WorldWideScience

Sample records for nanocrystal conducting polymer

  1. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  2. Lead sulfide nanocrystal: conducting polymer solar cells

    In this paper, we report photovoltaic devices fabricated from lead sulfide nanocrystals and the conducting polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene). This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n = 1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials

  3. Semiconductor-nanocrystal/conjugated polymer thin films

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  4. Non-volatile memory device using a polymer modified nanocrystal

    Thin-film planar structures using AgCl nanocrystals embedded in a polymer blend; exhibit reliable and reproducible switching between different non-volatile conductance states. It is shown that resistive switching in these systems cannot be related with migration diffusion or aggregation of metals to form metallic filaments. This is supported by temperature-dependent measurement showing that the current in the high conductance state is thermal activated (0.6 eV).

  5. Cellulose based conductive polymers

    Lin, Haishu

    2015-01-01

    Conductive fibers show potential applications in different areas. In this thesis, cellulose and its derivatives, including carboxymethyl cellulose, cellulose acetate as well as methyl cellulose were used to produce fibers via wet spinning. Different conductive materials were also introduced in an attempt to obtain cellulose-derived conductive fibers. Different conductive fillers (Zelec, carbon black, conductive polymers) were evaluated. Among them, PEDOT and PPy conductive polymers showed...

  6. Polymer-Conducting Polymer Composites

    Monrreal, Juan; Foltz, Heinrich D.; Garcia, Elsa; Lozano, Karen; Villareal, Marcos; Tidrow, Steven C.; Dorina Chipara, Magdalena; Chipara, Mircea

    2008-03-01

    Polyaniline is a conducting polymer with high electrical conductivity, good thermal and thermo-oxidative resistance, and poor mechanical properties. To overcome these weaknesses, the conducting nanoparticles were dispersed within polymeric matrices characterized by high mechanical strength or high elasticity. Such composite materials found applications as lightweight antistatic materials (at low doping levels) and electromagnetic shielding capabilities (at high doping levels, typically above the percolation threshold for electrical conductivity) and exhibit potential applications as metamaterials. Nanosized particles of polyaniline were dispersed within polymeric matrices (polystyrene, polyvinylchloride, and polyethylene). The thermal properties were investigated by Thermal Analysis and Differential Scanning Calorimetry. FTIR/ATR, Raman spectroscopy, and Electron Spin Resonance spectroscopy provided additional information about the effect of nanofiller on the polymeric matrix. Electrical (dc) measurements confirmed the increase of the electrical conductivity as the concentration of conducting nanoparticle is increased and revealed a broad percolation behavior. The effect of the conducting nanofiller on the mechanical properties is reported.

  7. Voltammetry of conducting polymers

    Gulaboski, Rubin

    2014-01-01

    The search for new materials for enhancing electrical conductivity of various materials is one of the most active research areas today. Conducting polymers represent a unique class of organic materials that have been used in many applications such as bioelectronics, sensors, corrosion protection, electrocatalysis, and energy storage devices. Application of the conductive polymers in electrochemistry is almost inevitable in order to get better features of the voltammetric systems ...

  8. Thermally conductive polymers

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  9. Conducting polymers: polyaniline

    Stejskal, Jaroslav; Trchová, Miroslava; Bober, Patrycja; Humpolíček, P.; Kašpárková, V.; Sapurina, I.; Shishov, M. A.; Varga, M.

    Hoboken : John Wiley & Sons, 2015, s. 1-44. ISBN 9780471440260 Institutional support: RVO:61389013 Keywords : conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry http://onlinelibrary.wiley.com/book/10.1002/0471440264/

  10. Ligand engineering in hybrid polymer:nanocrystal solar cells

    Matthew J. Greaney

    2015-01-01

    Full Text Available Blends of semiconducting polymers and inorganic semiconductor nanocrystals are receiving renewed interest as a type of inexpensive, solution-processed third generation solar cell. In these hybrid bulk heterojunctions (BHJs, the interface between the disparate organic and inorganic phases is a dominating factor in the overall performance of the resulting devices. Paramount to this interface is the ligand landscape on the nanocrystal surface, which as a result of the inherently large surface area to volume ratio of the nanocrystals, has a significant spatial and electronic influence on the boundary between the donor polymer and acceptor nanocrystal. We have investigated the importance of this three-part polymer/ligand/nanocrystal interface by studying the ligand effects in hybrid BHJ solar cells. In this article, we highlight the major research advances and the state-of-the-art in hybrid BHJ solar cells with respect to ligand engineering, as well as outline future research avenues deemed necessary for continued technological advancement.

  11. 'Stuffed' conducting polymers

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld; Wallace, Gordon

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the...

  12. Conductive Polymer Composites

    Pierini, Filippo

    2013-01-01

    In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, ...

  13. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo, Jaime; Emnéus, Jenny; Svendsen, Winnie Edith

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  14. Variable range hopping conduction in semiconductor nanocrystal solids

    Yu, Dong; Wang, Congjun; Wehrenberg, Brian L.; Guyot-Sionnest, Philippe

    2004-01-01

    The temperature and electrical field dependent conductivity of n-type CdSe nanocrystal thin films is investigated. In the low electrical field regime, the conductivity follows G ~ exp(-(T*/T)^0.5) in the temperature range 10K

  15. Conductive polymer-based material

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  16. Conducting Polymer 3D Microelectrodes

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  17. Multifunctional Composites Obtained by Incorporating Nanocrystals into Decorated PVK Polymers

    Bai Yang

    2007-10-01

    Full Text Available Poly(vinylcarbazole (PVK was decorated with surfactant group to achieve amphiphilic polymer with luminescent property. The composition and properties of the polymers were systematically investigated using FTIR, EA, TGA, UV-Vis, and PL characterizations. Different CdTe nanocrystals (NCs prepared in aqueous medium were directly transferred to organic phase using the PVK-based polymers. The quantum yield of NCs in the composites had been improved by 50% compared with their parent aqueous solution due to the short distance from carbazole moieties to NCs, which facilitated the Förster resonant energy transfer (FRET between them. Moreover, efficient electron transfer at the interface of NCs and polymers had been confirmed which also indicated the application in photovoltaic cell for such composites.

  18. Culture experiments on conductive polymers

    Fibroblast L929 and myoblast C2C12 cells of the mouse connective tissue origin were sown on the surface of conductive polymer films (polypyrrole, PPy and poly(3,4-ethylenedioxythiophene), PEDOT) in the cell culture medium, and the proliferative process of these cells was observed. Without changing the form, fibroblast L929 and myoblast C2C12 cells were observed to proliferate almost similarly to the cell which cultured on a dish on the market and to maintain compatibility. In other word, it has been understood these two kinds of conductive polymers used in this study, the PEDOT films maintain the secretion function of the cell cultured on the surface of these polymers. Therefore, the PPy- and the PEDOT-coated electrode suggested the possibility usable as a nerve stimulation electrode with biocompatibility, because these polymers were effective to culture the cell.

  19. Ultrabroadband terahertz conductivity of Si nanocrystal films

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  20. Superstructures of PbS nanocrystals in a conjugated polymer and the aligning role of oxidation

    We present a method to directly align PbS nanocrystals in micron-sized superstructures within a conjugated polymer. First, lead sulfide nanocrystals are directly synthesized in a MEH-PPV suspension via a single pot, surfactant-free method. Post-synthesis precipitation of the composite solution involving mild oxidation of the nanocrystals results in the formation of nanocrystal-polymer and nanocrystal-oxide superstructures. Detailed TEM is used to study the crystallographic nature of these structures and the roles of polymer and lead sulfate. An epitaxial relationship between lead sulfide and lead sulfate at the nanoscale is shown, giving insight into the oxidation rates of the PbS nanocrystals' facets.

  1. Theory of hopping conduction in arrays of doped semiconductor nanocrystals

    Skinner, Brian; Chen, Tianran; Shklovskii, B. I.

    2012-01-01

    The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way on the level of doping as well as on the NC size and spacing. The choice of these parameters determines whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at different doping levels and for different types of NCs. In th...

  2. The Workshop on Conductive Polymers: Final Report

    1985-10-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  3. The workshop on conductive polymers: Final report

    1985-01-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  4. Nanocrystal-polymer nanocomposite electrochromic device

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  5. Water-soluble conductive polymers

    Aldissi, Mahmoud (Sante Fe, NM)

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  6. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  7. Electrically conducting polymers for aerospace applications

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  8. Molecular and supramolecular orientation in conducting polymers

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  9. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

    2009-08-19

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

  10. Application potential of conducting polymers

    Intrinsically conducting polymers (ICPs) represent a special class of weak materials with electronic and ionic conductivity. Chemical and physical properties are dependent on their redox state. These properties allow a wide application as functional coatings. At constant film conditions, ICPs can be used in the dry or wet state due to their electronic conductivity, due to their porous structure or due to their processibility in microstructuring processes. The production of conducting electrodes on electrolyte condensers and the through hole plating of printed circuit boards (PCBs) represent typical examples. In sensors and membranes, the pore structure is applied. The application of variable properties, however, is of much greater interest. It is based on the change of charge, electronic states, chemical composition and mechanical properties during the reversible redox process. In contrast to original expectations, small intercalation factors hinder the application in batteries or supercaps. For OLEDs, however, most problems seem to be solved. Application of switching hydrophilic/hydrophobic properties is proved for offset printing but not yet applied. Usually, the anodic doping is investigated. The correspondent cathodic doping opens additional applications. The application of ICPs in functional coatings requires special properties such as fast response (e.g. in ms), stability for 103 cycles for batteries and 106 switches for displays, and a constant potential of discharge for batteries. Moreover, the stability against corrosion, overoxidation and delamination has to be guaranteed. Chemical modification of the monomer allows wide variations of properties, but economic requirements limit the price of the monomer and, thereby, the thickness or quality of the coating

  11. Conducting Polymers for Neutron Detection

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover

    2007-12-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  12. Conducting Polymers for Neutron Detection

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  13. Percolation conduction in polymer composites containing polypyrrole coated insulating polymer fiber and conducting polymer

    Yin, X.H. [Faculty of Engineering, Osaka University, Yamada-Oka, Suita, Osaka 565 (Japan); Kobayashi, K. [Faculty of Engineering, Osaka University, Yamada-Oka, Suita, Osaka 565 (Japan); Yoshino, K. [Faculty of Engineering, Osaka University, Yamada-Oka, Suita, Osaka 565 (Japan); Yamamoto, H. [Central Research Laboratory, Japan Carlit Co., Ltd,. 2470 Honda, Shibukawa, Gunma (Japan); Watanuki, T. [Central Research Laboratory, Japan Carlit Co., Ltd,. 2470 Honda, Shibukawa, Gunma (Japan); Isa, I. [Central Research Laboratory, Japan Carlit Co., Ltd,. 2470 Honda, Shibukawa, Gunma (Japan)

    1995-03-01

    Electrical conductivity of polymer composite containing insulating polymer fiber coated with thin polypyrrole layer has been found to increase remarkably by more than ten orders of magnitude above some threshold concentration. The activation energy of the electrical conductivity also changes drastically above this threshold. Thermoelectric power at concentration above this threshold is nearly the same with that of doped polypyrrole. The threshold concentration has been found to be dependent on the length of fiber remarkably. Longer length of fiber exhibits lower threshold concentration. These results are discussed in terms of percolation theory by taking the shape of fiber into consideration. Percolation conduction is also observed in other composites made of insulating polymers containing conducting polymers such as polyaniline. (orig.)

  14. Nanostructured polymer membranes for proton conduction

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  15. Prospects of conducting polymers in biosensors

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  16. Interpenetrating networks of two conducting polymers

    Winther-Jensen, Bjørn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and......, which are sums of the characteristics from the participating conducting polymers....

  17. Nanostructured conductive polymers for advanced energy storage.

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-01

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions. PMID:26119242

  18. Morphology in electrochemically grown conducting polymer films

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  19. Colloidal transparent conducting oxide nanocrystals: A new infrared plasmonic material

    Bharat Tandon; Aswathi Ashok; Angshuman Nag

    2015-06-01

    Thin films of transparent conducting oxides (TCO) are technologically important for applications as a visible light transparent electrode in a wide variety of optoelectronic devices. In the last few years, researchers started to explore novel size- and shape-dependent properties of TCO, where the crystallite size is ∼10 nm. So far, the localized surface plasmon resonance (LSPR) properties of TCO nanocrystals (NCs) have been found to be the most interesting. TCOs like Sn-doped In2O3, Al-doped ZnO and In-doped CdO NCs, exhibit LSPR band in near- to mid-infrared region. LSPR from a TCO NC exhibits many intrinsic differences with that of a metal NC. Carrier density in a TCO NC can easily be tuned by controlling the dopant concentration, which allows the LSPR band to be tuned over a range of ∼2000 nm (∼0.62 eV) in the near- to mid-infrared region. This review discusses recent advances in the understanding of plasmonic properties of various TCO NCs and highlights the potential applications of such unique plasmonic properties.

  20. CONDUCTIVE POLYMERS AS ELECTRODE MATERIALS

    Armand, M.

    1983-01-01

    Polyacetylene and its related polymers are amphoteric insertion compounds accomodating both cations and anions. This property make them ideal candidates for electrochemical energy storage. However the electrochemistry of these compounds is not fully clarified and the main remaining problems are evoked here.

  1. Electronically conducting polymers with silver grains

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dolibor (Inventor)

    1999-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  2. Application of conducting polymers to electroanalysis

    Josowicz, M.A.

    1994-04-01

    Conducting polymers can be used as sensitive layers in chemical microsensors leading to new applications of theses devices. They offer the potential for developing material properties that are critical to the sensor sensitivity, selectivity and fabrication. The advantages and limitations of the use of thin polymer layers in electrochemical sensors are discussed.

  3. Conducting polymer based biomolecular electronic devices

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  4. Electrochemical sensor based on conductive polymer electrolyte

    Ribes, C.; Cisneros, B.; Noding, S.A.; Ribes, A.J. [Dow Chemical Co., Plaquemine, LA (United States)

    1995-12-31

    A novel conductive polymer film has been incorporated into an electrochemical sensor for the determination of toxic gases. The conductive film consists of an inert polymer, a completing agent, and a salt. A variety of gases can be determined with this sensor. The specific detection of sulfuryl fluoride (SO{sub 2}F{sub 2}) in air will be discussed as an example of the capability and flexibility of technology.

  5. PHOTOELECTRIC CHARACTERIZATION OF P3HT POLYMER/PbS NANOCRYSTAL COMPOSITS

    Bertasius, V.; Gulbinas, V.; Giansante, C.

    2015-01-01

    Photoelectric properties of new type conjugated polymer-semiconductor nanocrystals hybrid solar cells were investigated. Dependencies of charge carrier generation, mobility and recombination on composition of samples and the way how the samples were prepared were evaluated by using ultrafast time-resolved fluorescence, transient photocurrent and delayed collection field techniques. The combination of several investigation techniques enabled to distinguish and investigate three proces...

  6. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments. PMID:21152569

  7. Tactile Sensors Based on Conductive Polymers

    Macicior, Haritz; Sikora, Tomasz; Ochoteco, Estíbalitz; Castellanos Ramos, Julián; Navas González, Rafael Jesús; Vidal Verdú, Fernando

    2010-01-01

    This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive mate¬rial. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The ...

  8. Liquid crystal-templated conducting organic polymers

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  9. Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics

    The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be ?10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics

    Kovalevskij, V.; Gulbinas, V.; Piskarskas, A.; Hines, M. A.; Scholes, G. D.

    2004-07-01

    The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be 10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host.

  11. Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics

    Kovalevskij, V. [Institute of Physics, Savanoriu Av. 231, LT-2053 Vilnius (Lithuania); Gulbinas, V. [Institute of Physics, Savanoriu Av. 231, LT-2053 Vilnius (Lithuania); Vilnius University, Sauletekio al. 9, bldg. 3, LT-2040 Vilnius (Lithuania); Piskarskas, A. [Vilnius University, Sauletekio al. 9, bldg. 3, LT-2040 Vilnius (Lithuania); Hines, M.A.; Scholes, G.D. [University of Toronto, Department of Chemistry, 80 St. George St., Toronto, Ontario M5S 3H6 (Canada)

    2004-07-01

    The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be {proportional_to}10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Direct synthesis of PbS nanocrystals capped with 4-fluorothiophenol in semiconducting polymer

    We report on a simple chemical route to directly synthesize PbS nanocrystals capped with 4-fluorothiophenol in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] semiconducting polymer. An intermediate composite, which has been characterized by X-ray photoelectron spectroscopy, has been synthesized to be used as nanocrystal precursor that contains both the metal and capping agent. Transmission electron microscopy images show that good quality nanoparticles with a mean size of ∼5 nm are obtained with this method. Optical absorption measurements show that the absorption band of the polymer is extended as the PbS nanoparticles are included. Photoluminescence of the polymer becomes partially quenched as the concentration of the nanoparticles is increased in the composite.

  13. Conducting polymers: Synthesis and industrial applications

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  14. Conducting polymers: Synthesis and industrial applications

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  15. A Platform for Functional Conductive Polymers

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik; Hansen, Thomas Steen; Larsen, Niels Bent; Hvilsted, Søren

    conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... enables preparation of e.g. interdigitated electrodes or other surface structures. The electrodes have been applied in controlled localized click reactions through ”electroclick” reactions(5). This enables preparation of both highly functional electrodes as well as gradient surfaces(6). The system is very...

  16. Conductive Polymer Functionalization by Click Chemistry

    Daugaard, Anders Egede; Hvilsted, Søren; Hansen, Thomas Steen; Larsen, Niels Bent

    2008-01-01

    Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed to......, with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20° and -20°/-25°, respectively. The targeted...

  17. Conductive polymer/high-Tc superconductor assemblies

    The fabrication of electronic devices from conductive polymer materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodies have all been prepared utilizing such substances. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa2Cu3O7-? microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa2Cu3O7-? film, the oxidized (conductive) polymer depresses Tc by up to 15 K. Thus, a new type of molecular switch for controlling superconductivity is demonstrated

  18. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity

    We study the processes of charge separation and transport in composite materials formed by mixing cadmium selenide or cadmium sulfide nanocrystals with the conjugated polymer poly(2-methoxy,5-(2'-ethyl)-hexyloxy-p-phenylenevinylene) (MEH-PPV). When the surface of the nanocrystals is treated so as to remove the surface ligand, we find that the polymer photoluminescence is quenched, consistent with rapid charge separation at the polymer/nanocrystal interface. Transmission electron microscopy of these quantum/conjugated-polymer composites shows clear evidence for phase segregation with length scales in the range 10 endash 200 nm, providing a large area of interface for charge separation to occur. Thin-film photovoltaic devices using the composite materials show quantum efficiencies that are significantly improved over those for pure polymer devices, consistent with improved charge separation. At high concentrations of nanocrystals, where both the nanocrystal and polymer components provide continuous pathways to the electrodes, we find quantum efficiencies of up to 12%. We describe a simple model to explain the recombination in these devices, and show how the absorption, charge separation, and transport properties of the composites can be controlled by changing the size, material, and surface ligands of the nanocrystals. copyright 1996 The American Physical Society

  19. Conductive Polymer Functionalization by Click Chemistry

    Daugaard, Anders Egede; Hvilsted, Sren; Hansen, Thomas Steen; Larsen, Niels Bent

    2008-01-01

    , with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20 and -20/-25, respectively. The targeted......Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed to...... functionalize films of PEDOT-N3 and copolymers prepared from EDOT-N3 and 3,4-ethylenedioxythiophene (EDOT). This approach enables new functionalities on PEDOT that could otherwise not withstand the polymerization conditions. Reactions on the thin polymer films have been optimized using an alkynated fluorophore...

  20. Gyroid nanoporous scaffold for conductive polymers

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin; Vigild, Martin Etchells; Ndoni, Sokol; Chen, Jun

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  1. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  2. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  3. Intrinsically conductive polymer thin film piezoresistors

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.; Christensen, A.; Boisen, Anja

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity and...... strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  4. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.

    Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi

    2015-01-01

    Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues. PMID:25029116

  5. Ion-Conducting Organic/Inorganic Polymers

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  6. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-10-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS® polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements.

  7. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements

  8. Smart Surface Chemistries of Conducting Polymers

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify......-N3 thin film substrates. Complementing these findings, we introduce a novel technique for fabricating surface chemical gradients on PEDOT-N3 substrates. The technique is based on applying “electro-click chemistry” to locally induce covalent modifications. Further supplementing these results, we...... develop a straightforward and in-expensive method for patterning conducting polymer thin films into microelectrodes, without losing control of the surface chemistry of the samples. On the contrary, the method provides direct control of the surface chemistry of both the fabricated micro-electrodes and the...

  9. Ionically conductive polymers for ER fluid preparation

    Krzton-Maziopa, A; Plocharski, J [Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa (Poland)], E-mail: anka@ch.pw.edu.pl

    2009-02-01

    Two groups of electrorheological (ER) suspensions containing polyelectrolytes and solid polymer electrolytes as dispersed phases of ionic conductivity were synthesized and their ER effect at elevated temperatures was studied. Polymers were carefully characterised and detailed analysis of their ionic conductivity change with temperature was performed. It was found that in suspensions comprising both types of materials ER effect and current density were closely related to cation type presented in resin and in salt added to solid electrolyte. If small monovalent cations of high mobility were present in the solid phase the ER effect of suspensions as well as their current densities increased strongly with temperature both for polyelectrolytes and solid electrolytes. Presence of spatial cations resulted in lower power consumption and reasonable ER effect within wide temperature range.

  10. Ionically conductive polymers for ER fluid preparation

    Two groups of electrorheological (ER) suspensions containing polyelectrolytes and solid polymer electrolytes as dispersed phases of ionic conductivity were synthesized and their ER effect at elevated temperatures was studied. Polymers were carefully characterised and detailed analysis of their ionic conductivity change with temperature was performed. It was found that in suspensions comprising both types of materials ER effect and current density were closely related to cation type presented in resin and in salt added to solid electrolyte. If small monovalent cations of high mobility were present in the solid phase the ER effect of suspensions as well as their current densities increased strongly with temperature both for polyelectrolytes and solid electrolytes. Presence of spatial cations resulted in lower power consumption and reasonable ER effect within wide temperature range.

  11. Soliton and polaron dynamics in conducting polymers

    Solitons and polarons in conducting polymers are strongly coupled electron-lattice excitations. The lattice relaxation theory generalized by us to include the self-consistency of multi-electron states with lattice symmetry-breaking is summarized. The discrete symmetries and corresponding selection rules for both radiative and nonradiative processes are discussed. Theoretically calculated probability of nonradiative decay of an electron-hole pair into a soliton pair and that of electron (hole) into polaron as well as the probability of soliton pair photo-generation is compared with results of numerical and laboratory experiments. The resonance Raman scattering data of cis-polyacetylene are interpreted in terms of a bipolaron model. The parameters involved are determined directly from experimental data. Other applications of lattice relaxation theory to conducting polymers are briefly mentioned. (author). 40 refs, 5 figs

  12. Ion conducting organic/inorganic hybrid polymers

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  13. Electrochromic window with lithium conductive polymer electrolyte

    Baudry, Paul; Michel A. Aegerter; Deroo, Daniel; Valla, Bruno

    1991-01-01

    An electrochromic window was built using WO3 as the electrochromic material and V2O5 as the counter-electrode. Both were deposited onto ITO coated glass panes by vacuum evaporation and were amorphous to X-ray diffraction. The electrolyte was a lithium conducting polymer constituted by a Poly (ethylene oxide) - lithium salt complex. The electrochemical characterization of electrodes was realized by cyclic voltammetry, coulometric titration, and impedance spectroscopy, which allowd the determin...

  14. Functional composite coatings containing conducting polymers

    Jafarzadeh, Shadi

    2014-01-01

    Organic coatings are widely used to lower the corrosion rate of metallic structures. However, penetration of water, oxygen and corrosive ions through pores present in the coating results in corrosion initiation and propagation once these species reach the metal substrate. Considering the need for systems that offer active protection with self-healing functionality, composite coatings containing polyaniline (PANI) conducting polymer are proposed in this study. In the first phase of my work, PA...

  15. Conductive polymers for carbon dioxide sensing

    Doan, T.C.D.

    2012-01-01

    Augmented levels of carbon dioxide (CO2) in greenhouses stimulate plant growth through photosynthesis. Wireless sensor networks monitoring CO2 levels in greenhouses covering large areas require preferably low power sensors to minimize energy consumption. Therefore, the main objective of this research is to develop CO2 sensors using conductive polymer/polyelectrolyte blends as low power sensing layers operating at room temperature. The transduction principle is based on a relative change in co...

  16. Enhancing the performance of polymer solar cells using CuPc nanocrystals as additives.

    Zhang, Yajie; Wei, Zhixiang

    2015-05-22

    There is an increasing interest in the use of different nanoparticles as additives in polymer solar cells for enhancing the light absorption of active layers as well as their power conversion efficiency (PCE). In this paper, we report a PCE enhancement by simply adding copper phthalocyanine (CuPc) nanocrystals into photovoltaic devices based on a poly(3-hexylthiophene) (P3HT): fullerene system. Two kinds of device structure were studied: the first one is a CuPc nanocrystal suspension spin coated on the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-coated substrate; the second one is the CuPc nanocrystal suspension added into the active layer solutions. It is proved that incorporating organic semiconductor nanocrystals into the active layer can help trap light and enhance the crystallinity of the active layers, thus improving the device performance. This strategy might be generally compatible with a broad range of organic photovoltaic materials and offers an effective approach to enhance the device performance. PMID:25912794

  17. The Organic Chemistry of Conducting Polymers

    Tolbert, Laren Malcolm [Georgia Institute of Technology

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  18. Electrochemical Analysis of Conducting Polymer Thin Films

    Bin Wang

    2010-04-01

    Full Text Available Polyelectrolyte multilayers built via the layer-by-layer (LbL method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene (PPV, in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randles circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values.

  19. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  20. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    Fragouli, D.; Resta, V.; Pompa, P. P.; Laera, A. M.; Caputo, G.; Tapfer, L.; Cingolani, R.; Athanassiou, A.

    2009-04-01

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  1. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A [NNL-National Nanotechnology Laboratory, INFM, CNR, Via Arnesano, 73100 Lecce (Italy); Resta, V; Laera, A M; Tapfer, L [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: despina.fragouli@unile.it

    2009-04-15

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  2. Electrochemical characterization of aminated acrylic conducting polymer

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  3. Laser induced forward transfer of conducting polymers

    Kandyla, M.; Chatzandroulis, S.; Zergioti, I.

    2010-01-01

    We report on laser printing of conducting polymers directly from the solid phase. Laser Induced Forward Transfer is employed to deposit P3HT:PCBM films on glass/ITO/PEDOT:PSS substrates. P3HT:PCBM is widely used as the active material in organic solar cells. Polyaniline films, which are also printed by Laser Induced Forward Transfer, find many applications in the field of biotechnology. Laser printing parameters are optimized and results are presented. To apply solid-phase laser printing, P3H...

  4. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly.

    Wang, Shuman; Zhang, Xinxing; Wu, Xiaodong; Lu, Canhui

    2016-01-21

    Conductive polymer composites (CPCs) just above the percolation threshold exhibit a unique strain-reversible electric response upon application of tensile strain, which can be used to prepare strain sensors. However, it is difficult to balance the electric conductivity which is fundamental to a stable output signal and the strain sensing sensitivity due to the relatively dense conductive pathways of the traditional CPCs. Constructing a "brittle" but effective conductive network structure in CPCs is the essential foundation of a desirable sensing material. Here, we demonstrate for the first time that highly flexible, stretchable, sensitive, and reversible strain sensors can be fabricated by a facile latex assembly approach, in which nontoxic, sustainable and biodegradable cellulose nanocrystals played a key role in tailoring the percolating network of conductive natural rubber (NR)/carbon nanotube (CNT) composites. The resulting nanocomposites with a continuous 3D conductive structure exhibited a very low electrical conductivity percolation threshold (4-fold lower than that of the conventional NR/CNT composites), high resistivity and sensitivity (gauge factor ≈ 43.5) and meanwhile good reproducibility of up to 100% strain. The proposed materials and principles in this study open up a novel practical approach to design high performance flexible sensors for a broad range of multifunctional applications. PMID:26542376

  5. Integration of conducting polymer network in non-conductive polymer substrates

    Hansen, Thomas Steen; West, Keld; Hassager, Ole; Larsen, Niels Bent

    absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties of the...

  6. Catalytic synthesis of metal crystals using conductive polymers

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Los Alamos, NM)

    2008-01-15

    A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.

  7. Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing

    Binetti, E.; Ingrosso, C.; Striccoli, M.; Cosma, P.; Agostiano, A.; Pataky, K.; Brugger, J.; Curri, M. L.

