WorldWideScience

Sample records for oklo natural fission

  1. Fission yields of molybdenum in the Oklo natural reactor

    International Nuclear Information System (INIS)

    The isotopic compositions of molybdenum in six uranium-rich samples from the Oklo Zone 9 natural reactor were accurately measured by thermal ionization mass spectrometry. The samples were subjected to an ion exchange separation process that removed the isobaric elements zirconium and ruthenium, with high efficiency and a low blank. Molybdenum possesses seven isotopes of which 92,94,96Mo are unaffected by the fission process, enabling the raw data to be corrected for isotope fractionation by normalising to 92Mo/96Mo, and to use 94Mo to correct for the primordial component in each of the fission-produced isotopes. This enables the relative fission yields of Mo to be calculated from the isotopic composition measurements, to give cumulative fission yields of 1:0.941:0.936:1.025 for 95,97,98,100Mo, respectively. These data demonstrate that the most important nuclear process involved in reactor Zone 9 was the thermal neutron fission of 235U. The consistency of the relative cumulative fission yields of all six samples from different locations in the reactor, implies that Mo is a mobile element in the uraninite comprising Zone 9, and that a significant fraction of molybdenum was mobilized within the reactor zone and probably escaped from Zone 9, a conclusion in agreement with earlier published work. (author)

  2. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ? A ? 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  3. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    International Nuclear Information System (INIS)

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 ± 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab

  4. Illite in the Oklo natural fission reactors in Gabon: Considerations for Cs containment

    International Nuclear Information System (INIS)

    The ? 2 Ga old Oklo, Okelobondo and Bangombe natural reactors in the Republic of Gabon contain solid graphitic bitumens and clay minerals, both of which have effected the containment, or partial containment, of 235U and several fission products. In laboratory experiments, sorption of 134Cs by illite, and illite coated with petroleum was measured in aqueous NaCl solutions to simulate subsurface (connate) waters in sedimentary rocks. Elevated temperatures and increasing salinity of the NaCl solutions facilitated the removal of sorbed cesium from illite

  5. XPS and XRD studies of samples from the natural fission reactors in the Oklo uranium deposits

    International Nuclear Information System (INIS)

    Mineral samples from the natural fission reactors 10 and 13 in the Oklo uranium deposits were studied using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) to gain information about the long-term behaviour of UO2 fuel in a geological disposal vault. Two samples from reactor zone 10 (samples No. D81N-190292 and D73-88) and one sample from reactor zone 13 (sample No. SD37-S2/CD) were analysed. Low-resolution XPS spectra were recorded to determine the major elements present in the ore. High-resolution spectra were recorded to gain information about the chemical state of the elements present in the mineral samples. The samples show low values for the U6+/U4+ ratio. The oxidation state of uranium in these samples is even lower than that in U4O9.The binding energies of the Pb 4f bands indicate most of the Pb is in the +2 oxidation state in these samples. The C ls band indicates the presence of organic carbon. XRD analysis shows that the main uranium-bearing phase is uraninite and lead is present mainly as galena. The significance of the results for nuclear fuel waste management is discussed

  6. Oklo natural reactors: geological and geochemical conditions

    International Nuclear Information System (INIS)

    Published as well as unpublished material on the Oklo natural reactors in Gabon was evaluated with regard to the long-term aspects of nuclear waste disposal. Even though the vast data base available at present can provide only a site specific description of the phenomenon, already this material gives relevant information on plutonium retention, metamictization, fission product release, hydrogeochemical stability and migration of fission products. Generalized conclusions applicable to other nuclear waste repository would require the quantitative reconstruction of t s coupled thermo-hydrologic-chemical processes. This could be achieved by studying the deviations in the 2H/1H and 18O/16O ratios of minerals at Oklo. A further generalization of the findings from Oklo could be realized by examining the newly-discovered reactor zone 10, which was active under very different thermal conditions than the other reactors. 205 refs

  7. The Oklo natural nuclear reactors: neutron parameters, age and duration of the reactions, uranium and fission products migrations

    International Nuclear Information System (INIS)

    Mass spectrometry and isotopic dilution technique are used in order to carry out, on various samples from the fossil nuclear reactors at Oklo, Gabon, isotopic and chemical analyses of some particular elements involved in the nuclear reactions: uranium, lead, bismuth, thorium, rare gases (krypton, xenon), rare earths (neodymium, samarium, europium, gadolinium, dysprosium), ruthenium and palladium. Interpretations of these analyses lead to the determination of many neutron parameters such as the neutron fluence received by the samples, the spectrum index, the conversion coefficient, and also the percentages of fissions due to uranium-238 and plutonium-239 and the total number of fissions relative to uranium. All these results make it possible to determine the age of the nuclear reactions by measuring the amounts of fission rare earths formed, i.e. 1.97 billion years. This study brings some informations to the general problem of radioactive wastes storage in deep geological formations, the storage of uranium, plutonium and many fission products having been carried out naturally, and for about two billion years

  8. Reappraisal of the limit on the variation in ? implied by the Oklo natural fission reactors

    Science.gov (United States)

    Davis, Edward D.; Hamdan, Leila

    2015-07-01

    Background: A signature of many dynamical models of dark energy is that they admit variation in the fine structure constant ? over cosmological time scales. Purpose: We reconsider the analysis of the sensitivity of neutron resonance energies Ei to changes in ? with a view to resolving uncertainties that plague earlier treatments. Methods: We point out that with more appropriate choices of nuclear parameters, the standard estimate (from Damour and Dyson) of the sensitivity for resonances in Sm is increased by a factor of 2.5. We go on to identify and compute excitation, Coulomb, and deformation corrections. To this end, we use deformed Fermi density distributions fitted to the output of Hartree-Fock (HF) + BCS calculations (with both the SLy4 and SkM* Skyrme functionals), the energetics of the surface diffuseness of nuclei, and thermal properties of their deformation. We also invoke the eigenstate thermalization hypothesis, performing the requisite microcanonical averages with two phenomenological level densities which, via the leptodermous expansion of the level density parameter, include the effect of increased surface diffuseness. Theoretical uncertainties are assessed with the inter-model prescription of Dobaczewski et al. [J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014), 10.1088/0954-3899/41/7/074001]. Results: The corrections diminish the revised Sm sensitivity but not by more than 25%. Subject to a weak and testable restriction on the change in mq/? (relative to the change in ? ) since the time when the Oklo reactors were active (mq is the average of the u and d current quark masses, and ? is the mass scale of quantum chromodynamics), we deduce that | ?Oklo-?now|atomic clock experiments. Conclusions: The order of magnitude of our Oklo bound on changes in ? is reliable. It is one order of magnitude lower than the Oklo-based bound most commonly adopted in earlier attempts to identify phenomenologically successful models of ? variation.

  9. Coupled processes at the Oklo Natural reactor

    International Nuclear Information System (INIS)

    This paper discusses how the Oklo Natural Reactor, Gabon, is an excellent site in which to study, asses, and evaluate coupled processes of interest to radionuclide migration in natural media. The uranium accumulations in which the fission reactions occured are dated at about two Gy (billions of years), and the nuclear reactions lasted for some 500,000 y (plus). Temperatures in the reactor zones were on the order of 300-450C, although local, higher temperatures may have been reached. This thermal regime aided in the diffusion of some fission products, and possibly actinides, from host pitch-blende. Post-reactor diagenesis events have masked some of the radionuclide mThis paper discusses how the Oklo Natural Reactor, Gabon, is an excellent site in which to study, asses, and evaluate coupled processes of interest to radionuclide migration in natural media. The uranium accumulations in which the fission reactions occurred are dated at about two Gy (billions of years), and the nuclear reactions lasted for some 500,000 y (±). Temperatures in the reactor zones were on the order of 300-450 degrees C, although local, higher temperatures may have been reached. This thermal regime aided in the diffusion of some fission products, and possibly actinides, from host pitch-blende. Post-reactor diagenesis events have masked some of the radionuclide migration paths, but most can still be studied.igration paths, but most can still be studied

  10. 3D modelling of thermal and fluid transfers around a natural fission reactor (Oklo, Gabon)

    International Nuclear Information System (INIS)

    Numerical modelling is used to quantify heat and mass transfers around the Oklo site. A 3D model of a reactor, at decametric scale, built with the GOCAD software shows that the functioning of the reactor acts as a powerful but local thermal perturbation. This perturbation increases the temperature within a range of 50 to 250 deg C, according to assumed heat production, with a spatial extent less than 50 m. The steady state regime is reached very rapidly, in less that 100 years. The heat dissipation is essentially conductive, the reactor inducing only weak fluid movements. A forced convection model has been also investigated, where fluids come from basin scale circulations. It shows that, in the range of the studied filtration velocities, temperatures are not significantly affected by these circulations. Nevertheless, they induce an asymmetry between upstream and downstream parts of the flow. Assuming low permeability, the high temperature increase could have caused local fluid overpressures, which could lead to the development of a radial hydraulic fracturing near the reactor, as has been observed around the reactor 10. (authors)

  11. Oklo natural fission reactor program. Progress report, April 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.B. (comp.)

    1980-12-01

    An interim report has been published on the redistribution of uranium, thorium, and lead in samples representing several million cubic meters of sandstone and metamorphosed sediments in the Athabasca Basin which is located in the northwest corner of the Canadian province of Saskatchewan. The region of study includes zones of uranium mineralization at Key Lake. Mineralization occurs at the unconformity between the Athabasca sandstone and the underlying metasediments and in fault zones within the metasediments. Lead isotopes record a radiometric age of 1300 +- 150 m.y. in samples from above and below the unconformity. This age probably reflects the time of deposition of the sandstones and an associated redistribution of uranium and/or lead in the underlying rocks. Many of the samples have been fractionated with respect to radiogenic lead and the actinide parent elements since that time. Sandstones and altered rocks from the region above the unconformity have been a transport path and are a repository for lead. In contrast, mineralized rocks are deficient in radiogenic lead and must be an important source of lead in the local geologic environment. Samples from Oklo reactor zone 9 and nearby host rocks have been prepared for isotopic analyses of ruthenium, molybdenum, uranium and lead.

  12. Swedish activities in the Oklo natural analogue project

    International Nuclear Information System (INIS)

    Presently, many countries are concerned about the need for a safe method to dispose of high-level nuclear wastes. The various national regulatory agencies involved generally require quantitative predictions for at least the first 104 years after disposal, and qualitative predictions of repository safety performance for up to 106 years. Predicting what this future behaviour will be can be considerably facilitated by comparison with the evolution of parallel natural geochemical systems, particularly those rich in radioelements. Such natural systems, or natural analogues, therefore provide a unique opportunity to test, by observation and measurement, many of the geochemical processes that are expected to influence the predicted reliability of high-level radioactive waste containment deep in the bedrock for long periods of geological time, thus providing direct and indirect validation support for some of the models and data used in performance assessment. Oklo, by virtue of representing a fossil natural reactor which achieved criticality some 2 000 Ma ago, provides a unique opportunity to show whether the stable nuclear fission end-products have remained, in the near-vicinity of the reactor zone subsequent to fission. Furthermore, the materials found in the Oklo reactors resemble closely important waste forms such as spent nuclear fuel and bitumised residue and have been subject to extreme geochemical reactions and radiolysis when related to expected site disposal conditions, and for a much longer time. In order to study such effects, not only do the reactor zones require further detailed mineralogical, geochemical and radiochemical study, but equally the geological setting and hydrological environment of the reactor zones also need to be understood. For this reason SKB are interested to study the spatial distribution of the reactor zones at Oklo, Okelobondo and Bagombe in the context of the large-and small-scale groundwater hydraulics of the host sedimentary rocks. (author). 7 refs., 1 fig

  13. The deposit of Oklo and its natural nuclear reactors

    International Nuclear Information System (INIS)

    In the uranium deposit of Oklo (Republic of Gabon), seven zones have been discovered since 1972, in which natural fission reactions took place. Since 1974, a thorough geological study of these zones has been undertaken. It includes field studies, observations of drilled samples and laboratory studies. These studies permit the authors to define the geological environment of the reactors and to point out the influence of nuclear reactions on the surrounding formations. All this work was completed by a geological and metallogenic study of the deposit of Oklo and of the uraniferous basin of Franceville. The deposit of Oklo is situated in a detrital, sandstone-like and pelitic series belonging to the Francevillian. The Francevillian and the mineralization are dated as Middle Precambrian (1800-2000 M.A.). The ore of Oklo is the result of two concentration stages. In the first, uranium seems to have been fixed by hydrocarbons that were concentrated in oil traps. After a tectonic event, circulations of oxidizing solutions generated reconcentrations that are associated with hematite and have contents of UO2 between 1 and 20%. The fission reactions developed in the high-graded ores which had formed during the last phase of UO2 concentration. A thorough tectonic analysis of the ore deposit shows that high-graded ores and fission reactors are controlled by fractures. The working of nuclear reactors results in a local increase of temperature which gave a rise to circulation of warm water. The results of this hydrothermal circulation and of the neutron bombardment are seen in a succession of facies surrounding the reactors. At the centre of the reactor all sedimentary structures have been destroyed; within the reaction zone the following clays mineral zones are founded: (1) 1 Md illite and ferrous chlorite corresponding to the common Francevillian sediment; (2) 2 Md illite, (3) magnesium chlorite and (4) 1 Md illite and chlorite-vermiculite in the very rich uraninite ore. These dydrothermal circulations also caused removal of silica toward the outer zones which reacted affecting the geometry of the reactors by fracturing

  14. Inception and evolution of Oklo natural nuclear reactors

    International Nuclear Information System (INIS)

    The occurrence of more than 15 natural nuclear Reactor Zones (RZ) in a geological environment remains a mystery even 40 years after their discovery. The present work gives for the first time an explanation of the chemical and physical processes that caused the start-up of the fission reactions with two opposite processes, uranium enrichments and progressive impoverishment in 235U. Based on Monte-Carlo neutronics simulations, a solution space was defined taking into account realistic combinations of relevant parameters acting on geological conditions and neutron transport physics. This study explains criticality occurrence, operation, expansion and end of life conditions of Oklo natural nuclear reactors, from the smallest to the biggest ones. (authors)

  15. Recent outputs of the Oklo (Gabon) natural analogue study to nuclear waste disposal

    International Nuclear Information System (INIS)

    In the past twenty five years, the natural nuclear reactors of Oklo have been the subject of numerous detailed studies. First investigated for the physical and neutron aspects of the nuclear reaction, they were then reconsidered because they provide a unique opportunity in the world to study the containment of actinides and fission products in a geological formation over a broad timescale (two billion years). Although the sites investigated do not represent a complete analogue of a repository system, many of the processes studied (mass transfer to the surface, transport, migration / retention), the spatial extent of these processes, and the timescales involved, are compatible with processes liable to occur during the lifespan of a repository for the deep geological disposal of spent nuclear fuel. A fresh program was therefore initiated as a European Commission project in 1990, entitled''Oklo as a natural analog for transfer processes in a radioactive waste repository'- phase 7, and then extended by a phase 2 entitled Oklo, Natural Analogue - Behavior of Nuclear Reaction Products in a Natural Environment''. Researches conducted in phase I served to determine the physical conditions of the operation of the natural reactor, reconstruct the geological history of the reactor environment, and decode the behavior of actinides as well as fission products in the surrounding geological formations. Phase N, which ended in June 1999, had three main objectives: i) to assess radionuclide migration and retention processes from the reactor zones to the geological environment, ii) to define the confinement properties and long-term behavior of geological materials; iii) to test models of processes related to radionuclide migration and retention, and eventually to provide suitable data and scenarios for performance assessment of nuclear waste disposal. This paper proposes a synthesis of the main outputs of the Oklo project to the performance assessment of nuclear waste disposal, the study of the long-term evolution of spent fuel and the long-term behavior of geological materials with respect to the containment of actinides and fission products. The Oklo natural analogue displays a number of specific features that make it unique in the world. The Oklo basin is characterized by the occurrence of meter scale uraninite lenses, that were affected by nuclear fission 2 billion years ago. These ''reactor zones'' exist in three sites: Oklo, Okelobondo and Bagombe. By analogy with a repository system, they are considered as representative of the 'Source' term. Numerous isotopic and geochemical tracers are thus available in order to restrict the migration or retention processes of actinides and fission products present in these zones. The near environment of the reactor zones, called ''Near field'' by analogy, is mainly composed of clayey materials (i.e. chlorite, illite, kaolinite). Reactor zones are found at present from the surface (Bagombe under oxidizing and acid conditions, with supergene weathering) to deep (Okelobondo under reducing conditions, with a low groundwater dynamics) conditions. Some reactor zones, e.g. R.Z. 13 in Oklo mine, have been subjected to strong hydrothermal disturbances (with temperatures above 350 deg C), linked to the geological history of the Franceville basin. On the other hand, the old age of the Oklo reactors (2 Ga) implies that pressure, temperature and chemical conditions have evolved during a long geological history, with associated basin scale movements of fluids. The Oklo-natural analogue Phase II project compiled useful information and tools for persons involved in Performance Assessment of waste disposal, wasteform conception or long term behavior [10] in four main areas corresponding to major investigation fields: 1/ ''Source'' term evolution, 2/ Long term containment properties of geological materials, 3/ Migration and retention of actinides and fission or end products, and 4/Geochemical and transport modeling. The main outputs of the European Oklo project to the nuclear waste repository issue are shown. The

  16. Oklo reactors: natural analogs to nuclear waste repositories

    International Nuclear Information System (INIS)

    The 2-billion-year-old fossil reactors at Oklo are ancient natural nuclear waste sites. Isotope dilution mass spectrometric analyses of the fission products in the reactor core uraninite and the peripheral pelitic sandstone provide data for calculating the reactor operating parameters, the quantities of fissiogenic isotopes produced, the fraction of these isotopes retained in the cores, and the location in the peripheral rocks of the fissiogenic fraction lost from the cores. For a duration of criticality of 3 x 105 yrs, the thermal plus resonance neutron fluence ranged between 1020 and 1021 neutrons/cm2. The fraction of technetium (60 to 85%), ruthenium (75 to 90%), and neodymium (85 to 100%) retained is negatively correlated with fluence. The lost fission products are contained within a few tens of meters of their source, the reactor cores. The systematics of the decay of 99Tc (t/sub 1/2/ = 2.13 x 105 yr) to 99Ru limits the period of fissiogenic element migration to approximately 1 million yr at a time 2 billion yr ago. Thermodynamic calculations of the temperature-dependent solubilities indicate that the loss of fissiogenic elements is diffusion controlled, whereas retention in the surrounding rocks is a result of temperature-dependent deposition from an aqueous solution. These results concerning the geochemistry of technetium, ruthenium, and neodymium at a natural waste site support the concept of geologic burial of man-made radioactive wastes

  17. The nonlinear dynamics of the Oklo natural reactor

    International Nuclear Information System (INIS)

    An analysis of the Oklo natural reactor, a self-sustaining and self-regulating critical assembly that existed some 2 billion years ago in Gabon, Africa, is presented. Nonlinear continuous dif ferential and nonlinear discrete iterative formulations are established and selected parameter characterizations identified. Conceivable power oscillations are calculated and discussed. Some implications of nonlinear mappings for nuclear simulation are suggested

  18. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    International Nuclear Information System (INIS)

    Some of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the re-solidified, graphitic bituminous organics at Oklo thus enhanced radionuclide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lanthanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pre-treated nuclear waste warrants further investigation. (author)

  19. Oklo, natural analogue of the radionuclides migration through the geological barrier

    International Nuclear Information System (INIS)

    One of the main part of he CEC project 'Oklo-Natural Analogue' is devoted to present time migration studies. This part comprises hydrogeology, groundwater chemistry, isotope geochemistry and modelling. Two sites are being investigated: the less perturbed reactor zone of the Oklo mine (OK84 in the southern mine extension of Okelobondo) at around 400 meters depth and the Bangombe reactor zone, sited in a shallow environment 30 km south of Oklo. The present contribution aims to define regional hydrogeology and hydro-chemistry boundary conditions for the modelling exercise, to assess the present day water-rock interaction in the vicinity of reactor zones, to gather information on the geochemical conditions which allowed the preservation of reactor zones for two billions years, to estimate the uranium migration from the reactor zone in using a natural marker (the depleted 235U/238U ratio resulting from the fission) and to compare these data with predictive modelling. Based on the hydrogeological conceptual modelling, we have sampled waters in recharge areas, discharge areas above and below reactors, and in major local aquifers. We have been able to reconstruct the evolution of the groundwaters, in a way which is consistent with the hydrogeology, using major elements and environmental isotopes. (author)

  20. Lutetium thermometry for Oklo natural reactors: a new look at old data

    CERN Document Server

    Gould, C R; 10.1103/PhysRevC.85.024610

    2012-01-01

    Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures $T_O$ which in turn impacts bounds on time variation of the fine structure constant $\\alpha$. We revisit results for reactor zone RZ10 in light of new measurements of the isomer branching ratio $B^g$ in $^{175}$Lu neutron capture at 5 and 25 keV. We recalculate predictions for $T_O$ as a function of $B^g$ using realistic models of the Oklo neutron flux. We find $T_O = 100 \\pm 30$ C using a new value of $B^g$, in contrast to $350 < T_O < 500 $ C using the evaluated value at thermal energy. Lutetium thermometry can be applicable to analyses of Oklo reactor data, but a better measurement of $B^g$ with thermal neutrons is needed to confirm the reliability of temperature predictions.

  1. Lutetium thermometry for Oklo natural reactors: a new look at old data

    OpenAIRE

    Gould, C R; Sharapov, E.I.

    2012-01-01

    Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures $T_O$ which in turn impacts bounds on time variation of the fine structure constant $\\alpha$. We revisit results for reactor zone RZ10 in light of new measurements of the isomer branching ratio $B^g$ in $^{175}$Lu neutron capture at 5 and 25 keV. We recalculate predictions for $T_O$ as a function of $B^g$ using realistic models of the Oklo ...

  2. Oklo - natural analogue for transfer processes in a geological repository: present status of the programme

    International Nuclear Information System (INIS)

    The uranium ore body in Oklo is a unique subject in the world, as natural fission reactions occurred there two billion years ago. It provides opportunities for the study of natural analogy with deep radioactive waste disposal, specially radionuclide mass transfer processes to the surface. The ongoing program is co-funded by the CEC, and it involves several directorates in the CEA, that is to say the IPSN, plus DTA and DCC. Other, non-CEC agencies also take part in the studies, such as SKB (Sweden), AECL and ONTARIO-HYDRO (Canada). It can be subdivided into several different tasks: 1. In situ sampling, in close collaboration with the mining company (C.O.M.U.F., Compagnie des Mines d'Uranium de Franceville, Mounana, Gabon). 2. Study and characterization of the source term (mostly in CEA laboratories). 3. Studies on the geochemical systems ruling the migrations, implying collaboration between CEA laboratories and other institutions: CREGU (Centre de Recherches sur la Geologie des matieres premieres minerales et energetiques, formerly 'de l'Uranium', Nancy), Centre de Geochimie de la surface (CNRS, Strasbourg), and Ecole Nationale Superieure des Mines de Paris (ENSMP, Centre de Geologie Generale et Miniere and Centre d'Informatique Geologique, Fontainebleau). 4. Modelling: Part of the modelling will take place in each laboratory involved, but the final coupling of models will be the responsibility of IPSN and ENSMP. 1 fig

  3. Oklo, natural analogue for transfer processes in a geological repository: an overview

    International Nuclear Information System (INIS)

    The uranium ore body in Oklo is a unique subject in the world, as natural fission reactions occurred there two billion years ago. It provides opportunities for the study of natural analogy with deep radioactive waste disposal, specially radionuclide mass transfer processes to the surface. The ongoing program is co-funded by the CEC, and it involves several directorates in the CEA, that is to say the IPSN, plus DTA and DCC. Other, non-CEC agencies also take part in the studies, such as SKB (Sweden), AECL and ONTARIO-HYDRO (Canada). It can be subdivided into several different tasks: (1) In situ sampling, in close collaboration with the mining company (C.O.M.U.F., Compagnie des Mines d'Uranium de Franceville, Mounana, Gabon). (2) Study and characterization of the source term (mostly in CEA laboratories). (3) Studies on the geochemical systems ruling the migrations, implying collaboration between CEA laboratories and other institutions: CREGU (Centre de Recherches sur la Geologie des matieres premieres minerales et energetiques, formerly ''de l'Uranium'', Nancy), Centre de Geochimie de la Surface (CNRS, Strasbourg), and Ecole Nationale Superieure des Mines de Paris (ENSMP, Centre de Geologie Generale et Miniere and Centre d'Informatique Geologique, Fontainebleau). (4) Modelling: Part of the modelling will take place in each laboratory involved, but the final coupling of models will be the responsibility of IPSN and ENSMP. (author). 1 fig

  4. Natural Nuclear Reactor Oklo and Variation of Fundamental Constants Part 1: Computation of Neutronics of Fresh Core

    OpenAIRE

    Yu. V. Petrov; Nazarov, A. I.; Onegin, M.S.; Petrov, V. Yu.; Sakhnovsky, E. G.

    2005-01-01

    Using modern methods of reactor physics we have performed full-scale calculations of the natural reactor Oklo. For reliability we have used recent version of two Monte Carlo codes: Russian code MCU REA and world wide known code MCNP (USA). Both codes produce similar results. We have constructed a computer model of the reactor Oklo zone RZ2 which takes into account all details of design and composition. The calculations were performed for three fresh cores with different uranium contents. Mult...

  5. The Oklo reactors

    International Nuclear Information System (INIS)

    The Oklo reactors comprise up to nine 235-U depleted zones in an uranium ore in the Republic of Gabon in West Africa. The depletion in fissile U-235 has been proved to have caused by nuclear chain reactions. The study of the Oklo phenomenon indicates that very efficient retardation mechanisms may operate in nature - at least under special conditions. A closer study of these processes ought to be made to establish the limitations to their occurrence. The Oklo sandstone formation today would probably be considered unacceptable as a host rock for a repository. (EG)

  6. The geochemical behavior of radioactive nuclides at the Oklo natural reactor

    International Nuclear Information System (INIS)

    The Oklo uranium mine in the Republic of Gabon, West Africa, has been known as fossil fission reactor. Such a unique phenomenon brings us to not only geochemical information but also practical knowledge about radioactive waste disposal. In this study, isotopic compositions and abundances of various elements (Rb, Sr, Zr, Mo, Ru, Pd and rare earth elements) deeply associated with nuclear reactions were precisely measured with mass spectrometer. On the basis of these data, the authors could investigate the geochemical behavior of fission product nuclides. Zr, Ru, Pd and rare earth elements (except La and Ce) were difficult to move and have been relatively preserved in the reactor. On the other hand, Rb, Sr have almost perfectly disappeared out of the reactor. It is particularly interesting that La and Ce had behaved differently from other rare earth elements and partly removed in spite of chemical similarity among rare earth elements

  7. The Oklo phenomenon as an analogue of radioactive waste disposal. A review

    International Nuclear Information System (INIS)

    This work demonstrates the utility of the Oklo uranium ore deposit and natural fission reactors as a long time scale analogue for man-made radioactive waste repositories. Oklo has opened a new horizon representing an unrivalled opportunity to apply isotopic geochemistry to the study of migrations of fission products after an extremely long cooling and storage time and to define the processes involved in the transport of these elements through geological materials. This is the topic of the first section of this report. In the second section the information available on retention or migration at Oklo of the most interesting fission products is presented trying to illustrate how relevant the Oklo experience is in formulating predictions on the destiny of high activity waste disposed of in stable geological formations

  8. Oklo. A review and critical evaluation of literature

    Energy Technology Data Exchange (ETDEWEB)

    Zetterstroem, Lena [Swedish Museum of Natural History, Stockholm (Sweden). Lab. for Isotope Geology

    2000-10-01

    The Oklo natural fossil fission reactors in Gabon, Equatorial Africa, have been studied as a natural analogue for spent nuclear fuel in a geological environment. For these studies, it is important to know what has happened to these reactors since they formed. This review is focussed on existing geological and geochronological information concerning the Oklo reactors and the surrounding ore. A sequence of geological and geochemical events in the Oklo area, as described in the literature, is given. The data and the studies behind this established geochronology are discussed and evaluated. Of the regional geology, special attention is given to the dating of the Francevillian sediments, and the intrusion of a dolerite dyke swarm. The processes that led to the mineralisation at Oklo, the subsequent formation of the nuclear reactors and later migration of fission products are described. Further discussion concerns the studies of the dolerite dyke swarm, since this appears to be one of the most important events related to fission product migration. A close look at the data related to this event shows that further study of the age of the dolerite dykes, and their effect on the uraninite in the Oklo reactors, is needed.

  9. Oklo. A review and critical evaluation of literature

    International Nuclear Information System (INIS)

    The Oklo natural fossil fission reactors in Gabon, Equatorial Africa, have been studied as a natural analogue for spent nuclear fuel in a geological environment. For these studies, it is important to know what has happened to these reactors since they formed. This review is focussed on existing geological and geochronological information concerning the Oklo reactors and the surrounding ore. A sequence of geological and geochemical events in the Oklo area, as described in the literature, is given. The data and the studies behind this established geochronology are discussed and evaluated. Of the regional geology, special attention is given to the dating of the Francevillian sediments, and the intrusion of a dolerite dyke swarm. The processes that led to the mineralisation at Oklo, the subsequent formation of the nuclear reactors and later migration of fission products are described. Further discussion concerns the studies of the dolerite dyke swarm, since this appears to be one of the most important events related to fission product migration. A close look at the data related to this event shows that further study of the age of the dolerite dykes, and their effect on the uraninite in the Oklo reactors, is needed

  10. Reactive transport modelling of uranium around a natural nuclear reactor at Bangombe (Oklo, Gabon)

    International Nuclear Information System (INIS)

    On the Bangombe site (Oklo, Gabon), a natural nuclear reactor 1.95 Gyr old, and 12 m deep is submitted to weathering. The geochemical behaviour of uranium and trace elements around the reaction zone has been carried out using a reactive transport code HYTEC-2D. The buffer redox capacity of the organic matter associated with FeII/FeIII minerals around the reactor can explain the uraninite stability into the reaction zone and its weak migration during the geological time. (authors)

  11. Effects of organic matter on the containment of uranium and fissiogenic isotopes in the Oklo natural reactors

    International Nuclear Information System (INIS)

    Several of the Proterozoic natural fission reactors at Oklo in the Republic of Gabon contain abundant organic matter. Organic petrography including reflectance measurements, Rock-Eval pyrolysis, microfocused-laser Raman spectrometry, pyrolysis-gas chromatography-organic mass spectrometry, pyrolysis-high resolution organic mass spectrometry, ion microprobe and thermal ionization isotope mass spectrometry, backscattered scanning electron microscopy and electron microprobe analyses were used to characterize the organic matter and its associated minerals in and in the vicinity of the organic-rich reactors 7-9. Non-uraniferous organic samples distant from the reactors were also examined by most of these analytical techniques. There are two types of organic matter in the natural reactors and in the distant sedimentary rocks: solid bitumen and kerogen. Both of these organic substances consist of a condensed aromatic hydrocarbon macromolecular matrix which contains dispersed fine-grain size, cryptocrystalline graphite. Liquid bitumen was generated during criticality through reaction mechanisms involving water at elevated temperatures. Later the liquid bitumen became a solid. The liquid bitumen helped to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite which incorporated fissiogenic isotopes. These uraninite crystals were coated and enclosed in bitumen, which held them immobile after its solidification. This mechanism prevented 235U and fission product losses for long periods of time. Organic matter in the natural reactors and uranium ores have a less tightly bound macromolecular matrix than organics in the non-uraniferous and distant sedimentary rocks, but the looser molecular matrix did not hinder 235U and fission product retention. (author). 19 refs., 2 tabs

  12. Oklo working group meeting

    International Nuclear Information System (INIS)

    Natural analogue studies have been carried out for several years in the framework of the European Community's R and D programme on radioactive waste; and within its recent fourth five-year programme on 'Management and storage of radioactive waste (1990-94)' the Community is participating in the Oklo study, natural analogue for transfer processes in a geological repository. The Oklo project is coordinated by CEA-IPSN (F) and involves laboratories from several CEA directorates (IPSN, DTA and DCC) which collaborate with other institutions from France: CREGU, Nancy; CNRS, Strasbourg and ENSMD, Fontainebleau. Moreover, institutes from non-EC member States are also taking part in the Oklo study. The second joint CEC-CEA progress meeting of the Oklo Working Group was held in April 1992 in Brussels and gave the possibility of reviewing and discussing progress made since its first meeting in February 1991 at CEA in Fontenay-aux-Roses. About 40 participants from 15 laboratories and organizations coming from France, Canada, Gabon, Japan, Sweden and the USA underline the great interest in the ongoing research activities. The meeting focused on the different tasks within the CEC-CEA Oklo project concerning (i) field survey and sampling, (ii) characterization of the source term, (iii) studies of the petrographical and geochemical system, and (iv) studies of the hydrogeological system and hydrodynamic modelling. (author) 17 papers are presented

  13. Gamma-ray spectrometer measurement of 238U/235U in uranium ore from a natural reactor at Oklo, Gabon

    Science.gov (United States)

    Moxham, Robert M.

