT and fail to meet the Malaysia Department of Environment (DOE discharge limit. In this study, the potential of ultrasonic-assisted membrane anaerobic system (UMAS was evaluated as alternative and cost effective method for treating POME wastewater to avoid fouling. This study also is an initiative to implement concept waste to energy by capturing methane gas. Throughout the experiment, the removal efficiency of COD was 95.55% with HRT of 6 days. The BOD removal efficiency was 71.58% while TSS removal rate was from 91 to 99.5%.The methane gas production efficiency was 94.14%. The UMAS treatment efficiency was greatly improved by UMAS introduction. The membrane fouling and polarization at the membrane surface was significantly reduced.

Abdurahman.H.Nour*1,

2014-01-01

134

Effect of temperature on the anaerobic digestion of palm oil mill effluent  

Scientific Electronic Library Online (English)

Full Text Available Two continuous stirred tank reactors (CSTRs) each fed with palm oil mill effluent (POME), operated at 37ºC and 55ºC, respectively, were investigated for their performance under varies organic loading rates (OLRs). The 37ºC reactor operated successfully at a maximum OLR of 12.25 g[COD]/L/day and a hy [...] draulic retention time (HRT) of 7 days. The 55ºC reactor operated successfully at the higher loading rate of 17.01 g[COD]/L/day and had a HRT of 5 days. The 37ºC reactor achieved a 71.10% reduction of chemical oxygen demand (COD), a biogas production rate of 3.73 L of gas/L[reactor]/day containing 71.04% methane, whereas the 55ºC reactor achieved a 70.32% reduction of COD, a biogas production rate of 4.66 L of gas/L[reactor]/day containing 69.53% methane. An OLR of 9.68 g[COD]/L/day, at a HRT of 7 days, was used to study the effects of changing the temperature by 3ºC increments. The reactor processes were reasonably stable during the increase from 37ºC to 43ºC and the decrease from 55ºC to 43ºC. When the temperature was increased from 37ºC to 46ºC, the total volatile fatty acid (TVFA) concentration and biogas production was 2,059 mg as acetic acid/L and 1.49 L of gas/L[reactor]/day at day 56, respectively. When the temperature was reduced from 55ºC to 40ºC, the TVFA concentration and biogas production was 2,368 mg as acetic acid/L and 2.01 L of gas/L[reactor]/day at day 102, respectively. By first reducing the OLR to 4.20 g[COD]/L/day then slowly increasing the OLR back to 9.68 g[COD]/L/day, both reactors were restored to stable conditions at 49ºC and 37ºC respectively. The initial 37ºC reactor became fully acclimatized at 55ºC with an efficiency similar to that when operated at the initial 37ºC whereas the 55ºC reactor also achieved stability at 37ºC but with a lower efficiency

Wanna, Choorit; Pornpan, Wisarnwan.

2007-07-15

135

Optimization of Electricity Generation and Palm Oil Mill Effluent (POME Treatment from Microbial Fuel Cell  

Directory of Open Access Journals (Sweden)

Full Text Available Natural micro-flora of Palm Oil Mill Effluent (POME sludge was grown in dual-chamber Microbial Fuel Cells (MFC to produce electricity by providing glucose at different concentration. A greater strength of Open Circuit Voltage (OCV was observed with optimal biomass metabolism activity, as increasing glucose concentrations. The time Response Constant (RC of OCV was taken everyday to estimate the total time needed to achieve steady state voltage at zero current. The lower value of RC indicates that the strength of OCV value is high and the biomass attached to the anode could be active in producing electrons. At 3 750 mg-COD L-1 with 10% added POME and 10 000 mg-COD L-1 synthetic wastewater, the values of RC for each medium were found as 3.36 and 1.95 h, respectively. The removal efficiency of COD was achieved 72.2% for 10% POME and 89.9% for synthetic wastewater. The initial COD level was found proportionally to the COD removal and maximum power density in the MFC system. However, the results shown that relation between RC value and initial COD level were inversely proportional. The highest power density (with present current density in POME added and synthetic medium were 3.155 mW m-2 (9.322 mA m-2 and 1.780 mW m-2 (3.996 mA m-2, respectively. The optimal power density that conducted in different level of COD was occurred at day 2 before its start decrease at next consecutive day. The effects of electrochemical parameters to power densities at different initial COD level were also studied using polarization model. From the simulated data, averaged power densities (with present current densities that could achieved at COD 3750 and 10000 mg L-1 were estimated 2.61 mW m-2 (4.5 and 1.38 mA m-2 (3.5 mA m-2, respectively. The total losses due to current limitation were eliminated about 15-55 % at high initial COD level based on results mention above. The end of study showed that the maximum power density kept on increased although COD value had reached to the lower level and this could be due to the hydrolysis of inactive of the living cells undergone lysis, has contributed to COD level in the system.

Siti Norhana Shari

2010-01-01

136

Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T and Geobacillus thermoleovorans (DSM 5366T on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile.

Salleh Abu

2007-08-01

137

Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production.  

Science.gov (United States)

Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 ?m) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. PMID:23026328

Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin

2012-12-01

138

The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME. Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS and volatile solid (VS, M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS and volatile solid (VS decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas.

Irvan Matseh

2012-10-01

139

Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Macro and micro nutrients are important ingredients for successful anaerobic digestion. The presence or lack of nutrients can enhance or limit the functioning of the fermentation process. Micro-nutrients most often reported as stimulatory are trace metals such as nickel, cobalt, iron, and zinc. The purpose of this research is to study the effect of nickel and cobalt as trace metals on digestion performance and biogas produced from the fermentation of palm oil mill effluent (POME. Anaerobic digestion was performed in a two litres stirred tank reactor and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from a fat pit of palm oil mill’s waste water treatment facility belongs to one of the palm oil company in North Sumatera which has VS concentration of 26,300 mg/L and COD value of 42,000 mg/L. To gain precise results, complete recording and reliable equipment of digester were employed. Supporting materials were also needed such as sodium bicarbonate, ammonium bicarbonate, and hydrochloric acid solution. Variables observed were included M-alkalinity, total solid (TS, volatile solid (VS, and biogas production. Hydraulic retention time (HRT was maintained at 6 days. Experimental results concluded that the reduction of trace metals concentration did not affect the TS and VS concentration and M-alkalinity. doi: http://dx.doi.org/10.12777/ijwr.2.2.2012.16-19 [ How to cite this article: Irvan, M. (2012. Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent. International Journal of Waste Resources (IJWR, 2(2, 16-19. doi: http://dx.doi.org/10.12777/ijwr.2.2.2012.16-19

Irvan Matseh

2012-10-01

140

Maintenance Management Performance - An Overview towards Evaluating Malaysian Palm Oil Mill  

OpenAIRE

Deficient maintenance management can severely affect competitiveness of an organization byreducing throughput, increasing inventory, and leading to poor performance. Performancecannot be managed without measurement: it provides the required information to themanagement for effective decision making; and is used by industries to assess progressagainst set goals and objectives in a quantifiable way for effectiveness and efficiency. For thepalm oil mills to stay competitive, it is imperative tha...

Nazim Baluch; Che Sobry Bin Abdullah; Shahimi Bin Mohtar

2010-01-01

141

Waste to Wealth: Hidden Treasures in the Oil Palm Industry  

International Nuclear Information System (INIS)

The palm oil industry plays an important role in the creation of waste to wealth using the abundant oil palm biomass resources generated from palm oil supply chain i.e. upstream to downstream activities. The oil palm biomass and other palm-derived waste streams available are oil palm trunks (felled), fronds (felled and pruned), shell, mesocarp fibers, empty fruit bunches (EFB), palm oil mill effluent (POME), palm kernel expelled (PKE), palm fatty acid distillates (PFAD), used frying oil (UFO), residual oil from spent bleaching earth (SBE) and glycerol. For 88.5 million tonnes of fresh fruit bunches (FFB) processed in 2008, the amount of oil palm biomass generated was more than 25 million tones (dry weight basis) with the generation of 59 million tonnes of POME from 410 palm oil mills. Oil palm biomass consists of mainly lignocellulose materials that can be potentially and fully utilized for renewable energy, wood-based products and high value-added products such as pytonutrients, phenolics, carotenes and vitamin E. Oil palm biomass can be converted to bio energy with high combustible characteristics such as briquettes, bio-oils, bio-producer gas, boiler fuel, biogas and bio ethanol. Oil palm biomass can also be made into wood-based products such as composite and furniture, pulp and paper and planting medium. The recovery of phenolics from POME as valuable antioxidants has potential drug application. Other possible applications for oil palm biomass include fine chemica for oil palm biomass include fine chemicals, dietary fibers, animal feed and polymers. There must be a strategic and sustainable resource management to distribute palm oil and palm biomass to maximize the use of the resources so that it can generate revenues, bring benefits to the palm oil industry and meet stringent sustainability requirements in the future. (author)

142

Influence of palm oil mill effluent as inoculum on anaerobic digestion of cattle manure for biogas production.  

Science.gov (United States)

Anaerobic digestion for palm oil mill effluent (POME) is widely known for its potential in biogass production. In this study, the potential of using cattle manure for biogas production in complete mix anaerobic bioreactor was investigated using POME at unregulated pH and temperature. Two identical bioreactors were used in this study; namely R1 and R2 fed with cattle manure without and with POME as inoculum, respectively. Both bioreactors were allowed for five days to run in batch mode followed by semi continuous operations at HRT of 20 days. R2 produced 41% methane content compared to 18% produced in R1. A better COD percentage reduction of 45% was found in R2 which was operated with POME as inoculum compared to R1 with 35%. These results indicated that POME as inoculum has an influence on the start-up time and the rate of biogas produced.This findings will help in waste reduction. PMID:23588120

Saidu, Mohammed; Yuzir, Ali; Salim, Mohd Razman; Salmiati; Azman, Shamila; Abdullah, Norhayati

2013-08-01

143

Effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge mixed with shredded palm empty fruit bunches and decanter cake  

Directory of Open Access Journals (Sweden)

Full Text Available The effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge (POMS mixed with shredded palm empty fruit bunches (PEFB and decanter cake (DC was studied using the mixed culture LDD1 as an inoculum. Three piles of 50 kg mixture (POMS:PEFB:DC = 2:1:1 with different inoculum sizes of 0.0075% (treatment A, 0.015% (treatment B, and 0.030% (treatment C were set up. The physicochemical parameters were measured during the composting. All the compost appeared dark brown in color, crumbly, attained an ambient temperature and had the C/N ratio of 11:1 after 40 days fermentation, indicating the maturity of the compost. The optimal inoculum size was found to be 0.030% (w/w. For enzyme production, the highest carboxymethylcellulase (CMCase activity was 3.23 Unit/g substrates at 12 days incubation whereas the highest xylanase activity was 3.11 Unit/g substrates at 6 days incubation. At the end of 60 days fermentation, the compost (treatment C had a TN-P2O5 -K2O of 3.10-1.29-2.01% (dry basis. Therefore, the compost quality complied with the national compost standard set by the Ministry of Agriculture, Thailand.

Tanawut Nutongkaew

2014-06-01

144

Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production  

OpenAIRE

Problem statement: Refined Glycerin Wash Water (RGWW) from the oleochemical industry contains high Chemical Oxygen Demand (COD) and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl) that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME) for its treatment and methane recovery. Approach: A large 500 m3 semi-com...

Sulaiman, A.; Zakaria, M. R.; Hassan, M. A.; Shirai, Y.; Busu, Z.

2009-01-01

145

Lipase Production from Palm Oil Mill Effluent by Aspergillus terreus Immobilized on Luffa Sponge  

OpenAIRE

An integrated treatment and valorization of Palm Oil Mill Effluent (POME) by Aspergillus terreus IMI 282743 immobilized on Luffa sponge was investigated. Effects of POME concentrations and nitrogen supplementation on Chemical Oxygen Demand (COD) reduction, microbial lipase and biomass production were evaluated in batch cultures. A 50% POME promoted the highest lipolytic activities in both immobilized and free cell cultures. In the former, the maximum lipase...

Nwuche, Charles O.; Hideki Aoyagi; Ogbonna, James C.

2013-01-01

146

The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy  

OpenAIRE

Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME) treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA) accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME ...

Alawi Sulaiman; Zainuri Busu; Meisam Tabatabaei; Shahrakbah Yacob; Suraini Abd-Aziz; Mohd Ali Hassan,; Yoshihito Shirai,

2009-01-01

147

Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent  

OpenAIRE

Macro and micro nutrients are important ingredients for successful anaerobic digestion. The presence or lack of nutrients can enhance or limit the functioning of the fermentation process. Micro-nutrients most often reported as stimulatory are trace metals such as nickel, cobalt, iron, and zinc. The purpose of this research is to study the effect of nickel and cobalt as trace metals on digestion performance and biogas produced from the fermentation of palm oil mill effluent (POME). Anaerobic d...

Irvan Matseh

2012-01-01

148

Comparative studies on the adsorption properties of powdered activated carbon and propenoic acid modified sawdust in the treatment of secondary palm oil mill effluent  

International Nuclear Information System (INIS)

Propenoic acid monomer was used to modify pulped cellulosic materials (sawdust). The sorption properties of the propenoic acid modified sawdust (PAMS) were compared with those of powdered activated carbon (PAC) in the tertiary treatment of palm oil mill effluent, previously clarified with iron (III) chloride plus lime (secondary effluent). The adsorption processes were effected in a fluidized bed reactor (FBR) at a pressure of 80 kilo Newton per meter square (kNm/sup -2/). Optimum amount of PAC and PAMS used for the fluidized adsorption of contaminants from the secondary palm oil mill effluent (POME) were 2.5 g/1 and 4.0 g/1, respectively. These sorption processes were found to be optimum at 10 min and 50 min for PAC and PAMS, respectively. At optimum sorption conditions, removal differentials of 28.6%/g chemical oxygen demand, 19.1%/g suspended solids, and 19.3%/g colour in favour of PAC were established. The application of optimum conditions for adsorption, for both adsorbents, to the bulk treatment of the palm oil mill effluent yielded a clear effluent with wider reuse applicability. (author)

149

The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water  

OpenAIRE

An attempt was made to reclaim and recover palm oil mill effluent (POME) for water reuse using tubular ultrafiltration (UF) and reverse osmosis (RO) membranes. The reclaimed water was compared with the final discharged water of the local mill. The raw POME was first subjected to a physical pre-treatment process to remove the content of organic matter and suspended solids. The pre-treatment process was coupled with membrane technology (UF and RO) to reclaim the clean water from POME. From the ...

Nazatul Shima Azmi; Khairul Faezah Md Yunos; Azhari Samsu Baharuddin; Zanariah Md Dom

2013-01-01

150

Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3  

Directory of Open Access Journals (Sweden)

Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

Benjamas Cheirsilp

2013-04-01

151

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

International Nuclear Information System (INIS)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH4/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

152

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME).  

Science.gov (United States)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH(4)/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH(4)/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH(4)/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor. PMID:21377272

Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

2011-05-15

153

Performance of cellulose acetate - polyethersulphone blend membrane prepared using microwave heating for palm oil mill effluent treatment.  

Science.gov (United States)

The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation. PMID:17978445

Idris, A; Ahmed, I; Jye, H W

2007-01-01

154

Synthetic Polyelectrolytes Based on Acrylamide and Their Application as a Flocculent in the Treatment of Palm Oil Mill Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available Five cationic polyacrylamides of varying molecular weights but similar charge density were synthesized using free radical polymerization and Mannich reaction, characterized by different methods (infra red (IR spectroscopy, differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA, viscosity measurements and conductometric titration and applied as flocculants to palm oil mill effluents (POME. Flocculent performance was assessed by determining the polyelectrolyte dosage and the removal efficiency of the resulting supernatants using turbidity, suspended solids (SS and chemical oxygen demand (COD as indicators. It was found that varying in the molecular weight of the cationic polyacrylamide from 20X103 to 1.5X106 g mol-1 affects flocculent performance significantly. Polyelectrolyte adsorption increased as the molecular weight of the polyelectrolyte increased. High molecular weight cationic polyacrylamide (1.5X106 g mol-1 is the most effective polymer as it obtains a high removal efficiency (% with a dosage as low as 60 mg L-1 at pH 3 of POME. The very high molecular weight cationic polyacrylamide (over 5 million g mol-1 produced very poor floc formation this is because polyelectrolytes having very high molecular weights do not dissolve readily but tend to form gel lumps.

A. Ariffin

2004-01-01

155

Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor.  

Science.gov (United States)

The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration. PMID:22047724

Ahmad, Anwar; Ghufran, Rumana; Abd Wahid, Zularisam

2011-12-30

156

Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.  

Science.gov (United States)

An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. PMID:20042327

Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

2010-04-01

157

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

DEFF Research Database (Denmark)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610mL-CH4/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8gVS/(L-reactor.d). Similar methane yields of 436–438mL-CH4/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6gVS/(L-reactor.d), with the methane yield of 600 and 555mL-CH4/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

Fang, Cheng; O-Thong, Sompong

2011-01-01

158

Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.  

Science.gov (United States)

The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (?H(f)) of 100.9 (± 0.1) J g(-1). PMID:23028854

Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

2012-01-01

159

UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent.  

Science.gov (United States)

The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C. PMID:22466006

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2012-07-30

160

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)  

Energy Technology Data Exchange (ETDEWEB)

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH{sub 4}/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH{sub 4}/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH{sub 4}/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark); Angelidaki, Irini, E-mail: ria@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark)

2011-05-15

161

Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology  

Energy Technology Data Exchange (ETDEWEB)

Clostridium butyricum EB6 successfully produced hydrogen gas from palm oil mill effluent (POME). In this study, central composite design and response surface methodology were applied to determine the optimum conditions for hydrogen production (P{sub c}) and maximum hydrogen production rate (R{sub max}) from POME. Experimental results showed that the pH, temperature and chemical oxygen demand (COD) of POME affected both the hydrogen production and production rate, both individually and interactively. The optimum conditions for hydrogen production (P{sub c}) were pH 5.69, 36 C, and 92 g COD/l; with an estimated P{sub c} value of 306 ml H{sub 2}/g carbohydrate. The optimum conditions for maximum hydrogen production rate (R{sub max}) were pH 6.52, 41 C and 60 g COD/l; with an estimated R{sub max} value of 914 ml H{sub 2}/h. An overlay study was performed to obtain an overall model optimization. The optimized conditions for the overall model were pH 6.05, 36 C and 94 g COD/l. The hydrogen content in the biogas produced ranged from 60% to 75%. (author)

Chong, Mei-Ling; Abdul Rahman, Nor' Aini; Aziz, Suraini Abdul; Hassan, Mohd Ali [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Rahim, Raha Abdul [Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shirai, Yoshihito [Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, 808-0196 Hibikino 2-4, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (Japan)

2009-09-15

162

Isolation of a novel thermophilic fungus Chaetomium sp. nov. MS-017 and description of its palm-oil mill fiber-decomposing properties.  

Science.gov (United States)

Palm-oil mill fiber (POMF) is a fibrous, natural hard material discharged in enormous amounts from palm-oil mills in tropical plantations; therefore, research to find microorganisms that decompose POMF was conducted. As the result of screening, a new thermophilic fungus, Chaetomium sp. nov. MS-017, exhibiting rapid growth on POMF was isolated from rotted wood. Based on partial characterization of the decomposition of POMF, it was shown that MS-017 preferentially assimilates polysaccharides, especially hemicelluloses such as xylan. A preliminary composting study indicated that MS-017 produced 855 g of decomposed product from 1,000 g of intact POMF in 12 days under optimized solid-culture conditions. The decomposition rate of POMF was 23% (w/w), and the cell yield calculated from consumed POMF was as high as 36% (w/w). These results indicate that MS-017 has a very high potential to decompose POMF and that it is suitable for economical production of compost to recycle by-product biomass from oil-palm plantations. PMID:12536260

Suyanto; Ohtsuki, T; Yazaki, S; Ui, S; Mimura, A

2003-01-01

163

Sterilization of Oil Palm Fresh Fruit Using Microwave Technique  

OpenAIRE

Dramatically increasing rate of free fatty acid (FFA) in long storage oil palm fruit is one of the most crucial problems of oil palm mill industries. The aim of this paper is to study the possibility of oil palm fruits sterilization by using microwave irradiation in order of halting enzymatic lipolysis reaction which caused of FFA production. The results indicate that microwave heating can be interrupted the FFA produced reaction and the optimum condition heating temperature of the fruits mes...

Umudee, I.; Chongcheawchamnan, M.; Kiatweerasakul, M.; Tongurai, C.

2013-01-01

164

Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR).  

Science.gov (United States)

The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit. PMID:20430515

Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

2010-08-01

165

Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology.  

Science.gov (United States)

The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes. PMID:23054764

Neoh, Chin Hong; Yahya, Adibah; Adnan, Robiah; Abdul Majid, Zaiton; Ibrahim, Zaharah

2013-05-01

166

Pretreatment Evaluation and its Application on Palm Oil Mill Effluent for Bio-Hydrogen Enhancement and Methanogenic Activity Repression  

Directory of Open Access Journals (Sweden)

Full Text Available Pretreatment evaluations of biological sludge were performed to observe the enhancement of hydrogen production and repression of methanogenic activity using anaerobic sludge and sucrose as substrate. The treatments include heating (H, ozonation (O, drug (D application using fluvastatin, Na2SO4(S dosing and their combinations to make up for the total of 9 pretreatment methods. Heat treatment at 95°C for 45 min provided a complete methanogen repression and good enhancement of hydrogen production activity. The remaining pretreatments were imperfect either for repression or enhancement based on the application conditions and concentration ranges. The order of methane repression was: H>HO>HD>HS>O>D>OD>OS>S while hydrogen production was: HO>H>HS>OD>HD>OS>D>O>S. Heat treatment at the specified condition was considered sufficient and suitable for pretreatment of anaerobic sludge. The practical application was explored using Palm Oil Mill Effluent (POME containing different amounts of solid content (15.830 g VSS L-1, namely LPOME and 21.445 g VSS L-1, namely HPOME as substrate. Beside the difference in COD of nearly 16% which is higher for HPOME, a higher specific hydrogen production rate was obtained at 0.81 and 0.17 mL H2 g-1 COD h for LPOME and HPOME, respectively. It should also be noted that a prolonged lag-time during start-up was observed for HPOME as well as hydrogen suppression which may be associated with the solid content mainly lipids in wastewater. Thus, high solid content of wastewater may be of concerned for bio-hydrogen production.

Porntip Wimonsong

2009-01-01

167

Pretreatment evaluation and its application on palm oil mill effluent for bio-hydrogen enhancement and methanogenic activity repression.  