    2012-02-01

    In this work nanocomposites based on organic-capped semiconductor nanocrystals formed of a core of CdSe coated with a shell of ZnS (CdSe@ZnS), with different sizes, and a semiconducting conjugated polymer, namely poly[(9,9-dihexylfluoren-2,7-diyl)-alt- (2,5-dimethyl-1,4-phenylene)] (PF-DMB) have been investigated. The nanocomposites are prepared by mixing the pre-synthesized components in organic solvents, thereby assisting the dispersion of the organic-coated nano-objects in the polymer host. UV-vis steady state and time-resolved spectroscopy along with (photo)electrochemical techniques have been performed to characterize the obtained materials. The study shows that the embedded nanocrystals increase the PF-DMB stability against oxidation and, at the same time, extend the light harvesting capability to the visible spectral region, thus resulting in detectable photocurrent signals. The nanocomposites have been dispensed by means of a piezo-actuated inkjet system. Such inks present viscosity and surface tension properties well suited for stable and reliable drop-on-demand printing using an inkjet printer. The fabrication of arrays of single-color pixels made of the nanocomposites and micrometers in size has been performed. Confocal and atomic force microscopy have confirmed that inkjet-printed microstructures present the intrinsic emission properties of both the embedded nanocrystals and PF-DMB, resulting in a combined luminescence. Finally, the morphology of the printed pixels is influenced by the embedded nanofillers.

  8. Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing

    In this work nanocomposites based on organic-capped semiconductor nanocrystals formed of a core of CdSe coated with a shell of ZnS (CdSe-ZnS), with different sizes, and a semiconducting conjugated polymer, namely poly[(9,9-dihexylfluoren-2,7-diyl)-alt- (2,5-dimethyl-1,4-phenylene)] (PF-DMB) have been investigated. The nanocomposites are prepared by mixing the pre-synthesized components in organic solvents, thereby assisting the dispersion of the organic-coated nano-objects in the polymer host. UV–vis steady state and time-resolved spectroscopy along with (photo)electrochemical techniques have been performed to characterize the obtained materials. The study shows that the embedded nanocrystals increase the PF-DMB stability against oxidation and, at the same time, extend the light harvesting capability to the visible spectral region, thus resulting in detectable photocurrent signals. The nanocomposites have been dispensed by means of a piezo-actuated inkjet system. Such inks present viscosity and surface tension properties well suited for stable and reliable drop-on-demand printing using an inkjet printer. The fabrication of arrays of single-color pixels made of the nanocomposites and micrometers in size has been performed. Confocal and atomic force microscopy have confirmed that inkjet-printed microstructures present the intrinsic emission properties of both the embedded nanocrystals and PF-DMB, resulting in a combined luminescence. Finally, the morphology of the printed pixels is influenced by the embedded nanofillers. (paper)

  9. Hybrid solar cells based on colloidal nanocrystals and conjugated polymers

    In this study, monodispersed colloidal titanium dioxide (TiO2) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM:TiO2/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO2 content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO2 content (15 wt.%) and annealing temperature (150 °C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO2 absorbed more light photons in the P3OT:PCBM:TiO2 active layer. The charge transfer in the P3OT:PCBM:TiO2 active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm2, 34.46%, and 2.09%, respectively. - Highlights: • Solar cell based on titania and conjugated polymer was fabricated. • Optimal titania content and annealing temperature were investigated. • Solar cell with 2.09% efficiency was obtained

  10. Hybrid solar cells based on colloidal nanocrystals and conjugated polymers

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Ciou, Chi-Yi [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China)

    2013-10-01

    In this study, monodispersed colloidal titanium dioxide (TiO{sub 2}) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM:TiO{sub 2}/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO{sub 2} content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO{sub 2} content (15 wt.%) and annealing temperature (150 °C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO{sub 2} absorbed more light photons in the P3OT:PCBM:TiO{sub 2} active layer. The charge transfer in the P3OT:PCBM:TiO{sub 2} active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm{sup 2}, 34.46%, and 2.09%, respectively. - Highlights: • Solar cell based on titania and conjugated polymer was fabricated. • Optimal titania content and annealing temperature were investigated. • Solar cell with 2.09% efficiency was obtained.

  11. Chemical synthesis of chiral conducting polymers

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Los Alamos, NM)

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  12. Transparent and conductive polymer layers by gas plasma techniques

    Groenewoud, Lucas Marinus Hendrikus

    2000-01-01

    Polymers are widely used in a great number of applications because of their general properties such as low density, low cost, and processability. If these properties could be combined with electrical conductivity, this would open up the way to desirable applications such as flexible LCD’s and polymer electronics (cheap, lightweight, etc.). For applications requiring electrical conductivity, the choice of a suitable polymer is limited to polymers with a conjugated chemical structure such as po...

  13. Nanostructured conducting polymers for energy applications: towards a sustainable platform

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N.

    2016-03-01

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

  14. Nanostructured conducting polymers for energy applications: towards a sustainable platform.

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N

    2016-03-24

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described. PMID:26980404

  15. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  16. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  17. Electron energy loss spectroscopy of single silicon nanocrystals: The conduction band

    Batson, P. E.; Heath, J. R.

    1993-01-01

    Spatially resolved electron energy loss spectroscopy has been performed on single, H-terminated, Si nanocrystals in the size range 25–500 Å. The particles were prepared via the gas-phase photolysis of a dilute Si2H6/He mixture in a gas flow cell, and deposited on a holey carbon grid for analysis. Energy loss within a few eV of the core 2p ionization edge reveals information about the conduction band states at Δ1 and L1 in the Brillouin zone. The conduction band edge is observed to shift to hi...

  18. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    Actuators based on conducting polymers are attracting increasing interest due to their desirable features such as large mechanical stress generated, sufficient maximum strain values, high reversibility, good safety properties and the possibility of precise control using small voltages. Many...... attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  19. “Electro-Click” on Conducting Polymer Films

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede; Hvilsted, Søren; Larsen, Niels Bent

    chemistry”. This facilitates the addition of compounds that can otherwise not withstand the polymerization conditions. Several biological active molecules have been attached and tested on the films. Furthermore conducting polymer microelectrodes can electrochemically generate the catalyst required for their...... own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films...

  20. Gradiently anisotropic conducting and magnetic polymer composites

    Aneli, Jimsher; Nadareishvili, Levan; Mamniashvili, Grigor; Akhalkatsi, Anatoli; Zaikov, Gennady

    2012-01-01

    The character of the local electric resistance variations of film polymer composites on the basis of polyvinyl alcohol with graphite powder on the one hand and the magnetic susceptibility of the same polymer with nickel nano-particles on the other hand has been studied. It has been established that the changes of these parameters essentially depends on both initial shape of the films and on the direction of their orientation. It is concluded that the films of gradiently anisotropic polymer co...

  1. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  2. Anion-conducting polymer, composition, and membrane

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  3. Role of Cellulose Nanocrystals on the Microstructure of Maleic Anhydride Plasma Polymer Thin Films.

    Brioude, Michel M; Roucoules, Vincent; Haidara, Hamidou; Vonna, Laurent; Laborie, Marie-Pierre

    2015-07-01

    Recently, it was shown that the microstructure of a maleic anhydride plasma polymer (MAPP) could be tailored ab initio by adjusting the plasma process parameters. In this work, we aim to investigate the ability of cellulose nanocrystals (CNCs) to induce topographical structuration. Thus, a new approach was designed based on the deposition of MAPP on CNCs model surfaces. The nanocellulosic surfaces were produced by spin-coating the CNC suspension on a silicon wafer substrate and on a hydrophobic silicon wafer substrate patterned with circular hydrophilic microsized domains (diameter of 86.9 4.9 ?m), resulting in different degrees of CNC aggregation. By depositing the MAPP over these surfaces, it was possible to observe that the surface fraction of nanostructures increased from 20% to 35%. This observation suggests that CNCs can act as nucleation points resulting in more structures, although a critical density of the CNCs is required. PMID:26035334

  4. Applications of conducting polymers: robotic fins and other devices

    Tangorra, James L.; Anquetil, Patrick A.; Weideman, Nathan S.; Fofonoff, Timothy; Hunter, Ian W.

    2007-04-01

    Conducting polymers are becoming viable engineering materials and are gradually being integrated into a wide range of devices. Parallel efforts conducted to characterize their electromechanical behavior, understand the factors that affect actuation performance, mechanically process films, and address the engineering obstacles that must be overcome to generate the forces and displacements required in real-world applications have made it possible to begin using conducting polymers in devices that cannot be made optimal using traditional actuators and materials. The use of conducting polymers has allowed us to take better advantage of biological architectures for robotic applications and has enabled us to pursue the development of novel sensors, motors, and medical diagnostic technologies. This paper uses the application of conducting polymer actuators to a biorobotic fin for unmanned undersea vehicles (UUVs) as a vehicle for discussing the efforts in our laboratory to develop conducting polymers into a suite of useful actuators and engineering components.

  5. In situ growth of well-dispersed CdS nanocrystals in semiconducting polymers

    Laera, Anna Maria; Resta, Vincenzo; Piscopiello, Emanuela; Miceli, Valerio; Schioppa, Monica; Scalone, Anna Grazia; Benedetto, Francesca Di; Tapfer, Leander

    2013-09-01

    A straight synthetic route to fabricate hybrid nanocomposite films of well-dispersed CdS nanocrystals (NCs) in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) is reported. A soluble cadmium complex [Cd(SBz)2]2MI, obtained by incorporating a Lewis base (1-methylimidazole, MI) on the cadmium bis(benzyl)thiol, is used as starting reagent in an in situ thermolytic process. CdS NCs with spherical shape nucleate and grow well below 200C in a relatively short time (30 min). Photoluminescence spectroscopy measurements performed on CdS/MEH-PPV nanocomposites show that CdS photoluminescence peaks are totally quenched inside MEH-PPV, if compared to CdS/PMMA nanocomposites, as expected due to overlapping of the polymer absorption and CdS emission spectra. The CdS NCs are well-dispersed in size and homogeneously distributed within MEH-PPV matrix as proved by transmission electron microscopy. Nanocomposites with different precursor/polymer weight ratios were prepared in the range from 1:4 to 4:1. Highly dense materials, without NCs clustering, were obtained for a weight/weight ratio of 2:3 between precursor and polymer, making these nanocomposites particularly suitable for optoelectronic and solar energy conversion applications.

  6. Solid Polymer Lithium-ion Conducting Electrolytes for Structural Batteries

    Willgert, Markus

    2012-01-01

    This work comprises the manufacture and characterization of solid polymer lithium ion conducting electrolytes for structural batteries. In the study, polymer films are produced in situ via a rapid versatile UV irradiation polymerization route, in which ethylene oxide methacrylates are polymerized into thermoset networks. In the first part of the study, the simplicity and efficiency of this manufacturing route is emphasized. Polymer electrolytes are pro-duced with an ionic conductivity ranging...

  7. Nobel Prize 2000: from conducting polymers to molecular electronics

    In this paper the development of conducting organic polymers is reviewed. Poly(3-alkylthiophenes) with regioregularity exceeding 99% are especially interesting because if used as a thin semiconducting layer in the field effect transistor (FET) configuration they become superconducting at 2.35 K. This is the first example of the superconductivity of an organic polymer. Fields of use of conducting polymers are reviewed, too

  8. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    Bøggild, Peter; Grey, Francois; Hassenkam, T.; Greve, D.R.; Bjørnholm, Thomas

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...... demonstrate how microscopic ordering in the polymer domains controls the conductivity....

  9. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Søren; Larsen, Niels Bent

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence...... by two alkyne-modified fluorophores by control of the applied potentials....

  10. Potential profile in a conducting polymer strip

    Bay, Lasse; West, Keld; Vlachopoulos, Nikolaos; Skaarup, Steen

    Many conjugated polymers show an appreciable difference in volume between their oxidized and reduced forms. This property can be utilized in soft electrochemically driven actuators, "artificial muscles". Several geometries have been proposed for the conversion of the volume expansion into useful...... mechanical work. In a particularly simple geometry, the length change of polymer strips is exploited. The polymer strips are connected to the driving circuit at the end of the strip that is attached to the support of the device. The other end of the strip is connected to the load. The advantage of this set......-up is simplicity and that the maximum force generated in the polymer can be transferred directly to the load. There is, however, an inherent problem in this design that will be examined in this paper. If the potential of the reduced state is below that for oxygen reduction, only a finite length of the...

  11. Nanostructured conducting polymer hydrogels for energy storage applications

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-07-01

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  12. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author)

  13. Conducting polymer/clay nanocomposites and their applications.

    Fang, Fei Fei; Choi, Hyoung Jin; Joo, Jinsoo

    2008-04-01

    This review aims at reporting on interesting and potential aspects of conducting polymer/clay nanocomposites with regard to their preparation, characteristics and engineering applications. Various conducting polymers such as polyaniline, polypyrrole and copolyaniline are introduced and three different preparation methods of synthesizing conducting polymer/clay nanocomposites are being emphasized. Morphological features, structure characteristics and thermal degradation behavior are explained based on SEM/TEM images, XRD pattern analyses and TGA/DSC graphs, respectively. Attentions are also being paid on conductive/magnetic performances as well as two potential applications in anti-corrosion coating and electrorheological (ER) fluids. PMID:18572558

  14. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.

    Zhu, Baolei; Merindol, Remi; Benitez, Alejandro J; Wang, Baochun; Walther, Andreas

    2016-05-01

    Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites. PMID:27067311

  15. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  16. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  17. Low-Dimensional Conduction Mechanisms in Highly-Conductive and Transparent Conjugated Polymers

    Ugur Katmis, Asli; Katmis, Ferhat; Li, Mingda; Wu, Lijun; Varanasi, Kripa K.; Gleason, Karen K.; Zhu, Yimei

    2015-01-01

    Electronic conduction in conjugated polymers is of emerging technological interest for high-performance optoelectronic and thermoelectric devices. A completely new aspect and understanding of the conduction mechanism on conducting polymers is introduced, allowing the applicability of materials to be optimized. The charge-transport mechanism is explained by direct experimental evidence with a very well supported theoretical model.

  18. Low-Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers

    Ugur, Asli; Katmis, Ferhat; Li, Mingda; Wu, Lijun; Zhu, Yimei; Varanasi, Kripa K.; Gleason, Karen K.

    2015-01-01

    Electronic conduction in conjugated polymers is of emerging technological interest for high-performance optoelectronic and thermoelectric devices. A completely new aspect and understanding of the conduction mechanism on conducting polymers is introduced, allowing the applicability of materials to be optimized. The charge-transport mechanism is explained by direct experimental evidence with a very well supported theoretical model.

  19. Polyvinyl alcohol as photoluminescent conductive polymer

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares-Pérez, A.; Ponce-Lee, E. L.; Hernández-Garay, M. P.; Páez-Trujillo, G.; Toxqui-López, S.; Fuentes-Tapia, I.

    2007-02-01

    We synthesized a photoluminescent conductor polymer composed of polyvinyl alcohol, which was doped with nickel chloride to decrease its resistivity (300 Ωcm) and benzalkonium chloride to obtain photoluminescence properties, when it is radiated with a green laser beam (532 nm). We compared its absorbance curve and its energy emitted curve to observe the amount energy that is taken advantage of this process. Besides we research the photoluminescence behavior when an electric currant is applied in our conductor polymer, obtaining a modulation capacity.

  20. Charging influence on current conduction in NiO thin film embedded with Ni nanocrystals

    We have investigated the current conduction of NiO thin film embedded with Ni nanocrystals (nc-Ni) and the influence of charging in the nc-Ni/NiO thin film on the current transport. The hole trapping in the thin film under a negative charging voltage is found to greatly increase the current conduction measured at a positive voltage due to the enhancement of electric field at the interface between the thin film and Si substrate. Moreover, the current-voltage (I-V) characteristic follows a power-law relationship. In addition, the dc resistance of the thin film strongly depends on the magnitude of the charging voltage and charging time. These results could be used to realize a charging-controlled resistive memory effect.

  1. Radiation induced synthesis of conducting polymer nanocomposite

    In this work, we prepared a series of Ag/PVA and Ag/PANI nano composites were prepared successfully using a modern and new method. Our synthetic route did not need complicated apparatus, expensive surfactants or additional reducing agents. The prepared nano composite developed optically functional material that does not exist for metal or polymer alone. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the Ag/PVA and Ag/PANI nano composites processing and analysis. Ag nanoparticles with different particle sizes were prepared via chemical method and gamma- irradiation method. Several techniques were used to detect the structural changes of the nano composites as UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrometer, and thermogravimetric analysis (TGA). Chapter 4 includes the obtained results and their discussions: Part I: Synthesis of Ag/PVA nano composite via gamma irradiation From UV/VIS spectroscopy the surface plasmon bands appearing in the visible region (406-422 nm) for Ag/PVA nano composite films are characteristic of the noble metal nanoparticles. The obtained data regarding the change of the absorption intensity and wavelength at maximum absorption and the size of Ag nanoparticles as a function of either irradiation dose or Ag+ concentration pointed the following remark: The particle size of Ag nanoparticles in the as-prepared Ag/PVA nano composite films decreases with increasing either irradiation dose or Ag+ ion concentration. Transmission electron microscope images illustrated that the average diameter of the Ag nanoparticles is indicated as the peak position of the Gaussian curves of the histogram to be from 40-16 nm. The nano structured Ag/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity. The XRD pattern of irradiated Ag/PVA nano composite samples show four new diffraction peaks which reveal that the Ag nanoparticles are formed in the PVA matrix and their crystal structure is face center cubic (fcc) structure. Also, it can be seen that, with increasing irradiation dose, the particle size decreases, whereas the particle size increase gradually with increasing AgNO3 concentration. FTIR spectra illustrate that the formation of Ag/PVA nano composites leads to disappearance and/or weakening of some characteristic peaks followed by the change in peak position, peak shape and peak intensity due to incorporation of various content of Ag nanoparticles and irradiation doses. Decrease in the transmittance of some bands reveals that there is an interaction between Ag and PVA. Thermal gravimetric analysis (TGA) showed that, pure PVA sample proceed in three main weight loss stages. The appearance of the fourth stage with incorporation of Ag nanoparticles; confirm the coordination between AgNPs and OH groups. Finally, from the thermal parameters of Ag/PVA degradation reaction, thermal stability of Ag/PVA nano composites is higher than in pure PVA. The antifungal and antibacterial activities of AgNPs were tested against some of pathogenic clinical isolates and some of gram-positive S. aureus and some gram-negative E. coli, respectively. AgNPs exhibited a potent antifungal and antibacterial activity against some of fungal and bacterial strains tested. The antifungal and antibacterial activity increases (according to increase the high specific surface area) with either increasing irradiation dose or decreasing AgNO3 concentration. Part II: Synthesis of Ag/PANI nano composite via gamma irradiation UV/VIS absorption shows the formation and growth of Ag nanoparticles through absorption band at (398-406). For a given samples, as the irradiation dose is increased, a gradual red shift in was observed. This indicates formation of larger particles with increasing irradiation dose. With increase in Ag concentration the absorption maximum shifts towards longer wavelengths (larger particle size formation). The XRD pattern of irradiated PANI exhibits four new diffraction peaks, corresponding to face centered cubic structure (fcc) of silver. With increasing of either AgNO3 concentration or irradiation dose the particle size was increased. FTIR spectra of Ag/PANI nano composites illustrate that the incorporation of silver nanoparticles in poly aniline matrix leads to small shift of some peaks to the higher wavelengths and also decreases in the intensity of other peaks, which indicates that the structural change of polymer occurs with doping. The variation of dc electrical conductivity for pure PANI and irradiated Ag/PANI nano composites showed that the dc electrical conductivity of the irradiated Ag/PANI nano composites is higher than that of pure PANI and also it increases with increasing either irradiation dose or AgNO3 concentrations. Catalytic evaluation of Ag/PANI and Ag/PVA in the reduction of 4-Nitro phenol (4-NP) showed that, either Ag/PANI or Ag/PVA is successive catalyst for a reduction of 4-nitrophenol which a carcinogenic material present in waste water and some petroleum product.

  2. White light generation tuned by dual hybridization of nanocrystals and conjugated polymers

    Dual hybridization of highly fluorescent conjugated polymers and highly luminescent nanocrystals (NCs) is developed and demonstrated in multiple combinations for controlled white light generation with high color rendering index (CRI) (> 80) for the first time. The generated white light is tuned using layer-by-layer assembly of CdSe/ZnS core-shell NCs closely packed on polyfluorene, hybridized on near-UV emitting nitride-based light emitting diodes (LEDs). The design, synthesis, growth, fabrication and characterization of these hybrid inorganic-organic white LEDs are presented. The following experimental realizations are reported: (i) layer-by-layer hybridization of yellow NCs (λPL=580 nm) and blue polyfluorene (λPL=439 nm) with tristimulus coordinates of (x, y)=(0.31, 0.27), correlated color temperature of Tc=6962 K and CRI of Ra=53.4; (ii) layer-by-layer assembly of yellow and green NCs (λPL=580 and 540 nm) and blue polyfluorene (λPL=439 nm) with (x, y)=(0.23, 0.30), Tc=14395 K and Ra=65.7; and (iii) layer-by-layer deposition of yellow, green and red NCs (λPL=580, 540 and 620 nm) and blue polyfluorene (λPL=439 nm) with (x, y)=(0.38, 0.39), Tc=4052 K and Ra= 83.0. The CRI is demonstrated to be well controlled and significantly improved by increasing multi-chromaticity of the NC and polymer emitters

  3. Bulk-heterojunction solar cells based on nanocrystal-polymer hybrid materials

    Zhou, Yunfei; Krueger, Michael [Freiburg Materials Research Centre (FMF), University of Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Urban, Gerald [Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany)

    2009-07-01

    Organic solar cells have the promising advantages of low-cost and large-area fabrication on flexible substrates. State-of-the-art organic solar cells based on blends of conjugated polymers and fullerene derivatives achieve efficiencies up to 5-6%. Inorganic semiconductor nanocrystals (NCs) e.g. out of CdSe, with tunable bandgaps and high intrinsic carrier mobilities, can be incorporated into conjugated polymers e.g. poly(3-hexylthiophene) (P3HT) to form bulk-heterojunction hybrid solar cells. In our group, a highly reproducible synthesis method for CdSe NCs has been developed, leading to monodisperse NCs with excellent photophysical properties. Current research is performed to control the shape and the lattice structure of the NCs within the same synthesis approach. Various solar cells based on bulk-heterojunction nanocomposite materials have been fabricated and characterized. We systematically checked how the solar cell device performance is affected by different NC ligands and by different thermal annealing treatments. Devices using spherical NCs capped with aromatic ligands and appropriate thermal annealing treatment exhibit so far power conversion efficiencies over 0.5% under standard measurement condition. Further investigations to improve the materials and device performance are currently in progress.

  4. Mediating conducting polymer growth within hydrogels by controlling nucleation

    A. J. Patton; Green, R A; Poole-Warren, L A

    2015-01-01

    This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol) methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1) particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS). Evidence of nucleation was not seen in the ...

  5. Conducting Polymer Actuators: Prospects and Limitations

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (...

  6. Ionic motion in PEDOT and PPy conducting polymer bilayers

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry......, optical absorption spectroscopy and electrochemical quartz crystal microbalance (EQCM) techniques. Two important conclusions of relevance for actuator performance were reached: It is possible to make a bilayer film that does not delaminate – the two polymers are compatible; and both polymers are active in...

  7. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers

    Kaneto, K.

    2016-04-01

    Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.

  8. Spontaneous emission enhancement from polymer-embedded colloidal PbS nanocrystals into Si-based photonics at telecom wavelengths

    Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas

    2013-01-01

    We experimentally demonstrate the coupling of optically excited PbS nanocrystal (NC) photoluminescence (PL) into Si-based ring resonators and waveguides at 300K. The PbS NCs are dissolved into Novolak polymer at various concentrations and applied by drop-casting. The coupling mechanism and the spontaneous emission enhancement are experimentally investigated and compared to theoretical predictions. Quality (Q) factors of 2500 were obtained in emission and transmission for wavelengths centered ...

  9. Making Conductive Polymers By Arc Tracking

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  10. Light harvesting by dye linked conducting polymers

    Nielsen, Kim Troensegaard

    2006-01-01

    charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl)- ethynylene], Nn. On the other hand light emitting diodes, LEDs, made of Nn and NPN works very well. The LEDs made of Nn emits...... greenish blue light while LEDs made of NPN emits light in the nearinfrared region. During the synthesis of Nnand NPN it was found that remnants of the palladium catalysts caused problems in the control of the polymers and further made the resistance in the solar cells and LEDs so low that they did not work....... A large effort has been made during the project todevelop a method to remove remnants of metal catalysts from organic compounds and in particular polymers so that functional solar cells and LEDs could be made. It was succeeded to find a very effective method to remove remnants of metal catalysts...

  11. Microwave assisted click chemistry on a conductive polymer film

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent; Hvilsted, Søren

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface. By...

  12. Designing Non-charging Surfaces from Non-conductive Polymers.

    Zhang, Xuan; Huang, Xu; Kwok, Sen Wai; Soh, Siowling

    2016-04-01

    Polymers that prevent the generation of static charge by contact electrification can be fabricated by copolymerizing an appropriate proportion of a molecule that has the tendency to charge positively, and a molecule that has the tendency to charge negatively, against a reference material. These non-conductive polymers resist charging by contact or rubbing, and prevent the adhesion of microscopic particles. PMID:26923196

  13. Conducting Polymer Electrodes for Gel Electrophoresis

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  14. Mechanism of actuation in conducting polymers: Osmotic expansion

    Bay, Lasse; Jacobsen, Torben; West, Keld; Skaarup, Steen

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... of the polymer phase. The osmotic effect causes solvent molecules to move into the polymer in a number far in excess of those bound strongly in the solvation shell of the mobile ion, resulting in large volume changes. In this paper, a thermodynamic description of the osmotic expansion is worked out...

  15. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Hyeonseok Yoon

    2013-08-01

    Full Text Available Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

  16. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  17. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  18. The organic chemistry of conducting polymers

    Tolbert, L.M.

    1991-02-17

    This report contains sections on (1) structure of the soliton. Resonance-stabilized carbanions are used as soliton model compounds. (2) Interchain charge transport. Mechanisms for interchain charge transfer are divided into two classes, those involving electron transfer between neutral and charged solitons and those involving bipolarons. (3) Proton-transfer doping. N-doping'' was achieved using a strong base and a carbon acid precursor polymer. (4) Charge-transfer heteropolymers. Copolymerizations involving pyrrole and benzoquinone; thiophene and benzeoquinone; pyrrole and dimetheory benzene; and thiophene and dimethoxy-benzaldehyde. 29 refs. (CBS)

  19. Conducting Polymer Electrodes for Gel Electrophoresis

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  20. Development of Conducting Polymer Sensor Arrays for Wound Monitoring

    Bailey, Arthur Lionel Paul stuart

    2010-01-01

    The aim of this research was to develop an array of conducting polymer gas sensors as part of an electronic nose designed for monitoring the metabolites produced from the bacteria present in wounds. The device was designed to be a portable system that could discriminate between relevant bacteria non-invasively using solid phase microextraction and an array of conducting polymers and metal oxide sensors in conjunction with pattern-recognition software.In order to develop the sensors, GC/MS hea...

  1. Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles.

    Zhang, Junchang; Zhong, Liubiao; Sun, Yinghui; Li, Anran; Huang, Jing; Meng, Fanben; Chandran, Bevita K; Li, Shuzhou; Jiang, Lin; Chen, Xiaodong

    2016-04-01

    A conductive polymer nanowire embedded with a 1D Au nanoparticle chain with defined size, shape, and interparticle distance is fabricated which demonstrates enhanced photoresponse behavior. The precise and controllable positioning of 1D Au nanoparticle chain in the conductive polymer nanowire plays a critical role in modulating the photoresponse behavior by excitation light wavelength or power due to the coupled-plasmon effect of 1D Au nanoparticle chain. PMID:26901850

  2. Recent developments in intrinsically conductive polymer coatings for corrosion protection

    M. Z. Iqbal; M. K. Zahoor; Hashim, S.; Ali Usman Chaudhry; Khan, M.I.

    2010-01-01

    Intrinsically conductive polymers have achieved demanding interest in the field of corrosion control coatings owing to their conductive ability and also due to the strict environmental regulations on conventional heavy metals coatings. This multipurpose class of polymers has shown to be effective and proven themselves as a potential alternate for these hazardous heavy metal coatings in order to control the corrosion properties of metals or alloys. The basic purpose of this paper is only to hi...

  3. Influence of electron irradiation on composite polymer materials thermal conductivity

    Temperature dependences of thermal conductivity of polymer composite materials irradiated by electrons in temperature range 80-330 K are investigated. It is established, that thermal conductivity of both the irradiated and the non-irradiated composites increase with temperature increasing. The thermal conductivity of composites decrease with increasing radiation dose. (author)

  4. FTIR AND IONIC CONDUCTIVITY STUDIES ON BLEND POLYMER ELECTROLYTES

    J. Senthil

    2011-08-01

    Full Text Available Investigations on structural and conductivity properties of solid polymer complexes have attracted a high degree of attention. The main applications of solid polymer electrolytes (SPEs are found in varioussecondary batteries and energy conversion units. In view of the abundant resources, low costs and relatively low reactivity of magnesium, solid-state batteries using magnesium metal are worthy of investigations. The polymer electrolytes were prepared using poly methyl methacrylate (PMMA, poly vinyl chloride (PVC and magnesium chloride (MgCl2 by solvent casting technique. The complex formation and ionic conductivity were characterized by Fourier Transform Infra Red spectroscopy (FTIR and impedance spectroscopy respectively.The FTIR studies provide the evidence of interaction of cation Mg2+ with the polymers. The maximum conductivity found for PMMA-MgCl2 is 0.57 x 10-7 Scm-1 at room temperature.

  5. Phonon studies of intercalated conductive polymers

    Prassides, K.; Bell, C.J. (School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom)); Dianoux, A.J. (Inst. Laue-Langevin, 38 - Grenoble (France)); Wu Chunguey; Kanatzidis, M.G. (Dept. of Chemistry, Michigan State Univ., East Lansing (United States))

    1992-06-01

    The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).