    1976-01-01

    About 20 years ago, Kuroda theorized that a high-grade uranium deposit emplaced about 2x109 years ago could achieve criticality and sustain a nuclear chain reaction, given a sufficient thickness of high-grade ore and an appropriate water content. Such a natural reactor was found in 1972 at the Oklo deposit, Gabon. The ore contains as much as 60 percent uranium, but the isotopic abundance of 235U is as little as 0.4 percent in contrast to the normal abundance of 0.7110 percent 235U. A sample from the Oklo deposit containing about 0.51 atom percent 235U (by mass spectrometer) was analyzed by a gamma-ray spectrometer system, using a high-purity planar germanium detector. The 235U was determined from its daughter's (234Th) 63.3 keV photopeak; the 235U was determined from its 143.8 and 163.4 keV photopeaks. The ratios of these photopeaks were compared with that from a standard having normal uranium isotopic content; the resulting calculations give a 235U abundance of 0.54 atom percent in the Oklo sample. The gamma-ray spectrum also contains lines from five other isotopes in the uranium series, which indicate the Oklo sample to be at or near secular equilibrium, as the time elapsed since the nuclear reaction ended was sufficient to permit the daughters to achieve equilibrium.

  14. Natural Nuclear Reactor Oklo and Variation of Fundamental Constants Part 1: Computation of Neutronic of Fresh Core

    CERN Document Server

    Petrov, Yu V; Onegin, M S; Petrov, V Yu; Sakhnovskii, E G; Petrov, Yu.V.

    2006-01-01

    Using a modern methods of reactor physics we have performed the full-scale calculations of the natural reactor Oklo. For reliability we have used the recent version of two Monte Carlo codes: the Russian code MCU REA and world wide known code MCNP (USA). Both codes produce close results. We constructed computer model of zone RZ2 of reactor Oklo which takes into account all details of design and composition. The calculations were performed for the three fresh cores with different uranium contents. Multiplication factors, reactivities and neutron fluxes were calculated. We estimated also the temperature and void effects for the fresh core. As would be expected, we have found for the fresh core a great difference between reactor spectra and Maxwell's one, which was used before for averaging cross sections in the Oklo reactor. The averaged cross section of Sm and its dependence on the shift of resonance position (due to variation of fundamental constants) are significantly different from previous results. Contrary...

  15. Oklo 2 Billion Years Before Fermi

    International Nuclear Information System (INIS)

    The author aims to present the little-known story of the Oklo natural reactors. He recalls the historical aspects of the Oklo reactors discovery by the CEA in 1972, he explains the scientific phenomenon and the interest, notably as a ''natural analogue'' for the geological disposal of high level radioactive wastes. (A.L.B.)

  16. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put into operation in Oklo before the man appeared in the Earth. (Author)

  17. The discovery and study of the nuclear reactor in Oklo

    International Nuclear Information System (INIS)

    The work leading to the discovery of naturally sustained chain-reactions at Oklo (Gabon), is described. Conditions for this occurence are discussed. Information derived from analytical studies is detailed, particularly age of the deposit, duration of the chain sustained reactions, total power evolved - Typical values are respectively 2x109 years 106 years - 20000MWh per reactor. Migration of fission products and transuranium elements can be studied. Rare earths stay mostly with uranium. No indication of plutonium migration is found. Finally other, but rare similar sites could still be found, according to the data discussed

  18. The Oklo phenomenon

    International Nuclear Information System (INIS)

    Until recently, scientists believed that the chemical elements were synthesized only in stars. The discovery of the Oklo phenomenon in the Republic of Gabon in 1972 has revealed, however, that a nuclear ''fire'' had existed on the earth and large-scale transmutations of the elements were occurring on our planet 1.7x109 years ago. The formation of natural (or Pre-Fermi) reactors is closely related to the appearance of life on our planet earth. The Pre-Fermi reactors were probably never formed until about 2x109 years ago, when oxygen was injected into the earth's atmosphere by a new generation of living organisms carrying out photosynthesis. (orig.)

  19. OKLO: fossil reactors

    International Nuclear Information System (INIS)

    Events leading up to the discovery during the summer of 1972 of the Oklo fossil reactor in Gabon and its subsequent exploration are reviewed. Results of studies are summarized; future investigations are outlined

  20. Investigations of the natural fission reactor program. Progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    The U.S. study of the Oklo natural reactor began in 1973 with the principal objectives of understanding the processes that produced the reactor and that led to the retention of many of its products. Major facets of the program have been the chemical separation and mass spectrometric analysis of the reactor components and products, the petrological and mineralogical examination of samples taken from the reactor zones, and an interdisciplinary modeling of possible processes consistent with reactor physics, geophysics, and geochemistry. Most of the past work has been on samples taken within the reactor zones. Presently, these studies give greater emphasis to the measurement of mobile products in additional suites of samples collected peripherally and ''downstream'' from the reactor zones. This report summarizes the current status of research and the views of U.S. investigators, with particular reference to the extensive work of the French scientists, concerning the main features of the Oklo natural fission reactor. Also mentioned briefly is the U.S. search for natural fission reactors at other locations

  1. Oklo reactors and implications for nuclear science

    CERN Document Server

    Davis, E D; Sharapov, E I

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_...

  2. Radioactive wastes in Oklo; Desechos radiactivos en Oklo

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put into operation in Oklo before the man appeared in the Earth. (Author)

  3. Oklo 2 Billion Years Before Fermi; Les reacteurs naturels d'Oklo (Gabon): 2 milliards d'annees avant Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Barre, B

    2005-02-15

    The author aims to present the little-known story of the Oklo natural reactors. He recalls the historical aspects of the Oklo reactors discovery by the CEA in 1972, he explains the scientific phenomenon and the interest, notably as a 'natural analogue' for the geological disposal of high level radioactive wastes. (A.L.B.)

  4. Geochemical behaviour study of radionuclides and their radiogenic daughters in the vicinity of Oklo 10 and 13 natural nuclear reactors (Gabon) - Application to high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Since 1981, the discovery of new and almost unaltered natural nuclear reactors in the uranium mine of Oklo (Gabon) renewed the interest of scientific community. Indeed, due to their specific features, these reactors could be extensively investigated as natural analogues to better understand the geochemical processes which may occur in a high level nuclear waste repository. The aim of this PhD thesis is to determine the present distribution of a few radionuclides or their radiogenic daughters initially formed within the reaction zones and to infer their geochemical behaviour, subsequently to the stopping of nuclear reactions. Our study was focused on reactors 10 and 13 and their immediate sandstone surroundings in order to decipher the fate of U, Y and light rare earth elements which are assumed to be chemical analogues of actinides and fission products. Mineralogical observations, chemical and isotopic analyses on bulk rocks, led us to conclude that a part of radionuclides, as well as their daughters, remained confined within the reactions zones, in association with secondary mineral phases, whereas another part migrated towards tbe reactor rims. The radionuclides were concentrated at the reactor border or migrated within the first few metres of the surrounding sandstone, according to the intensity of nuclear reactors and the presence of the so-called 'facies argile de pile' which constitutes an intermediate facies between that of reactor cores and that of the surrounding sandstone. In the latter, long range elemental transfers occurred via fissures. Some of them, contemporaneous to the nuclear reactions drained radionuclides-rich fluids at temperatures of about 150-170 deg. C. More recent fissures, observed only in the environment of reactor 13, have allowed the transport of hotter hydrothermal fluids (about 310 deg. C), likely related to the nearby intrusion of dolerite dyke. The principal implications of this work for the disposal of nuclear wastes concern notably the long term stability of U dioxide in a reducing geological environment and its retention capability for various radionuclides. Our results also suggest that interfaces within the near field of a repository may act as sinks for radionuclides. Finally, this study confirms that fissures are likely to play an essential role in the transport of fluids and thus in the dispersion of radionuclides. (author)

  5. Bound on the variation in the fine structure constant implied by Oklo data

    CERN Document Server

    Hamdan, Leila

    2015-01-01

    Dynamical models of dark energy can imply that the fine structure constant $\\alpha$ varies over cosmological time scales. Data on shifts in resonance energies $E_r$ from the Oklo natural fission reactor have been used to place restrictive bounds on the change in $\\alpha$ over the last 1.8 billion years. We review the uncertainties in these analyses, focussing on corrections to the standard estimate of $k_\\alpha\\!=\\!\\alpha\\,dE_r/d\\alpha$ due to Damour and Dyson. Guided, in part, by the best practice for assessing systematic errors in theoretical estimates spelt out by Dobaczewski et al. [in J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014)], we compute these corrections in a variety of models tuned to reproduce existing nuclear data. Although the net correction is uncertain to within a factor of 2 or 3, it constitutes at most no more than 25% of the Damour-Dyson estimate of $k_\\alpha$. Making similar allowances for the uncertainties in the modeling of the operation of the Oklo reactors, we conclude that the rela...

  6. Etching of fission tracks in silicate glasses by means of deionized water

    International Nuclear Information System (INIS)

    Fission tracks have been revealed in silicate glasses with deionized water. Their sharp conical shape implies a marked enhancement of the dissolution rate along their core and consequently a cone angle and an etching efficiency (close to 100%) much higher than previously reported for glasses. We show that etching of fission tracks in natural environments has generally very limited geochemical implications except in specific cases such as that found in the Oklo uranium ores

  7. Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a "critical event" in a geologic system

    Science.gov (United States)

    Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.-L.

    1996-12-01

    Natural nuclear fission reactors are only known in two uranium deposits in the world, the Oklo and Bangombé deposits of the Franceville basin: Gabon. Since 1982, five new reactor zones have been discovered in these deposits and studied since 1989 in a cooperative European program. New geological, mineralogical, and geochemical studies have been carried out in order to understand the behavior of the actinides and fission products which have been stored in a geological environment for more than 2.0 Ga years. The Franceville basin and the uranium deposits remained geologically stable over a long period of time. Therefore, the sites of Oklo and Bangombé are well preserved. For the reactors, two main periods of actinide and radionuclides migration have been observed: during the criticality, under P-T conditions of 300 bars and 400-500°C, respectively, and during a distention event which affected the Franceville basin 800 to 900 Ma ago and which was responsible for the intrusion of dolerite dikes close to the reactors. New isotopic analyses on uranium dioxides, clays, and phosphates allow us to determine their respective importance for the retention of fission products. The UO 2 matrix appears to be efficient at retaining most actinides and fission products such as REEs, Y, and Zr but not the volatile fission products (Cd, Cs, Xe, and Kr) nor Rb, Sr, and Ba. Some fissiogenic elements such as Mo, Tc, Ru, Rh, Pd, and Te could have formed metallic and oxide inclusion in the UO 2 matrix which are similar to those observed in artificial spent fuel. Clays and phosphate minerals also appear to have played a role in the retention of fissiogenic REEs and also of Pu.

  8. Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a open-quotes critical eventclose quotes in a geologic system

    International Nuclear Information System (INIS)

    Natural nuclear fission reactors are only known in two uranium deposits in the world, the Oklo and Bangombe deposits of the Franceville basin: Gabon. Since 1982, five new reactor zones have been discovered in these deposits and studied since 1989 in a cooperative European program. New geological, mineralogical, and geochemical studies have been carried out in order to understand the behavior of the actinides and fission products which have been stored in a geological environment for more than 2.0 Ga years. The Franceville basin and the uranium deposits remained geologically stable over a long period of time. Therefore, the sites of Oklo and Bangombe are well preserved. For the reactors, two main periods of actinide and radionuclides migration have been observed: during the criticality, under P-T conditions of 300 bars and 400-500 degrees C, respectively, and during a distention event which affected the Franceville basin 800 to 900 Ma ago and which was responsible for the intrusion of dolerite dikes close to the reactors. New isotopic analyses on uranium dioxides, clays, and phosphates allow us to determine their respective importance for the retention of fission products. The UO2 matrix appears to be efficient at retaining most actinides and fission products such as REEs, Y, and Zr but not the volatile fission products (Cd, Cs, Xe, and Kr) nor Rb, Sr, and Ba. Some fissiogenic elements such as Mo, Tc, Ru, Rh, Pd, and Te could have formed metallic and oxide inclusion in the UO2 matrix which are similar to those observed in artificial spent fuel. Clays and phosphate minerals also appear to have played a role in the retention of fissiogenic REEs and also of Pu. 82 refs., 21 figs., 12 tabs

  9. Characterization of near- to far-field ancient migrations around Oklo reaction zones (Gabon) using minerals as geochemical tracers

    International Nuclear Information System (INIS)

    We developed a method allowing the identification of ancient fluid circulations through trace-element patterns in hydrothermal minerals. Application of this technique to Oklo nuclear reactors as natural analogues involves apatite and lanthanides for early circulations, and sulfides and chalcophile elements for late events. At least four different fluid generations have been found, and are tentatively assigned to episodes of Oklo site history. (1) Zr- and U-rich fluids predate criticality near reaction zone 10. (2) Isotopic anomalies of lanthanides provide evidence for mobility of fission products during criticality. Up to now, anomalies are restricted to the near field (desilicified zone around reaction zones). (3) A first pyrite stage is focused around reaction zones, up to a few tens of meters. (4) The latest event is most probably of regional extent. Besides direct evidence of fission-product migration, the present study is expected to provide the geological background and geochemical constraints for modelling ancient fluid circulation and consequent element migration near reaction zones. (orig.)

  10. Geochemistry of neo-formed minerals at Oklo (Gabon), geologic history of the Oklo basin: a contribution for the studies of geologic disposals of radioactive wastes

    International Nuclear Information System (INIS)

    Oklo uranium ore deposit (Francevillian basin, Gabon) is the unique place in the world where 2000 Ma old fossil nuclear reactors were described. The geological and thermal history of this basin, since 2000 Ma was retraced. Tholeiitic intrusion was 755 ± 83 Ma with Sm-Nd isochron on whole rock and plagioclase and 746 ± 16 Ma old with U-Pb dating on zircons. This event was linked to a pre-Pan-African rifting stage. A green schist facies metamorphism was detected on the granitic rocks of the substratum and seemed to affect the tholeiitic intrusion. Apatite fission tracks dating performed on granitic basement revealed a thermal event between Permian and middle-Jurassic time, linked to the Atlantic ocean opening. Fission track ages distribution suggest a brittle tectonics (T < 60 deg. C) occurred after middle Jurassic times. Geochemical and isotopic studies on apatites and zircons which crystallized on natural nuclear reactors let compare the confinement of these two crystalline structures. These minerals were affected by self-irradiation due to actinide incorporation. U, Pu and fission products (REE, Rb, Sr) were trapped by apatites. Zircons contain fissiogenic REE and radiogenic Ba. Apatites crystallized during the nuclear reactions, zircons at the end of this phenomenon. Isotopic study of tholeiitic intrusion minerals point out fissiogenic Nd and Sm incorporation in clinopyroxenes. This result implies a fissiogenic products remobilization during the tholeiitic intrusion event. (author)

  11. Determinations by irradiation in the Triton reactor of neutron capture cross-sections for isotopes involved in the Oklo phenomenon

    International Nuclear Information System (INIS)

    Experimental irradiations of separate elements and isotopes were carried out in a swimming-pool reactor (Triton) in order to obtain better information on the capture cross-sections of uranium fission products involved in the Oklo phenomenon. The irradiation conditions, sample analysis techniques, and calculation methods used to interpret the results are described. The elements irradiated were the following: uranium 93% and 20% enriched in 235U, 240Pu, sup(143+145)Nd, 147Sm, 99Tc, natural dysprosium, mixture of natural europium + natural gadolinium, natural krypton and natural xenon. The uranium and plutonium were used to determine the fluence and spectrum received by the other samples. The irradiations were carried out in two different locations of the Triton reactor to permit work with different spectra; the spectral indices, r, were 0.03 and 0.15. In this way accurate determinations were made of the effective capture cross-sections of a large number of isotopes as a function of the spectrum. In some cases the results differ considerably from those published in the literature. These findings contribute information which is of interest in interpreting the Oklo phenomenon. More particularly, they confirm the values for neutron fluence, and hence the age of the nuclear reaction determined from the fission neodymium balances. They afford a more accurate knowledge of the water/uranium ratios at the time of the nuclear reactions (through measurement of the spectral indices). They also explain the discrepancy observed earlier between the value for the duration of the reaction calculated on the basis of the participation of plutonium in the fissions and that deduced from the pair 99Tc-99Ru. (author)

  12. Petrographic study of organic matter from Oklo

    International Nuclear Information System (INIS)

    Coal petrography techniques were applied to Oklo samples and various types of organic material were determined around the reactor and throughout the region as a whole: e.g. interstratified autochthonous organic material of the coal type, with maximum reflectance in the oil, reaching 6.90%; secondary-filler organic material of the bitume type, with reflectance varying around 2%, which is the type of organic material that is associated with the reactor; and natural coke organic material with fine-grain anisotropy between crossed nicols. An attempt has been made, with a 600-m series intersected by a borehole, to estimate the intensity of the thermal palaeoflux. The research is still only at the initial stage and should be continued. (author)

  13. Fission fragment tracks in natural glasses

    International Nuclear Information System (INIS)

    The fission fragment track age of the natural glasses - two specimens of tektites - indochinites Tailand and one specimen of volcanic glass from Armenia (pearlite) - has been determined. The glass specimens have been placed in the epoxy resin, then etched in 10% HF during 6-8 min at 20 deg C, then spontaneous fission track density and track diameters have been measured. For uranium concentration measurements these glasses have been irradiated with thermal neutron fluxes 1.1x1015 cm-2 (tektites) and 5.7x1015 cm-2 (pearlite), then etched in HF and scanned under the microscope. The track age of indochinite glasses has been determined as (7.5±0.8)x105 years, the age of pearlite - (2.6±0.3)x105 years. 8 refs.; 2 figs

  14. Attempt at contributing, on the basis of geochemistry, to an assessment of the extent and frequency of phenomena of the Oklo type

    International Nuclear Information System (INIS)

    The group of natural nuclear reactors discovered at Oklo is the only one known at present. This leads one to wonder whether the phenomenon is a highly exceptional one or whether such nuclear reactions were frequent in the past. Judging by the conditions necessary for them to become established, such reactions could have taken place only in fairly remote times (probably over 1000 million years ago), when the concentration of 235U in natural uranium was a few per cent. If, prior to those times, an appreciable fraction of the natural uranium underwent fission chain reactions and the products were redistributed in the earth's crust, the present isotopic composition of the elements which are abundant in fission might be different from the original composition. It would be characterized by a higher concentration of isotopes resulting from fission. Selenium, ruthenium, palladium and tellurium, which are rare in the earth's crust and abundant in fission, would be the elements most likely to experience changes in isotopic composition as a result of such phenomena. Efforts to estimate the order of magnitude of the concentrations of fission-product elements likely to cause detectable isotopic abundance variations has led to a study, in the first place, of ruthenium as a means of finding an upper limit for the extent of the fissions which occurred. For this purpose, chemical and isotopic determinations of ruthenium in very old ores have been performed

  15. Time-variability of alpha from realistic models of Oklo reactors

    CERN Document Server

    Gould, C R; Lamoreaux, S K

    2006-01-01

    We reanalyze Oklo $^{149}$Sm data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of $\\alpha$, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the $^{149}$Sm effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient $^{149}$Sm effective cross sections, and use these values to set limits on the time-variation of $\\alpha$. Our study resolves a contradictory situation with previous Oklo $\\alpha$-results. Our suggested $2 \\sigma$ bound on a possible time variation of $\\alpha$ over two billion years is stringent: $ -...

  16. Monte-Carlo based numerical modeling and simulation of criticality conditions occurrence in natural Reactor Zone 9 in Oklo deposit (Gabon)

    International Nuclear Information System (INIS)

    The occurrence of the criticality with analogue modelled configurations of the fossil reactor zone n deg 9 (RZ9) from Oklo uranium deposit in Gabon is studied. The RZ9 and the other reaction zones 7 and 8, of the same deposit sector are characterized by a low thickness compared to other zones 1 to 6 and an important presence of organic matter with a lower U content. This makes the simulations performed in the past unable to explain the occurrence of that phenomenon in such zones. In the present work an extrapolation to 2 billion years ago as an initial state of the reactor is done using the MCNP Monte-Carlo based code. To make it more close to the geological reality experimental conditions and geometry, possible porosity, moderators and minimal Uranium content are considered. The minimal critical configuration is obtained by variation of a set of geometrical and physical parameters around the estimated composition of the reactor area. A set of simulations computing the corresponding effective multiplication factor keff, and reactivity are presented. The effect of organic matter as well as the influence on the criticality is discussed. (author)

  17. Search for an ''Oklo Phenomenon'' in the Northeastern regions of Brazil

    International Nuclear Information System (INIS)

    Rocks samples from the Northeastern region of Brazil were analysed for their 235U isotopic abundance, in search for the occurrence of an ''Oklo Phenomenon'' here. The samples were collected in locations that could have been connected to the African continent, according to the continental-drift theory, in accordance to the Francevillian formations in the Gabon Republic, in which place the Oklo natural fossil reactor is situated. Two methods were used for the determination of the 235U abundance: activation analysis followed by high resolution gamma-ray spectrometry and activation analysis by delayed neutron counting. No evidence of 235U depletion was found in the rock samples analysed. (author)

  18. The Oklo reactors: five years of exploration of the site

    International Nuclear Information System (INIS)

    The main phases of the exploration of the Oklo site since the discovery of the ''reactor'' phenomenon are outlined briefly. Over 180 sampling holes were drilled during the interruption of the mining activities in the sector concerned. Several new zones have been found. Mining was resumed in the second half of 1975, providing an opportunity for highly fruitful geological follow-up work: more precise knowledge was gained of the morphology of the reactors, and very many additional samples were taken. Plant treatment of the ore and the systematic analysis of batches have made it possible to establish a balance of missing uranium-235. A small portion containing sites of intense reaction has been preserved by being anchored to the quarry wall. Mining in this sector has now finished, but new indications of fission have been found, especially in the Okelobondo sector. (author)

  19. Hydrogeology of the Oklo-Okelobondo site

    International Nuclear Information System (INIS)

    This study gives an account of all the hydrogeological data from the Oklo-Okelobondo site obtained so far. This hydrogeological overview has led to the proposal of a hydrodynamic flow pattern for the system and the choice of a study area as a basis for a preliminary modelling of groundwater flow and solute transport in the far field. (author). 5 refs., 4 figs

  20. Densities of fission tracks in natural detectors

    International Nuclear Information System (INIS)

    Considering a solid track recorder placed inside a standard uranium mineral, the ratio r = rhosub(I).rhosup(S)-1 between the induced tracks densities produced by the internal flux and those produced by the spontaneous fission of the 238U contained in the detector have been studied as a function of certain parameters. (author)

  1. Reconstitution of fluid paleo-circulations and element migrations in the environments of Oklo's natural nuclear reactors (Gabon) and of Tournemire's argillites (France)

    International Nuclear Information System (INIS)

    To better characterize the mobilization and migration process in rocks, a petrological and geochemical study of fluid paleo-circulation through fractures has been made in two different sites: (1) The environment of natural nuclear reactors from Proterozoic Oklo uranium ores (Gabon). The Archean basement typical of TTG series and the sandstones-pelites series of the Franceville basin are affected by a fracturing mainly filled by quartz-daphnite-calcite-sulfides and barren ou mineralized bitumens. Three paragenetic stages has been correlated to three regional structural phases. During the first extensional phase, a low saline (1.7-6.5 wt% NaCl), heated in the basement (190-210 deg. C) and impoverished in 18O meteoric recharge is injected into the basin, along major N-S faults. It was responsible of silicification. The circulation of diagenetic brines is able to leach U, Pb, Zr, REEs and P resulting from accessory minerals alteration, at the basin-scale between 2104 Ma and 1719 Ma (Pb/Pb isochrone obtained on galena incorporated in zircons). These brines are responsible of anomalous Th/La ratios (1.8) of FA silicified sandstones higher than those (0.25) of most of Archean and Proterozoic metasediments. They are highly chlorine, calco-sodic ([Cl] > 6 m, from 28 wt% NaCl to 30 wt% CaCl2), equilibrated with carbonate and evaporitic layers of FA sandstones, with low temperatures (130 deg. C) and rich in Ca, Li and Br. They are expulsed laterally due to the compaction of FA sandstones, and upwards along sub-vertical fractures. During the second extensional phase, the mineralization stage, mainly controlled by N-S faults corresponds to a mixing (155-220 deg. C) between the brines, the meteoric recharge and hydrocarbons C9 and C10-rich fluids derived from organic matter maturation in the FB pelites. The interaction of the three fluids is responsible of the mineralization in sandstones and in calcites displaying an organic carbon origin (δ13C=-10 to -15 0/00 vs. PDB). The low to moderately saline (3-18 wt% NaCl) fluids with higher temperatures (200-550 deg. C), containing traces of O2, CH4 and CO2 are related to the reactors functioning and cooling with local silicification events. During the last compressional phase, the fluid paleo-circulations are mainly responsible of barren calcite crystallization (δ13C= 0 to -5 0/00 vs. PDB). (2) The Toarcian shales from experimental IPSN site in the Tournemire tunnel (Aveyron, France). Four mineral parageneses (calcite, calcite and framboidal pyrite, calcite and cubic pyrite, and calcite and barite) have been distinguished in fractures induced by compressional Pyrenean tectonic activities. The major- and trace-element contents, and the 87Sr/86Sr isotopic ratios (0.70847-0.70852) of the vein calcite are buffered by the surrounding shales, strongly suggesting short-distance migrations of the elements considered. Low uranium and high iron contents of the vein calcite suggest circulation of reducing fluids. However, an external origin for the carbonate fillings of the main fault, obtained with 87Sr/86Sr isotopic ratios (0.70841 and 0.70858), and of positive Eu anomalies in the REE patterns, cannot be excluded. This study shows that the competition between chemical aggressiveness of diagenetic fluids and buffering from surrounding rocks, with P-T conditions control determine or regulate the scale of element migration which has been important at Oklo and moderate at Tournemire. (author)

  2. Uranium deposits of Gabon and Oklo reactors. Metallogenic model for rich deposits of the lower proterozoic

    International Nuclear Information System (INIS)

    The geology of the Franceville basin (Gabon) is examined: stratigraphy, tectonics and geodynamics. The mobile zone of the Ogooue is specially studied: lithology, metamorphism and tectonics, isotopic geochronologic data are given. The different uranium deposits are described. A whole chapter is devoted to the study of Oklo natural nuclear reactor. A metallogenic model is proposed evidencing conditions required for deposit genesis. Tectonics, microstructures sedimentology, organic matter, diagenesis and uraniferous mineralizations are examined

  3. Interpretation of chemical and isotopic analysis of ruthenium carried out on Oklo ore samples and various geological samples

    International Nuclear Information System (INIS)

    Isotopic compositions of ruthenium from various terrestrial sources were compared between them and with ruthenium from a sample of the meteorite of Canyon Diablo. It was not possible to detect any isotopic anomalies, beyond precision of measurement, this result shows that less than 0.5% of the earth crust uranium participated in Oklo type nuclear reactions, in the hypothesis of a complete rehomogeneization of ruthenium in the earth crust. Chemical and isotopic analysis of fission ruthenium along the SC 36 boring of zone II show a noticeable differenciation between ruthenium and technetium at the time of nuclear reaction and a ruthenium distribution slightly narrower in comparison with that of fission neodymium

  4. Thermal history and redox conditions in the Oklo reactor zones (Gabon)

    International Nuclear Information System (INIS)

    In the uranium ore deposit of Oklo-Okelobondo (Gabon), the mineralization contains U-enriched zones, that have fissioned spontaneously 1.97 Ga ago. In the Okelobondo, the salinity of the diagenetic fluid is below 3 wt % NaCl for a minimal temperature ranging from 120 deg to 200 deg C. At Lastoursville, presence of a H2O-NaCl-CH4 + CO2 immiscibility case indicate a temperature of 160-190 deg and a pressure of 1.0 + 0.2 kbar. In zone 10 core, sulphides (galena, pyrite,...), native Pb and organic matter (OM) indicate a reduced environment. At the border, minium and hematite indicate very oxidized conditions. H2O-H2-O2 fluid inclusions are related to water radiolysis. The conclusion is that, OM trap O2 produced by radiolysis leading to a very reduced environment. In the absence of OM, the environment becomes very oxidized. These specific conditions have lead to a stability of uraninite and fission products in the reactors but local heterogeneities are to be considered. Fluid inclusions reveal that temperatures have reached 400 deg C at the reactor border, but decreased sharply along a few meters. Fluid salinity increased drastically ( 23 %), whereas temperature was decreasing. Salt enrichment is attributed to interactions between fluids and decays. The dolerite impact in the Oklo carrier has also been investigated. (author)

  5. Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis

    CERN Document Server

    Onegin, M S

    2014-01-01

    New severe constraints on the variation of the fine structure constant have been obtained from reactor Oklo analysis in our previous work. We investigate here how these constraints confine the parameter of BSBM model of varying $\\alpha$. Integrating the coupled system of equations from the Big Bang up to the present time and taking into account the Oklo limits we have obtained the following margin on the combination of the parameters of BSBM model: $$ |\\zeta_m (\\frac{l}{l_{pl}})^2|<6\\cdot 10^{-7}, $$ where $l_{pl}=(\\frac{G\\hbar}{c^3})^{\\frac{1}{2}} \\approx 1.6 \\cdot 10^{-33}$ cm is a Plank length and $l$ is the characteristic length of the BSBM model. The natural value of the parameter $\\zeta_m$ - the fraction of electromagnetic energy in matter - is about $10^{-4}$. As a result it is followed from our analysis that the characteristic length $l$ of BSBM theory should be considerably smaller than the Plank length to fulfill the Oklo constraints on $\\alpha$ variation.

  6. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor ?, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  7. Geochemistry of actinides and fission products in natural aquifer systems

    International Nuclear Information System (INIS)

    The progress in the research area of the community project MIRAGE: 'Geochemistry of actinides and fission products in natural aquatic systems' has been reviewed. This programme belongs to a specific research and technical development programme for the European Atomic Energy Community in the field of management and storage of radioactive waste. The review summarizes research progresses in subject areas: complexation with organics, colloid generation in groundwater and basic retention mechanisms in the framework of the migration of radionuclides in the geosphere. The subject areas are being investigated by 23 laboratories under interlaboratory collaborations or independent studies. (orig.)

  8. The origin of the chemical elements and the Oklo phenomenon

    International Nuclear Information System (INIS)

    Major developments in the field of nuclear geochemistry and cosmochemistry are reviewed in this monograph. Following a brief introduction, an historical account of the early ideas concerning the cosmic abundance of the elements and the searches made for the ''missing'' elements 43 (Tc) and 61 (Pm) in nature are given. The sequence of events which culminated in the discovery of the Oklo Phenomenon (Pre-Fermi reactor), and the topics related to the synthesis of the elements in stars are then discussed as are the ideas concerning the extinct radioactivities and the discoveries of the extinct nuclides 129I and 244Pu. In the final chapter on isotopic anomalies in the early solar system, the author presents an unbiased review of an area that - although dating back to the days of ancient Greek philosophers and regarded by many as the most fundamental in the entire compass of our modern science - is far from settled and is perhaps not quite ready for incorporation into textbooks. (orig.)

  9. The nature of singlet exciton fission in carotenoid aggregates.

    Science.gov (United States)

    Musser, Andrew J; Maiuri, Margherita; Brida, Daniele; Cerullo, Giulio; Friend, Richard H; Clark, Jenny

    2015-04-22

    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission. PMID:25825939

  10. Dating by fission track method: study of neutron dosimetry with natural uranium thin films

    International Nuclear Information System (INIS)

    Fission track dating is described, focalizing the problem of the decay constant for spontaneous fission of 238 U and the use of neutron dosimetry in fission track analysis. Experimental procedures using thin films of natural uranium as neutron dosimeters and its results are presented. The author shows a intercomparison between different thin films and between the dosimetry with thin film and other dosimetries. (M.V.M.). 52 refs, 12 figs, 9 tabs

  11. Production of fission molybdenum by using irradiated natural uranium targets

    International Nuclear Information System (INIS)

    In this paper a procedure is described for the production of fission molybdenum. The production method is particularly suitable for those, which do not dispose on highly enriched uranium. The aim was to realize a simple technology. Starting from irradiated uranium oxide the following steps are included: dissolution of the target in 6 M nitric acid, separation of 99Mo from uranium and the bulk of other fission products by adsorption/desorption on alumina and purification of the molybdenum fraction by thermochromatography. The waste treatment is described too. The final product 99Mo is well suited for manufacturing high quality 99Mo/99mTc generators. (author)

  12. Chemical concentration of a new natural spontaneously fissionable nuclide from solutions with low salt background

    International Nuclear Information System (INIS)

    The results of experiments on further concentration of a new natural spontaneously fissionable nuclide, the concentrates of which form the Cheleken geothermal brines have been obtained, are presented. The conclusions are drown about the chemical nature of a new spontaneously fissionable nuclide. It is a chalcophile element which copreipitates with sulphides of copper, lead, arsenic and mercury from weakly acid solutions. The behaviour of the new nuclide in sulphide systems in many respects is similar to the behaviour of polonium, astatine and probably of bismuth. The most probable stable valence of the new nuclide varies from +1 up to +3. The data available on the chemical behaviour of the new nuclide as well as the analysis over contamination by spontaneously fissionable isotopes permit to state that the new natural spontaneously fissionable nuclide does not relate to the known isotopes

  13. Analysis of possibility of reactors occurring in nature

    International Nuclear Information System (INIS)

    A historical account is presented of the sequence of events which led to the 1956 prediction by the author that nuclear reactors should have existed in nature approximately 2 billion years ago. Following a brief review of the natural reactor theory, some of the results from recent studies of the Oklo Phenomenon are discussed. The report consists of the following chapters: I. Introduction, II. Natural Reactor Theory, III. The Oklo Phenomenon-Models of Natural Reactors, IV. Possibility of the Graphite-type Natural Reactor, V. The Sudbury Phenomenon, and VI. Conclusion. The Chap. IV deals with the studies on the occurrence of fissiogenic xenon isotopes in the carbon-rich mineral thucholite from the Besner Mine, Parry Sound, Ontario, Canada. The thucholite contained fissiogenic xenon isotopes from 238U spontaneous fission, but not from 235U neutron-induced fission. The Chap. V deals with the studies of the abundance pattern of Ne, Ar, Kr and Xe in several granite samples, including the Red Rock granite from the Sudbury structure, Ontario, Canada, which, according to Dietz (1964), was formed by the impact of an asteroid about 1.7 billion years ago. No unusual concentration of fissiogenic xenon isotopes was detected in the Red Rock granite, but the observed rare gas abundance pattern resembled that in meteorites, rather than the terrestrial rare gas abundances. (auth.)