Science.gov (United States)

Pretreatment evaluations of biological sludge were performed to observe the enhancement of hydrogen production and repression of methanogenic activity using anaerobic sludge and sucrose as substrate. The treatments include heating (H), ozonation (O), drug (D) application using fluvastatin, Na2SO4(S) dosing and their combinations to make up for the total of 9 pretreatment methods. Heat treatment at 95 degrees C for 45 min provided a complete methanogen repression and good enhancement of hydrogen production activity. The remaining pretreatments were imperfect either for repression or enhancement based on the application conditions and concentration ranges. The order of methane repression was: H > HO > HD > HS > O > D > OD > OS > S while hydrogen production was: HO > H > HS > OD > HD > OS > D > O > S. Heat treatment at the specified condition was considered sufficient and suitable for pretreatment of anaerobic sludge. The practical application was explored using Palm Oil Mill Effluent (POME) containing different amounts of solid content (15.830 g VSS L(-1), namely LPOME and 21.445 g VSS L(-1), namely HPOME) as substrate. Beside the difference in COD of nearly 16% which is higher for HPOME, a higher specific hydrogen production rate was obtained at 0.81 and 0.17 mL H2g (-1) COD h for LPOME and HPOME, respectively. It should also be noted that a prolonged lag-time during start-up was observed for HPOME as well as hydrogen suppression which may be associated with the solid content mainly lipids in wastewater. Thus, high solid content of wastewater may be of concerned for bio-hydrogen production. PMID:19899323

Wimonsong, Porntip; Nitisoravut, Suwanchai

2009-08-15

168

Systematic approach for synthesis of palm oil-based biorefinery  

Energy Technology Data Exchange (ETDEWEB)

Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

2012-11-01

169

Zeolite Utilization as a Catalyst and Nutrient Adsorbent of an Organic Fertilizer Process From Palm Oil Mill Effluent as Raw Material  

OpenAIRE

Palm Oil Mill Effluent (POME) cannot be directly used as an organic fertilizer source due to its high Biological Oxygen Demand (BOD) thus it is not environmentally safely. To increase the high quality of organic fertilizer obtained, the liquid wastes are needed to be processed in order to decrease the BOD to degrade both the soluble and suspension materials of organic materials. The altenative process to be conducted to make a better quality of POME is by adding the adsorbent. The aim of the...

Ida Nursanti; Dedik Budianta; Adipati Napoleon; Yakup Parto

2013-01-01

170

A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) reactor  

OpenAIRE

Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organi...

S A Habeeb, Ab Aziz Abdul Latiff

2011-01-01

171

PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent  

Scientific Electronic Library Online (English)

Full Text Available 16S ribosomal RNA (rRNA)-targeted fluorescent in situ hybridization combined with polymerase chain reaction (PCR)-cloning, light microscopy using Gram stains, scanning electron microscopy and denatured gradient gel electrophoresis were used to reveal the distribution of methanogens within an anaerob [...] ic closed digester tank fed with palm oil mill effluent. For specific detection of methanogens, 16S rRNA-cloning analysis was conducted followed by restriction fragment length polymorphism (RFLP) for presumptive identification of methanogens. To cover the drawbacks of the PCR-cloning study, the organization of the microorganisms was visualized in the activated sludge sample by using fluorescent oligonucleotide probes specific to several different methanogens, and a probe for bacteria. In situ hybridization with methanogens and bacterial probes and denatured gradient gel electrophoresis within activated sludge clearly confirmed the presence of Methanosaeta sp. and Methanosarcina sp. cells. Methanosaeta concilii was found to be the dominant species in the bioreactor. These results revealed the presence of possibly new strain of Methanosaeta in the bioreactor for treating palm oil mill effluent called Methanosaeta concilii SamaliEB (Gene bank accession number: EU580025). In addition, fluorescent hybridization pictured the close association between the methanogens and bacteria and that the number of methanogens was greater than the number of bacteria.

Meisam, Tabatabaei; Mohd Rafein, Zakaria; Raha Abdul, Rahim; André-Denis G., Wright; Yoshihito, Shirai; Norhani, Abdullah; Kenji, Sakai; Shinya, Ikeno; Masatsugu, Mori; Nakamura, Kazunori; Alawi, Sulaiman; Mohd Ali, Hassan.

2009-07-15

172

The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water  

Directory of Open Access Journals (Sweden)

Full Text Available An attempt was made to reclaim and recover palm oil mill effluent (POME for water reuse using tubular ultrafiltration (UF and reverse osmosis (RO membranes. The reclaimed water was compared with the final discharged water of the local mill. The raw POME was first subjected to a physical pre-treatment process to remove the content of organic matter and suspended solids. The pre-treatment process was coupled with membrane technology (UF and RO to reclaim the clean water from POME. From the combined techniques of UF (5 bar and RO (30 bar the results showed that the turbidity and BOD5 were reduced by 99% and 98.9%, respectively. Compared to the final discharged POME, this suggested method gives a significant difference in BOD5 and turbidity. The final permeate of RO was found to comply with the standards for water reuse. Therefore, the combined UF and RO method is a viable alternative and has a great potential for use in the palm oil industry.

Nazatul Shima Azmi

2013-02-01

173

Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water  

Science.gov (United States)

This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett-Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

Selmani, Nabila; Mirghani, Mohamed E. S.; Zahangir Alam, Md

2013-06-01

174

Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water  

International Nuclear Information System (INIS)

This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett–Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

175

Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor  

International Nuclear Information System (INIS)

Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ? Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ? The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ? The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ? SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO–CKD concentration.

176

Characteristics of granular sludge developed in an upflow anaerobic sludge fixed-film bioreactor treating palm oil mill effluent.  

Science.gov (United States)

In the present study, characteristics of the granular sludge (including physical characteristics under stable conditions and process shocks arising from suspended solid overload, soluble organic overload, and high temperature; biological activity; and sludge kinetic evaluation in a batch experiment) developed in an upflow anaerobic sludge blanket fixed-film reactor for palm oil mill effluent (POME) treatment was investigated. The main aim of this work was to provide suitable understanding of POME anaerobic digestion using such a granular sludge reactor, particularly with respect to granule structure at various operating conditions. The morphological changes in granular sludge resulting from various operational conditions was studied using scanning electron microscopy and transmission electron microscopy images. It was shown that the developed granules consisted of densely packed rod- (Methanosaeta-like microorganism; predominant) and cocci- (Methanosarsina) shaped microorganisms. Methanosaeta aggregates functioned as nucleation centers that initiated granule development of POME-degrading granules. Under the suspended solid overload condition, most of the granules were covered with a thin layer of fiberlike suspended solids, so that the granule color changed to brown and the sludge volume index also increased to 24.5 from 12 to 15 mL/g, which caused a large amount of sludge washout. Some of the granules were disintegrated because of an acidified environment, which originated from acidogenesis of high influent organic load (29 g chemical oxygen demand [COD]/L d). At 60 degrees C, the rate of biomass washout increased, as a result of disintegration of the outer layer of the granules. In the biological activity test, approximately 95% COD removal was achieved within 72 hours, with an initial COD removal rate of 3.5 g COD/L d. During POME digestion, 275 mg calcium carbonate/L bicarbonate alkalinity was produced per 1000 mg COD(removed)/ L. A consecutive reaction kinetic model was used to simulate the data obtained from the sludge activity in the batch experiment. The mathematical model gave a good fit with the experimental results (R2 > 0.93). The slowest step was modeled to be the acidification step, with a rate constant between 0.015 and 0.083 hours(-1), while the rate constant for the methanogenic step was obtained to be between 0.218 and 0.361 hours(-1). PMID:17824529

Zinatizadeh, A A L; Mohamed, A R; Mashitah, M D; Abdullah, A Z; Hasnain Isa, M

2007-08-01

177

Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor  

Energy Technology Data Exchange (ETDEWEB)

Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.

Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

2011-12-30

178

Material-mass Balance of Smallholder Oil Palm Processing in the Niger Delta, Nigeria  

OpenAIRE

This study evaluates the material-mass balance of smallholder oil palm processing in Niger Delta Nigeria. Ten smallholder oil palm processing mills were randomly sampled. Measuring scale was used to measure the weight of the Fresh Fruit Bunch (FFB) and all the processing intermediates/products including Threshed Fresh Fruit (TFF), Palm Pressed Fibre (PPF), Palm Kernel Shell (PKS), Empty Fruit Bunch (EFB), Crude Palm Oil (CPO), chaff and nut. During the study period (13-22 April 2012), 8 of th...

Ohimain, Elijah I.; Izah, Sylvester C.; Obieze, Francis A. U.

2013-01-01

179

A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor  

Directory of Open Access Journals (Sweden)

Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

2011-07-01

180

Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete  

OpenAIRE

Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (...

Muthusamy, K.; Zulkepli, N. A.; Mat Yahaya, F.

2013-01-01

181

Sustainability of Palm Oil Industries: An Innovative Treatment via Membrane Technology  

OpenAIRE

Malaysia is the largest producer of palm oil, the processing of oil palm Fresh Fruit Bunches (FFB) has resulted large amount Palm Oil Mill Effluent (POME). The highly polluting POME is identified as the major stumbling block to the development of palm oil industry in Malaysia. Hence, an integrated membrane process with physical-chemical treatment had been successfully achieved for treatment of POME. The role of membrane was explored significantly; where the chemical treated POME was further t...

Ahmad, A. L.; Chan, C. Y.

2009-01-01

182

Life cycle assessment of two palm oil production systems  

International Nuclear Information System (INIS)

In 2009 approx. 40 Mt of palm oil were produced globally. Growing demand for palm oil is driven by an increasing human population as well as subsidies for biodiesel and is likely to increase further in coming years. The production of 1 t crude palm oil requires 5 t of fresh fruit bunches (FFB). On average processing of 1 t FFB in palm oil mills generates 0.23 t empty fruit bunches (EFB) and 0.65 t palm oil mill effluents (POME) as residues. In this study it is assumed that land use change does not occur. In order to estimate the environmental impacts of palm oil production a worst and a best case scenario are assessed and compared in the present study using 1000 kg of FFB as functional unit. The production and treatment of one t FFB causes more than 460 kg CO2eq in the worst case scenario and 110 kg CO2eq in the best case scenario. The significant greenhouse gas (GHG) emission reduction is achieved by co-composting residues of the palm oil mill. Thus treating those residues appropriately is paramount for reducing environmental impacts particularly global warming potential (GWP) and eutrophication potential (EP). Another important contributor to the EP but also to the human toxicity potential (HTP) is the biomass powered combined heat and power (CHP) plant of palm oil mills. Frequently CHP plants of palm oil mills operate without flue gas cleaning. The CHP plant emits heavy metals and nitrogen oxides and these account for 93% of the HTP of the advanced palm oil production system, of which heavy metal emissions to air are responsible for 79%. The exact emission reduction potential from CHP plants could not be quantified due to existing data gaps, but it is apparent that cleaning the exhaust gas would reduce eutrophication, acidification and toxicity considerably. -- Highlights: ? We have estimated the environmental impacts of two palm oil production systems. ? Residues from palm oil mills are a wasted resource rather than waste. ? Co-composting of EFB and POME reduces greenhouse gas emission significantly. ? Flue gas cleaning would abate the eutrophication and human toxicity potential.

183

A novel application of red mud-iron on granulation and treatment of palm oil mill effluent using upflow anaerobic sludge blanket reactor.  

Science.gov (United States)

The performance of the upflow anaerobic sludge blanket reactor that used red mud-iron (RM-Fe) for methane production for the treatment of palm oil mill effluent (POME) at various hydraulic retention time (HRT) was determined. POME was used as the substrate carbon source. The biogas production rate was 1.7 l biogas/h with a methane yield of 0.78 l CH4/g CODremoved and chemical oxygen demand (COD) removal was 85% at POME concentration of 30 g COD/l at HRT 16 h. The reactor R2 showed average methane content of biogas and COD reduction of 78% and 85% at 400 mg/l RM-Fe. Significant increase in the granule diameter (up to 2900 ?m) in R2 was compared to control R1 (up to 86 ?m) at end of the experiment. PMID:25176306

Ahmad, Anwar

2014-01-01

184

Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME).  

Science.gov (United States)

High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (q(p)) of 0.343 C-mol/C-molh when air was supplied at 20 ml/min. The PHA yield was found to be 0.80 C-mol/C-mol acetic acid (HAc) at microaerophilic condition and the mass balance calculation showed that PHA production increased up to 15.68±2.15 C-mmol/cycle. The experiments showed that short feeding rate, limited requirements for electron acceptors (e.g. O(2), NO(3)) and nutrients (N and P) showed lower tendency of glycogen accumulation and contributed more to PHA productivity. PMID:22989648

Din, Mohd Fadhil Md; Mohanadoss, Ponraj; Ujang, Zaini; van Loosdrecht, Mark; Yunus, Salmiati Muhd; Chelliapan, Shreeshivadasan; Zambare, Vasudeo; Olsson, Gustaf

2012-11-01

185

The influenced of PAC, zeolite, and Moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME).  

Science.gov (United States)

The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests. PMID:21251818

Damayanti, A; Ujang, Z; Salim, M R

2011-03-01

186

Coconut, date and oil palm genomics  

Science.gov (United States)

A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...

187

Industrial ecosystems in the crude palm oil industry in Thailand  

OpenAIRE

The crude palm oil industry plays an important role in Thai economic development and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it contributes to environmental degradation from both input and output sides of its activities. On the input side, crude palm oil mill uses much water in production process and consumes high energy. On the output side , manufacturing process generates large quantity of wastewater, solid waste/ by-pro...

Chavalparit, O.

2003-01-01

188

Biodiesel production from palm oil  

Directory of Open Access Journals (Sweden)

Full Text Available Methyl ester was produced from many sources of oil palm products, namely used frying oil, RBD palm oil, degummed and deacidified palm oil, palm stearin and superhard palm stearin. Production process was a conventional transesterification batch process using methanol as reactant and sodium hydroxide as catalyst. Production procedure consisted of oil preparation, solvent preparation, reaction step, glycerol separation, washing step and finishing step. Thin layer chromatograph was used to determine the composition of product and nearly 100% methyl ester was obtained at a suitable condition. Molar ratio of oil: methanol was about 1:6, which equal to 20% by weight of methanol. Sodium hydroxide was 0.5-1 %wt. of oil. The production temperature was 60-80ºC, mixing time was only 15-30 minutes and reaction time was 3-4 hours. Many fuel properties of methyl ester were very close to high-speed diesel such as viscosity, density, heating value and boiling point range. Pour point of methyl ester was higher than diesel owing to the high composition of saturated methyl ester that has a high melting point.

Kiatsimkul, P.

2001-11-01

189

Flexural strength of palm oil clinker concrete beams  

International Nuclear Information System (INIS)

Highlights: • Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. • The palm oil clinker concrete can be classified as lightweight concrete. • Full scale reinforced palm oil clinker concrete beams were tested. • The palm oil clinker concrete beam can provide ample warning to the imminence of failure. - Abstract: This paper presents an experimental program on the flexural behaviour of reinforced concrete beams produced from palm oil clinker (POC) aggregates. POC is obtained from by-product of palm oil milling. Utilisation of POC in concrete production not only solves the problem of disposal of this solid waste but also helps to conserve natural resources. An experimental work was conducted involving eight under-reinforced beams with varying reinforcement ratios (0.34–2.21%) which were fabricated and tested. The data presented include the deflection characteristics, cracking behaviour and ductility indices. It was found that although palm oil clinker concrete (POCC) has a low modulus of elasticity, the test results revealed that the deflection of singly reinforced POCC beams, with reinforcement ratio less than 0.524, under the design service load is acceptable as the span-deflection ratios range between 250 and 257 and these values are within the allowable limit provided by BS 8110. In addition, the results reported in this paper indicate that the BS8110 based design equations can be used for the prediction of the flexural capacity of POCC beams with reinforcement ratio up to 2.23%

190

Research advancements in palm oil nutrition*  

Science.gov (United States)

Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

May, Choo Yuen; Nesaretnam, Kalanithi

2014-01-01

191

Palm oil use in Mortadella  

Directory of Open Access Journals (Sweden)

Full Text Available Palm (Elaeis guineensis oil and its fractions can be combined to obtain designed fats with desired composition and physical properties. Incorporation of this type of ingredient in meat products can influence meat products process and sensory quality. In this study, a mixture of palm refined oil and stearin were employed to replace pork fat in a mortadella type product. A two-component mixture design was employed by the D-optimum design. Moisture, fat, protein, cocking losses and instrumental texture profiles were determined, besides a sensory evaluation. Results indicate that 8.8 % of pork fat can be replaced to obtain a good quality mortadella. Maximum palm fat in formulation was 44% of total fat content.

Dany Pérez Dubé

2010-06-01

192

BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF WASTEWATER FROM PALM OIL MILL INDUSTRY / PRODUCCIÓN DE BIOGÁS MEDIANTE DIGESTIÓN ANAEROBIA DE AGUAS RESIDUALES PROVENIENTES DE LA INDUSTRIA PALMERA  

Scientific Electronic Library Online (English)

Full Text Available SciELO Colombia | Language: English Abstract in portuguese O impacto ambiental gerado pelo uso de combustíveis fósseis, incentiva à sociedade a procurar novas fontes de energia renováveis, tais como o biodiesel. Na Colômbia, a matéria-prima mais utilizada para produzir biodiesel é o óleo de palma, devido a isso a sua produção tem aumentado drasticamente nos [...] últimos anos, gerando efluentes com alta carga contaminante para o meio ambiente como consequência do processo. Dado que as características físico químicas destes efluentes são propícias para a produção de biogás mediante digestão anaeróbia, este trabalho avalia a produção de metano a partir de água residual de uma empresa extratora de óleo de palma colombiana. Foram realizados experimentos de digestão anaeróbia em modo batch para avaliar a influência do pH e a relação inoculo/substrato utilizando dois inóculos diferentes. Encontrou-se que a mistura 1:1 v/v lodo anaerobio de tratamento de águas residuais urbanas e esterco de porco usada como inóculo, gerou a maior produção de metano acumulado, atingindo 2740 mL de metano (0,343 m³ CH4/kg SV), usando uma relação de 2 g SV de inóculo/g SV de substrato, sem necessidade de neutralizar o pH do sistema. Abstract in spanish El impacto ambiental generado por el uso de combustibles fósiles, incentiva a la sociedad a buscar nuevas fuentes de energía renovables tales como el biodiesel. En Colombia, la materia prima más utilizada para producir biodiesel es el aceite de palma, con lo que su producción ha aumentado drásticame [...] nte en los últimos años, generando efluentes con alta carga contaminante para el medio ambiente como consecuencia del proceso. Dado que las características físico-químicas de estos efluentes son propicias para la producción de biogas mediante digestión anaerobia, este trabajo evalúa la producción de metano a partir de agua residual de una empresa extractora de aceite de palma colombiana. Se realizaron experimentos de digestión anaerobia en modo batch para evaluar la influencia del pH y la relación inóculo/ sustrato utilizando dos inóculos diferentes. Se encontró que la mezcla 1:1 v/v lodo anaerobio de planta de tratamiento de aguas residuales urbanas y estiércol de cerdo usada como inóculo, generó la mayor producción de metano acumulado, alcanzando 2740 mL de metano (0.343 m³ CH4/kg SV), usando una relación de 2 g SV de inóculo/g SV de sustrato, sin necesidad de neutralizar el pH del sistema. Abstract in english The environmental impact caused by the fossil fuel use encourages society to look for new sources of renewable energy, such as biodiesel. During the last years, palm oil production has dramatically increased in Colombia, since it is the main raw material for biodiesel production. As consequence of t [...] he process, palm oil mill effluents with high content of pollutants are released to the environment. Since these effluents have physicochemical characteristics that make them suitable for the production of biogas by anaerobic digestion of residual water, this research evaluates the production of methane using wastewater as substrate from a Colombian palm oil mill. Anaerobic digestion experiments were conducted in batch mode to evaluate the influence of pH and inoculum to substrate ratio, by using two differents inoculums. It was found that the most suitable inoculum was a mixture of 1:1 v/v urban Wastewater Treatment Plant (WWTP) anaerobic sludge/pig manure at a ratio 2 g Volatile Solids (VS) inoculum/g VS substrate, which presented the highest accumulated methane production, reaching 2740 mL methane (0.343 m³ CH4/kg VS) without neutralizing pH.

Debora-Alcida, Nabarlatz; Ligia-Patricia, Arenas-Beltrán; Diana-Milena, Herrera-Soracá; Diana-Andrea, Niño-Bonilla.

2013-01-01

193

Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach.  

Science.gov (United States)

The present study reports the synthesis of gold nanoparticles (AuNps) from gold precursor using palm oil mill effluent (POME) without adding external surfactant, capping agent or template. The biosynthesized AuNps were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). According to the image analysis performed on a representative TEM micrograph by counting 258 particles, the obtained AuNps are predominantly spherical with an average size of 18.75 ± 5.96 nm. In addition, some triangular and hexagonal nanoparticles were also observed. The influence of various reaction parameters such as reaction pH, concentration of gold precursor and interaction time to the morphology and size of biosynthesized AuNps was investigated. This study shows the feasibility of using agro waste material for the biosynthesis of AuNps which is potentially more scalable and economic due to its lower cost. PMID:22297042

Gan, Pei Pei; Ng, Shi Han; Huang, Yan; Li, Sam Fong Yau

2012-06-01

194

Effect of solids retention time on membrane fouling intensity in two-stage submerged anaerobic membrane bioreactors treating palm oil mill effluent.  

Science.gov (United States)

Submerged anaerobic membrane bioreactors (SAnMBRs) treating palm oil mill effluent were analysed in terms of membrane fouling dynamics when working at three different sludge retention times (SRTs of 15, 30 and 60 d). The average permeate flux was fixed at 2.4 L x m(-2) x h(-1). During operation, the membrane was regenerated by using two steps: membrane wiping during each experiment as soon as trans-membrane pressure reached 125-130 mbars, and complete membrane cleaning including backwash and chemical cleaning at the end of each experiment when analysing the membrane surface and foulant material. Whatever the SRT, the cake formation was the dominant effect on membrane fouling dynamics. The concentration of suspended solids in the SAnMBRs, depending on the SRT, was then a determining criterion. Scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy indicated that fouled membrane surfaces were covered with a cake layer containing organic and inorganic elements whose concentrations were higher when working at a higher SRT; the higher concentrations of such elements gave to the cake layer a denser and more compact structure. In these experiments, the soluble fractions played a secondary role because of the dominant effect of cake layer structuring. PMID:25145221

Annop, S; Sridang, P; Puetpaiboon, U; Grasmick, A

2014-01-01

195

Pilot-scale production of lipase using palm oil mill effluent as a basal medium and its immobilization by selected materials.  

Science.gov (United States)

A pilot-scale production of lipase using palm oil mill effluent (POME) as a fermentation basal medium was carried out, and parameters for immobilization of the produced lipase were optimized. Lipase production in a 300-L bioreactor was performed using two proposed strategies, constant power per volume (P/V) and constant tip speed. Moreover, lipase immobilization on different materials was also investigated. Lipase production was performed using liquid-state bioconversion of POME as the medium and Candida cylindracea as the inoculum. The fermentation medium was composed of 1% total suspended solids (TSS) of POME, 0.5% (w/v) peptone, 0.7% (v/v) Tween-80, and 2.2% inoculum. The medium composition was decided on the basis of the medium optimization results of a previous study. The fermentation was carried out for 48 h at 30°C and pH 6. The maximum lipase production was 5.72U/mL and 21.34 U/mL, obtained from the scale-up strategies of constant tip speed and P/V, respectively. Four accessible support materials were screened for their potential use in immobilization. The most suitable support material was found to be activated carbon, with a maximum immobilization of 94%. PMID:25017863

Asih, Devi Ratna; Alam, Zahangir; Salleh, Noor; Salihu, Aliyu

2014-01-01

196

Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds.  

Science.gov (United States)

Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis. PMID:22622964

Fulazzaky, Mohamad Ali

2013-01-01

197

Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).  

Science.gov (United States)

This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system. PMID:24659435

Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

2014-07-01

198

Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM).  