  6. Light harvesting by dye linked conducting polymers

    Troensegaard Nielsen, K.

    2006-06-15

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obvious abundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention in the last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separation can only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an n-conductor and a p-conductor. The facts that the charge carrier separation only happens at the heterojunctions limits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecular heterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5-dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20-bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain. Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl)- ethynylene], Nn. On the other hand light emitting diodes, LEDs, made of Nn and NPN works very well. The LEDs made of Nn emits greenish blue light while LEDs made of NPN emits light in the near-infrared region. During the synthesis of Nn and NPN it was found that remnants of the palladium catalysts caused problems in the control of the polymers and further made the resistance in the solar cells and LEDs so low that they did not work. A large effort has been made during the project to develop a method to remove remnants of metal catalysts from organic compounds and in particular polymers so that functional solar cells and LEDs could be made. It was succeeded to find a very effective method to remove remnants of metal catalysts from organic compounds by the discovery of the fact that azothioformamides are capable of dissolving metal nanoparticles by forming electron transfer complexes. Even metal wires of some metals can be dissolved by the azothioformamides within a reasonable time range. (au)

  7. Intercalation of ionically conductive polymers into Lithium Hectorite

    Saada, Iskandar

    Renewable energy sources such as wind and solar have become appealing sources of energy with low environmental impact. However, the challenge with using these energy sources is their intermittent and unpredictable power generation. In order to overcome this challenge, energy storage mechanisms such as lithium-ion batteries are dependable systems for such applications. The purpose of this project is intended to synthesize environmentally benign and safe materials which can be used as electrolytes in lithium-ion batteries. The ionically conductive polymers POEGO, POMOE, and MEEP were successfully intercalated into the two-dimensional layered structure Lithium Hectorite. The goal of the project was to synthesize a series of nanocomposites with increasing polymer molar ratios to Lithium Hectorite, and investigate the thermal and ionic conductivity properties of the synthesized nanocomposites. A second series of nanocomposites using the same polymer molar ratio to Lithium Hectorite were synthesized after the polymers were complexed with lithium triflate. The salt-complexed nanocomposites were compared to the pristine nanocomposites based on thermal stability, polymer flexibility, as well as their ionic conductivity. The synthesized polymers, nanocomposites, and salt-complexed materials were characterized using powder X-ray diffraction, attenuated total reflectance spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Ionic conductivity data was investigated using AC impedance spectroscopy.

  8. The Effect Of Dopant, Temperature And Band Gap On Conductivity Of Conducting Polymers

    S.SRILALITHA, K.N.JAYAVEERA, S.S.MADHVENDHRA

    2013-07-01

    Full Text Available Polymers By Virtue Of Light Weight And Greater Easy Of Fabrication, Have Replaced And Are Continuing To Replace Metals In Several Areas Of Applications. Polymers With Conjugated ? Electron Backbones Displays Unusual Electronic Properties Such As Low Energy Optical Transitions, Low Ionization Potentials And High Electron Affinities. They Have Been Considered As Good Electrical Insulators And A Variety Of Their Applications Have Been Based Upon The Insulating Property. Polymers Which Are Conjugated Exhibit Semiconducting Behaviour And Can Be Doped To Give Materials With High Conductivity. Conducting Polymers Represent An Important Research Area With Diverse Scientific Problems Of Fundamental Significance And The Potential For Commercial Applications. The Effect Of Dopant On Conductivity, Mechanism Of Conduction, The Effect Of Band Gap And Temperature Has Been Studied. Conducting Polymers Like Poly Pyrrole, Poly Aniline And Poly Thiophene Etc. Have Been Synthesized And Their Conductivities Have Been Determined. Some Polar Organic Materials Such As Poly (Ethylene Oxide Will Complex Alkali Salts And Manifest Rapid Alkali-Ion Conductivity. Although The Absolute Conductivities Of Such Polymer Based Materials Are Not As High As Those Of Crystalline Solid Electrolytes In General, These May Be Made Into Thin Pin Hole-Free Plastic Sheets With Sufficient Conductance For Use In Cells And Batteries.

  9. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  10. Mediating conducting polymer growth within hydrogels by controlling nucleation

    A. J. Patton

    2015-01-01

    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  11. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials

  12. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang; Yeh, Jui-Ming

    2015-12-01

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  13. Rapid synthesis of flexible conductive polymer nanocomposite films

    Blattmann, C. O.; Sotiriou, G. A.; Pratsinis, S. E.

    2015-03-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5 × 104 S cm-1), even during repetitive bending.

  14. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  15. Conducting polymer interaction with gaseous substances. Pt. 1. Water

    Timofeeva, O.N.; Lubentsov, B.Z.; Sudakova, Ye.Z.; Chernyshov, D.N.; Khidekel, M.L. (Inst. of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka (USSR))

    1991-03-01

    Interaction of conducting thin polymer films with water vapour was investigated. Polyaniline and polypyrrole thin films were deposited on various inert supporting materials. Systematic studies have shown that the presence of water vapour increases electrical conductivity in polyaniline films. This effect might find application in sensor production. (orig.).

  16. Conducting polymers: nobel prize in chemistry, 2000

    Menon, Reghu

    2000-01-01

    The Nobel Prize in Chemistry, 2000 has been awarded to Alan J. Heeger (University of California at Santa Barbara, USA), Alan G. MacDiarmid (University of Pennsylvania, USA) and Hideki Shirakawa4 (University of Tsukuba, Japan). The citation for the reward – ‘for the discovery and development of electrically conductive polymers’. Moreover, The Royal Swedish Academy of Sciences pointed out that the award is being motivated by the ‘important scientific position that the field has achieved and the...

  17. Anhydrous proton conductivity of acid doped vinyltriazole-based polymers

    Poly(1,2,4-vinyltriazole) (PVTr) and poly(1,2,4-vinyltriazole-co-5-vinyltetrazole-co-acrylonitrile) (P(VTr-VT-AN)) were prepared by normal free radical polymerization and click chemistry, respectively. The structure of the polymers was characterized by FTIR spectra, H NMR spectrum and elemental analysis. Compared with polybenzimidazole (PBI) which is one of the most widely studied anhydrous proton conducting polymers, the solubility of vinyltriazole-based polymers is improved significantly. They are soluble in a lot of polar solvents. The glass-transition temperatures of such kind of polymers are between 70 and 85 oC, thus indirectly indicating the improvement of fabricating properties. In phosphoric acid doped membranes, the higher the basicity of the vinyltriazole-based polymers is, the higher the proton conductivity is. The temperature dependence of the proton conductivity of the acid doped membranes can always be fitted by a simple Arrhenius equation. Transmittance of phosphoric acid doped vinyltriazole-based polymers is above 80% in the range of visual spectra and changes a little with the different structure and basicity of the copolymers

  18. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  19. Ion-Conducting Polymer Films as Chemical Sensors

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little work on using these films as chemical sensors. We have found that thin films of polymers like polyethyleneoxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCS) like common solvents. We will present impedance spectroscopy of PEO films in the frequency range 0.01 Hz to 1 MHz for different concentrations of VOCS. We find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and parasitic capacitances

  20. Absorption detected magnetic resonance in conducting polymers and fullerenes

    A novel technique, Absorption Detected Magnetic Resonance (ADMR) Spectroscopy, has been developed. It has advantage of high sensitivity and capability to detect the spin states of nonphotoluminescent systems and to provide full spectral information. Photoexcited states in conducting polymers, which are quasi one-dimensional system, and new material, fullerenes, which can be viewed as topologically two-dimensional system, have been studied by this new technique. The longstanding controversy surrounding the neutral photoexcitations in trans-(CH)x, a degenerate ground state conducting polymer, has been cleared and it was found that they are photogenerated neutral solitons, which implies the importance of Coulomb interaction in the electronic states of conducting polymers. Long-lived neutral photoexcitations, which in nondegenerate ground state conducting polymers have been verified to be triplet excitons by the ADMR spectroscopy, compete with charged photoexcitations, which are charged solitons in trans-(CH)x and bipolarons (and polarons) in nondegenerate ground state polymers. A method to calculate the triplet excited state powder pattern has been developed and the model fits our experimental results. Long-lived neutral photoexcitations in fullerenes have been identified as triplet excitons, and the author observed the motional narrowing effect of triplet exciton in C60. Also the charged photoexcitations have been detected in solid-state films of fullerenes

  1. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose. M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude ...

  2. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-01

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance. PMID:25782069

  3. Doping front migration in intrinsically conductive polymers and its application

    Doping front migration is a recently discovered effect occurring in sandwich structures composed of intrinsically conductive polymers. A system based on chemical or electrochemical doping is capable of controlling an integrated display and modifying the electrical resistance of the conductive polymer. The effect does not require a battery and is capable of monitoring time and temperature exposure. Low-cost devices using doping front migration could be the basis of a new class of smart labels for applications such as electronic 'best before' labels on food and drink.

  4. Doping front migration in intrinsically conductive polymers and its application

    Hermes, Jens Peter [Institute of Physical Chemistry, University of Muenster, Corrensstr. 30, D-48149 Muenster (Germany); Knoll, Meinhard [Institute of Physical Chemistry, University of Muenster, Corrensstr. 30, D-48149 Muenster (Germany)], E-mail: knoll@uni-muenster.de

    2009-07-01

    Doping front migration is a recently discovered effect occurring in sandwich structures composed of intrinsically conductive polymers. A system based on chemical or electrochemical doping is capable of controlling an integrated display and modifying the electrical resistance of the conductive polymer. The effect does not require a battery and is capable of monitoring time and temperature exposure. Low-cost devices using doping front migration could be the basis of a new class of smart labels for applications such as electronic 'best before' labels on food and drink.

  5. Corrosion-protective coatings from electrically conducting polymers

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  6. Luminescence study of SHI irradiated nano semiconductor: Conducting polymer composite

    Semiconductor nanoparticle and conducting polymer composite is an interesting class of materials for optoelectronic and photovoltaic device application. We have synthesized a composite of nanocrystalline PbS and conducting polymer MEH-PPV by chemical synthesis and studied the effect of swift heavy ion (SHI) irradiation on the composite material. The irradiation of the composite materials in thin film form is carried out with 120 MeV Si+9 ion beam at fluences from 5x1010 to 1013 ions/cm2. Fluence dependent optical and structural properties have been observed in optical absorption, PL and TEM studies. Reduction of nanoparticle size has been observed after irradiation.

  7. Spontaneous Emission Enhancement from polymer-embedded colloidal PbS Nanocrystals into Si-based photonics at telecom wavelengths

    Humer, Markus; Jantsch, Wolfgang; Fromherz, Thomas

    2013-01-01

    We experimentally demonstrate the coupling of optically excited PbS nanocrystal (NC) photoluminescence (PL) into Si-based ring resonators and waveguides at 300K. The PbS NCs are dissolved into Novolak polymer at various concentrations and applied by drop-casting. The coupling mechanism and the spontaneous emission enhancement are experimentally investigated and compared to theoretical predictions. Quality (Q) factors of 2500 were obtained in emission and transmission for wavelengths centered around 1.45{\\mu}m. PL intensity shows a linear dependence on the excitation power and no degradation of the Q factors. Devices with stable optical properties are obtained by this versatile technique.

  8. Bioreceptor-conducting polymer multilayer assemblies for biosensing

    Samuelson, Lynne A.; Alva, Shridhara; Kumar, Jayant; Kaplan, David L.; Tripathy, Sukant K.

    1998-04-01

    This research focuses on the organized integration of biological receptors and polymers into thin film architectures for biosensing applications. Layer-by-layer electrostatic adsorption was used for the first time to form alternating protein-conducting polymer multilayers. The light-harvesting, phycobiliproteins and the enzyme, alkaline phosphatase were the bioreceptors investigated and sulfonated polystyrene, poly(diallyl dimethyl ammonium chloride) and a new enzymatically polymerized, water soluble, polyaniline were the polymer counterions used for deposition. Spectroscopic characterization was used to determine both multilayer formation and biosensing function of the final bioreceptor-polymer assemblies. These techniques have proven to be simple, chemically mild, and versatile and are expected to find application in the fabrication of ultrathin films for biosensors, opto- electronic devices and biomedical applications.

  9. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography.

    Rickard, Jonathan James Stanley; Farrer, Ian; Goldberg Oppenheimer, Pola

    2016-03-22

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays. PMID:26905779

  10. Decoupled ion conduction mechanism of poly(vinyl alcohol) based Mg-conducting solid polymer electrolyte

    Investigation on solid state rechargeable magnesium batteries are considered important similar to lithium batteries. In view of negligible hazard and less reactivity of the magnesium, in comparison with lithium, studies on rechargeable magnesium batteries are expected to have a wide scope in future. In the present investigations, decoupled ion conduction of poly(vinyl alcohol) (PVA)-based Mg-conducting solid polymer electrolytes (SPEs) is essential component of the studies. In common SPEs, ion transport has mostly been associated with the segmental motion of the polymer, so significant conductivity is only observed above the glass transition temperature of the system. But the results of ac impedance spectroscopy, FT-IR, XRD and AFM indicated that prepared PVA-based Mg-conducting SPE shows ionic transport decoupled from polymer segmental motion and high ionic conductivity at room temperature

  11. Effects of preparation temperature on the conductivity of polypyrrole conducting polymer

    Anuar Kassim; Zarina Bte Basar; H N M Ekramul Mahmud

    2002-04-01

    An attempt has been made to investigate the effect of temperature on the conductivity of polypyrrole conducting polymer films prepared by an electrochemical method in an aqueous medium using camphor sulfonate as the dopant. The polymer was grown from aqueous solutions employing a range of temperatures (1-60°C). It was found that with increase in temperature the conductivity decreased and the optimum temperature was found to be between 10 and 30°C. The results show that the polymer formed at low temperature has higher conductivity and is stronger than that formed at higher temperatures. Characterization by X-ray scattering shows that interlayer distance, Bragg (Å), increases with increasing temperature. The morphology of the films formed was studied by using a scanning electron microscope (SEM). The changes in conductivity and physical appearance were interpreted as being due to compactness in the molecular packing and formation of linkages in the film.

  12. Electrical and surface properties of clay-conducting polymer composites

    Eastman, M. P.; Hagerman, M. E.; Porter, T. L.; Parnell, R. A.; Attuso, J. L.; Bradley, M.; Thompson, D.

    1997-08-01

    Organic guests such as aniline, pyrrole and thiophene polymerize on the surface and in the intergallery regions of smectite clays which contain exchangeable transition metal cations such as Cu2+ and Fe3+. We monitor these reactions in thin films of smectite clays using electron spin resonance (ESR) and impedance spectroscopies. Polymers that form on the surface and in the interlayer region are studied by scanning force microscopy (SFM). ESR studies have shown that the transition metal ions are reduced during the polymerization process. Impedance measurements indicate that the formation of conducting polymer in the interlayer region of dry, Cu2+ exchanged hectorite thin films results in a dramatic reduction in observed impedance. SFM scans indicate that the conducting polymers can adopt a variety of morphologies on the surfaces of the films and within the intergalleries of the host framework. These studies have applications in the development of advanced materials including microsensors and novel nanocomposites.

  13. Photovoltaic Cells with TiO2 Nanocrystals and Conjugated Polymer Composites

    Various compositional photovoltaic cells based on the blend of poly(3-hexylthiophene) (P3HT) as donors and TiO2 nanocrystals as acceptors are fabricated and investigated. It is demonstrated that the blend ratio of P3HT and TiO2 nanocrystals could greatly influence the performance of the photovoltaic cells. The maximum of 0.411% in power conversion efficiency under AM 1.5, 100mW/cm2, and 44.4% of fill factor are obtained in the solar cell with the blend weight ratio 1:1 of P3HT and TiO2 nanocrystals. The function of nanocrystal composition is discussed in terms of the results of photoluminescence spectroscopy, atomic force microscopy, transmission electron microscopy, and charge transport I–V curve. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide nanocomposites as hole transport layer for polymer solar cells

    Tan, Licheng; Zhang, Yan; Chen, Yiwang; Chen, Yufeng

    2015-02-01

    Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide (CZTSe@GO) nanocomposite as hole transport layer (HTL) applied in polymer solar cells has been fabricated through a simple and solution-processed strategy, which not only arrests the aggregation of nanoparticles caused by ligand-exchanging, but also guarantees the intimate interfacial contact between graphene oxide and semiconductor nanocrystals. Comparing with Cu2ZnSnSe4 nanocrystals, the optimization of interfacial charge carrier transfer pathways for CZTSe@GO nanocomposites makes it more suitable as HTL which shows enhanced charge carrier transport and electron-blocking capacity, and well-matched work function facilitating collection of charges to anode. Besides, it also affords an efficient way to manufacture multifunctional nanocomposites based on nanocrystals.

  15. Conducting polymer based materials for the fuel cell applications

    Sapurina, I. Yu.; Stejskal, Jaroslav; Kompan, M.

    Sankt Peterburg : Fiziko-techničeskij Institut im. A. F. Ioffe, 2005. s. 39. [Meždunarodnyj Seminar: Rossijskie technologii dlja industrii /9./. 30.5.2005-1.6.2005, Sankt Peterburg] Institutional research plan: CEZ:AV0Z40500505 Keywords : fuel cell * conducting polymers Subject RIV: CD - Macromolecular Chemistry

  16. Purification of a conducting polymer, polyaniline, for biomedical applications

    Stejskal, Jaroslav; Hajná, Milena; Kašpárková, V.; Humpolíček, P.; Zhigunov, Alexander; Trchová, Miroslava

    2014-01-01

    Roč. 195, September (2014), s. 286-293. ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : biocompatibility * conducting polymer * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  17. Physical properties of Li ion conducting polyphosphazene based polymer electrolytes

    Sanderson, S.; Zawodzinski, T.; Hermes, R.; Davey, J.; Dai, Hongli

    1996-12-31

    We report a systematic study of the transport properties and the underlying physical chemistry of some polyphosphazene (PPhz)-based polymer electrolytes. We synthesized MEEP and variants which employed mixed combinations of different length oxyethylene side-chains. We compare the conductivity and ion-ion interactions in polymer electrolytes obtained with lithium triflate and lithium bis(trifluoromethanesulfonyl)imide (TFSI) salts added to the polymer. The combination of the lithium imide salt and MEEP yields a maximum conductivity of 8 x 10{sup -5} {Omega}{sup -1} cm{sup -1} at room temperature at a salt loading of 8 monomers per lithium. In one of the mixed side-chain variations, a maximum conductivity of 2 x 10{sup -4} {Omega}{sup -1} cm{sup -1} was measured at the same molar ratio. Raman spectral analysis shows some ion aggregation and some polymer - ion interactions in the PPhz-LiTFSI case but much less than observed with Li CF{sub 3}SO{sub 3}. A sharp increase in the Tg as salt is added corresponds to concentrations above which the conductivity significantly decreases and ion associations appear.

  18. Robust solid polymer electrolyte for conducting IPN actuators

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  19. Robust solid polymer electrolyte for conducting IPN actuators

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10−3 S cm−1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V. (paper)

  20. Conductivity study of a gelatin-based polymer electrolyte

    Vieira, Diogo F.; Pawlicka, Agnieszka [Departamento de Fisico-Quimica, Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970, Sao Carlos, SP (Brazil); Avellaneda, Cesar O. [LIEC - Departamento de Quimica, Universidade Federal de Sao Carlos, C.P. 676, CEP 13565-905, Sao Carlos, SP (Brazil)

    2007-12-31

    Natural polymers are particularly interesting due to their richness in nature, very low cost and principally biodegradation properties. For these reasons different solid polymeric electrolytes (SPE) have been obtained using cellulose derivatives, starch, chitosan and rubber. This work presents the results of gelatin-based protonic SPEs, which were characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM). The ionic conductivity results obtained for these SPEs were 4.5 x 10{sup -5} S/cm and 3.6 x 10{sup -4} S/cm at room temperature and 80 C, respectively. Temperature-dependent ionic conductivity measurements were taken to analyze the mechanism of ionic conduction in polymer electrolytes. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based SPEs are very promising materials to be used as solid electrolyte in electrochromic devices. (author)

  1. Soft capacitor fibers using conductive polymers for electronic textiles

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with ...

  2. Simulation of conductivity of polymer films on metal surface

    Maksimova, O. G.; Maksimov, A. V.; Baidganov, A. R.

    2015-09-01

    In this paper, protective properties of polymer films are analyzed. The simulation is performed by means of the Monte-Carlo method on the basis of three-dimensional lattice model of polymer system with orientational interactions [1]. Initially, configuration of polymer system is calculated by the Metropolis algorithm taking into account the characteristics of the internal structure (constants of intermolecular interactions etc.), temperature regime and metal quality. Further, for the study of conductivity, the motion of charged particles within the proposed lattice model is investigated on the basis of the calculated configuration. The interaction energy of the oxygen atom with eight neighboring links of polymer chains and electric double layer on the metallic surface is accounted. The direction of movement of charged particles is calculated by the Monte-Carlo method according to the energy advantage of its position. This method allows to calculate the number of charged particles passing through the polymer film and reaching the metal sheet surface. The dependences of conductivity on temperature, film thickness, and distance between molecular layers are obtained. It is shown that there is an optimum density for the given film thickness at which it possesses protective properties. The adequacy of the developed mathematical models and calculated dependences are verified by comparison with laboratory data and production testing.

  3. Characteristics of aluminium solid electrolytic capacitors using a conducting polymer

    Yamamoto, Hideo [Japan Carlit Co. Ltd., Gunma (Japan). Research and Development Center; Oshima, Masashi [Japan Carlit Co. Ltd., Gunma (Japan). Research and Development Center; Fukuda, Minoru [Japan Carlit Co. Ltd., Gunma (Japan). Research and Development Center; Isa, Isao [Japan Carlit Co. Ltd., Gunma (Japan). Research and Development Center; Yoshino, Katsumi [Dept. of Electronic Engineering, Faculty of Engineering, Osaka Univ. (Japan)

    1996-06-01

    In order to form an electrochemically polymerized polypyrrole film on an electrically insulated dielectric layer surface, a conductive precoating layer was first deposited, at the expense of electrical conductivity. Using the precoating layer as the anode, a polypyrrole layer was then deposited electrochemically in preparation for the fabrication of a solid electrolytic capacitor in which the composite conducting polymer layer was used as a solid electrolyte. Soluble polyaniline could be used as a conductive precoating layer as well as polypyrrole formed by chemical oxidizing polymerization. The capacitor using the composite solid electrolyte presented excellent impedance frequency and temperature characteristics; moreover, the solid electrolyte showed `self-heating` and non-polar behaviour. (orig.)

  4. New secondary batteries utilizing electronically conductive polymer cathodes

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  5. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  6. Thiophene in Conducting Polymers: Synthesis of Poly(thiophene)s and Other Conjugated Polymers Containing Thiophenes, for Application in Polymer Solar Cells

    Livi, Francesco; Carlé, Jon Eggert; Bundgaard, Eva

    Conducting polymers based on thiophene are described. The polymers include poly(thiophene) with and without side-chains and other conjugated polymers in general, based on thiophene. The synthesis and characteristics of the polymers are described along with the application of these as light......-absorbing materials in polymer solar cells....

  7. Structure evolution of implanted polymers: Buried conductive layer formation

    The polarization, temperature and frequency dependence of the conductivity of polyethylene and poliamide-6 films implanted with B+ ions at 60-100 keV to various fluences were investigated. The phenomenon of hysteresis was observed in the d.c. current-voltage dependence for the polymers implanted with moderate fluences. This effect was attributed to the aligning of electric dipoles (attributed to the carbon-rich clusters) in the implanted layer by the applied electric field. The possibility of fabrication of a sandwich structure insulator/conductive layer/insulator combining the ion implantation with the electrochemical deposition of dielectric polymer poly-ortho-phenylenediamine from solution was demonstrated. The spatial characteristics of this structure enable the control of the conductance of the concealed carbonaceous layer by applying an external electric field that opens the way for fabrication of a transistor-like electronic switch

  8. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks.

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated. PMID:26804140

  9. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated.

  10. Kinetic features of radiation-induced electric conductivity in polymers

    Dependence of radiation-induced electric conductivity (EC) of certain polymers on the time of irradiation by accelerated electrons (75 keV in the range of dose rate D = 20-500 Gy/s) with varying irradiation temperature, dose rate and electric field intensity has been studied. Existence of three stages of EC increase has been revealed in all the polymers studied: 'instant' (time of increment t << 1 s), 'fast' (t = 1-10 s) and 'decelerated' (t = 10-1000 s). It is shown that kinetic regularities of polymer EC can not be coordinated in the framework of the model of multiple capture of charges. The conclusion is made on determining role of molecular mobility in transfer of charge carriers generated by ionizing radiation. 12 refs., 4 figs., 1 tab

  11. Electrically conductive, optically transparent polymer/carbon nanotube composites

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  12. Synthesis of polymer nanostructures with conductance switching properties

    Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh

    2015-03-03

    The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.

  13. Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends

    Antti Takala

    2015-08-01

    Full Text Available The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs, the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene (PAT blends with ethylenevinylacetate-elastomers (EVA and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology.

  14. Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization.

    Li, Junwei; Yoon, Soon Joon; Hsieh, Bao-Yu; Tai, Wanyi; O'Donnell, Matthew; Gao, Xiaohu

    2015-12-01

    Despite broad applications ranging from electronics to biomedical sensing and imaging, a long-standing problem of conducting polymers is the poor resistance to dedoping, which directly affects their signature electrical and optical properties. This problem is particularly significant for biomedical uses because of fast leaching of dopant ions in physiological environments. Here, we describe a new approach to engineer multimodal core-shell nanoparticles with a stably doped conductive polymer shell in biological environments. It was achieved by making a densely packed polymer brush rather than changing its molecular structure. Polyaniline (PANI) was used as a model compound due to its concentrated near-infrared (NIR) absorption. It was grafted onto a magnetic nanoparticle via a polydopamine intermediate layer. Remarkably, at pH 7 its conductivity is ca. 2000× higher than conventional PANI nanoshells. Similarly, its NIR absorption is enhanced by 2 orders of magnitude, ideal for photothermal imaging and therapy. Another surprising finding is its nonfouling property, even outperforming polyethylene glycol. This platform technology is also expected to open exciting opportunities in engineering stable conductive materials for electronics, imaging, and sensing. PMID:26588215

  15. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  16. Ultrafast terahertz conductivity and transient optical absorption spectroscopy of silicon nanocrystal thin films

    Titova, Lyubov V.; Harthy, Rahma Al; Cooke, David; MacDonald, Andrea Nicole; Hryciw, Aaron; Kuai, Sulan; Meldrum, Al; Hegmann, Frank A.

    We use time-resolved THz spectroscopy and transient optical absorption spectroscopy as two complementary techniques to study ultrafast carrier dynamics in silicon nanocrystal thin films. We find that the photoconductive dynamics in these materials is dominated by interface trapping, and we observe...

  17. New conducting polymers/carbon composite materials for energy storage

    Khomenko, V. [Kiev National University of Technologies and Design, Kiev (Ukraine)]|[CNRS-University, Orleans (France). CRMD; Barsukov, V. [Kiev National University of Technologies and Design, Kiev (Ukraine); Frckowiak, E. [Poznan University of Technology, Poznan (Poland); Beguin, F. [CNRS-University, Orleans (France). CRMD

    2003-07-01

    This paper describes the combination of the complementary properties of electronically conducting polymers (ECPs) with effective conductive materials such as thermally exfoliated graphite (TEG) from Superior Graphite Co. (SGC) in Chicago, United States, and multi walled carbon nanotubes (MWCN) from CMRD, CNRS-University in France. The objective was to improve the electrochemical characteristics of electrodes based on ECPs for energy storage. Scanning and transmission electron microscopy were used to determine the structural characterization of nano-composites. The results showed that a homogeneous layer of ECP has been deposited on the multi-walled nano tubes (MWNTs). When the percentage of ECP was greater than 60 per cent, the behaviour of the nano-composites was similar. At low degrees of ECPs oxidation, the faradaic process applies, and at higher degrees, involved charges transforms ECPs in a metal-like state. These polymer materials are interesting for application in electrochemical capacitors. 2 refs., 1 tab.

  18. Conductive Polymer Combined Silk Fiber Bundle for Bioelectrical Signal Recording

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in bot...

  19. Shrinkage Effects of the Conduction Zone in the Electrical Properties of Metal Oxide Nanocrystals: The Basis for Room Temperature Conductometric Gas Sensor

    Morante, J. R.; Cirera, A; F. Hernandez-Ramrez; Arbiol, J.; Prades, J. D.; Manzanares, M.; Andreu, T.

    2009-01-01

    The influence of charge localized at the surface of minute metal oxide nanocrystals was studied in WO3 and In2O3 nanostructures, which were obtained replicating mesoporous silica templates. Here, it is shown that the very high resistive states observed at room temperature and dark conditions were originated by the total shrinkage of the conductive zone in the inner part of these nanocrystals. On the contrary, at room temperature and under UV illumination, both photogenerated electron-hole pai...