  14. Analysis of waters from the Oklo reactor area: preliminary results on the content of organic substances and colloids

    International Nuclear Information System (INIS)

    The migration of radionuclides, in a nuclear waste disposal in geological formation, depends in part on the physico-chemical forms of the radioelements present in the natural aquifer. In particular, the presence of colloids (entities defined as dispersed particles with size of 1 nm-1 ?m) may alter the speciation of radioelements and hence, change their behaviour. Their mobility may be enhanced or decreased by sorption or complexation reactions. These colloids may be inorganic particles (silicates, silico-aluminates, metallic hydroxides, etc) or organic particles (such as humic substances constituted by humic and fulvic acids). Moreover, these colloids may exist in different natural systems (e.g. surface, marine and groundwaters) often associated with humic substances. The evaluation of the importance of colloids in the dissemination of radioactivity necessitates, in particular, the determination of their concentration in the waters sampled on the site, and their characterization (composition, size). In the framework of a general study of the Oklo natural reactor, a complete hydrogeochemical and hydrogeological study is undertaken. Preliminary studies on the colloid content of different water samples from the Oklo reactor area have been performed to complete the study of the groundwater chemistry presented by Toulhoat et al. (1991, 1992). These complementary studies have, as objectives, to evaluate: - the occurrence of colloids by scanning electron microscopy (after ultrafiltration) and by photon correlation spectroscopy, -the occurrence of organic materials by the analysis of the total organic carbon content. (author). 4 refs., 8 figs

  15. Bagombe - a unique natural site for studying the migration of fission products under surface weathering conditions

    International Nuclear Information System (INIS)

    The uranium deposits in the basin of Franceville (Gabon) host the only natural fission reactors known in the world. Unique geologic conditions favored a natural fission reaction 2 Ga ago. This was detected by anomalous isotopic compositions of rare earth elements (fission products) and uranium. In total 16 reactor zones were found. Most of the them are mined out. A current research project of the European Commission concentrates on the reactor zone of Bagombe, which is only 10-11 m below the surface. This reactor zone has been influenced by surface weathering processes. Six drill cores have been sampled at the site of the reactor zone of Bagombe during the course of the project. Only one drill core (BAX 08) hit the core of the reactor which is approximately 10 cm thick, 2-3 m wide and 4-6 m long. The migration of fission products can be traced by the anomalous isotope ratios of REE due to the fisson process. The normal and constant ratio of 149Sm/147Sm is 0.92. The isotope ratio of 149Sm/147Sm close to the reactor zone is as low as 0.28 due to the intense neutron capture of 149Sm and subsequent decay. Similar changes in isotopic patterns are detectable on other rare earth elements (REE). The isotope ratios of Sm and other REE of whole rock and fracture samples surrounding the reactor indicate that fission products migrated only a few centimeters above and mainly below the reactor zone. Organic matter (bitumen, kerogen) seems to act as a trap for fission products. REE-patterns show a less intense weathering with depth in the log profile. (orig.)

  16. Delayed neutron measurements with a natural uranium fission product source in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Highlights: • Delayed neutron measurements performed with a Fission Product Source (FPS) FBTR. • FPS provided by natural U–Ni pins with perforated clad. • Measurements have helped in quantification of sensitivity of DND system in FBTR. - Abstract: An assessment of the sensitivity and localization capabilities of clad failure detection by Delayed Neutron Detection (DND) system in Fast Breeder Test Reactor at Kalpakkam has been done, by a series of delayed neutron measurements. Experimental simulation of failed fuel pin is done by considering a natural uranium fission product source in the form of special subassembly containing natural uranium pins, each having a large exposed area in the form of small holes. The measurements and analysis of delayed neutron signals with special subassembly in several selected locations are presented

  17. Des analogues naturels de sites de stockage de déchets nucléaires vieux de 2 milliards d'années : les réacteurs de fission nucléaire naturels du Gabon (Afrique)

    Science.gov (United States)

    Gauthier-Lafaye, François

    2002-10-01

    Two billion years ago, the increase of oxygen in atmosphere and the high 235U/ 238U uranium ratio (>3%) made possible the occurrence of natural nuclear reactors on Earth. These reactors are considered to be a good natural analogue for nuclear waste disposal. Their preservation during such a long period of time is mainly due to the geological stability of the site, the occurrence of clays surrounding the reactors and acting as an impermeable shield, and the occurrence of organic matter that maintained the environment in reducing conditions, favourable for the stability of uraninite. Hydrogeochemical studies and modelling have shown the complexity of the geochemical system at Oklo and Bangombé (Gabon) and the lack of precise data about uranium and fission products retention and migration mechanisms in geological environments. To cite this article: F. Gauthier-Lafaye, C. R. Physique 3 (2002) 839-849.

  18. Study on natural deposition of fission product aerosol in severe accidents

    International Nuclear Information System (INIS)

    Aerosol natural deposition model of gravitational sedimentation, diffusionphoresis, inertial impaction and thermophoresis are established based on integrated safety analysis model for 600 MW pressurized water reactor. Typical severe accidents are chosen, and natural deposition phenomenon of fission product aerosol is analyzed. Additionally, gravitational sedimentation model of MELCOR is coupled into integrated safety analysis model, and fraction of gravitational sedimentation is compared. The results show that gravitational sedimentation is the most important deposition mechanism, and deposition effect of gravitational sedimentation model in this paper is stronger than MELCOR. (authors)

  19. Does a new natural spontaneously fissioning nuclide concentrate in ocean concentrations concentrate in ocean concentrations

    International Nuclear Information System (INIS)

    To search for superheavy elements (SHE) in nature iron-manganese concentrations deposited at the bottom of the Pacific Ocean have been studied. Using the carbonate leaching method selective uranium extraction from the concentrations is carried out. Concentration of a new natural spontaneously fissioning nuclide is measured. Comparison of the new nuclide content with the content of the known elements in the cancentrations is made. It is shown that the low degree of the nuclide extraction in the concretions does not contradict the forecast of SHE chemical properties and consequently the supposition on the nuclide attribution to SHE

  20. Migration of U-series radionuclides around the Bangombe natural fission reactor (Gabon)

    International Nuclear Information System (INIS)

    The Bangombe natural fission reactors has undergone extensive weathering phenomena and continues to be affected by the penetration of meteoric waters. Hence this system provides a model for studying the stability of spent fuel uraninite and the influence of various rock matrices on the mobilization/retardation of various actinides and fission products. The Bangombe uranium deposit has been investigated by drilling on a grid. Radiochemical analysis by alpha- and gamma-spectroscopy of the obtained rocks show significant disequilibria of the 234U/238U, 230Th/234U, and 226Ra/230Th parent-daughter pairs. In this paper, a conceptual model for spatio/temporal evolution of the Bangombe system is proposed. (J.P.N.)

  1. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  2. From the natural reactor to the neutron bomb

    International Nuclear Information System (INIS)

    On the basis of several geological phenomena the theory of Kuroda on the existence of the natural reactor may be considered as confirmed. The existence of the Oklo phenomenon is supported by several facts in connection with the changes in uranium concentration. The output of the natural reactor is equal to that of an experimental reactor. It is also an evidence for the spontaneous fission of heavy elements and the spontaneous fusion of light elements in nature (the process of energy generation in the stars). The neutron bomb, or the Enhanced Radiation Warhead as called originally, has a high specific radiation effect as compared with other nuclear warheads. The possibilities of protection are based on the radiation attenuation factors of various materials. (R.P.)

  3. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast.

    Science.gov (United States)

    Hu, Wen; Suo, Fang; Du, Li-Lin

    2015-12-01

    Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal(-)) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal(-) phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal(-) phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains. PMID:26615217

  4. Neutronic study of an innovative natural uranium–thorium based fusion–fission hybrid energy system

    International Nuclear Information System (INIS)

    Highlights: • An innovative fusion-fission hybrid reactor blanket design is presented. • The blanket adopts seed–blanket concept to improve overall neutron economy. • The blanket is designed with two types of modules, i.e. uranium and thorium module. • The reactor could reach multi operating system purpose. - Abstract: An innovative design for a water cooled fusion–fission hybrid reactor (FFHR), aiming at efficiently utilizing natural uranium and thorium resources, is presented. The major objective is to study the feasibility of this concept balanced with multi-purposes, including energy gain, tritium breeding and 233U breeding. In order to improve overall neutron economy of the system, the fission blanket is designed with two types of modules, i.e. the natural uranium modules (U-modules) and thorium modules (Th-modules), which are alternately arranged in the toroidal and poloidal directions of the blanket. This innovative design is based on a simple intuition of neutron distribution: with the alternate geometrical arrangement, energy multiplication by uranium fission, tritium breeding and 233U breeding are performed separately in different sub-zones in the blanket. The uranium modules which has excellent neutron economy under the combined neutron spectrum, plays the dominant role in the energy production, neutron multiplication and tritium breeding. Excess neutrons produced by the uranium modules are then used to drive the thorium modules (which have poor neutron economy) to breed 233U fuel. Therefore, it creates a new free dimension to realize the blanket’s balanced design. The COUPLE code developed by INET of Tsinghua University is used to simulate the neutronic behavior in the blanket. The simulated results show that with the volumetric ratio of thorium modules about 0.4, the balanced design for multi purposes is achievable, with energy multiplication M ? 9, tritium breeding ratio TBR ? 1.05, and at the end of the five years refueling cycle, the 233U enrichment in thorium modules exceeding 1.0%. The neutronic analysis results also show that the preliminary design of this innovative FFHR is of great potential to utilize the bred 233U effectively after the initial fuel load of the first ten-year operation

  5. Parametric study of the criticality of natural reactors

    International Nuclear Information System (INIS)

    Conditions for the criticality of natural reactors are investigated from a general point of view; a parametric study is presented, which expresses the possibility of chain reactions as functions of five parameters: the age of the deposit, the ore's uranium content, the volume of high-grade ore, the neutron capture of the vein of ore and the amount of water associated with the uranium. It is demonstrated that although criticality could theoretically be attained for ages that are not in excess of 1000 to 1200 MA, conditions would have to be exceptionally favorable for it since the deposits are clearly much younger than those at Oklo. The study offers a much better appreciation of the probability for discovery of other natural fissionable reactors

  6. Oklo: The fossil nuclear reactors. Physics study - Translation of chapters 6, 13 and conclusions

    International Nuclear Information System (INIS)

    Three parts of the 1991 book 'Oklo: reacteurs nucleaires fossiles. Etude physique' have been translated in this report. The chapters bear the titles 'Study of criticality'(45 p.), 'Some problems with the overall functioning of the reactor zones'(45 p.) and 'Conclusions' (15 p.), respectively

  7. Oklo: The fossil nuclear reactors. Physics study - Translation of chapters 6, 13 and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, R. [CEA, Paris (France)

    1996-09-01

    Three parts of the 1991 book `Oklo: reacteurs nucleaires fossiles. Etude physique` have been translated in this report. The chapters bear the titles `Study of criticality`(45 p.), `Some problems with the overall functioning of the reactor zones`(45 p.) and `Conclusions` (15 p.), respectively.

  8. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    Science.gov (United States)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.

  9. Naturally etched tracks in apatites and the correction of fission track dating

    CERN Document Server

    Tien, J L

    1999-01-01

    Naturally etched tracks have been found in apatites from the rapid cooled, high-level Kunon pluton in the Zhangzhou Igneous Complex, SE China. This is manifested by the fact that the apatite fission track (FT) age derived from conventional counting of spontaneous and induced tracks yields a result of 140.6+-6.5 Ma, which is much older than the ages determined using other methods on different minerals from the same rock. When tracks are observed after etching the polished inner sections of the apatite grains, the naturally etched tracks characterized by having hazy boundaries can be distinguished from the normal tracks with sharp boundaries. The age obtained by omitting these fading-resistant hazy tracks, 76.5+-4.0 Ma, indicates the time of the Kunon pluton cooling down to approx 100 deg. C. The corrected peak age (73.8 Ma) is consistent with the other apatite FT peak ages (79.2 to 70.2 Ma) of the nearly contemporaneous plutons in the same igneous complex.

  10. Uranium transport around the reactor zone at Okelobondo (Oklo). Data evaluation with M3 and HYTEC

    International Nuclear Information System (INIS)

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting and participating in Natural Analogue activities as part of various studies regarding the final disposal of high level nuclear waste (HLW). The aim of this study is to use the hydrogeological and hydrochemical data from Okelobondo (Oklo Natural Analogue) to compare the outcome of two independent modelling approaches (HYTEC and M3). The modelling helps to evaluate the processes associated with nuclear natural reactors such as redox, adsorption/desorption and dissolution/precipitation of the uranium and to develop more realistic codes which can be used for site investigations and data evaluation. HYTEC (1D and 2D) represents a deterministic, transport and multi-solutes reactive coupled code developed at Ecole des Mines de Paris. M3 (Multivariate Mixing and Mass balance calculations) is a mathematical-statistical concept code developed for SKB. M3 can relatively easily be used to calculate mixing portions and to identify sinks or sources of element concentrations that may exist in a geochemical system. M3 helped to address the reactions in the coupled code HYTEC. Thus, the major flow-paths and reaction paths were identified and used for transport evaluation. The reactive transport results (one-dimensional and two-dimensional simulations) are in good agreement with the statistical approach using the M3 model. M3 and HYTEC show a dissolution of the uranium layer in contact with upwardly oxidising waters. M3 and HYTEC show a gain of manganese rich minerals downstream the reactor. A comparison of the U and Mn plots for M3 deviation and HYTEC results showed an almost mirror behaviour. The U transport stops when the Mn gain increases. Thus, HYTEC and M3 modelling predict that a possible reason for not having U transport up to the surface in Okelobondo is due to an inorganic trap which may hinder the uranium transport. The two independent modelling approaches can be used to complement each other and to better understand the processes that can take place in nature. This provides the opportunity to assess the necessary tools for site investigations, data evaluation and helps to trace the reactions and to identify the hydro-geo-chemical system. Thus, we can build reliable tools which can be used to assess the performance of possible waste repository sites

  11. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    International Nuclear Information System (INIS)

    The CERN Neutron Time-Of-Flight (n-TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of natPb and 209Bi relative to 235U and 238U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for natPb and 209Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  12. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  13. Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission

    Science.gov (United States)

    Ter-Akopian, G. M.; Dmitriev, S. N.

    2015-12-01

    There is little chance that superheavy nuclei with lifetimes of no less than 100 million years are present on the stability island discovered at present. Also, pessimistic are the results of estimates made about their nucleosynthesis in r-process. Nevertheless, the search for these nuclei in nature is justified in view of the fundamental importance of this topic. The first statistically significant data set was obtained by the LDEF Ultra-Heavy Cosmic-Ray Experiment, consisting of 35 tracks of actinide nuclei in galactic cosmic rays. Because of their exceptionally long exposure time in Galaxy, olivine crystals extracted from meteorites generate interest as detectors providing unique data regarding the nuclear composition of ancient cosmic rays. The contemporary searches for superheavy elements in the earth matter rely on knowledge obtained from chemical studies of artificially synthesized superheavy nuclei. New results finding out the chemical behavior of superheavy elements should be employed to obtain samples enriched in their homologues. The detection of rare spontaneous fission events and the technique of accelerator mass spectrometry are employed in these experiments.

  14. Reactor AQUILON. The hardening of neutron spectrum in natural uranium rods, with a computation of epithermal fissions (1961)

    International Nuclear Information System (INIS)

    - Microscopic flux measurements in reactor Aquilon have allowed to investigate the thermal and epithermal flux distribution in natural uranium rods, then to obtain the neutron spectrum variations in uranium, Wescott '?' term of the average spectrum in the rod, and the ratio of epithermal to therma fissions. A new definition for the infinite multiplication factor is proposed in annex, which takes into account epithermal parameters. (authors)

  15. Dating by fission track method: study of neutron dosimetry with natural uranium thin films; Datacao com o metodo dos tracos de fissao: estudo da dosimetria de neutrons com filmes finos de uranio natural

    Energy Technology Data Exchange (ETDEWEB)

    Iunes, P.J.

    1990-06-01

    Fission track dating is described, focalizing the problem of the decay constant for spontaneous fission of {sup 238} U and the use of neutron dosimetry in fission track analysis. Experimental procedures using thin films of natural uranium as neutron dosimeters and its results are presented. The author shows a intercomparison between different thin films and between the dosimetry with thin film and other dosimetries. (M.V.M.). 52 refs, 12 figs, 9 tabs.

  16. Nuclear Data in Oklo and Time-Variability of Fundamental Coupling Constants

    CERN Document Server

    Fujii, Y; Fukahori, T; Ohnuki, T; Nakagawa, M; Hidaka, H; Oura, Y; Møller, P; Fujii, Yasunori; Iwamoto, Akira; Fukahori, Tokio; Ohnuki, Toshihiko; Nakagawa, Masayuki; Hidaka, Hiroshi; Oura, Yasuji; Moller, Peter

    2001-01-01

    We re-examined Shlyakhter's analysis of the Sm data in Oklo. With a special care of minimizing contamination due to the inflow of the isotope after the end of the reactor activity, we confirmed that his result on the time-variability of the fine-structure constant, $|\\dot{\\alpha}/\\alpha |\\lsim 10^{-17}{\\rm y}^{-1}$, was basically correct. In addition to this upper bound, however, we obtained another result that indicates a different value of $\\alpha$ 2 billion years ago. We add comments on the recent result from QSO's.

  17. Statistical nature of neutron activity in the fission of heavy nuclei

    International Nuclear Information System (INIS)

    It is shown that some characteristics of the neutron emission can be explained in the framework of statistical theory, which studies the stability of the ensemble of nuclear fragments and fission neutrons. The theory able to reproduce the known experimental sawtooth-curve of the neutron multiplicity n(A) and allows one to set the total neutron multiplicity as a function of (A, Z) and the excitation energy of the initial nucleus

  18. Separation of actinides from a solution of soil material containing natural elements and fission products

    International Nuclear Information System (INIS)

    A diagram for the separation of actinides is proposed. The task was to separate actinides from a soil sample, contaminated by them and fission products. Separations are performed by extraction chromatography and selective stripping followed by ion-exchange purification on small columns. The obtained actinides are free from foreign elements. It is possible to prepare electrodeposited sources for radiometric measurements, alpha- and gamma-countings or deposits for mass-spectrometric measurements. (author)

  19. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    Science.gov (United States)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  20. Natural uranium impurities in fission track detectors and associated geocronological parameters

    International Nuclear Information System (INIS)

    A technique, based in counting neutron induced fission tracks, has been developed for the measurement of uranium impurities in mica. Uranium concentrations of 10-10 and 10-9 (U atom/mica atom) have been measured. As a part of the development of this technique, the mica geological age was also measured, by fossil and induced track detection. The agreement obtained by this method, T = (472+-52) x 106 years with that of (450+-15) x 106 years obtained by the Ar-K technique is satisfactory and is an indirect test of the fission track technique used. A careful analysis of the neutron field parameters and nuclear data used in the age determination was made. This analysis is useful for applications in geocronology. According to this analysis a value of lambdasub(f)=(7.1+-0.1) x 10-17 years-1 is recommended for the spontaneous fission of U238. However, in order to compare the results, the quoted age, T=(472+-52) x 106 years, was obtained with the generally accepted value of lambdasub(f)=(6.85-0.20) x 10-17 years-1 (Fleischer and Price 1964). (author)

  1. Speciation of actinides and fission products at smectite rich natural clay-water interface

    International Nuclear Information System (INIS)

    Speciation of actinides (Am(lll), Pu(lV), Np(V)) and long lived fission products, (Cs(l), Sr(II), Tc(VII)) at the interface between smectite rich clay and water has been studied by batch sorption experiments under different experimental conditions of pH, ionic strength and metal ion concentration. Modeling of the sorption data have been used to delineate the mechanism of the sorption of the metal ions on the clay. The study revealed different mechanisms (surface complexation, ion exchange) operating under different pH conditions and for different metal ions. Studies have been extended to diffusion of these radionuclides in the compacted clay to obtain the diffusion coefficient in saturated clay

  2. Fast fission phenomena

    International Nuclear Information System (INIS)

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted

  3. Lead and thorium contribution to the history of the Oklo fossil reactor

    International Nuclear Information System (INIS)

    Results of lead and thorium measurement on a line of samples representative of uraniferous overconcentrations found in Oklo mineralization are presented. Interpretation of these data shows the complexity of lead history in the deposit but some important facts like an ancient perturbation, a new and massive lead remobilization are coming out. These results lead to the conclusion that age of uranium could be over 1900 million years. Absence of important thorium content in the 'normal' high-grade ore confirm the interest of date determination of nuclear reaction from the balance Th/U. This determination using the same data that for the balance Nd/U gives about the same mean value 1,93 million years

  4. Measurements of Nucleon-Induced Fission Cross-Sections of Separated Tungsten Isotopes and Natural Tungsten in the 50-200 MeV Energy Region

    OpenAIRE

    Eismont, V. P.; Filatov, N. P.; Smirnov, A. N.; Soloviev, S. M.; Blomgren, J; Conde, H.; Prokofiev, A. V.; Mashnik, S.G.

    2005-01-01

    Neutron- and proton-induced fission cross-sections of separated isotopes of tungsten (182W, 183W, 184W, and 186W) and natural tungsten relative to 209Bi have been measured in the incident nucleon energy region 50-200 MeV using fission chambers based on thin-film breakdown counters (TFBC) at quasi-monoenergetic neutrons from the 7Li(p,n) reaction and at the proton beams of The Svedberg Laboratory (TSL), Uppsala University (Uppsala, Sweden). The preliminary experimental data are presented in co...

  5. Fission-track dating of South American natural glasses: an overview

    International Nuclear Information System (INIS)

    Although many glass-bearing horizons can be found in South American volcanic complexes or sedimentary series, only a relatively few tephra and obsidian-bearing volcanic fields have been studied using the fission-track (FT) dating method. Among them, the volcanics located in the Sierra de Guamani (east of Quito, Ecuador) were studied by several authors. Based upon their ages, obsidians group into three clusters: (1) very young obsidians, ?0.2Ma old (2) intermediate-age obsidians, ?0.4-?0.8Ma old, and (3) older obsidians, ?1.4-?1.6Ma old. The FT method is also an efficient alternative technique for identification of the sources of prehistoric obsidian artefacts. Provenance studies carried out in South America have shown that the Sierra de Guamani obsidian occurrences were important sources of raw material for tool making during pre-Columbian times. Glasses originated from these sources were identified in sites distributed over relatively wide areas of Ecuador and Colombia. Only a few systematic studies on obsidians in other sectors were carried out. Nevertheless, very singular glasses have been recognised in South America, such as Macusanite (Peru) and obsidian Quiron (Argentina), which are being proposed as additional reference materials for FT dating. Analyses of tephra beds interstratified with sedimentary deposits revealed the performance of FT dating in tephrochronological studies. A remarkable example is the famous deposit outcropping at Farola Monte Hermoso, near Bahia Blanca (Buenos Aires Province), described for the first time by the middle of the 19th century by Charles Darwin. Considering the large number of volcanic glasses that were recognised in volcanic complexes and in sedimentary series, South America is a very promising region for the application of FT dating. The examples given above show that this technique may yield important results in different disciplinary fields

  6. Ternary Fission

    International Nuclear Information System (INIS)

    The fission process in which heavy nuclei fragment into three large charged panicles, in place of the usual two, has been studied in the case of thermal-neutron-induced fission of U235 and the spontaneous fission of Cf252. Solid-state detectors, a fast triple coincidence system and a three-coincident-parameter analyser were used to measure the three fission fragment energies parallel with the detection of each ternary fission event. Experimental evidence is presented supporting the existence of ternary fission by specifically excluding recoil phenomena and accidental events as contributing to the observed three-fold coincidence events. Mass-energy-angular correlations of ternary fission have been determined and are summarized as follows: The total kinetic energy release in ternary fission appears to be slightly higher (by approximately 10 MeV) than that for binary fission. In the case of the spontaneous ternary fission of Cf252, the frequency of occurrence is observed to be greater than 2.2 x 10-6 ternary fission events per binary fission event. Tripartition of Cf252 results preferentially in division into two medium mass particle (one of which has a mass number near 56) and one larger mass. In the case of thermal-neutron-induced fission of U235, the frequency of occurrence is observed to be greater than 1.2 x 10-6 ternary fission events per binary fission event. Ternary fission of U236: results in the formation of one light fragment (near mass 36) and two large fragments or, as in the case of Cf252, two medium fragments and one large one. These results indicate that axially asymmetric distortion modes are possible in the pre-scission configurations of the fissioning nucleus. A description is given of experiments designed to radiochemically detect the light fragment resulting from ternary fission. (author)

  7. Nuclear fission

    International Nuclear Information System (INIS)

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.)

  8. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    International Nuclear Information System (INIS)

    This work expands the availability of energy-resolved short-lived cumulative fission product yields for 235,238,233U, 239Pu, and 237Np subjected to a 2$ pulse in the Washington State University TRIGA reactor. A boron carbide capsule tailored the neutron spectrum, creating a spectrum with an average energy of 700 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique gamma spectra were collected from 4 min to 1 week after fission using high purity germanium detectors. Measured cumulative fission product yields generally agree well with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. (author)

  9. Chemistry and migration behaviour of the actinides and fission products in natural aquatic systems

    International Nuclear Information System (INIS)

    The 66th PTB seminar was held on April 24th and 25th, 1986, at the Munich Technical University (TUM) in Garching in cooperation with the Institute for Radiochemistry of the Munich Technical University, the 'Nuclear Chemistry' special group of the Society of German Chemists, and UB/SN responsible for the BMFT project. The seminar was organized by the TUM's Institute for Radiochemistry. The seminar dealt with the following main topics: primary geochemical reactions and colloid formation; sorption mechamisms and migration behaviour in Konrad/Gorleben aquifer systems; sampling and experimental investigations; evaluation and interpretation of the data obtained by experiments. The seminar was to achieve the following objectives: information and exchange of experience with regard to the work carried out up to the present; if necessary, formulation of new issues to be discussed; improvement of the interdisciplinary cooperation (chemistry, geosciences, modelling). The following topics and individual aspects were of particular interest and were given special attention: complementary basic research in order to interpret, support and model the results obtained by experiments (sorption mechanisms and thermodynamic data for natural systems); comparability of batch, column and diffusion tests; transferability of laboratory data to natural systems (e.g. Gorleben, Konrad); redox transitions for Np, Tc at Eh values of the natural systems; dependence of the sorption/desorption data on different influencing factors, importance of the influencing factors and selection of data for model calculations. Subject analyses of the individual contributions have been made for the Energy data base. (orig./RB)

  10. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast.

    DEFF Research Database (Denmark)

    Clément-Ziza, Mathieu; Marsellach, Francesc X.

    2014-01-01

    Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely to be affected by eQTLs as protein-coding RNAs. We identified a genetic variation of swc5 that modifies the levels of 871 RNAs, with effects on both sense and antisense transcription, and show that this effect most likely goes through a compromised deposition of the histone variant H2A.Z. The strains, methods, and datasets generated here provide a rich resource for future studies.

  11. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    monster's very nature, but the monster in Cloverfield is both frightingly different and hauntingly familiar. We have seen such monsters many times before in earlier movies, so we cannot fully feel that it is different and apart from ourselves. At the same time, the monster is irrational, without meaning...... materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However, it is...... a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  12. Detailed spectroscopy from fission

    International Nuclear Information System (INIS)

    Spectroscopic measurements of prompt radiations from fission fragments prior to beta decay are discussed. Post beta decay deexcitation is examined for observations with high fission yield, short lived, prompt products. A comparison of the types of results obtained from prompt decay and beta decay is made in an attempt to demonstrate their complementary nature in giving nuclear structure information. Nuclear information obtained from spectroscopy of fission fragment products is summarized for various regions of interest. (14 figures, 2 tables, 113 references) (U.S.)

  13. Independent yields of Rb and Cs isotopes from the fission of natural uranium induced by protons of energy 80 and 100 MeV

    International Nuclear Information System (INIS)

    The independent yields or production cross sections of rubidium isotopes from mass 86 to 97, and of cesium isotopes from mass 129 to 144, have been measured for the fission of natural uranium induced by 80 and 100 MeV protons. The results were obtained by means of an on-line mass spectrometer. The rubidium distributions are quite symmetric, whereas the cesium distributions show a definite skewness toward the heavy mass side. Comparison with other results at 40, 50, 60 and 150 MeV proton energies shows that the heavy mass sides of the isotopic distributions are relatively insensitive to proton energy, whereas the light mass sides shift downward with increasing proton energy. The average total number of neutrons emitted has been estimated for each fission reaction. The mechanism of nuclear charge division in 80 and 100 MeV proton fission in the mass split studied here appears to be similar to that operating in thermal-neutron and low-energy proton fission. (author)

  14. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [ed.

    1996-02-01

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO{sub 3} type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A K{sub p} value of 2* 10{sup 6} ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs.

  15. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    International Nuclear Information System (INIS)

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO3 type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A Kp value of 2* 106 ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs

  16. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    DEFF Research Database (Denmark)

    Clément-Ziza, Mathieu; Marsellach, Francesc X.; Codlin, Sandra; Papadakis, Manos A.; Reinhardt, Susanne; Rodríguez-López, María; Martin, Stuart; Marguerat, Samuel; Schmidt, Alexander; Lee, Eunhye; Workman, Christopher; Bähler, Jürg; Beyer, Andreas

    2014-01-01

    first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely...

  17. Ternary fission

    International Nuclear Information System (INIS)

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  18. Fission isomers

    International Nuclear Information System (INIS)

    After a short historical account of superdeformed nuclei which are able to de-excite by spontaneous fission (hence their name of fission isomers) the principles of different experimental set-ups are described. These set-ups were used to study various properties: half-life, excitation energy, spin, gyromagnetic factor, moment of inertia and quadrupole moment. The most significant values are given. Finally, the question of the various types of excited states of fission isomers is tackled. (author) 20 refs.; 17 figs

  19. Search for ?-delayed fission of 228Ac

    International Nuclear Information System (INIS)

    Radium was radiochemically separated from natural thorium. Thin 228Ra??-228Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe ?-ray detector. The ?-delayed fission events of 228Ac were observed and its ?-delayed fission probability was found to be (5±2)x10-12

  20. The discovery of fission

    International Nuclear Information System (INIS)

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  1. Fission barriers

    International Nuclear Information System (INIS)

    Immediately after the discovery of fission in 1939 by Hahn and Strassmann and Meitner and Frisch, the latter authors gave a qualitative explanation of the process using the picture of a charged liquid drop. Still in the same year, Bohr and Wheeler developed this picture into their classical theory, which remained the basis for the description of nuclear fission for many years to come. Today it is known that many of the finer details of the fission process cannot be understood without reference to the shell structure of the nucleus. It is the merit of V. M. Strutinsky to have shown a practical way to combine the knowledge about shell structure with the liquid drop model in his open-quotes macroscopic-microscopicclose quotes method and to point to the important effect of shell structure on what we call the open-quotes fission barrierclose quotes. This chapter will thus describe the fission barrier first within the liquid drop model (Section II) and then discuss shell corrections according to the Strutinsky procedure (Section III). Section IV will deal with the transmission through the fission barrier, including the most immediate effects of its double-humped shape. Some of the more detailed consequences of this structure, namely the existence of different classes of compound nuclear states, will be briefly addressed in Section V; however, more detailed discussion of their effect will be postponed to Chapter 4. Finally, Section VI will describe some basic methods of obtaining experimental information on the shape of the fission barrier. 61 refs., 11 figs., 1 tab

  2. Dissolution studies of natural analogues spent fuel and U(VI)-Silicon phases of and oxidative alteration process

    International Nuclear Information System (INIS)

    In order to understand the long-term behavior of the nuclear spent fuel in geological repository conditions, we have performed dissolution studies with natural analogues to UO2 as well as with solid phases representatives of the oxidative alteration pathway of uranium dioxide, as observed in both natural environment and laboratory studies. In all cases, we have studied the influence of the bicarbonate concentration in the dissolution process, as a first approximation to the groundwater composition of a granitic environment, where carbonate is one of the most important complexing agents. As a natural analogue to the nuclear spent fuel some uraninite samples from the Oklo are deposit in Gabon, where chain fission reactions took place 2000 millions years ago, as well as a pitchblende sample from the mine Fe ore deposit, in Salamanca (spain) have been studied. The studies have been performed at 25 and 60 deg C and 60 deg C, and they have focussed on the determination of both the thermodynamic and the kinetic properties of the different samples studied, using batch and continuous experimental methodologies, respectively. (Author)

  3. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  4. Benchmarking nuclear fission theory

    Science.gov (United States)

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-07-01

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  5. Benchmarking Nuclear Fission Theory

    CERN Document Server

    Bertsch, G F; Nazarewicz, W; Talou, P

    2015-01-01

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  6. Ternary fission

    International Nuclear Information System (INIS)

    Recently a number of experimental detailed studies on the fission of compound nuclei 236U, 252Cf accompained by alphas and other charge particles have been finished. On the base of the obtained results in alpha accompained fission of 236U the new stage in trajectory computations for the definition of scission conditions was performed in but the result seems to be not unequivocal. A quantum mechanical approach to the emission of alpha particles of fissioning nuclei sensitive to the descent time from the saddle to the scission point occurs to be very promising. But it is early to say about a good agreement between theory and experiment. The difference in the value of the prescission kinetic energy of fragments E degree F obtained in trajectory calculations, still remains very large, of the order 20 MeV. In this paper the authors attempt to decrease such uncertainty in E degree F, performing calculations and comparing them with all observable variables from thermal fission of 239Pu accompained by alphas

  7. Singlet Fission.

    Czech Academy of Sciences Publication Activity Database

    Smith, M. B.; Michl, Josef

    2010-01-01

    Ro?. 110, ?. 11 (2010), s. 6891-6936. ISSN 0009-2665 Grant ostatní: Department of Energy(US) DE-FG36-08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  8. A study of the effect of natural radiation damage in a zircon crystal using thermoluminescence, fission track etching and X-ray diffraction

    International Nuclear Information System (INIS)

    The natural radiation damage in zircon caused by the decay of uranium and thorium, present as impurities, is studied. The radiation damage is first gauged by etching the fission tracks. It is found that thermoluminescence (TL) sensitivity (defined as light output per unit test-dose) decreases as the radiation damage increases, suggesting a destruction of TL centers. The spacing d of the (112)-plane is also measured. It is also found that the d-value increases with radiation damage, suggesting the displacement of atoms from their normal lattice sites. However, as the track density increases beyond ? 3x106 tracks/cm2, the d-value remains at ? 2.52 A. By annealing the crystal, the displaced atoms are found to return to the original lattice sites, and this is followed by a reduction in d-value as well as the recovery of TL sensitivity. The fission track density also decreases and all the tracks disappear at the annealing temperature of ? 8000C. (orig.)