Science.gov (United States)

In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME. PMID:20638277

Chou, K W; Norli, I; Anees, A

2010-11-01

199

Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis  

Scientific Electronic Library Online (English)

Full Text Available Anaerobic sludge from palm oil mill effluent (POME) treatment plant was used as a source of inocula for the conversion of POME into hydrogen. Optimization of temperature and initial pH for biohydrogen production from POME was investigated by response surface methodology. Temperature of 60ºC and init [...] ial pHof 5.5 was optimized for anaerobic microflora which gave a maximum hydrogen production of 4820 ml H2/l-POME corresponding to hydrogen yield of 243 ml H2/g-sugar. Total sugar consumption and chemical oxygen demand (COD) removal efficiency were 98.7% and 46%, respectively. Long-term hydrogen production in continuous reactor at HRT of 2 days, 1 day and 12 hrs were 4850 ± 90, 4660 ± 99 and 2590 ± 120 ml H2/l-POME, respectively. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and continuous reactors were phylogenetically related to the Thermoanaerobacterium thermosaccharolyticum. Batch reactor showed more diversity of microorganisms than continuous reactor. Microbial community structure of batch reactor was comprised of T. thermosaccharolyticum, T. bryantii, Thermoanaerobacterium sp., Clostridium thermopalmarium and Clostridium NS5-4, while continuous reactor was comprised of T. thermosaccharolyticum, T. bryantii and Thermoanaerobacterium sp. POME is good substrate for biohydrogen production under thermophilic condition with Thermoanaerobacterium species play an important role in hydrogen fermentation.

Sompong, O-Thong; Chonticha, Mamimin; Poonsuk, Prasertsan.

2011-09-15

200

Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester  

Science.gov (United States)

An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

2013-06-01

201

Sustainable biogas and biomass utilization in Malaysian palm oil industry  

Energy Technology Data Exchange (ETDEWEB)

Palm oil industry in Malaysia is producing palm oil more than 12 million tones every year, while yielding more than 14 million of empty fruit bunch (EFB) and 25 million tones of palm oil mill effluent (POME). In the POME treatment, huge anaerobic ponds (lagoon) are adopted, generating large amount of methane, more than 20 times global warming effect than CO{sub 2}. The objective of this research is to estimate actual methane emission from the POME treatment and to find out any possibility to utilize generated methane as an energy source under the Clean Development Mechanism (CDM). Methane emission of 0.238 kg CH{sub 4} per kg COD removed or 12.36 kg CH{sub 4} per tone POME are obtained from actual mill operation throughout annual measurement. This indicates that more than 200,000 tones of methane, which is equivalent to 4 million tones of carbon dioxide, are estimated to be emitted from whole Malaysia. 500 tones of methane fermentor installed to palm oil mill to prevent GHG emission under the CDM. By this, lagoon system as major source of local environment pollution necessary no more, thus obtaining another 3 to 4 times large land area than mill. Our proposal is to establish novel industry utilizing biogas energy for value added material or energy conversion of excess biomass, thus enabling reduction of GHG and local environment pollution and sustainable development of local community. (orig.)

Wakisaka, Minato; Shirai, Yoshihito (Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu (Japan)); Yacob, Shahrakbah (Advanced Agriecological Research Sdn Bhd, Selangor (Malaysia)); Ali Hassan, M. (Dept. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang (Malaysia))

2007-07-01

202

Palm oil and the heart: A review  

Science.gov (United States)

Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids.

Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

2015-01-01

203

Palm oil and the heart: A review.  

Science.gov (United States)

Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids. PMID:25810814

Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

2015-03-26

204

Oil palm plantation effects on water quality in Kalimantan, Indonesia  

Science.gov (United States)

Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.

Carlson, K. M.; Curran, L. M.

2011-12-01

205

Zeolite Utilization as a Catalyst and Nutrient Adsorbent of an Organic Fertilizer Process From Palm Oil Mill Effluent as Raw Material  

Directory of Open Access Journals (Sweden)

Full Text Available Palm Oil Mill Effluent (POME cannot be directly used as an organic fertilizer source due to its high Biological Oxygen Demand (BOD thus it is not environmentally safely. To increase the high quality of organic fertilizer obtained, the liquid wastes are needed to be processed in order to decrease the BOD to degrade both the soluble and suspension materials of organic materials. The altenative process to be conducted to make a better quality of POME is by adding the adsorbent. The aim of the research was to study the effect of zeolite utilization and duration of hydrolysis process in order to increase the nutrients content and to decrease the BOD of POME. The research was conducted at the PT Sumbertama Nusa Pertiwi Jambi, Indonesia in August 2012 until February 2013. The sample of POME was taken from the inlet of the factory’s acidulating pool. There were several doses of zeolite as treatments which were 0, 5, 10, 15% and several durations of hydrolysis process which were 1,2,3 and 4 weeks. Active zeolite was added to POME and then it was fermented with different hydrolysis duration times as mentioned above. The research showed that application of zeolite and duration of hydrolysis process significantly affected the pH, N, P, K, Al, Fe, BOD of POME and the adsorption of N, P, K, Al, Fe by zeolite. It can be concluded that 10% of zeolite incubated in two weeks duration of hydrolysis process produced higher nutrient of N, P, K with BOD, Al, Fe and pH matched with the waste quality standard. The highest efficiency of N, P and K adsorbent was show by the 15% of zeolite which was incubated for two weeks of hydrolysis process.

Ida Nursanti

2013-09-01

206

The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME and methane gas production. The effect of sludge recycling rate was studied by applying Organic Loading Rates (OLR (between 1.0 and 10.0 kgCOD m-3 day-1 at different sludge recycling rates (6, 12 and 18 m3 day-1. Results: At sludge recycling rate of 18 m3 day-1, the maximum OLR was 10.0 kgCOD m-3 day-1 with biogas and methane productivity of 1.5 and 0.9 m3 m-3 day-1, respectively. By increasing the sludge recycling rate the VFA concentration was controlled below its inhibitory limit (1000 mg L-1 and the COD removal efficiency recorded was above 95% which indicated good treatment performance for the digester. Two methanogens species (Methanosarcina sp. and Methanosaeta concilii had been identified from sludge samples obtained from the digester and recycled stream. Conclusion: By increasing the sludge recycling rate upon higher application of OLR, the treatment process was kept stable with high COD removal efficiency. The biogas and methane productivity were initially improved but reduced once OLR and recycling rate were increased to 10.0 kg COD m3 day-1 and 18 m3 day-1 respectively.

Alawi Sulaiman

2009-01-01

207

Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Refined Glycerin Wash Water (RGWW from the oleochemical industry contains high Chemical Oxygen Demand (COD and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME for its treatment and methane recovery. Approach: A large 500 m3 semi-commercial closed digester tank was used to study the effect of co-digesting POME and RGWW under mesophilic condition at different RGWW percentage. The digester performance in terms of COD removal efficiency and methane production rate and stability based on total Volatile Fatty Acids (VFA accumulation, Mixed Liquor Volatile Suspended Solid (MLVSS and pH were evaluated. Results: At 1.0% of RGWW co-digested, both COD removal efficiency and methane production rate showed satisfactory results with higher than 90% and 505 m3 day-1, respectively. However, once the percentage was increased to a maximum of 5.25%, COD removal efficiency remains high but the methane production rate reduced significantly down to 307 m3 day-1. At this stage, the digester was already unstable with high total VFA recorded of 913 mg L-1 and low cells concentration of 8.58 g L-1. This was probably due to the effect of plasmolysis on the methanogens at high concentration of NaCl in the digester of nearly 4000 mg L-1. Conclusion: Co-digesting of RGWW with high NaCl content and POME is satisfactory for COD removal but not for increasing the methane production.

A. Sulaiman

2009-01-01

208

Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre  

OpenAIRE

In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons w...

Hassan S.; Tesfamichael Aklilu; Mohd Nor M.F.

2014-01-01

209

Value-added Products from Palm Sludge Oil  

OpenAIRE

The very short chain fatty acid has been recovered from palm sludge oils, a by-product of palm oil mills using vacuum distillation method. The recovered very short chain fatty acid contains mainly C6 fatty acid which is a valuable fine chemical in perfume industry. The very short chain fatty acid perfume esters were then synthesised using ethanol with sulphuric acid as catalyst. The reaction conditions were alcohol- very short chain fatty acid volume ratio of 2:1, 1.5% wt of sulphuric acid at...

Choo Yuen May; Harrison Lau Lik Nang; Nursulihatimarsyila Abd. Wafti

2012-01-01

210

Evaluation of the Quality of Palm Oil Produced by Different Methods of Processing  

Directory of Open Access Journals (Sweden)

Full Text Available Five palm oil samples obtained by different methods of processing were evaluated for quality. The palm oil samples evaluated were oils produced by traditional aqueous palm oil extraction method, palm oil press, fibre extract, Adapalm mechanized extraction method and adulterated palm oil extract. The physical quality indices analyzed were moisture content, impurities, density, smoke point, flash point and fire point, while the chemical quality indices analyzed were Free Fatty Acids (FFA, saponification value, peroxide value, iodine value, unsaponifiable matter and potash content. The Adapalm oil ( from the standard industrial oil mill had significantly(p<0.05 lower values of FFA (0.97%, moisture content (0.23%, peroxide value (07.0 mEq kg-1 and the other quality parameters showed that it is of higher quality than the rest. It was closely followed by palm oil from press extract and traditional aqueous palm oil with FFA of 3.3% and 2.6%, respectively. These were then followed by palm oil from fibre extract with FFA (2.9%, moisture content (9.3%, impurities (1.6%, peroxide value (7.4 mEq kg -1. The adulterated palm oil extract was found to have significantly higher values of moisture content (26.4%, FFA (3.9%, impurities (1.89%, potash content (3.96% and other quality indices showed that it is of the poorest quality among all the oil samples.

2006-01-01

211

How will oil palm expansion affect biodiversity?  

Science.gov (United States)

Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation. PMID:18775582

Fitzherbert, Emily B; Struebig, Matthew J; Morel, Alexandra; Danielsen, Finn; Brühl, Carsten A; Donald, Paul F; Phalan, Ben

2008-10-01

212

Sterilization of Oil Palm Fresh Fruit Using Microwave Technique  

Directory of Open Access Journals (Sweden)

Full Text Available Dramatically increasing rate of free fatty acid (FFA in long storage oil palm fruit is one of the most crucial problems of oil palm mill industries. The aim of this paper is to study the possibility of oil palm fruits sterilization by using microwave irradiation in order of halting enzymatic lipolysis reaction which caused of FFA production. The results indicate that microwave heating can be interrupted the FFA produced reaction and the optimum condition heating temperature of the fruits mesocarp is 50 °C but not exceed to 80 °C, and the fruits can be storage for 7 days at ambient condition without FFA significantly generation. Conclude that heating from irradiation of microwave is capacitating for dry and clean sterilization system.

I. Umudee

2013-06-01

213

Bio-oils from Pyrolysis of Oil Palm Empty Fruit Bunches  

Directory of Open Access Journals (Sweden)

Full Text Available Problem Statement: The palm oil industry generates an abundance of oil palm biomass such as the mesocarp fibre, shell, empty fruit bunch (EFB, frond, trunk and palm oil mill effluent (POME. For 80 million tonnes of fresh fruit bunch (FFB processed last year, the amount of oil palm biomass was more than 25 million tones. The objectives of this study were to: (i Determine the effect of various pyrolysis parameters on product yields and (ii Characterise liquid product obtained under different condition. Approach: In this study, pyrolysis of oil palm Empty Fruit Bunches (EFB was investigated using quartz fluidized fixed bed reactor. The effects of pyrolysis temperatures, particle sizes and heating rates on the yield of the products were investigated. The temperature of pyrolysis and heating rate were varied in the range 300-700 °C and 10-100 °C min1 respectively. The particle size was varied in the range of Results: Under the experimental conditions, the maximum bio-oil yield was 42.28% obtained at 500 ºC, with a heating rate of 100 ºC min-1 and particle size of 91-106 µm. The calorific values of bio-oil ranged from 20-21 MJ kg-1. A great range of functional groups of phenol, alcohols, ketones, aldehydes and carboxylic acids were indicated in FTIR spectrum. Conclusion: The chemical characterisation results showed that the bio-oil obtained from oil palm EFB maybe a potentially valuable source as fuel or chemical feedstocks.

Mohamad A. Sukiran

2009-01-01

214

Numerical analysis of emission component from incineration of palm oil wastes  

Energy Technology Data Exchange (ETDEWEB)

In the last decade, there has been an increasing awareness of the use of by-products and wastes from palm oil mills with the dual objective of reducing their environmental impacts and enhancing the economic viability of the crop. The recycling aspects of palm oil cultivation and palm oil processing have been reviewed and have provided an indication of the present and future use of palm oil biomass current applications being mainly for organic fertilizers and fuel. In the present work, the emissions from incineration of two types of palm oil wastes (POW) fibre and shell are considered, and compared to fuel oil. The results, which indicate less pollutant emission from incineration of POW compared to that of fuel oil, have been presented graphically. (author)

Harimi, M. [Universiti Malaysia Sabah (Malaysia). School of Engineering and Information Technology; Megat Ahmad, M.M.H.; Sapuan, S.M. [Universiti Putra Malaysia, Selangor, Darul Ehsan (Malaysia). Dept. of Mechanical and Manufacturing Engineering; Idris, A. [Universiti Putra Malaysia, Selangor, Darul Ehsan (Malaysia). Dept. of Chemical and Environmental Engineering

2005-03-01

215

Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.  

Science.gov (United States)

Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant. PMID:19487007

Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

2009-07-01

216

Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors  

Directory of Open Access Journals (Sweden)

Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

Sumate Chaiprapat

2007-05-01

217

A case study of pyrolysis of oil palm wastes in Malaysia  

Science.gov (United States)

Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

2013-05-01

218

Contemporary land-use transitions: The global oil palm expansion  

DEFF Research Database (Denmark)

The present report aims at providing an overview of the magnitude and geographical distribution of oil palm cultivation. It also considers recent trends in the palm oil market and the future prospects for palm oil. By way of background, we briefly summarize the agroecological characteristics of oil palms. The main aim of the paper is, however, to present a quantitative overview of the extent of land transformations related to the global oil palm production.

Kongsager, Rico; Reenberg, Anette

2012-01-01

219

Palm oil based polyols for acrylated polyurethane production  

International Nuclear Information System (INIS)

Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

220

Dioxin/ Furan Level in the Malaysian Oil Palm Environment  

International Nuclear Information System (INIS)

Environmental samples collected from oil palm premises were evaluated for dioxins/ furans contamination. The samplings were carried out at oil palm premises located in Banting (Premise A) and in Teluk Intan (Premise B), involving two environmental matrices namely ambient air and soil. The soil samples were collected in the plantations while ambient air samples were collected in the vicinity of the mills and refineries. The results of the analyses showed that the level of dioxins/ furans in ambient air were generally higher in oil palm premise located adjacent to industrial establishments. The concentration levels at premise A mill and refinery located adjacent to industrial establishments, ranged from 64.14 WHO-TEQ fg m-3 to 131.87 WHO-TEQ fg m-3, while for premise B mill and refinery located in the rural area, ranged from 9.93 WHO-TEQ fg m-3 to 16.66 WHO-TEQ fg m-3. Meanwhile for soil samples, the highest concentrations were recorded in soil collected near roads used heavily by vehicles. The concentration levels of soil samples collected at premise A and premise B plantations ranged from 1.910 WHO-TEQ pg g-1 dry weight to 3.305 WHO-TEQ pg g-1 dry weight. (author)

221

Utilization of oil palm as a source of renewable energy in Malaysia  

Energy Technology Data Exchange (ETDEWEB)

Malaysia is currently the world's largest producer and exporter of palm oil. Malaysia produces about 47% of the world's supply of palm oil. Malaysia also accounts the highest percentage of global vegetable oils and fats trade in year 2005. Besides producing oils and fats, at present there is a continuous increasing interest concerning oil palm renewable energy. One of the major attentions is bio-diesel from palm oil. Bio-diesel implementation in Malaysia is important because of environmental protection and energy supply security reasons. This palm oil bio-diesel is biodegradable, non-toxic, and has significantly fewer emissions than petroleum-based diesel (petro-diesel) when burned. In addition to this oil, palm is also a well-known plant for its other sources of renewable energy, for example huge quantities of biomass by-products are developed to produce value added products such as methane gas, bio-plastic, organic acids, bio-compost, ply-wood, activated carbon, and animal feedstock. Even waste effluent; palm oil mill effluent (POME) has been converted to produce energy. Oil palm has created many opportunities and social benefits for the locals. In the above perspective, the objective of the present work is to give a concise and up-to-date picture of the present status of oil palm industry enhancing sustainable and renewable energy. This work also aims to identify the prospects of Malaysian oil palm industry towards utilization of oil palm as a source of renewable energy. (author)

Sumathi, S.; Chai, S.P.; Mohamed, A.R. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

2008-12-15

222

Sustainability of Palm Oil Industries: An Innovative Treatment via Membrane Technology  

Directory of Open Access Journals (Sweden)

Full Text Available Malaysia is the largest producer of palm oil, the processing of oil palm Fresh Fruit Bunches (FFB has resulted large amount Palm Oil Mill Effluent (POME. The highly polluting POME is identified as the major stumbling block to the development of palm oil industry in Malaysia. Hence, an integrated membrane process with physical-chemical treatment had been successfully achieved for treatment of POME. The role of membrane was explored significantly; where the chemical treated POME was further treated using ultrafiltration and reverse osmosis membrane. The concept of sustainable development in palm oil industries is achieved by recovering and recycling the crystal clear water and sludge as organic fertilizer from POME back to its process and plantations using the innovative membrane treatment. Consequently, zero discharge is achieved by eliminating the discharge of POME into the rivers.

A.L. Ahmad

2009-01-01

223

Techno-economic Analysis of Electricity Generation from Biogas Using Palm Oil Waste  

OpenAIRE

In Malaysia, nearly 80 million tons of fresh fruit bunches are processed annually in 406 palm oil mills and are generating approximately 54 million tons of Palm Oil Mill Effluent (POME). This POME is known to generate biogas consisting of methane-a Green House Gas (GHG) identifiable to cause global warming. The amount of methane gas generated annually is equivalent to 19 million tons of carbon dioxide. To meet the regulatory requirement, more than 85% of the mills use solely the lagoon system...

Saad, Mohd Firdaus M.; Shahida Begum

2013-01-01

224

IMPACT OF CPO EXPORT DUTIES ON MALAYSIAN PALM OIL INDUSTRY  

Directory of Open Access Journals (Sweden)

Full Text Available In January 2013, Malaysia reduced the export duty structure to be in line with the Indonesia’s duty structure. Both countries export crude and processed palm oil. Since Malaysia and Indonesia are close competitors and they compete in the same market, a change in export duty rate in one country will affect the other. Indonesia, as the world’s biggest palm oil producer, has drastically widened the values between the crude palm oil and refined palm oil export taxes since October 2011, to encourage more downstream investments and production of refined palm oil products. Under the revised export duty structure, crude palm oil and crude palm kernel oil are cheaper for downstream activities in Indonesia. The new structure is expected to reduce Malaysia’s competitiveness in the world market as its export duty is relatively higher. A high export duty results in high price of crude palm oil which is the raw material for processed palm oil. The research questions are: (i What are the likely future trends of crude palm oil exports under the new crude palm oil export duties? Will it increase, reduce or stabilize? (ii What are the likely future trends of processed palm oil exports? Will it increase exponentially, stabilize or reduce? To answer these questions, a system dynamics model was developed for the Malaysian palm oil. Application of the system dynamics model provides a framework to understand the feedback structure and how changes in variables impact the behavior of the palm oil industry. This research suggests that with low crude palm oil export duties crude palm oil domestic price, profitability of plantation owners, immature crop, mature crop, total planted area, production and exports of crude palm oil increase, however exports of processed palm oil decrease.

Ibragimov Abdulla

2014-01-01

225

Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances  

International Nuclear Information System (INIS)

Highlights: ? We evaluate energy and carbon equivalence from CPO production based on a CBM. ? Energy spent and produced via carbon movement from palm oil mill was determined. ? Scenarios were formulated to evaluate the potential reduction of carbon emission. ? Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of plantation. This equates to a quantity of 68 kg CE reduced per ton of FFB. Thus, utilization of palm oil biomass can have a significantly high potential as a resource to be used for climate change mitigation by reducing carbon emissions. The findings of this work can be used as a template for policy makers to use in assessing and planning their energy programs.

226

Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons were made with others common insulating materials, and it was found that the experimental k values for oil palm waste insulation was lower by between 4 to 56 times for rockwool and between 7 to 57 times for glass fiber at low temperatures. The value k of oil palm fiber however showed an increase at higher temperatures and was lower at lower packing densities. Although not being able to match the k values of common insulators at higher temperatures, other factors such as cost and environmental benefits of using waste material should be taken into consideration and hence encouraging its use as at least a supplement to existing insulation materials

Hassan S.

2014-07-01

227

European Policies towards Palm Oil - Sorting Out some Facts  

OpenAIRE

This paper analyses the role of palm oil and its sustainability from different perspectives. We consider the role of palm oil within the GHG context. We discuss the impact of palm oil on biodiversity and analyse how palm oil can contribute to economic growth and development in tropical countries. Finally, based on this analysis, we assess the current concerns about and politics towards palm oil with special focus on the EU. Palm oil is a low-energy and low-fertilizer crop that offers much hig...

Pehnelt, Gernot; Vietze, Christoph

2009-01-01

228

Design and Development of Laboratory Scale Updraft Gasifier for Gasification of Oil Palm Fronds  

OpenAIRE

The huge amount of wasted Oil Palm Fronds (OPF) produced annually provides a very good opportunity for the oil palm industry in Malaysia to use it for power generation, especially in mill boilers. Recently, gasification technology is receiving more attention as it can be used to convert wasted biomass into gaseous fuel for power generation and thermal applications as well as it can be used as a fuel source for the production of other chemicals. This study addresses the design, fabrication and...

Konda, Ramzy E.; Sulaiman, Shaharin A.; Bambang Ariwahjoedi

2014-01-01

229

Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete  

Directory of Open Access Journals (Sweden)

Full Text Available In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing various percentage of POFA ranging from 10, 20, 30, 40 and 50%, respectively by weight of cement. All the mixes were cast in form of cubes and then subjected to water curing until the testing date. The compressive strength test is conducted in accordance to BSEN 12390 (2009 at 7 and 28 days. From the results, it was observed that the combination of appropriate POFA content would enhance the compressive strength of OPS lightweight aggregate concrete. Specimen produced using 20% POFA as partial cement replacement exhibit higher value of compressive strength than that of control OPS lightweight aggregate concrete. However, mixes consisting POFA up to 50% is also suitable for structural application.