  20. A practical multilayered conducting polymer actuator with scalable work output

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m?3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required

  1. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the main backbone chain, or by protonation of the imine groups [de Acevedo, 1999]. There are several types of radiation sensors commercially available, including ionization chambers, geiger counters, proportional counters, scintillators and solid state detectors. Each type has advantages, although many of these sensors require expensive electronics for signal amplification, are large and bulky, have limited battery life or require expensive materials for fabrication. A radiation sensor constructed of a polymeric material could be flexible, light, and the geometry designed to suit the application. Very simple and inexpensive electronics would be necessary to measure the change in conductivity with exposure to radiation and provide an alarm system when a set change of conductivity occurs in the sensor that corresponds to a predetermined radiation dose having been absorbed by the polymer. The advantages of using a polymeric sensor of this type rather than those currently in use are the flexibility of sensor geometry and relatively low cost. It is anticipated that these sensors can be made small enough for glovebox applications or have the ability to monitor the air tritium levels in places where a traditional monitor cannot be placed. There have been a few studies on the changes in conductivity of polyaniline specifically for radiation detection [de Acevedo, 1999; Lima Pacheco, 2003], but there have been no reports on the effects of tritium (beta radiation) on conducting polymers, such as polyaniline or polythiophene. The direct implementation of conducting polymers as radiation sensor materials has not yet been commercialized due to differing responses with total dose, dose rate, etc. Some have reported a large increase in the surface conductivity with radiation dose while others report a marked decrease in conductive properties; these differing observations may reflect the competing mechanisms of chain scission and cross-linking. However, it is clear that the radiation dose effects on conducting polymers must be fully understood before these materials can be used as sensing devices. This report presents the results of irradiations of two conductive polymers: polyaniline and polythiophene. Samples of doped polyaniline and polythiophene were coated onto polyester (polyethyleneterephalate, PET) substrates and were exposed to both tritium gas (beta irradiation) and {sup 60}Co gamma irradiation. The samples were subsequently characterized after various total doses. Infrared spectroscopy was utilized to characterize the gamma-exposed samples post-irradiation. Although the sources of radiation are different in kind (charged particle versus photon) and their energies differ, there will be great value in using noncontaminating gamma irradiation to model the effects of tritium beta radiation.

  2. Ab-initio study of napthelene based conducting polymer

    Ruhela, Ankur [Advanced Materials Research Group, Computational Nanoscience and Technology Lab (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior -474010, India and Amity Institute of Nanotechnology, Amity University, Noida-201303 (India); Kanchan, Reena, E-mail: reena.kanchan1977@gmail.com [Department of Chemistry, Jiwaji University, Gwalior-474001 (India); Srivastava, Anurag [Advanced Materials Research Group, Computational Nanoscience and Technology Lab (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior -474010 (India); Sinha, O. P. [Amity Institute of Nanotechnology, Amity University, Noida-201303 (India)

    2014-04-24

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.

  3. Ab-initio study of napthelene based conducting polymer

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties

  4. Vertical single nanowire devices based on conducting polymers

    A simple scheme for single conducting polymer nanowire fabrication and device integration is presented. We discuss a combined top-down and bottom-up approach for the sequential, precise manufacture of vertical polyaniline nanowires. The method is scalable and can be applied on rigid as well as on flexible substrates. The kinetics of the template-confined growth is presented and discussed. We further study the electrical behavior of single vertical polyaniline nanowires and address the fabrication of crossbar latches using a criss-cross arrangement of electrodes. The as-synthesized polyaniline nanowires display electric conductivities reaching values as high as 0.4 S cm?1. (paper)

  5. Functional Conducting Polymers via Thiol-ene Chemistry

    David C. Martin

    2012-08-01

    Full Text Available We demonstrate here that thiol-ene chemistry can be used to provide side-chain functionalized monomers based on 3,4-propylenedioxythiophene (ProDOT containing ionic, neutral, hydrophobic, and hydrophilic side chains. All reactions gave high yields and purification could generally be accomplished through precipitation. These monomers were polymerized either chemically or electro-chemically to give soluble materials or conductive films, respectively. This strategy provides for facile tuning of the solubility, film surface chemistry, and film morphology of this class of conducting polymers.

  6. Feasibility and benefits of using interdigitated electrodes for conductivity measurements on conducting polymers

    Varga, M.; Prokeš, J.; Konyushenko, Elena; Stejskal, Jaroslav

    Atlanta : Center for Organic Photonics and Electronics - Georgia Institute of Technology, 2012. s. 324. [International Conference on Science and Technology of Synthetic Metals 2012 - ICSM 2012. 08.07.2012-13.07.2012, Atlanta] Institutional support: RVO:61389013 Keywords : conducting polymers * interdigitated electrodes Subject RIV: CD - Macromolecular Chemistry

  7. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  8. Conductivity of oriented bis-azo polymer films

    Apitz, D.; Bertram, R.P.; Benter, N.; Sommer-Larsen, P.; Johansen, P.M.; Buse, K.

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures...... before and after heating the material to above the glass transition temperature. The results show that the orientation of the chromophores changes the charge-carrier mobility. Ionic conductivity dominates in a more disordered configuration of the material, while the competing process of hole hopping...... takes over as a transition to a liquid-crystalline phase occurs when the material is heated to much higher than the gloss transition temperature. Such micro-crystallization strongly enhances the conductivity....

  9. CdTe nanocrystal-polymer composite thin film without fluorescence resonance energy transfer by using polymer nanospheres as nanocrystal carriers.

    Li, Minjie; Xu, Xiang; Tang, Yue; Guo, Zhinan; Zhang, Henan; Zhang, Hao; Yang, Bai

    2010-06-15

    A series of positively charged polystyrene (PS) nanosphere emulsions were prepared by copolymerization of quaternary ammonium chloride cationic monomer with styrene via emulsifier-free emulsion polymerization. The average diameter of the nanospheres was tuned in the range of 35-100 nm by adjusting the recipe. The PS nanospheres were used as carriers of aqueous CdTe nanocrystals (NCs) by adsorbing them on the surface through static interaction. After attached to the nanospheres, NCs' stability against pH change and UV light irradiation was enhanced. The CdTe-PS composite nanospheres were blended with compatible poly (vinyl alcohol) (PVA) matrix to prepare fluorescent thin film by spin coating. CdTe-PS nanospheres had homogenous distribution in the thin film and their light scattering performance was largely reduced after solvent evaporated, as a result, the composite thin film was highly transparent. In the meantime, the immobilization effect of PS nanospheres prevented NCs from aggregation, thus they preserved original high fluorescence without fluorescence resonance energy transfer. The CdTe-PS/PVA composite solution has potential applications in light emitting devices by inkjet printing. PMID:20356601

  10. Thermal conductivity of polymer composites with oriented boron nitride

    Ahn, Hong Jun; Eoh, Young Jun [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of); Park, Sung Dae [Electronic Materials and Device Research Center, Korea Electronics Technology Institute, Seongnam (Korea, Republic of); Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2014-08-20

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C{sub 27}H{sub 27}N{sub 3}O{sub 2} and C{sub 14}H{sub 6}O{sub 8}. • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C{sub 14}H{sub 6}O{sub 8}-treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C{sub 14}H{sub 6}O{sub 8} amphiphilic agent demonstrated a higher thermal conductivity than those treated by C{sub 27}H{sub 27}N{sub 3}O{sub 2}. The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models.

  11. Thermal conductivity of polymer composites with oriented boron nitride

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C27H27N3O2 and C14H6O8. • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C14H6O8-treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C14H6O8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C27H27N3O2. The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  12. Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity.

    Xiong, Rui; Hu, Kesong; Grant, Anise M; Ma, Ruilong; Xu, Weinan; Lu, Canhui; Zhang, Xinxing; Tsukruk, Vladimir V

    2016-02-01

    Ultra-robust nanomembranes possessing high mechanical strength combined with excellent stiffness and toughness rarely achieved in nanocomposite materials are presented. These are fabricated by alternately depositing 1D cellulose nanocrystals and 2D graphene oxide nanosheets by using a spin assisted layer-by-layer assembly technique. Such a unique combination of 1D and 2D reinforcing nanostructures results in layered nanomaterials. PMID:26643976

  13. Electroluminescence of a single active layer polymer-nanocrystal hybrid light-emitting diode with inversion symmetry

    A hybrid polymer-nanocrystal (NC) light-emitting diode (LED) device with a single active layer structure is simply fabricated by a spin coating. From a high-resolution transmission electron microscopy (HRTEM) study, each PVK polymer particle is observed to be capped with TPBi molecules and CdSe/ZnS NCs are mainly distributed along the circumference of PVK and TPBi surfaces, resulting in a core-shell polymer-NC hybrid of [CdSe/ZnS]/TPBi/[CdSe/ZnS]/PVK. An Al/[CdSe/ZnS]/TPBi/[CdSe/ZnS]/PVK/indium-tin oxide(ITO)/glass LED shows electroluminescence (EL) centered at around 585 nm at the forward bias of +10 V, which clearly reveals that CdSe/ZnS NCs existing at the interface between PVK and TPBi act as recombination centers for excitons. In particular, EL can be observed at both forward bias and reverse bias, and this means that this device with an isotropic distribution of NCs has an inversion symmetry.

  14. Electrochemical studies on the formation and properties of conducting polymers

    Heinze, J.; Hinkelmann, K.; Dietrich, M.; Mortensen, J.

    1985-11-01

    PA can be reversibly oxidized in SO/sub 2/ up to 8 mol-% of charging, while in propylenecarbonate (PC) the discharging process becomes partly irreversible at an oxidation level of 4 mol-% or higher. The experimental results obtained in both solvents reveal that the degradation of 'p-doped' PA in the range of its first oxidation wave is caused mainly by nucleophilic attack of the solvent. Degradation of the 'n-doped' species in a THF/Na/sup +/-electrolyte is probably due to the attack of Na on the polymer or on the solvent. Cyclic voltammetric measurements on N-phenyl-carbazol show that the anodic formation of conducting polymers is due to a radical-radical ion dimerisation (R-R route).

  15. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li(+)) and other ions can also be transported. If we can optimize the crystal structures, this could offer further improvements in terms of both conductivity and the working temperature range. Another useful characteristic of PCP/MOFs is their wide application to materials fabrication. We can easily prepare heterodomain crystal systems, such as core-shell or solid solution. Other anisotropic morphologies (thin film, nanocrystal, nanorod, etc.,) are also possible, with retention of the ion conductivity. The flexible nature also lets us design morphology-dependent ion-conduction behaviors that we cannot observe in the bulk state. We propose (1) multivalent ion and anion conductions with the aid of redox activity and defects in structures, (2) control of ion transport behavior by applying external stimuli, (3) anomalous conductivity at the hetero-solid-solid interface, and (4) unidirectional ion transport as in the ion channels in membrane proteins. In the future, scientists may use coordination polymers not only to achieve higher conductivity but also to control ion behavior, which will open new avenues in solid-state ionics. PMID:23730917

  16. Conducting polymer actuators: From basic concepts to proprioceptive systems

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the motor characteristics (rate and sense of the movement, relative position, and required energy) and the working variables (temperature, electrolyte concentration, mechanical conditions and driving current). By changing working conditions experimental results overlap theoretical predictions. The ensemble computer-generator-muscle-theoretical equation constitutes and describes artificial mechanical, thermal and chemical proprioception of the system. Proprioceptive tools and most intelligent zoomorphic or anthropomorphic soft robots can be envisaged.

  17. Patterned Conducting Polymer Microelectronics for Analysis of Neural Signaling

    Simon, Daniel T.; Carter, S. A.

    2005-03-01

    The ion-mediated conduction and versatility of device-fabrication of conducting polymers provide a route to the study of signaling in neural networks. To this end, network patterned junctions of conducting polypyrrole have been electropolymerized on commercially available micro-electrode arrays. The typical dimensions are 200 μm between electrodes, each electrode being 30 μm in diameter. Tetrabutylammonium perchlorate or sodium p-toluenesulfonate were used as electrolyte in the organic solvent. Individual polypyrrole junctions, when synthesized and connected in a three-electrode configuration, exhibit current-switching behavior analogous to synaptic weighting or neural ``learning.'' Junctions copolymerized with polythiophene exhibit current rectification and the non-linear current-voltage behavior requisite for neural electronics (i.e. the activation function).

  18. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices. PMID:23591876

  19. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors

    Hou, Ying; Chen, Luyang; Zhang, Ling; Kang, Jianli; Fujita, Takeshi; Jiang, Jianhua; Chen, Mingwei

    2013-03-01

    A high energy density is critical for supercapacitors to supersede conventional batteries for the applications where both high power and high energy are demanded. Here we report nanoporous metal/conductive polymer hybrid electrodes fabricated by electrochemically plating conductive polypyrrole into nanoporous channels of a dealloyed nanoporous metal. The low electric resistance and open porosity of the nanoporous metal give rise to excellent conductivity of electrons and ions and hence dramatically improved electrochemical performances of the pseudocapacitive polypyrrole. Supercapacitors based on the hybrid electrodes show an ultrahigh energy density of 100 Wh kg-1 in a three-electrode, comparable to NiMH batteries, as well as high power density of 57 kW kg-1. Cycling stability measurements demonstrate that the hybrid electrode can retain 85% of the maximum capacitance after 3000 cycles and the degeneration is mainly caused by the dissolution of polypyrrole during charge/discharge cycling.

  20. Electrochemical synthesis of intrinsically conducting polymers of 3-alkylpyrroles

    Costantini, N.; Cagnolati, R.; Nucci, L.; Pergola, F.; Ruggeri, G. [Pisa Univ. (Italy). Dipt. di Chimica e Chimica Industriale

    1998-01-30

    In the present work the electrochemical polymerization of pyrrole (Py) derivatives has been performed in order to identify the conditions for obtaining intrinsically conducting polymers, checking film morphology and conductivity. The study mainly concerns 3-alkylsubstituted pyrroles with different chain lengths (3-hexylpyrrole (3HP), 3-decylpyrrole (3DP), 3-hexadecylpyrrole (3HDP)). In the case of 3DP (0.01 M) various experimental conditions have been adopted: different solvents (propylene carbonate, acetonitrile), different counterions (ClO{sub 4}{sup -}, BF{sub 4}{sup -}, NO{sub 3}{sup -}, PF{sub 6}{sup -}, TsO{sup -}) with the same cation Bu{sub 4}N{sup +} and different current densities (0.05, 0.1, 0.2, 0.4 mA cm{sup -2}) in the case of BF{sub 4}{sup -} in propylene carbonate. Porous and elastic films are obtained when the substituent alkyl side chain is longer and the supporting electrolytes are ClO{sub 4}{sup -}, BF{sub 4}{sup -}, PF{sub 6}{sup -}; with these last electrolytes the best conductivity is also obtained (0.1-0.8 S cm{sup -1} for poly(3-decylpyrrole), P3DP). P3DP(TsO) and P3DP(NO{sub 3}), aside from the type of solvent, show poor mechanical properties and low electrical conductivity (10{sup -3} and 10{sup -6} S cm{sup -1} for P3DP(TsO) and P3DP(NO{sub 3}), respectively). The conductivity decreases as the alkyl side chain becomes longer. When the polymerization is performed at low monomer concentration (of the order of 0.001 M), the surface properties of P3DP(ClO{sub 4}) are very poor and the conductivity is only 10{sup -3} S cm{sup -1}. The obtained polymers have also been electrochemically characterized through cyclic voltammetry. (orig.) 44 refs.

  1. High-throughput screening of ionic conductivity in polymer membranes

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  2. Current passage tubes in conductive polymer composite for fluid heating

    This communication reports the design and testing of a tubular heat exchanger in conductive polymer composites (CPC) using the ohmic effect (current passage tube). The weak inertia and the good thermal efficiencies of such a device are fully suitable for water or thermo-sensitive products heating. The materials of the extruded tubes are obtained by blending an insulating thermoplastic polymer matrix with a conductive filler like carbon black nano particles. The electrical resistivity of the composite can be adjusted by the nature and content of the filler. Consequently, an electrical transformer is no longer needed for the electrical input of the heat exchanger. The results presented deal with two different poly(propylene) tubes. The first one is filled with carbon black only, whereas short carbon fibres are added in the second one. First, the effect of the filler content on the electrical and thermal conductivities is quantified. Then, the coupling of the electrical and thermal phenomena is studied. Experimental tests, performed with and without water flow inside the tubes, were completed on a device developed in our laboratory. These experiments were performed under direct current to show the thermal and electrical behaviours of the tubes. The numerical simulation of the temperature profile in the thickness of the pipes corresponds well with the experimental results

  3. Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite

    de Azevedo, W. M.; de Mattos, I. L.; Navarro, M.; da Silva, E. F., Jr.

    2008-11-01

    In this work, we present an alternative route to prepare silver hexacyanoferrate(II)/polyaniline (PANI) composite thin films. Differently from the electrochemical method, used to synthesize the conducting polymer film on a electrode surface, this new chemical route makes use of dialysis membrane as a solid support to synthesize the silver hexacyanoferrate(III) compound, and subsequently uses this composite membrane as oxidizing agent to polymerize the aniline monomer. The spectroscopic (UV-vis and IR region) and electrochemical characterization (cyclic voltammetry) indicates that the polymeric composite remains optically active and conductive. The X-ray analysis shows that the composite membrane/Ag 3[Fe III(CN) 6] has an crystalline structure that can be assigned to the Ag 3[Fe III(CN) 6] structure, and after reaction with aniline solution it became less crystalline. Additionally the SEM measurements shown that the reaction of silver ions with hexacyanoferrate(III) across the membrane results in a well defined and aliened Ag 3[Fe III(CN) 6] crystals and when this crystalline compound reacts with aniline monomer silver wire of 100 nm of diameter by 6 μm longer are formed together with the conducting polymer polyaniline/Ag x[Fe II(CN) 6] composite.

  4. Utilization of novel bithiazole based conducting polymers in electrochromic applications

    In this paper we disclose the synthesis of a novel monomer (2,2′-di-pyrrol-1-yl-[4,4′]bithiazolyl, PyDBTH) and the optoelectronic properties of the resultant conducting polymers. PyDBTH was synthesized via the Clauson-Kaas reaction of 2,2′-diamino-4,4′-bithiazole with 2,5-dimethoxytetrahydrofuran in acetic acid which was characterized by 1H, 13C-NMR, FTIR and MS analyses. Homopolymerization and copolymerization (in the presence of 3,4-ethylenedioxythiophene) were achieved in a tetrabutylammonium hexafluorophosphate (TBAPF6) dichloromethane system. The electrochemical and electrochromic properties of the homopolymer and copolymers were examined by cyclic voltammetry, FTIR, spectroelectrochemistry and kinetic studies. Depending on the synthesis conditions, the bithiazole based polymers exhibited optical band gaps ranging from 2.60 to 1.75 eV and the copolymers displayed multichromism within a wide span of the visible spectrum. The copolymers revealed short switching times and useful optical contrast of 0.6 s and 54%, respectively. Due to its favorable electrochromic properties, utilization of bithiazole based polymers in electrochromic devices was also investigated. These devices exhibited low switching voltages and switching times with reasonable stability under atmospheric conditions. (paper)

  5. Electrical conductivity of radiation-processed wood polymer composites

    Two species of wood, viz. Haldu (Adina Cordifolia) and Jamun (Syzygium Cumini) were vacuum-impregnated with two styrene-based monomer systems and polymerized in situ with gamma radiation from a cobalt-60 source. The electrical conductivity of these specimens was determined at various polymer loadings under dry conditions, after wetting and after wet recovery as per ASTM standards. The water absorption characteristics are also presented. The results are discussed with special reference to the role of water. Potential applications are also discussed. 7 figures

  6. Application of Proton Conducting Polymer Electrolytes to Electrochromic Devices

    Bozkurt, Ayhan

    2002-01-01

    Electrochromic display devices have been fabricated using Polydiallyldimethylammonium dihydrogenphosphate (PAMA+ H2PO4-) blended with H3PO4 as the electrolyte and WO3 as the electrochromic film. The WO3 deposited glass electrodes were doped with protons to form HxWO3 in which color depends on the charge density (CD) ranging from 0.01 to 0.04 C/cm2. Proton conducting films of PAMA+ H2PO4- 2 H3PO4 (2 moles of acid per polymer repeat unit) were sandwiched between two electrodes to obtai...

  7. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Yuqi Teng; Yuqi Zhang; Liping Heng; Xiangfu Meng; Qiaowen Yang; Lei Jiang

    2015-01-01

    A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM) via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA) of 144.7 could be transferred into a hydrophilic surface with CA of 25 by applying a vol...

  8. A chemically diverse conducting polymer-based "electronic nose".

    Freund, M S; Lewis, N S

    1995-03-28

    We describe a method for generating a variety of chemically diverse broadly responsive low-power vapor sensors. The chemical polymerization of pyrrole in the presence of plasticizers has yielded conducting organic polymer films whose resistivities are sensitive to the identity and concentration of various vapors in air. An array of such sensing elements produced a chemically reversible diagnostic pattern of electrical resistance changes upon exposure to different odorants. Principal component analysis has demonstrated that such sensors can identify and quantify different airborne organic solvents and can yield information on the components of gas mixtures. PMID:11607521

  9. Calculation of thermal conductivity of polymer solutions in a wide range of temperatures and pressure

    Present article is devoted to calculation of thermal conductivity of polymer solutions in a wide range of temperatures and pressure. The dependence of thermal conductivity of polymers on temperature and pressure was studied. The dependence of thermal conductivity of polymers on molar mass was studied as well.

  10. Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes

    Angesh Chandra

    2012-03-01

    Full Text Available Synthesis, characterization and polymeric battery studies of Na+ ion conducting Nano- Composite Polymer Electrolyte (NCPE membranes: (1-x [75PEO: 25NaPO3]: x SiO2, where x = 0 - 15 wt. (%, has been reported. NCPE membranes have been casted using a novel hot-press technique in place of the traditional solution cast method. The dispersal of SiO2 in SPE host: (75PEO: 25NaPO3, a conductivity enhancement of an order of magnitude achieved in NCPE film: [93 (75PEO: 25NaPO3: 7 SiO2]. This has been referred to as Optimum Conducting Composition (OCC. Material characterizations have been done with the help of XRD, SEM and DSC techniques. The ion transport behaviour in hot-pressed NCPEs has been discussed on the basis of experimental measurements on some basic ionic parameters viz. conductivity (?, ionic mobility (?, mobile ion concentration (n and ionic transference number (t ion. The temperature dependent conductivity studies have been done to compute the activation energy (Ea values from the 'log s - 1/T' Arrhenius plots. The ion conducting solid state polymeric battery was fabricated and cell-potential discharge characteristics have been studied at different load conditions.

  11. Nanocrystal doped matrixes

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  12. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  13. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  14. New proton conducting polymer blends and their fuel cell performance

    Gourdoupi, N. [Department of Chemistry, University of Patras, University Campus, GR-26500 Rio-Patras (Greece); Kallitsis, J.K. [Department of Chemistry, University of Patras, University Campus, GR-26500 Rio-Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, ICE/HT-FORTH, P.O. Box 1414, 26500 Patras (Greece); Neophytides, S. [Institute of Chemical Engineering and High Temperature Chemical Processes, ICE/HT-FORTH, P.O. Box 1414, 26500 Patras (Greece)

    2010-01-01

    Novel polymer blends based on aromatic polyethers with pyridine units have been prepared for their use as electrolytes after being doped with phosphoric acid for high temperature PEM fuel cells. They exhibit very good film-forming properties, mechanical integrity, high modulus up to 230 C, high glass transition temperatures (up to 260 C) and high thermal stability up to 400 C. In addition to the above required properties, these novel materials show high oxidative stability and acid doping ability, enabling proton conductivity in the range of 10{sup -2} S cm{sup -1} at 130 C. The preparation and fuel cell testing of membrane electrode assemblies, demonstrated very promising performance, and an initial study has shown the positive effect of humidity on the measured conductivity. (author)

  15. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  16. Electronically conductive polymer binder for lithium-ion battery electrode

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  17. Electronically conductive polymer binder for lithium-ion battery electrode

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  18. Relationship between Polymer Dielectric Constant and Percolation Threshold in Conductive Poly(styrene)-Type Polymer and Carbon Black Composites

    Mariana Castro Martínez; Susana Hernández López; Enrique Vigueras Santiago

    2015-01-01

    We study the effect of dielectric constant of some poly(styrene)-type polymer matrix on the percolation threshold in conductive polymer composites with carbon black (CB). We demonstrate that percolation threshold diminishes with an increment of the dielectric constant of polymer matrix. We chose polystyrene and other three polymers similar in structure and molecular weight but with different chemical nature. The corresponding dielectric constant and critical concentration, Xc, in volume fract...

  19. A study on the stability of n-type conductive polymer

    Onoda, M.

    2016-04-01

    Novel n-type conducting polymer, poly (p-methylpyridinium vinylene), PMePyV were synthesized by using the quaternization of poly (p-pyridyl vinylene), PPyV and several regiochemical consequences in this polymer were proposed. The electrical, optical, and electrochemical properties of n-type conductive polymer were observed. In addition, a possibility of a variety of functional applications of n-type conductive polymer was indicated.

  20. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    Ventura, Isaac Aguilar

    2015-07-21

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  1. In situ growth of well-dispersed CdS nanocrystals in semiconducting polymers

    Laera, Anna Maria; Resta, Vincenzo; Piscopiello, Emanuela; Miceli, Valerio; Schioppa, Monica; Scalone, Anna Grazia; Benedetto, Francesca Di; Tapfer, Leander

    2013-01-01

    A straight synthetic route to fabricate hybrid nanocomposite films of well-dispersed CdS nanocrystals (NCs) in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) is reported. A soluble cadmium complex [Cd(SBz)2]2·MI, obtained by incorporating a Lewis base (1-methylimidazole, MI) on the cadmium bis(benzyl)thiol, is used as starting reagent in an in situ thermolytic process. CdS NCs with spherical shape nucleate and grow well below 200°C in a relatively short time (30 min). ...

  2. Effect of ZnCdTe-Alloyed Nanocrystals on PolymerFullerene Bulk Heterojunction Solar Cells

    Wang Yan; Hou Yanbing; Tang Aiwei; Feng Zhihui; Feng Bin; Li Yan; Teng Feng

    2009-01-01

    Abstract The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene) (MEH-PPV), fullerene (C60), and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe) nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with differe...

  3. Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method

    Smirnova, T N; Yezhov, P V; Kokhtych, L M [Institute of Physics, National Academy of Science, prospect Nauki 46, 03028 Kiev (Ukraine); Sakhno, O V; Stumpe, J [Fraunhofer Institute for Applied Polymer Research, Science Campus Golm, Geiselbergstrasse 69, D-14476 Potsdam (Germany); Goldenberg, L M [Institute for Thin Film Technology and Microsensorics, Kantstrasse 55, D-14513 Teltow (Germany)], E-mail: smirnova@iop.kiev.ua, E-mail: Oksana.Sakhno@iap.fraunhofer.de

    2009-06-17

    Amplified spontaneous emission (ASE) is demonstrated in volume-distributed feedback (DFB) structures, formed by colloidal CdSe/ZnS nanocrystals and ZrO{sub 2} nanoparticles (NPs) in a polymer matrix. Periodic redistribution of the NPs in an organic matrix was carried out by holographic photopolymerization in a specially developed light-sensitive nanocomposite. The composite consists of two acrylate monomers and two types of inorganic NPs. The NPs provide for the formation of two co-phased gratings-a refractive index grating and an optical gain (losses) grating. The core-shell CdSe/ZnS nanocrystals are used as a gain medium, while ZrO{sub 2} NPs create the refractive index grating and enhance the distributed feedback. The period of the volume structure provides the feedback for lasing at the wavelength {lambda}{sub las} of about 575 nm in the second diffraction order. In contrast to known laser systems based on volume DFB cavities, in which the different components of the formulation provide optical gain and feedback, in our case the inorganic NPs serve as an emitting material and can provide simultaneously for feedback. By pumping of DFB structures by a titanium-sapphire laser ({lambda}{sub pump} = 400 nm, pulse duration of 120 fs) normal to the sample plane, the appearance of a sharp stimulated emission along the grating-vector direction is observed. Output intensity of ASE as a function of the pump energy shows a threshold behavior and full width at half-maximum (FWHM) of the ASE spectral band decreases from 33 to 12 nm.

  4. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    Dupont, Stephanie R.

    2013-10-17

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 m thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  6. Conductivity enhancement of conjugated polymer after HCl-methanol treatment

    Polymer conductivity is key factor to improve the performance of the electronic and photonic devices. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films were soaked into 0.03, 0.14, 0.41, and 1.13 M concentrations of HCl-methanol solution for 10, 20, 30, 40, 50, 60, and 70 min. The resulting films were investigated using Fourier transform infrared (FTIR) spectrometry, conductivity measurements, and field emission scanning electron microscopy. The characteristic FTIR absorption peaks of poly(4-styrenesulfonate) (PSS) of the films decreased as the soaking time increased. While PSS absorption peaks appeared in the HCl-methanol soaking solution and increased with the soaking time. The conductivity of PEDOT:PSS film was approximately 1.20 x 10-6 S/cm before soaking in the HCl-methanol solution. The conductivity of PEDOT:PSS was enhanced nearly three orders of magnitude after soaking the films into the HCl-methanol solvent. The surface of PEDOT:PSS film was initially very smooth. However, numerous humps appeared on the surface of the films after soaking PEDOT:PSS film into the HCl-methanol solution for 10, 20, and 30 min. The number of humps was reduced and disappeared thereafter.

  7. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    Tenório-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection. PMID:26838898

  8. Conducting polymers on non-conducting substrates: Chemical coating processes and applications

    Geniès, Eugène M.