  9. An evaluation of the dissolution process of natural uranium ore as an analogue of nuclear fuel

    International Nuclear Information System (INIS)

    The assumption of congruent dissolution of uraninite as a mechanism for the dissolution behaviour of spent fuel was critically examined with regard to the fate of toxic radionuclides. The fission and daughter products of uranium are typically present in spent unreprocessed fuel rods in trace abundances. The principles of trace element geochemistry were applied in assessing the behaviour of these radionuclides during fluid/solid interactions. It is shown that the behaviour of radionuclides in trace abundances that reside in the crystal structure can be better predicted from the ionic properties of these nuclides rather than from assuming that they are controlled by the dissolution of uraninite. Geochemical evidence from natural uranium ore deposits (Athabasca Basin, Northern Territories of Australia, Oklo) suggests that in most cases the toxic radionuclides are released from uraninite in amounts that are independent of the solution behaviour of uranium oxide. Only those elements that have ionic and thus chemical properties similar to U4+, such as plutonium, americium, cadmium, neptunium and thorium can be satisfactorily modelled by the solution properties of uranium dioxide and then only if the environment is reducing. (84 refs., 7 tabs.)

  10. A study of 239Pu production rate in a water cooled natural uranium blanket mock-up of a fusion–fission hybrid reactor

    Science.gov (United States)

    Feng, Song; Liu, Rong; Lu, Xinxin; Yang, Yiwei; Xu, Kun; Wang, Mei; Zhu, Tonghua; Jiang, Li; Qin, Jianguo; Jiang, Jieqiong; Han, Zijie; Lai, Caifeng; Wen, Zhongwei

    2016-03-01

    The 239Pu production rate is important data in neutronics design for a natural uranium blanket of a fusion–fission hybrid reactor, and the accuracy and reliability should be validated by integral experiments. The distribution of 239Pu production rates in a subcritical natural uranium blanket mock-up was obtained for the first time with a D-T neutron generator by using an activation technique. Natural uranium foils were placed in different spatial locations of the mock-up, the counts of 277.6 keV γ-rays emitted from 239Np generated by 238U capture reaction were measured by an HPGe γ spectrometer, and the self-absorption of natural uranium foils was corrected. The experiment was analyzed using the Super Monte Carlo neutron transport code SuperMC2.0 with recent nuclear data of 238U from the ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0u2, JEFF-3.2 and CENDL-3.1 libraries. Calculation results with the JEFF-3.2 library agree with the experimental ones best, and they agree within the experimental uncertainty in general with the average ratios of calculation results to experimental results (C/E) in the range of 0.93 to 1.01.

  11. From transmutation to fission

    International Nuclear Information System (INIS)

    The article explains the historical background of the discovery of nuclear fission, observed by O. Hahn and F. Strassmann. Becquerel's discovery of the natural radioactivity, in 1986, had made physicists waver in their belief in their fundamental concept which then was based on classical mechanics, Maxwell's electrodynamics, and Gibbs' theory of thermodynamics. The novel research activities then started have led to the discoveries and findings by E. Rutherford, Pierre and Marie Curie, F. Soddy, E. Fermi, and many other scientists. The article traces back the events which span the first observed transmutations as a result of studies on the nature of emanations, the first application of alpha particles for exploring the atomic structure, the development of particle accelerators, the discovery of artificial radioactivity, and the application of neutrons for inducing nuclear fission processes. (RB)

  12. Fission meter

    Science.gov (United States)

    Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  13. Calculations of fission rates for r-process nucleosynthesis

    CERN Document Server

    Panov, I V; Pfeiffer, B; Rauscher, T; Kratz, K L; Thielemann, F K

    2005-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that nevertheless fission leads to the termination of the r-process. Furthermore, it is discussed that the probability of triple fission could be high for $A>260$ and have an effect on the formation of the abundances of heavy nuclei. Fission after beta-delayed neutron emission is discussed as well as different aspects of the influence of fission upon r-process calculations.

  14. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-10-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and ..gamma.. rays emitted in the resonances of /sup 235/U and /sup 239/Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and ..gamma..-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n, ..gamma.., f) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for /sup 240/Pu. 17 figures, 56 ref. (auth)

  15. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and ? rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and ?-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,?f) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  16. Dissolution studies of natural analogues spent fuel and U(VI)-Silicon phases of and oxidative alteration process; Estudios de disolucion de analogos naturales de combustible nuclear irradiado y de fases de U(VI)-Silicio representativas de un proceso de alteracion oxidativa

    Energy Technology Data Exchange (ETDEWEB)

    Perez Morales, I.

    2000-07-01

    In order to understand the long-term behavior of the nuclear spent fuel in geological repository conditions, we have performed dissolution studies with natural analogues to UO{sub 2} as well as with solid phases representatives of the oxidative alteration pathway of uranium dioxide, as observed in both natural environment and laboratory studies. In all cases, we have studied the influence of the bicarbonate concentration in the dissolution process, as a first approximation to the groundwater composition of a granitic environment, where carbonate is one of the most important complexing agents. As a natural analogue to the nuclear spent fuel some uraninite samples from the Oklo are deposit in Gabon, where chain fission reactions took place 2000 millions years ago, as well as a pitchblende sample from the mine Fe ore deposit, in Salamanca (spain) have been studied. The studies have been performed at 25 and 60 degree centigree and 60 degree centigree, and they have focussed on the determination of both the thermodynamic and the kinetic properties of the different samples studied, using batch and continuous experimental methodologies, respectively. (Author)

  17. Seminar on Fission VI

    Science.gov (United States)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al.]. Development of PSD and ToF + PSD techniques for fission experiments / M. Sillanpää ... [et al.]. MYRRHA, a new fast spectrum facility / H. Aït Abderrahim, P. D'hondt, D. De Bruyn. The BR1 reactor: a versatile tool for fission experiments / J. Wagemans -- "Special" fission processes. Shape isomers - a key to fission barriers / S. Oberstedt ... [et al.]. Fission in spallation reactions / J. Cugnon, Th. Aoust, A. Boudard -- Conference photo -- List of participants.

  18. Estimation of errors in the cumulative Monte Carlo fission source

    OpenAIRE

    Tuttelberg, Kaur; Dufek, Jan

    2014-01-01

    We study the feasibility of estimating the error in the cumulative fission source in Monte Carlo criticality calculations by utilising the fundamental-mode eigenvector of the fission matrix. The cumulative fission source, representing the source combined over active cycles, contains errors of both statistical and systematic nature. Knowledge of the error in the cumulative fission source is crucial as it determines the accuracy of computed neutron flux and power distributions. While statistica...

  19. Energy released in fission

    International Nuclear Information System (INIS)

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  20. Nuclear fission induced by Pi mesons

    International Nuclear Information System (INIS)

    Pi mesons are an important part of the interactions among strongly-interacting particles, and their reactions with complex nuclei involve reactions with a wide range of interactions and time scales, with the slowest being the familiar fission process. Decades of effort have produced a wide range of fission data with stopped and energetic charged beams, both positive and negative. These results are the result of many uncoordinated studies, but in total can give a very good view of pion-induced fission. This review will compare and combine the measurements, with comparisons to a range of theoretical expectations. It is found that the nature of fission induced by pi mesons is not significantly different from fission induced by other energetic particles, in spite of the special features of the mesonic beam. This specific arena of nuclear science may now be considered complete. (author)

  1. Fission of metallic clusters

    International Nuclear Information System (INIS)

    The fission of sodium clusters is discussed using Nuclear Physics method. After presenting the Liquid Drop Model for spherical jelly clusters, we introduce shell corrections and compare the obtained energies with self-consistent quantal results. Fission is studied evaluating Q-values and fission barriers, with the shell correction method and the Two Center Shell Model. The threshold of stability with respect to fission is predicted within the Liquid Drop Model. (author)

  2. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  3. Ternary Fission. A Review

    International Nuclear Information System (INIS)

    Experimental results in the field of light-particle-accompanied fission (including fission accompanied by 'scission neutrons') - and in relation to fission into three fragments of comparable mass - are reviewed over the last four years. These results are set against the background of previously ascertained fact, and certain empirical regularities are noted. (author)

  4. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these models, the nucleus is imagined to be a very small drop of liquid; the theorist then devises many schemes that lead to its splitting into two smaller drops. It is surprising how many detailed features theorists can predict, based on such simple models, and how well these predictions have been confirmed by experiments. The symposium summarized the progress in this field, and indicated how many intricate details can be introduced into a simple liquid drop model to give better agreement with experimental results. Step by step, a picture is emerging and being continuously improved, coming closer and closer to the truth. However, the liquid drop model has several competitors of which the most prominent is the shell model. This model assumes that the constituents of the nucleus are sorted into well defined energy levels, or shells; the distribution of protons and neutrons in these shells, and their movements from one shell to another, can provide an explanation for many experimentally observed facts New theoretical results drawn from these models were reported at the symposium, together with some efforts to combine different theoretical concepts, thereby trying to create a unified picture of nuclear fission. The nucleus is too small for the scientist to be able to observe directly what is happening inside it. There is really only one way for an experimenter to study a process in a nucleus, he must measure the energies of the particles coming out of it. In the case of fission, these 'messengers' can be the fission fragments, i.e. nuclei of elements that are being created from the splitting atom, but they can also be the neutrons or gamma rays which emerge during and after the fission process. Several sessions in the symposium were devoted to reports of such studies. With the help of sophisticated electronics systems, or complicated radiochemical methods, experimenters have measured the energies of fission fragments, neutrons, gamma and X-rays, and other particles emerging from fissioning nuclei, with great accuracy. By putting together numerous experimental facts, and c

  5. Synthesis report on the relevant diffusion coefficients of fission products and helium in spent nuclear fuels; Rapport de synthese sur les coefficients de diffusion des produits de fission et de l'helium dans le combustible irradie

    Energy Technology Data Exchange (ETDEWEB)

    Lovera, P.; Ferry, C.; Poinssot, Ch. [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Johnson, L. [Nagra, Baden (Switzerland)

    2003-07-01

    This document corresponds to the deliverable D2 of the Work Package 1 of the 'Spent Fuel Stability under repository conditions' (SFS) European project. It constitutes a synthesis report on relevant diffusion coefficients of fission products and helium in spent nuclear fuels at high and low temperatures. Coefficients corresponding to thermally activated diffusion were reviewed from literature data for O, U (self-diffusion coefficients), fission gases and other fission products. Data showed that thermal diffusion was irrelevant at temperatures expected in repository conditions. The occurrence of diffusion enhanced by alpha self-irradiation was studied through different theoretical approaches. A 'best estimate' value of the alpha self-irradiation diffusion coefficient, D (m{sup 2}.s{sup -1}), is proposed. It is extrapolated from enhanced diffusion under irradiation observed in reactor and would be proportional to the volume alpha activity in the spent nuclear fuel, A{sub v} (Bq.m{sup -3}) as: D/A{sub v} {approx_equal} 2.10{sup -41} (m{sup 5})The migration of stable Pb in Oklo's uraninites was studied in order to validate the proposed diffusion coefficient. The obtained value is one order of magnitude higher than the theoretical proposed value. As for He behaviour in spent nuclear fuel, a few data are today available in open literature. The document will be completed as soon as new experimental results are available. (authors)

  6. Fast and slow fission

    International Nuclear Information System (INIS)

    Measurements of alpha particle induced fission of actinide nuclei and fission of the composite system 170Yb formed in 12C and 20Ne bombardments both show significantly greater neutron emission prior to fission than is consistant with current statistical models. Implications of these results are discussed in the context of possible extreme models: (1) the enhancement of fission at low excitation energies due to shell effects; (2) the inhibition of fission at high excitations due to a limiting of the fission width; and (3) the possibility of significant neutron emission during the descent from saddle to scission. In addition the apparent incompatability between current models of incomplete fusion processes and the analysis of light heavy ion induced fission which ignore incomplete fusion is discussed

  7. Fission neutron statistical emission

    International Nuclear Information System (INIS)

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/? competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  8. Binary fission in damped rotating polytropes

    International Nuclear Information System (INIS)

    The fission sequences of Gingold and Monaghan are recomputed using a significantly larger number (800) of particles in the smoothed-particle-hydrodynamic treatment. The results confirm the general mode of fission found earlier for polytropes with n = 0.5. An interesting three-pointed 'star fish' structure is now apparent before fission and a low-mass third object is formed. The nature of the disruption of n = 1.5 polytropes is clarified and discussed in relation to the problem of binary star formation. (author)

  9. Solvent extraction of some fission products using tetracycline as a complexing agent : dependence on the ph of the aqueous phase and on the nature of some inorganic anions

    International Nuclear Information System (INIS)

    The behavior of tetracycline as a complexing agent in solvent extraction studies is presented. The extraction curves for the fission products 90Sr, 140Ba, 99Mo, sup(99m)Tc, 95Zr, 95Nb, 103Ru and also for U have been determined for the extraction system tetracycline-benzyl alcohol. The extraction dependence on the pH of the aqueous phase as well as on the kind of electrolyte present was examined. As a practical application, the possiblity of using the tetracycline-benzyl alcohol system for separation of the fission products present in a mixture of them, as well as for the separation of uranium from those elements, was tested. (Author)

  10. Fission level densities

    International Nuclear Information System (INIS)

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  11. Fission yields measured with target materials in contact with solid state track detectors

    International Nuclear Information System (INIS)

    The configuration of the contact of fissionable target materials with dielectric track detectors is reviewed to obtain fission yields corrected for fragment self-absorption in fission sources of different thicknesses and for optical magnification for the observation of etched fission tracks. Total detection efficiency and effective thickness of the target sample are obtained in the case of formation of cone-shaped tracks by etching. A number of useful formulae for evaluation of fission yields in both induced and spontaneous fission experiments is reported. The method can be extended and applied also to fission-related problems, natural and induced emission of nuclear fragments, and nuclear reaction studies as well. (author)

  12. Estimation of errors in the cumulative Monte Carlo fission source

    International Nuclear Information System (INIS)

    Highlights: • Fiss. matrix eigenvector can be used in estimating errors in MC fission source. • The estimated values effectively capture the stochastic and systematic errors. • Estimated values appear to be distributed around real errors. - Abstract: We study the feasibility of estimating the error in the cumulative fission source in Monte Carlo criticality calculations by utilising the fundamental-mode eigenvector of the fission matrix. The cumulative fission source, representing the source combined over active cycles, contains errors of both statistical and systematic nature. Knowledge of the error in the cumulative fission source is crucial as it determines the accuracy of computed neutron flux and power distributions. While statistical errors are present in the eigenvector of the fission matrix, it appears that these are not (or they are only weakly) correlated to the errors in the cumulative fission source. This ensures the suggested methodology gives error estimates that are distributed around the real errors, which is also supported by results of our numerical test calculations

  13. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235U fission. 235U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93Y, 141La, 142La, 143Ce and 149Nd. The chain total yields are calculated. The cumulative fission yields measured for 93Y, 141La, 142La, 143Ce and 149Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author)

  14. Fission product yields

    International Nuclear Information System (INIS)

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  15. Principles of fission

    International Nuclear Information System (INIS)

    This short animated film introduces the principles of nuclear fission as applied to 'thermal' nuclear reactors and 'fast' reactors. It explains nuclear fission, the properties of Uranium 235 and 238, how a chain reaction works and the need for a moderator in thermal reactors. The film shows how Plutonium is created and used to provide even more energy when used in Fast Reactors. (author)

  16. The nuclear fission

    International Nuclear Information System (INIS)

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.)

  17. Fission gas detection system

    Science.gov (United States)

    Colburn, Richard P. (Pasco, WA)

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  18. Muon-induced fission

    International Nuclear Information System (INIS)

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  19. Biomodal spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K. (Lawrence Livermore National Lab., CA (USA))

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  20. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10-3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((? the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3+0.25-0.21 10-10 sec for Bismuth

  1. Nuclear waste criticality analysis. Final report, 1 July 1995--30 June 1996

    International Nuclear Information System (INIS)

    The natural reactors that occurred in Gabon, Africa over 2 billion years ago present an interesting analog to the underground repositories proposed around the world for the long-term storage of high-level spent nuclear fuel. Many articles have been written concerning the low migration rates of actinides and fission products from the Oklo reactor sites, but Oklo also presents researchers with an opportunity to discover the conditions that led to nuclear criticality in uranium oxides with low enrichments. A computer model was developed to predict the conditions that were necessary to lead to criticality in the Oklo reactors. Critical core dimensions and infinite multiplication factors are presented as a function of time, the porosity of the host rock, and the water and uranium content of the sandstone deposits at Oklo

  2. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  3. Geochemical constraints on accumulation of actinide critical masses from stored nuclear waste in natural rock repositories. Technical report, April 1, 1978--August 31, 1978 (plus supplemental time to December 31, 1978)

    International Nuclear Information System (INIS)

    Results of a literature search of abundant data on lanthanide and actinide individual and joint systematics are presented. Covered were several papers/reports about uranium solution chemistry, uranium deposits, a natural fission reactor, rare-earch deposits, manganese nodules, bedded and dome salt deposits, and miscellaneous items. This literature search is not complete but represents efforts of seven individuals attempting to gather data relevant to the objectives defined in this report. Many foreign articles, as well as many English language articles are absent. Approximately 800 articles were inspected; 69 are included in the References cited. The data search for actinides and lanthanides in natural rocks indicated that only limited segregation of the actinides U, Np, Pu, Am, and Cm from the lanthanides is possible should high-level waste be released from canisters stored in various geomedia. Supporting this were studies of Oklo and other uranium deposits, manganese nodules, monomineralic and concretion formation rates, and actinide and lathanide transport in brines. The fact that some waste canisters may, under certain conditions, contain several critical masses of one or more actinides is countered by the facts that (a) most actinides have very short half-lives and would decay before release from canisters, (b) released actinides and lanthanides, although dispersed, would be transported and deposited as a group, thus preventing point concentration of any actinides, and (c) 235U has a much longer half-life than the other actinides, thus allowing greater time for possible reaccumulation and criticality; such a scenario would demand that 235U be segregated effectively from other elements in the lanthanide-actinide groups.No mechanism to do this is consistent with the natural occurrences studied or the theoretical Eh-pH diagrams considered

  4. Uranium content of petroleum by fission track technique

    International Nuclear Information System (INIS)

    The feasibility of the fission track registration technique to investigate the natural uranium concentration in petroleum is examined. The application of this technique to petroleum is briefly described and discussed critically. The results obtained so far indicate uranium concentrations in samples of Brazilian petroleum which are over the detect ion limit of fission track technique. (Author)

  5. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  6. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  7. Study of a fission neutron detector and application to the measurement of the 241Am fission cross-section

    International Nuclear Information System (INIS)

    This work describes a fission neutron detector particularly suited to the measurement of the fission cross sections of highly radioactive nuclei. It is made of a cylinder containing 45 liters of NE 213 liquid scintillator. The fission neutrons are detected through the scintillation emitted by the recoiling proton in the scintillator. They are discriminated from ? rays by a shape discrimination of the photomultiplier pulses. Since the detector is insensitive to ? particles from natural radioactivity it can be used with several grams of fissile materials as needed when the fission cross section is quite small. As an example, the 241Am fission cross section measurement is presented. In this experiment an americium target with an activity of 1011?/sec was bombarded by the neutron beam provided by the 60 MeV Saclay/linear accelerator. The fission cross section and the resonance parameters have been measured up to 40 eV

  8. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    The first fission fragment angular distributions were observed by Winhold et al. in 1952 for the photofission of thorium. They found angular distributions peaked towards 90 degrees with respect to the ?-beam direction. Corresponding angular distribution measurements were soon reported for fission induced by neutrons and charged particles (see Vaz and Alexander and Bond and references therein). The customary theory gives for all fragments the same angular distribution independent of their masses, yields, and kinetic energies. This subject will be treated in Section II. Recently, measurements by Wilke and Wilke et al. for photofission and by Gokhberg et al. for neutron-induced fission showed mass dependences of the fission fragment angular distributions. If these measurements are confirmed, then the contemporary theory has to be extended. Such a possible direction of extension is proposed in Section III. 16 refs., 1 fig

  9. Fission - Innovative Systems

    International Nuclear Information System (INIS)

    The nuclear data needs of the fission energy application in the future were presented from the user's viewpoint. The fields considered were fast reactors (INPRO, Gen-IV, FaCT), accelerator driven systems (ADS), and next-generation light water reactors (NG-LWR). In fission applications, nuclear data already have an established place in the industry, having moved well beyond the status of an art into nuclear science. This fact implies strong requirements for both the quality and the quantity of nuclear data, leading, in particular, to the need for important aspects such as covariances, and the verification and validation (V and V) system. Typical areas to be improved in fission applications would be: minor actinides, fission products, thermal scattering, and so on

  10. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40Ar+141Pr, 20Ne+165Ho and 12C+175Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  11. Microscopic Theory of Fission

    Science.gov (United States)

    Younes, W.; Gogny, D.

    2008-04-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented.

  12. Spontaneous fission and clusterization

    International Nuclear Information System (INIS)

    We study the very exotic cluster configurations of atomic nuclei defined by the spontaneous fission channels. Our treatment applies effective U(3) symmetry labels corresponding to the quadrupole deformation of the nuclei. We study in detail the Mo emission of the 252Cf, which was observed in a recent experiment. The effect of the microscopic structure turns out to be nonuniform for different fission channels. (author)

  13. Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing.

    Science.gov (United States)

    Pedersen, K; Arlinger, J; Hallbeck, L; Pettersson, C

    1996-06-01

    This paper describes how ground water was sampled, DNA extracted, amplified and cloned and how information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of subterranean bacteria in groundwater at the Bangombé site in the Oklo region. The results showed that this site was inhabited by a diversified population of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes; a result that probably reflects documented differences in the geochemical environment. Two of the sequences obtained were identified at genus level to represent Acinetobacter and Zoogloea, but most of the 44 sequences found were only distantly related to species in the DNA database. The deepest borehole, BAX01 (105 m), had the highest number of bacteria and also total organic carbon (TOC). This borehole harboured only Proteobacteria beta group sequences while sequences related to Proteobacteria beta, gamma and delta groups and Gram-positive bacteria were found in the other four boreholes. Two of the boreholes, BAX02 (34 m) and BAX04 (10 m) had many 16S rRNA gene sequences in common and also had similar counts of bacteria, content of TOC, pH and equal conductivity, suggesting a hydraulic connection between them. PMID:8688960

  14. Natural occurring radioactive substances. Vol. 1

    International Nuclear Information System (INIS)

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs

  15. Singlet exciton fission photovoltaics.

    Science.gov (United States)

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses long- and short-wavelength donors and an acceptor and a simpler, two-layer combination of a singlet-fission donor and a long-wavelength acceptor. An example of the trilayer structure is singlet fission in tetracene with copper phthalocyanine inserted at the C60 interface. The bilayer approach includes pentacene photovoltaic cells with an acceptor of infrared-absorbing lead sulfide or lead selenide nanocrystals. Lead selenide nanocrystals appear to be the most promising acceptors, exhibiting efficient triplet exciton dissociation and high power conversion efficiency. Finally, we review architectures that use singlet fission materials to sensitize other absorbers, thereby effectively converting conventional donor materials to singlet fission dyes. In these devices, photoexcitation occurs in a particular molecule and then energy is transferred to a singlet fission dye where the fission occurs. For example, rubrene inserted between a donor and an acceptor decouples the ability to perform singlet fission from other major photovoltaic properties such as light absorption. PMID:23611026

  16. Feasibility of Producing Molybdenum-99 on a Small Scale Using Fission of Low Enriched Uranium or Neutron Activation of Natural Molybdenum. Companion CD-ROM

    International Nuclear Information System (INIS)

    This publication documents the work performed within the IAEA coordinated research project (CRP) on developing techniques for small scale indigenous molybdenum-99 production using low enriched uranium (LEU) fission or neutron activation. The CRP enabled participating institutions to gain the knowledge necessary for indigenous molybdenum-99 production. The outcome serves to capture the steps participants undertook in examining the feasibility of becoming small scale 99Mo producers. Most participants carried out work related to the entire production process, from target assembly through irradiation, planning for target disassembly in hot cells, chemical processing of targets, quality control practices, and managing waste streams. Some participants focused on one particular area, for example, testing new methods for production of LEU foil for targets and the production of gel generators from 99Mo solution. The publication aggregates all of the work undertaken as part of the CRP in order to present the results as a whole. The accomplishments of participating institutions are detailed in individual country reports on this CD-ROM

  17. Feasibility of Producing Molybdenum-99 on a Small Scale Using Fission of Low Enriched Uranium or Neutron Activation of Natural Molybdenum

    International Nuclear Information System (INIS)

    This publication documents the work performed within the IAEA coordinated research project (CRP) on Developing Techniques for Small Scale Indigenous Molybdenum-99 Production Using LEU Fission or Neutron Activation. The project allowed participating institutions to receive training and information on aspects necessary for starting production of molybdenum-99 (99Mo) on a small scale, that is, to become national level producers of this medical isotope. Stable production of 99Mo is one of the most pressing issues facing the nuclear community at present, because the medical isotope technetium-99m (99mTc), which decays from 99Mo, is one of the most widely used radionuclides in diagnostic imaging and treatment around the world. In the past five years, there have been widespread shortages of 99Mo owing to the limited number of producers, many of which use ageing facilities. To assist in stabilizing the production of 99Mo, and to promote the use of production methods that do not rely on the use of highly enriched uranium (HEU), the IAEA initiated the abovementioned CRP on small scale 99Mo production using low enriched uranium (LEU) fission or neutron activation methods. The intention was to enable participating institutions to gain the knowledge necessary to become national level producers of 99Mo in the event of further global shortages. Some of the institutions that participated in the CRP have continued their work on 99Mo production, and are enlisting the assistance of other CRP members and the IAEA’s technical cooperation programme to set up a small scale production capability. In total, the CRP was active for six years, and concluded in December 2011. During the CRP, fourteen IAEA Member States took part; four research coordination meetings were held, and four workshops were held on operational aspects of 99Mo production, LEU target fabrication and waste management. Most participants carried out work related to the entire production process, from target assembly to irradiation (most only performed the thermal and hydraulic calculations necessary for irradiation), to planning for target disassembly in hot cells, chemical processing of targets, quality control practices and managing waste streams. However, some participants focused on one particular area, for example, testing new methods for production of LEU foil for targets or the production of gel generators from 99Mo solution. This publication aggregates all of the work undertaken as part of the CRP in order to present the results as a whole; the accomplishments of participating institutions are detailed in individual country reports on the attached CD-ROM. In addition to presenting the work performed within the CRP, this publication is intended to serve a wide readership that includes nuclear authorities, regulators and any institution that may have an interest in becoming a small scale producer of 99Mo using non-HEU production methods. The details presented here could serve as a template for a feasibility study to be carried out by an institution or State wishing to produce 99Mo; special care has been taken to note areas that were particularly challenging for participants and therefore may not be feasible for other small scale producers without significant investment in human resources or infrastructure

  18. Fission channels of 304120

    International Nuclear Information System (INIS)

    The main fission modes of the double magic 304120 are investigated from both a static and dynamic point of view. A set of spin-orbit and l2 strength parameters is selected such that a minimum occurs in the shell correction energy at Z = 120 and N = 184. The mass asymmetry is settled around the two double magic fragments: 132Sn and 208Pb. Different fission modes (some isotopes of Cd+Hf, Sn+Yb, Te+Er, Hg+Zr, Pb+Sr and Po+Kr) are analysed both staticly and dynamically. The macroscopic-microscopic method was used to calculate the potential energy in a three-dimensional space of deformation. Fission trajectories are obtained by minimization of the action integral. Penetrabilities and lifetimes are computed within the semiclassical WKB method. The most probable fission modes of 304120 correspond to the split in which 128Cd or the double magic 132Sn is the light fragment. Fission at larger mass asymmetry is less probable. (author)

  19. The Fission TPC Project

    Science.gov (United States)

    Hill, Tony; Klay, Jenn; Heffner, Mike

    2008-10-01

    New high-precision fission experiments have become a priority within the nuclear energy community due to a growing, world wide, interest in nuclear reactors. In particular, the design of the next generation reactors requires a reduction in the errors on a number of cross section measurements. Most of the required nuclear data has been measured over the last 50 years, although improvements in the accuracy of the data appear unlikely with the current technology. A potential breakthrough is the deployment of a detector developed within the particle physics community called the Time Projection Chamber (TPC). A group of 6 universities and 3 national laboratories have undertaken the task of building the first TPC for this purpose. In this talk we will present the fission TPC concept, and why we think we can make an improvement on 50 years of fission study.

  20. The fission TPC project

    International Nuclear Information System (INIS)

    New high-precision fission experiments have become a priority within the nuclear energy community due to a growing, world wide, interest in nuclear reactors. In particular, the design of the next generation reactors requires a reduction in the errors on a number of cross section measurements. Most of the required nuclear data has been measured over the last 50 years, although improvements in the accuracy of the data appear unlikely with the current technology. A potential breakthrough is the deployment of a detector developed within the particle physics community called the Time Projection Chamber (TPC). A group of 6 universities and 3 national laboratories have undertaken the task of building the first TPC for this purpose. In this talk I will present the fission TPC concept, and why we think we can make an improvement on 50 years of fission study. (author)

  1. Fission yields for fast-neutron fission of uranium-238

    International Nuclear Information System (INIS)

    Fission yields determined for fission of 238U with monoenergetic neutrons have been used to calculate the fission yields expected in 238U when exposed to a Watt neutron spectrum for 235U and in the center of the Experimental Breeder Reactor II core. The calculated results are compared with the experimental results for several reactors and with the fast fission yields recommended by two compilers

  2. Low energy nuclear fission

    International Nuclear Information System (INIS)

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  3. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  4. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  5. Current position on fission product behavior

    International Nuclear Information System (INIS)

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  6. Theory of macroscopic fission dynamics

    Science.gov (United States)

    Adeev, G. D.; Pashkevich, V. V.

    1989-10-01

    Recent advances in the theory of macroscopic fission dynamics are outlined with special emphasis on the diffusion model with realistic inertia and friction parameters, used to describe the fission fragment distributions.

  7. Theory of macroscopic fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Adeev, G.D. (Omskij Gosudarstvennyj Univ. (USSR)); Pashkevich, V.V. (Joint Inst. for Nuclear Research, Dubna (USSR). Lab. of Theoretical Physics)

    1989-10-09

    Recent advances in the theory of macroscopic fission dynamics are outlined with special emphasis on the diffusion model with realistic inertia and friction parameters, used to describe the fission fragment distributions. (orig.).

  8. A study on the association of two iodine isotopes, of natural 127I and of the fission product 129I, with soil components using a sequential extraction procedure

    International Nuclear Information System (INIS)

    Sequential extraction techniques have been utilized in order to investigate the degree of binding or association of natural iodine 127I and the radioactive iodine isotope 129I with soil components. The results indicate that only a small fraction of natural iodine (2.5-4%) but a large fraction of the recently added radioactive 129(38-49%) is water-soluble. The other forms of iodine which were determined for both iodine isotopes were exchangeable iodine, iodine bound to metal-oxides and iodine bound to organic matter. (author). 34 refs., 4 tabs

  9. Nucleus-nucleus coherent Bremsstrahlung in 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    The nature of high energy ?-ray spectra emitted in the spontaneous fission of 252Cf for energies above 10 MeV has been one of the fundamental problems of nuclear fission physics. The yield of the ?-ray in the energy range of 10 - 20 MeV is mainly associated with direct excitation of the giant dipole resonance from the daughter nuclei arising in the fission process. The calculations in different models differ by several orders of magnitude. The discrepancy in experimental and theoretical situations of coherent Bremsstrahlung from nuclear fission requires further investigation. For this reason, an extensive experiment was carried out using 252Cf source to investigate the photon emission accompanying the spontaneous fission at Variable Energy Cyclotron Centre (VECC), Kolkata

  10. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  11. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  12. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    This conference report gives a summary of the talks on the international symposium about physics and chemistry of fission held in Juelich in 1979. The main topics dealt with were potential energy surfaces, spectroscopy of highly deformed shapes, saddle-to-scission stage in fission and heavy-ion fission

  13. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  14. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.)