K. Muthusamy

2014-07-01

230

Fuel conversional aspects of palm oil and sunflower oil  

Energy Technology Data Exchange (ETDEWEB)

There are great differences between palm oil and palm kernel oil in physical and chemical characteristics. Palm oil contains mainly palmitic (16:0) and oleic (18:1) acids, the 2 common fatty acids and about 50% saturated, while palm kernel oil contains mainly lauric acid (12:0) and is more than 89% saturated. Palm is widely grown in Southeast Asia, and 90% of the palm oil produced is used for food, while the remaining 10% is used for nonfood consumption, such as production of oleo-chemicals. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, while methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than the vegetable oils. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. The yield of conversion of the sunflower oil reached the maximum 78.3% at 660 K over ZnCl{sub 2} catalyst. (Author)

Demi-Rbas, A. [PK 216, Trabzon (Turkey)

2003-05-15

231

An experimental investigation to evaluate the heating value of palm oil waste by calorimetry. Paper no. IGEC-1-040  

International Nuclear Information System (INIS)

A palm oil mill produces palm oil and kernel palm oil as main products and biomass residue (fiber and shell). This excess biomass residue can be used as fuel in boilers to meet energy and process heat demand in the industries. Quality of the palm oil waste (POW) is characterized by low fixed carbon and relatively high moisture content which may affect the heating value (HV). By applying the principle of calorimetry, a bomb calorimeter is utilized to evaluate the heating value of POW. From the experimental results, it is found that higher heating value (HHV) varies with the moisture content (MC) and it is observed as a function of MC. (author)

232

SYNERGISTIC ACTIVITY OF ENZYMES PRODUCED BY EUPENICILLIUM JAVANICUM AND ASPERGILLUS NIGER NRRL 337 ON PALM OIL FACTORY WASTES  

OpenAIRE

The use of palm kernel cake (PKC) and palm oil mill effluent (POME), substances from palm oil factory wastes, for monogastric is limited by their high cellulose and mannan contents. Hydrolytic enzymes have been supplemented to increase the nutrient digestibility. The maximal digestibility was obtained in the synergistic action of all enzyme components including B-D-endoglucanase (CMCase), B-D-glucosidase, B-D-mannanase, p-D-mannosidase, and oc-D-galactosidase. Two kinds of enzymes produced by...

TRESNAWATI PURWADARIA; YANTYATI WIDYASTUTI; Ketaren, Pius P.; DYAH ISWANTINI PRADONO; NONI NIRWANA

2003-01-01

233

Effect of Palm Oil on Serum Lipid Profile in Rats  

OpenAIRE

Palm oil is considered as plant oil in which two types of cooking oil, palm seed oil and palm oil are derived. Palm oil has almost 50% saturated fatty acid and 50% poly unsaturated fatty acid. It is considered to be useful due to metabolites products such as prostacycline and antithrombois in cardiovascular disease (C.V.D) and variation in lipoprotein. In the present study we examined the effect of 12% palm oil on 30 days old male rats (149.3±10.7 g) for 60 days. The changes of weight...

Karaji-bani, M.; Montazeri, F.; Hashemi, M.

2006-01-01

234

Evaluation of the Lubricating Properties of Palm Oil  

OpenAIRE

There has been an increase in effort to reduce the reliance on petroleum fuels for energy generation and transportation throughout the world. Among the proposed alternative fuels is biodiesel. Over the years, a little attention was paid to the industrial use of palm oil. Laboratory tests such as viscosity, fire point, flash point, pour point and densities were conducted on raw palm oil and bleached palm oil using standard procedures. The flash points of palm oil and the bleached sample are 25...

Musa, John Jiya

2010-01-01

235

Application of Extreme Value Copulas to Palm Oil Prices Analysis  

OpenAIRE

In this paper we study the tail behavior of the palm oil future markets using the Extreme Value Theory and focusing on the dependence structure between the returns on palm oil future price in three palm oil futures markets, namely Malaysian futures markets (KLSE), Dalian Commodity Exchange (DCE) and Singapore Exchange Derivatives Trading Limited (SGX-DT) by using the Extreme Value Copulas. The results demonstrated that the returns on palm oil future price among KLSE and SGX-DT have dependence...

Kantaporn Chuangchid; Aree Wiboonpongse; Songsak Sriboonchitta; Chukiat Chaiboonsri

2012-01-01

236

Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning  

OpenAIRE

Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript ...

Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-ebongue, Georges-frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent

2011-01-01

237

UV curable palm oil based inks  

International Nuclear Information System (INIS)

UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

238

UV curable palm oil based ink  

International Nuclear Information System (INIS)

UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil urethane acrylate (POBUA) as a prepolymer in the UV ink system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

239

Performance Evaluation of Palm Oil as Biodiesel  

OpenAIRE

This work involved the production of diesel from most commonly available palm fruits oil Pisifera elaeis guineensis and testing for the brake power, torque of an engine and specific fuel consumption of a conventional diesel engine utilizing the produced diesel from palm oil. The obtained results were compared with those for fossil diesel fuel. The results show that the value of brake power was 6927.21W for fossil diesel while that of biodiesel was 7135.02W. Similarly the value for brake torqu...

Lawal, Sunday A.; Babakano, Ahmed

2011-01-01

240

Radiation curing applications of palm oil acrylates  

International Nuclear Information System (INIS)

Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

241

Irradiation effect on chemical components of oil palm empty fruit bunch and palm press fibre  

International Nuclear Information System (INIS)

Physico-chemical properties of empty fruit bunch (EFB) and palm press fibre (PPF), which are major by-products of the oil palm industries, were studied for upgrading their utilisation as animal feed by radiation-fermentation process. Comparative analyses of raw EFB and PPF from 3 different mills showed significant variations in some of their chemical components. Significant differences were also observed between the chemical components of EFB and PPF samples. The water holding capacities (WHC) of both EFB and PPF suggested their suitability for use as fermentation media. Gamma irradiation of up to 50 kGy have little effect on the components of both EFB and PPF. Irradiation dose of 25 kGy appeared to produce enhancement effect on cellulase hydrolysis of holocellulose and alpha-cellulose of EFB but a retarding effect on hydrolysis of PPF

242

Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete  

Directory of Open Access Journals (Sweden)

Full Text Available Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (COPS as partial sand replacement material in concrete mix towards density and compressive strength was investigated in this study. Total of five mixes consisting various content of crushed oil palm shell as partial sand replacement ranging from 0, 25, 50, 75 and 100% were prepared in form of cubes. All the specimens were water cured before tested at 7, 14 and 28 days. Compressive strength was conducted in accordance to BSEN 12390. Generally, the compressive strength and density decrease with the increase in the crushed oil palm shell replacement level. Between 50 to 75% replacement, the mix produced possess lower density enabling it to be categorized as lightweight concrete and has the potential to be used as non-load bearing structure. The application in structural concrete material is suited for mix consisting around 25% of crushed oil palm shell.

K. Muthusamy

2013-03-01

243

Oil Palm Fruit Bunch Grading System Using Red, Green and Blue Digital Number  

Science.gov (United States)

This research deals with the ripeness grading of oil palm fruit bunches. The current practice in the oil palm mills is to grade the oil palm bunches manually using human graders. This method is subjective and subject to disputes. In this research, we developed an automated grading system for oil palm bunches using the RGB color model. This grading system was developed to distinguish between the three different categories of oil palm fruit bunches. The maturity or color ripening index was based on different color intensity. Our grading system employs a computer and camera to analyze and interpret images equivalent to the human eye and brain. The colors namely Red, Green and Blue (RGB) of the palm oil fruit bunch were investigated using this grading system. The computer program developed and used the mean color intensity to differentiate between the different color and ripeness of the fruits such as oil palm FFB. The program results showed that the ripeness of fruit bunch could be differentiated between different categories of fruit bunches based on RGB intensity.

Alfatni, Meftah Salem M.; Shariff, Abdul Rashid Mohamed; Zulhaidi Mohd Shafri, Helmi; Ben Saaed, Osama M.; Eshanta, Omar M.

244

Oil Palm Fruit Bunch Grading System Using Red, Green and Blue Digital Number  

Directory of Open Access Journals (Sweden)

Full Text Available This research deals with the ripeness grading of oil palm fruit bunches. The current practice in the oil palm mills is to grade the oil palm bunches manually using human graders. This method is subjective and subject to disputes. In this research, we developed an automated grading system for oil palm bunches using the RGB color model. This grading system was developed to distinguish between the three different categories of oil palm fruit bunches. The maturity or color ripening index was based on different color intensity. Our grading system employs a computer and camera to analyze and interpret images equivalent to the human eye and brain. The colors namely Red, Green and Blue (RGB of the palm oil fruit bunch were investigated using this grading system. The computer program developed and used the mean color intensity to differentiate between the different color and ripeness of the fruits such as oil palm FFB. The program results showed that the ripeness of fruit bunch could be differentiated between different categories of fruit bunches based on RGB intensity.

Meftah Salem M. Alfatni

2008-01-01

245

Analysis on Indonesian Sustainable Palm Oil (ISPO:A Qualitative Assessment the Success Factors for ISPO  

Directory of Open Access Journals (Sweden)

Full Text Available ISPO (Indonesian Sustainable Palm Oil serves as the baseline of sustainability standards for palm oil industry and is expected to improve the competitive advantage of Indonesian palm oil industry. ISPO was introduced by the government in March 2011 and currently most of plantations are in process of applying ISPO. The objective of this research is to analyze success factors affecting implementation of ISPO. Using qualitative method of in-depth interview on 20 selected experts representing actors mapped in the value chain of palm oil industry. The results depicted that; very little companies apply sustainable principles hence ISPO is needed for industrial standards, success factors affecting ISPO implementation, and necessary conditions for ISPO implementation. SWOT technique resulting 8 recommended strategies to be applied for ISPO implementation. Acknowledging ISPO applies to upstream industry (plantations and mills only, managerial implication for this research is the need to develop of a grand master plan for Indonesian palm oil Industry by developing integrated policies complementing ISPO aiming for sustainability, growing and developing downstream industry to add value to CPO product, and for upstream industry to be developed by farmers and cooperatives while big investors to develop mills and downstream industry.Keywords: Palm Oil, ISPO, Sustainable Certification, Success Factors, Qualitative

Dina Harsono

2012-09-01

246

Physicochemical Properties of Palm Kernel Oil  

Directory of Open Access Journals (Sweden)

Full Text Available Physicochemical analyses were carried out on palm kernel oil (Adin and the following results were obtained: Saponification value; 280.5±56.1 mgKOH/g, acid value; 2.7±0.3 mg KOH/g, Free Fatty Acid (FFA; 1.35±0.15 KOH/g, ester value; 277.8±56.4 mgKOH/g, peroxide value; 14.3±0.8 mEq/kg; iodine value; 15.86±4.02 mgKOH/g, Specific Gravity (S.G value; 0.904, refractive index; 1.412 and inorganic materials; 1.05%. Its odour and colour were heavy burnt smell and burnt brown, respectively. These values were compared with those obtained for groundnut and coconut oils. It was found that the physico-chemical properties of palm kernel oil are comparable to those of groundnut and coconut oils except for the peroxide value (i.e., 14.3±0.8 mEq which was not detectable in groundnut and coconut oils. Also the odour of both groundnut and coconut oils were pleasant while that of the palm kernel oil was not as pleasant (i.e., heavy burnt smell.

Amira P. Olaniyi

2014-09-01

247

Cogeneration potential in the Columbian palm oil industry: Three case studies  

Energy Technology Data Exchange (ETDEWEB)

The palm oil mills are characterized by the availability of considerable amounts of by-products of high-energy value such as empty fruit bunches (EFB), fibers, shells and liquid effluents with high content of organics called palm oil mill effluent (POME). A palm oil mill produces residues equivalent to almost three times the amount of oil produced by biomass, showing a huge potential for increasing the power efficiency of the plants and installed power, mainly by the use of by-products in cogeneration plants with high steam parameters and by reducing steam consumption in process. The objective of this paper is to present the results of the study about the cogeneration potential for three representative palm oil mills located in two important palm oil producing regions in Colombia (South-America), fifth palm oil producers of the world. The sizing of the cogeneration system was made assuming it operation during the greatest possible number of hours throughout the year (based on the seasonal availability of fruit) considering parameters for the steam at 2 MPa and 350 C, using a condensing-extraction turbine. The balance of mass and energy was made by using the Gate Cycle Enter Software, version 5.51, to estimate the potential of electricity generation. The results showed that for fresh fruit bunch (FFB) processing capacities between 18 and 60 t FFB h{sup -1}, it is possible to have surplus power ranging between 1 and 7 MW, if the plants are self-sufficient in electric energy and steam for process. With an average Capacity Factor (approximately 0.4), it is possible to expect a generation index of 75 and 160 kWh t{sup -1} FFB when the processing plant is operating or shutdown, respectively, 3 or 4 times better than when a traditional system with a back-pressure steam turbines is used. This analysis used up to 60% of EFB produced in plant as fuel, considering its value as fertilizer for the palm crop. Several economic conditions were considered to estimate the economic and technical feasibility of cogeneration systems in palm oil mill for Colombian palm oil sector. (author)

Teixeira, F.N.; Lora, E. [Federal University of Itajuba/Excellence Group in Thermal and Distributed Generation, Itajuba-MG (Brazil); Yanez, E. [CENIPALMA (Colombia); Castillo, E. [UIS, (Colombia); Arrieta, F.R.P.

2007-07-15

248

Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios  

International Nuclear Information System (INIS)

Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N2O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (?3.0 to 5.3 kg CO2eq kg?1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

249

Will oil palm's homecoming spell doom for Africa's great apes?  

Science.gov (United States)

Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. PMID:25017207

Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin

2014-07-21

250

Material-mass Balance of Smallholder Oil Palm Processing in the Niger Delta, Nigeria  

Directory of Open Access Journals (Sweden)

Full Text Available This study evaluates the material-mass balance of smallholder oil palm processing in Niger Delta Nigeria. Ten smallholder oil palm processing mills were randomly sampled. Measuring scale was used to measure the weight of the Fresh Fruit Bunch (FFB and all the processing intermediates/products including Threshed Fresh Fruit (TFF, Palm Pressed Fibre (PPF, Palm Kernel Shell (PKS, Empty Fruit Bunch (EFB, Crude Palm Oil (CPO, chaff and nut. During the study period (13-22 April 2012, 8 of the mills processed 90-400 bunches of Dura variety, while the remaining 2 mills processed 65-200 bunches of Tenera variety. During the batch processing of Dura variety, the proportion of the intermediate products computed in relation to the weight of the FFB (100% are as follows; TFF (66.0-75.0%, mesocarp (44.8-51.1%, nuts (19.0-27.5%, kernel (5.7-7.2%, water in mesocarp (9.0-12.1% and water in nut (2.4-3.4%, EFB (23.7-32.4%, chaff (0.8-2.4%, Palm Kernel Shell (PKS (10.0-18.8%, Palm Press Fibre (PPF (23.2-28.1% and Crude Palm Oil (CPO (9.4-12.8%. For the Tenera varieties, the compositions are as follows; TFF (70.9-72.9%, mesocarp (56.4-58.0%, nuts (14.5-14.9%, kernel (5.5-5.6%, water in mesocarp (10.1-10.4% and water in the nut (1.9-2.1%, EFB (25.7-28.2%, chaff (0.9-1.4%, PKS (6.8-7.5%, (19.1-20.3% and CPO (26.0-28.2%. This result shows that Tenera produces more oil and less wastes compared to the Dura variety. The solid wastes fractions are used as energy sources during the processing of oil palm and as filling materials for upgrading access roads to palm plantations. Except the huge volume of wastes (71.8-90.6% generated by smallholder oil palm processors is effectively utilized, the process will be unsustainable.

Elijah I. Ohimain

2013-03-01

251

Techno-economic Analysis of Electricity Generation from Biogas Using Palm Oil Waste  

Directory of Open Access Journals (Sweden)

Full Text Available In Malaysia, nearly 80 million tons of fresh fruit bunches are processed annually in 406 palm oil mills and are generating approximately 54 million tons of Palm Oil Mill Effluent (POME. This POME is known to generate biogas consisting of methane-a Green House Gas (GHG identifiable to cause global warming. The amount of methane gas generated annually is equivalent to 19 million tons of carbon dioxide. To meet the regulatory requirement, more than 85% of the mills use solely the lagoon systems in waste water treatment, typically anaerobic first stage followed by facultative treatment. However, these two major palm oil wastes are a viable Renewable Energy (RE source for production of electricity. In the present paper, an attempt has been made to study the technological parameters for different capacity digester to produce electricity. The cost related data are collected from Serting Hilir Palm Oil Mill. Net present worth, internal rate of return and payback period were calculated. On the basis of the calculated values it has been found that the application of biogas plant for generation of electricity is economically viable in Malaysian perspective and this viability or economic attractiveness increase with the increase of plant size. The findings of this study should be useful to give some directions and guidelines for future planning and implementation of biogas plants in Malaysia.

Mohd Firdaus M. Saad

2013-01-01

252

Storage Stability and Sensory Evaluation of Taro Chips Fried in Palm Oil, Palm Olein Oil, Groundnut Oil, Soybean Oil and Their Blends  

OpenAIRE

Taro (Colocasia esculenta) chips fried in Palm Oil (PO), Soybean Oil (SBO), Palm Olein Oil (POO), Groundnut Oil (GO) and in 40:60 w/w blend ratio of palm oil: POO; SBO; GO were stored for 0-5 weeks in dark and in fluorescent light. Chips were subjected to weekly chemical and sensory analysis. Results showed that significant (p<0.05) differences occurred in the organoleptic properties of taro chips fried in the different oil types during storage. Chips fried in palm oil and groundnut...

Emmanuel-ikpeme, C. A.; Eneji, C. A.; Essiet, U.

2007-01-01

253

Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.  

Science.gov (United States)

Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

2014-07-01

254

Determination of Antioxidants in Oil Palm Leaves (Elaeis guineensis  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Previous findings on the occurrence of water soluble antioxidants in palm oil has brought to the question on whether these compounds is also present in other parts of the oil palm; namely its leaves. Approach: It is now believed that the water soluble antioxidants are also present in other biomass of the oil palm, namely, the leaves. This study reported on the determination of the water soluble antioxidants in oil palm leaves. Results: The results showed the analyses of the antioxidants in oil palm leaves. Conclusion: This study is thus conducted to trace the availability of these antioxidants in the leaves of the oil palm of the Elaeis guineensis variety.

Ng M. Han

2010-01-01

255

Epoxidation of Palm Kernel Oil Fatty Acids  

Directory of Open Access Journals (Sweden)

Full Text Available Epoxidation of palm kernel oil fatty acids using formic acid and hydrogen peroxide was carried out effectively using a homogeneous reaction. It was found that epoxidation reaction occurred optimally at a temperature of 40oC and reaction time of 120 minits. The oxirane conversion was the highest at 1.46mol and 0.85mol of hydrogen peroxide and formic acid respectively. It was found that a maximum of 99% relative conversion of ethylenic oxirane was obtained, similar to the conversion of iodine value. The formation of epoxide adduct of palm kernel oil fatty acids (FAPKO was confirmed by 1H NMR and 13C NMR spectral analysis showed the disappearance of double bonds and replaced by epoxy group in the EFAPKO.

Michelle Ni Fong Fong

2013-02-01

256

Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon.  

Science.gov (United States)

The use of palm oil as a biofuel has been heavily debated for its land-use conflict with nature and its competition with food production, being the number one cooking oil worldwide. In that context, we present a life cycle assessment of a palm oil production process yielding both biodiesel and cooking oil, incorporating the land-use impact and evaluating the effect of treating the palm oil mill effluent (POME) prior to disposal. The results show that the nonrenewable energy requirement, global warming potential (GWP; exclusive land-use change), and acidification potential are lower than those of the fossil alternative. However, the system triggers an increase in eutrophication potential (EP) compared to the fossil fuel reference. This system shows less energy requirement, global warming and acidification reduction, and less eutrophication increase compared to the reference than the same system converting all palm oil into biodiesel (no cooking oil production). The land occupation of palm oil triggers ecosystem quality (EQ) loss of 30-45% compared to the potential natural vegetation. Furthermore, such land-use change triggers a carbon debt neutralizing the GWP reduction for 45-53 years. The POME treatment scenarios reveal a trade-off between GWP and EP. PMID:20496929

Achten, Wouter M J; Vandenbempt, Pieter; Almeida, Joana; Mathijs, Erik; Muys, Bart

2010-06-15

257

Noise exposure in oil mills  

Directory of Open Access Journals (Sweden)

Full Text Available Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM (Model-824, Larson and Davis, USA, equivalent SPL was measured at operator?s ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m x 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis, USA, equivalent SPL and noise spectrum at each reading was obtained. Noise survey map of equivalent SPL was drawn for each oil mill by drawing contour lines on the sketch of the oil mill between the points of equal SPL. The floor area in the oil mill where SPL exceeded 85 dBA was identified from the noise survey map of each oil mill to determine the causes of high level of noise. Subjective assessment was done during the rest period of workers and it was assessed with personal interview with each worker separately. Demographic information, nature of work, working hours, rest period, experience of working in the mill, degree of noise annoyance, activity interference, and psychological and physiological effects of machine noise on the worker were asked during the interview. These details were noted in a structured form. Statistical Analysis Used: Nil. Results: The noise survey conducted in three renowned oil mills of north-eastern region of India revealed that about 26% of the total workers were exposed to noise level of more than 85 dBA. Further, 10% to 30% floor areas of workrooms, where oil expellers are provided have the SPL of more than 85 dBA. The noise in the oil mills was dominated by low frequency noise. The predominant noise sources in the oil mills were seed cleaner and power transmission system to oil expellers. Poor maintenance of machines and use of bamboo stick to prevent the fall of belt from misaligned pulleys were the main reason of high noise. Noise emitted by the electric motor, table ghani and oil expellers in all the oil mills was well within 85 dBA. Subjective response indicated that about 63% of the total workers felt that noise interfered with their conversation. About 16% each were of the opinion that noise interfered in their work and harmed their hearing. About 5% of workers stated that the workroom noise gave them headaches. Conclusions: The workers engaged in the workrooms of the oil mills are exposed to high noise, which will have detrimental effect on their health. Th

Prasanna Kumar G

2008-01-01

258

Neural Network in Modeling Malaysian Oil Palm Yield  

OpenAIRE

Problem statement: Forecasting of palm oil yield has become an important element in the management of oil palm industry for proper planning and decision making. The importance of yield forecasting has led us to explore modeling of palm oil yield for Malaysia using the most recent development of Artificial Neural Network (ANN). The main issue in yield forecasting is to predict the future value with the minimum error. Approach: Artificial neural networks are computing systems containing many in...

Zuhaimy Ismail; Azme Khamis

2011-01-01

259

Clean technology for the crude palm oil industry in Thailand  

OpenAIRE

The aims of this study were to assess the potential contribution of clean(er) technology to improve the environmental performance of the crude palm oil industry inThailand, to analyse implementation barriers for cleaner production in crude palm oil industry, and to provide recommendations for overcoming these barriers. As such the overall aim was to generate ideas for moving the crude palm oil industry towards sustainability.In order to fulfill these research aimsdetailed case studies have be...

Chavalparit, O.

2006-01-01

260

Polygon Sawing: An Optimum Sawing Pattern for Oil Palm Stems  

OpenAIRE

The shortage in wood supply makes the effort to find alternative for wood material become more and more important. It was reported that the outer parts of oil palm stems could be used as solid wood after being properly treated. Being a monocotyledon, oil palm stems have a contradictory characteristic to the conventional hardwoods and softwoods and thus the sawing patterns suitable for hardwoods and softwoods should not be suitable for the oil palm stems. Two modified sawing patterns (polygon ...

Edi Suhaimi Bakar; Fauzi Febrianto; Imam Wahyudi; Zaidon Ashaari,

2006-01-01

261

Oil palm natural diversity and the potential for yield improvement  

Science.gov (United States)

African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

2015-01-01

262

Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand through Enhancement of Industrial Ecosystems  

OpenAIRE

The crude palm oil industry plays an important role in the economic development of Thailand and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation, both at the input and the output sides of its activities. On the input side, crude palm oil mills use large quantities of water and energy in the production process. On the output side, manufacturing processes generate large qu...

Chavalparit, O.; Rulkens, W. H.; Mol, A. P. J.; Khaodhair, S.