    1996-01-01

    The presentation will be as follows: —Historical background —Oxidizing polymerization mechanism of heterocycles and aromatic compounds: the cases of pyrrole and anilin —The processes: solute, gas phase and from conducting polymer solutions —The substrates: glass, polymers, inorganic materials, textiles, powders. —Properties of coatings: —Chemical properties: redox, acid-base —Properties resulting from the polymer doping counter-ion —Physical properties: : optical, magnetic, conducting, microwave absorption —Stability —Applications: optics, microelectronics, sensors, electrochrome glasses, electromagnetic and antistatic shielding, military applications, packaging for electronic components, biocompat- ibility, plasturgy. —Commercial applications throughout the world. How to obtain these materials —Conclusions The examples will be taken from the results of our laboratory, those of CEA-Direction des Technologies Avancées—Centre d'Etudes et de Recherche sur les Matériaux—Centre d'Etudes Nucléaires de Grenoble (Mssrs R. Jolly and J. C. Thiéblemont), from the Milliken Research Corp. (Dr. H. H. Kuhn), from the Zipperlin Kessler company (Dr. B. Wessling), from the Americhem company and from I.B.M. (Dr. M. Angelopoulos).

  9. Conducting polymers on non-conducting substrates: Chemical coating processes and applications

    The presentation will be as follows: emdash Historical background emdash Oxidizing polymerization mechanism of heterocycles and aromatic compounds: the cases of pyrrole and anilin emdash The processes: solute, gas phase and from conducting polymer solutions emdash The substrates: glass, polymers, inorganic materials, textiles, powders. emdash Properties of coatings: emdash Chemical properties: redox, acid-base emdash Properties resulting from the polymer doping counter-ion emdash Physical properties: : optical, magnetic, conducting, microwave absorption emdash Stability emdash Applications: optics, microelectronics, sensors, electrochrome glasses, electromagnetic and antistatic shielding, military applications, packaging for electronic components, biocompat- ibility, plasturgy. emdash Commercial applications throughout the world. How to obtain these materials emdash Conclusions The examples will be taken from the results of our laboratory, those of CEA-Direction des Technologies Avancacute ees emdash Centre d close-quote Etudes et de Recherche sur les Matacute eriaux emdash Centre d close-quote Etudes Nuclacute eaires de Grenoble (Mssrs R. Jolly and J. C. Thiacute eblemont), from the Milliken Research Corp. (Dr. H. H. Kuhn), from the Zipperlin Kessler company (Dr. B. Wessling), from the Americhem company and from I.B.M. (Dr. M. Angelopoulos). copyright 1996 American Institute of Physics

  10. Analysis of surface modified polymers: XPS and conductivity measurements

    Full text: Design specific, surface modified polymers are finding ever increasing application in technological, manufacturing and medical areas. A brief review will be presented of such, followed by specific reference to electrical properties of surface modified polymeric materials, their application and analysis. A new method has been devised for the measurement of resistivity in the surface region of insulating materials, including many well known polymers. It measures resistivity through recording of the decay of surface charge placed on the surface of a sample. This method will be outlined and results presented. An ionic charge transport theory has also been developed, based on self field driven motion of, and diffusion transport of, charge carriers; which provides greater insight into the way carriers move in the surface region of insulators in general. The agreement between this theory and the measurements obtained has resulted in an accurate technique for the measurement of electrical resistivity in the surface region of insulators. Values may also be simultaneously obtained for the carrier diffusion coefficient, and the carrier occupancy depth. The methodology has been applied to a series of surface modified polymers under various grafting conditions (graft concentration, temperature and time). The chosen substrates were: polyaniline (PAN), low density polyethylene (LDPE) and teflon (PTFE), pretreated for grafting by either Ar plasma or ozone. The graft monomers used for copolymerisation were acrylic acid (Mc), sodium salt of styrene sulfonic acid (NaSS) and N,N-dimethylacrylamide (DMAA). XPS measurements of the samples will also be used to infer the conduction mechanisms in the materials resulting from grafting procedures. Copyright (1999) Australian X-ray Analytical Association Inc

  11. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  12. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Yuqi Teng

    2015-04-01

    Full Text Available A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene (P3HT and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA of 144.7° could be transferred into a hydrophilic surface with CA of 25° by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

  13. Controlled synthesis of transition metal/conducting polymer nanocomposites

    A novel displacement reaction has been observed to occur between conducting polymers (CP) and metal salts which can be used to fabricate nanostructured CP–metal composites in a one-pot manner. Vanadium pentoxide (V 2O5) nanofiber is used during the synthesis as the reactive seeds to induce the nanofibril CP–metal network formation. The CP–metal nanocomposites exhibit excellent sensory properties for hydrogen peroxide (H2O2) detection, where both high sensitivity and a low detection limit can be obtained. The sensory performance of the CP–metal composite can be further enhanced by a facile microwave treatment. It is believed that the CP–metal nanofibril network can be converted to a carbon–metal network by a microwave-induced carbonization process and result in the sensory enhancement. (paper)

  14. Development of bioactive conducting polymers for neural interfaces.

    Poole-Warren, Laura; Lovell, Nigel; Baek, Sungchul; Green, Rylie

    2010-01-01

    Bioelectrodes for neural recording and neurostimulation are an integral component of a number of neuroprosthetic devices, including the commercially available cochlear implant, and developmental devices, such as the bionic eye and brain-machine interfaces. Current electrode designs limit the application of such devices owing to suboptimal material properties that lead to minimal interaction with the target neural tissue and the formation of fibrotic capsules. In designing an ideal bioelectrode, a number of design criteria must be considered with respect to physical, mechanical, electrical and biological properties. Conducting polymers have the potential to address the synergistic interaction of these properties and show promise as superior coatings for next-generation electrodes in implant devices. PMID:20021239

  15. Organic-Inorganic Shish-Kebabs: Nanocrystal Kebabs Periodically Assembled on Stretched Flexible Polymer Shish

    Lin, Zhiqun; Xu, Hui; Xu, Yuci; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Xia, Haiping

    2015-03-01

    We report an unconventional yet general strategy to craft an exciting variety of 1D necklace-like nanostructures comprising uniform functional nanodisks periodically assembled along a stretched flexible polymer chain by capitalizing on judiciously designed amphiphilic worm-like diblock copolymer as nanoreactors. These nanostructures can be regarded as organic-inorganic shish-kebabs, in which nanodisk kebabs periodically situated on a stretched polymer shish. Simulations based on self-consistent field theory reveal that the formation of organic-inorganic shish-kebabs is guided by the self-assembled elongated star-like diblock copolymer constituents constrained on the highly stretched polymer chain.

  16. Intrinsically Conductive Polymer Fibers from Thermoplastic trans-1,4-Polyisoprene.

    Han, Peng; Zhang, Xiaohong; Qiao, Jinliang

    2016-05-17

    Herein, we report a new strategy to prepare conductive polymer fibers to overcome the insurmountable weakness of current conductive polymer fibers. First, special thermoplastic polymers are processed into polymer fibers using a conventional melt-spinning process, and then the nonconductive polymer fibers are converted into intrinsically conductive polymer fibers. Using this new strategy, intrinsically conductive polymer fibers have been prepared by melt spinning low-cost thermoplastic trans-1,4-polyisoprene and doping with iodine, which can be as fine as 0.01 mm, and the resistivity can be as low as 10(-2) Ω m. Moreover, it has been found that drawing can improve the orientation of trans-1,4-polyisoprene crystals in the fibers and, thus, the conductivity of the conductive polymer fibers. Therefore, conductive fibers with excellent conductivities can be prepared by large drawing ratios before doping. Such conductive polymer fibers with low cost could be used in textile, clothing, packing, and other fields, which would benefit both industry and daily life. The newly developed method also allows one to produce conductive polymers of any shape besides fibers for antistatic or conductive applications. PMID:27135825

  17. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  18. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen; Larsen, Niels Bent

    2011-01-01

    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS® 5013...

  19. Quantum soliton conductivity in polymers: a field theory approach

    Mondaini, Leonardo [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), RJ (Brazil). Dept. de Ciencias Naturais; Marino, E.C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: The discovery of a tremendous increase in the electrical conductivity of polyacetylene, the simplest linear conjugated polymer, when doped with either halogens or alkalis, was a breakthrough of far reaching consequences in physics and chemistry. The fact that the trans-isomer occurs in two degenerate species opens the possibility of occurrence of soliton defects interconnecting them. Indeed, quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. In this work, we present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This strongly suggests that dynamic solitons are not the charge carriers in polyacetylene. Rather, polarons, which are basically soliton-anti soliton bound states should be responsible for the transport of charge in the intermediate doping regime of polyacetylene. This result is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM (Takayama, Lin-Liu and Maki) dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field. (author)

  20. Quantum soliton conductivity in polymers: a field theory approach

    Full text: The discovery of a tremendous increase in the electrical conductivity of polyacetylene, the simplest linear conjugated polymer, when doped with either halogens or alkalis, was a breakthrough of far reaching consequences in physics and chemistry. The fact that the trans-isomer occurs in two degenerate species opens the possibility of occurrence of soliton defects interconnecting them. Indeed, quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. In this work, we present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This strongly suggests that dynamic solitons are not the charge carriers in polyacetylene. Rather, polarons, which are basically soliton-anti soliton bound states should be responsible for the transport of charge in the intermediate doping regime of polyacetylene. This result is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM (Takayama, Lin-Liu and Maki) dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field. (author)

  1. Strain sensing conductive polymer composites: Sensitivity and stability

    Deng, Hua; Du, Rongni; Duan, Linyan; Fu, Qiang

    2016-03-01

    The effect of conductive network morphology and interfacial interaction on the strain sensing capability of conductive polymer composites (CPCs) is thought as crucial. Nevertheless, the stability in strain sensing behavior has barely been investigated. Herein, the resistivity-strain behavior in terms of stability and sensitivity of CPCs based on poly(styrene-butadiene-styrene) (SBS) containing multiwalled carbon nanotubes (MWCNTs) are studied. It is shown that the preparation method has an important influence on the resistivity-strain behavior of these CPCs. The sensitivity increases with decreasing filler content for both composites under linear uniaxial strain, showing higher strain sensitivity near the percolation threshold. A higher and wider range of sensitivities is obtained for melt mixed SBS/MWCNT. Meanwhile, resistivity downward drifting and shoulder peaks are shown for composites from melt mixing under dynamic strain. Interestingly, linear relationships and reversible resistivity in every cycle are observed for composites from solution mixing, showing good electromechanical consistency, stability and durability. From the TEM, rheology, SEM, SAXS, Raman microscopy and analytical modeling studies, the difference in morphology is thought to be responsible for such resistivity-strain behavior. As more disordered and less densely packed conductive networks in melt mixed CPCs are more easily destroyed under strain, evenly distributed and densely packed networks in solution mixed CPCs are more stable during cyclic stretching. Finally, different human motions have been detected using these CPCs, demonstrating the potential application of these CPCs as movement sensors.

  2. Effect of ZnCdTe-Alloyed Nanocrystals on PolymerFullerene Bulk Heterojunction Solar Cells

    Wang Yan

    2009-01-01

    Full Text Available Abstract The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene (MEH-PPV, fullerene (C60, and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with different ZnCdTe:[MEH-PPV + C60] weight ratios of 10 wt% (D11, 20 wt% (D12, 40 wt% (D13, and 70 wt% (D14, it was found that the device D13exhibits the best performance. The power conversion efficiency (? is improved doubly compared with that of the MEH-PPV:C60device.

  3. A conducting polymer artificial muscle with 12% linear strain

    Bay, Lasse; West, Keld; Sommer-Larsen, P.; Skaarup, Steen; Benslimane, M.

    2003-01-01

    a freely suspended polymer foil in response to a potential change and it includes attention to the composition of the polymer, to the synthesis conditions, and involves microstructuring of the polymer. As such, an analysis of the influence of the alkyl chain length on the properties of PPy doped...

  4. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    Understanding the structure - conductivity relationship is of paramount importance for the development of polymer electrolytes. The present studies present the techniques found useful in the elucidation of structure - conductivity relationship in PEOn:ZnBr2 (n = 8, 1000, 2000, 3000, 4000 and 5000) and PEOn:FeBrx (n= 8, 20 and 50; x = 2 and 3). Local structural studies have been undertaken using X-ray absorption fine structures (XAFS) which includes extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). EXAFS provides interatomic distance and coordination numbers of the nearest neighbours and results from the EXAFS studies showed that high conductivity is associated with stretched M - O interatomic distance. In the studies on ultra dilute Zn samples it was found that the cation is highly solvated by the heteroatom forming a tightly bound environment which inhibits local segmental motion thus impeding ion migration. XANES studies on the PEO and modified PEO complexes of NiBr2 revealed the sensitivity of XANES to the structural differences. XANES on Zn and Fe samples also revealed the sensitivity to changes in interatomic distances reflected in shifts of the white line. The complementary nature of EXAFS and XANES was reflected in the studies conducted. Morphological studies were undertaken employing differential scanning calorimetry (DSC), variable temperature polarising microscopy (VTPM) and atomic force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO8:FeBr2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle-spike plot but the Fe(lll) samples displayed an extra semicircle before the spike reflecting a surface effect. This is also manifested in the Arrhenius plots of the same samples where a dip was shown at 100 deg C. From the conductivity studies on the iron systems it was found that for the dry samples the optimum conductivity was observed in PEO8:FeBrx irrespective of the valence state of the cation. For the air-cast samples the optimum conductivity composition depends on the valence state and were shown to be at more dilute compositions. (author)

  5. Soft capacitor fibers using conductive polymers for electronic textiles

    Gu, Jian Feng; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials...

  6. Soft capacitor fibers using conductive polymers for electronic textiles

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60–100 nF m−1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L−1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

  7. Soft capacitor fibers using conductive polymers for electronic textiles

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  8. Synthesis of Conductive Nanofillers/Nanofibers and Electrical Properties of their Conductive Polymer Composites

    Sarvi, Ali

    Thanks to their corrosion resistance, light weight, low cost, and ease of processing, electrically conducting polymer composites (CPCs) have received significant attention for the replacement of metals and inorganic materials for sensors, actuators, supercapacitors, and electromagnetic interference (EMI) shields. In this PhD thesis, high aspect ratio conductive nanofillers namely copper nanowires (CuNWs) and multiwall carbon nanotubes (MWCNTs) were coated with polyaniline (PANi) using solution mixing and in-situ polymerization method, respectively. Transmission electron microscopy (TEM) showed a smooth polyaniline nano-coating between 5--18 nm in thickness on the nanofillers' surface. The coating thickness and; consequently, electrical conductivity was controlled and tuned by polyaniline/aniline concentration in solution. Composites with tunable conductivity may be used as chemisensors, electronic pressure sensors and switches. Coated nanofillers demonstrated better dispersion in polystyrene (PS) and provided lower electrical percolation threshold. Dispersion of nanofillers in PS was investigated using rheological measurements and confirmed with electron micrographs and nano-scale images of CPCs. Polyaniline (PANi), when used as a coating layer, was able to attenuate electromagnetic (EM) waves via absorption and store electrical charges though pseudocapacitance mechanism. The dielectric measurements of MWCNT-PANi/PS composites showed one order of magnitude increase in real electrical permittivity compared to that of MWCNT/PS composites making them suitable for charge storage purposes. Incorporation of PANi also brought a new insight into conductive network formation mechanism in electrospun mats where the orientation of conductive high aspect ratio nanofillers is a major problem. Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with coated multiwall carbon nanotubes (MWCNTs) were fabricated using electrospinning. These highly oriented PVDF nanofibers exhibited high beta (beta) crystal content and enhanced piezoelectricity. Moreover, multilayer electrospun nanofibers, in which MWCNTs were located at the shell layer, were fabricated for further decrease in electrical percolation threshold. In addition the PANi coated nanofillers, immiscible polymer blends (poly(methyl methacrylate) (PMMA) and styrene-acrylonitrile copolymer (SAN) blends) were employed to deliver lower percolation threshold via double percolation phenomenon. Conductivity measurements revealed a significant decrease in electrical percolation threshold (0.4 wt%) for PMMA70/SAN30 blends compared with MWCNT-filled SAN and PMMA (ca 0.8 wt%).

  9. Efficiency of a Compact Elliptical Planar Ultra-Wideband Antenna Based on Conductive Polymers

    Christophe Fumeaux; Roderick Shepherd; Bo Weng; Akhilesh Verma; Van-Tan Truong; Thomas Kaufmann

    2012-01-01

    A planar antenna for ultra-wideband (UWB) applications covering the 3.1–10.6 GHz range has been designed as a test bed for efficiency measurements of antennas manufactured using polymer conductors. Two types of conductive polymers, PEDOT and PPy (polypyrrole), with very different thicknesses and conductivities have been selected as conductors for the radiating elements. A comparison between measured radiation patterns of the conductive polymers and a copper reference antenna allows to estimat...

  10. Conductive polymers derived from iron, ruthenium, and osmium metalloporphyrins: The shish-kebab approach

    Collman, James P.; McDevitt, John T.; Yee, Gordon T.; Leidner, Charles R.; McCullough, Laughlin G.; Little, William A.; Torrance, Jerry B.

    1986-01-01

    The synthesis and characterization of pyrazine-bridged polymers of iron(II/III), ruthenium(II/III), and osmium(II/III) octaethylporphyrin (dubbed “shish-kebab” polymers) are presented. Optical and dc conductivity measurements reveal that the ruthenium and osmium polymers, when partially oxidized, are highly conductive. Electrochemical and ESR results are presented that indicate the existence of an interesting metal-centered conduction pathway. Unlike most of the previously reported porphyrini...

  11. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    Drzal, Lawrence T.; Hiroyuki Fukushima; Kyriaki Kalaitzidou

    2010-01-01

    Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape), intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforce...

  12. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. Electronic supplementary information (ESI) available: BET surface area and pore distribution of palladium architectures without CPPyNPs; Hydrogen sensing ability of palladium architectures without CPPyNPs; HR-TEM image of Pd@CPPy_C16 after 100 cycle exposure of H2. See DOI: 10.1039/c5nr06193h

  13. Nanostructured Conducting Polymers for Applications in Water Treatment and Aerospace Coatings

    Farrell, Thomas Potapenko

    2013-01-01

    Nanostructured conducting polymers have been synthesized by chemical oxidative polymerization, where the nucleation conditions have been intentionally modified to produce materials with high processability. These materials have been blended with conventional polymers and incorporated into polymer membranes via nonsolvent-induced phase separation. The membranes produced show tunable hydrophilicity, pore structure, and separation properties. Pure polyaniline membranes are super hydrophilic a...

  14. Crystalline polymers with exceptionally low thermal conductivity studied using molecular dynamics

    Robbins, Andrew B.; Minnich, Austin J.

    2015-11-01

    Semi-crystalline polymers have been shown to have greatly increased thermal conductivity compared to amorphous bulk polymers due to effective heat conduction along the covalent bonds of the backbone. However, the mechanisms governing the intrinsic thermal conductivity of polymers remain largely unexplored as thermal transport has been studied in relatively few polymers. Here, we use molecular dynamics simulations to study heat transport in polynorbornene, a polymer that can be synthesized in semi-crystalline form using solution processing. We find that even perfectly crystalline polynorbornene has an exceptionally low thermal conductivity near the amorphous limit due to extremely strong anharmonic scattering. Our calculations show that this scattering is sufficiently strong to prevent the formation of propagating phonons, with heat being instead carried by non-propagating, delocalized vibrational modes known as diffusons. Our results demonstrate a mechanism for achieving intrinsically low thermal conductivity even in crystalline polymers that may be useful for organic thermoelectrics.

  15. Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window

    Park, Han-Saem; Ko, Seo-Jin; Park, Jeong-Seok; Kim, Jin Young; Song, Hyun-Kon

    2013-01-01

    Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, “synthetic metal”. PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm−1, the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is tr...

  16. The catalytic activity of conducting polymers toward oxygen reduction

    Khomenko, V.G. [Kiev National University of Technologies and Design, 2 Nemirovich-Danchenko Str., Kiev 02011 (Ukraine); Barsukov, V.Z. [Kiev National University of Technologies and Design, 2 Nemirovich-Danchenko Str., Kiev 02011 (Ukraine)]. E-mail: chemi@mail.kar.net; Katashinskii, A.S. [Kiev National University of Technologies and Design, 2 Nemirovich-Danchenko Str., Kiev 02011 (Ukraine)

    2005-02-15

    The reduction of oxygen at electronically conducting polymers (ECPs) such as polyaniline (PANI), polypyrrole (PPy), polythiophen (PTh), and poly(3-methyl)thiophen (PMeT), poly(3,4-ethylenedioxythiophene) (PEDOT) have been studied. The electrochemical investigations of ECPs based catalytic electrodes in oxygen-saturated electrolytes indicate the existence of electrocatalytic activity toward the oxygen reduction at different ECPs with the exception of PEDOT. To explain the reasons of the catalytic activity of ECPs, a quantum-chemical modeling of ECPs and adsorption complexes of ECPs with oxygen have been performed. To calculate the electronic structure of molecular clusters and their complexes with oxygen, the PM 3 program of the MOPAC computer system was used. The catalytic activity takes place due to the unique electronic structure of ECPs. The calculations showed that the bond orders in chemisorbed oxygen molecules at PANI decrease by a third, and the bond length increases by more than 20% in comparison with that in a free oxygen molecule. Thus, chemisorbed oxygen molecules have a fairly high degree of activation and can be readily reduced at the polymeric surface. The similar mechanism takes place on the active carbon atoms of PPy, PTh, and PMeT.

  17. Using artificial intelligence methods to design new conducting polymers

    Ronaldo Giro

    2003-12-01

    Full Text Available In the last years the possibility of creating new conducting polymers exploring the concept of copolymerization (different structural monomeric units has attracted much attention from experimental and theoretical points of view. Due to the rich carbon reactivity an almost infinite number of new structures is possible and the procedure of trial and error has been the rule. In this work we have used a methodology able of generating new structures with pre-specified properties. It combines the use of negative factor counting (NFC technique with artificial intelligence methods (genetic algorithms - GAs. We present the results for a case study for poly(phenylenesulfide phenyleneamine (PPSA, a copolymer formed by combination of homopolymers: polyaniline (PANI and polyphenylenesulfide (PPS. The methodology was successfully applied to the problem of obtaining binary up to quinternary disordered polymeric alloys with a pre-specific gap value or exhibiting metallic properties. It is completely general and can be in principle adapted to the design of new classes of materials with pre-specified properties.

  18. A conducting polymer/ferritin anode for biofuel cell applications

    An enzyme anode for use in biofuel cells (BFCs) was constructed using an electrically connected bilayer based on a glassy carbon (GC) electrode immobilized with the conducting polymer polypyrrole (Ppy) as electron transfer enhancer, and with horse spleen ferritin protein (Frt) as electron transfer mediator. The surface-coupled redox system of nicotinamide adenine dinucleotide (NADH) catalyzed with diaphorase (Di) was used for the regeneration of NAD+ in the inner layer and the NAD+-dependent enzyme catalyst glucose dehydrogenase (GDH) in the outer layer. The outer layer of the GC-Ppy-Frt-Di-NADH-GDH electrode effectively catalyzes the oxidation of glucose biofuel continuously; using the NAD+ generated at the inner layer of the Di-catalyzed NADH redox system mediated by Frt and Ppy provides electrical communication with enhancement in electron transport. The electrochemical characteristics of the electrodes were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). This anode provides a current density of 1.2 mA cm-2 in a 45 mM glucose solution and offers a good possibility for application in biofuel cells.

  19. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  20. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10−11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10−5 S/cm

  1. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  2. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO)8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO)10 and LiClO4.P(EO)10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO)8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  3. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO)

    I. Blaszczyk-Lezak; V. Desmaret; Mijangos, C.

    2016-01-01

    Intrinsically or extrinsically conducting polymers are considered good candidates for replacement of metals in specific applications. In order to further expand their applications, it seems necessary to examine the influence of confinement effects on the electric properties of nanostructured conducting polymers in comparison to the bulk. The present study reports a novel way to fabricate and characterize high quality and controllable one-dimensional (1D) polymer nanostructures with promising ...

  4. Electrochemical characterisation of conducting polymer layers and their use as gas sensors

    McCormac, Timothy Paul

    1994-01-01

    The main aim of this work was to develop an SO2 sensor based upon a conducting polymer. The methodology and properties of a conducting polymer sensor along with the electrochemical characterisation of various polypyrrole layers is described. It was found that polypyrrole layers containing Copper (11) Phthalocyanine - 3,4',4", 4"'-tetrasulphonate anions (PPTSP), as the dopant, upon electrochemical switching exhibit cation movement in and out of the polymer matrix. A concentration, pH, temp...

  5. Electron conductive three-dimensional polymer of cuboidal C60

    Yamanaka, Shoji; Kubo, Akira; Inumaru, Kei; Komaguchi, Kenji; Kini, N. S.; Inoue, Toru; Irifune, Tetsuo

    2006-01-01

    Single crystals of three-dimensional (3D) C60 polymer were prepared by the topotactic conversion of two-dimensional (2D) C60 polymer single crystals at a pressure of 15 GPa at 600°C. The x-ray single crystal study revealed that the 3D C60 polymer crystallized in a body centered orthorhombic space group Immm, and spherical C60 monomer units were substantially deformed to rectangular parallelepiped (cuboidal) shapes, each unit being bonded to eight cuboidal C60 neighbors via [3+3] cycloaddition...

  6. Fabrication and characterization of silicon nanocrystal based light emitting devices

    Yu, Dan

    In this thesis, the non-thermal plasma synthesized Si nanocrystals were hydrosilylated with reactive alkenes and the resulting functionalized Si nanocrystals maintained relatively high quantum efficiency up to 20%; the surface functional groups such as hexene, octene and dodecene not only prevented attacking from oxygen and water, but also facilitated the solution process with polymers and organic solvents. These formed Si nanocrystals in toluene can be readily dispersed into PMMA toluene solution without any precipitation. Thin films of Si nanocrystals embedded into PMMA matrix can be obtained on ITOs by simple spin-coating. The device structure studied was composed of Al/Si nanocrystals PMMA/ITO. The film of Si nanocrystal/PMMA was formed by spin-coating onto the pre-cleaned ITO and Al was deposited by thermal evaporation. Three devices made of hexene, octene and dodecene Si nanocrystals were fabricated. Among the different aliphatic molecules, octene was chosen for further study as it was found to be the shortest ligand which fully passivated the Si nanocrystals but still prevented liquid phase agglomeration. The conduction mechanism of the fabricated LEDs was then studied. Two conduction regimes were clearly seen on the fabricated devices. At low field, the behavior follows space charge limited current with a weak temperature dependence. Evidence suggests that the small energy barrier we measure may be due to the size distribution of the nanocrystals. The low field behavior was also used to extract the Si nanocrystal density. The trap density is in reasonable agreement with the nanocrystal density suggesting that each trap is one nanocrystal. At high field, trap assisted tunneling was observed. An estimate of the electron tunneling effective mass was found to be 0.23m o. Although tunneling has been observed in epitaxially grown nanocrystals and in 2D arrays of metal nanoparticles, this is the first time that tunneling between nanocrystals has been seen in an electroluminescent composite film. This could be an important step toward making low cost nanocrystal based light emitting devices since the conduction mechanism appears to be on the nanocrystals, eliminating the need to transfer charge or excitons from the matrix to the nanocrystals. The efficiency of the LED of simple device structure was determined to be relatively low at the operational voltages. One reason for the relatively low device efficiency is believed to be the direct contact of the Al electrode to the Si nanocrystal/PMMA film. The fact that the majority of the electron/hole recombination events are non-radiative may also be due to the imbalance of electrons and holes injected into the composite film. To improve the LED efficiency, it's necessary to incorporate metal oxides as charge transporting layers. Therefore, the ZnO and MoO3 were chosen for this purpose as electron and hole transporting layers, respectively. A thorough material characterization of ALD ZnO was discussed by utilizing techniques such as XRD, Auger, XPS, and RBS as a function of deposition temperature. A literature review on MoO3 was also included. The fabrication process used to synthesize the devices which incorporated ZnO and MoO3 was discussed in detail. The band alignment of the device indicated that electron and hole recombination was thermodynamically favored. The emission intensity as a function of device current was also discussed between the device of simple structure and the device with metal oxides. The device incorporated with metal-oxide transport layers exhibited improved emission intensity at lower currents than that of the device with simple structure. Improved device efficiency was also observed on metal-oxides Si nanocrystal/PMMA LEDs. However, both devices still showed low device efficiency. Further improvement is needed to balance the electron and hole densities at Si nanocrystals. (Abstract shortened by UMI.).

  7. Conducting polymer nanostructures for photocatalysis under visible light

    Ghosh, Srabanti; Kouamé, Natalie A.; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

  8. Enhancement of actuation ability of ionic-type conducting polymer actuators using metal ion implantation

    Alici, Gursel; Punning, Andres; Shea, Herbert R.

    2011-01-01

    In this study, we present the results and implications of an experimental study into the effect of gold-ion implantation on the actuation performance of ionic-type conducting polymer actuators, represented here by cantilevered tri-layer polypyrrole (PPy) actuators. We implant gold ions beneath the outer surfaces of PPy-based conducting polymer layers of the actuators in order to increase the conductivity of these layers, and therefore improve the overall conductivity of the actuators. A Filte...

  9. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  10. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. 2014 Elsevier B.V. All rights reserved.