  15. Fission product data library

    International Nuclear Information System (INIS)

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  16. Spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    The measurement of kinetic energies, velocities, masses and nuclear charges of fission fragments by physical methods is reviewed. The emphasis is put on recent developments aiming at high resolution and precision. The shortcomings of existing techniques are discussed and some improvements in approach are suggested. (orig.)

  17. Deformation, clusterization and fission

    International Nuclear Information System (INIS)

    The relation of the quadrupole deformation and clusterization is discussed from the microscopic viewpoint. A connection can be established via the shell model not only for harmonic oscillator, but also for more realistic interactions. The effects of the microscopic structure on the (exotic) cluster radioactivity and on the binary fission are investigated. (author)

  18. Fission fragment kinetic energy

    International Nuclear Information System (INIS)

    Alpha induced fission was studied in the energy range of 20 to 29.4MeV. Significant changes in the mass distribution as well as in the kinetic energy were observed versus the compound nucleus excitation energy. The decrease in the average total kinetic energy with the excitation energy was attributed mainly to the changes in the mass distribution

  19. Fission yields in the thermal neutron fission of plutonium-239

    International Nuclear Information System (INIS)

    Fission yields for 27 mass numbers were determined in the thermal neutron fission of 239Pu using high resolution gamma ray spectrometry and radiochemical method. The results obtained using gamma ray spectrometry and from the investigations on the fission yield of 99Mo using radiochemical method were reported earlier. These data along with fission yields for 19 mass numbers determined using radiochemical method formed a part of Ph.D. thesis. The data given here are a compilation of all the results and are presented considering the neutron temperature correction to 239Pu fission cross-section which is used for calculating the total number of fissions in these studies. A comparison is made of the resulting fission yield values with the latest experimentally determined values and those given in two recent compilations. (author)

  20. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  1. Neutrino-driven nucleon fission reactors: Supernovae, quasars, and the big bang

    International Nuclear Information System (INIS)

    The purpose of this work is to establish the existence of naturally occurring celestial neutrino-driven nucleon fission chain reaction reactors as the first step in the development of controlled nucleon fission reactors on Earth. Celestial nucleon fission reactors provide functioning models that serve as starting points for reactor development. Recognizing supernovae, quasars, and the Big Bang as functioning neutrino-driven nucleon fission reactors presents the nuclear industry with a new and significant challenge. That challenge is our technological prowess to achieve a controlled nucleon fission chain reaction using the Earth's resources

  2. Fission rate sensitivities and fission fragment ranges for uranium and thorium-bearing materials irradiated with 252 Cf neutron source

    International Nuclear Information System (INIS)

    The induced fission reactions of 235 U (n, f), 238 U (n,f) and 232Th (n, f) based on the activation of natural uranium and thorium in samples with 252Cf, neutron source, have been evaluated. The obtained results are the average of three samples from each test material (SRM 2710 Montana soil and Zirconia). The prepared samples have been configured in the so-called compensated - beam geometryin which both gamma spectrometry jointly with solid state nuclear track detector techniques, revealed the fission rate sensitivity of 4.64 x 107 fission per gram per second per neutron (F.h1. S1.n1), for zirconia as obtained by gamma activity arising from 134 I fission product (as a good monitor which is produced only from fissions), and the related value for SRM 2710 soil is 5.22 x 108 (F.g1 S1 .n1). while the obtained values of the mean fission fragment ranges in SRM 2710 and zirconia as estimated from the fission track densities (by CR-39) and fission rates (by gamma spectrometry) are 3.97 x 10 3 g. cm2 respectively which reveal good agreement with experiments and calculations done hitherto

  3. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ?1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  4. Statistical theory of nuclear fission

    International Nuclear Information System (INIS)

    The development of the statistical theory of nuclear fission and its applications to the mass distribution of fission products (asymmetric fission), charge distribution, kinetic energy distribution, prompt neutron distribution, spin distribution, energy dependence of the distributions, spontaneous fission distributions, ternary fission, long-range ? particle distributions and so on are reviewed. Results are compared with experimental data. Early discrepancies are resolved. Several simple applications, such as charge and spin distributions are clear cut; their verification justifies the general validity of the statistical concepts. The more involved asymmetric fission problem can be unravelled by a large body of theoretical and experimental studies which establish that the asymmetric fission modes are indeed energetically favored and the shell effect on level density will not compromise the energy advantage. The successful derivation of the mass distribution curve concludes the study

  5. Computer code development programs at JAERI on fission product behavior

    International Nuclear Information System (INIS)

    As a part of computer code development programs on severe accident analysis, computer programs HORN and REMOVAL, are being developed for analysis of fission product release and transport in primary coolant system and containment vessel. HORN is designed to calculate fission product release and transport in primary coolant system and the code is capable of predicting chemical forms of volatile fission products in a leak path based upon equilibrium assumptions. REMOVAL is to calculate aerosol removal by natural mechanisms as well as engineered safety features in the containment vessel. The model includes steam condensation onto aerosol particles. Results of sensitivity analyses are presented along with description of the models used in each code

  6. Computer code development programs at JAERI on fission product behavior

    International Nuclear Information System (INIS)

    As a part of computer code development programs on severe accident analysis, computer programs HORN and REMOVAL, are being developed for analysis of fission product release and transport in primary coolant system and containment vessel. HORN is designed to calculate fission product release and transport in primary coolant system and the code is capable of predicting chemical forms of volatile fission product in a leak path based upon equilibrium assumptions. REMOVAL is to calculate aerosol removal by natural mechanism as well as engineered safety features in containment vessel. The model includes steam condensation onto aerosol particles. Results of sensitivity analyses are presented along with description of the models used in each code

  7. Natural repository analogue program. Progress report, January 1-March 30, 1982

    International Nuclear Information System (INIS)

    Lead and uranium isotopic abundances in rocks from the Oklo mine show large deficiencies of radiogenic lead in the mineralized regions and enormous excesses of this element outside the uraniferous zones. A fracture lined with secondary minerals and its host rock from distances as far as approx. 13 meters away contain lead that was deposited contemporaneously. The isotopic composition of lead in these samples varies systematically as a function of distance from the fracture. This regularity may reflect the nature of the processes that transported lead from the ores and deposited it in the surrounding rocks

  8. Fission product revaporization

    International Nuclear Information System (INIS)

    One of the major developmental advances in severe accident analysis since the Reactor Safety Study relates to the accounting for radionuclide retention in the reactor coolant system (RCS). The retention is predicted to occur as materials released during core heatup and degradation are transported through the RCS to the break (broken pipe, relief valve, etc.). For accidents involving relatively long RCS-transit times (e.g., station blackout in PWRs), the fraction of released material predicted to remain in the RCS can be large. For example, calculations for the Surry station blackout sequence showed retention of approximately 80% of the cesium and iodine species. Factors affecting fission product revaporization are post-vessel-failure thermal hydraulics, heat loss through vessel and pipe walls, and revaporization chemistry. The accident conditions relevant to this issue range from those present immediately after vessel failure to those present after containment failure. The factors that affect fission product revaporization are discussed

  9. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40Ar+141Pr, 20Ne+165Ho and 12C+175Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  10. Long-range fission fragments from radiogenic lead. [Fission of nuclides with Z approx = 114

    Energy Technology Data Exchange (ETDEWEB)

    Maly, J.; Walz, D.R

    1978-06-01

    Fission tracks with a range 19 percent longer than tracks produced by uranium fission fragments were observed on mylar foils after a three-year underground (100 m.w.e.) exposure to 3600 cm/sup 2/ of radiogenic lead. Ordinary lead which was simultaneously exposed to mylar foils under the same conditions yielded a background effect of only 3 percent of the effect from radiogenic lead. The observed long-range tracks are best explained as resulting from the spontaneous fission of natural, superheavy elements in the suggested element-114 stability region which were coprecipitated with the radiogenic lead. Most likely they are created by a decay chain starting in the proposed Z = 124 to 126 region from a superheavy element which chemically follows uranium. 2 figures, 3 tables.

  11. Condensed fission products

    International Nuclear Information System (INIS)

    It is presented a method to calculate cross sections of condensed fission product. The group constants are generated by NJOY code, from ENDF/B-V and JENDL-1 data. Cross section of 28 nuclides were grouped with the RRB fast reactor characteristics. To verify the time, number of PF and influence of fuel composition, the one energy group calculation for a fast reactor of 1000/MWE were done. (M.C.K.)

  12. Extended optical model for fission

    Science.gov (United States)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  13. The evaluation of fission product yields for 238U fission

    International Nuclear Information System (INIS)

    The cumulative fission yields for 45 fission product nuclides of 238U fission induced by neutron of fast reactor spectrum and high energy (around 14.0 MeV) neutron have been evaluated. The results were compared with the ENDF/B-6, JENDL-3/FY, CENDL-FY (86) and JEF-2/FY. It was found that in the total 68 evaluated values, the most of present results (88 percent in total) are in agreement with at least one of the main fission yield libraries within the quoted error limits

  14. Measurement of the Ratio of Fissions in U238 to Fissions in U233 Using 1.60 Mev Gamma Rays of the Fission Product La140

    International Nuclear Information System (INIS)

    This paper describes a method for measuring ?28, the ratios of fissions in U238 to fissions in U235. The method was developed as a part of the D2O lattice programme at the Massachusetts Institute of Technology (MIT) ; however, it can be used for measurements in any thermal reactor of natural or slightly enriched uranium. The fast fission factor in uranium cannot be measured directly. It is, however, related to ?28 which can be measured: ? =1 + C?28 , where C is a constant involving nuclear properties of U238 and U235: Previous methods of measuring ?28 utilize a comparison of fission-product gamma or beta activity in foils of differing U235 concentration irradiated within a fuel rod in the lattice. A double fission chamber is then used to relate the U238 and U235 fission product activity to the ratio of the corresponding fission rates. Most of the experimental uncertainty associated with the measurement of ?28 a is generally attributed to the fission chamber calibration. The method developed at MIT avoids the need for a fission chamber calibration and is accomplished directly with foils irradiated within a fuel rod in the lattice. Two foils of differing U235 concentration are irradiated and allowed to cool for at least a week. The relative activity of the 1.60 MeV gamma ray of the fission product La140 is determined for the two foils. This ratio, the foil weights and atomic densities, and the ratio of fission yields ?25/?28 for La140 are then used to determine ?28. This value of ?28 is used to calibrate simpler measurements in which the relative gamma activity above 0.72 MeV is determined for sets of foils irradiated in fuel rods of the lattices of interest. The energy 0.72 MeV is a convenient discrimination level, as it is the maximum energy of Bremsstrahlung from 2.3-d Np239. This method appears to offer the advantages of direct measurement and increased accuracy (the major uncertainty being the ratio of ?25/?28 La140). In addition, the results can be improved as better fission product yield ratio data become available, and the method facilitates comparison of ?28 values obtained by different laboratories. (author). (author)

  15. Statistics for fission track analysis

    CERN Document Server

    Galbraith, Rex F

    2005-01-01

    Statistical analyses of the numbers, lengths, and orientations of fission tracks etched in minerals yield dating and thermal history information valuable in geological and geoscience applications, particularly in oil exploration. Fission tracks can be represented mathematically by a stochastic process of randomly oriented line segments in three dimensions, and this "line segment" model can describe and explain the essential statistical features of the data, providing a rigorous foundation for quantitative modelling and simulation studies.Statistics for Fission Track Analysis explores the line segment model and its consequences for the analysis and interpretation of data. The author derives the equations for fission track data and the theoretical probability distributions for the number, orientation, and length measurements of the tracks. He sets out the theory of fission track dating and through numerical examples, presents methods for analyzing and interpreting fission track counts. Later chapters address st...

  16. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  17. Fission hindrance in hot nuclei

    International Nuclear Information System (INIS)

    The role of dynamics in fission has attracted much interest since the discovery of this process over fifty years ago. However, the study of the dynamical aspects of fission was for many years hampered by the lack of suitable experimental observables against which theoretical calculations could be tested. For example, it was found that the total kinetic energy release in fission can be described equally well by very different dissipation mechanisms, namely the wall formula, that is based on the collisions of the nucleons with the moving wall of the system, as well as a bulk viscosity of the nuclear matter. Although early theoretical work suggested that the fission process may be described as a diffusion process over the fission barrier, this was largely forgotten because of the success of a purely statistical model which instead of enumerating the ultimate final states of the process argues that the fission rate is determined at the open-quote transition state close-quote as the system traverses the fission saddle point. It was therefore significant when Gavron showed that the transition state model was unable to describe the number of neutrons emitted prior to scission at high excitation energy in reactions of 16O+142Nd. Subsequent experimental work using different methods to measure the fission dissipation/viscosity has confirmed these initial observations. It was therefore very surprising when Moretto in recent publications concluded that their analysis of fission excitation functions obtained with a and ? and 3He induced projectiles was perfectly in accord with the transition state model and left no room for fission viscosity. In this paper we'll show that Moretto's analysis is flawed by assuming first chance fission only (in direct contradiction to the experimental observation of pre-scission neutron emission in heavy-ion induced fission), and reveal why the systematics presented by Moretto looked so convincing despite these flaws

  18. A simulation of fission chamber

    International Nuclear Information System (INIS)

    Fission chambers are widely used for online neutron flux measurements in nuclear reactors. These detector can cover up the entire range of reactor power operation by using in the pulse, Campbell and DC modes. The paper describes the simulation of fission chamber carried out with the objective of optimizing the design of High temperature fission chambers for PFBR. The Monte Carlo methods has been utilized to study detector performance characteristics

  19. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  20. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy of the fissioning system obey a hidden systematics that can be explained by the number of states in the vicinity of the outer fission barrier as a function of mass asymmetry, if the potential is constructed as the sum of the macroscopic contribution of the compound nucleus and empirically determined fragment shells. This hidden systematics also explains the transition from asymmetric to symmetric fission around 226Th and around 258Fm.

  1. Fission in Rapidly Rotating Nuclei

    Directory of Open Access Journals (Sweden)

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  2. Hidden systematics of fission channels

    International Nuclear Information System (INIS)

    It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy of the fissioning system obey a hidden systematics that can be explained by the number of states in the vicinity of the outer fission barrier as a function of mass asymmetry, if the potential is constructed as the sum of the macroscopic contribution of the compound nucleus and empirically determined fragment shells. This hidden systematics also explains the transition from asymmetric to symmetric fission around 226Th and around 258Fm. (authors)

  3. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  4. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  5. Baby fission chambers

    International Nuclear Information System (INIS)

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author)

  6. The SPIDER fission fragment spectrometer for fission product yield measurements

    International Nuclear Information System (INIS)

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement

  7. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number $N = 162$ or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with $N = 154-172$ are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of $N = 162$ (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  8. Calculation of the fast fission factor from basic nuclear data

    International Nuclear Information System (INIS)

    Using a two group model the ratio of U238 fissions to U235 fissions, and hence the fast fission factor, ?, is calculated from basic nuclear data in near natural uranium fuelled lattices. Proper account is taken of reflection of fast neutrons from the moderator and of interaction between rods in separate channels. Both these effects are shown to he significant. The calculated fission ratios are compared with the results of a number of experiments in graphite lattices. Agreement is excellent with some 20 metal rod experiments carried out at Harwell and at Brookhaven, the calculated values being within the experimental error for all except the largest rods. Although agreement is not uniformly good with four oxide cluster experiments carried out at Winfrith, the greatest discrepancy amounts to less than 0.3% in ?. (author)

  9. Post-scission fission theory: Neutron emission in fission

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.

    1997-11-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity {bar {nu}}{sub p}. Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and {bar {nu}}{sub p} upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E{sub n}), where E{sub n} is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches.

  10. Study of fission dynamics in fusion–fission reactions

    International Nuclear Information System (INIS)

    Highlights: ? A modified wall and window dissipation was used in Langevin equations. ? Prefission multiplicities of particles were calculated for 200Pb. ? Fission probabilities were calculated for 200Pb and compared with the experimental data. -- Abstract: One-dimensional Langevin equations were applied to study the fission dynamics of compound nucleus 200Pb formed in heavy ion-induced fusion reactions in an intermediate range of excitation energies. A modified wall and window dissipation with a reduction coefficient, ks, has been used in the Langevin equations. The average pre-fission multiplicities of neutrons, light charged particles and fission probabilities were calculated for 200Pb and results compared with the experimental data. It was shown that the results of the calculations are in good agreement with the experimental data of neutron and charged particles (p and alphas) multiplicities and fission probabilities by using values of ks in the range 0.27 ? ks ? 0.48.

  11. Spontaneous fission yields for 246Cm

    International Nuclear Information System (INIS)

    Cumulative yields for 17 fission products in the spontaneous fission of 246Cm have been determined with ?-ray spectrometry. These yields are compared with those determined in the spontaneous fission of 244Cm and 248Cm. (author)

  12. Techniques of fission chamber efficiency calibration

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S. (Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire); Kaplan, S.N. (California Univ., Berkeley (USA)); Beer, G.A.; Olin, A. (Victoria Univ., British Columbia (Canada))

    1983-10-01

    Multiplate fission chambers were used in experiments at TRIUMF to measure the absolute muon induced fission yield. To determine the yield, the fission chamber detection efficiencies must be known. In this paper, the methods of efficiency calibration have been discussed.

  13. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    The disintegration constant of U238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO3) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.)

  14. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  15. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  16. Status of fission yield data

    International Nuclear Information System (INIS)

    In this paper first we summarize the current status of the US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximatively 1100 fission products. When finalized the recommended data will become part of the next version of the US ENDF/B VI. In a second part we review the different models developed to derive independent yields sets. The Zp and empirical models have been extensively studied for 6 fissioning nuclides. Comparison of model estimates with experimental data will be presented. The parameters for other fissioning systems will be derived by the use of systematic trends. A comparison of model estimates with some recent experimental data, obtained from Lohengrin (249 Cf T) will be given

  17. The Fission Time Projection Chamber

    Science.gov (United States)

    Heffner, Mike

    2009-10-01

    New high-precision fission experiments have become a priority within the nuclear energy community due to a growing, world wide, interest in nuclear reactors. In particular, the designs of next generation reactors require reductions in the uncertainties on a number of energy dependent, neutron induced fission cross sections. The fission Time Projection Chamber (fission TPC) is the instrument that has been selected to carry out these challenging cross section measurements. This 6000 pad TPC with 2mm hex pads has a volume of only 2 liters and is filled with a hydrogen working gas. A unique set of electronics have been designed for the TPC that use all off the shelf components to reduce development costs. In this talk, I will show how the TPC will improve previous measurements, the design specifics of the fission TPC and the progress to date.

  18. Fission fragment angular distribution in heavy ion induced fission

    OpenAIRE

    S Soheyli; I Ziaeian

    2006-01-01

      We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a) without neutron correction and b) with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the averag...

  19. Fission fragment angular distribution in heavy ion induced fission

    Directory of Open Access Journals (Sweden)

    S. Soheyli

    2006-06-01

    Full Text Available   We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a without neutron correction and b with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the average emitted neutron from compound nuclei considering the best fit for each system.

  20. Activity decay of fission products produced by fast fissions

    International Nuclear Information System (INIS)

    After an introduction presenting the calculation of the gamma activity in fission products either after the pile shutdown or after a certain cooling time, the authors report the determination of the gamma activity of each radioactive nuclide formed during fission. They present the calculation method which uses the most recent data for each nuclide (decay period, fission efficiency, gamma ray energy emitted by each disintegration, emission percentage). Results are presented under the form of activity decay curves for each group and for each nuclide after a 30-day or infinite irradiation

  1. On prompt fission neutrons

    International Nuclear Information System (INIS)

    Results of calculations of prompt neutron emission characteristics are presented for the spontaneous fission of 252Cf. The average number ?(A) and the average center of mass kinetic energy ?(A) of the neutrons as well as the total neutron spectra are calculated in terms of the fragment mass. The available excitation energies of the fragment pairs are the input data, divided between the fragments by a thermal equilibrium assumption taking into account the equilibrium statistical fluctuations too. The total angular and energy distributions in the laboratory frame are built up of those of the individual fragments. The evaporation calculations show that the high energy behaviour of the spectra is governed rather by the temperatures than by the details of the individual cascade spectrum forms. The experimental data are reproduced by the calculated ones fairly well, so there is no need for assuming existence of additional scission neutrons. (author) 24 refs.; 4 figs

  2. Comparison of fission signatures from ?- delayed ?-ray and neutron emissions

    Science.gov (United States)

    Cárdenas, E. S.; Reedy, E. T. E.; Seipel, H. A.; Failor, B. H.; Hunt, A. W.

    2015-08-01

    The delayed ?-ray and neutron fission signals utilized in active inspection techniques were measured simultaneously in order to directly compare their detection sensitivities. Fissionable and non-fissionable targets were irradiated by a 15-Hz pulsed bremsstrahlung beam operating at endpoint energies from 7 to 22 MeV. The fissionable mass detection limits for both these signals decreased approximately three orders of magnitude as the irradiation energy was increased with the delayed ?-ray limits 4.3-8.2 times smaller. The signals from the non-fissionable targets were consistent with the natural passive backgrounds for irradiation energies up to 16 MeV. At higher bremsstrahlung energies, there was a target independent active background in the delayed ?-ray signal that accounted for 35% of the gross yield. In addition, these higher irradiation energies resulted in products from 9Be(?,p)8Li and 18O(?,p)17N reactions interfering with the delayed ?-ray and neutron fission signals, respectively.

  3. Pulsed fission/fusion hybrid engines

    International Nuclear Information System (INIS)

    Research into high-thrust, high-specific impulse rocket engines using energy from nuclear reactions which has been conducted at this organization will be discussed. The engines are all conceptual in nature, yet are within the realization of conventional or near-term technology. The engine concepts under study at Foundation, Inc. are designed to obviate or minimize these negative effects of the ORION scheme. By using non-chemical triggers to initiate a non-breakeven fusion reaction at the core of a target composed of both fission and fusion fuel, it should be possible to employ the fusion neutrons thus produced to begin a fission reaction in U-235 or Pu-239. Since the density of the target can be increased by as much as a factor of 250 through compression of the pellet, the amount of fission material necessary to produce a critical mass can be greatly reduced. (This also means that the amount of fission products produced for a giventhrust level is also reduced from the ORION levels.) Coupling this eeffect to the large number of 14 MeV fusion neutrons produced early in the compression process and subsequently to the heating of some additional fusion fuel surrounding the critical mass leads to the very efficient burnup of the target. This insures both high yield from the target as well as low cost per MJ energy released. Finally, the use of such small pellets allows the scale of the energy released to be tailored to a level usable in rocket engines of a few tens of tons thrust level. (orig.)

  4. Intrinsic energy partition in fission

    Directory of Open Access Journals (Sweden)

    Mirea M.

    2013-03-01

    Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.

  5. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    The gamma radiation from the fragments of the thermal neutron fission of 235U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10-10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  6. Fission-product source terms

    International Nuclear Information System (INIS)

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  7. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  8. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  9. Recent progress in theories of nuclear fission

    International Nuclear Information System (INIS)

    The lecture focuses on the characteristics of the fission process related to the potential energy surface around the fission barrier configuration. In particular, the calculations of fission barrier heights by macroscopic-microscopic method, fission probabilities and cross sections are discussed, as well as the theory of fragment angular distributions. 52 refs, 31 figs

  10. Thirty years of nuclear fission in Yugoslavia

    International Nuclear Information System (INIS)

    Experimental nuclear reactor 'RB' in Boris Kidric Institute in Vinca is the first nuclear facility built in Yugoslavia in which the first Yugoslav controlled nuclear fission was achieved thirty years ago on April 26, 1958. Designed by Yugoslav scientist as a bare, natural uranium-heavy water critical assembly, the 'RB' reactor has survived a series of modifications trying to follow directions of contemporary nuclear research. The actual 'RB' reactor technical characteristics and experimental possibilities are described. The modifications are underlined, the experience gained and plans for future are presented. A brief review of reactor operation and experiments performed is shown. (author)

  11. Fission of rotating fermium isotopes

    International Nuclear Information System (INIS)

    In this paper we discuss the process of fission of even fermium isotopes, on the basis of their rotational states. The nuclear intrinsic vorticity and its coupling to the global rotation of the nucleus are used to simulate the interaction between the rotational motion and the pairing field, and lead to pairing quenching in the case of higher angular momentum states. The rotation leads to a decreasing of the fission barrier heights. The ingredients of the model—ground state fission barriers, pairing correlation energies and the cranking moments of inertia—are obtained within the self-consistent Hartree–Fock–Bogoliubov framework using the Skyrme SkM? energy density functional. Fission barriers and half-lives are estimated for spins I up to I = 16?

  12. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 1020 to 9.0 x 1020 eV, and was independent of density between 12.5 and 127.5 g l-1 N2O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  13. Background radiation from fission pulses

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  14. Background radiation from fission pulses

    International Nuclear Information System (INIS)

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: 235U, 238U, 232Th, and 239Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ?- and ? spectra, only 235U and 239Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ?- and ? decay energies are included. 27 refs., 47 figs., 9 tabs

  15. Dynamics of cold fission processes

    International Nuclear Information System (INIS)

    The neutron-rich 264 Fm should be the best cold-fissioning nucleus, owing to the strong shell effect of the doubly magic fragments 132 Sn. The optimum cold-fission path in the plane of the two independent shape coordinates, the separation distance R and of the radius of the light fragment R2, is determined. Werner-Wheeler inertia tensor and Yukawa-plus-exponential deformation energy are used to calculate the action integral. Microscopic shell and pairing correction ar based on the asymmetric two-center single-particle model. Different variation laws R2 = R2 (R), for the fission trajectory were tested: polynomials of 2nd, 3rd and 4th degree and an exponential function. The partial half-life for cold fission is estimated to be several orders of magnitude shorter than that of ?-decay. (authors)

  16. Measurement of fission cross sections

    International Nuclear Information System (INIS)

    A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)

  17. Naturalness

    OpenAIRE

    Cvetko-Orešnik, Varja

    2015-01-01

    The framework of the paper is Natural Syntax initiated by Janez Orešnik in thetradition of (morphological) naturalness as established by Wolfgang U. Dressler and Willi Mayerthaler. The basic tenets of Natural Syntax are described at the beginning of the paper. Natural Syntax is here applied to aspects of Old Indian synchronic verbal morphonology and verbal morphosyntax: (1) Causative -áya- verbs in Rig Veda and Atharva Veda. The root vowel a is short in closed syllables and long in open sylla...

  18. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  19. The microscopic theory of fission

    CERN Document Server

    Younes, W

    2009-01-01

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a $^{239}\\textrm{Pu}$ target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  20. The microscopic theory of fission

    Science.gov (United States)

    Younes, W.; Gogny, D.

    2009-10-01

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a 239Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  1. The Microscopic Theory of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  2. Composition of fission product mixtures

    International Nuclear Information System (INIS)

    The report gives a compilation of the isotopic composition and specific activity of fission products produced by thermal neutron fission of U-235 and Pu-239. The composition was computed using an electronic computer ES 1040. The presentation comprises data of 27 elements at the end of a neutron irradiation of 3 years and after a time interval of 1, 4 and 10 years after the end of irradiation. (author)

  3. Energy released in ternary fission

    International Nuclear Information System (INIS)

    From time to time (at best once per about 1000 fission events) a spontaneous (or induced) fission of a nucleus leads to three fragments, usually one light particle (which is more frequently 4 He or some Be, C, or O isotope) and two fragments of sizes not very different from those resulting from binary fission. Even less probable is a process in which the three fragments are almost identical. As with other cold spontaneous fission processes, ?-decay and cluster radioactivities, we can get some idea about the most probable particles emitted in ternary fission by looking at the released energy corresponding to different competing fragmentations. We have plotted both the liquid drop deformation energy estimations and the 'exact' calculations using different mass tables. Also, shown is a comparison for fissioning parent nuclei lying on the Green approximation for the line of ?-stability. We have calculated Q values for the cold splitting of even-even nuclei into three particles of equal size, as well as a various fission processes accompanied by light-particle emission for nuclides with Z = 90-116. Four possibilities to emit the light particle 4,6,8 He, 6,8,10,12 Be, 10,12,14,16,18 C, and 14,16,18,20,22,24 O are analyzed: from the most probable light fragment, from its corresponding heavy fragment, and as half a particle from each fragment of an asymmetric or symmetric binary fission; the two processes having the largest Q values are listed with each of the 18 light particles. Data for a larger set of parent nuclei (including odd proton and neutron numbers) are available in a computer-readable file

  4. International handling of fissionable material

    International Nuclear Information System (INIS)

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  5. The binary fission origin of the moon

    Science.gov (United States)

    Binder, Alan B.

    1986-01-01

    The major arguments for and against the binary fission model of lunar origin are reviewed. Unresolved problems include: (1) how the protoearth acquired sufficient angular velocity to fission, and (2) how the earth-moon system lost its excess angular momentum after fission. Despite these uncertainties, the compositional similarities between the earth's mantle and the bulk moon suggest that the fission model is worth considering. The proposed sequence of events in the formation of the moon by binary fission is given.

  6. Simple diabatic model of induced fission

    International Nuclear Information System (INIS)

    A quantitative model describing fission is still not available although fission has been known for 50 years and an appreciable amount of experimental data exists. In the present paper a simple model accounting for the diabatic evolution of single particle states during fission is proposed. The model attempts to describe the measured distribution of masses to the fission fragments, for cases of induced fission in which the initial excitation energy is sufficiently large (approx-gt 10 MeV)

  7. Alpha Particle Emission in Fission

    International Nuclear Information System (INIS)

    Soon after it was discovered that alpha particles are occasionally emitted in fission, it was concluded, on the basis of the energy and angular distributions of these particles, that they are emitted from the space between the fragments at times close to that of the snapping of the neck that connects them. It is shown that, independent of any (still unknown) dynamic features of the alpha-particle ejection process, the energy required to emit alpha particles from between the fragments at the indicated time is barely available. Presumably the rareness of alpha particles in fission, and the apparent absence of still heavier ''third'' particles, is associated with the marginal energy supply at the time of actual fragment division. The fact that the total kinetic energy release in so-called ternary fission is roughly equal to that in normal binary fission instead of being about 20 MeV larger is shown to imply that the mean fragment separation at the division time is larger in ternary fission. This is interpreted to indicate that alpha particles are emitted with greatest probability n those fissions where ample energy happens to be provided through the stretching of an abnormally long neck between the fragments before they actually divide. It is suggested that the release of the alpha particles is a sudden rather than adiabatic process. (author)

  8. Modelling isothermal fission gas release

    International Nuclear Information System (INIS)

    The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)

  9. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was surrounded by enriched uranium 235U so as to approach criticality with fast neutrons. The simulation predicts a multiplication factor keff in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B- VII.0 evaluation of the 237Np fission cross section by the n-TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. The large distortion that should be applied to the inelastic cross sections in order to reconcile the critical experiment with its simulation is incompatible with existing measurements. Also we show that the ?-bar of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n-TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np. (author)

  10. Sequential Detection of Fission Processes for Harbor Defense

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Walston, S E; Chambers, D H

    2015-02-12

    With the large increase in terrorist activities throughout the world, the timely and accurate detection of special nuclear material (SNM) has become an extremely high priority for many countries concerned with national security. The detection of radionuclide contraband based on their γ-ray emissions has been attacked vigorously with some interesting and feasible results; however, the fission process of SNM has not received as much attention due to its inherent complexity and required predictive nature. In this paper, on-line, sequential Bayesian detection and estimation (parameter) techniques to rapidly and reliably detect unknown fissioning sources with high statistical confidence are developed.

  11. Measurement of fission gas release from irradiated nuclear fuel elements

    International Nuclear Information System (INIS)

    A fission gas measurement system for the analysis of released gases from MOX and PHWR fuels has been designed, fabricated and commissioned in the hot cells of Post Irradiation Examination Division of Bhabha Atomic Research Centre, Mumbai. The system was used for the measurement of fission gases released from natural UO2 fuels and ThO2 fuels from PHWRs. The burnups of these fuels ranged from 2 GWD/TeU to 15 GWD/TeU. Some of the results from PHWR fuel elements from Kakrapar Atomic Power Station are presented in the paper, to highlight the utility of the system. (author)

  12. Event-by-event study of neutron observables in spontaneous and thermal fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J

    2011-09-14

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.