2006-01-01

263

Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel  

OpenAIRE

This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, en...

Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

2012-01-01

264

Effects of Fires in Juvenile Oil Palm Fields on Yield and Oil Palm Breeding  

Directory of Open Access Journals (Sweden)

Full Text Available Fires in juvenile oil palm (Elaeis guinenesis Jacq. fields cause the death and/or reduce the yield. The magnitude of the loss of yield in subsequent years has been assessed for the first time on four of the 25 progenies that composed the 20th genetic trial laid out at La Dibamba (Cameroon in 1993 which was accidentally victim of fires in 1996. Records of bunch production during the first five years of harvesting (1996-2000 showed that in the first two years after fires, total bunch weight was reduced by 35%, bunch number by 26% and average bunch weight by 23%. From two years after the fires onwards, burnt oil palms reacted by producing a high number of bunches, which compensated for the small average bunch weight. Fire damage to juvenile oil palms disrupted the selection of precocious progenies that helps procure for the plantations an early financial return on their investment.

Claude Bakoumé

2011-09-01

265

Exploring Opportunities for Sustainability in the Malaysian Palm Oil Industry  

DEFF Research Database (Denmark)

The global thirst for vegetable oil can be regarded as one of the greatest environmental challenges of the 21st Century and interest has intensified with the prospect of biofuels. Palm oil has risen to become the dominant player on the vegetable oil market – and the main recipient of environmental scrutiny. Focusing specifically on the Malaysian context, this paper analyses the major environmental, social and economic impacts associated with palm oil production. Drawing on recently published research, publicly available data and a comparison made with a recent sustainability initiative undertaken by the hydropower industry – an equally controversial and highly scrutinised sector – it is argued that the full extent of the impacts of palm oil should be acknowledged by those on both sides of the debate. Moreover, it is argued that by moving towards a less polarised version of the palm oil narrative and one based on scientific evidence is more likely to lead to greater opportunities for sustainable palm oil.

Padfield, Rory; Hansen, Sune Balle

2011-01-01

266

A Gate to Gate Assessment of Environmental Performance for Production of Crude Palm Kernel Oil Using Life Cycle Assessment Approach  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: The oil palm industry is an export orientated industry which heavily relies on the world market. In 2007 alone the total export earnings reached RM 45.1 billion. It is essential that the oil palm industry is ready to meet the higher expectation of its overseas customers on the environmental performance of the industry. Life Cycle Assessment (LCA is a tool to evaluate the environmental impacts of a product or process throughout its entire life cycle. To identify the potential environmental impacts associated with the production of CPKO and to use this assessment for evaluating opportunities to overcome the potential impacts. Approach: This study had a gate to gate system boundary that starts with the collection and transportation of the palm kernel from the palm oil mills to the production of Crude Palm Kernel Oil (CPKO at the kernel crushing plants. Six kernel crushing plants were selected to collect inventory data which consists of inputs of raw materials and energy; outputs of solid, liquid and gaseous wastes. Five crushing plants used electricity directly from the grid while one crushing plant used the electricity generated at the neighboring palm oil mill for processing. This study compared the Life Cycle Impact Assessment (LCIA of two scenarios namely; when the crushing plants uses electricity from the grid versus the crushing plant which uses electricity generated from the palm oil mill. The LCIA was conducted using the Simapro software and the Eco-Indicator 99 methodology. Results: For scenario one there was two potential impacts mainly from the electricity consumption from the grid for processing and diesel consumption for transporting the palm kernel from the mills. For scenario two, the potential impact from the electricity consumption from the grid was reduced due to the use of renewable energy from the palm oil mill and the impact from diesel consumption was reduced due to the short distance for transporting the palm kernel. Conclusion: It was recommended that more kernel crushing plants should be integrated with the palm oil mills to over come these impacts.

S. Vijaya

2009-01-01

267

Production of methyl ester from oil in the wastewater pond of a palm oil factory  

Directory of Open Access Journals (Sweden)

Full Text Available This research studied the suitable technique for the production of methyl ester from waste palm oil in the water pond of a palm oil mill. The composition of the waste palm oil was 73.82% fatty acid, 5.07% triglyceride, 3.39% diglyceride and 17.76% unknown compounds. The unknown compounds were separated via simple distillation carried out at a temperature range of 300-350oC.First, the experiments were carried out in screw capped bottles using filtrated as-received waste oil as the reactant. The esterification and transesterification process were conducted using sulfuric acid catalyst in a methanol solution. The key parameters studied were mole ratio of waste oil to methanol (1:1 to 1:72, amount of catalyst from 0.1-20 v/w% of the reactant, temperature range of 60-98oC and reaction time range of 15-180 minutes. Thin Layer Chromatography (TLC analysis showed 85-90% purity of methyl ester with 4-5% of mono-, di-, and triglycerides and fatty acids and about 5-10% of the unknown compounds for the best condition. The resulting yield of biodiesel was 84-88%. Eradication of contaminants by distillation gave about a 75% distillate yield. Distilled waste palm oil was esterified and transesterified using the previous optimum condition of as-received waste oil, but the reaction time and temperature were varied. The optimal result was obtained by using distilled waste palm oil to methanol molar ratio of 1:8, sulfuric acid of 1 v/w% of reactant, reaction temperature of 70oC and reaction time of 1 hour. TLC analysis indicated a biodiesel composition of methyl ester, free fatty acid, diglyceride and monoglyceride of 96.39%, 3.20%, 0.24% and 0.17%, respectively. The yield of biodiesel was 96-98% having physical fuel properties according to Thailand standard for methyl esterFinally, the distilled waste palm oil was esterified using a 3 liters continuous stirred-tank reactor (CSTR. Using the suitable condition for the batch process and an hour retention time, the resulting biodiesel contained methyl ester, free fatty acid, diglyceride and monoglyceride at compositions of 94.34%, 3.22%, 1.60% and 0.84%, respectively, which were very close to the qualities from the batch process.

Tongurai, C.

2007-11-01

268

Minimizing the biodiversity impact of Neotropical oil palm development.  

Science.gov (United States)

Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region - improved cattle pasture - together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. PMID:25175402

Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González Del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

2015-04-01

269

A choice of renewable or upgraded material from oil palm solid wastes  

International Nuclear Information System (INIS)

Malaysian palm oil industries are producing a large amount of solid wastes from the palm oil mills. Malaysia generates around 1.10 million tons of oil palm shells in year 1980 but this amount increased up to 4.11 million tons in year 2002 as wastes. Disposal of these wastes created environmental problems. Thus, a process was designed to reuse and recycle these wastes into value added products. This research used oil palm shells as a renewable material resource by thermo-chemical process to produce pyrolysis oil. The oil could be utilized as fuel or converted to valued added products. Since it contain a significant amount of phenols, it was extracted using solvent extraction technique to gain the useful phenol and phenolic compounds. The extracted oil-palm-shell-based phenol was used in the manufacturing of phenol formaldehyde wood adhesives. Then the capability of wood bonding was tested comparing with the petroleum-based phenol formaldehyde wood adhesives. For the commercial values of this research, the total global consumption of phenol in 2000 was 11.3 million metric ton that worth USD 10.0 billions. Thus, the commercial potentiality of this research is very high as the oil-palm-shell-based phenol could replace the petroleum-based phenol. The methods and products utilize low manufacturing cost from relatively simple technology and locally abundant raw material, comparable performances in wood bonding and competitive in price. It is estimated that around USD 900 / te. It is estimated that around USD 900 / ton for petroleum-based, but just USD 250 / ton for palm-shell-based phenol

270

Transesterification of Palm Oil for the Production of Biodiesel  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Palm oil is known as an important source of edible oil with significant values of renewable energy. Depletion of petroleum had captured much attention on producing biodiesel from the palm oil. Approach: The most concerning methods for the production of biodiesel were discussed, namely transesterification (alkali and acid, enzymetic approach and supercritical alcohol. Results: The results showed the vis-a-vis of the methods for possible consideration of research. Conclusion: Concerning the importance of this vegetable oil, the contribution of palm oil towards diminution of fossil fuel, possible methods for the production of biodiesel and the opportunity for the futures is very much important.

Khalizani Khalid

2011-01-01

271

Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.  

Science.gov (United States)

This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill. PMID:22482288

Chuen, Onn Chiu; Yusoff, Sumiani

2012-03-01

272

Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses  

International Nuclear Information System (INIS)

Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

273

Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid  

OpenAIRE

Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD) in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measu...

Abdul Rajab; Umar K.; Hamdani, D.; Aminuddin S.; Suwarno; Abe, Y.; Tsuchie, M.; Kozako, M.; Ohtsuka, S.; Hikita, M.

2011-01-01

274

Re-esterified Palm Oils, Compared to Native Palm Oil, do not Alter Fat Absorption, Postprandial Lipemia or Growth Performance in Broiler Chicks  

OpenAIRE

Re-esterified palm oils are obtained from the chemical esterification of palm acid oils (rich in free fatty acids) with glycerol, both economically interesting by-products from oil refining and biodiesel industries, respectively. Thus, re-esterified palm oils could be an economically interesting alternative to native palm oil in broiler chick diets. However, because they may have different physicochemical properties than have their corresponding native oil, we assessed the effect of fatty aci...

Vilarrasa, E.; Tres, A.; Baye?s-garci?a, L.; Parella, T.; Esteve-garcia, E.; Barroeta, A. C.

2014-01-01

275

Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles.  

Science.gov (United States)

In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and impregnated into the OPTL by vacuum-pressure method. The treated OPTL samples were exposed to natural weathering for the period of 6 and 12 months in West Java, Indonesia according to ASTM D1435-99 standard. Physical and mechanical tests were done for analyzing the changes in phenol formaldehyde-nanoparticles impregnated (PF-NPI) OPTL. FT-IR and SEM studies were done to analyze the morphological changes. The results showed that both exposure time of weathering and concentration of PF-NPI had significant impact on physical and mechanical properties of OPTL. The longer exposure of samples to weathering condition reduced the wave numbers during FT-IR test. However, all these physical, mechanical and morphological changes were significant when compared with the untreated samples or only PF impregnated samples. Thus, it can be concluded that PF-NP impregnation into OPTL improved the resistance against natural weathering and would pave the ground for improved products from OPTL for outdoor conditions. PMID:25674417

Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, Hps; Alwani, M Siti; Nadirah, Wo Wan; Fizree, H Mohammad

2013-01-01

276

Supercritical Fluid Extraction of Palm Kernel Oil from Palm Kernel Cake  

OpenAIRE

Supercritical fluid carbon dioxide (SC-CO2) at pressure 19.8 MPa and temperature 51C with different amount of ethanol (0-100 mL) was studied the extraction of palm kernel oil from palm kernel cake. The amount of oil produced from SFE and Modified ethanol-CO2 are proportional to the amount of ethanol. It was found that a-tocopherol, a-tocotrienol, sterols and fatty acid such lauric acid, myristic acid and oleic acid were present in all of the palm kernel oil sample.

Rosalam Sarbatly; Awang Bono; Duduku Krishnaiah; Siti Fadhilah

2012-01-01

277

Supercritical Fluid Extraction of Palm Kernel Oil from Palm Kernel Cake  

Directory of Open Access Journals (Sweden)

Full Text Available Supercritical fluid carbon dioxide (SC-CO2 at pressure 19.8 MPa and temperature 51C with different amount of ethanol (0-100 mL was studied the extraction of palm kernel oil from palm kernel cake. The amount of oil produced from SFE and Modified ethanol-CO2 are proportional to the amount of ethanol. It was found that a-tocopherol, a-tocotrienol, sterols and fatty acid such lauric acid, myristic acid and oleic acid were present in all of the palm kernel oil sample.

Rosalam Sarbatly

2012-01-01

278

Characteristic of oil palm residue for energy conversion system  

International Nuclear Information System (INIS)

Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 106 ty-1) of palm oil from 38.6 x 106 ty- 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 106 ty- 1), shell (2.3 x 106 ty- 1 ), and empty fruit bunches (8.8 x 106 ty- 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

279

Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.  

Science.gov (United States)

This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. PMID:22137753

Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

2012-01-01

280

Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel  

DEFF Research Database (Denmark)

This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.

Hansen, Sune Balle; Olsen, Stig Irving

2012-01-01

281

Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor  

OpenAIRE

As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 ...

Noor Hasmiza Harun; Norhisam Misron; Roslina Mohd Sidek; Ishak Aris; Hiroyuki Wakiwaka; Kunihisa Tashiro

2014-01-01

282

Cellulase Production by Pycnoporus sanguineus on Oil Palm Residues through Pretreatment and Optimization Study  

Directory of Open Access Journals (Sweden)

Full Text Available The ever expanding trend of the palm oil industries in Malaysia brings about environmental concern with various parties calling for global practice of sustainable palm oil production. In as much as researches in processing technologies are ongoing, utilization of palm oil industries’ residues as a substrate for cellulases production has received little attention. This study addressed on the effect of pressed pericarp fibers sterilization on cellulase production by Pycnoporus sanguineus grown in shake flask culture using a statistical approach. Optimum condition was obtained in 70% (v/v palm oil mill effluent supplemented with 6 g L-1 sterilized palm pressed fibers at pH 6.77 and 350 rpm with CMCase, FPase and ?-glucosidase activities and net changes of biomass and suspended solid at 50.11, 29.01, 5.58 IU mL-1 and 2.49 g L-1, respectively. Under such conditions, the predicted maximum growth and cellulolytic enzyme production were in good agreement with the experimental data with 0.016-0.358% error.

M.D. Mashitah

2010-01-01

283

Oil palm waste for the production of bio-ethanol  

Energy Technology Data Exchange (ETDEWEB)

Malaysia, as one of the top producers of palm oil in the world, is well positioned to take advantage of its enormous output of lignocellulosic biomass, the oil palm residues. It is a potential source that can be used as a raw material for the production of bio-ethanol by fermentation of glucose obtained from the hydrolysis process. There were two main objectives for this study; to determine the effect of sulfuric acid concentration and reaction period on the glucose yields from hydrolysis of oil palm trunk and to determine the effect of temperature and pH on the ethanol yields from fermentation of oil palm trunk hydrolysates using Saccharomyces cerevisae. Oil palm trunk was prepared in 40 mesh sizes and dried to 5 % moisture content prior to chemical analysis and hydrolysis. The two stage concentrated acid sulfuric hydrolysis process with different acid concentration and time were performed on oil palm trunk samples. The hydrolysates obtained were used in the fermentation process with different temperature and pH. Results showed that highest glucose yields for oil palm trunk could be achieved by using 60 % acid concentration reacted for 60 minutes during 1st stage hydrolysis and subsequently followed by 30 % acid concentration reacted 60 minutes during 2nd stage hydrolysis. While the highest ethanol yields were obtained with the temperature of 30 deg C and pH6 from the fermentation process. (orig.)

San H' ng, P.; Ling Chin, K.; Ti Tey, B.; Tahir Paridah, M. (Univ. of Putra Malaysia, Serdang, Selangor (Malaysia). Inst. of Tropical Forestry and Forest Product), Email: ngpaiksan@gmail.com

2009-07-01

284

The hidden carbon liability of Indonesian palm oil  

Energy Technology Data Exchange (ETDEWEB)

This report highlights the urgent need for global palm oil consumers and investors to support Unilever's call for an immediate moratorium on deforestation and peatland clearance in Indonesia. This report focuses on Unilever, which shares major institutional investors with other leading corporations including Nestle, Procter and Gamble and Kraft. Not only do these corporations share investors, they also share growing carbon liability within their raw material supply chains through the expansion in the palm oil sector in Indonesia. Unilever has recognised the global problems associated with palm oil expansion and the need for drastic reform to this sector. Unilever has taken a bold move in calling for an immediate moratorium on deforestation and peatland clearance. While Unilever's position is strengthened by its status as the largest palm oil consumer in the world, this report shows how, unless companies like Nestle, Procter and Gamble and Kraft support its call for a halt to deforestation, the palm oil industry will continue to present a massive carbon liability over the coming years. This report uses Unilever's palm oil supply chains as a case study to help quantify the carbon liability and collateral risks associated with the Indonesian palm oil sector. It shows how, by buying palm oil from suppliers who account for more than one-third of Indonesia's palm oil production, Unilever and its competitors are increasing their potential carbon liability and thus leaving investors exposed to potentially significant levels of hidden risk, compromising long-term financial and brand stability.

NONE

2008-05-15

285

Electron beam pasteurised oil palm waste: a potential feed resource  

International Nuclear Information System (INIS)

Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

286

Ethyl ester production from (RBD palm oil  

Directory of Open Access Journals (Sweden)

Full Text Available This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised palm oil by evaluating the oil’s transesterification and separation. Two catalysts were first tested (KOH and NaOH by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering the best results and carrying out the purification stage. Raw materials and products were characterised for comparing the latter with those obtained by traditional means and verifying the quality of the esters so produced; minimum differences were found bet-ween both. The proposed methodology thus allows esters to be used as raw material in petrochemical industry applications. A more profitable process can be obtained compared to those used today, given the amounts of separation agent so established (1% H3PO4 solution, in water. The overall process achieved 74.4% yield, based on the oil being used.

Oscar Mauricio Martínez Ávila

2010-07-01

287

PalmGHG, the RSPO greenhouse gas calculator for oil palm products  

OpenAIRE

The Roundtable on Sustainable Palm Oil (RSPO) is a non-profit association promoting sustainable palm oil through a voluntary certi-fication scheme. Two successive science-based working groups on greenhouse gas (GHG) have been active in RSPO between 2009-2011, with the aim of identifying ways leading to meaningful and verifiable reduction of GHG emissions. One of the outputs is PalmGHG, a GHG calculator using the LCA approach to quantify the major sources of emission and sequestration for a mi...

Bessou, Ce?cile; Chase, Laurence; Henson, Ian; Abdul-manan, Amir F. N.; Mila?-i-canals, Llorenc?; Agus, Fahmuddin; Sharma, Mukesh

2012-01-01

288

Bioactive Compounds of Palm Fatty Acid Distillate (PFAD) from Several Palm Oil Refineries  

OpenAIRE

This research studied the characteristics of Palm Fatty Acids Distillates (PFADs) from several palm oil refineries. It was aimed to know the potency of PFAD as bioactive compounds source, including vitamin E (mainly tocotrienols), phytosterols, squalene and possibly co-enzyme Q10 and polycosanol. Sampling was conducted at 6 palm oil refineries. The results showed that PFAD was dominated by free fatty acids of 85-95% with low oxidation level indicated by peroxide value of 1-10 meq/kg and anisi...

Teti Estiasih1)*; Kgs Ahmadi1)*,; Tri Dewanti Widyaningsih; Jaya Mahar Maligan; Ahmad Zaki Mubarok; Elok Zubaidah; Jhauharotul Mukhlisiyyah; Risma Puspitasari

2013-01-01

289

Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations  

OpenAIRE

The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2?g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9?g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane p...

Kanlayanee Meesap; Nimaradee Boonapatcharoen; Somkiet Techkarnjanaruk; Pawinee Chaiprasert

2012-01-01

290

Palm oil: a healthful and cost-effective dietary component.  

Science.gov (United States)

Palm oil is an excellent choice for food manufacturers because of its nutritional benefits and versatility. The oil is highly structured to contain predominantly oleic acid at the sn2-position in the major triacylglycerols to account for the beneficial effects described in numerous nutritional studies. Oil quality and nutritional benefits have been assured for the variety of foods that can be manufactured from the oil directly or from blends with other oils while remaining trans-free. The oxidative stability coupled with the cost-effectiveness is unparalleled among cholesterol-free oils, and these values can be extended to blends of polyunsaturated oils to provide long shelf-life. Presently the supply of genetic-modification-free palm oil is assured at economic prices, since the oil palm is a perennial crop with unparalleled productivity. Numerous studies have confirmed the nutritional value of palm oil as a result of the high monounsaturation at the crucial 2-position of the oil's triacylglycerols, making the oil as healthful as olive oil. It is now recognized that the contribution of dietary fats to blood lipids and cholesterol modulation is a consequence of the digestion, absorption, and metabolism of the fats. Lipolytic hydrolysis of palm oil glycerides containing predominantly oleic acid at the 2 position and palmitic and stearic acids at the 1 and 3 positions allows for the ready absorption of the 2-monoacrylglycerols while the saturated free fatty acids remain poorly absorbed. Dietary palm oil in balanced diets generally reduced blood cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides while raising the high-density lipoprotein (HDL) cholesterol. Improved lipoprotein(a) and apo-A1 levels were also demonstrated from palm oil diets; an important benefits also comes from the lowering of blood triglycerides (or reduced fat storage) as compared with those from polyunsaturated fat diets. Virgin palm oil also provides carotenes apart from tocotrienols and tocopherols that have been shown to be powerful antioxidants and potential mediators of cellular functions. These compounds can be antithrombotic, cause an increase of the prostacyclin/thromboxane ratio, reduce restenosis, and inhibit HMG-CoA-reductase (thus reducing) cholesterol biosynthesis). Red palm oil is a rich source of beta-carotene as well as of alpha-tocopherol and tocotrienols. PMID:11975364

Ong, A S H; Goh, S H

2002-03-01

291

Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre  

Directory of Open Access Journals (Sweden)

Full Text Available This study investigated and compared the acoustic characteristics of two natural organic fibres: date palm fibre and oil palm fibre, these materials eligible for acoustical absorption. During the processing stage, both fibre sheets are treated with latex. The two fibres are compressed after latex treatment Circular samples (100 mm in diameter and 28 mm, based on the measurement tube requirements are cut out of the sheets. The density of the date palm fibre sheet is 150 kg/m3 for a 50 mm thickness and 130 kg/m3 for a 30 mm thickness. In contrast, the density of oil palm fibre is 75 kg/m3 for a 50 mm thickness and 65 kg/m3 for a 30 mm thickness. An impedance tube was used to test the thicknesses of both samples based on international standards. The results show that the date palm fibre exhibits two Acoustic Absorption Coefficient (AAC peaks: 0.93 at 1356 Hz and 0.99 at 4200-4353 Hz for the 50-mm-thick sample. In contrast, the 30-mm-thick sample has a single AAC peak of 0.83 at 2381.38-2809.38 Hz. However, the 50-mm-thick oil palm fibre has an AAC peak of 0.75 at 1946.88-2178.13 Hz and the 30-mm-thick oil palm fibre has an acoustic absorption coefficient peak 0.59 at 3225-3712.5 Hz. Thus, the date palm fibre has a higher acoustic absorption coefficient for high and low frequencies than does oil palm fibre. Both fibres are promising for use as sound absorber materials to protect against environmental noise pollution.

Lamyaa Abd ALRahman

2014-02-01

292

Optimum stearin adulteration in palm oil crystallization  

Directory of Open Access Journals (Sweden)

Full Text Available Stearin adulteration in refined palm oil crystallization was investigated for industrial separation of stearin and olein. The important standard properties of olein are the iodine value which must be higher than 55-57, and the cloud point which must be lower than 9ºC. The crystallization temperature is the most important parameter of the process to obtain the standard olein properties and should not exceed 20ºC. Longer crystallization time is possibly the cause of lower yields but higher quality. The stearin adulteration at the ratio of 1:9 leads to higher yields, but the quality of stearin adulteration shows unimportant effects. The uniformity of heat and mass transfer in the crystallization process are important factors in obtaining higher yields and quality of olein.

Inthamanee, C.