  11. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    Ventura, Isaac Aguilar; Zhou, Jian; LUBINEAU, Gilles

    2015-01-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs ...

  12. Towards p-type conductivity in SnO2 nanocrystals through Li doping

    This paper examines electrical transport properties and Li doping in SnO2 synthesized by the sol-gel method. Solid-state 7Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25-350 deg. C temperature range, follows an Efros-Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(ρ) versus T-1/2) at temperatures below 100 deg. C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(ρ) versus T-1/3) conduction at temperatures above 250 deg. C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

  13. Towards p-type conductivity in SnO2 nanocrystals through Li doping

    Chaparadza, Allen; Rananavare, Shankar B.

    2010-01-01

    This paper examines electrical transport properties and Li doping in SnO2 synthesized by the sol-gel method. Solid-state 7Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25-350 °C temperature range, follows an Efros-Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(ρ) versus T-1/2) at temperatures below 100 °C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(ρ) versus T-1/3) conduction at temperatures above 250 °C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

  14. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  15. Application of nano-structured conducting polymers to humidity sensing

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying moisture levels because even low humidity levels saturate the sample surface within a few minutes. Because of this, it was not perfect to distinguish the effects of etching the PEDOT film for humidity detection and difficult to apply nano-columned PEDOT films as a humidity sensors under continuously changing humidity conditions. However, nano-columned PEDOT films showed excellent performance in simulated breath tests, i.e., an area where the medical needs sensors for pulmonary monitoring. Since the polymers are sensitive to heat, it was important to characterize the influence of temperature on the sensor performance. PANI nanowires and nano-columned PEDOT sensors were tested in the environmental chamber developed in this work as a function of temperature with the humidity fixed, and only the temperature was varied. The PANI nanowires showed very fast degradation at temperatures above room temperature, while the nano-columned PEDOT film performed up to 50 °C. The influence of other gases was also tested for the potential of gas sensing, selectivity, and chemical stability. In order to exclude the moisture effect during the measurement, the samples were characterized under the lowest humidity condition, RH 14% preserved in the system. Under these conditions the PANI nanowires responded to the gases (hydrogen and carbon monoxide were used), but the moisture inside the PANI nanowire was forced to influence the gas detection. Therefore, samples were dried overnight under a nitrogen environment and tested again. With this careful control of the moisture present, it was found that PANI nanowires respond to both hydrogen and carbon monoxide gases, however, there is no selectivity between gases. Nano-columned PEDOT films were also tested under the same experimental moisture-controlling conditions. It was shown that there was little response to other gases. Any response that may have been presented was buried in the electrical noise. Finally, both samples were tested for long-term stability. PANI nanowires showed almost linear degradation with continuous use, while nano-columned PEDOT was stable over extended periods of time. The PANI nanowires were more reactive to the environment compared to the nano-columned PEDOT films. The only disadvantage of the nano-columned PEDOT sensor structure is that it loses its durability when it is directly exposed to liquid water or highly saturated humidity for long periods of time. A surface treatment of PEDOT was developed that enhanced its durability against water without degrading its sensor performance. Nano-columned PEDOT films look promising for breath sensors for medical usage because they have sub-second response times and are relatively chemically and physically stable.

  16. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes

    S Rajendran; Ravi Shanker Babu; M Usha Rani

    2011-12-01

    Solid polymer electrolyte membrane comprising poly(vinyl chloride) (PVC), poly(ehylene oxide) (PEO) and different lithium salts (LiClO4, LiBF4 and LiCF3SO3) were prepared by the solution casting technique. The effect of complexing salt on the ionic conductivity of the PVC/PEO host polymer is discussed. Solid polymer electrolyte films were characterized by X-ray diffraction, FTIR spectroscopy, TG/DTA and ac impedance spectroscopic studies. The conductivity studies of these solid polymer electrolyte (SPE) films are carried out as a function of frequency at various temperatures ranging from 302 K to 353 K. The maximum room temperature ionic conductivity is found to be 0.079 × 10-4 S cm-1 for the film containing LiBF4 as the complexing salt. The temperature dependence of the conductivity of polymer electrolyte films seems to obey the Vogel–Tamman–Fulcher (VTF) relation.

  17. Nanocrystal structures

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  18. Investigations of proton conducting polymers and gas diffusion electrodes in the polymer electrolyte fuel cell

    Gode, Peter

    2005-01-01

    Polymer electrolyte fuel cells (PEFC) convert the chemically bound energy in a fuel, e.g. hydrogen, directly into electricity by an electrochemical process. Examples of future applications are energy conversion such as combined heat and power generation (CHP), zero emission vehicles (ZEV) and consumer electronics. One of the key components in the PEFC is the membrane / electrode assembly (MEA). Both the membrane and the electrodes consist of proton conducting polymers (ionomers). In the membr...

  19. A polymer electrolyte with high luminous transmittance and low solar throughput : Polyethyleneimine-lithium bis(trifluoromethylsulfonyl) imide with In2O3:Sn nanocrystals

    Bayrak Pehlivan, I.; Runnerstrom, E. L.; Li, Shuyi(Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, 210093, China); Niklasson, Gunnar A.; Milliron, D. J.; Granqvist, Claes-Gran

    2012-01-01

    Chemically prepared similar to 13-nm-diameter nanocrystals of In2O3:Sn were included in a polyethyleneiminelithium bis(trifluoromethylsulfonyl) imide electrolyte and yielded high haze-free luminous transmittance and strong near-infrared absorption without deteriorated ionic conductivity. The optical properties could be reconciled with effective medium theory, representing the In2O3:Sn as a free electron plasma with tin ions screened according to the random phase approximation corrected for el...

  20. Spectroscopic investigations on hybrid nanocomposites: CdS : Mn nanocrystals in a conjugated polymer

    We have used electron paramagnetic resonance (EPR) spectroscopy for investigating the properties of spins, such as those carried by polarons which carry both spin and charge in poly (meta/para phenylene) PMPP: CdS doped Mn based nanocomposites. To identify the nature of paramagnetic species in PMPP matrix, we have studied the effect of different physical parameters. It was found that we are in presence of trapped polarons and localized spins which concentration has been estimated. Moreover, spin-spin and spin-lattice relaxation rates have been calculated. Then, we discussed the results of optical and EPR study on the hybrid nanocomposite (CdS nanostructures, doped with manganese (II) ions, incorporated in PMPP conjugated polymer matrix). The optical spectra of these nanocomposites were compared to the existing models of energy levels in quantum dots. Moreover, by the use of electronic paramagnetic resonance, conclusions about the location and the symmetry of Mn2+ ions have been drawn. The nanocomposite energy gap is in the 3.2-3.3 eV range. The size of the nanoparticle is about 3.3 nm and Mn2+ ions are located at or near the nanoparticle surface

  1. Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals

    Wang, Mingfeng

    2009-12-15

    We report the incorporation of various inorganic nanoparticles (NPs) (PbS, LaOF, LaF3, and TiO2, each capped by oleic acid, and CdSe/ZnS core/shell QDs capped by trioctylphosphine oxide) into vesicles (d = 70-150 nm) formed by a sample of poly(styrene-b-acrylic acid) (PS4o4-b-PAA 62, where the subscripts refer to the degree of polymerization) in mixtures of tetrahydrofuran (THF), dioxane, and water. The block copolymer formed mixtures of crew-cut micelles and vesicles with some enhancement of the vesicle population when the NPs were present. The vesicle fraction could be isolated by selective sedimentation via centrifugation, followed by redispersion in water. The NPs appeared to be incorporated into the PAA layers on the internal and external walls of the vesicles (strongly favoring the former). NPs on the exterior surface of the vesicles could be removed completely by treating the samples with a solution of ethylenediaminetetraacetate (EDTA) in water. The triangular nanoplatelets of LaF3 behaved differently. Stacks of these platelets were incorporated into solid colloidal entities, similar in size to the empty vesicles that accompanied them, during the coassembly as water was added to the polymer/LaF3/THF/ dioxane mixture. © 2009 American Chemical Society.

  2. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    Webster, M I

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) sub 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) sub 1 sub 0 and LiClO sub 4.P(EO) sub 1 sub 0 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stabl...

  3. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula; Areephong, Jetsuda; Hjelm, Johan; Feringa, Ben L.; Browne, Wesley R.

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity of the...... polymer can be switched electrochemically in a reversible manner by redox triggered opening and closing of the diarylethene unit. In the closed state, the conductivity of the modified electrode is higher than in the open state....

  4. Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene Sponges

    Yuanqing Li; Yarjan Abdul Samad; Kyriaki Polychronopoulou; Alhassan, Saeed M.; Kin Liao

    2014-01-01

    Conductive polymer composites require a threedimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuumassisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze dry...

  5. FINAL REPORT. SENSORS USING MOLECULAR RECOGNITION IN LUMINESCENT, CONDUCTIVE POLYMERS

    The purpose of this project is to develop sensor technology for detecting specific heavy metal ions, such as transition metals, lead, lanthanides, and actinides in waste streams. The sensing strategy uses molecular recognition of the metal ions by polymers that change their lumin...

  6. Novel alkaline polymer electrolyte for water electrolysis with enhanced conductivity

    Hnát, J.; Bouzek, B.; Paidar, M.; Schauer, Jan

    Praha : Process Engineering, 2010. s. 110-111. ISBN 978-80-02-02246-6. [International Congress of Chemical and Process Engineering CHISA 2010 /19./ and European Congress of Chemical Engineering ECCE-7 /7./. 28.08.2010-01.09.2010, Praha] Institutional research plan: CEZ:AV0Z40500505 Keywords : novel alkaline polymer * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry

  7. Hybrid solar cells of conjugated polymers metal-oxide nanocrystals blends; state of the art and future research challenges in Indonesia

    Bahtiar, Ayi

    2013-09-01

    Ever-increasing world energy demand, depleting non-renewable energy resources and disruptive climate change due to greenhouse gases has aroused much interest in alternative renewable energy sources. Solar energy is one of the best available alternatives, for it is both abundant and clean. Solar cell is an effective device for converting solar energy into electricity. Indonesia is located on the equator where the sunlight is always available in abundance throughout the year; therefore solar cell would become the main source of electrical energy in Indonesia. However, the high cost of inorganic solar cells in spite of their high power conversion efficiency (PCE) has been a major constrain for their mass utilization in Indonesia. The only way to reduce the cost of production and installation is to find other materials which offer low-cost and easy processing into solar cells. Polymer solar cells have been intensively investigated for high performance and low-cost solar cells. Today, 9-11% power conversion efficiency (PCE) of small area polymer solar cells and 2-4% PCE of large area or module solar cells are already achieved. However, for practical application and mass production, 10% or higher PCE of module solar cells is highly required. The main strategic issue for improving the PCE is to use blend of conjugated polymer-metal oxide nanocrystals as active materials for hybrid solar cells, due to the good combination of the versatile solution processability of conjugated polymers and high charge carrier mobility of metal-oxide nanocrystals. In this paper, current development of hybrid solar cells worldwide and future research challenges in Indonesia will be discussed.

  8. Waxy maize starch nanocrystals for composite applications

    Angellier, Hélène

    2005-01-01

    Aqueous suspensions of waxy maize starch nanocrystals are obtained by acid hydrolysis of native starch granules. The first objective was to optimize the preparation of such nanocrystals using a response surface methodology. Then, their molecular structure has been studied by enzymatic analysis and their surface chemical modification has been investigated. The second objective was to use these nanocrystals in a polymer matrix. Two natural polymers have been chosen: a latex of natural rubber an...

  9. Interfacial charge transfer behavior of conducting polymers as contact electrode for semiconductor devices

    Kawakita, Jin; Fujikawa, Yuki; Nagata, Takahiro; Chikyow, Toyohiro

    2016-04-01

    As an alternative contact electrode material to metals, which is necessary for downsized semiconductor devices in 10 nm processes, an intrinsically conducting polymer was studied in terms of its interfacial charge-transfer behavior with an inorganic semiconductor. Polypyrrole as the conducting polymer was formed using an electrochemical technique on an oxide semiconductor and its electronic properties were evaluated using scanning probe microscopy. The experimental results showed that an ohmic contact was observed dynamically at local positions, although a Schottky barrier was expected in the static electronic state over the measurement area. From this research, the conducting polymer was found to be promising as a contact electrode.

  10. Regiochemistry of Poly(3-Hexylthiophene): Synthesis and Investigation of a Conducting Polymer

    Pappenfus, Ted M.; Hermanson, David L.; Kohl, Stuart G.; Melby, Jacob H.; Thoma, Laura M.; Carpenter, Nancy E.; Filho, Demetrio A. da Silva; Bredas, Jean-Luc

    2010-01-01

    A series of experiments for undergraduate laboratory courses (e.g., organic, polymer, inorganic) have been developed. These experiments focus on understanding the regiochemistry of the conducting polymer poly(3-hexylthiophene) (P3HT). The substitution patterns in P3HTs control their conformational features, which, in turn, dictates the [pi]…

  11. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  12. Superparamagnetism of transition metal nanoparticles in conducting polymer film

    Magnetic properties of transition metal (cobalt, iron, nickel, manganese, chromium) nanoparticles prepared by ion-exchange method in the perfluorinated sulfo-cation polymeric membrane (MF-4SK) have been investigated. While manganese and chromium in MF-4SK exhibited paramagnetic properties, cobalt, iron and nickel particles showed superparamagnetic behaviors. Our experimental evidence suggests that cobalt, iron and nickel nanoparticles in the polymer film obey a single-domain theory

  13. Stability of electrical properties of conducting polymer composites

    Omastová, M.; Prokeš, J.; Košina, S.; Hlavatá, Drahomíra

    2001-01-01

    Roč. 170, - (2001), s. 241-248. ISSN 1022-1360. [Property Tailoring of Thermoplastics-Based Blends and Composites.. Bratislava, 01.10.2000-04.10.2000] R&D Projects: GA ČR GA106/99/0556; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : electrical properties * polymer composites * carbon black Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.634, year: 2001

  14. Design of conducting polymer matrix derived from the C{sub 60}-based star-shaped polymer

    Chiang, L.Y.; Wang, L.Y. [National Taiwan Univ., Taipei (Taiwan, Province of China)

    1995-12-01

    Synthetic methods leading to the preparation of water-soluble polyhydroxylated C{sub 60} derivative (fullerenol) have been extensively investigated recently. This type of molecule, containing multiple polar hydroxyl functions in a ball-shaped fullerene structure, is suitable for utilization as a versatile intermediate in the prospective design of three-dimensionally stretched polymers. The strategy involves the use of fullerenol as a molecular core for anchoring various polymer arms on the C{sub 60} cage. Since the spherical space of fullerenol, covering the outer radius of hydroxyl groups, is in a diameter of approximately 13 {Angstrom}. The truly star-bursted polymer molecules can be made. The treatment of fullerenol with a prepolymer of diisocyanated urethane polyether under a mild condition afforded the C{sub 60}-based polyurethane polyether star-polymers with a narrow distribution of the number of polymer arms. We will discuss the use of C{sub 60}-based star-shaped polymer in the design and fabrication of polyaniline analog conducting polymer matrix.

  15. Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF6

    Jitender Paul Sharma; S S Sekhon

    2013-08-01

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ionic conductivity, whereas the addition of nano-sized fumed silica improves mechanical strength of electrolytes along with a small increase in ionic conductivity. It was observed that the simultaneous addition of PC and fumed silica results in electrolytes with optimum value of ionic conductivity and other properties.

  16. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  17. BF3-doped polyaniline: A novel conducting polymer

    Debangshu Chaudhuri; D D Sarma

    2006-07-01

    We review the unusual structural, transport and magnetic properties of highly conducting polyaniline, doped with boron trifluoride. Our studies establish the unique conducting state of this system, which is in distinct contrast with the conventional proton-doped polyaniline samples.

  18. The synthesis of conducting polymers for corrosion prevention

    Mattson, Guy C.

    1988-01-01

    The formation of an electrically conducting form of polyaniline by the oxidative polymerization of aniline was studied. Optimum yield and conductivities were obtained by treating aniline in 2 molar hydrochloric acid at 0 to 5 C with ammonium persulfate in 1.15 mole ratio. The yield was 37.6 percent of theory and the conductivity of the product was 10.5 S/cm. This material was formulated into epoxy and acrylic coatings which were also electrically conductive.

  19. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO

    I. Blaszczyk-Lezak

    2016-03-01

    Full Text Available Intrinsically or extrinsically conducting polymers are considered good candidates for replacement of metals in specific applications. In order to further expand their applications, it seems necessary to examine the influence of confinement effects on the electric properties of nanostructured conducting polymers in comparison to the bulk. The present study reports a novel way to fabricate and characterize high quality and controllable one-dimensional (1D polymer nanostructures with promising electrical properties, with the aid of two examples polyaniline (PANI and poly(vinylidene fluoride with multiwall carbon nanotubes (PVDF-MWCNT as representative of intrinsically and extrinsically conducting polymers, respectively. In this work, porous anodic aluminum oxide (AAO templates have been used both as a nanoreactor to synthesize 1D PANI nanostructures by polymerization of the ANI monomer and as a nanomold to prepare 1D PVDFMWCNT nanorods by melt infiltration of the precursor PVDF-MWCNT film. The obtained polymer nanostructures were morphologically and chemically characterized by SEM and Confocal Raman Spectroscopy, respectively, and the electrical properties determined by Broadband Dielectric Spectroscopy (BDS in a non-destructive way. SEM study allowed to establish the final nanostructure of PANI and PVDF-MWCNT and confirmed, in both cases, the well-aligned and uniform rodlike polymer nanostructures. Confocal Raman Microscopy has been performed to study the formation of the conducting emeraldine salt of PANI through all the length of AAO nanocavities. Finally, the electrical conductivity of both types of polymer nanostructures was easily evaluated by means of Dielectric Spectroscopy.

  20. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  1. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed. PMID:19908773

  2. ION AND MOLECULE SENSORS USING MOLECULAR RECOGNITION IN LUMINESCENT, CONDUCTIVE POLYMERS

    This program integrates three individual, highly interactive projects that will use molecular recognition strategies to develop sensor technology based on luminescent, conductive polymers that contain sites for binding specific molecules or ions in the presence of related molecul...

  3. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Bajgar, Václav; Penhaker, Marek; Martinková, Lenka; Pavlovič, Andrej; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology. PMID:27070612

  4. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments

    Kalendová, A.; Veselý, D.; Kohl, M.; Stejskal, Jaroslav

    2015-01-01

    Roč. 78, January (2015), s. 1-20. ISSN 0300-9440 Institutional support: RVO:61389013 Keywords : conducting polymer * zinc metal * organic coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.358, year: 2014

  5. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  6. Low-Magnetic Field Microwave Absorption in Superconductors and Conducting Polymers

    KHAIRULLIN, I. I.; Khabibullaev, P. K.

    1999-01-01

    Low-magnetic field microwave absorption (MA) in superconductors and conducting polymers is analysed in a low-field signal (LFS) version of the MA detecting method. The temperature dependences, hysteretic benavior and other properties of a LFS are compared in superconducting versus non-superonducting systems. Spin selective hopping processes between polarons and bipolarons is proposed to be one of the possible mechanisms of a LFS in non-degenarate conducting polymers.

  7. Design, synthesis, characterization and development of novel organic conducting polymers with technological applications

    Aradilla Zapata, David

    2013-01-01

    In this thesis, a series of novel organic conducting polymers have been synthesized using alternative methods based on electrochemical techniques, which have allowed to broaden the knowledge in the field of the characterization by means of topological, spectroscopic, electrochemical and structural techniques. Among the variety of synthesis techniques of conducting polymers, layer-by-layer (LbL) has been one of the most important to build multilayered systems. Thus, in this thesis ...

  8. Properties and processing by extrusion of electrically conductive multilayer filaments comprising polymer composites

    Martins, R. S.; Gonçalves, Renato Ferreira; Azevedo, Tiago; Nóbrega, J. M.; Carvalho, Helder; Lanceros-Méndez, S.; Rocha, J. G.

    2013-01-01

    This work describes the production and characterization of three-layer piezoelectric filaments using two different electrically conductive polymers. The filaments were produced in a filament extrusion line, equipped with a coextrusion die that enabled a coaxial arrangement for a three-layer filament. For the inner and outer layers two different electrically conductive compounds were used, and the middle layer was made of the electroactive polymer PVDF. The produced filament can be used as a p...

  9. DOPANT FLEXIBILITY AND PROCESSABILITY STUDIES WITH ELECTRICALLY CONDUCTIVE, FACE-TO-FACE METALLOMACROCYCLIC POLYMERS

    Inabe, T.; Lyding, J; Moguel, M.; Marks, T.

    1983-01-01

    In doping experiments on the cofacially arrayed phthalocyanine polymer [Si(Pc)O]n using high potential quinone, halogen, or nitrosyl electron acceptors, the achievable degree of partial oxidation, the inhomogeneity of the doping process, and the conductivity mechanism remain remarkably constant. Using wet spinning techniques, it has proven possible to prepare electrically conductive fibers of [Si(Pc)O]n alone or blended with the high performance aramid polymer Kevlar.

  10. Role of electron and hole transport processes in conductivity and light emission of silicon nanocrystals field-effect transistors

    Cattoni, Laura; Tengattini, Andrea; Anopchenko, Aleksei; Ramırez, Joan Manel; Ferrarese Lupi, Federico; Berencen, Yonder; Garrido, Blas; Fedeli, Jean-Marc; Pavesi, Lorenzo

    2013-02-01

    In this work, the optoelectronic properties of silicon light emitting field-effect transistors (LEFETs) have been investigated. The devices have been fabricated with silicon nanocrystals in the gate oxide and a semitransparent polycrystalline silicon gate. We compare the properties of LEFET with a more conventional MOS-LED (two-terminal light-emitting capacitor) with the same active material. The ~45 nm thick gate siliconrich oxide is deposited in a size-controlled multilayer geometry by low pressure chemical vapor deposition using standard microelectronic processes in a CMOS line. The multilayer stack is formed by layers of silicon oxide and silicon rich silicon oxide. The nanocrystal size and the tunneling barrier width are controlled by the thickness of silicon-rich silicon oxide and stochiometric silicon oxide layers, respectively. The silicon nanocrystals have been characterized by means of spectrally and time resolved photoluminescence, high resolution TEM, and x-ray photoelectron spectroscopy. Resistivity of the devices, capacitance, and electroluminescence under direct and pulsed injection current scheme have been studied and here reported. The optical power density and the external quantum efficiency of the LEFETs will be compared with the MOSLED results. This study will help to develop practical optoelectronic and photonic devices via accurate modeling and engineering of charge transport and exciton recombination in silicon nanocrystal arrays.

  11. 120 MeV Si9+ ion irradiation effects on poly(3-methylthiophene) conducting polymer

    Conducting polymers are suitable electrode materials for high performance supercapacitors, for their high specific capacitance and high dc conductivity in the charged state. Swift heavy ion (SHI) {energy > 1 MeV} irradiation of the polymers is a novel technique to enhance/alter their properties like conductivity, density, chain length and solubility. Poly(3-methylthiophene) conducting polymer thin films doped with LiClO4 and LiCF3SO3 are synthesized electrochemically on ITO coated glass substrates and irradiated with 120 MeV Si9+ ions at different fluences of 5 x 1010, 5 x 1011 and 3 x 1012 ions/cm2. The dc conductivity measurements of irradiated films show ∼60% increase in conductivity, which could be attributed to increase of carrier concentration in the polymer film and cross-linking of polymer chains. X-ray diffractogram study shows that the degree of crystallinity of poly(3-methylthiophene) is increased and shows an increasing trend with the increase in fluence of SHI irradiation. SEM micrographs show grain growth and densification of the polymer films upon SHI irradiation

  12. Highly electrically conductive nanocomposites based on polymer-infused graphene sponges.

    Li, Yuanqing; Samad, Yarjan Abdul; Polychronopoulou, Kyriaki; Alhassan, Saeed M; Liao, Kin

    2014-01-01

    Conductive polymer composites require a three-dimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuum-assisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GS/epoxy composites prepared display consistent isotropic electrical conductivity around 1 S/m, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GS/epoxy has a 12-orders-of-magnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding. PMID:24722145

  13. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Somashekar, R.; Manjunath, A.; Nanda Prakash, M. B.

    2013-01-01

    PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD) data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 ...

  14. Study of charge transport in highly conducting polymers based on a random resistor network

    Based on a random resistor network (RRN), we study the unusual ac conductivity ?(?) of highly conducting polymer such as PF6 doped polypyrrole. The system is modeled as a composite medium consisting of metallic regions randomly distributed in the amorphous parts. Within the metallic regions, the polymer chains are regularly and densely packed, outside which the poorly arranged chains form amorphous host. The metallic grains are connected by resonance quantum tunneling, which occurs through the strongly localized states in the amorphous media. ?(?), calculated from this model, reproduces the main experimental features associated with the metal-insulator transition in these polymers

  15. Conducting Ni nanoparticles in an ion-modified polymer

    Conductive-atomic force microscopy has been used to perform nanoscale current imaging of Ni-ion-implanted polythylene terephthlate films. A reduction in bulk sheet resistivity, as the Ni dose is increased, is found to be accompanied by an evolution in local conductivity from a spatially homogeneous insulator to an interconnected network of conducting Ni crystallites. The crystallites have a mean dimension of 12.3 nm, confirmed by x-ray-diffraction analysis

  16. Intrinsically conducting polymers and copolymers containing triazole moieties

    Martwiset, Surangkhana; Woudenberg, Richard C.; Granados-Focil, Sergio; Coughlin, E. Bryan [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003 (United States); Yavuzcetin, Ozgur; Tuominen, Mark T. [Department of Physics, University of Massachusetts Amherst, 411 Hasbrouck Laboratory, Amherst, MA 01003 (United States)

    2007-08-15

    Random copolymer and terpolymers of 1,2,3-triazole-containing acrylates and poly(ethylene glycol)methyl ether acrylate (PEGMEA) have been synthesized and characterized. Proton conductivity measurements were made using impedance spectroscopy. The range of conductivity values from 80 C to 200 C spans only 1.5 orders of magnitude, demonstrating reduced temperature dependence over previously reported heterocycle based anhydrous proton conducting membranes. Introduction of PEG graft chains increased conductivity on both an absolute and T-T{sub g} normalized scale up to 30 mol% PEGMEA. Further increases in conductivity were achieved through addition of trifluoroacetic acid where increases of 0.5 to 1.5 orders of magnitude were observed depending on doping level. (author)

  17. Effect of electron beam irradiation on the conductivity of PEG based solid polymer electrolytes

    Conductivity in polymer-salt complexes is known to be influenced by the concentration of the defects and their mobility. The defect concentration can be increased by exposing them to high energy ionizing radiations. We report here the results of the effect of electron beam irradiation on the conductivity of two polymer-salt complexes viz., PEG-2000:NH4I and PEG-2000:NH4NO3. The irradiation results in the increase of ionic conductivity. The conductivity variation as a function of salt concentration shows a characteristic double peak as expected. (author)

  18. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    Lawrence T. Drzal

    2010-02-01

    Full Text Available Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape, intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforcements used are exfoliated graphite nanoplatelets, carbon black, vapor grown carbon fibers and polyacrylonitrile carbon fibers. The composites are made using melt mixing followed by injection molding. A coating method is also employed to improve the nanofiller’s dispersion within the polymer and compression molding is used to alter the nanofiller’s alignment.

  19. Synthesis and conductivity of PEGME branched poly(ethylene-alt-maleimide) based solid polymer electrolyte

    A thermally stable comb-like polymer electrolyte, poly(ethylene glycol) monomethyl ether (PEGME) grafted poly(ethylene-alt-maleimide), has been synthesized and characterized. The copolymer was thermally stable up to 250.deg.C and had good film forming property. The copolymer was well mixed with poly(ethylene glycol) dimethyl ether(PEGDME, Mw = 400). The activation energy of ionic conduction decreased and conductivity increased with the increase of PEGDME content in the polymer electrolyte. The maximum conductivity of the resulting polymer electrolyte containing 66 wt% of PEGDME was found to be 3 x 10-4 S/cm at 30.deg.C. The polymer electrolyte showed electrochemical stability window of greater than 4.7 V

  20. Hybrid nanostructures based on the conducting polymers incorporated to porous silicon matrix

    An influence of conducting polymer on the structure, morphology and luminescent characteristics of porous silicon - conducting polymer hybrid nanostructures has been studied. The incorporation of conducting polymers such as polyphenylacetylene (PPA), polyepoxypropyle carbazole, polyparaphenylene (PPP), polyaniline to porous silicon matrix was provided by magnetron deposition, electropolymerization and dip coating. The hybrid layers were studied by FT-IR spectroscopy, scanning electron and atom force microscopy and examined on the ability to photo- and cathode luminescence (CL). For the hybrid nanostructured layers based on PPA and PPP a significant increasing in the luminescence intensity has been found. According to FT-IR spectroscopy the interaction between polymer functional groups and porous silicon surface takes a place. Probably it leads to decreasing a rate of non-radiation surface recombination and to increasing a radiation component of recombination as well as increasing in the CL total intensity.

  1. Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors

    HUGHES,ROBERT C.; YELTON,WILLIAM G.; PFEIFER,KENT B.; PATEL,SANJAY V.