  13. Relative quantifying technique to measure mass of fission plate in a fission chamber

    International Nuclear Information System (INIS)

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the ?-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  14. Systematics of fusion-fission time scales

    International Nuclear Information System (INIS)

    New pre-scission neutron multiplicity (?/sub pre/) data for 7Li-, 16O-, and 20Ne-induced fission are presented, spanning a fissility range from 0.60 to 0.85. Fission time scales have been deduced for two extreme assumptions regarding the mean excitation energy during fission. It is found for fusion-fission reactions that the fission time scale is independent of fissility, within a factor 1.5. A comparison of time scales deduced from ?/sub pre/ measurements for fast-fission with quasifission time- scales deduced from the rotation angle of the composite system allows a minimum fusion-fission time scale of 30 x 10/sup -21/ s to be determined. For the most fissile system, fast-fission (fission without barrier) is shown to be up to three times faster than fusion-fission. Using a model to interpret the fusion-fission time scales, it is concluded that motion in the fission direction is strongly overdamped. This means that the dynamics of fission are dominated by a slow diffusion towards scission, and not by the potential energy surface. It is shown that such a picture can explain the observed lack of dependence of the fission time scale on fissility

  15. Assessment of fissionable material behaviour in fission chambers

    Science.gov (United States)

    Cabellos, O.; Fernández, P.; Rapisarda, D.; García-Herranz, N.

    2010-06-01

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  16. Assessment of fissionable material behaviour in fission chambers

    International Nuclear Information System (INIS)

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  17. Reference Reactor Module for the Affordable Fission Surface Power System

    International Nuclear Information System (INIS)

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures 2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important 'affordability' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk

  18. Compact fission counter for DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4? ?-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed ?-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture ? rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to ? particles, which is important for experiments with ?-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from ?'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from ?'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  19. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  20. Neutron emission prior to fission

    International Nuclear Information System (INIS)

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  1. Prompt Emission in Fission Induced with Fast Neutrons

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  2. Separation of fission Molybdenum for production of technetium generator

    International Nuclear Information System (INIS)

    There are two basically different methods for Mo-99 productions: Activation of Mo-99 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific activity of the product. Idolisation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yield can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity. Fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consist in the retention of the fission gases the recycling of non-consumed fuel and the treatment of the waste streams arising. This publication will deal with the individual steps in the process

  3. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  4. The latest progress of fission track analysis

    International Nuclear Information System (INIS)

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  5. Change over from compound nuclear fission to quasi-fission

    International Nuclear Information System (INIS)

    Fission fragment mass distribution has been measured from the decay of 246Bk nucleus populating via two entrance channels with slight difference in mass asymmetries but belonging on either side of the Businaro Gallone mass asymmetry parameter. Both the target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies the width of the fission fragment mass distribution was found to be drastically different for the 14N+ 232Th reaction compared to the 11B+ 235U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply. (authors)

  6. Change over from compound nuclear fission to quasi-fission

    International Nuclear Information System (INIS)

    Fission fragment mass distribution has been measured in two reactions to populate compound nucleus 246Bk. Both the target nuclei were deformed. However, entrance channel mass asymmetry of the two systems was on the either side of the Businaro Gallone mass asymmetry parameter. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be significantly different for the 14N+232Th reaction compared to the 11B+235U reaction. The entrance channel mass asymmetry was found to play a significant role in deciding the fusion process. (authors)

  7. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  8. Measurements of the effective range of fission fragments in UO2 and the disintegration constant for spontaneous fission of 238U

    International Nuclear Information System (INIS)

    The results of measuments of the disintegration constant for spontaneous fission in 238U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author)

  9. Report of fission study meeting

    International Nuclear Information System (INIS)

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  10. Cranking mass parameters for fission

    CERN Document Server

    Mirea, M

    2009-01-01

    A formalism for semi-adiabatic cranking mass parameters is presented. For the fission process of 234U, the time-dependent pairing equations of motion were used to calculate the excitation energy and to extract values of the cranking inertia. A fission barrier is determined by minimizing the action trajectory in a five dimensional configuration space spanned by elongation, necking, deformations of fragments and mass-asymmetry. The deformation energy is computed in the the frame of the microscopic-macroscopic model. The two center shell model with Woods-Saxon potentials is used in this context. Values of the inertia for excited fissioning systems are reported. A dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced.

  11. Fission Yields in the Iodine Region

    International Nuclear Information System (INIS)

    Independent yields of all iodine isotopes from l118 to I134 except I122 (short-lived), I127(stable) and I129(long-lived) resulting from irradiating natural uranium with 590-MeV and 19-GeV protons have been measured. In addition, cross-sections (mostly cumulative) of many xenon and tellurium isotopes have been obtained. In the experiments extensive use has been made of an electromagnetic isotope separator, constructed at CERN for nuclear reaction studies, by which the iodine (or tellurium) isotopes were separated from samples chemically isolated from the irradiated targets. In the study of xenon isotopes the uranium target was heated in a small oven connected to the separator via a cold trap to stop unwanted activities. After the separation, the activity of the samples was measured by counting methods. In certain cases (I118, I119, I120,I121, Xe118, Xe119, Xe120, Xe121) spectroscopic investigations were performed to provide information for the conversion of the counting data to absolute counting-rates needed for the determination of the fission yields. The experiments show a significant shift in the isotopic cross-section distribution when the 19-GeV results are compared with those obtained at the lower irradiation energy. The yields far out ai the neutron-deficient wing increase considerably whereas the other part of the distribution is depressed. A comparison with spallation data indicates that the neutron-deficient part of the distribution might result from the spallation of uranium. Spallation gives negligible yields in the iodine regional 590 MeV, but at 19 GeV these cross-sections a re expected to be much larger. The competition with spallation decreases the probability for fission, and consequently the yields of the fission products will decrease. (author)

  12. Weathering processes at the natural nuclear reactor of Bangombe (Gabon). Identification and geochemical modeling of the retention and migration mechanisms of uranium and rare earth elements

    International Nuclear Information System (INIS)

    The natural nuclear fission reactor of Bangombe (Gabon) was discovered in 1985. It is located 30 km SE of the uranium Oklo ore deposit which is well-known for its reactors discovered in 1972. In contrast to the latter ones, the reaction zone of Bangombe is situated close to the surface and therefore has been affected by supergene weathering processes. The purpose of this study was to characterize the main effects related to these alteration processes on the rocks surrounding the Bangombe reactor zone as well as to determine the major mechanisms, influencing the migration and retention of U and REE in this geological system. The different approaches considered in this study comprise mineralogical and geochemical investigations, mass balance calculations, sequential extraction experiments as well as thermodynamic simulations. It could be shown that the present rock and mineral assemblages result from a complex and multi-stage history during which the rocks were affected by diagenetic, hydrothermal, tectonic and recent alteration processes. Multiple transformations led to the setting of different horizons characterized by very specific physico-chemical conditions and mineral associations. It has been shown that in the various units of the weathering sequence, the mechanisms and mineral phases determining the U and REE migration/retention behaviour are quite different and highly dependent on the physico-chemical conditions prevailing in the ambient environment. Apart from residual and neo-formed clays, especially amorphous and crystalline Fe- and Mn oxides and oxy-hydroxides, phosphates as well as minor phases such as carbonates and heavy minerals were identified to play an important role in REE and U mobility. The acquisition of hydrodynamic data enabled to simulate water-rock interaction and mass-transfer processes which have been produced during the alteration of the Bangombe reactor zone. Thermodynamic simulations showed that elevated U-concentrations downstream the reactor zone at present-days may be simply explained by local re-equilibration of the aquifer forming pelites (containing primary and secondary U-minerals) with the ambient weathering solution. (authors)

  13. Velocity fluctuations of fission fragments

    CERN Document Server

    Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz

    2015-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  14. The VERDI fission fragment spectrometer

    OpenAIRE

    Frégeau M.O.; Bry? T.; Gamboni Th.; Geerts W; Oberstedt S.; Oberstedt A.; Borcea R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This conf...

  15. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  16. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  17. Atomic collisions and fission technology

    International Nuclear Information System (INIS)

    Atomic physics aspects of fission technology are discussed, in particular, isotope enrichment and the slowing down of fission products, neutrons, etc., which leads to radiation damage and heating (and ultimately to power generation). Selective laser excitation of atoms or molecules promises to be a more efficient means of isotope separation than previous methods. Neutron radiation effects can be simulated in much less time by charged-particle transport. Problems in electronic and nuclear stopping of ions are reviewed. Energy loss spectra and stopping power for I ions are shown. 7 figs

  18. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  19. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  20. Neutronics for critical fission reactors and subcritical fission in hybrids

    International Nuclear Information System (INIS)

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  1. Characterization of Samples with Spontaneously Fissioning Isotopes

    International Science & Technology Center (ISTC)

    Development of the Method for Characterization of the Samples, Containing Spontaneously Fissioning Radionuclides, by Measuring Fission Products Gamma-Radiation (for the System of NM Control and Accountability of the Federal State Unitarian Enterprise "PA"Mayak")

  2. Gamma and alpha compensated fission chamber

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, N.C. II

    1978-01-31

    A fission chamber neutron detector is described which is both gamma and alpha compensated. The alpha compensation is provided by inclusion of a low neutron cross section, alpha particle emissive isotope within the gamma compensation portion of the fission chamber.

  3. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the 12th issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the IAEA. The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The type of activities included are: measurements, compilations and evaluations of fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and lumped fission product data (decay heat, absorption etc.). The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences

  4. Fission products measurements in the SLOWPOKE 2 reactor at the University of Toronto

    International Nuclear Information System (INIS)

    During 1995 and 1996 new measurements on fission and activation products in the water and air of the SLOWPOKE 2 nuclear reactor at the University of Toronto were performed. Due to the age of the fuel, small quantities of fission products are released during normal operation of the reactor. Low concentrations of fission and activation products can be measured in the water and air of the reactor. Studying the behaviour of fission and activation products in their natural conditions inside the reactor is very useful, both for improving the understanding of their real chemical and physical properties and for the development and evaluation of analytical methodologies. Adsorption and desorption of noble gases on charcoal can play an important role during any release of fission and activation products from containment to the atmosphere following a reactor accident. Experiments conducted at the SLOWPOKE 2 Reactor permitted the study of these phenomena

  5. Nuclear fission in covariant density functional theory

    Science.gov (United States)

    Afanasjev, A. V.; Abusara, H.; Ring, P.

    2013-12-01

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.

  6. Nuclear fission in covariant density functional theory

    Directory of Open Access Journals (Sweden)

    Afanasjev A.V.

    2013-12-01

    Full Text Available The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.

  7. Nuclear fission in covariant density functional theory

    CERN Document Server

    Afanasjev, A V; Ring, P

    2013-01-01

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.

  8. Superfluid fission dynamics with microscopic approaches

    CERN Document Server

    Simenel, C; Lacroix, D; Umar, A S

    2016-01-01

    Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.

  9. Collective spectra along the fission barrier

    OpenAIRE

    Pigni M.T.; Andreev A.V.; Shneidman T. M.; Massimi C.; Vannini G.; Ventura A.

    2012-01-01

    Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states) and in the intermediate wells (superdeformed and hyperdeformed states) play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster co...

  10. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent metal ions, Mg and Ca, in the ceramic host phases. The immobilization of rear earth (lanthanide series) fission products in these ceramic host phases will also be studied this year. Cerium oxide is chosen to represent the rear earth fission product for substitution studies in spinel, perovskite and zirconolite ceramic hosts. Cerium has +3 and +4 oxidation states and it can replace some of the trivalent or tetravalent host ions to produce the substitution ceramics such as MgAl2-xCexO4, CaTi1-xCexO3, CaZr1-xCexTi2O7 and CaZrTi2-xCexO7. X-ray diffraction analysis will be used to compare the crystalline structures of the pure ceramic hosts and the substitution phases. SEM-EDX analysis will be used to study the Ce distribution in the ceramic host phases. The range of cerium doping is planned to reach the full substitution of the trivalent or tetravalent ions, Al, Ti and Zr, in the ceramic host phases.

  11. How spontaneous fission was discovered

    International Nuclear Information System (INIS)

    The 70th anniversary of the discovery of spontaneous fission by the young Russian physicists Konstantin A. Petrzhak and Georgii N. Flerov is commemorated. The situation in the 1940s is described and the activities of the 2 scientists, including their involvement in the development of the A-bomb, is outlined. (P.A.)

  12. Search for singlet fission chromophores.

    Czech Academy of Sciences Publication Activity Database

    Havlas, Zden?k; Akdag, Akin; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, Josef

    Philadelphia : American Chemical Society, 2012. 31PHYS. ISSN 0065-7727. [National Fall Meeting of the American Chemical Society /244./. 19.08.2012-23.08.2012, Philadelphia] Institutional support: RVO:61388963 Keywords : singlet fission * chromophores Subject RIV: CF - Physical ; Theoretical Chemistry

  13. Brownian shape dynamics in fission

    Directory of Open Access Journals (Sweden)

    Randrup Jørgen

    2013-12-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions are obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potentialenergy surfaces; the current status of this novel method is described here.

  14. Fission distribution measurements of Atucha's fuel pellets with solid state track detectors

    International Nuclear Information System (INIS)

    Distribution of fissions in a UO2 rod has been measured by means of solid state detectors. Mica muscovite and Makrofol-N detectors were used in the experiment. The merits of mica muscovite relative to the Makrofol-N for the detection of fission fragments have been verified. However both fission track detectors closely agree (0,5%) in the final fission distribution of the UO2 rod. Sensitivity of the detectors shows to be linear in the range between 50.000and 360.000 fission tracks per square centimeter. Due to the high spatial resolution this method is better than any other technique. Determination were made in UO2 pellets similar to the fuel element of the Atucha reactor. The average fission rate in the rod has been measured within 0,8% error, and provides an accurate determination for the distribution of fissions in the rod wich is needed for the determination of energy liberated per fission in the natural uranium rod.(author)

  15. Intrinsic energy partition in fission

    International Nuclear Information System (INIS)

    The intrinsic energy partition between the 2 complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with 2 conditions. One of them fixes the number of particles and the other one separates the pairing active spaces associated with the 2 fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus. It is not possible to extract directly the energy partition from experimental data. Nevertheless, the main de-excitation process is the neutron evaporation. Therefore, indirect information can be obtained from neutron multiplicities, for which accurate results are available in literature. The excitation energy of each fragment can be computed and it is shown that several experimental features are reproduced by theoretical data. The deeply minimum in the neutron multiplicity occurs close to the mass of the doubly magic nucleus 132Sn. A maximal value of the neutron multiplicity is obtained for the mass 116, that is in the symmetric fission region. In general, the excitation energy of the light fragment is larger than that of the heavy one. As for neutron multiplicities, excepting the strong fluctuations related to the large mass asymmetries, the results agree qualitatively well with the experimental data. It is a first microscopic description of the intrinsic energy partition in a wide range of fission channels that succeed to reproduce the main behavior of the neutron multiplicities

  16. Fission of rapidly rotating fluid systems

    International Nuclear Information System (INIS)

    Progress in understanding of the problem of fissional breakup of an equilibrium fluid system through the growth of dynamical distortional instabilities caused by rapid rotation is reviewed. Classic results on equilibrium states, stability, and routes to fission are reviewed, and the equilibrium states of uniformly rotating incompressible fluids, uniformly rotating polytropes, differentially rotating polytropes, rotating isothermal gas clouds, and nonisentropic fluids are discussed in detail. The Bardeen, Friedman, Schutz, and Sorkin (1977) criterion for linear stability in fission modes is considered along with the generic instability of rotating bodies and linear stability of fission modes in hydrodynamic simulations of fission are described in detail

  17. Experimental study of three-component structure of mass-energy distribution of fission fragments in the vicinity of Pb

    International Nuclear Information System (INIS)

    Measurements and regression analysis of mass-energy distributions of fragments from 213At, 210Po, and 205Bi fission have been made. The results have proved three-component structure of fragment kinetic energy spectra. The nature of the phenomenon and its similarity to recently observed bimodal spontaneous fission of nuclei in the vicinity of Fm are discussed

  18. Fission dynamics at low excitation energy

    CERN Document Server

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  19. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the eleventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS

  20. Fission yield studies at the IGISOL facility

    International Nuclear Information System (INIS)

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)

  1. Theory of nuclear fission. A textbook

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Krzysztof [Lublin Univ. (Poland). Theoretical Physics Division; Krappe, Hans J.

    2012-07-01

    This book brings together various aspects of the nuclear fission phenomenon discovered by Hahn, Strassmann and Meitner almost 70 years ago. Beginning with an historical introduction the authors present various models to describe the fission process of hot nuclei as well as the spontaneous fission of cold nuclei and their isomers. The role of transport coefficients, like inertia and friction in fission dynamics is discussed. The effect of the nuclear shell structure on the fission probability and the mass and kinetic energy distributions of the fission fragments is presented. The fusion-fission process leading to the synthesis of new isotopes including super-heavy elements is described. The book will thus be useful for theoretical and experimental physicists, as well as for graduate and PhD students. (orig.)

  2. The decay and fission of uranium

    International Nuclear Information System (INIS)

    According to the Bernai liquid drop alpha particle model, the nuclear structure of uranium contains a core of 38 alpha particles comprised of 5 concentric layers. The innermost core of 4 alpha particles corresponding to the oxygen 16 nuclide is enclosed by 4 more alpha particles giving the structure of the sulphur 32 nuclide. The third layer of 6 alpha particles completes the 14 alpha particle model of nickel 56. The fourth and fifth layers each contain 12 alpha particles. It will be shown that the fifth layer forms a barrier to the natural radioactive decay of uranium isotopes. Furthermore, it appears that whist the fourth layer sets a limit on the minimum size of the larger daughter fragment of the thermal neutron induced fission of a uranium isotope, the third layer sets a limit on the minimum size of the smaller fragment

  3. A fission fragment detector for correlated fission output studies

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  4. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  5. The decay modes of heavy excited nuclei: from binary fission to multifragmentation

    International Nuclear Information System (INIS)

    The decay modes of heavy excited nuclei formed in dissipative collisions for the systems Ar+Au at 60 MeV/u and Kr+Au at 43 MeV/u are studied. A transition from binary fission towards multi-fragment emission is observed around 3 MeV/u excitation energy, independently of the considered system. The charge distributions of the three target-emitted fragments suggest a smooth change from fission events (as a ''natural'' continuity of binary fission) to ''residue protection'' then to ''symmetric ternary fragmentation'' events when the excitation energy increases from 3 MeV/u to 5 MeV/u. (authors). 2 figs

  6. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    International Nuclear Information System (INIS)

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.

  7. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  8. From transmutation to fission. Far-reaching discovery

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, B.

    1988-12-01

    The article explains the historical background of the discovery of nuclear fission, observed by O. Hahn and F. Strassmann. Becquerel's discovery of the natural radioactivity, in 1986, had made physicists waver in their belief in their fundamental concept which then was based on classical mechanics, Maxwell's electrodynamics, and Gibbs' theory of thermodynamics. The novel research activities then started have led to the discoveries and findings by E. Rutherford, Pierre and Marie Curie, F. Soddy, E. Fermi, and many other scientists. The article traces back the events which span the first observed transmutations as a result of studies on the nature of emanations, the first application of alpha particles for exploring the atomic structure, the development of particle accelerators, the discovery of artificial radioactivity, and the application of neutrons for inducing nuclear fission processes.

  9. A brief history of the ''Delayed'' discovery of nuclear fission

    International Nuclear Information System (INIS)

    This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred? This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. 43 refs

  10. JEFF-3T. Decay data and fission yield libraries

    International Nuclear Information System (INIS)

    Comprehensive decay-data and fission-yield libraries provide important input to a wide range of nuclear physics codes for nuclear applications. A new initiative has begun under the auspices of the NEA/OECD to generate improved data sets that will constitute the JEFF-3 libraries in ENDF-6 format, primarily for nuclear power, fuel reprocessing and waste management needs. Various sources of decay data have been accessed in order to assemble these files: NUBASE, ENSDF, UKPADD-6 and UKHEDD-2. Efforts have also focused on the evaluation of decay data for a number of important short-lived fission products, so that artificial adjustments to some of the relevant decay data and fission yields are not required to accommodate a previous lack of such data. Fission yields were adopted from UK evaluations recently undertaken to create the UKFY3 library. Decay-data files for 3 755 nuclides have been prepared, including sets of data for the stable nuclides (i.e. mass, natural abundance, spin and parity). Problems in the assignment of ENDF material numbers were addressed, while format and consistency tests were made using CHECKR and FIZCON, respectively. The assembly processes are discussed and reviewed, and the contents of the JEFF-3T starter libraries are described. (author)

  11. Monte Carlo based toy model for fission process

    International Nuclear Information System (INIS)

    There are many models and calculation techniques to obtain visible image of fission yield process. In particular, fission yield can be calculated by using two calculations approach, namely macroscopic approach and microscopic approach. This work proposes another calculation approach in which the nucleus is treated as a toy model. Hence, the fission process does not represent real fission process in nature completely. The toy model is formed by Gaussian distribution of random number that randomizes distance like the distance between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean (?CN, ?L, ?R), and standard deviation (?CN, ?L, ?R). By overlaying of three distributions, the number of particles (NL, NR) that are trapped by central points can be obtained. This process is iterated until (NL, NR) become constant numbers. Smashing process is repeated by changing ?L and ?R, randomly

  12. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    OpenAIRE

    Hollenbach, D. F.; Herndon, J M

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE seq...

  13. The fast fission as a dissipative regime in heavy ion reactions

    International Nuclear Information System (INIS)

    We present a macroscopic dynamical model for dissipative collisions in heavy ion reactions. The relative motion and the nucleon exchanges are described in the framework of the local harmonic approximation. The deformations and the rearrangement of densities inside the composite system are introduced by means of a time dependent hamiltonian. In such a description the fast fission process appears naturally. After we recall the experimental studies concerning fast fission phenomenon we compare the calculated distributions with the experimental ones

  14. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  15. Fission tracks dating for obsidian

    International Nuclear Information System (INIS)

    Obsidian from South America are dated by fission tracks methods. Samples are irradiated in a nuclear reactor with a flux of 1015 n/cm2. Results, corrected by 'Plateau' methods, are the following: obsidian from Bolivia: 4.14 x 106 yr., Ecuador: 8.79 x 105 yr., Colombia: 3.52 x 106 yr., Peru: 6.55 x 106 yr., Chile: 1.13 x 106 yr. (MMZ). 5 refs., 3 tabs

  16. The VERDI fission fragment spectrometer

    International Nuclear Information System (INIS)

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  17. Metrology for new generation nuclear power plants - MetroFission

    OpenAIRE

    Johansson, L; FILTZ J.-R.; De Felice, P.; SADLI M.; Plompen, Arjan; HEYSE JAN; HAY, Bruno; Dinsdale, A.; POMME Stefaan; CASSETTE P.; KEIGHTELY John

    2013-01-01

    This EMRP (European Metrology Research Programme) project, MetroFission, has been looking at solving metrological problems related to a new generation of nuclear power plants. The proposed Generation IV power plants are designed to run safely, make efficient use of natural resources, minimize the waste and maintain proliferation resistance. In order to reach these goals, the reactor operation involves higher temperatures, high-energy neutron fluence, different types of fuel where the minor ac...

  18. Fission, fusion and the energy crisis. 2. ed.

    International Nuclear Information System (INIS)

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment. (U.K.)

  19. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    The explicit treatment of the mass asymmetry degree of freedom has allowed us to extend the concept of fission to statistical processes involving the emission of fragments of any size. This generalization makes fission a process that extends throughout the periodic chart and that incorporates as special cases both traditional fission and light particle evaporation. Despite the extensive research covered in this presentation, a lot if not most of the work remains yet to be done. The experimental determination of the conditional barriers is so far limited to one isotope, and even that is incomplete. A systematic study of the conditional barriers is clearly necessary to test the validity (or to define the parameters) of the macroscopic models like the finite range model. As it has been done for the symmetric barriers in heavy systems, it should be possible to isolate the shall effects from the macroscopic part of the conditional barriers. Furthermore, the knowledge of the conditional barriers is essential for the predictions of cross sections and reaction rates

  20. Fission fusion hybrids- recent progress

    Science.gov (United States)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  1. Sensitivity of Makrofol fission track detectors

    International Nuclear Information System (INIS)

    Neutron fluence can be determined by means of fission track detectors consisting of fission foils in contact with suitable dielectrics (Makrofol E plastic was used in this case). Fission fragments emitted from the fissionable material into the plastic sheet generate permanent damage trails which can be made visible by an etching process. These tracks are then counted by means of an optical microscope or other methods and the number of tracks is proportional to the neutron fluence. The efficiency is defined as the ration of the number of tracks counted to the number of fissions in the fissionable layer. It is calculated from the mean range of the fission products in the fissionable material and in the plastic. The loss of very flat tracks with a small penetration angle caused by etching a certain bulk layer from the plastic foil is also taken into account. The formulas for the efficiency are deduced for thin fission layers and for thick fission foils. These calculations are made on the basis of the experimentally confirmed assumption that the ratio V of the track etching rate to the bulk etching rate is at least equal to 200. These high values for this ratio V are valid if an adequate period (several days) of oxygen influence to the damage trails is guaranteed. The calculated values of the efficiency are compared with experimental values and the uncertainty is discussed. (orig./HP)

  2. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    Energy Technology Data Exchange (ETDEWEB)

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  3. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  4. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances

  5. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  6. New achievements in nuclear fission physics

    International Nuclear Information System (INIS)

    A few recently observed new effects in nuclear fission are reviewed from the experimental side and theoretical explanations are indicated: 1) The structures in the mass yields and in the maximum fragment kinetic energies in cold fission are due to Coulomb effects; 2) Mass-symmetric fission of even-even nuclei does not proceed by splitting the nucleus into two equal parts and the fragments are differently deformed; 3) The dip in the total fragment kinetic energy at symmetry is due to a different symmetrical fission barrier; 4) In analogy to the cold compact fission events with highest kinetic energy, also those events of lowest kinetic energy but highest deformation are cold at the scission point; 5) Cold fission proceeds close to the saddle point

  7. Thermal Performance of Deep-Burn Fusion-Fission Hybrid Waste in a Repository

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J A; Chipman, V; Farmer, J; Shaw, H; Zhao, P

    2008-11-25

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Engine [1] combines a neutron-rich but energy-poor inertial fusion system with an energy-rich but neutron-poor subcritical fission blanket. Because approximately 80% of the LIFE Engine energy is produced from fission, the requirements for laser efficiency and fusion target performance are relaxed, compared to a pure-fusion system, and hence a LIFE Engine prototype can be based on target performance in the first few years of operation of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Similarly, because of the copious fusion neutrons, the fission blanket can be run in a subcritical, driven, mode, without the need for control rods or other sophisticated reactivity control systems. Further, because the fission blanket is inherently subcritical, fission fuels that can be used in LIFE Engine designs include thorium, depleted uranium, natural uranium, spent light water reactor fuel, highly enriched uranium, and plutonium. Neither enrichment nor reprocessing is required for the LIFE Engine fuel cycle, and burnups to 99% fraction of initial metal atoms (FIMA) being fissioned are envisioned. This paper discusses initial calculations of the thermal behavior of spent LIFE fuel following completion of operation in the LIFE Engine [2]. The three time periods of interest for thermal calculations are during interim storage (probably at the LIFE Engine site), during the preclosure operational period of a geologic repository, and after closure of the repository.

  8. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238U beam and a 12C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  9. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  10. Using fission track analysis techniques to measure plutonium isotopic ratios

    Science.gov (United States)

    Wilde, Justin Lynn

    The alpha decay energies for the plutonium isotopes 240 and 239 are too similar for the resolution of standard alpha spectrometry detectors to differentiate the isotopes which are therefore routinely reported as a combined activity. Knowledge of the 240/239 ratio is important to understand the source and possible previous use of the plutonium. A process was investigated to measure the 240/239 ratio using a combination of alpha spectrometry and fission track analysis methods. Samples were chemically processed to isolate plutonium which was then electro-deposited on stainless steel planchettes. The activities of the samples were determined using an alpha spectrometer. The planchettes were then placed against polycarbonate detectors and the assembly was irradiated with a neutron flux. Neutrons caused the 239Pu to fission. Fission fragments entered the polycarbonate detector and caused a trail of damage. After etching the detectors, tracks were visible under a microscope from the fission fragment damage. The mean chemical yield value for filter and soil samples was 21.7% and 9.2% respectively. The mean 240/239 ratio for four Waste Isolation Pilot Plant filters was 0.08 +/- 0.1 and 0.7 +/- 0.9 for five Rocky Flats soil samples. Due to low sample activities and low track densities the relative uncertainties for the measured samples were 0.63 and 1.07 for the Waste Isolation Pilot Plant air filter and Rocky Flats soil reference samples respectively. Uncertainty calculations and an empirical relationship of the process supported the high relative uncertainties for those samples. The primary source of uncertainty was determined to be the probabilistic nature of the fission process. Further calculations determined that the minimum relative uncertainty can be reduced to 0.042 if the track density was increased to approximately one thousand and the sample activity was 10 Bq or greater.

  11. The Non-Adiabatic dynamics of Singlet Fission in Polyacenes

    Science.gov (United States)

    Bradforth, Stephen

    2015-03-01

    Singlet fission involves the splitting of a single excitation into two coupled triplet excitations and is manifested in an increasing range of aromatic crystals and amorphous thin films. If the energy of the lowest triplet state is one half (or less) of the first singlet excited state, as it is for tetracene or pentacene and their derivatives, singlet fission may occur between two adjacent chromophores. Since there is no change in the overall spin state of the system, singlet fission can be exceptionally fast, occuring on the fs - ps range. If the triplets can diffuse away from the fission site they are available for harvesting as a dissociated carriers with up to two charge carrier pairs per absorbed photon. The possibility of recovering excess energy above the material band gap (in this case determined by the triplet energy) when a higher energy photon is absorbed has led to great recent interest in exploiting this process for increased efficiency solar energy harvesting. The nature of the electronic couplings between the chromophores, intermediate electronic configurations, and the role of entropy in the spin-allowed primary fission event have all come under great scrutiny. Results from a series of femtosecond spectroscopy experiments on a variety of amorphous thin films, nanoparticles and isolated acene dimer compounds will be presented that shed light on the electronic intermediate states key to the efficiency and speed of this process. Work supported as part of the Center for Energy Nanoscience, an Energy Frontier Research Center funded by the U.S. Department of Energy (DE-SC0001013).

  12. Dynamics of incomplete fusion-fission reactions

    OpenAIRE

    Crouzen, Paulus Caorlus Nicolaas,

    1988-01-01

    Fifty years after its first observation, nuclear fission is still a lively field of research. The contemporary interest in this well established phenomenon is mainly related to heavy-ion physics, where fission provides a valuable means for the study of reaction mechanisms. Until recently, most of the experiments on heavy-ion induced fission reactions were inclusive and often could not distinguish between complete and incomplete fusion. The present thesis work, however, was specifically focuss...

  13. Accurate fission data for nuclear safety

    OpenAIRE

    Solders, A.; Gorelov, D.; Jokinen, A; Kolhinen, V.S.; Lantz, M.; Mattera, A.; Penttila, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it...

  14. Fission product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  15. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  16. Nuclear Fission Products: From Source to Environment

    OpenAIRE

    A.W. Ajlouni; Y.S. Almasa`efah; Abdelsalam, M.

    2010-01-01

    After a peer review of data about nuclear fission products, we can see easily that, no clear chemical species, chemical compounds, or chemical processes were available after actual releases of nuclear Fission Products (FP) during planned releases, accidents, or in nuclear detonations. The models based on these ordinary reactions and species could not interpret the behaviors of the fission products or expect their effects in the environment or on the living creatures. To interpret the chemical...

  17. Maximum entropy approach to nuclear fission processes

    International Nuclear Information System (INIS)

    The conservation of the number of nucleons is shown to be an important constraint that governs the nuclear fission process. Both cold and energy-rich fission processes are analyzed. Particular attention is paid to the role of pairing effects in governing the fine structure in the mass and charge distributions. Symmetric and asymmetric fission processes are studied using a maximal entropy procedure. The interpretation of the results in terms of the Planck potential of the nucleons is discussed. (orig.)

  18. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  19. Statistical Analysis of Fission Chamber Signal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Cha, Kyoon Ho; Bae, Seong Man [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2012-05-15

    Fission Chamber (FC) is widely used at power range of commercial power reactors to measure neutron flux due to its longer life time than other detectors. However, detecting neutron counts from fission chamber during fuel loading is normally very low counting number. Fission chamber sensitivity is determined by experimental test to validate sensitivity on design specifications and linearity of neutron counts have been verified at fine range from 0.03 to 0.1 cps

  20. Statistical Analysis of Fission Chamber Signal

    International Nuclear Information System (INIS)

    Fission Chamber (FC) is widely used at power range of commercial power reactors to measure neutron flux due to its longer life time than other detectors. However, detecting neutron counts from fission chamber during fuel loading is normally very low counting number. Fission chamber sensitivity is determined by experimental test to validate sensitivity on design specifications and linearity of neutron counts have been verified at fine range from 0.03 to 0.1 cps

  1. Saturation current of miniaturized fission chambers

    International Nuclear Information System (INIS)

    We present the detailed formulae of the saturation currents for the four main categories of fission chambers operating in current mode. The results obtained are function of simple parameters: number of fission reactions within the chamber deposits, geometric characteristics of the electrodes and filling gas properties. A direct relation between the saturation current values and the ambient neutron flux is thus established. These results should reduce the number, the duration and the cost of the calibration procedures required to operate the fission chambers.

  2. Saturation current of miniaturized fission chambers

    Science.gov (United States)

    Chabod, Sébastien P.

    2009-01-01

    We present the detailed formulae of the saturation currents for the four main categories of fission chambers operating in current mode. The results obtained are function of simple parameters: number of fission reactions within the chamber deposits, geometric characteristics of the electrodes and filling gas properties. A direct relation between the saturation current values and the ambient neutron flux is thus established. These results should reduce the number, the duration and the cost of the calibration procedures required to operate the fission chambers.