2001-11-01

293

The Kalimantan Border Oil Palm Mega-project  

International Nuclear Information System (INIS)

A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil pad doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil buyers, investors and government bodies outside Indonesia about the undiminished threats to the tropical rainforests and indigenous peoples related to Indonesia's oil palm expansion plans and the government's overall development agenda for Kalimantan

294

Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery  

OpenAIRE

Oil palm tree is an important cash crop in Thailand. To maximize the productivity from planting, oil palm plantation managers need to know the number of oil palm trees in the plantation area. In order to obtain this information, an approach for palm tree detection using high resolution satellite images is proposed. This approach makes it possible to count the number of oil palm trees in a plantation. The process begins with the selection of the vegetation index having the highest discriminati...

Panu Srestasathiern; Preesan Rakwatin

2014-01-01

295

How Unilever palm oil suppliers are burning up Borneo  

Energy Technology Data Exchange (ETDEWEB)

New evidence shows expansion by Unilever palm oil suppliers is driving species extinction in Central Kalimantan, and fuelling climate change. In November 2007, Greenpeace released 'Cooking the Climate', an 82-page report summarizing the findings of a two-year investigation that revealed how the world's largest food, cosmetic and biofuel companies were driving the wholesale destruction of Indonesia's rainforests and peatlands through growing palm oil consumption. This follow-up report provides further evidence of the expansion of the palm oil sector in Indonesia into remaining rainforests, orang-utan habitat and peatlands in Kalimantan. It links the majority of the largest producers in Indonesia to Unilever, probably the largest palm oil corporate consumer in the world.

NONE

2008-04-15

296

Cultivation of oyster mushroom (Pleurotus ostreatus on oil palm residues  

Directory of Open Access Journals (Sweden)

Full Text Available This study is aimed to use oil palm residues to cultivate the oyster mushroom, Pleurotus ostreatus, which is one of the most important mushrooms cultivated worldwide. Spawn was prepared on sorghum seeds and inoculated on substrate in plastic bags. Oil palm fronds were cut and used to grow Pleurotus ostreatus. The first fructification occurred 20 days after waterring. The biological efficiency reached at 28.6%. When sawdust of para rubber logs was added to the cut oil palm fronds at the rate of 1:1 (vol : vol., the biological efficiency reached at 39.3%.Supplementary material at the rate of 5% was also added into the combination of cut oil palm frond and sawdust. The result showed that rice bran, corn meal or oil palm-kernel meal give yields between 142.2-165.0 g/bag (B.E. = 42.8-49.6, which were not statistically different. Oil palm pericarp waste was also used as main substrate for P. ostreatus cultivation. The average yield obtained during 40 days havesting period was 112.6 g/bag (B.E. = 64.3%. Addition of sawdust or rice bran into pericarp waste decreased the yield of the basidiocarps. Palm-kernel meal at the rate of 5-20% was used as a supplement material. Addition of 20% palmkernel meal into sawdust supported higher yield. The biological efficiency reached 55.8%. From the above results, four formulae of the substrate were prepared. Treatment of oil palm pericarp waste + 3% rice bran + 3% corn meal + 0.75% Ca(OH2 supported higher yield of the basidiocarps. The average yield obtained from 950 g of substrate was 190.2 g during 60 days havesting (B.E. = 57.2%. Using 6% palm-kernel substitute 3% rice bran + 3% corn meal supported the same yield (B.E. = 56.2% Using sawdust as the main substrate, the yield achieved was less than that obtained with oil palm pericarp waste. The average yield from treatment of sawdust + 3% rice bran + 3% corn meal + 0.75% Ca (OH2 was 154.0 g/bag (B.E. = 46.3% while treatment of sawdust + 6% palm-kernel meal + 0.75% Ca (OH2 was 153.2 g/bag. (B.E. = 46.1% From the above results it is suggested that oil palm residues can be used as an alternative substrate for P. ostreatus production.

Tongwised, A.

2001-11-01

297

The Kalimantan Border Oil Palm Mega-project  

Energy Technology Data Exchange (ETDEWEB)

A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil buyers, investors and government bodies outside Indonesia about the undiminished threats to the tropical rainforests and indigenous peoples related to Indonesia's oil palm expansion plans and the government's overall development agenda for Kalimantan.

Wakker, E. [AIDEnvironment, Amsterdam (Netherlands)

2006-04-15

298

Microbial communities and their performances in anaerobic hybrid sludge bed-fixed film reactor for treatment of palm oil mill effluent under various organic pollutant concentrations.  

Science.gov (United States)

The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2?g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9?g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30?L CH?/g COD(removed). It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 10? copies rDNA/g VSS and 1.65?g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 10? copies rDNA/g VSS and 0.34?g COD-CH?/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723

Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee

2012-01-01

299

Preliminary Study of Moulded Laminated Veneer Oil Palm (MLVOP)  

OpenAIRE

This research was undertaken to study the suitability of oil palm trunk to be utilized as a raw material for moulded laminated veneer oil palm (MLVOP).  The trunks were converted into veneers by rotary peeling machine.  The veneers were segregated into two veneer qualities namely superior (S) and inferior (I). The methods of segregating veneers quality were defined. The superior veneers were obtained by peeling the billets until their diameters left approximately 12 inches, meanwhile the in...

Izran Bin Kamal; Abdul Hamid Saleh; Noor Azrieda Abdul Rashid; Abdul Khalil, H. P. S.; Ahmad Shakri bin Mat Seman; Siti Zalifah Mahmud

2011-01-01

300

Production of haploids and doubled haploids in oil palm  

OpenAIRE

Abstract Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H) and doubled haploid (DH) palms. We secured over 1,0...

Croxford Adam E; Alfiko Yuzer; Mienanti Devi; Sitorus Andrew C; Wening Sri; Nelson Stephen; Wilkinson Mike J; Dunwell Jim M; Ford Caroline S; Forster Brian P; Ds, Caligari Peter

2010-01-01

301

Biodiesel Production from Crude Palm Oil by Transesterification Process  

OpenAIRE

An overflow system for batch esterification of Crude Palm Oil (CPO) to obtain Palm Oil Biodiesel (POB) was developed using a batch reactor (shake flask). The alkali catalyst of potassium hydroxide had been used to carry the transestrication process with methanol; ultimately, 2 layers were form from the reaction-the lower layer of glycerol and the upper layer of methyl esters; the later layer is the targeted biodiesel. Optimization of the process was held for determining of the best possible y...

Alkabbashi, A. N.; Alam, Md Z.; Mirghani, M. E. S.; Al-fusaiel, A. M. A.

2009-01-01

302

Enzymatic Destruction Kinetics of Oil Palm Fruits by Microwave Sterilization  

OpenAIRE

Microwave sterilization of oil palm fruit is carried out to deactivate lipase and soften the fruits. This study is aims to determine enzymatic destruction kinetics from microwave sterilization of oil palm fruits such as decimal reduction time (D-value), temperature sensitivity (z-value), kinetic constant (k) and activation energy (Ea). Three power levels (medium, medium high and high) of the microwave oven were used and lipase assayed was conducted to determine the lipase activity. Microwave ...

Maya Sarah; Mohd. Rozainee Taib

2013-01-01

303

Shear strength of palm oil clinker concrete beams  

International Nuclear Information System (INIS)

Highlights: ? Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ? The palm oil clinker concrete can be classified as lightweight concrete. ? Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ? The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (?). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ? ? 1. However, a 0.5 safety factor should be included in the formula for ? < 1

304

77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...  

Science.gov (United States)

...Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension...Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a...

2012-02-14

305

77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...  

Science.gov (United States)

...Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension...Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a...

2012-04-02

306

Chicken meat nutritional value when feeding red palm oil, palm oil or rendered animal fat in combinations with linseed oil, rapeseed oil and two levels of selenium  

OpenAIRE

Chicken meat nutritional value with regard to fatty acid composition and selenium content depends on the choice of dietary oil and selenium level used in the chickens’ feed. The objective of this study was to investigate the effect of replacing commonly used rendered animal fat as a dietary source of saturated fatty acids and soybean oil as a source of unsaturated fatty acids, with palm oil and red palm oil in combinations with rapeseed oil, linseed oil and two levels of selenium enriched y...

Nyquist, Nicole F.; Rødbotten, Rune; Thomassen, Magny; Haug, Anna

2013-01-01

307

Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre  

OpenAIRE

This study investigated and compared the acoustic characteristics of two natural organic fibres: date palm fibre and oil palm fibre, these materials eligible for acoustical absorption. During the processing stage, both fibre sheets are treated with latex. The two fibres are compressed after latex treatment Circular samples (100 mm in diameter and 28 mm, based on the measurement tube requirements) are cut out of the sheets. The density of the date palm fibre sheet is 150 kg/m3 for a 50 mm thic...

Lamyaa Abd ALRahman; Raja Ishak Raja; Roslan Abdul Rahman; Zawawi Ibrahim

2014-01-01

308

Comparative Determination of Antinutritional Factors in Groundnut Oil and Palm Oil  

OpenAIRE

The research was aimed at determining the degree of antinutritional factors in palm oil and groundnut oil and to know the effect of these factors on the nutritional value of these oils and to know the possible preventive measures. Antinutritional factors are substances found in most food substances which are poisonous to humans and in some ways limit the nutrient availability to the body. The groundnut oil and palm oil were extracted using the soxhlet extraction method. Oxalate and phytate we...

Inuwa, H. M.; Aina, V. O.; Baba Gabi; Aimola, I.; Amao Toyi

2011-01-01

309

Palm oil boom in Indonesia: from plantation to downstream products and biodiesel  

Energy Technology Data Exchange (ETDEWEB)

Indonesia has been the biggest producer of palm oil (PO) in the world since 2005. The total production in 2007 was 17.0 and 1.9 million tons of crude palm oil (CPO) and crude palm kernel oil (CPKO), respectively. More than 70% of the CPO was exported and 87% of the domestic consumption was used for food. The production and subsequent refining and fractionation of CPO and CPKO generated biomass by-products that consists of trunk, frond, empty fruit bunch (EFB), fiber, shell, and palm kernel meal (PKM), and discharged wastes of palm oil mill effluent (POME) as well as palm fatty acid distillate (PFAD). The amount of by-products and wastes produced has been growing very rapidly and efforts to diversify and improve their utilization are a great challenge. As claimed in many research reports, the by-products and wastes could be potentially utilized as sources of energy, animal feed, chemicals, paper pulp, advanced materials, medicines and food ingredients. A more important role may be played by PO as the Indonesian Government took further steps in 2006 to become the world's largest producer of biodiesel. As a starting point, Presidential Instruction No. 1/2006 for the Production and Use of Biofuel as Alternative Fuel was issued in January 2006. Responding to this Presidential Instruction, at least 15 companies are planning to establish new larger biodiesel refineries to enhance the currently produced 82.5 million L of biodiesel. It is planned to start production in 2008/2009 with two new refineries that have a total capacity of ca. 1,600 million L/year. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

Santosa, Sri J. [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta (Indonesia)

2008-06-15

310

Thermal stability evaluation of palm oil as energy transport media  

International Nuclear Information System (INIS)

The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

311

Analysis of total hydrogen content in palm oil and palm kernel oil using thermal neutron moderation method  

International Nuclear Information System (INIS)

A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditional methods in Ghana. An equipment consisting of an 241Am-Be neutron source and 3He neutron detector was used in the investigation. The equipment was originally designed for detection of liquid levels in petrochemical and other process industries. Standards in the form of liquid hydrocarbons were used to obtain calibration lines for thermal neutron reflection parameter as a function of hydrogen content. Measured reflection parameters with respective hydrogen content with or without heat treatment of the three edible palm oils available on the market were compared with a brand cooking oil (frytol). The average total hydrogen content in the local oil samples prior to heating was measured to be 11.62 w% which compared well with acceptable value of 12 w% for palm oils in the sub-region. After heat treatment, the frytol oil (produced through bleaching process) had the least loss of hydrogen content of 0.26% in comparison with palm kernel oil of 0.44% followed by dzomi of 1.96% and by amidze of 3.22%. (author)

312

Effects of Fires in Juvenile Oil Palm Fields on Yield and Oil Palm Breeding  

OpenAIRE

Fires in juvenile oil palm (Elaeis guinenesis Jacq.) fields cause the death and/or reduce the yield. The magnitude of the loss of yield in subsequent years has been assessed for the first time on four of the 25 progenies that composed the 20th genetic trial laid out at La Dibamba (Cameroon) in 1993 which was accidentally victim of fires in 1996. Records of bunch production during the first five years of harvesting (1996-2000) showed that in the first two years after fires, total bunch weight ...

Claude Bakoumé; Madi Galdima; Sylvain Rafflegeau; Albert Flori

2011-01-01

313

Avian species diversity in oil palm plantations of Agusan Del Sur and Compostela Valley, Philippines  

OpenAIRE

Oil palm trees have become the most expanding equatorial crops in the world and theirproduct, palm oil, is produced, traded and used more than any other vegetable oil worldwide. Theexpansion of oil palm cultivation, however, is frequently cited as a major factor causing deforestationthat may result in biodiversity losses in tropical countries. In this study, an assessment of the avifaunain oil palm plantations in Agusan del Sur and Compostela Valley, Mindanao, Philippines was done fromApril 2...

Cagod, Beverly M.; Nun?eza, Olga M.

2012-01-01

314

Sustainability of smallholder palm oil production in Indonesia  

OpenAIRE

Palm oil is a widely used commodity and is part of a number of daily products. It is the most used vegetable oil, not just for food consumption, but also for soap and cosmetics. Recently the search for co2 neutral fuels have spurred demand for palm oil to be used in diesel cars. The large demand have led to a dramatic increase in production in Malaysia and Indonesia, and those two producers make up over total production. This dramatic increase in plantations have led to severe environmental p...

Bertule, Maija; Degn, Lasse Twiggs

2009-01-01

315

21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.  

Science.gov (United States)

...2010-04-01 2009-04-01 true Cocoa butter substitute from coconut oil...Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm...both oils. The food additive, cocoa butter substitute from coconut...

2010-04-01

316

An Econometric Analysis of the Link between Biodiesel Demand and Malaysian Palm Oil Market  

Directory of Open Access Journals (Sweden)

Full Text Available The objective of this study is to describe the important factors affecting Malaysian palm oil industry especiallybiodiesel demand. To that end a market model representing palm oil production, import, world excess demand,domestic consumption, export demand, rest of the world excess supply and palm oil prices is formulated. Asystem of equations of eight structural equations and four identities is estimated by two stage least squaresmethod using annual data for the period 1976-2008. The domestic price equation is formed to investigate the linkbetween biodiesel demand and the Malaysian palm oil market. The domestic price is significantly affected byMalaysian ending stock, world palm oil price, biodiesel demand and lagged domestic price. The elasticity ofMalaysian palm oil domestic price with respect to biodiesel demand is then obtained. Results suggest thatbiodiesel demand has a positive impact on the Malaysian palm oil domestic price. Thus, significant growth inbiodiesel demand is important in explaining Malaysian palm oil price determination.

Shri Dewi AP Applanaidu

2011-01-01

317

Neutron Backscattered Technique for Quantification of Oil Palm Fruit Oil Content  

International Nuclear Information System (INIS)

Non-destructive and real time method becomes a well-liked method to researchers in the oil palm industry since 2000. This method has the ability to detect oil content in order to increase the production of oil palm for better profit. Hence, this research investigates the potential of neutron source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical formula C55H96O6. For this paper, oil palm loose fruit was being used and divided into three groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each group were collected from a private plantation in Malaysia. Each sample was scanned using neutron backscattered technique. The higher neutron count, the more hydrogen content, and the more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r2=0.98. This research proves that neutron backscattered technique can be used as a non-destructive and real time grading system for palm oil. (author)

318

Electrical Conductivity of Carbon Pellets from Mixtures of Pyropolymer from Oil Palm Bunch and Cotton Cellulose  

Science.gov (United States)

Self-adhesive carbon grains (sacg1) and heat-treated kraft lignin (htkl) were prepared from the oil palm empty fruit bunch, a potential precursor for carbon products due to its large availability from palm oil mills, and sacg was prepared from cellulose (sacg2). Pellets were prepared from mixtures of sacg1 and htkl, as well as sacg1 and sacg2, with varying percentages of htkl (Phtkl%) and sacg2 (Psacg2%). After carbonization up to 1000°C, the measured electrical conductivities, ? (?{\\cdot}cm)-1, of the respective pellets follow the equations ?=4.13Phtkl+2.43 and ?=0.53Psacg2+2.55, respectively, indicating that htkl has improved in its conducting phase compared to sacg2.

Deraman, Mohamad; Zakaria, Sarani; Omar, Ramli; Aziz, Astimar A.

2000-12-01

319

Morphometry of Lipid Bodies in Embryo, Kernel and Mesocarp of Oil Palm: Its Relationship to Yield  

OpenAIRE

Oil palm drupe which has thick fleshy mesocarp contains rich oil, where storage of oil in it can make up to 80% of its dry mass [1]. Ongoing research interest in oil palms has been focused on the mechanisms of oil production in oil palm drupes, while investigation on the ultrastructural morphometry of its oil storage entity, namely lipid body, has received limited attention. By employing microscopy techniques, this study investigated the morphometric of lipid bodies in ...

Li Sim Ho; Anusha Nair; Hirzun Mohd Yusof; Harikrishna Kulaveerasingam; Mohamad Sanusi Jangi

2014-01-01

320

Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations  

OpenAIRE

Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enfor...

Dileep Kumar. M; Noor Azizi Ismail; Govindarajo, Normala S.

2014-01-01

321

Palm oil - towards a sustainable future? : Challanges and opportunites for the Swedish food industry  

OpenAIRE

The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and health issues. The food industry also competes with increasing palm oil demands from the energy sector. This case study identifies and analyzes different perspectives regarding sustainable palm oil as a food commodity in Sweden through interviews with palm oil experts in different businesses and organizations. This study focuses on ho...

Nilsson, Sara

2013-01-01

322

Determinants of Indonesian Palm Oil Export: Price and Income Elasticity Estimation  

OpenAIRE

For Indonesian economy, palm oil is considered as one of important commodities. It provides a large amount of export revenue and job opportunities. From year 2000 to 2009, palm oil production in Indonesia has increased every year. In , 2008 about 70% of its production was exported. Recently, Indonesia has become the largest palm oil exporter and has 48% of the worlds market share. The aim of present study was to estimate the determinants of both crude palm oil exports (HS = 151110) and refine...

Ambiyah Abdullah

2011-01-01

323

Collection of Oil Palm (Elaeis guineensis Jacq.) Germplasm in the Northern Regions of Ghana  

OpenAIRE

Oil palm germplasm collection was carried out in the Northern Regions of Ghana for evaluation, screening for drought tolerance and further incorporation into breeding programmes of Ghana’s Council for Scientific and Industrial Research (C.S.I.R)-Oil Palm Research Institute (O.P.R.I). The study highlights the collection of 22 oil palm (Elaeis guineensis) accessions from 5 locations in the Northern Regions of Ghana. The Northern Regions are not suitable for oil palm cultivation due to unfavou...

Sapey, E.; Adusei-fosu, K.; Agyei-dwarko, D.; Okyere-boateng, G.

2012-01-01

324

BVOC fluxes from oil palm canopies in South East Asia  

Science.gov (United States)

Fluxes by virtual disjunct eddy covariance were measured for the first time in South-East Asia in 2008 from an oil palm plantation. Malaysia and Indonesia account for more than 80% of world oil palm production. Our in situ findings suggest much higher isoprene emissions from oil palms than from rainforest, which is consistent with earlier lab-based predictions of emissions from oil palms (Wilkinson et al., 2006). 50% of global biogenic VOC emissions are estimated to derive from tropical rainforests (Guenther et al., 1995) although in fact a large portion of the emission may derive from oil palms in the tropics. Isoprene and monoterpenes are regarded as the most important biogenic VOCs for the atmospheric chemistry. Overall, maximum isoprene emissions from oil palms were recorded at 11:00 local time, with a mean value of 13 mg m-2 h-1. At the rainforest, the maximum fluxes of isoprene were observed later in the day, at about 13:00 with an average of 2.5 mg m-2 h-1. Initial flux results for total monoterpenes indicate that their mass emission ratio with respect to isoprene was about 1:9 at the rainforest and 1:18 at the oil palm plantation. The results are presented with reference to temperature, photosynthetic radiation and meteorological drivers as well as in comparison with CO2 and H2O fluxes. Empirical parameters in the Guenther algorithm for MEGAN (Guenther et al, 2006), which was originally designed for the Amazon region, have been optimised for this oil palm study. The emission factor obtained from eddy covariance measurements was 18.8 mg m-2 h-1, while the one obtained from leaf level studies at the site was 19.5 mg m-2 h-1. Isoprene fluxes from both Amazonia (Karl et al., 2007) and from rainforest in Borneo 2008 seem to be much lower than from oil palms. This can have consequences for atmospheric chemistry of land use change from rainforest to oil palm plantation, including formation of ozone, SOA and particles and indirect effects on the removal rate of greenhouse gases and pollutants by decreasing OH budgets. Global models predicting atmospheric changes and bottom-up estimates from the tropics must be constrained by direct measurements such as presented here, taking separate account of these major contributions from oil palm plantations and tropical rainforests. References: Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T.E. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, 1995: A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. Discuss., 6, 107-173. Karl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo, 2007: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research 112, D18302. Wilkinson, M. J., S. M. Owen, M. Possell, J. Hartwell, P. Gould, A. Hall, C. Vickers, and C. N. Hewitt, 2006: Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant Journal 47, 960-968.

Misztal, P. K.; Cape, J. N.; Langford, B.; Nemitz, E.; Helfter, C.; Owen, S.; Heal, M. R.; Hewitt, C. N.; Fowler, D.

2009-04-01

325

DETERMINATION OF ANTIOXIDANTS IN OIL PALM EMPTY FRUIT BUNCHES  

OpenAIRE

The oil palm Fresh Fruit Bunches (FFB) undergoes sterilization before being threshed to separate the fruits from the bunch. Upon threshing, the fruits were pressed for its oil while the now Empty Fruit Bunch (EFB) will be discarded or used as biomass. It is believed that the EFB contains small amount of oil as well as phytonutrients which contain antioxidative property. This study reports on the extraction and analyses of various types of phenolic compounds, which have been known to exhibit a...

Ng Mei Han; Choo Yuen May

2012-01-01

326

Remotely sensed evidence of tropical peatland conversion to oil palm  

OpenAIRE

Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ?880,000 ha) ...

Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

2011-01-01

327

Palm oil transesterified by metanolysis as diesel engine biofuel  

International Nuclear Information System (INIS)

This paper reviews a general background of biodiesel and its potentialities and possibilities as automotive fuel. The paper also compares the colombian production capacity in the world context, and shows its advantages and disadvantages as diesel engine biofuel. The paper discusses some relevant processing techniques of crude palm oil, the methanol transesterification technique being found to be the most suitable one. Finally it shows the results of some important physicochemical characterization of a crude palm oil transesterificated with methanol at the Universidad de Antioquia

328

SYNGAS FOR METHANOL PRODUCTION FROM PALM OIL BIOMASS RESIDUES GASIFICATION  

OpenAIRE

In Colombia, Biodiesel is produced from palm oil and methanol; this methanol could be obtained from gasification of the raw palm oil residuals. The complete process includes: pre-treatment of the biomass, gasification, the cleaning and conditioning of the gas and finally the synthesis of methanol. In this article, a review of the gasification stage is carried...