    2000-07-12

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little published work on SPE films used as chemical sensors. The authors have found that thin films of polymers like polyethylene oxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCs) such as common solvents. Evidence of a new sensing mechanism involving the percolation of ions through narrow channels of amorphous polymer is presented. They present impedance spectroscopy of PEO films in the frequency range 0.0001 Hz to 1 MHz for different concentrations of VOCs and relative humidity. They find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and the parasitic capacitance.

  2. Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications

    Highlights: → PVAc/PVdF-co-HFP based polymer blend electrolyte for various concentration of LiClO4 were prepared and characterized. → It is found that all the prepared electrolyte systems exhibited a maximum ionic conductivity of the order of x10-4 Scm-1. → Surface morphology of the polymer electrolyte membrane sample having maximum ionic conductivity is studied by atomic force microscopy. → SEM and DSC studies were also carried in the present study. - Abstract: The present work describes the Li-ion conduction in Poly(vinyl acetate) (PVAc) based polymer blend electrolytes have been synthesized by solvent casting technique for lithium battery applications. Characterization by XRD, SEM, AFM, FTIR, TG/DTA and photoluminescence was performed for synthesized polymer electrolytes. The thermal behaviour of the samples was ascertained from differential scanning calorimeter (DSC) and TG/DTA. The temperature dependence of conductivity of the polymer electrolytes was measured and the maximum ionic conductivity of 0.5269 x 10-4 Scm-1 at 303 K for PVAc:PVdF-co-HFP ((25/75) wt%):LiClO4 (8 wt%) complex. Surface morphology was examined from various surface scanning techniques such as scanning electron microscope (SEM) and atomic force microscope (AFM). Photoluminescence measurements demonstrated that the PVAc based polymer blend electrolyte shows minimum intensity and the results are detailed in this paper.

  3. Study of AC electrical conduction mechanisms in an epoxy polymer

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  4. Conductive polymers for controlled release and treatment of central nervous system injury

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly[(D,L-lactide-co-glycolide)-co-polyethylene glycol] (PLGA-PEG) nanoparticles and then demonstrated scalable incorporation and controlled release. In a functional application, electronically-controlled release of minocycline nanoparticles was used to rescue primary spinal cord neurons from an excitotoxic environment in vitro. This approach offers a wide range of therapeutic possibilities, especially for treating traumatic lesions of the central nervous system. Finally, we explored use of conductive polymers for directed differentiation of progenitor cells. Retinal progenitors were seeded on custom polypyrrole cell culture devices and subjected to a biomimetic pattern of electrical stimulation. Stimulated cells showed phenotypic changes, increased neurite outgrowth, increased immunocytochemical expression of cone rod homeobox (CRX) and protein kinase C (PK-C), and decreased expression of glial fibrillary acidic protein (GFAP). Biomimetic stimulation thus led cells towards early photoreceptor and bipolar cell fates, and away from an astrocytic cell fate. Electrical stimulation via a conductive polymer offers a novel approach for directing differentiation of progenitor cells.

  5. Transdutores potenciomtricos a base de polmeros condutores: aplicaes analticas Potentiometric transducers based in conducting polymers: analytical applications

    Larcio Rover Jnior; Graciliano de Oliveira Neto; Lauro Tatsuo Kubota

    1997-01-01

    A review is given about the most relevant advances on the analytical applications of conducting polymers in potentiometric sensors. These organic polymers represent a new class of materials with conducting properties due to its doping by ions. Several polymers already were synthesized such as polypyrrole, polyaniline, polythiophene, among others. Particular attention is devoted to the main advantages supplied by ion selective electrodes and gas sensors using conducting polymers, as well as th...

  6. Luminescence quenching of conductive Si nanocrystals via “Linkage emission”: Hopping-like propagation of infrared-excited Auger electrons

    Phosphorus (P) is an n-type dopant for conductive silicon nanocrystals (Si-nc's), the electrical activation of which may be monitored through a non-radiative Auger recombination process that quenches the Si-nc luminescence. We investigated this quenching mechanism through electrical measurements of Si-nc's. Infrared-excited Auger electron emission as the non-radiative process was directly probed and the dynamics of the process are determined from a frequency response analysis. To explain the dynamics, we propose a model in which Auger electrons with a low kinetic energy establish a local inter-nanocrystal conductance and the repetition of this local conductance results in a constant photocurrent (“linkage emission”). This emission becomes significant by electron filling in the Si-nc's owing to the electrical activation of P, which is consistent with observed luminescence quenching behavior. We found that the IR photo-excited emission is distinct from the thermally induced hopping conduction and show that confined, rather than trapped, charges are the source of the Auger electrons. Thus, the process consumes both confined charges and the recombination energy for Auger emission, which explains the luminescence quenching mechanism of Si-nc:P

  7. A study on nanocomposites made of a conducting polymer and metallic nanoparticles

    Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.

  8. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties

    Pang, Yi.

    1991-10-07

    Several new types of silicon-containing preceramic polymers, i.e., poly(diorganosilacetylene) and poly(diorganosilvinylene) have been synthesized with molecular weights from 10,000 to 120,000. These polymers could be thermally converted to SiC with a moderate to high char yields. Ready solubility and good processability made these types of polymers attractive in their applications to ceramics. The thermal polymerization of diethynyldiphenyl-silane, which was reported in 1968 to afford poly(diphenylsilyldiacetylene) via dehydrogenation, was reinvestigated. Spectroscopic studies showed that the polymer had a structure of polyacetylene type not diacetylene. Diphenyldiethynylgermane and a series of diorganodiethynylsilances were synthesized. These could be polymerized in the presence of MoCl{sub 5} or WCl{sub 6} to afford a soluble, violet material with Mw as high as 108,000. 100 refs., 56 figs., 16 tabs.

  9. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites. PMID:22900673

  10. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  11. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    Ventura, Isaac Aguilar

    2015-12-16

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  12. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes.

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations. PMID:26676996

  13. Electrical Characterization and Morphological Studies of Conducting Polymer Nanofibers

    Pinto, N. J.; Zhou, Y. X.; Freitag, M.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    Doped polyaniline blended with poly(ethylene oxide) has been electrospun in air to give fibers with diameters in the range 3 nm 200 nm. These fibers were captured on wafers of degenerately doped Si/SiO2 by placing the wafer in the path of the fiber jet formed during the electrospinning process. Individual fibers were contacted using shadow mask evaporation and were also captured on prepatterned wafers. Fibers having diameters greater than 100 nm show a slight increase in the conductivity as compared to the bulk film, while fibers with diameters less than 30 nm had lower conductivity than the bulk. Data on Scanning Conductance Microscopy along the length of individual fibers will be presented. For fibers where the diameter was not uniform, we found that below a certain diameter ( approx.15 nm) the fiber was less conducting as compared to thicker diameter fibers. Dependence of the fiber conductivity on a gate bias is underway and these results will also be presented.

  14. Effective Thermal Conductivity of Polymer Composites Using Local Fractal Techniques

    Rajpal Singh Bhoopal,

    2013-02-01

    Full Text Available The model developed by Springer and Tsai is extended using non-linear volume fraction in place of physical porosity for the effective thermal conductivity of composite materials with the help of local fractal techniques. The expression for non-linear volume fraction is obtained using data available in the literature. Present model is constructed in terms of fiber volume fraction, the fiber-matrix thermal conductivity ratio and the local fractal dimensions. The effective thermal conductivity ratio is evaluated using the model with the approximation of the fractal dimensions. These fractal dimensions [PdandTd] are considered to be equal in the absence of information about the arrangement of fibers in the composites. The technique of local fractal dimensions is used to reduce the geometric complexity of the fiber arrangements. Better agreement of predicted effective thermal conductivity values with experimental results is obtained. A comparison with other models is also done and found that our model predict the values of effective thermal conductivity quite well.

  15. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers.

    Zhang, Teng; Luo, Tengfei

    2016-02-01

    Designing thermally conductive polymer is of scientific interest and practical importance for applications like thermal interface materials, electronics packing, and plastic heat exchangers. In this work, we study the fundamental relationship between the molecular morphology and thermal conductivity in bulk amorphous polymers. We use polyethylene as a model system and performed systematic parametric study in molecular dynamics simulations. We find that the thermal conductivity is a strong function of the radius of gyration of the molecular chains, which is further correlated to persistence length, an intrinsic property of the molecule that characterizes molecular stiffness. Larger persistence length can lead to more extended chain morphology and thus higher thermal conductivity. Further thermal conductivity decomposition analysis shows that thermal transport through covalent bonds dominates the effective thermal conductivity over other contributions from nonbonded interactions (van der Waals) and translation of molecules disregarding the morphology. As a result, the more extended chains due to larger persistence length provide longer spatial paths for heat to transfer efficiently and thus lead to higher thermal conductivity. In addition, rigid rod-like polymers with very large persistence length tend to spontaneously crystallize and form orientated chains, leading to a thermal conductivity increase by more than 1 order of magnitude. Our results will provide important insights into the design of thermally conductive amorphous polymers. PMID:26751002

  16. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  17. Printed organic conductive polymers thermocouples in textile and smart clothing applications.

    Seeberg, Trine M; Ryset, Arne; Jahren, Susannah; Strisland, Frode

    2011-01-01

    This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4 styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38 C) and 350 K (+77 C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 ?V/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 ?V/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations. PMID:22255039

  18. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics

  19. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer

    Akai-Kasaya, M.; Okuaki, Y.; Nagano, S.; Mitani, T.; Kuwahara, Y.

    2015-11-01

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  20. Charge dissipation in e-beam lithography with Novolak-based conducting polymer films

    Charging of common resist materials during electron beam (e-beam) writing leads to deflection of the electron beam path, which can result in significant pattern displacement. Here we report a new conducting polymer to eliminate charging. A common approach is to place the conducting layer underneath the e-beam resist layer. Conductivity equal or greater than 10-4 S cm-1 has been reported to prevent pattern displacement. Some other properties such as a flat surface layer, chemical inertness and insolubility in both the top resist solvent and the developer are also necessary. The way to achieve all these properties consisted in synthesizing a conducting polymer inside an insulating polymer to form an interpenetrating polymer network (IPN) which could combine their properties. Novolak was used as the host polymer and terthiophene (3T) as the monomer to polymerize. Cu(ClO4)2 initiates simultaneously the oxidative polymerization of the 3T and its subsequent doping inside Novolak during the bake step in a one-step reaction. Solvent-resistant and homogeneous conducting films with smooth surfaces were achieved. The conductivity was of the order of 10-2 S cm-1. Patterning of the top resist was carried out without disturbing its lithographic performance

  1. Oxireductases in the Enzymatic Synthesis of Water-Soluble Conducting Polymers

    Ochoteco, Estibalitz; Mecerreyes, David

    This chapter reviews recent advances in the field of biocatalytic synthesis of water-soluble conducting polymers. Biocatalysis is proposed as a versatile tool for synthesis of conducting polymers. First, the enzymatic synthesis of conducting polymers and its mechanism is discussed as well as the use of different type of enzymes. Next, we describe the use of a new bifunctional template (sodium dodecyl diphenyloxide disulfonate) in the synthesis of polyaniline as a strategy to improve the water solubility and electrical conductivity in the obtained polymer. The recent development of enzyme-catalyzed polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of polystyrenesulfonate is discussed. This method results in PEDOT materials that show an electrical conductivity of 2 1{0}^{-3} {S cm}^{-1} and posses excellent film formation ability, as confirmed by atomic force microscopy images. Finally, a simple method for immobilizing horseradish peroxidases in the biocatalytic synthesis of water-soluble conducting polymers is presented. This method is based on a biphasic catalytic system in which the enzyme is encapsulated inside the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, while other components remain in the aqueous phase. The enzyme is easily recovered after reaction and can be reused several times.

  2. Simulation of ultraviolet- and soft X-ray-pulse generation as a result of cooperative recombination of excitons in diamond nanocrystals embedded in a polymer film

    Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru [Russian Academy of Sciences, Institute for Applied Physics (Russian Federation)

    2013-11-15

    Using numerical simulation, it is shown that the recombination of free excitons photoexcited in diamond nanocrystals embedded in a polymer film can occur in the cooperative mode. It is found that this mode can be implemented despite the fact that diamond is an 'indirect' semiconductor. It is shown that the power of the generated radiation at the pulse peak during the cooperative recombination of free excitons can exceed that of the incoherent spontaneous emission of the same initial number of free excitons by more than an order of magnitude. Finally, it is shown that the process under consideration can be used to generate picosecond pulses of ultraviolet and soft X-ray electromagnetic field at a wavelength of 235 nm.

  3. Interface-driven conductance transition in nanostructured polymer networks

    Adetunji, O. O.; Chiou, N.-R.; Epstein, A. J.

    2009-07-01

    We report an anomalous electronic transport signature in polyaniline nanofiber networks probed via the temperature-dependent dc conductivity [σdc(T)] , reflectance [R(ω,T)] over a broad frequency range (300-50000cm-1) , and x-ray diffraction. We determined that disorder and localization dominate the bulk charge dynamics and propose that the origin of the atypical electronic transport signature in the nanofibers networks is the “fragile” nature of the conductance at the nanofiber interfaces resulting from the strong T -dependent localization of electronic states in the nanostructure interface regions.

  4. Electrical conductivity of polyaniline doped PVC–PMMA polymer blends

    S H Deshmukh; D K Burghate; V P Akhare; V S Deogaonkar; P T Deshmukh; M S Deshmukh

    2007-02-01

    The electrical conductivity of polyaniline doped polyvinylchloride (PVC) and poly(methyl methacrylate) (PMMA) thin films has been measured by studying the – characteristics at various temperatures in the range 323–363 K. The results are presented in the form of – characteristics and analysis has been made by interpretation of Poole–Frenkel, Fowler–Nordheim, Schottky ln() vs plots, Richardson and Arrhenius plots. The analysis of these results suggests that Schottky and Richardson mechanisms are primarily responsible for the observed conduction.

  5. Development, characterization and applications of electrodes modified with conductive polymers, ionic liquids and proteins

    Tang, Yijun

    My research involves both fundamental studies and applications of the electrodes whose surfaces are chemically modified. Conductive polymers are one of the major materials that are used to modify electrode surfaces. The thorough understanding of the behavior of conductive polymers in ionic liquids is interesting and important as the ionic liquids are becoming promising solvents. With poly(vinyl ferrocene) as the model conductive polymer, electrochemical studies were performed in various ionic liquid electrolytes. A theoretical square model and dynamic equilibrium were proposed to describe the interaction between conductive polymers and ionic liquids when the electrons transferred between the electrode and electrolyte. These findings were applied to enable and accelerate the structure relaxation of conductive polymers so that the conductive polymers were capable of delivering peptides efficiently. Incorporation of metallic nanoparticles to the conductive polymer matrix entitled new properties to the conductive polymer, increasing conductivity and providing catalytic abilities. This modification on electrode surface might bring potential uses in gas sensing, energy storage, energy conversion, etc. Conductive polymer coated electrodes produced unique double layer in ionic liquids and a fundamental study of quantum charging help to understand the double layer properties. I also studied the application of surface modified electrodes in chemo- and biosensing. A nonregeneration protocol was created to save the cost and the time in analyzing interfacial binding activities and to prevent the potential of deterioration caused to biological ligands by the conventional regeneration. In the study of carbohydrate/protein interactions, a "click" chemical reaction was first used in constructing a carbohydrate-based biosensor, which was capable of detecting and analyzing proteins specifically and accurately. In another biosensor design, the hydrogen bonding between the template and the ligand was used and enhanced the ability, sensitivity and accuracy of the studies of antibody-antigen binding. We successfully developed a lab course with a homemade SPR device at a very affordable price. The characterization showed the homemade SPR device is accurate and it is a good tool for preliminary studies and for the college education.

  6. Sensing of environmental pollutant by conductive composite from prepared from hyperbranched polymer-grafted carbon black and crystalline polymer

    Complete text of publication follows. The hyperbranched (HB) polymer-grafted (PG) carbon blacks (CB) have the possibility of utilizing as a support of catalyst and enzyme, and a curing agent of epoxy resin, because they have much terminal amino or hydroxyl groups. The postgrafting of crystalline polymer onto HB PG CB and the sensing of environmental pollutant by the conductive composite prepared from the polymer-postgrafted CB was discussed. The grafting of poly(amidoamide) onto CB surface was achieved by repeating either Michael addition of methyl acrylate to amino group on the surface or the amidation of the resulting terminal methyl ester group with ethylene diamine. HB polyester onto CB surface was grafted by stepwise growth of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) from surface carboxyl and hydroxyl groups on CB as a core in the presence of p-toluenesulfonic acid (p-TSA). The one-pot grafting of HB polyester onto CB as core was also achieved by the polycondensation of bis-MPA in the presence of p-TSA. Postgrafting of crystalline polymer onto HB polymer-grafted CB was achieved by the reaction of terminal amino or hydroxyl groups of grafted chain with COCl-terminated crystalline polymer. The electric resistance of the composite prepared from crystalline polymer-postgrafted CB was found to increase drastically in hexane, containing environmental pollutant, such as chloroform and trichloroethane, and returned immediately to the initial resistance when it was transferred into pure hexane. Based on the above results, it is concluded that the composite can be used as a novel sensor for environmental pollutant in solution

  7. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    Aziz, M

    1996-01-01

    force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO sub 8 :FeBr sub 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle-spike plot but the Fe(lll) samples displayed an extra semicircle before the spike reflecting a surface effect. This is also manifested in the Arrhenius plots of the same samples where a dip was shown at 100 deg C. From the conductivity studies on the iron systems it was found that for the dry samples the optimum conductivity was observed in PEO sub 8 :FeBr sub x irrespective of the valence state of the cation. For the air-cast samples the optimum conductivity composition depends on the...

  8. Thermally stimulated discharge conductivity in polymer composite thin films

    V S Sangawar; P S Chikhalikar; R J Dhokne; A U Ubale; S D Meshram

    2006-08-01

    This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of activated charcoal and polyvinyl chloride chains.

  9. DSC characterization of ion beam modifications in ion conducting PEO-salt polymers

    Ion conducting polymer films have been prepared by complexing non-conducting poly-(ethylene-oxide), PEO, with x fraction of NH4ClO4 salt. Since its electrical conductivity showed a maximum at x somewhere between 0.18 and 0.19, such polymer films having 17 and 19 wt% salt, have been chosen and irradiated by 160 MeV Ne6+ beam. The films have been investigated by differential scanning calorimetry (DSC) and ac impedance spectroscopy before and after the irradiations. Irradiation-induced shift of an endotherm in our DSC indicates a rise in the melting temperature from 54.6 oC to 57.9 oC for the 19% film. Cross-linking by the Ne-irradiation making the polymer structure more rigid can explain this as well as our other observation of a decrease in electrical conductivity

  10. Ion Conductive Polymer Electrolyte Membranes and Simulation of Their Fractal Growth Patterns

    Due to their high ionic conductivity, solid polymer electrolyte (SPE) systems have attracted wide spread attention as the most appropriate choice to fabricate all-solid-state electrochemical devices, namely batteries, sensors and fuel cells. In this work, ion conductive polymer electrolyte membranes have been prepared for battery fabrication. However, fractals were found to grow in these polymer electrolyte membranes weeks after they were prepared. It was believed that the formation of fractal aggregates in these membranes were due to ionic movement. The discovery of fractal growth pattern can be used to understand the effects of such phenomenon in the polymer electrolyte membranes. Digital images of the fractal growth patterns were taken and a simulation model was developed based on the Brownian motion theory and a fractal dialect known as L-system. A computer coding has been designed to simulate and visualize the fractal growth. (author)

  11. D. c. electrical transport in a new conducting polymer: oxidized poly(N-vinylpyrrole)

    Cagnolati, R.; Lucchesi, M.; Rolla, P.A. (Dipt. di Fisica, Consorzio Interuniversitario di Fisica della Materia, Pisa (Italy)); Castelvetro, V. (Dipt. di Chimica e Chimica Industriale, Univ. di Pisa (Italy) ENI/Scuola Normale Superiore, Pisa (Italy)); Ciardelli, F. (Dipt. di Chimica e Chimica Industriale, Univ. di Pisa (Italy)); Colligiani, A. (Dipt. di Chimica e Chimica Industriale, Univ. di Pisa (Italy) Dipt. di Chimica Industriale, Univ. di Messina (Italy))

    1992-01-01

    D.c. electrical transport properties of pellets of oxidized poly(N-vinylpyrrole), a new conducting ladder polymer, are studied. D.c. conductivity data are coherent with a three-dimensional variable range hopping transport model. Relevant microscopic parameters of the model are inferred from data and are briefly discussed. (orig.).

  12. Process for depositing strong adherend polymer coating onto an electrically conductive surface

    Bertrand, Olivier; Jérôme, Robert; Gautier, Sandrine; Maquet, Véronique; Detrembleur, Christophe; Jérôme, Christine; Voccia, Samuel; Claes, Michaël; Lou, Xudong; Labaye, David-Emmanuel

    2002-01-01

    Process for depositing by electrografting a strong adherent polymer coating onto an electrically conductive surface comprising an electrochemical grafting at the surface of an active monomer for forming a primer coating P onto said surface and having as general formula: X0 (meth)acrylate wherein X is either part of a preformed polymer or is an intermediate agent for polyaddition reaction or is an anchoring group for attachment of a molecule having at least one complementary reactive group. Su...

  13. Conducting Ni nanoparticles in an ion-modified polymer

    Full text: Conductive atomic force microscopy has been used to perform nanoscale current mapping of Ni-implanted polythylene terephthlate films at low temperature. The films were implanted using a filtered cathodic arc with pulse substrate biasing. Our interest is in the study of electrical transport in the implanted surface layer, which demonstrates a reduction in bulk sheet resistance for Ni surface concentration of 14-18%. The local transport properties are found to evolve with increasing Ni content from a near continuous conducting surface to the formation of a quasi-regular array of conducing Ni clusters, about 30 nm in size, consistent with X-ray analysis. We shall discuss temperature dependent electrical measurements, that are indicative of an insulator-metal transition accompanying the formation of Ni crystallites, and the magnetic properties of the films. Copyright (2005) Australian Institute of Physics

  14. Mechanical Properties of Nanocrystal Supercrystals

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  15. Tattoo conductive polymer nanosheets for skin-contact applications.

    Zucca, Alessandra; Cipriani, Christian; Sudha; Tarantino, Sergio; Ricci, Davide; Mattoli, Virgilio; Greco, Francesco

    2015-05-01

    Conductive tattoo nanosheets are fabricated on top of decal transfer paper and transferred on target surfaces as temporary transfer tattoos. Circuits are patterned with ink-jet printing. Tattoo nanosheets are envisioned as unperceivable human-device interfaces because of conformal adhesion to complex surfaces including skin. They are tested as dry electrodes for surface electromyography (sEMG), which permits the control of a robotic hand. PMID:25702914

  16. Functional Conducting Polymers via Thiol-ene Chemistry

    Martin, David C.; Kathleen E. Feldman

    2012-01-01

    We demonstrate here that thiol-ene chemistry can be used to provide side-chain functionalized monomers based on 3,4-propylenedioxythiophene (ProDOT) containing ionic, neutral, hydrophobic, and hydrophilic side chains. All reactions gave high yields and purification could generally be accomplished through precipitation. These monomers were polymerized either chemically or electro-chemically to give soluble materials or conductive films, respectively. This strategy provides for facile tuning of...

  17. Composites based on graphene materials and conducting polymers and their application in solid-state ion-selective electrodes

    Lindfors, T.; Österholm, A.; Boeva, Z.; Kauppila, J.; Bober, Patrycja; Gyurcsányi, R. E.

    Auckland : University of Auckland, 2013. NANO-I-21. [International Conference on Frontiers of Polymers and Advanced Materials /12./ - ICFPAM. 8.-13.12.2013, Auckland] Institutional support: RVO:61389013 Keywords : conducting polymers * graphene materials Subject RIV: CD - Macromolecular Chemistry

  18. Current state and future directions of research and development in conducting polymers

    Polymers that inherently conduct electricity have been researched intensively for a little over 20 years. An enormous research effort in academic and industrial institutions has resulted in over 17,000 publications published in the last 10 years alone. Significant advances in the synthesis of new polymers and the methods for processing these polymers into products have resulted from this research activity. A number of commercial developments have emerged, some of which have reached maturity as marketed products. Some others have failed in the marketplace. The diversity of applications for conducting polymers continues to fuel research and development and ensures that new products will emerge over the foreseeable future. In the more distant future, truly intelligent polymer systems remain as an achievable objective. By developing appropriate processing and fabrication technologies, it should be possible to integrate sensing, actuating and energy storage functions into a single system. Further developments in self-assembly of conducting polymers from the nano- to the meso-scale will open up applications in MEMS and nanotechnology

  19. Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

    Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10−2 – 10−4 S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O+1 with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs

  20. Mechanisms of proton conductance in polymer electrolyte membranes

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.; Ulstrup, Jens; Walbrand, S.

    2001-01-01

    a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...... and the water content of the pores. The effect of the average distance between the sulfonate groups, which changes during membrane swelling, is analyzed in particular, and the factors which determine the temperature dependence of the macroscopic membrane conductance are disclosed. Numerical estimates...... experimental data and the results of molecular dynamics simulations....

  1. Effect of electrodes in the radiation induced conductivity for polymers

    Samples of PET with 23 ?m thickness were exposed to continuous X-rays and the radiation-induced conductivity (RIC) as a function of time were measured, using electrodes of evaporated aluminum and gold. The results showed that the use of higher atomic number metal electrodes increase the received dose rate by sample, without almost modifying the time evolution of the RIC or its dependence with the applied electric field intensity. It is also showed that this increase is caused by the electrode placed in the face of the sample where the radiation strikes, as well as by the one placed in the oposite face. (author)

  2. Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor

    Graphical abstract: Schematic diagrams of an electrochemical double layer type capacitor showing the charged (left) and discharged (right) states. Highlights: ? The Graphene-PEDOT nanocomposite based smart coating has shown the excellent redox properties in acidic, organic electrolytes, which is promising for suprecapcitor application. ? The electrochemical impedance studies have also been estimated which clearly indicates the high conductivity and less charge transfer resistance in the synthesized material. ? The specific capacitance of 380F/g have been calculated for G-Pedot material, also it shows the columbic efficiency of 95% for 800 cycles, which tells the remarkable stability of synthesized material. - Abstract: We present here the synthesis, characterization and application of graphene (G)-polyethylenedioxythiophene (PEDOT) nanocomposites as electrode material for supercapacitor applications. The G-PEDOT nanocomposite was synthesized using a chemical oxidative polymerization technique, and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, FTIR spectroscopy, X-ray-diffraction, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) techniques. The electrochemical charge/discharge characteristics of G-PEDOT nanocomposites were investigated in different electrolytic media, and the specific discharge capacitance was estimated to be 374 Farad/gram (F/gm). This manuscript presents the capacitance studies on supercapacitor G-PEDOT electrode with respect to stability of material, specific capacitance, electrical conductivity and specific charge/discharge properties of the supercapacitor electrodes. Our study has revealed that the G-PEDOT nanocomposite could be a transformable and viable electrode material for supercapacitor applications.

  3. Polymer Nanowires: Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles (Adv. Mater. 15/2016).

    Zhang, Junchang; Zhong, Liubiao; Sun, Yinghui; Li, Anran; Huang, Jing; Meng, Fanben; Chandran, Bevita K; Li, Shuzhou; Jiang, Lin; Chen, Xiaodong

    2016-04-01

    A photoconductor based on composite conductive polymer nanowires embedded with one-dimensional gold nanoparticle chains is developed by L. Jiang, X. Chen, and co-workers, as shown on page 2978. The precise and controllable positioning of the nanoparticle array in the composite photoconductor endues a distinct plasmon-resonance-coupling effect, which plays a critical role in promoting and modulating the photoresponse behavior by the excitation-light wavelength or the power. PMID:27075836

  4. Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array

    An efficient, site-specific and scalable approach has been developed to produce high-quality and individually addressable conducting polymer nanowire electrode junctions (CPNEJs) in a parallel-oriented array. Polypyrrole and PEDOT conducting polymer nanowires (CPNWs) with uniform diameters (ca. 60-150 nm) were introduced into the desired electrode junctions in a precise manner by performing a three-step constant-current electrochemical process at a low current density and a low concentration of monomers. A low scan rate, cyclic voltammetric method was also employed and gave similar results. These CPNEJ arrays function as a miniaturized sensor for the parallel and real-time detection of gas and organic vapour. The electrochemical approaches utilized allow the conducting polymer chains to self-organize in the CPNWs to form novel polycrystalline structures, observed by high resolution TEM. The weak diffraction rings at 4.88 A and 4.60 A were observed for PEDOT and polypyrrole CPNWs, respectively

  5. Phase stability of Li-ion conductive, ternary solid polymer electrolytes

    The chemical–physical properties of a ternary solid polymer electrolyte (SPE) system consisting of poly(ethylene oxide) and two salts, namely lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the ionic liquid N-methyl-N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), are reported in this work. The ternary phase diagram shows the composition limits of the thermodynamically stabilized amorphous phase where the polymer electrolyte achieved the maximum conductivity. The important conductivity threshold of 10−3 S cm−1 at 40 °C is exceeded for these compositions. Two reasons for the high conductivity are identified; the decreased overall coordination to the Li+-ion and a Tg as low as −67 °C. Also presented is the thermal stability characterization of such polymer electrolytes. The amorphous phase seems to be thermodynamically unfavored; however, the recrystallization process is slow

  6. Cellulose nanocrystals: synthesis, functional properties, and applications

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  7. Effects of γ-rays on electrical conductivity of polyvinyl alcohol-polypyrrole composite polymer films

    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of γ-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of choloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10-5 Scm-1 indicates that γ-ray is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 ≤ S ≤ 0.49 and obeyed simple power law dispersion ωS. The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased. (Author)

  8. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH6/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10-3 S cm-1 when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties

  9. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely

  10. Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density

    Marconnet, Amy M.; Yamamoto, Namiko; Panzer, Matthew A.; Brian L. Wardle; Goodson, Kenneth E.