  3. Mechanisms of Mitochondrial Fission and Fusion

    OpenAIRE

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a hea...

  4. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  5. Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent ...

  6. Shell Effects in Nuclear Fission

    International Nuclear Information System (INIS)

    The important part played by shell effects in nuclear fission has been reliably established experimentally and forms the basis of the theory of asymmetry of fission and other properties of fission fragments. However, from the theoretical point of view there are certain difficulties in understanding these effects, since at the moment of scission the fragments axe considerably deformed. When the shell effects are calculated in succession, the energy of the fissioning nucleus before scission may be presented in the form of the sum of the energies of the spherical fragments taking shell effects into account, the Coulomb interaction energy of the fragments and their deformation energy. The deformation energy of the fragments should be calculated not using the elasticity values of the fragments according to the drop model, but, for very low deformations, the single particle elasticity values taking into account the magic effects, with a gradual transition to the drop values for deformations at which the levels of neighbouring shells intersect. The single-particle elasticity values can be obtained from the experimental data on the Coulomb excitation of the nuclei. In Vandenbosch's calculations of fragment deformation, the elasticity of the fragments was based on the condition of coincidence between the deformation energy of the fragments and the experimental values for their excitation energy. However, in this case the elasticity was assumed to be constant at all deformations, and for this reason, although the elasticity values found in Vandenbosch do show magic'effects, they differ considerably in magnitude from the experimental elasticity values (see above).. The calculations of Vandenbosch also failed to take into account the magic effects for non-deformed fragments that lead to a reduction in the energy of the magic nucleus. Therefore, according to these calculations fission should be symmetrical, since the elasticity and consequently also the deformation energy (at the same deformation) are greater for magic than for non-magic nuclei. In fact, since the energy gain for magic spherical fragments is greater than the loss resulting from the increase in elasticity, the formation of magic and near-magic fragments, i.e. asymmetrical fission, is energetically advantageous. This energy gain is essentially connected with the fact that because of the high elasticity value at low deformations the magic fragments are so little deformed that the deformation energy does not compensate for the difference in mass of magic and non-magic fragments. Apart from the deformation energy, the kinetic energy of the separating degrees of freedom at the moment of scission should be taken into account when calculating the excitation energy of fragments. For the shell effects of the fragments to play an important part in fission, the process of deformation of the nucleus on descending from the saddle point (in the case of threshold fission) must be, as in fact it is, fairly slow with respect to the nucleonic degrees of freedom, i.e. τdef >> τnucleon (τdef is the descent time, τnucleon ∼ n/ΔEnucleon, and ΔEnucleon is the distance between the nucleon levels). In this case nucleonic shells are formed before scission. At the same time τdef rot, i.e. the process of descent is fast with respect to the rotational degrees of freedom (τrot h/ΔErot) - In the case of fission of an excited nucleus with fairly high excitation energy at the saddle point, ΔEnucleon may be so low that not only τdef rot but also τdef nucleon, i.e. the process of descent is accelerated with respect to all the degrees of freedom. In this case the density matrix of the nucleus does not change on moving from the saddle point. This would seem to explain the fact that the theoretical angular distribution of fragments at fission of an excited nucleus agrees with the experimental value only when the parameters determining the rotational state of the nucleus (moment of inertia) at the saddle point and not at the scission point are used. (author). (author)

  7. Photon- and electron-induced fission

    International Nuclear Information System (INIS)

    This chapter begins with a discussion of electromagnetic probes and nuclear fission. Section II concentrates on fission fragment angular distributions from the viewpoints of formalism and experiments. Section III discusses photofission cross sections and fission probabilities for deep subbarrier fission, the barrier region, and the giant resonance, quasideuteron, and ?-resonance region. Section IV is devoted to the fragment characteristics in photofission. Finally, Section V examines electrofission cross sections (inclusive electrofission cross sections and exclusive (e,e',f) coincidence experiments). 194 refs., 49 figs., 9 tabs

  8. Process for the extraction of fission products

    International Nuclear Information System (INIS)

    A process is described for the extraction of fission products contained in irradiated nuclear fuel elements which have been subject to a temperature of at least 12000C during their irradiation prior to dissolving the fuel by the wet process. After mechanically treating the elements in order to decan and/or cut them they are brought into contact with water in order to pass the fission products into aqueous solution. The treated elements are then separated from the thus obtained aqueous solution. At least one of the fission products is then recovered from the aqueous solution. The fission products are iodine, cesium, rubidium and tritium

  9. Fusion – fission dynamics: fragment mass distribution studies

    Directory of Open Access Journals (Sweden)

    Bhattacharya S.

    2015-01-01

    Full Text Available Using the major accelerator facilities available in India, detailed experimental studies have been made to understand the mechanism of quasi-fission and role of nuclear shell effect in heavy nuclei. Fission fragment mass distribution has been used as the probe to explore the role of entrance channel effects on fusion-fission and quasifission dynamics. Fission fragment mass distribution has also been demonstrated to be useful to identify the phenomenon of ‘washing out’ of nuclear shell effect with excitation energy.

  10. Experimental Fission Studies at Intermediate Energies

    OpenAIRE

    Elmgren, Klas

    2002-01-01

    A series of nuclear fission experiments have been performed in the intermediate energy range. The dynamics of the fission process have been studied by means of detection of neutrons emitted from compound nuclei formed by ion beams of protons, ?-particles, and 12C-ions, all at a beam energy of 100 MeV. The neutron emission data have been interpreted using a statistical model analysis, and the fission time scale has been found to vary between 6.4 and 170?10-21 s. Neutron-induced fission cross s...

  11. Formal theory of neutron induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Barabanov, A.L. [Kurchatov (I.V.) Inst. of Atomic Energy, Moscow (Russian Federation); Furman, W.I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-05-01

    General expression for differential cross section of neutron induced fission is derived with account of arbitrary spin orientation of colliding particles. A covariant description of angular dependence of fission cross section is proposed. Helicity representation for fission fragments is considered in details and limits of its validity are investigated. It is shown that this representation makes reliable basis for description of interference effects in total and differential cross sections of fission induced by slow neutrons. A relation between total fragment helicity K and A.Bohr quantum number K is discussed. (orig.). With 2 figs.

  12. Fission investigations and evaluation activities at IRMM

    International Nuclear Information System (INIS)

    The IRMM has a longstanding tradition in the field of neutron induced fission physics studies. It is especially well equipped with world-class facilities as the high resolution neutron time-of-flight spectrometer GELINA and the 7 MV Van de Graaff accelerator for the quasi-monoenergetic neutron production. During the past decade several neutron induced fission reactions have been studied in the energy range from eV up to 6 MeV and spontaneous fission. The isotopes under investigation were 235,238 U(n,f), 239 Pu(n,f), 237 Np(n,f), 252 Cf(SF) and 233 Pa(n,f). For all isotopes but 233 Pa, the fission fragment mass-yield and total kinetic energy distributions were measured. 233 Pa was only investigated for the fission cross-section. The results have been described within the multi-modal fission model. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) as well as the the symmetric superlong mode were used for all the isotopes but 252 Cf. For this isotope at least one other fission mode had to be taken into account, the so--called standard III (S3) mode. Since the theoretical interpretation of experimental results was rather successful also an attempt was made to improve the evaluation of the respective fission cross-section as well as their neutron multiplicities and spectra. Here, the statistical model for fission cross-section evaluation was extended by including the multi-modality concept for fission. Based on the underlying model, separate outer fission barriers have been considered for each mode, while the inner barriers and isomeric wells are assumed to be the same. The self-consistent calculations of the fission cross-section as well as total, capture, elastic and inelastic cross-sections were in good agreement with the experimental data and evaluated nuclear data libraries. As a side product, also fission fragment mass yield distributions have been deduced at incident neutron energies hitherto unaccessible. Very surprising results will be presented. Concerning the neutron multiplicities and spectra, here the commonly used Los Alamos model was modified to take into account again the multi-modal fission. Additionally, it has been extended to a larger base of fission-fragment masses and takes into account the linear prompt gamma-ray energy dependence on prompt neutron multiplicity. These aspects let to an improved agreement with experimental data. Also here new results will be presented. (authors)

  13. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  14. Fission fragment detection by thin film capacitors

    International Nuclear Information System (INIS)

    Fission fragments produce measurable current pulses in thin film capacitors at electric fields which are high, but still below the breakdown range for fragments. This paper describes the use of silicon dioxide capacitors for the detection of fission fragments by such current pulses. With capacitor areas of 2 x 10-2 cm2, the pulses were insignificant when the oxide was relatively thin, but with 3800 A thick oxide, fission fragments produce detectable pulses of about 10-15 C. The mechanisms producing the current pulses by fission fragments are discussed. (author)

  15. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process

  16. Double ionization chamber for fission fragment detection

    Energy Technology Data Exchange (ETDEWEB)

    Chepigin, V.I.; Stepantsov, S.V.; Nagy, S.; Ter-Akopian, G.M.; Voronin, A.S. (Joint Inst. for Nuclear Research, Dubna (USSR). Lab. of Nuclear Reactions)

    1984-03-01

    In the present paper some problems associated with studies of the spontaneous fission of transfermium elements are considered, and advantages of ionization chambers over other detectors for fission fragment detection are discussed. A double ionization chamber for detecting fission fragments has been built, and the energy and mass calibrations have been performed using the thermal neutron-induced fission of /sup 235/U. The use of a gas jet, in combination with a double ionization chamber as a detector, in experiments with heavy ions is discussed. Model experiments have been carried out.

  17. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    The circumstances under which gaseous fission products may be attached to aerosols are examined. A simple model is assumed for the interaction between the fission product molecules and the aerosol, in which the probability of attachment of a molecule on any encounter is given by a constant ?, the sticking probability. It is concluded that when gaseous fission products are released in the presence of a population of particles, particularly small particles, there is a strong possibility that they will attach rapidly to those particles. In such circumstances gaseous fission product transport would be governed by the transport properties of the particles. (author)

  18. Status of fission product yield data

    International Nuclear Information System (INIS)

    The topics covered in this paper are: (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy, (b) dependence of the yields on incident neutron energy and spectrum, (c) independent yields, (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232Th upwards with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets, and discusses the gaps still to be found in them. (author)

  19. Calculation of fission neutron spectra for spontaneous fission of 240Pu, 238Pu and 242Pu

    International Nuclear Information System (INIS)

    This paper reports on the fission neutron spectra for spontaneous fission of 240Pu, 238Pu and 242Pu calculated using the spin-dependent Madland-Mix model. Experimental data on fission neutron spectra for these nuclei are scarce. The calculated differences in the three spectra are presented and compared with the available data, and some repercussions for plutonium assay work are discussed

  20. Future Scenarios for Fission Based Reactors

    Science.gov (United States)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile inventory, capacity to be deployed, induced radiotoxicities, and R&D efforts.

  1. Microscopic theory of fission dynamics

    International Nuclear Information System (INIS)

    A microscopic theory of fission is presented in which a Feynman path integral is used to understand tunneling. The idea of an instanton in the case of a Boson field theory is generalized to many Fermions and used to determine the dynamical path self-consistently. The essential roles of Fermion nodal surfaces and symmetry breaking are emphasized. The theory is applied to a solvable pedagogical model, which demonstrates its quantitative accuracy and the importance of solving for the optimal collective path. Similar features are observed in a more realistic calculation of a 32-Fermion system in three dimensions. (orig.)

  2. Microscopic theory of fission dynamics

    Science.gov (United States)

    Negele, John W.

    1989-10-01

    A microscopic theory of fission is presented in which a Feynman path integral is used to understand tunneling. The idea of an instanton in the case of a Boson field theory is generalized to many Fermions and used to determine the dynamical path self-consistently. The essential roles of Fermion nodal surfaces and symmetry breaking are emphasized. The theory is applied to a solvable pedagogical model, which demonstrates its quantitative accuracy and the importance of solving for the optimal collective path. Similar features are observed in a more realistic calculation of a 32-Fermion system in three dimensions.

  3. Microscopic theory of fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Negele, J.W. (Massachusetts Inst. of Tech., Cambridge (USA). Center for Theoretical Physics; Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Physics)

    1989-10-09

    A microscopic theory of fission is presented in which a Feynman path integral is used to understand tunneling. The idea of an instanton in the case of a Boson field theory is generalized to many Fermions and used to determine the dynamical path self-consistently. The essential roles of Fermion nodal surfaces and symmetry breaking are emphasized. The theory is applied to a solvable pedagogical model, which demonstrates its quantitative accuracy and the importance of solving for the optimal collective path. Similar features are observed in a more realistic calculation of a 32-Fermion system in three dimensions. (orig.).

  4. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  5. Spallation - Neutrons Beyond Nuclear Fission

    Science.gov (United States)

    Conrad, Harald

    The classical research neutron sources are fission reactors. They have reached their technical limits as far as neutron flux is concerned. But there is an alternative way with many advantages: spallation. The emphasis in this context is on pulsed operation, which is easily achieved with spallation as being accelerator-driven. The extension of neutron scattering to fields not covered with reactors is discussed as well as the utilization of spallation neutrons for other fields such as nuclear waste transmutation and future power reactors.

  6. Probing fusion-fission dynamics in Bi203

    Science.gov (United States)

    Mukul, Ish; Nath, S.; Golda, K. S.; Jhingan, A.; Gehlot, J.; Prasad, E.; Kalkal, Sunil; Naik, M. B.; Banerjee, Tathagata; Varughese, T.; Sugathan, P.; Madhavan, N.; Pal, Santanu

    2015-11-01

    Background: Complete fusion between two massive nuclei after capture inside the potential barrier is inhibited by competing fission-like processes. The target-projectile composite system may reseparate after capture without proceeding towards formation of the compound nucleus (CN), which is equilibrated in all degrees of freedom. The nature of these non-CN fission (NCNF) processes and factors that affect them are not completely known yet. Purpose: The nuclear mass regions from where NCNF processes begin to manifest themselves are not clearly demarcated. This work aims to study the onset of NCNF, if any, in the mass region ˜200 . Methods: Fission fragment (FF) mass and angular distribution (MAD) and pre-scission and post-scission neutron multiplicities were measured for the reaction +W184F19 at a laboratory energy (Elab) range of 84-125 MeV. The measurements were carried out using two multiwire proportional counters (MWPC) to detect the FFs in coincidence and four neutron detectors to measure neutron time of flight (TOF). Statistical model (SM) calculation was performed. Results: No significant mass-angle correlation was observed in the MAD plots. Extracted mass ratio distributions were single-peaked and of Gaussian shape. Measured pre-scission neutron multiplicity values indicated dissipative nature of CN decay for this reaction. Conclusions: No clear signatures of NCNF were observed in the studied reaction, indicating that the target-projectile composite system predominantly proceeds towards formation of the CN after capture.

  7. Analysis of fission-product effects in a Fast Mixed-Spectrum Reactor concept

    International Nuclear Information System (INIS)

    The Fast Mixed-Spectrum Reactor (FMSR) concept has been proposed by BNL as a means of alleviating certain nonproliferation concerns relating to civilian nuclear power. This breeder reactor concept has been tailored to operate on natural uranium feed (after initial startup), thus eliminating the need for fuel reprocessing. The fissile material required for criticality is produced, in situ, from the fertile feed material. This process requires that large burnup and fluence levels be achievable, which, in turn, necessarily implies that large fission-product inventories will exist in the reactor. It was the purpose of this study to investigate the effects of large fission-product inventories and to analyze the effect of burnup on fission-product nuclide distributions and effective cross sections. In addition, BNL requested that a representative 50-group fission-product library be generated for use in FMSR design calculations

  8. Large-scale fission product containment tests

    International Nuclear Information System (INIS)

    The Containment Systems Experiment (CSE) program is reviewed, with emphasis on the inherent processes that remove fission products from containment atmospheres and reduce their leakage to the environment. The CSE containment vessel was sized to represent a 1/5 linear scale model of a typical 1000 MW(e) PWR. Nineteen tests were performed in a steam-air atmosphere simulating post-LOCA conditions. In eight tests containment sprays were operated, in five tests a recirculating filter-adsorber loop was operated, and in six tests only natural, passive processes occurred. Sprays were the most effective in removing airborne iodine and particulate aerosols, followed by the filter loop. Although not as effective as the engineered safety features, natural processes of diffusion to surfaces, reaction with paint, gravity settling, and removal in leak paths are shown to be significant. Together they caused a reduction in leakage of 10-2 and 10-3 for iodine and cesium, respectively, during the initial 2-h period. These attenuation factors increased to 10-3 and 10-4, respectively, for the first 24-h period

  9. The use of recoil for the separation of uranium fission products; Utilisation du recul pour la separation des produits de fission de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R.; Herczec, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The recoil distance of fission fragments in U{sub 3}O{sub 8} is about 8 microns. By using highly diluted suspensions of uranium oxide particles having dimension much smaller than this figure (mean diameter 0,5 micron), we were able to study the re-adsorption of fission products on uranium oxide. Separation results have been studied as a function of the nature of the irradiation medium (solid or liquid) and the separation medium, of particle size and of concentration of particles in the dispersing medium. Decay curves can be used to discriminate between {sup 239}Np and mixed fission products. Most of the {sup 239}Np is found in the U{sub 3}O{sub 8} particles. The location of fission products in solid dispersing media has been determined, fission products being found always inside the dispersing medium particles. The results obtained can be applied to the rapid separation of short-lived fission products from a uranium-free starting material. (author) [French] Le parcours de recul des fragments de fission est en moyenne de 8 microns dans l'U{sub 3}O{sub 8}. En prenant des suspensions d'oxyde d'uranium dont les particules, tres diluees, ont des dimensions nettement inferieures a cette valeur (diametre moyen 0,5 micron), on a pu etudier directement la readsorption des produits de fission sur l'oxyde d'uranium. Les resultats de separation ont ete etudies en fonction de la nature du milieu d'irradiation (solide ou liquide) et du milieu de separation, de la taille des particules d'oxyde et de leur concentration dans le milieu dispersant. Les courbes de decroissance permettent de determiner la perturbation apportee dans les mesures par le {sup 239}Np qui reste en majorite dans les grains d'U{sub 3}O{sub 8}. On a determine enfin l'emplacement des produits de fission dans le cas des melanges solides; ils se trouvent toujours a l'interieur des grains du milieu recepteur. Les resultats obtenus permettent d'envisager la separation rapide de produits de fission a periode courte a partir d'un milieu debarrasse d'uranium. (auteur)

  10. Least squares analysis of fission neutron standard fields

    International Nuclear Information System (INIS)

    A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252Cf spontaneous fission and 235U thermal fission fields are presented

  11. Channel Effects in the Kinetic Energy of Fragments of Fission Induced by Low-Energy Resonance Neutrons

    International Nuclear Information System (INIS)

    Recently, Blyumkina et al. have noted tfte existence ot fission channel ettects in the total kinetic energy of fragments of fission induced by s- and p-wave neutrons. Effects of this nature can also be expected in the variation of the fragment kinetic energies from resonance to resonance in low-energy (s-wave) neutron-induced fission. A fission-fragment detector whose efficiency is dependent on the kinetic energy of the fragments was used in the study of the slow-neutron-induced fission of U235. Comparing the counting-rate of this detector with a conventional fission detector, whose efficiency is independent of the fragment kinetic energy, shows that there exists a variation in the kinetic energy of certain fragments with neutron energy in the neutron energy region from 0.025 to 1 eV. In order to determine the response of the kinetic-energy-sensitive detector, it was necessary to measure the rangè-energy relations of fission fragments in various media, including noble gases and metallic foils. It was estimated from these data that the variation in the fragment kinetic energy release is ?500 keV, for those fission events that give the lightest and most energetic of the heavy fragments. The variation in fragment kinetic energy is strongly asymmetric about the 0.28-eV resonance in U235, and suggests that the fragment kinetic energy sensitively reflects the presence of interference effects among resonances in fission. A multi-level multi-channel analysis of the data has been made, based on the parameters of Vogt and under the assumption that different fission channels lead to different configurations at scission, such that the kinetic energy release is also different. Previously a major objection to multi-level multi-channel analysis in fission has been that the parameters obtained are not unique. However, the possibility of observing partial fission cross-sections (fission occurring by way of one channel only) removes one of the ambiguities inherent in the multi-level approach. Studies of this type can not only be expected to give information on the nature of the constraints that exist during the transition from the saddle point to the scission point in the fission process, but may also be of interest in inferring the existence of small variations from resonance to resonance in v, the average number of neutrons emitted per fission. (author)

  12. Fission

    International Nuclear Information System (INIS)

    Progress is reported in the areas of radiation physics; radiation dosimetry and radiation biophysics; microdosimetry of internal sources; dosimetry of internal emitters; real-time measurement of Pu in air at below-MPC levels; analytical techniques for measurement of 99Tc in environmental samples; and radiation instrumentation--radiological chemistry

  13. Spectroscopy of selected fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Hoellinger, F.; Schulz, N.; Gall, B. J. P.; Bentaleb, M.; Courtin, S.; Lubkiewicz, E.; Durell, J. L.; Jones, M. A.; Leddy, M.; Phillips, W. R.; Smith, A. G.; Urban, W.; Varley, B. J.; Deloncle, I.; Porquet, M.-G.; Wilson, A.; Ahmad, I.; Morss, L. R.; Kutsarova, T.; Minkova, A.; Duprat, J.; Sergolle, H.; Gautherin, C.; Lucas, R.

    1999-10-22

    The spectroscopy of nuclei produced as fragments in the fission process has been undertaken using the EUROGAM II {gamma}-ray multidetector array. The first experiment involved a spontaneously fissioning {sup 248}Cm source and produced neutron-rich nuclei. The data analysis concentrated on the odd-A Ce isotopes and the present contribution details the structure of {sup 151}Ce which results from the strong coupling of the odd neutron to the core. The results of a preliminary analysis of the yrast structure of {sup 138}Te will also be given. In a second experiment performed at the VIVITRON accelerator in Strasbourg, nuclei on the neutron-rich side of the valley of stability were produced via the {sup 28}Si + {sup 176}Yb reaction at 145 MeV bombarding energy. The level schemes of {sup 99}Mo, {sup 101}Tc and {sup 103}Ru have been extended to high spins ({approximately} 20h). Two new high lying structures in {sup 101}Tc are explained with the help of cranked shell model calculations.

  14. Spectroscopy of selected fission fragments

    International Nuclear Information System (INIS)

    The spectroscopy of nuclei produced as fragments in the fission process has been undertaken using the EUROGAM II γ-ray multidetector array. The first experiment involved a spontaneously fissioning 248Cm source and produced neutron-rich nuclei. The data analysis concentrated on the odd-A Ce isotopes and the present contribution details the structure of 151Ce which results from the strong coupling of the odd neutron to the core. The results of a preliminary analysis of the yrast structure of 138Te will also be given. In a second experiment performed at the VIVITRON accelerator in Strasbourg, nuclei on the neutron-rich side of the valley of stability were produced via the 28Si + 176Yb reaction at 145 MeV bombarding energy. The level schemes of 99Mo, 101Tc and 103Ru have been extended to high spins (∼ 20h). Two new high lying structures in 101Tc are explained with the help of cranked shell model calculations

  15. Adsorption and excess fission xenon

    Science.gov (United States)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    The adsorption of Xe and Kr on lunar soil 10084 was measured by a method that employs only very low fractions of monolayer coverage. Results are presented as parameters for calculation of the Henry constant for adsorption as a function of temperature. The adsorption potentials are about 3 kcal/mole for Kr and 5 kcal/mole for Xe; heating the sample in vacuum increased the Xe potential to nearly 7 kcal/mole. Henry constants at the characteristic lunar temperature are about 0.3 cu cm STP/g-atm. These data were applied to consider whether adsorption is important in producing the excess fission Xe effect characteristic of highland breccias. Sorption equilibrium with a transient lunar atmosphere vented fission Xe produces concentrations seven orders of magnitude lower than observed concentrations. Higher concentrations result because of the resistance of the regolith to upward diffusion of Xe. A diffusion coefficient of 0.26 sq cm/sec is estimated for this process.

  16. Quark bags and their fission

    International Nuclear Information System (INIS)

    The aim of this work is to gain more insight into the physics of hadrons and to develop a theoretical framework for the treatment of hadronic fission. The description of hadronic matter in terms of quantum chromodynamics, which is generally accepted as the fundamental theory of strong interactions, is intimately connected with the concept of colour confinement. Since this phenomenon is a property of the vacuum state, much effort has been invested into trying to understand it in analogy with the occurence of the condensed ground state in the theory of superconductivity. In Chapter II, we therefore go back to non-relativistic physics, discuss the methods used there, and report in Chapter III on various attempts to apply these methods in quantum field theories, in particular in connection with the so-called 'dynamical symmetry breaking'. Although the fundamental problem of the 'true' vacuum state has not yet been solved, its solution has been anticipated in the so-called bag models which are discussed in great detail in Chapter IV. In Chapter V, we finally seek to understand the microscopic process of fission of hadrons. (orig./HSI)

  17. Neutron energy response of the fission target chamber system

    International Nuclear Information System (INIS)

    The fission target chamber system is composed of vacuum target chamber and 235U fission target and large area PIN detector. The average deposition energy of 235U fission fragment in fission target and large area PIN detector(?60 mm) is investigated by using reactor neutron source. In this way, the variety of deposition energy vs fission target areal density is obtained. By the experiment and calculation the neutron energy response of fission target chamber system is got. (authors)

  18. Qualitative specific features of nuclear fission dynamics

    International Nuclear Information System (INIS)

    Influence of the attainment of a statistical equilibrium on compound nucleus decay by means of fission or neutron emission was investigated. Analitic expressions for the probabilities of distribution in time and for the pre-equilibrium fission fragments spectra were obtained. They were determined by character of initial state, excitation energy and shell structure of compound nucleus

  19. Fission cross section calculations for Pa isotopes

    International Nuclear Information System (INIS)

    Based on the recently measured cross-section values for the neutron-induced fission of 231Pa and our experience gained with other isotopes, new self consistent neutron cross section calculations for n+231Pa have been performed up to 30 MeV. The results are quite different to the existing evaluations, especially above the first chance fission threshold. (authors)

  20. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  1. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  2. Spontaneous fission properties and lifetime systematics

    International Nuclear Information System (INIS)

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs

  3. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  4. Dissipation and friction in nuclear fission

    International Nuclear Information System (INIS)

    We give a short review on experimental evidence for dissipation in nuclear fission as well as on the development of theories of nuclear dissipation and friction applied to the fission process. Theories span from two-body viscosity and one-body dissipation via the time dependent Schroedinger equation to linear response theory and the Fokker-Planck equation. (orig.)

  5. Methods for determination of fission gases

    International Nuclear Information System (INIS)

    This paper describes procedures for determination of fission gases by measuring the quantity of released and remaining gases in the fuel after irradiation. Experiments are described for determining the quantity of fission gases release from fuel during irradiation in the reactor as well as the pressure of gases in fuel cladding. Principles of gamma scintillation spectroscopy, mass spectrometry and gas chromatography are included

  6. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982

  7. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  8. Design of a fission product detection system

    International Nuclear Information System (INIS)

    This article presents the design of a fission product detection system, based on the electrostatic precipitation of the Kr and Xe daughters, for use in failure fuel element detection. A comparative study describes some of the most important fission product detection systems, pointing the advantages and disadvantages of each one. (author)

  9. Migration and transfer of transuranium elements (Pu, Am) and longliving fission products (Sr, Ru, Sb, Cs, Ce, Eu) in natural forest ecosystems of the 30-km-zone around Chernobyl

    International Nuclear Information System (INIS)

    In the framework of the C.E.C. research project ECP-5 entitled ''The behaviour of radionuclides in natural and semi-natural ecosystems'' our institute carried out investigations on selected sites of forest ecosystems in the 30-km-zone of Chernobyl in cooperation with research instituts of the C.I.S. states Russia and Ukraine. Our research is concentrated on the transfer of radionuclides from soil to plants of the understorey, especially species of farns and berries, as this plants take up their nutrients mainly from the upper organic horizons. (orig.)

  10. On prompt fission neutron spectrum in spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Highlights: • We use simple analytical approach for PFNS in the laboratory system. • We compare our calculations with the observed PFNS in spontaneous fission of 252Cf. • LCL spectrum gives better representation of observed spectrum comparing with Watt spectrum. • A significant portion of scission neutrons can be described with our calculations. • Beside the Watt spectrum, LCL spectrum may also be used for representation of PFNS of 252Cf (sf). - Abstract: In this work we use simple representations of prompt fission neutron spectrum in both the center of mass system of fission fragments and the laboratory system which takes into account the multiple neutron emission from fission fragments. The laboratory spectra are compared with the observed spectrum of prompt fission neutrons in spontaneous fission of 252Cf. These forms of spectra, in addition to Watt spectrum, may be used for representation of observed prompt neutron spectrum of 252Cf spontaneous fission. The question on existence and quantity of scission neutrons is also discussed

  11. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  12. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic waste and be proliferation-resistant, is a goal for the advanced nuclear fuel cycles program. While in the past the design, construction, and operation of reactors were supported through empirical trials, this new phase in nuclear energy production is expected to heavily rely on advanced modeling and simulation capabilities.

  13. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic waste and be proliferation-resistant, is a goal for the advanced nuclear fuel cycles program. While in the past the design, construction, and operation of reactors were supported through empirical trials, this new phase in nuclear energy production is expected to heavily rely on advanced modeling and simulation capabilities.

  14. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  15. Fission dynamics at low excitation energy. 2

    CERN Document Server

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  16. Improved Calculation of Thermal Fission Energy

    CERN Document Server

    Ma, X B; Wang, L Z; Chen, Y X; Cao, J

    2013-01-01

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

  17. Theoretical study on spontaneous fission of actinides

    International Nuclear Information System (INIS)

    The spontaneous fission half-lives of the actinides are calculated by the WKB approximation and the potential barriers are constructed by a General Liquid Drop Model (GLDM) including the proximity energy, the mass and charge asymmetry, and an accurate nucleus radius. The microscopic shell correction which plays a key role for the spontaneous fission barrier is considered for the first time. The two-parameter quasi-molecular shape and the proximity are described in details within the GLDM. The effects of the microscopic shell correction and proximity energy for fission barrier are discussed separately. The calculated spontaneous fission half-lives for the actinides reasonably accord with the experimental data, implying the present GLDM combined with the microscopic shell correction can be used to study the spontaneous fission properties of heavy nuclei successfully. (authors)

  18. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  19. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ?-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and ?-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  20. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number ZF = 90 thru 98, mass number AF = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ?200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ? 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (? fission spectrum) induced fission reactions

  1. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity bar ?p. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and bar ?p on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and bar ?p with higher accuracy than is currently possible

  2. Theory of neutron emission in fission

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.

    1988-01-01

    Neutron emission in fission is usually described in terms of two observables: the energy spectrum of emitted neutrons N(E) and the average number of neutrons emitted per fission, or average neutron multiplicity, /bar v/p. These observables are measured before the residual fission fragments decay toward the valley of ..beta.. stability and are therefore referred to as the prompt neutron spectrum N(E) and the average prompt neutron multiplicity /bar v/p. They are of fundamental importance to the design of macroscopic systems that are driven by the fission reaction, such as thermal or fast reactors. It is the purpose of this paper to describe existing theoretical models for these two observables. Other observables for neutron emission in fission will not be described here due to space limitations. 12 refs., 2 figs.

  3. Theory of neutron emission in fission

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.

    1989-01-01

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity /bar /nu///sub p/. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and /bar /nu///sub p/ on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and /bar /nu///sub p/ with higher accuracy than is currently possible. 17 refs., 11 figs.

  4. Theoretical study of fission dynamics with muons

    International Nuclear Information System (INIS)

    Following muon capture by actinide atoms, some of the inner shell muonic transitions proceed by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. In particular, the muonic E2:(3d?1s) transition energy is close to the peak of the isoscalar giant quadrupole resonance in actinide nuclei which exhibits a large fission width. Prompt fission in the presence of a bound muon allows us to study the dynamics of large-amplitude collective motion. We solve the time-dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  5. Fission of doubly ionized calcium clusters

    Science.gov (United States)

    Blaisten-Barojas, Estela; Chien, Chang-Hong; Pederson, Mark R.; Mirick, Jeff W.

    2004-09-01

    Cluster ions, CaN+ and CaN2+, containing up to N = 8 atoms are studied within density functional theory. Ground and first excited states, and ionization energies are reported for all sizes. At zero temperature Ca32+ and Ca42+ are linear, whereas Ca52+ through Ca72+ undergo structural transitions from 3D-configurations into linear ions below 600 K. As a consequence, fission that occurs above 600 K starts from linear configurations. Ca82+ has an hexagonal bipyramidal structure. The preferred fission channels are CaN2+?Ca++CaN-1+ with fission barriers smaller than the evaporation energy up to Ca72+. However, Ca82+ presents a large fission barrier and would rather evaporate one atom than undergo fission.

  6. Microscopic Theory of Nuclear Fission: A Review

    CERN Document Server

    Schunck, N

    2015-01-01

    This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragment properties and explicitly time-dependent approaches are needed. The cornerstone of the current microscopic theory of fission is the energy density functional formalism. Its basic tenets, including tools such as the HFB theory, effective two-body effective nuclear potentials, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The EDF approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schr\\"odinger equation into a collective Schr\\"odinge...