Antonio Jose Bula

2012-01-01

329

Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid  

Directory of Open Access Journals (Sweden)

Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

Abdul Rajab

2011-04-01

330

Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia  

Energy Technology Data Exchange (ETDEWEB)

Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

2011-02-15

331

Enzymatic Destruction Kinetics of Oil Palm Fruits by Microwave Sterilization  

Directory of Open Access Journals (Sweden)

Full Text Available Microwave sterilization of oil palm fruit is carried out to deactivate lipase and soften the fruits. This study is aims to determine enzymatic destruction kinetics from microwave sterilization of oil palm fruits such as decimal reduction time (D-value, temperature sensitivity (z-value, kinetic constant (k and activation energy (Ea. Three power levels (medium, medium high and high of the microwave oven were used and lipase assayed was conducted to determine the lipase activity. Microwave sterilization of oil palm fruits depends on the destruction kinetic parameters such as D-value, z-value and Ea. It required only 8.333 to 16.949 minutes to deactivate the lipase, and the process is not temperature sensitive which is indicated by z-value. The z-value indicated requirement to increase temperature up to 71.5, 77.0 and 83.0oC respectively from initial maximum temperature to reduce the D-value. Minimum energy required to start the destruction process of lipase was 13.927 to 14.049 kJ/mole obtained from microwave sterilization of 1 kg oil palm fruits at all power levels. Oil quality observed from free fatty acid (FFA concentration that indicated FFA below 3.5%.

Maya Sarah

2013-06-01

332

Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers  

International Nuclear Information System (INIS)

Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

333

Investigation on the Use of Palm Olein as Lubrication Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The research work is on the possibility of producing lubricating oil from vegetable oil with palm olein as a case study. The sample analysed was obtained from Vandeikya Local Government Area of Benue State. Some of the physical and chemical properties such as viscosity, flash/fire point, pour point and specific gravity were analysed. This sample was bleached to remove the red colour (carotene and gummy materials. The bleached sample was tested to determine the above mentioned properties. Comparison of the crude palm olein and the bleached sample with the conventional lubricants obtained from Elf Plc, Kaduna and Unipetrol Plc, Kaduna was made. Finally, it was discovered that the crude palm olein and the bleached sample exhibit a good base as a lubricant.

U. RATCHEL

2006-01-01

334

The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK  

OpenAIRE

A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the map...

Singh, Rajinder; Leslie Low, Eng-ti; Ooi, Leslie Cheng-li; Ong-abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W.

2013-01-01

335

Bioactive Compounds of Palm Fatty Acid Distillate (PFAD from Several Palm Oil Refineries  

Directory of Open Access Journals (Sweden)

Full Text Available This research studied the characteristics of Palm Fatty Acids Distillates (PFADs from several palm oil refineries. It was aimed to know the potency of PFAD as bioactive compounds source, including vitamin E (mainly tocotrienols, phytosterols, squalene and possibly co-enzyme Q10 and polycosanol. Sampling was conducted at 6 palm oil refineries. The results showed that PFAD was dominated by free fatty acids of 85-95% with low oxidation level indicated by peroxide value of 1-10 meq/kg and anisidin value of 6-31. Bioactive compounds found were vitamin E 60-200 ppm, phytosterols 400-7500 ppm and squalene 400-2800 ppm, meanwhile polycosanol and co-enzyme Q10 were not found. Vitamin E was dominated by tocotrienols and ? tocotrienol was the major vitamin E, followed by ? and ? tocotrienols. Phytosterols in PFADs from several palm oil refineries had variety in quantity and composition. Generally it was dominated by &beta sitosterol, followed by stigmasterol and campesterol

Teti Estiasih

2013-09-01

336

The gene MT3-B can differentiate palm oil from other oil samples.  

Science.gov (United States)

The practice of blending cheap palm oil with more expensive oils is currently rampant owing to the increased global price of oil and the price gap between types of oils. This adulteration poses a serious threat to the trade of edible oil and negatively affects consumers. The aim of this study was to identify the presence of palm oil as an additive in more expensive oils using a PCR-based technique. A taxon-specific gene, MT3-B, was found by searching the GenBank database. MT3-B showed high oil palm (Elaeis guineensis Jacq.) specificity, low intraspecies variability, and a low copy number. On the basis of the MT3-B sequence, conventional and real-time PCR assays were established to detect palm oil contamination by amplifying an amplicon of 109 bp. The lowest copy number that the conventional PCR method could detect was five haploid copies; the limit of detection (LOD) for the real-time PCR assay was estimated to be five haploid copies. Experimental results demonstrated that the PCR-based methods were specific, sensitive, and reliable and could successfully detect the palm oil component of mixed oil samples. PMID:19627088

Zhang, Li; Wu, Gang; Wu, Yuhua; Cao, Yinglong; Xiao, Ling; Lu, Changming

2009-08-26

337

Bio ethanol production from oil palm empty fruit bunches  

International Nuclear Information System (INIS)

Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

338

Large estragole fluxes from oil palms in Borneo  

Science.gov (United States)

During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole in ambient air above oil palm canopies flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the Afric...

339

Syngas production from downdraft gasification of oil palm fronds  

International Nuclear Information System (INIS)

Study on gasification of OPF (oil palm fronds) is scarce although the biomass constitutes more than 24% of the total oil palm waste. The lack of research related to gasification of oil palm fronds calls for a study on gasification behaviour of the fuel. In this paper the effects of reactor temperature and ER (equivalence ratio) on gas composition, calorific value and gasification efficiency of downdraft gasification of OPF were investigated. The heating value of syngas and the values of cold gas and carbon conversion efficiencies of gasification obtained were found to be comparable with woody biomass. The study showed that oxidation zone temperature above 850 °C is favourable for high concentration of the fuel components of syngas CO, H2 and CH4. Average syngas lower heating value of 5.2 MJ/Nm3 was obtained for operation with oxidation zone temperatures above 1000 °C, while no significant change in heating value was observed for temperature higher than 1100 °C. The average and peak heating values of 4.8 MJ/Nm3 and 5.5 MJ/Nm3, and cold gas efficiency of 70.2% at optimum equivalence ratio of 0.37 showed that OPF have a high potential as a fuel for gasification. - Highlights: • Kinetic study of pyrolysis and combustion of OPF (oil palm fronds) was done. • Experimental study on syngas production utilizing OPF and parametric study was done. • OPF was found to have a comparable performance with wood in downdraft gasification

340

Use of calcium oxide in palm oil methyl ester production  

Directory of Open Access Journals (Sweden)

Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

Kulchanat Prasertsit

2014-04-01

341

Large estragole fluxes from oil palms in Borneo  

Science.gov (United States)

During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mg m-2 h-1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus), which pollinates oil palms (Elaeis guineensis). There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y-1. The observed ecosystem mean fluxes (0.44 mg m-2 h-1) and mean ambient volume mixing ratios (3.0 ppbv) of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene), the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

Misztal, P. K.; Owen, S. M.; Guenther, A. B.; Rasmussen, R.; Geron, C.; Harley, P.; Phillips, G. J.; Ryan, A.; Edwards, D. P.; Hewitt, C. N.; Nemitz, E.; Siong, J.; Heal, M. R.; Cape, J. N.

2010-05-01

342

Large estragole fluxes from oil palms in Borneo  

Directory of Open Access Journals (Sweden)

Full Text Available During two field campaigns (OP3 and ACES, which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0 in ambient air above oil palm canopies (0.81 mg m?2 h?1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus, which pollinates oil palms (Elaeis guineensis. There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y?1. The observed ecosystem mean fluxes (0.44 mg m?2 h?1 and mean ambient volume mixing ratios (3.0 ppbv of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene, the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

P. K. Misztal

2010-05-01

343

Large estragole fluxes from oil palms in Borneo  

Directory of Open Access Journals (Sweden)

Full Text Available During two field campaigns (OP3 and ACES, which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0 in ambient air above oil palm canopies (0.81 mg m?2 h?1 and 3.2 ppbv for mean midday fluxes and mixing ratios, respectively and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus, which pollinates oil palms (Elaeis guineensis. There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y?1. The observed ecosystem mean fluxes (0.44 mg m?2 h?1 and mean ambient volume mixing ratios (3.0 ppbv of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene, the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a combination of a modified G06 algorithm for emission and a canopy resistance approach for deposition. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation.

P. K. Misztal

2010-01-01

344

Oil palm biomass as an adsorbent for heavy metals.  

Science.gov (United States)

Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent. PMID:24984835

Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

2014-01-01

345

Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME.  

Science.gov (United States)

Magnetic separation combined with adsorption by activated carbon has been found to be a useful method for removing pollutants. In this paper, the use of palm shell as a source of activated carbon for the removal and recovery of oil from palm oil mill effluent (POME) is studied. In the first part of the study, the properties of samples of activated carbon prepared from palm shell under a variety of different conditions were characterized for their hydrophobicity, surface areas and pore size distribution. The most effective of the activated carbon samples was prepared by impregnation with ZnCl(2) followed by combined physical/chemical activation under carbon dioxide flow at 800 °C. Four grams of these samples adsorbed 90% of the oil from 50 mL POME. In the second part, the palm shell-based carbon samples were given magnetic properties by the technique of iron oxide deposition. Ninety-four percent of the activated carbon/iron oxide composite containing the adsorbed oil could be extracted from the POME by a magnetic bar of 0.15 T. Four grams of the composite can remove 85% of oil from 50 mL POME and a total of 67% of the initial oil can then be recovered by hexane extraction. Powder X-ray diffractometry showed the presence of magnetite and maghemite in the activated carbon/iron oxide composite. PMID:20932635

Ngarmkam, Worawan; Sirisathitkul, Chitnarong; Phalakornkule, Chantaraporn

2011-03-01

346

Production of haploids and doubled haploids in oil palm  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H and doubled haploid (DH palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest.

Croxford Adam E

2010-10-01

347

Mutation induction in oil palm cultures using gamma irradiation  

International Nuclear Information System (INIS)

Induced mutations have played an important role in the improvement of wide range of food crops, ornamental plants and oil crops such as sesame and sunflower. Based on these successes an attempt was made to employ the mutagenesis techniques to broaden the genetic variation in breeding materials of oil palm. Traits of interest are high yield, dwarfness and disease resistance. Embryogenic callus initiated from several high yielding clones were exposed to gamma irradiation for optimum dose determination. (Author)

348

RED PALM OIL - HEALTH BENEFITS AND THEIR MOLECULAR EXECUTORS  

OpenAIRE

Red palm oil (RPO) has been a nutritional vantage amidst mankind since ancient times, but the dietary and healing benefits are now being rediscovered in various aspects of human health. Owing to its compositional richness, RPO is even being recommended as vitamin supplement besides being used as healthy cooking oil loaded with micronutrients and antioxidants. Recent research studies have dissected the molecular mechanisms underlying biological actions of RPO as well as its tocotrienols rich f...

Sonam Chawla and Shweta Saxena*

2013-01-01

349

Relationships among rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation.  

Science.gov (United States)

The relationships between vertebrate pests and crop damage are often complex and difficult to study. In palm oil plantations rodents remain the major pests, causing substantial monetary losses. The present study examined the numerical and functional responses of rodents to changes in the availability of oil palm fruit and the damage associated with that response. For the study, 200 traps were set in pairs on a 10 × 10 trapping grid for 3 consecutive nights in each of 6 study plots at 8-week intervals in a 2569 ha oil palm plantation at Labu, Negeri Sembilan state in Peninsular Malaysia over 14 months. A total of 1292 individual rats were captured over 25 200 trap-nights. Animals were identified, aged, sexed, weighed and measured. An index of the relative abundance of rats was calculated based on trapping success. Damage to infructescences was assessed at each trap point. Regardless of the age of palms, there were positive and significant relationships between the relative abundance of rats and numbers of infructescences. The levels of damage to infructescences were significantly correlated with the relative abundance of rats. A steep increase in damage was observed with an increase in mature infructescences, indicating a feeding preference of rats for mature infructescences. For both males and females of all rat species, there were weak and non-significant correlations between body condition and infructescence numbers. These results indicated that there was a numerical and a functional response by rats to the availability of palm fruit and a resulting increase in depredation of oil palm fruits. The ways in which this information might aid in future pest control are discussed. PMID:21645277

Puan, Chong Leong; Goldizen, Anne W; Zakaria, Mohamed; Hafidzi, Mohd N; Baxter, Greg S

2011-06-01

350

Remotely sensed evidence of tropical peatland conversion to oil palm.  

Science.gov (United States)

Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ?880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ?140 million Mg of aboveground biomass carbon, and annual emissions of ?4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ?660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ?20%, whereas oil-palm establishment would exacerbate species losses by up to ?12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia. PMID:21383161

Koh, Lian Pin; Miettinen, Jukka; Liew, Soo Chin; Ghazoul, Jaboury

2011-03-22

351

Design and Development of Laboratory Scale Updraft Gasifier for Gasification of Oil Palm Fronds  

Directory of Open Access Journals (Sweden)

Full Text Available The huge amount of wasted Oil Palm Fronds (OPF produced annually provides a very good opportunity for the oil palm industry in Malaysia to use it for power generation, especially in mill boilers. Recently, gasification technology is receiving more attention as it can be used to convert wasted biomass into gaseous fuel for power generation and thermal applications as well as it can be used as a fuel source for the production of other chemicals. This study addresses the design, fabrication and performance evaluation of an updraft fixed-bed-gasifier. A 50 kW updraft gasifier is designed and fabricated for gasification of Malaysian oil palm fronds. The gasifier is designed using the empirical data from literature and derived quantities. The gasifier was modified to be very flexible allowing the gasification air to be fed through several locations. The air gasification results of OPF showed volumetric percentage of 22.61-23.36% of CO, 6.48-6.68% of H2, 1.2-1.5% of CH4, 9.51-9.65% of CO2 and 59.20-58.1% of N2. The heating value of the product gas mixture varied between 4.1-4.4 MJ Nm-3 while the cold gas efficiency, carbon conversion efficiency and specific gasification rate of the gasifier was in the range of 57-59 and 95-97% and 103-109 kg m-2 h-1, respectively. The study has demonstrated that the oil palm frond waste is suitable for the designed and fabricated updraft gasifier and the produced gas from the gasification of OPF was successfully used in a domestic cooking stove.

Ramzy E. Konda

2014-01-01

352

LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY  

OpenAIRE

Life Cycle Assessment (LCA) is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefor...

Shamim Ahmad, M.; Vijaya Subramaniam; Halimah Mohammad; Anis Mokhtar; Ismail, B. S.

2014-01-01

353

Planting dynamics and management of oil palm smallholdings in Cameroon: limiting factors and reason for practices  

OpenAIRE

In southern Cameroon, oil palm "smallholdings" contribute to rural development and meeting national oil and fat requirements for human consumption and soapmaking. From 1978 to 1991, 13,000 ha of selected oil palm smallholdings were set up with technical and financial support from a project. Selected oil palm smallholdings then trebled and now occupy around 40,000 ha. The latter plantations, set up without supervision or financial backing, display widely varying practices, raising two question...

Rafflegeau, Sylvain

2008-01-01

354

Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch  

OpenAIRE

Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Ne...

Haidi Ibrahim; Syed Salim Syed Ali; Junita Mohamad-Saleh; Zaini Abdul Halim; Norasyikin Fadilah

2012-01-01

355

Enzymatic synthesis of biodiesel via alcoholysis of palm oil.  

Science.gov (United States)

The enzymatic alcoholysis of crude palm oil with methanol and ethanol was investigated using commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM). The effect of alcohol (methanol or ethanol), molar ratio of alcohol to crude palm oil, and temperature on biodiesel production was determined. The best ethyl ester yield was about 25 wt.% and was obtained with ethanol/oil molar ratio of 3.0, temperature of 50 degrees C, enzyme concentration of 3.0 wt.%, and stepwise addition of the alcohol after 4 h of reaction. Experiments with 1 and 3 wt.% of KOH and 3 wt.% of MgO were carried out to compare their catalytic behavior with the enzymatic transesterification results. The commercial immobilized lipase, Lipozyme TL IM, showed the best catalytic performance. PMID:19023524

Matassoli, André L F; Corrêa, Igor N S; Portilho, Márcio F; Veloso, Cláudia O; Langone, Marta A P

2009-05-01

356

Greenhouse gas emissions and energy balance of palm oil biofuel  

Energy Technology Data Exchange (ETDEWEB)

The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO{sub 2}e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO{sub 2}e/MJ. Thus, avoided life cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. (author)

de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

2010-11-15

357

Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data  

Science.gov (United States)

The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

2014-10-01

358

Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars  

International Nuclear Information System (INIS)

Lignocellulose into fuel ethanol is the most feasible conversion route strategy in terms of sustainability. Oil palm empty fruit bunch (EFB) generated from palm oil production is a huge source of cellulosic material and represents a cheap renewable feedstock which awaits further commercial exploitation. The purpose of this study was to investigate the feasibility of using steam at 0.28 MPa and 140 °C generated from the palm oil mill boiler as a pretreatment to enhance the digestibility of EFB for sugars production. The effects of steam pretreatment or autohydrolysis on chemical composition changes, polysaccharide conversion, sugar production and morphology alterations of four different types of EFB namely fresh EFB (EFB1), sterilized EFB (EFB2), shredded EFB (EFB3) and ground EFB (EFB4) were evaluated. In this study, the effects of steam pretreatment showed major alterations in the morphology of EFB as observed under the scanning electron microscope. Steam pretreated EFB2 was found to have the highest total conversion of 30% to sugars with 209 g kg?1 EFB. This production was 10.5 fold higher than for EFB1 and 1.6 fold and 1.7 fold higher than EFB3 and EFB4, respectively. The results suggested that pretreatment of EFB by autohydrolysis using steam from the mill boiler could be considered as being a suitable pretreatment process for the production of sugars. These sugars can be utilized as potential substrates for the production of various products such as fuel ethanol. -- Highlights: ? We investigate the feasibility of steam pretreatment to enhance digestibility of EFB. ? Steam pretreatment increased sugars to 3.4 fold and caused major alteration in EFB morphology under SEM. ? Autohydrolysis which does not require the addition of chemicals is an attractive pretreatment approach to EFB.

359

Biodiesel’s characteristics preparation from palm oil  

Directory of Open Access Journals (Sweden)

Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separatedfrom glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels’ properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

Rachman Yusuf

2002-06-01

360

Effects of palm and sunflower oils on serum cholesterol and Fatty liver in rats.  

Science.gov (United States)

Palm oil is a common cooking ingredient used in the commercial food industry as the second largest consumed vegetable oil in the world. Because of its lower cost and highly saturated nature, it usually maintains a solid form at room temperature and is used as a cheap substitute for butter. However, there has been a growing health concern about palm oil because of the link between dietary fats and coronary heart disease. Palm oil contains ?49% saturated fat, a relatively high concentration compared with other vegetable oils. Consequently, high intakes of saturated fat from palm oil induce a larger increase in plasma concentrations of total cholesterol and low-density lipoproteins. In the present study, we examined the hyperlipidemia of palm oil and the risk of cardiovascular disease (CVD) using a rat model in comparison with sunflower oil with a relatively low level of saturated fat. On in vivo examination using Sprague-Dawley (SD) rats for 22 days, there were no significant differences in serum lipid levels, suggesting that palm oil may not cause hyperlipidemia and elevate CVD risk. However, liver samples obtained from SD rats fed with palm oil showed a lot of large lipid inclusions stained with the Oil Red O working solution, but not much lipid accumulation was observed in rats treated with sunflower oil. In addition, lipid accumulation in the mixed oil group fed the combination of palm and sunflower (1:1) oil was shown to be at an intermediary level between the palm oil group and sunflower oil group. Taken together, these results indicate that palm oil, a highly saturated form of vegetable oil, may induce dysfunction of the liver lipid metabolism before affecting serum lipid levels. On the other hand, sunflower oil, a highly unsaturated vegetable oil, was shown to be well metabolized in liver. PMID:25393932

Go, Ryeo-Eun; Hwang, Kyung-A; Kim, Ye-Seul; Kim, Seung-Hee; Nam, Ki-Hoan; Choi, Kyung-Chul

2015-03-01

361

Oil palm BVOC emissions and their potential for aerosol formation  

Science.gov (United States)

During ambient measurements at oil palm plantation (OP3/ACES projects) which took place from May to June 2008 we recorded by direct eddy covariance technique with proton transfer reaction mass spectrometry (PTR-MS) large emission fluxes of isoprene (mid-day mean 8.6 mg m-2 h-1), estragole (0.81 mg m-2 h-1), acetone (0.1 mg m-2 h-1), hexanals (0.05 mg m-2 h-1) and remaining compounds (~ 1 mg m-2 h-1). However, secondary products of isoprene oxidation such as MVK+MACR exhibited high deposition rates (1 cm s-1) which were close to maximal theoretical values. In addition, methanol and, to some extent, other VOC compounds exhibited negative fluxes during the day. Despite several times higher emissions of isoprene from oil palm than from a nearby rainforest, it is uncertain how these differences would impact on the formation of aerosols. There have been recently many speculations about actual contribution of isoprene emissions to aerosol formation, for example whether they could inhibit the creation of aerosols due to scavenging of hydroxyl radicals, in contradiction to an earlier OH-radical recycling hypothesis. Regardless, mass aerosol yields from isoprene have been thought low (up to ~2%), which can however make up significant overall loading at large emissions such as encountered at oil palm. Although oil palm was not found to be a monoterpene emitter, it appears that the largest contributor to aerosol production from oil palms might be floral emissions of estragole with its aerosol yield from photooxidation of this compound being similar to that of monoterpenes (~40%). In addition, other VOCs might have also an effect. We show the parameterisation for emission and deposition of particular VOCs and relate them to aerosol yields found in literature. Overall, it seems that the net aerosol formation potential with regards to VOCs emitted from oil palm may not be much different to that of rainforest, despite differences in the VOC mix emitted by these land uses.

Misztal, Pawel K.; Nemitz, Eiko; Cape, J. Neil; Langford, Ben; Phillips, Gavin J.; Dimarco, Chiara; Coyle, Mhairi; Owen, Susan; Heal, Mathew R.; Hewitt, C. Nicholas

2010-05-01

362

The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK.  

Science.gov (United States)

A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation. PMID:23883930

Singh, Rajinder; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Ting, Ngoot-Chin; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Manaf, Mohamad Arif Abdul; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

2013-08-15

363

Oil palm genome sequence reveals divergence of interfertile species in old and new worlds  

OpenAIRE

Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at le...

Singh, Rajinder; Ong-abdullah, Meilina; Low, Eng-ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-li; Ooi, Siew–eng; Chan, Kuang-lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W.

2013-01-01

364

Correlation, path coefficient analysis and heritability for agronomic characters of oil palm (Elaeis guineensis Jacq.  

Directory of Open Access Journals (Sweden)

Full Text Available A study of correlation, path coefficient analysis and heritablity for some agronomic characters of oil palm was investigated during February 1998 to January 2002. The oil palm population used in this experiment was derived from F1 tenera hybrids which were collected from various oil palm plantations in Southern Thailand. One good performance bunch (i.e., big bunch, thin shell was selected from each plantation and four to six seeds per selected bunch were used for cultivation. One thousand thirty eight plants were grown at Klong Hoi Khong Research Station, Faculty of Natural Resources, Prince of Songkla University, Songkhla, in 1989. Forty five palms consisted of Dura, Tenera and Pisifera types with 18, 18 and 9 plants respectively, were selected by randomization and tagged for investigation. The oil palm bunch yield and yield component characters were observed from individual palm for 4 years (February 1998 to January 2002. The bunch composition characters were analysed from a single bunch of each palm, sampled between June to October 1999. The results showed that in F2 plants of oil palm, the correlation and the path coefficient between characters relating to oil yield and %oil/bunch varied according to oil palm types (Dura, Tenera and Pisifera. In Dura and Tenera palms, the characters which gave highly positive correlation with a large direct and indirect positive effects on oil yield and %oil/bunch were total bunch weight, %oil/bunch, %fruit/bunch and %oil/fruit. In case of Pisifera palms, the characters which gave highly positive correlation with a large direct and indirect positive effects on oil yield and %oil/bunch were total bunch weight, number of bunches, single bunch weight, %oil/bunch and %fruit/bunch. However, from all investigated characters in F2 plants, only %mesocarp/fruit, %oil/fruit and %fruit/bunch showed the high values of broad sense heritabilities.