  7. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity /bar /nu///sub p/. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and /bar /nu///sub p/ on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and /bar /nu///sub p/ with higher accuracy than is currently possible. 17 refs., 11 figs

  8. Criticality calculations with fission spectrum matrix

    International Nuclear Information System (INIS)

    In the present study, the author implemented a procedure to treat a fission spectrum matrix into neutron transport solvers of a code system CBG, and quantified errors of usual procedures utilizing a fission spectrum vector. Numerical results showed that the errors of the usual procedures are negligible if the fission spectrum vector is generated from the fission spectrum matrix with weight functions obtained by cell calculations. On the other hand, when a library built-in function is used as a weight function for the fission spectrum vector generation, the errors become large if there is a large difference between the library built-in function and the neutron energy spectrum of the target system. (author)

  9. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the first issue of a report series on Fission Product Nuclear Data (FPND), published every six months by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). Its purpose is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to ?-, ?-decay of fission products; delayed neutron data; and fission product decay-heat. The present issue includes contributions which were received by NDS before 1 November 1975

  10. Twin ionization chamber for fission fragment detection

    Energy Technology Data Exchange (ETDEWEB)

    Budtz-Joergensen, C.; Knitter, H.H.; Straede, C.; Hambsch, F.J.; Vogt, R.

    1987-08-01

    A twin ionization chamber for fission fragment detection is described. The detector permits measurement of the two fission fragment kinetic energies in an advantageous 2 x 2 ..pi.. geometry with an energy resolution of < 0.5 MeV. The fission fragment emission angle THETA with respect to the symmetry axis of the chamber is measured with a resolution in cos THETA of < 0.05. The fission fragment nuclear charge distributions can be determined and a timing signal can be extracted which allows a determination of the instant of fission with a time jitter of < 0.7 ns. A pulse pileup rejection technique was developed which reduces pulse pileup by more than a factor 30. The electronic treatment of the chamber pulses and the data handling procedures including several of the necessary corrections are described in detail.

  11. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  12. Fission fragment angular distribution measurements for {sup 16}O + {sup 194}Pt reaction at energies near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, E., E-mail: prasad.e.nair@gmail.com [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Nileshwar, 671328 (India); Department of Physics, University of Calicut, Calicut, 673635 (India); Varier, K.M. [Department of Physics, University of Calicut, Calicut, 673635 (India); Thomas, R.G. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Vinodkumar, A.M. [Department of Physics, University of Calicut, Calicut, 673635 (India); Mahata, K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Appannababu, S. [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002 (India); Sugathan, P.; Golda, K.S. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi, 110067 (India); Babu, B.R.S. [Department of Physics, University of Calicut, Calicut, 673635 (India); Department of Physics, Sultan Qaboos University, Muscat (Oman); Saxena, A.; John, B.V.; Kailas, S. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2012-05-15

    Fission fragment angular distributions have been measured for {sup 16}O + {sup 194}Pt reaction forming the compound system {sup 210}Rn, in the laboratory energy range from 79 to 90 MeV. The measured fission fragment anisotropies as a function of E{sub c.m.}/V{sub B} are compared with the predictions of standard saddle point statistical model (SSPM). Anisotropies calculated using the average excitation energy and angular momentum values could not reasonably fit the experimental data. Statistical model calculations were performed using the PACE with modified fission barrier and level density parameters. Fission probability, evaporation residue cross section and neutron multiplicity were simultaneously used to fix the statistical parameters. Model calculations incorporating the chance nature of fission decay and scaled values of the rotating finite range model (RFRM) moment of inertia could reasonably fit the fragment angular anisotropies.

  13. Correction of Thick Foil Errors in Prompt Neutron (CALIFORNIUM-252 Nu), Fission Cross Section (sigma(f)) and Other Ionization Chamber Fission Data Standards.

    Science.gov (United States)

    Cohensedgh, Farhad

    This research resolves two problems that have long been of important concern in experimental fission physics: (1) determination of pulse height distribution response of ionization chambers in fission fragment detection measurements, and (2) correction of "thick-foil effect" systematic errors in standard values of the fundamental parameters of fission physics--the average number of prompt neutrons per fission (=nu), absolute fission activity and true fission rate of samples (TFR), and isotopic fission cross sections (sigma _{f}). Results are obtained by a comprehensive digital simulation of the electrostatics and pulse height distribution response of the parallel-plate, ungridded, electron-pulse ionization fission chamber together with prompt neutron -fragment multiplicity and angular distribution correlations, neutron-fragment coincidence detection and related variations in the 4pi^here around the chamber for a wide range of the relevant factors--foil thickness, alpha particle interference bias level, fission detector configuration characteristics, fissile isotopes (^{252}Cf, ^{235}U, etc.) and other experimental parameters. Isotope-specific double-energy (E_1,E_2) natural variations in fragment spectrum, in fragment-specific range-energy (dE/dx) relations and in prompt neutron-fragment multiplicity (nu) and nuclear temperature dependent angular distribution correlations are simulated in detail. Detailed results are obtained for double-energy, fragment-specific count loss fractions resulting from in -foil fragment absorption and from alpha -interference discrimination as well as for chamber detection efficiency, fragment spectrum distortion and prompt neutron -fragment coincidence detection distribution variations. Decay alpha pulse pileup statistics are discussed, and the behavior of and factors affecting the fragment pulse height distribution tail are analyzed in detail. Fragment pairs and prompt neutrons issued from them are tracked in the 4pi^ace around the chamber. Light-to-heavy fragment detection ratio variations in neutron-gated coincidence measurements are also obtained in 4pi space. Effects of these systematics on absolute, relative and ratio measurements of fundamental fission parameters are discussed. Magnitudes and mechanisms of production of thick-foil errors are identified and analyzed in detail, and methods for correcting these errors and for improving measurement setup design are given.

  14. Nuclear fission industry in Japan

    International Nuclear Information System (INIS)

    The status of the nuclear fission industry in Japan is described. Japanese nuclear policy, vision, goals, and supporting organizational structures are reviewed. The facilities of the Japanese Atomic Energy Research Institute (JAERI), Power Reactor and Nuclear Fuel development Corporation (PNC), and the Japan Atomic Power Company (JAPCO) are illustrated and described. Nuclear power statistics and power generation costs by power source are shown for Japan. Photographic details and technical descriptions are presented for Japan's: nuclear fuel cycle (NFC), light water reactor (LWR), advanced thermal reactor (ATR), fast breeder reactor (FBR), gas centrifuge uranium enrichment, LWR spent fuel reprocessing, ATR and FBR spent fuel uranium/plutonium mixed oxide fuel (MOX) co-conversion process, high level nuclear waste management (NWM) policy, reactor operation safety, newly developed decommissioning and dismantling policy for obsolete nuclear facilities, and new future technology

  15. Downstream behavior of fission products

    International Nuclear Information System (INIS)

    The downstream behavior of fission products has been investigated by injecting mixtures of CsOH, CsI, and Te into a flowing steam/hydrogen stream and determining the physical and chemical changes that took place as the gaseous mixture flowed down a reaction duct on which a temperature gradient (10000 to 2000C) had been imposed. Deposition on the wall of the duct occurred by vapor condensation in the higher temperature regions and by aerosol deposition in the remainder of the duct. Reactions in the gas stream between CsOH and CsI and between CsOH and Te had an effect on the vapor condensation. The aerosol was characterized by the use of impingement tabs placed in the gas stream

  16. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  17. Coulomb effects in cold fission

    International Nuclear Information System (INIS)

    The structures in the mass and total kinetic energy (TKE) distributions in cold fission of 234U and 236U are interpreted in terms of the Coulomb interaction energy (C) between fragments at the scission point. The maximal value of C (Cmax) corresponding to the most compact scission configuration, is calculated for several mass fragmentations. It is shown that Cmax increases, if one increases the charge asymmetry for a given primary fragmentation and Q being constant. This dependence produces oscillations with a period of approximately 5 amu of C as a function of the light fragment mass which are correlated with the observed oscillations of the maximal value of TKE. Moreover, it follows that the yields of the more asymmetric charge fragmentation of the same system are increased, that is for the more compact configuration. (orig.)

  18. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. LLL has collaborated with Bechtel Corporation and with Westinghouse on the conceptual design of laser fusion power plants. The neutronic studies of these two designs are discussed. The operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function of time, are also presented

  19. Accidental and long-term safety assessment of fission and fusion power reactors

    International Nuclear Information System (INIS)

    Fusion is seen as a much cleaner energy than fission, and a resource for clean Energy in the far future. However, being a nuclear energy, fusion shares with fission most of its Safety problems. This study concerns the assessment of both the short term and the long term Hazards associated with fusion, compared with the same figures for fission reactors. For accidental Release of radioactive nuclide, fission data derive from well-known PWR safety assessments, and In particular from the Italian project PUN. Fusion data derive from the latest findings of the European SEAFP programme. Concerning inadvertent intrusion in a radioactive waste disposal Site: for fusion. This analysis was performed by the authors in the frame of the SEAFP-2 studies, While for fission data are taken from typical European waste disposal sites. Finally, for long-term Migration of radioactive nuclides due to natural waste package degradation, both fission and Fusion reactor cases are addressed. In all relevant cases, evaluation of associated risks is carried Out, with a comparison of the obtained results

  20. Dynamical features of Coulomb-fission

    International Nuclear Information System (INIS)

    Fission following quasielastic scattering was investigated in the reactions 208Pb -> 238U below the Coulomb Barrier and 7.5 MeV/u 238U -> 238U at scattering angles forward of the grazing angle (870). A kinematically complete analysis of 3-body coincidences was carried out measuring position and time-of-flight of the scattered projectile-like particle and 2 fission fragments in large parallel plate detectors. In the reaction 208Pb -> 238U, measured at backward angles, the slope of the differential cross section at 5.4 MeV/u is in qualitative agreement with the theoretical expectation for Coulomb-fission. The angular distribution of the fission fragments, measured with respect to the semisector axis (apex line towards the projectile), is close to 1/sinTHETA and does not show any of the significant structures predicted by several theories. The anisotropy is smaller in all other coordinate systems investigated. The fission probability in the reaction 238U -> 238U, measured down to 5x10-4 at THETAsub(cm)=540 (corresponding to 75% Esub(cb) at the distance of closest approach) as well as the low excitation energy 0 as expected for Coulomb-fission. The absence of a detectable final state Coulomb interaction yields a lower limit of 1-2x10-20s for the lifetime of the fissioning nucleus. (orig./HSI)

  1. Neutron and gamma emission in fission

    International Nuclear Information System (INIS)

    The total kinetic energy freed by the mass rearrangement in binary low-energy nuclear fission is roughly of the order of 180 to 240 MeV, depending on the fissioning system. This energy is distributed at the end of the fission process between the total kinetic energy of the two fragments, the energy released by neutron and ?-ray emission, and lastly by the ? or electron conversion decay which is accompanied by the delayed emission of neutrons and ?-rays. In general, 75 to 85% of the total available energy is present as fragment kinetic energy, whereas about 10% and 3 to 4% are contained in the prompt neutron and ?-ray emission processes. A fraction of about 8% of the total available energy from the whole mass rearrangement down to stable isotopes is released in the ? decay and electron conversion and subsequent delayed ?-ray and neutron emission. This chapter discusses time scale in fission, the integral fission neutron energy spectrum, early neutrons, neutron multiplicities, the dependence of neutron emission on excitation energy, prompt neutron emission in the resonance region, neutron emission in ternary fission, prompt gamma emission in fission, and delayed neutron and gamma emission. 132 refs., 29 figs., 3 tabs

  2. On the mechanism of fission neutron emission

    International Nuclear Information System (INIS)

    This review represents the present knowledge of the mechanism of prompt fission neutron emission. Starting with a brief fission process characterization related with neutron emission, possible emission mechanisms are discussed. It is emphasized that the experimental study of special mechanisms, i.e. scission neutron emission processes, requires a sufficiently correct description of emission probabilities on the base of the main mechanism, i.e. the evaporation from fully accelerated fragments. Adequate statistical-model approaches have to account for the complexity of nuclear fission reflected by an intricate fragment distribution. The present picture of scission neutron emission is not clarified neither experimentally nor theoretically. Deduced data are contradictory and depend on the used analysis procedures often involving rough discriptions of evaporated-neutron distributions. The contribution of two secondary mechanisms of fission neutron emission, i.e. the neutron evaporation during fragment acceleration and neutron emission due to the decay of 5He after ternary fission, is estimated. We summarize the recent progress of the theoretical description of fission neutron spectra in the framework of statistical models considering the standard spectrum of 252Cf(sf) neutrons especially. The main experimental basis for the study of fission neutron emission is the accurate measurement of emission probabilities as a function of emission energy and angle (at least) as well as fragment parameters (mass number ratio and kinetic energy). The present status is evaluated. (author)

  3. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the fifth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The fourth issue of this series has been published in July 1978 as INDC(NDS)-95/G+P. The present issue includes contributions which were received by NDS between 1 August 1978 and 15 May 1979. The next issue of this report series is envisaged to be published in June 1980

  4. Radiation Effects in Fission and Fusion Reactors

    Science.gov (United States)

    Odette, G. Robert; Wirth, Brian D.

    Since the prediction of "Wigner disease" [1] and the subsequent observation of anisotropic growth of the graphite used in the Chicago Pile, the effects of radiation on materials has been an important technological concern. The broad field of radiation effects impacts many critical advanced technologies, ranging from semiconductor processing to severe materials degradation in nuclear reactor environments. Radiation effects also occur in many natural environments, ranging from deep space to inside the Earth's crust. As selected examples that involve many basic phenomena that cross-cut and illustrate the broader impacts of radiation exposure on materials, this article focuses on modeling microstructural changes in iron-based ferritic alloys under high-energy neutron irradiation relevant to light water fission reactor pressure vessels. We also touch briefly on radiation effects in structural alloys for fusion reactor first wall and blanket structures; in this case the focus is on modeling the evolution of self-interstitial atom clusters and dislocation loops. Note, since even the narrower topic of structural materials for nuclear energy applications encompass a vast literature dating from 1942, the references included in this article are primarily limited to these two narrower subjects. Thus, the references cited here are presented as examples, rather than comprehensive bibliographies. However, the interested reader is referred to proceedings of continuing symposia series that have been sponsored by several organizations, several monographs [2-4] and key journals (e.g., Journal of Nuclear Materials, Radiation Effects and Defects in Solids).

  5. Our 50-year odyssey with fission

    International Nuclear Information System (INIS)

    On the occasion of this International Conference of Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbbell-like systems. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. Future challenges include devising experiments to unambiguously distinguish dissipative effects from analogous effects caused by collective degrees of freedom and computing fission directly from the underlying hadronic interaction. (orig.)

  6. Fission induced by nucleons at intermediate energies

    International Nuclear Information System (INIS)

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes

  7. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  8. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.; Solov'yov, Ilia; Greiner, Walter

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  9. The chemistry of the fission products

    International Nuclear Information System (INIS)

    This is a review of chemistry of some chemical elements in fission products. The elements mentioned are krypton, xenon, rubidium, caesium, silver, strontium, barium, cadmium, rare earth elements, zirconium, niobium, antimony, molybdenum, tellurium, technetium, bromine, iodine, ruthenium, rhodium and palladium. The chemistry of elements and their oxides is briefly given together with the chemical species in aqueous solution. The report also contains tables of the physical properties of the elements and their oxides, of fission products nuclides with their half-life and fission yields and of the permissible concentrations. (author)

  10. Fission induced by nucleons at intermediate energies

    CERN Document Server

    Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto

    2014-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.

  11. Fission induced by nucleons at intermediate energies

    OpenAIRE

    Meo, Sergio Lo; Mancusi, Davide; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto

    2014-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sect...

  12. Fission induced by nucleons at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Meo, S., E-mail: sergio.lomeo@enea.it [ENEA, Centro Ricerche Ezio Clementel, 40129 Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Mancusi, D., E-mail: davide.mancusi@cea.fr [CEA, Centre de Saclay, Irfu/SPhN, F91191 Gif-sur-Yvette Cedex (France); Massimi, C., E-mail: cristian.massimi@bo.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Vannini, G., E-mail: gianni.vannini@bo.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Ventura, A., E-mail: alberto.ventura@bo.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy)

    2015-01-15

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.

  13. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a spatially low-order kernel, the fundamental eigenvector of which should converge faster than that of continuous kernel. We can then redistribute the fission bank to match the fundamental fission matrix eigenvector, effectively eliminating all higher modes. For all computations here biasing is not used, with the intention of comparing the unaltered, conventional Monte Carlo process with the fission matrix results. The source convergence of standard Monte Carlo criticality calculations are, to some extent, always subject to the characteristics of the problem. This method seeks to partially eliminate this problem-dependence by directly calculating the spatial coupling. The primary cost of this, which has prevented widespread use since its inception [2,3,4], is the extra storage required. To account for the coupling of all N spatial regions to every other region requires storing N{sup 2} values. For realistic problems, where a fine resolution is required for the suppression of discretization error, the storage becomes inordinate. Two factors lead to a renewed interest here: the larger memory available on modern computers and the development of a better storage scheme based on physical intuition. When the distance between source and fission events is short compared with the size of the entire system, saving memory by accounting for only local coupling introduces little extra error. We can gain other information from directly tallying the fission kernel: higher eigenmodes and eigenvalues. Conventional Monte Carlo cannot calculate this data - here we have a way to get new information for multiplying systems. In Ref. [5], higher mode eigenfunctions are analyzed for a three-region 1-dimensional problem and 2-dimensional homogenous problem. We analyze higher modes for more realistic problems. There is also the question of practical use of this information; here we examine a way of using eigenmode information to address the negative confidence interval bias due to inter-cycle correlation. We apply this method mainly to four problems: 2D pressurized water reactor (PWR) [6],

  14. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  15. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  16. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  17. Binary and ternary fission within the statistical model

    International Nuclear Information System (INIS)

    The binary and ternary nuclear fission are treated within the statistical model. At the scission point we calculate the potentials as functions of the deformations of the fragments in the dinuclear model. The potentials give the mass and charge distributions of the fission fragments. The ternary fission is assumed to occur during the binary fission. (author)

  18. Spontaneous 238U fission half-life measurements based on fission-track techniques

    International Nuclear Information System (INIS)

    In the last recommendation of the International Union of Pure and Applied Chemistry (I.U.P.A.C.) on spontaneous fission half-lives for ground-state nuclides, a number of measurements of 238U based on fission-track techniques were discarded. The arguments given by the authors are not clear. A more detailed discussion of these determinations is given, considering the possible systematical errors inherent in fission-track approaches. (author)

  19. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    Indian Academy of Sciences (India)

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  20. Nuclear fission reactors from thousand of million years

    International Nuclear Information System (INIS)

    This book is about nuclear reactors, not only of the industrial ones that work to provide electric power, neither of those experimental ones as the first one that worked in Chicago in the first half of the XX Century but, mainly, of those that worked in the Earth thousands of millions of years ago. The book examines what happened in last geologic times, when the natural uranium had a different constitution to the current one. We will give you information on the nuclear fission reactors that worked in Gabon, Africa. A discussion of the radioactive isotopes formed during the operation of those reactors and its behavior until our days is presented. (Author)

  1. Fission barrier, damping of shell correction, and neutron emission in the fission of A ˜200

    Science.gov (United States)

    Mahata, K.; Kailas, S.; Kapoor, S. S.

    2015-09-01

    Decay of 210Po compound nucleus formed in light- and heavy-ion induced fusion reactions has been analyzed simultaneously using a consistent prescription for fission barrier and nuclear level density incorporating shell correction and its damping with excitation energy. Good descriptions of all the excitation functions have been achieved with a fission barrier of 21.9 ±0.2 MeV, indicating no significant shell correction at the saddle point. For this barrier height, the predicted statistical prefission neutrons in heavy-ion fusion-fission are much smaller than the experimental values, implying the presence of dynamical neutrons due to dissipation even at these low excitation energies (˜50 MeV ) in the mass region A ˜200 . When only heavy-ion induced fission excitation functions and the prefission neutron multiplicities are included in the fits, the deduced best-fit fission barrier depends on the assumed fission delay time, during which dynamical neutrons can be emitted. A fission delay of (0.8 ±0.1 ) ×10-19 s has been estimated corresponding to the above fission barrier height, assuming that the entire excess neutrons over and above the statistical model predictions are due to the dynamics. The present observation has implication on the study of fission time scale and nuclear viscosity using neutron emission as a probe.

  2. The role of non-fission neutron sources in a fission reactor economy

    International Nuclear Information System (INIS)

    The expected supply of intense non-fission neutron sources suggests the possibility of enhancing the performance characteristics of existing fission converter reactors and of increasing the fissile fuel supply by neutron-induced transmutations. This potential is explored with an emphasis on the type of neutron sources and their mode of integration with fission reactors. Particular emphasis is placed on the achievement of self-sufficiency of a converter reactor with respect to fissile fuel. As a general result, it appears that neutronically efficient converter reactors combined with relatively modest external neutron contributions can have a significant effect on the long-term fissile fuel logistics of a fission reactor economy. (orig.)

  3. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  4. Langevin calculations of fission fragment mass distribution in fission of excited nuclei

    International Nuclear Information System (INIS)

    A stochastic approach based on two-dimensional Langevin equations was applied to study the main features of fission fragment mass distributions of excited fissioning systems. The forms and the variances of fission fragment mass distributions in the fissility parameter range 20 2 / A < 40 have been calculated. The calculated fission fragment mass distributions and their variances on the whole are consistent with experimental data. The calculations were carried out within two liquid drop models (LDM): the LDM with the sharp surface of the nucleus and the LDM with the finite range of nuclear interaction

  5. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  6. Fission-product release during accidents

    International Nuclear Information System (INIS)

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO2 oxidization to U3O8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  7. TMI-2 fission product inventory estimates (draft)

    International Nuclear Information System (INIS)

    This report presents the results of analyses performed to estimate the inventory and distribution of selected radioisotopes within the TMI-2 reactor system. The intent of the report is to document the method used in estimating the fission product inventory and associated uncertainties. The values presented should be viewed as preliminary. Selected radioisotopes for which best-estimate inventories and uncertainties are presented include: Krypton (Kr-85), Cesium (Cs-137), Iodine (I-129), Antimony (Sb-125), Ruthenium (Ru-106), Strontium (Sr-90), Cerium (Ce-144), and Europium (Eu-154). The TMI-2 inventory data will provide a basis for relating the fission product behavior during a large-scale severe accident to smaller-scale experimental data and fission product behavior modeling work. This is an important link in addressing the many technical questions that relate to core damage progression and fission product behavior during severe accidents. 11 refs., 7 figs., 15 tabs

  8. Uranium deposits obtention for fission chambers

    International Nuclear Information System (INIS)

    The obtention of uranium deposits of the required quality for small cylindrical fission chambers presents some difficulties. With the method of electroplating here described the uniformity, reproducibility and adherence of the obtained deposits were satisfactory. (Author) 6 refs

  9. Fission fragment radiolysis of carbon dioxide

    International Nuclear Information System (INIS)

    The fission fragment radiolysis of CO2 and the CO2-C3H8, CO2-NO2 systems is studied in comparison with ? radiolysis. Two kinds of back reactions (re-oxidation of carbon monoxide to carbon dioxide) are operative in the fission fragment radiolysis. One (a rapid back reaction) is the unidentified ionic chain reaction which proceeds at low CO concentrations, and the other (a slow back reaction) is assigned to a radical reaction (CO + O + CO2?2CO2). This slow back reaction is a characteristic of fission fragment radiolysis. The analysis of results gives an upper limit of the radius of fission fragment in the reaction system, rp-2. (auth)

  10. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  11. Neutron energy spectra of spontaneous fission sources

    International Nuclear Information System (INIS)

    Some characteristics of energy distributions of neutrons from spontaneous fission sources are presented. The data on neutron energy spectrum of 252Cf are considered in detail. Main properties of neutron source on the basis of 252Cf are discussed. (author)

  12. Neutron and ?-emission from fission fragments

    International Nuclear Information System (INIS)

    The statistical model of nuclear reactions is applied to describe the fission fragment neutron and gamma emission characteristics for spontaneous fission of 252Cf and fission of 235U by thermal neutrons. Averaged excitation energies of fission fragments were obtained from experimental neutron multiplicities. The observable characteristics of an emission are reproduced in a wide range of complementary fragments' total kinetic energies and fragment masses. Observed averaged spins are also reproduced. The fractional independent isomeric yield calculation method, based on the gamma-cascade model, is used to describe experimental data for the 235U(nth,f) and 238U(?,f) reactions. The influence on the calculated isomeric yields of two opposing assumptions regarding the nuclear population spin distributions - one based on the rotational degrees of freedom and one on the internal degrees of freedom of completely accelerated fragments - is investigated. (author)

  13. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  14. Channel theory of fission with diffusive dynamics

    International Nuclear Information System (INIS)

    The channel theory of fission with diffusive dynamics is proposed based on Bohr channel theory of fission and Fokker-Planck equation. The influence of the details from deformed ground state to saddle point is taken into account in the fission width calculations. The main features of the theory is illustrated both in analytical and numerical ways. Since the model is physically clear and consistent with Bohr-Wheeler formula when the friction coefficient of the system goes to zero, and also is rather easy to work with in a statistical model, it can be used in the analysis of fission process and other related calculations of many other nuclear science and technology applications

  15. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  16. Electron spectra from decay of fission products

    International Nuclear Information System (INIS)

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982

  17. Electron spectra from decay of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  18. Bimodality in macroscopic dynamics of nuclear fission

    International Nuclear Information System (INIS)

    The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data

  19. Fission product release during reactor operation

    International Nuclear Information System (INIS)

    Chemically assisted mechanical process as stress corrosion cracking is recognized as the principal mode of fracture of Zircaloy in LWR. Clad failure generally occurs during unsteady reactor operation as power ramps. Fission products as iodine, bromine and cesium and their compounds have been recognized as the most aggressive agents in Zircaloy stress corrosion cracking. Some proposed mechanisms of the release of fission products in LWR modern fuel rods of the 17 x 17 type are analyzed. The results of a parametric study performed with the COMETHE III-J code to investigate the effect of power ramping on fission produce release are displayed. The goal of that parametric study was to investigate the possibility of a fission product release enhancement during a power ramp. Three mechanisms leading to such an enhancement are proposed and discussed

  20. The Fission Time Projection Chamber Project

    Science.gov (United States)

    Hill, Tony

    2009-10-01

    New high-precision fission experiments have become a priority within the low-energy nuclear community. Modern sensitivity calculations have revealed unacceptable liabilities in some of the underlying fundamental nuclear data and have provided target accuracies for new measurements that are well beyond what can be delivered using current experimental technologies. A potential breakthrough in the precision barrier for these measurements is the deployment of a Time Projection Chamber (TPC). TPC detector systems were originally developed within the particle physics community and have played a central role in that field for nearly 25 years. A group of 6 universities and 3 national laboratories have undertaken the task of building the first TPC designed specifically for the purpose of measuring fission cross sections. In this talk, I will present the motivation for the fission TPC concept, a few details of the device and why we think an improvement on 50 years of fission experiments can be accomplished.

  1. Feasibility study on fission moly target development

    International Nuclear Information System (INIS)

    A multi-purpose research reactor, HANARO has been operated on the beginning of 1995 and can be utilized for production of various radioisotopes. And a R and D program for fission Mo production was established, and the technical and economical feasibility study has been performed for fission Mo production in Korea. In this study the process for fission Mo production was recommended as follows; 1. Target : UO2 of annulus type. 2. Separation and purification : Nitric acid dissolution ? Alumina adsorption ? Benzoin oxime precipitation ? Alumina adsorption. And more desirable plan for steady supply of fission Mo were suggested in following viewpoints; 1. Technical collaboration with foreign company. 2. Backup supply system. 3. Marketing arrangement. (Author)

  2. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).

  3. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions)

  4. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  5. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  6. Miniature fission chambers with regenerable deposit

    International Nuclear Information System (INIS)

    An irradiation of miniature fission chambers (outer diameter 1.5 mm) was carried out in Triton reactor. The behavior of the fission chambers and cables in neutron and gamma fluxes was controlled, and the possibility of solving the problem of the fissile deposit combustion was studied using regenerable deposits of 234U and 235U in proportions selected in function of the irradiation location

  7. A revised calculational model for fission

    International Nuclear Information System (INIS)

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  8. Influence of spin on fission fragments anisotropy

    OpenAIRE

    Ghodsi Omid N.; Behkami Aziz N.; Rahimi Farhad M.

    2005-01-01

    An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more ...

  9. MCNP6 Fission Multiplicity with FMULT Card

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  10. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  11. fission energy and other sources of energy

    International Nuclear Information System (INIS)

    The disadvantages associated with fission energy (plutonium health hazards, radioactive waste disposal, use of uranium and plutonium as nuclear weapons) are considered. The use of fossil fuels, fusion energy, solar energy and geothermal energy as serious alternatives are mentioned and it is remarked that a large amount of complete work and much money have been invested in fission energy whereas modest efforts have been made to develop other forms of energy. Environmental and sociological aspects are considered. (U.K.)

  12. License requirements for the MITR fission converter

    International Nuclear Information System (INIS)

    The Massachusetts Institute of Technology Nuclear Reactor Laboratory recently designed and constructed a fission converter that operates in conjunction with its 5 MW research reactor, the MITR. This fission converter, which provides an excellent epithermal neutron beam for neutron capture therapy, is a subcritical facility. Nevertheless , its use requires both a safety analysis report and technical specifications. A summary is given of these documents. (author)

  13. Our 50-year odyssey with fission: Summary

    International Nuclear Information System (INIS)

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs

  14. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    OpenAIRE

    Lestone, J. P.

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission ...

  15. Absolute measurements of the 235U and 238U fission cross-sections in the 252Cf fission neutron spectrum

    International Nuclear Information System (INIS)

    Absolute measurements have been made of the fission cross-sections of 235U and 238U in the 252Cf fission neutron spectrum, using the method of coincidences between fission events in a target made of the isotope studied, and the associated fission fragments of californium. A detailed description of the measurement method is provided, covering the reasons for choosing the geometrical conditions of the experiment, the calculations made for that purpose, the preparation of targets, the detection apparatus and sources of errors. 235U and 238U fission cross-sections in the 252Cf fission neutron spectrum are calculated from differential fission cross-section measurements. (author)

  16. Statistical model investigation of nuclear fission

    International Nuclear Information System (INIS)

    To assist in the improvement of fission product yield data libraries, the statistical theory of fission was investigated. Calculation of the theory employs a recent nuclear mass formula and nuclear density of states expression. Yields computed with a simple statement of the theory do not give satisfactory results. A slowly varying empirical parameter is introduced to improve agreement between measured and calculated yields. The parameter is interpreted as the spacing between the tips of the fragments at the instant of scission or as the length of a neck in the fissioning nucleus immediately prior to scission. With this spacing parameter semi-quantitative agreement is obtained between calculated and measured mass chain yields for six cases investigated, 233U(n/sub th/, f), 235U(n/sub th, f), 239Pu(n/sub th/, f), 235U(n+14, f), 238U(n+14, f), and 252Cf(sf). An indication of the source of mass asymmetry in fission is presented. The model developed predicts a mass and energy dependence of some of the parameters of models currently in use in data generation. A procedure for the estimation of the fission product yields for an arbitrary fissioning system is proposed. 63 references

  17. Space parity violation in nuclear fission

    International Nuclear Information System (INIS)

    Space parity violation in low energy fission was observed by the Soviet physicists in 1977 in the course of the angular distribution investigations of the light and heavy fragments in the polarized thermal neutron fission of 233,235U and 239Pu. Unexpected large values of the P-odd asymmetry coefficients (αnf ∼ 10-4) were obtained in the angular distribution W(0) = 1 + bar αnf (bar σn · pf). So large values of αnf looked very strange because of the existence of numerous different exit channels in fission process (∼108 - 1010) and a small relative value of nonconserving space parity potential of the weak NN-interaction (∼ 10-7). In addition to the P-violating asymmetry bar αnf P-conserving right-left asymmetry of the fission fragment angular distribution W (θ) = 1 + α RLnf pf · αn x pf was observed in 1979. The main goal of the new experimental investigations of P-odd and P-even effects in fission was a search of the possible relationships between the asymmetry coefficients and the characteristics of the entrance and exit channels in slow neutron fission. In this paper the brief review of the experimental results obtained by different groups is given. The main part of these results have been obtained at the WWR-M reactor of Leningrad Nuclear Physics Institute (LNPI)

  18. Dynamics in heavy ion fusion and fission

    International Nuclear Information System (INIS)

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236U or 252Cf. (S.B.)

  19. JNDC nuclear data library of fission products

    International Nuclear Information System (INIS)

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 103 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 103 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  20. Dissipative dynamics of fission of hot nuclei

    International Nuclear Information System (INIS)

    Fission of highly excited heavy nuclei has opened up the interesting possibility of exploring dynamical effects in nuclear fission and thereby measuring transport coefficients in the nuclear bulk. Dissipative dynamical models based on the Langevin equation have been found to be successful in describing fission of highly excited heavy nuclei. However, the standard model of one-body nuclear dissipation, namely the wall friction (WF), when incorporated in the Langevin equation was not able to reproduce simultaneously experimental data for both prescission neutron multiplicity and fission probability and hence the strength of nuclear dissipation are usually chosen empirically in order to fit experimental data. In this talk, we would report the results of dynamical calculations where a nuclear dissipation obtained from microscopic theoretical arguments, the so-called Chaos Weighted Wall Friction (CWWF), has been used. The aim is to use this shape dependent friction in the Langevin dynamical model in order to verify to what extent it can account for the experimental data of fission of hot nuclei. In particular, we would discuss our results on the evaporation residue cross-sections. We would also discuss the effect of transients on nuclear fission at higher excitation energies. (author)