Chaumongkol, Y.

2001-11-01

365

Neural Network in Modeling Malaysian Oil Palm Yield  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Forecasting of palm oil yield has become an important element in the management of oil palm industry for proper planning and decision making. The importance of yield forecasting has led us to explore modeling of palm oil yield for Malaysia using the most recent development of Artificial Neural Network (ANN. The main issue in yield forecasting is to predict the future value with the minimum error. Approach: Artificial neural networks are computing systems containing many interconnected nonlinear neurons, capable of extracting linear and nonlinear regularity in a given data set. It is an artificial intelligence model originally designed to replicate the human brains learning process, a network with many elements or neurons that are connected by communications channels or connectors. The ANN can perform a particular function when certain values are assigned to the connections or weights between elements. In this study, a secondary data set from the Malaysian Palm Oil Board (MPOB on the foliar nutrient composition, fertilizer trials and Fresh Fruit Bunch (FFB yield were taken and analyzed. The foliar nutrient composition variables are the nitrogen N, phosphorus P, potassium K, calcium Ca and magnesium Mg concentration, while the fertilizer trials data are the N, P, K and Mg fertilizers and are measured in kg per palm per year. The foliar composition data was presented in the form of measured values whiles the fertilizer data in ordinal levels, from zero to three. Results: Two experiments were conducted to demonstrate the implementation ANN and for both experiment, the result demonstrated that the number of hidden nodes produces an effect to the overall forecast performance of the ANN architecture. From the first experiment, it shows that the number of runs does not affect the ANN performance, but changing the momentum to learning rates, due to shows a significant improvement in the forecast result. The experimental result will be in the form of statistical analysis, the best neural network performance, the residual analysis and the effect on the learning rate on the NN performance. Conclusion: This study showed that modeling of oil palm yield using neural network requires data to be prepared or modified to satisfy the requirement of the parameters involved. This analysis yields the conclusion that only the number of hidden nodes has a significant influence on the NN performance and there is no effect resulting from the number of runs or the momentum term value on the neural networks performance.

Zuhaimy Ismail

2011-01-01

366

Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia  

Science.gov (United States)

One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

Begum, Shahida; P, Kumaran; M, Jayakumar

2013-06-01

367

Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia  

International Nuclear Information System (INIS)

One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane – a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

368

Physicochemical properties of phosphate ester from palm kernel oil  

Science.gov (United States)

The physicochemical properties of phosphate ester from palm kernel oil have been studied. The phosphate ester was synthesized via ring-opening of epoxidized palm kernel oil with phosphoric acid. The amount of phosphoric acid (H3PO4) was varied at 0, 2.5, 5.0 and 7.5 wt%. Acid values of PKO and EPKO were 1.85 and 1.87 mg KOH/g respectively. However, the acid values increased with increasing amount of H3PO4 with values of 10.62 mg KOH/g, 31.34 mg KOH/g and 110.95 mg KOH/g respectively. The hydrolysis of the EPKO has successfully converted it to PEPKO with hydroxyl value of 16.16 mg KOH/g, 26.90 and 35.33 mg KOH/g at H3PO4 of 2.5, 5.0, and 7.5wt%.

Adawiyah Norzali, Nor Rabbi'atul; Badri, Khairiah Haji; Ahmad, Ishak

2013-12-01

369

Some chemical properties of irradiated empty fruit bunch and palm press fiber of oil palm byproducts  

International Nuclear Information System (INIS)

Effect of irradiation and alkali treatment for digestibility of oil palm by-products by commercial enzymes was investigated to obtain the informations about formation of carbohydrate polymers or sugar components for producing animal feed from cellulosic by-products. According to the colorimetric analysis, produced reducing sugar from holocellulose of Empty Fruit Bunch (EFB) and Palm Press Fiber (PPF) by Cellulase ONOZUKA 3S were about ten times higher than those from raw samples. The results show that the digestibility of EFB and PPF increased significantly by delignification. The differences of digestibility between irradiated and unirradiated samples were shown clearly by the combination of enzymatic degradation and the HPLC analysis. By irradiation, digestibility of EFB was significantly increased. Higher dose is more effective for the digestion of EFB by enzyme. Alkali treatment is also quite effective to enzymatic degradation. The difference of neutral sugar component was observed between alkali treated and untreated samples. These results suggest that the combination of alkali treatment and irradiation is effective for digestion by enzyme. The analysis of products by HPLC after enzymatic degradation is useful method to examine the digestibility and the sugar composition of oil palm by-products. (author)

370

Auto Guided Oil Palm Planter by using multi-GNSS  

Science.gov (United States)

Planting is one of the most important operations in plantation because it could affect the total area of productivity since it is the starting point in cultivation. In oil palm plantation, lining and spacing of oil palm shall be laid out and coincided with the topographic area and a system of drains. Conventionally, planting of oil palm will require the polarization process in order to prevent and overcome the lack of influence of the sun rise and get a regular crop row. Polarization is done after the completion of the opening area by using the spike wood with 1 m length painted at the top and 100 m length of wire. This process will generally require at least five persons at a time to pull the wire and carry the spikes while the other two persons will act as observer and spikes craftsmen respectively with the ability of the team is 3ha/day. Therefore, the aim of this project is to develop the oil palm planting technique by using multi- GNSS (Global Navigation Satellite System). Generally, this project will involve five main steps mainly; design of planting pattern by using SOLIDWORKS software, determine the boundary coordinate of planting area, georeference process with ArcGIS, stakeout process with Tracy software and finally marking up the location with the wooden spikes. The results proved that the multi- GNSS is capable to provide the high accuracy with less than 1 m in precise positioning system without augmentation data. With the ability of one person, time taken to complete 70 m × 50 m planting area is 290 min, which is 25 min faster than using GPS (Global Positioning System) only.

Nur Aini, I.; W, Aimrun; Amin, M. S. M.; Ezrin, M. H.; Shafri, H. Z.

2014-06-01

371

Palm oil trans-esterification with methanol via hetereogeneous catalysis  

OpenAIRE

Four different solid catalyst' catalytic activity was studied in refined palm oil methanolysis: barium hydroxide, calcium oxide, magenesium oxide and tin oxide (IV). The last two presented low catalytic activity; they were thus discarded. The catalysts were used in powder form suspended in the reaction medium. HPLC was used for testing catalyic activity by measuring the glycerlo produced at the end of the reaction. Experiments were conducted at different pressures: 75 kPa (the pressure in Bog...

Julian Andrés Parra Garrido; Alberto Ricardo Albis Arrieta; Francisco José Sánchez Castellanos

2010-01-01

372

LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY  

Directory of Open Access Journals (Sweden)

Full Text Available Life Cycle Assessment (LCA is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefore.establishing baseline information for the complete environmental profile of the palm oil plywood is essential. Data from this study on the environmental impact for the production of palm plywood would help to develop sustainable palm plywood product. The results will provide information to identify ways and measures to reduce the environmental impacts. Most foreground data were collected directly from numbers oil palm plywood factories which represent 40% of the palm plywood industry in Peninsular Malaysia. Data gaps were filled by information obtained through questionnaires which were developed specifically for data collection, literature, public database or further calculated from obtained data. The outputs and inputs from production activities were quantified on the basis of functional unit of production of 1 m3from different types of oil palm based plywood i.e., Moisture Resistant (MR, Weather Boiling Proof (WBP Grade 1 and Weather Boiling Proof (WBP Grade 2. The life cycle impact assessment was carried out using SimaPro 7.1 software and the eco-indicator 99 methodology. The weighting results of LCA for the production of 1 cubic meter of oil palm based plywood showed significant impact in descending order i.e., fossil fuel, respiratory inorganic and climate change. The most significant process contributing to these environmental impacts came from the production and usage of adhesives, transportation of oil palm trunks from plantation to factory and generation and usage of electricity from the grid. The ways to mitigate the environmental impacts are by using substitutes for inorganic chemical adhesives such as groundnut shell lignin adhesive, modified phenol formaldehyde adhesive and developing wood adhesive made from pyrolisis oil of oil palm biomass, establishing a collecting centre for oil palm trunk transportation and efficient use of oil palm biomass as an energy source. The study helped establishing baseline information for the complete environmental profile of the palm oil industry from cradle to grave which starts at the oil palm germinated seeds to the production of palm plywood.

M. Shamim Ahmad

2014-01-01

373

Conservation value and permeability of neotropical oil palm landscapes for orchid bees.  

Science.gov (United States)

The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2 km from forest, and oil palm sites greater than 5 km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features. PMID:24147137

Livingston, George; Jha, Shalene; Vega, Andres; Gilbert, Lawrence

2013-01-01

374

Oil palm plantations in Indonesia: The implications for migration, settlement/resettlement and local economic development  

OpenAIRE

5. Concluding remarks It is not difficult for policy makers to show that oil palms are an economically rentable crop with a huge potential for further economic growth. In addition to national demands, the growing worldwide interest in biofuels as an alternative to fossil fuels will increase demand for its feedstock and lead to the expansion of oil palm plantations in climatically suitable regions. On the basis of a cost–benefit analysis of various crops, oil palm will probably cont...

Budidarsono, S.; Susanti, A.; Zoomers, E. B.

2013-01-01

375

Financial assessment of oil palm cultivation on peatland in Selangor, Malaysia  

OpenAIRE

Oil palm plantations on peat soils are generally believed to have greater environmental impacts than those on other soil types. Nonetheless, Malaysia operates substantial incentives to maximise palm oil production, which in practice encourage the establishment of plantations on peatland. This paper explores the social and economic basis of oil palm cultivation on one peatland estate at Sungai Panjang in the state of Selangor, peninsular Malaysia. Data were obtained by conducting a questionnai...

Noormahayu, M. N.; Khalid, A. R.; Elsadig, M. A.

2009-01-01

376

A participatory diagnostic study of the oil palm (Elaeis guineensis) seed system in Benin  

OpenAIRE

A participatory diagnostic study of the oil palm (Elaeis guineensis Jacq.) seed system (OPSS) was conducted along a gradient of rainfall and distance to the oil palm research centre across the oil palm growing belt of Benin. The objective was to identify, jointly with key actors, the constraints in the OPSS and to assess the performance of the OPSS from a farmers’ perspective. The methodology included introductory community meetings, group discussions, individual in-depth interviews, field ...

Akpo, E.; Vissoh, P. V.; Tossou, R. C.; Crane, T.; Kossou, D. K.; Richards, P.; Stomph, T. J.; Struik, P. C.

2012-01-01

377

Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana  

OpenAIRE

We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to alleviate poverty because of overriding institutional constraints at the larger-than-farm level. Oil palm was selected for the study for three main reasons: (1) It is considered a national priority...

Adjei-nsiah, S.; Sakyi-dawson, O.; Kuyper, T. W.

2012-01-01

378

Sustainable Management of a Matured Oil Palm Plantation in UPM Campus, Malaysia Using Airborne Remote Sensing  

Directory of Open Access Journals (Sweden)

Full Text Available Accurate and reliable near-real time information is needed for a sustainable oil palm plantation management, especially on plant quality and health. Airborne remote sensing provides the effective recent agricultural crop information for the oil palm plantation industry planning, management and sustainable development. A study on the characteristic of a matured oil palm plantation in UPM campus was conducted using airborne hyperspectral remote sensing technique. Airborne hyperspectral remote sensing can be used as an effective tool in monitoring the characteristic of oil palm plantation in order to predict and manage the oil palm production. The general objective of this study is to assess the capability and usefulness of UPM-APSB’s AISA airborne hyperspectral sensor to determine the characteristic of a matured oil palm plantation for its sustainable development while the specific objective is to identify, classify and produce the thematic map of matured oil palm plantation in the study site. The age of the oil palm plantation used in this study is 27 years old. Sobel filtering was used to enhance the image. Spectral Angle Mapper (SAM analysis was then used to classify the characteristic of the plantation within the study area. A thematic map of 27 years old matured oil palm plantation was produced and the characteristic of the oil palm plantation in the study site was identified as 173 healthy, 7 dead, 9 stressed oil palm trees and open areas in the plantation with a mapping accuracy of 93.33%. This has shown that UPM-APSB’s AISA airborne hyperspectral sensor is capable of mapping a matured oil palm plantation with such characteristics for its sustainable management and future development.

Kamaruzaman Jusoff

2009-10-01

379

Employment and Income of Workers on Indonesian Oil Palm Plantations: Food Crisis at the Micro Level  

OpenAIRE

The importance of oil palm sector for Indonesia is inevitable as the country currently serves as the world’s largest producer of crude palm oil. This paper focuses on the situation of workers on Indonesian oil palm plantations. It attempts to investigate whether the remarkable development of the sector is followed by employment opportunities and income generation for workers. This question is posed within the theoretical framework on the link between trade liberalisation and labour rights, ...

Sinaga, Hariati

2013-01-01

380

Conservation Value and Permeability of Neotropical Oil Palm Landscapes for Orchid Bees  

Science.gov (United States)

The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2km from forest, and oil palm sites greater than 5km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features. PMID:24147137

Livingston, George; Jha, Shalene; Vega, Andres; Gilbert, Lawrence

2013-01-01

381

PALM AND PARTIALLY HYDROGENATED SOYBEAN OILS ADVERSELY ALTER LIPOPROTEIN PROFILES COMPARED WITH SOYBEAN AND CANOLA OILS IN MODERATELY HYPERLIPIDEMIC SUBJECTS  

Science.gov (United States)

Background: Partially-hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil has reemerged as a potential substitute due to favorable physical characteristics. Objective: To assess the effect of palm oil relative to both partially-hydrogenated fat and oils high in mon...

382

How the palm oil industry is cooking the climate  

International Nuclear Information System (INIS)

Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands mayuction, emissions from these peatlands may trigger a 'climate bomb'

383

The use of 32P and 15N to estimate fertilizer efficiency in oil palm  

International Nuclear Information System (INIS)

Improving efficiency of use of fertilizers has attracted a great deal of interest on oil-palm estates because of increasing input costs. It is assumed that higher efficiency of use of fertilizers for estate crops, including oil palm, would result in significant savings and less environmental pollution. One way to enhance efficiency of use of fertilizers by oil palm is to apply them where the most active roots are located. Previous work has indicated the possibility of determining the most active roots of tea and chinchona by using 32P. In this experiment, 32P was again used, to determine the locations of the most active roots of oil palm trees

384

Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production.  

Science.gov (United States)

Recently, organic and inorganic chlorinated compounds were detected in crude and commercially refined palm oils. Further, the predominant formation mechanism of monochloropropanediol (MCPD) diesters at high temperatures (>170-180°C) was revealed. The present study involved the development and comparison of solutions to mitigate MCPD diester levels in oils from various stages of palm oil production. Partially refined palm oil samples and oil extracted from fresh palm fruits were submitted to bench-top deodorisation experiments. Application of glycerol and ethanol as refining aids during the deodorisation of refined-bleached palm oil proved to be moderately effective; about 25%-35% reduction of MCPD diester levels was achieved. Washing crude palm oil with ethanol-water (1:1) prior to deodorisation was also an effective strategy yielding an ?30% reduction of MCPD diester contents. Washing palm fruit pulp before oil extraction, however, was most impactful, resulting in a 95% reduction of MCPD diesters when compared to the deodorised control oil. This suggests that intervention upstream in the process chain is most efficient in reducing levels of these contaminants in refined oils. Following the study, a root-cause analysis was performed in order to map the parameters potentially responsible for the occurrence of MCPD diesters in refined palm oil and related fractions. PMID:22168150

Craft, Brian D; Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric

2012-01-01

385

Utilization of crude and refined palm and palm kernel oils in broiler diets.  

Science.gov (United States)

Four experiments were conducted to evaluate the use of crude and refined palm (PAO) and palm kernel oil (PKO) in diets for broiler chickens. In Experiment 1, refined PAO and PKO were compared with corn oil (CO) and poultry oil (PO) at levels up to 10%. In Experiment 2, refined PAO and PKO were compared with PO at levels up to 8%. In Experiments 3 and 4, crude PAO and PKO were compared with PO at levels up to 8%. Diets were formulated based on the energy level assigned to PAO; other oils were added in amounts calculated to be isocaloric with an inert filler as required. Live production variables were measured. Samples of birds were processed to determine carcass characteristics, and fatty acid composition of adipose tissue was determined. In all studies, broilers fed crude or refined sources of PAO and PKO grew as well and utilized their feed as efficiently as those fed diets with isocaloric amounts of CO or PO. There were minimal interactions of source and dietary level of oil in any of the studies. Dressing percentage and quantity of abdominal fat were not influenced by source of supplemental oil; however, the fatty acid profile of adipose tissue was altered by the source of supplemental oil. There were only minor differences in fatty acid content of adipose tissue of broilers fed PAO (either crude or refined) versus those fed PO. However, increasing levels of PKO resulted in increased deposition of saturated fatty acids, especially lauric and myristic acid, and decreased concentrations of both monoenoic and polyunsaturated fatty acids. The resulting change in hardness of adipose tissue may prove to be advantageous in marketing. PMID:8309869

Valencia, M E; Watkins, S E; Waldroup, A L; Waldroup, P W; Fletcher, D L

1993-12-01

386

Kinetics of palm kernel oil and ethanol transesterification  

Energy Technology Data Exchange (ETDEWEB)

Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, there are no available data on the kinetics and mechanisms of transesterification of local vegetable oils. The need for local production of biodiesel necessitates that the mechanism and kinetics of the process is well understood, since the properties of the biodiesel depends on the type of oil use for the transesterification process. The objective of this work is to evaluate the appropriate kinetics mechanism and to find out the reaction rate constants for palm kernel oil transesterification with ethanol when KOH was used as a catalyst. In this present work, 16 biodiesel samples were prepared at specified times based on reported optimal conditions and the samples analysed by gas chromatography. The experimental mass fractions were calibrated and fitted to mathematical models of different proposed mechanisms in previous works.The rate data fitted well to second-order kinetics without shunt mechanism. It was also observed that, although transesterification reaction of crude palm kernel oil is a reversible reaction, the reaction rate constants indicated that the forward reactions were the most prominent.

Ahiekpor, Julius C. [Centre for Energy, Environment and Sustainable Development (CEESD), P.O. Box FN 793, Kumasi (Ghana); Kuwornoo, David K. [Faculty of Chemical and Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana)

2010-07-01

387

Kinetics of palm kernel oil and ethanol transesterification  

Directory of Open Access Journals (Sweden)

Full Text Available Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, there are no available data on the kinetics and mechanisms of transesterification of local vegetable oils. The need for local production of biodiesel necessitates that the mechanism and kinetics of the process is well understood, since the properties of the biodiesel depends on the type of oil use for the transesterification process. The objective of this work is to evaluate the appropriate kinetics mechanism and to find out the reaction rate constants for palm kernel oil transesterification with ethanol when KOH was used as a catalyst. In this present work, 16 biodiesel samples were prepared at specified times based on reported optimal conditions and the samples analysed by gas chromatography. The experimental mass fractions were calibrated and fitted to mathematical models of different proposed mechanisms in previous works.The rate data fitted well to second-order kinetics without shunt mechanism. It was also observed that, although transesterification reaction of crude palm kernel oil is a reversible reaction, the reaction rate constants indicated that the forward reactions were the most prominent.

Julius C. Ahiekpor, David K. Kuwornoo

2010-11-01

388

Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.  

Science.gov (United States)

The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020. PMID:22406099

Arthur, Richard; Glover, Kwasi

2012-05-01

389

Effects of Mixing Canola and Palm Oils with Sunflower Oil on the Formation of Trans Fatty Acids during Frying  

OpenAIRE

GLC analysis was conducted to indicate the formation of trans- C18 fatty acids of sunflower, canola and palm oils during frying. Blends of sunflower oil and palm oil or canola oil were obtained by mixing sunflower oil with palm or canola oils at the volume ratios of 60: 40, 40: 60 and 20: 80 (v/v), then heated at 180?C ± 5?C for 5, 10, 15 and 20 h in the atmospheric oxygen. GLC results demonstrate that the formation of trans C18-fatty acids was generally dependent upon the frying time and oi...

Abd El Hakeem, Bothaina S.; El-agaimy, Magdy A. S.; Farag, Radwan S.

2010-01-01

390

Evaluation of the Lubricating Properties of Palm Kernel Oil  

Directory of Open Access Journals (Sweden)

Full Text Available The search for renewable energy resources continues to attract attention in recent times as fossil fuels such as petroleum, coal and natural gas, which are been used to meet the energy needs of man are associated with negative environmental impacts such as global warming. Biodiesel offered reduced exhaust emissions, improved biodegradability, reduced toxicity and higher carotene rating which can improve performance and clean up emissions. Standard methods were used to determine the physical and chemical properties of the oil, which includes the Density, Viscosity, flash/fire point, carbon residue, volatility and Specific Gravity were determined by chemical experimental analysis. The flash/fire points of the Heavy duty oil (SAE 40 and Light duty oil (SAE 30 is 260/300(°C and 243/290(°C respectively while the pour points of the samples are 22°C for palm kernel oil while 9°C and 21°C for SAE 40and SAE 30 respectively.

John J MUSA

2009-07-01

391

Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations  

Directory of Open Access Journals (Sweden)

Full Text Available Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enforcement in Malaysia, have been living inremotely located inhabitations engaging in ‘dirty, dangerous and distance’ wise oil palm plantations. Though thelarger oil palm plantation companies ensure minimum living and working conditions for the foreign workers,vastly located small holding plantations never follow such minimum and fair working environment. Theseconditions to be correlated with the term “precarious working conditions’ in small holding oil palm plantations.Due to lack of availability of the locals to engage in oil palm work, the plantations have to depend on foreignworkers do all these ‘dirty, dangerous and distance’ workers in oil palm plantations. Except a few literatureavailable from Amnesty international and local NGOs, there is less evidence to prove the existence of suchexploitative working conditions in oil palm plantations. In order to explore precarious working conditions in oilpalm plantations thus a qualitative research study is conducted in the Sabah region of the Eastern Part ofMalaysia. The study followed, triangulation method through interviews with the migrated foreign workers, (legaland illegal, focus group discussions and Delphi technique with the identification of experts in the field to arriveat the factors and categories related to the theme ‘precarious working conditions’ in oil palm plantations. Theoutcome of the study fixes the variables that need to be concentrated for a higher level research throughquantitative research.

Dileep Kumar M.

2014-10-01

392

Energy Contribution of Oil Cakes Used as Fuel in Waste Boilers: Case of an Oil Mill in Cote D’ivoire  

OpenAIRE

Cote d’Ivoire is the second palm oil producer country in Africa. The oil mills are generally located near the farms which are in rural areas. In fact, Côte d’Ivoire is self-sufficient in electricity; but the electric distribution netwo