    2011-01-01

    Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity of densified, aligned multiwall CNT nanocomposite films for a range of CNT volume fractions. A 1 vol % CNT composite more than doubles the thermal conductivity of the base polymer. Denser arrays (17 vol % CNTs) enhance the thermal conductivity by as much as a factor of 18...

  11. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    Marcin Molenda; Michał Świętosławski; Marek Drozdek; Barbara Dudek; Roman Dziembaj

    2014-01-01

    Conductive carbon nanocoatings (conductive carbon layers—CCL) were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA). We demonstrate that these properties orig...

  12. Novel conducting polymer based composite coatings for corrosion protection of zinc

    Highlights: • The introduction of carbon black has solved the problem of Fermi-level misalignment. • Carbon black supplies conductive pathways to activate more amount of PEDOT. • The active charge of PEDOT is investigated by Scanning Kelvin Probe. • Corrosion protection is achieved by the coating with the optimal concentration of carbon black. • The delamination inhibition is due to the active polarization of the interface. - Abstract: The application of conducting polymers on zinc tends to result in an electronically highly insulating interface leading even to Fermi-level misalignment at the polymer/metal interface. This makes the conducting polymers electrochemically inactive. To prevent this Fermi-level misalignment, carbon black was introduced as conductive spacer between the conducting polymer and the zinc into composite coatings of poly (3,4-ethylenedioxythiophene) (PEDOT) nanoparticles and a polyvinyl butyral (PVB) binder. It was found that the carbon black not only enabled electronic contact between zinc and the PEDOT, but also increased the amount of electrochemical available PEDOT in the coating, by supplying the necessary conductive pathways

  13. Injected nanocrystals for targeted drug delivery

    Yi Lu

    2016-03-01

    Full Text Available Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies.

  14. Injected nanocrystals for targeted drug delivery

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  15. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging

  16. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Nagaoka, Shoji, E-mail: nagaoka@kmt-iri.go.jp [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Ryu, Naoya [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Yamanouchi, Akio [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Shirosaki, Tomohiro [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Horikawa, Maki [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Sakurai, Hideo; Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan)

    2015-02-02

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging.

  17. Thermoelectric Behavior of Conducting Polymers Hybridized with Inorganic Nanoparticles

    Son, Woohyun; Lee, Seung Hwan; Park, Hongkwan; Choi, Hyang Hee; Kim, Jung Hyun

    2016-06-01

    We introduce a simple and facile method for fabrication of a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/germanium nanoparticle (Ge NP) composite film with enhanced thermoelectric conversion efficiency. The Ge NP were prepared by mechanical grinding and mixed with solution-phase PEDOT:PSS. The film processability of the composite was excellent and the overall process did not involve complicated synthetic procedures. The thermoelectric power factor of the composite film was optimized to 31.20 μW m-1 K-2 by controlling the composition. The composite film had an exceptionally low thermal conductivity of 0.417 W m-1 K-1 and the thermoelectric figure of merit ( ZT) was maximized at 0.0223 at room temperature. The mechanism for the improvement of the thermoelectric conversion efficiency was investigated by introducing energy models based on interfacial scattering of charge carriers and phonons. We expect that this robust method could lead to a facile route for design of organic-inorganic composite-based thermoelectric materials.

  18. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers

    Zhong, Zhenxin; Wingert, Matthew C.; Strzalka, Joseph; Wang, Hsien-Hau; Sun, Tao; Wang, Jin; Chen, Renkun; Jiang, Zhang

    2014-06-01

    Polymers that are thermally insulating in bulk forms have been found to exhibit higher thermal conductivities when stretched under tension. This enhanced heat transport performance is believed to arise from the orientational alignment of the polymer chains induced by tensile stretching. In this work, a novel high-sensitivity micro-device platform was employed to determine the axial thermal conductivity of individual Nylon-11 polymer nanofibers fabricated by electrospinning and post-stretching. Their thermal conductivity showed a correlation with the crystalline morphology measured by high-resolution wide-angle X-ray scattering. The relationship between the nanofiber internal structures and thermal conductivities could provide insights into the understanding of phonon transport mechanisms in polymeric systems and also guide future development of the fabrication and control of polymer nanofibers with extraordinary thermal performance and other desired properties.Polymers that are thermally insulating in bulk forms have been found to exhibit higher thermal conductivities when stretched under tension. This enhanced heat transport performance is believed to arise from the orientational alignment of the polymer chains induced by tensile stretching. In this work, a novel high-sensitivity micro-device platform was employed to determine the axial thermal conductivity of individual Nylon-11 polymer nanofibers fabricated by electrospinning and post-stretching. Their thermal conductivity showed a correlation with the crystalline morphology measured by high-resolution wide-angle X-ray scattering. The relationship between the nanofiber internal structures and thermal conductivities could provide insights into the understanding of phonon transport mechanisms in polymeric systems and also guide future development of the fabrication and control of polymer nanofibers with extraordinary thermal performance and other desired properties. Electronic supplementary information (ESI) available: E-beam platinum bonding induced damage, estimation of contact resistance between nanofibers and suspended pads, effects of heat loss from suspended devices, estimation of heat loss along nanofibers, diameter calculation for beaded fibers, schematics of the electrospinning and WAXS setup, orientation analysis of the inter-fiber alignment, WAXS patterns from bulk samples, the WAXS data analysis strategy, and estimation of the crystallinity. See DOI: 10.1039/c4nr00547c

  19. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  20. Water harvesting using a conducting polymer: A study by molecular dynamics simulation

    The results of extensive molecular simulations of adsorption and diffusion of water vapor in polyaniline, made conducting by doping it with HCl or HBr over a broad range of temperatures, are reported. The atomistic model of the polymers was generated using energy minimization, equilibrium molecular dynamics simulations, and two different force fields. The computed sorption isotherms are in excellent agreement with the experimental data. The computed activation energies for the diffusion of water molecules in the polymers also compare well with what has been reported in the literature. The results demonstrate the potential of conducting polyaniline for water harvesting from air.

  1. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent; Clark, N.B.

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3....... Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test...

  2. Nanofiber preparation by whisker method using solvent-soluble conducting polymers

    We prepared conducting polymer nanofibers by means of whisker formation in a solution by using solvent-soluble conducting polymers with alkyl or alkoxy side chains. A morphological characterization using an atomic force microscope indicated that they have one-dimensional nanofibrillar structures with typical heights of 3-10 nm. The conductivity of a single poly(3-hexylthiophene) (P3HT) nanofiber was measured using 300-nm-spacing Pt electrodes and the conductivity of 0.25 S/cm at 290 K was achieved by chemical doping using nitrosonium tetrafluoroborate. Considering the temperature dependence of the conductivity, the carrier transport in the single nanofiber was explained by a quasi-one-dimensional variable range-hopping model

  3. Electron Transfer Between Colloidal ZnO Nanocrystals

    Hayoun, Rebecca; Whitaker, Kelly M.; Gamelin, Daniel R.; Mayer, James M.

    2011-01-01

    Colloidal ZnO nanocrystals, capped with dodecylamine and dissolved in toluene, can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals with a solution of uncharged large nanocrystals, e-CB:ZnO–S + ZnO–L, causes changes in the EPR spectrum i...

  4. Selective sensing of volatile organic compounds using novel conducting polymer-metal nanoparticle hybrids

    Conducting polymer-metal nanoparticle hybrids, fabricated by assembling metal nanoparticles on top of functionalized conducting polymer film surfaces using conjugated linker molecules, enable the selective sensing of volatile organic compounds (VOCs). In these conducting polymer-metal nanoparticle hybrids, selectivity is achieved by assembling different metals on the same conducting polymer film. This eliminates the need to develop either different polymers chemistries or device configurations for each specific analyte. In the hybrids, chemisorption of the analyte vapor induces charge redistribution in the metal nanoparticles and changes their work function. The conjugated linker molecule causes this change in the work function of the tethered nanoparticles to affect the electronic states in the underlying conducting polymer film. The result is an easily measurable change in the resistance of the hybrid structure. The fabrication of these sensing elements involved the covalent assembly of nickel (Ni) and palladium (Pd) metal nanoparticles on top of poly(3,4-ethylenedioxythiophene-co-thiophene-3-acetic acid), poly(EDOT-co-TAA), films using 4-aminothiophenol linker molecules. The change in resistance of hybrid Pd/poly(EDOT-co-TAA) and Ni/poly(EDOT-co-TAA) hybrid films to acetone and toluene, respectively, is observed to be in proportion to their concentrations. The projected detection limits are 2 and 10 ppm for toluene and acetone, respectively. A negligible response (resistance change) of the Pd/poly(EDOT-co-TAA) films to toluene exposure confirmed its selectivity for detecting acetone. Similarly, lack of response to acetone confirmed the selectivity of the Ni/poly(EDOT-co-TAA) stacks for detecting toluene. It is anticipated that the assembly of other metals such as Ag, Au and Cu on top of poly(EDOT-co-TAA) would provide selectivity for detecting and discriminating other VOCs.

  5. Microfabrication of a Polymer Based Bi-Conductive Membrane for a Polymer Electrolyte Membrane Fuel Cell

    This paper reports a novel fabrication process of a high active area ratio bi-conductive membrane for PEMFCs. The fabricated device is a 50μm thick flexible polyimide based membrane that integrates for the first time lateral electrical conductive layers on both sides with a through ionic conductive path. With the use of thermo-conductive rubber as a bonding agent allowing a quick-flip process, five configurations of double-sided multilayer metal sputtering on polyimide were tested. An approach for filling through pores in the membrane with the ionic conductor (Nafion) with a temporary reservoir was also developed. The development of these new processes allowed to fabricate a membrane with 50μm wide holes filled with ionic conductor with double-sided electrical conductive layers

  6. Nanostructured conducting polymers as intelligent implant surface: fabricated on biomedical titanium with a potential-induced reversible switch in wettability.

    Liao, Jingwen; Ning, Chengyun; Yin, Zhaoyi; Tan, Guoxin; Huang, Shishu; Zhou, Zhengnan; Chen, Junqi; Pan, Haobo

    2013-12-01

    Conducting polypyrrole (PPy) nanotube arrays, nanotube networks and irregular films are deposited on biomedical titanium. By in situ application of weak periodic potentials, the nanostructured conducting polymers undergo a reversible switch in wettability, which is a redox process of dopant molecules (as hydrophilic groups) immobilized and de-immobilized on the surface of the conducting polymers. PMID:24151250

  7. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  8. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described. PMID:26774092

  9. Conducting polymer-doped polyprrrole as an effective cathode catalyst for Li-O2 batteries

    Graphical abstract: - Highlights: • Doped polypyrrole as cathode catalysts for Li-O2 batteries. • Polypyrrole has an excellent redox capability to activate oxygen reduction. • Chloride doped polypyrrole demonstrated an improved catalytic performance in Li-O2 batteries. - Abstract: Polypyrrole conducting polymers with different dopants have been synthesized and applied as the cathode catalyst in Li-O2 batteries. Polypyrrole polymers exhibited an effective catalytic activity towards oxygen reduction in lithium oxygen batteries. It was discovered that dopant significantly influenced the electrochemical performance of polypyrrole. The polypyrrole doped with Cl− demonstrated higher capacity and more stable cyclability than that doped with ClO4−. Polypyrrole conducting polymers also exhibited higher capacity and better cycling performance than that of carbon black catalysts

  10. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  11. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    Mohammad Reza Ganjali

    2008-04-01

    Full Text Available Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylenes, poly(pyrroles, poly(thiophenes, poly(terthiophenes, poly(anilines, poly(fluorines, poly(3-alkylthiophenes, polytetrathiafulvalenes, polynapthalenes, poly(p-phenylene sulfide, poly(p-phenylenevinylenes, poly(3,4-ethylenedioxythiophene, polyparaphenylene, polyazulene, polyparaphenylene sulfide, polycarbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs, i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE, Single-Piece ISE (SPISE, Conducting Polymer (CP-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed.

  12. Conductivity and Dielectric Properties of Proton Conducting Poly (Vinyl) Chloride (PVC) Based Gel Polymer Electrolytes

    Poly (vinyl) chloride (PVC)-NH4I-EC films have been prepared by the solution cast technique. The sample containing 30 wt. % NH4I exhibited the highest room temperature conductivity of 4.60 x 10-7 S cm-1. The conductivity increased to 1.08 x 10-6 S cm-1 when 15 wt. % of ethylene carbonate (EC) was added to 70 wt. % PVC - 30 wt. % NH4I. The effects of ethylene carbonate (EC) addition on the frequency dependent dielectric properties of PVC based electrolytes were investigated by electrochemical impedance spectroscopy (EIS), in the temperature range of 300 K to 373 K. The dielectric properties and ac conductivity of the samples prepared have been analyzed. The values of dielectric constant were found to increase with increasing conductivity of the samples. Analysis of the ac conductivity data revealed the electrolytes to be of the non-Debye type with conduction mechanism of the overlapping-large-polaron-tunneling (OLPT) model. (author)

  13. Cellulose nanocrystals: synthesis, functional properties, and applications

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  14. Alumina/polymer-coated nanocrystals with extremely high stability used as a color conversion material in LEDs

    The long-term stability of quantum dot (QD)-based devices under harsh environmental conditions has been a critical bottleneck to be resolved for commercial use. Here, we demonstrate an extremely stable QD/alumina/polymer hybrid structure by combining internal atomic layer deposition (ALD) infilling with polymer encapsulation. ALD infilling and polymer encapsulation of QDs synergistically prohibit the degradation of QDs in terms of optical, thermal and humid attacks. Our hybrid QD/alumina/polymer film structure showed no noticeable reduction in photoluminescence even in a commercial grade test (85% humidity at 85 ° C) over 28 days. In addition, we successfully fabricated a QD-based light-emitting device with excellent long-term stability by incorporating hybrid QD/alumina/polymer film as a color conversion material on light-emitting diode chips. (paper)

  15. Electric conductivity of polymer composite materials. Composite on propylene and silicon base

    Electric conductivity in polymer composites of the polypropylene-silicon type prepared by the method of polymerization filling is studied. The four-probe method is used to plot the dependence of electric resistance on silicon content and temperature in the 160-300 deg K range. The conclusion is made that the current value in composite is limited by resistance of insulating layers

  16. Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response

    Bajgar, V.; Penhaker, M.; Martinková, L.; Pavlovič, A.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    Roč. 16, č. 4 (2016), 498_1-498_12. ISSN 1424-8220 R&D Projects: GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : conducting polymers * plant neurobiology * polyaniline Subject RIV: CG - Electrochemistry Impact factor: 2.245, year: 2014

  17. THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)

    AbstractThe modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...

  18. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode.

    Qu, Guoxing; Cheng, Jianli; Li, Xiaodong; Yuan, Demao; Chen, Peining; Chen, Xuli; Wang, Bin; Peng, Huisheng

    2016-05-01

    A hollow graphene/conducting polymer composite fiber is created with high mechanical and electronic properties and used to fabricate novel fiber-shaped supercapacitors that display high energy densities and long life stability. The fiber supercapacitors can be woven into flexible powering textiles that are particularly promising for portable and wearable electronic devices. PMID:27001216

  19. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers

    Vardeny, Z.V.

    1993-01-01

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes.

  20. Microwave synthesis: An alternative approach to synthesize conducting end-capped polymers

    Marcasuzaa, P.; Reynaud, S.; Grassl, B.; Preud’homme, H.; Desbrieres, J.; Trchová, Miroslava; Donard, O. F. X.

    2011-01-01

    Roč. 52, č. 1 (2011), s. 33-39. ISSN 0032-3861 Grant ostatní: Eco-net project(FR) 16256SA Institutional research plan: CEZ:AV0Z40500505 Keywords : tetra- anilin e * microwave synthesis * intrinsically conducting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  1. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes

  2. Control of electric and dielectric properties of conductive polymer composites by compression deformation

    Pelíšková, M.; Vilčáková, J.; Moučka, R.; Sáha, P.; Quadrat, Otakar; Stejskal, Jaroslav; Omastová, M.

    Budapest : Budapest University of Technology and Economics, 2007. s. 89-89. [Functional Fillers for Advanced Applications EUROFILLERS. 26.08.2007-30.08.2007, Zalakaros] Institutional research plan: CEZ:AV0Z40500505 Keywords : conductive polymers * electric and dielectric properties Subject RIV: CD - Macromolecular Chemistry

  3. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène; Rozlosnik, Noemi

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on the...

  4. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique of...

  5. Characterization of Plasma-Polymerized Fused Polycyclic Compounds for Binding Conducting Polymers

    Winther-Jensen, Bjørn; Norrman, Kion; Kingshott, Peter; West, Keld

    2005-01-01

    groups with hydrogen in the position which is able to co-polymerize with thiophene derivatives polymerized by conventional oxidative polymerization, thereby forming a conducting thiophene polymer bonded to the substrate. The durability of the surface modification procedure is demonstrated by...

  6. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    Skaarup, Steen

    2008-01-01

    . The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile...

  7. Electrical conductivity and dielectric properties of SiO2 nanoparticles dispersed in conducting polymer matrix

    Electrical and dielectric properties of conducting polypyrrole-wide band gap silica (PPY-SiO2) nanocomposites have been investigated as a function of temperature and frequency for different concentrations of polypyrrole. The average grain size of the nanocomposites is in the range of 40-80 nm. Impedance spectra reveal two distorted semicircles corresponding to grain and grain boundary effects. The magnitude of conductivity and its temperature variation are significantly different from polypyrrole and silica. A very large dielectric constant of about 4800 at 30 kHz and at room temperature has been observed for the highest concentration of silica. Inhomogeneous behavior of nanocomposites gives rise to high dielectric constant

  8. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    Makled, M.H.; SHEHA, E.; Shanap, T.S.; El-Mansy, M.K.

    2012-01-01

    PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is r...

  9. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  10. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature

    Shanker, G. Shiva; Swarnkar, Abhishek; Chatterjee, Arindom; Chakraborty, S.; Phukan, Manabjyoti; Parveen, Naziya; Biswas, Kanishka; Nag, Angshuman

    2015-05-01

    Electronic grade semiconductor films have been obtained via the sintering of solution processed PbS and PbSe nanocrystals at room temperature. Prior attempts to achieve similar films required the sintering of nanocrystals at higher temperatures (>350 °C), which inhibits the processing of such films on a flexible polymer substrate, and it is also expensive. We reduced the sintering temperature by employing two important strategies: (i) use of ligand-free nanocrystals and (ii) oriented attachment of nanocrystals. Colloidal ligand-free PbS and PbSe nanocrystals were synthesized at 70 °C with high yield (~70%). However, these nanocrystals start to agglomerate with time in formamide, and upon the removal of the solvation energy, nanocrystals undergo oriented attachment, forming larger elongated crystals. PbS and PbSe nanocrystal films made on both glass and flexible substrates at room temperature exhibit Ohmic behavior with optimum DC conductivities of 0.03 S m-1 and 0.08 S m-1, respectively. Mild annealing of the films at 150 °C increases the conductivity values to 1.1 S m-1 and 137 S m-1 for PbS and PbSe nanocrystal films, respectively. AC impedance was measured to distinguish the contributions from grain and grain boundaries to the charge transport mechanism. Charge transport properties remain similar after the repeated bending of the film on a flexible polymer substrate. Reasonably high thermoelectric Seebeck coefficients of 600 μV K-1 and 335 μV K-1 for PbS and PbSe nanocrystal pellets, respectively, were obtained at room temperature.Electronic grade semiconductor films have been obtained via the sintering of solution processed PbS and PbSe nanocrystals at room temperature. Prior attempts to achieve similar films required the sintering of nanocrystals at higher temperatures (>350 °C), which inhibits the processing of such films on a flexible polymer substrate, and it is also expensive. We reduced the sintering temperature by employing two important strategies: (i) use of ligand-free nanocrystals and (ii) oriented attachment of nanocrystals. Colloidal ligand-free PbS and PbSe nanocrystals were synthesized at 70 °C with high yield (~70%). However, these nanocrystals start to agglomerate with time in formamide, and upon the removal of the solvation energy, nanocrystals undergo oriented attachment, forming larger elongated crystals. PbS and PbSe nanocrystal films made on both glass and flexible substrates at room temperature exhibit Ohmic behavior with optimum DC conductivities of 0.03 S m-1 and 0.08 S m-1, respectively. Mild annealing of the films at 150 °C increases the conductivity values to 1.1 S m-1 and 137 S m-1 for PbS and PbSe nanocrystal films, respectively. AC impedance was measured to distinguish the contributions from grain and grain boundaries to the charge transport mechanism. Charge transport properties remain similar after the repeated bending of the film on a flexible polymer substrate. Reasonably high thermoelectric Seebeck coefficients of 600 μV K-1 and 335 μV K-1 for PbS and PbSe nanocrystal pellets, respectively, were obtained at room temperature. Electronic supplementary information (ESI) available: Powder XRD, TEM, surface profilometry, infrared absorption, FESEM, I vs. V plot, ζ-potential, and PL data. See DOI: 10.1039/c5nr01016k

  11. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas.

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-28

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery. PMID:26508371

  12. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF3SO3) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF3SO3 polymer electrolyte exhibits the maximum ionic conductivity of 2.7×10−3 S cm−1 at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF3SO3 polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute β-relaxation peak

  13. Temperature dependence of conductivity enhancement induced by nanoceramic fillers in polymer electrolytes

    Gao, S.; Yan, X. L.; Zhong, J.; Xue, G. B.; Wang, B.

    2013-04-01

    The microstructure and ionic conductivity of polymer nanocomposite electrolytes doped with ZnO have been systematically studied. Compared with the undoped one, a less crystalline phase, a restrained main chain movement, a reduced symmetry in the configuration of ethylene oxide/lithium ion, and an at least five-fold increase in conductivity were observed for the filler incorporated electrolyte. Lewis acid-base interactions are determining in causing these changes. The temperature dependence of conductivity is explained by the Vogel-Tammann-Fulcher equation based on the free volume theory. The mechanism of temperature dependent conductivity enhancement is interpreted by a modeling function proposed.

  14. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  15. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results

  16. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (??) and dissipation factor (tan ?) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  17. Electrical and Electrochemical Properties of New Mg2+ - Ion Conducting Polymer Electrolyte Membranes

    Agrawal, R. C.; Sahu, Dinesh K.; Mahipal, Y. K.; Ashrafi, Rehana

    2013-07-01

    Investigations on ion transport behaviour and All-Solid-State battery performance of Mg2+-ion conducting Composite Polymer Electrolyte (CPE) films: [80PEO: 20 Mg (CF3SO3)2] + x MgO are reported. Solid Polymer Electrolyte (SPE) composition: [80PEO: 20Mg (CF3SO3)2], identified earlier as the highest conducting composition with room temperature conductivity ? 2.77 10-6 S/cm, has been chosen as as Ist - phase host matrix and submicron (?m & nm) particles of active filler material MgO as IInd - phase dispersoid. SPE/CPE membranes have been casted by a completely dry/solution free hotpress technique. The ion transport behaviour in the Optimum Conducting CPE film has been characterized in terms of ionic conductivity (?), ionic transference number (tion) as well as cationic transport number (t+). The temperature dependent conductivity measurement has also been carried out and the activation energy (Ea) has been computed from the least square linear fitting of `log ? - 1/T' Arrhenius plot. All-Solid-State battery has been fabricated in the cell configuration: Anode (Mg) // NCPE film // Cathode (C + MnO2 + Electrolyte). Open Circuit Voltage (OCV) 1.82 Volt was obtained for both the nano/micro MgO dispersed composite polymer electrolyte films. The cell performance has been studied under different load conditions and some important cell parameters have been calculated from the cell-potential discharge profiles.

  18. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures

    Onoda, Mitsuyoshi, E-mail: onoda@eng.u-hyogo.ac.j [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himwji Shosha Campus, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Abe, Yayoi; Tada, Kazuya [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himwji Shosha Campus, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2009-11-30

    Poly(vinyl alcohol), PVA, produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to those of polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion rate of the electrolyte across the PVA film to the indium tin oxide (ITO) electrode. In particular, a solvent with a hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method of forming an electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using the conducting polymer, PPy. Then, by applying a similar technique, we fabricated poly(3,4-ethylenedioxythiophene), PEDOT/PVA, composite films and investigated their basic electrochemical properties. Moreover, in this study, in order to develop a novel cell-culture system which makes it possible to communicate with cultured cells, fibroblasts were cultured on PPy- and PEDOT-coated ITO conductive glass plates for 7 days. The result reveals that the PPy and PEDOT films support the secretory functions of the cells cultured on its surface. The PPy- and PEDOT-coated electrodes may be useful to culture the cells on.

  19. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M.

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m-1 range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering scaffolds.

  20. Nanotechnology-the key to unlocking the intrinsic properties of inherently conducting polymers

    Full text: Currently the properties of inherently conducting polymers (ICPs) such as polypyrroles, polythiophenes and polyanilines at the macroscopic level is limited by our ability to unlock the inherent electronic and electrochemical properties they possess at the nanodimension. It is known that the macroscopic structures consist of highly conducting nanodimensional islands separated by a sea of less conducting material. It is also known that incredibly fast and discrete electrochemical switching can be obtained if nanowire ICP electrodes are used instead of larger structures. In our recent work several approaches for the synthesis and fabrication of controlled nanodimensional structures based on inherently conducting polymers have been investigated. The simplest involves chemical oxidation of monomer in an inverse microemulsion to produce polyaniline nanoparticles. The second approach involves use of a flow-through electrolytic method which enables production of nanoparticles of tightly controlled dimensions. Conducting polymer nanostructures have also been produced in our laboratories using an inverse synthetic opal approach wherein ICPs are synthesized within the interstitial volume of ordered nanoparticles. In a different strategy we have utilized the unusual properties of carbon nanotubes (high strength and conductivity) to produce ICP nanostructures. This has been achieved by using water soluble conducting polymer as a dispersant prior to making CNT structures or by individually coating arrays (forests) of aligned carbon nanotubes. The former approach has been used to produce CNT structures with high charge storage capabilities while the latter has presented a convenient route to ICP based biosensor surfaces with enhanced performance characteristics. Each of the above approaches to development of ICP nanocomponents and the properties of these unique structures will be discussed here

  1. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering scaffolds. PMID:26351867

  2. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions

    Highlights: ► Single lithium-ion conducting polymer electrolytes based on highly delocalized polyanions are prepared. ► Phase behavior and transport properties are measured. ► They show high lithium ion transference number approaching unity. ► They show high ionic conductivity at room temperature. - Abstract: New single lithium-ion conducting polymer electrolytes are prepared by a copolymerization of the two monomers, lithium (4-styrenesulfonyl)(trifluoromethanesulfonyl)imide (LiSTFSI) and methoxy-polyethylene glycol acrylate (MPEGA, CH2=CHCO2-(CH2CH2O)n-CH3, n = 8) in various monomer ratios. The structures and compositions of the prepared lithium poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl) imide-co-methoxy-polyethylene glycol acrylate] (Li[PSTFSI-co-MPEGA]) copolymers are characterized by 1H and 19F NMR, and gel permeation chromatography (GPC). For comparison, the corresponding blended polymer electrolytes comprising lithium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] (LiPSTFSI) and poly(ethylene oxide) (PEO) are also prepared and characterized. The fundamental properties of these two types of lithium-ion conducting polymer electrolytes are comparatively studied, in terms of phase transitions, thermal stability, XRD, ionic conductivities, lithium-ion transference numbers (tLi+), and electrochemical stabilities. Both types of the polymer electrolytes are thermally stable up to 300 °C. While both types of polymer electrolytes exhibit single lithium-ion conducting behavior with tLi+ > 0.9, the solid-state ionic conductivities of the Li[PSTFSI-co-MPEGA] copolymer electrolytes are all higher by 1–3 orders in magnitude than those of the blended ones, irrespective of the concentration of lithium ions. The highest ionic conductivities for the copolymer electrolytes are 7.6 × 10−6 S cm−1 at 25 °C and reach 10−4 S cm−1 at 60 °C, which are obtained at the ethylene oxide (EO) unit/Li+ ratio of 20.5

  3. Nanoscale direct mapping of localized and induced noise sources on conducting polymer films

    Shekhar, Shashank; Cho, Duckhyung; Lee, Hyungwoo; Cho, Dong-Guk; Hong, Seunghun

    2015-12-01

    The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films.The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06896g

  4. Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites

    Sandi, Giselle [Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)]. E-mail: gsandi@anl.gov; Kizilel, Riza [Chemical and Environmental Engineering Department, Illinois Institute of Technology, Chicago, IL 60616 (United States); Carrado, Kathleen A. [Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Fernandez-Saavedra, Rocio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Castagnola, Norma [Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2005-06-30

    New hectorite and organo-hectorite clays have been prepared using different silica sol sources, in order to examine the importance of sol particle size, pH, and surface chemistry on the final matrix. Polymer-clay nanocomposites (PCN) are prepared by intercalating polyethylene oxide in the clay layers of lithium hectorites. The resulting films are physically and electrochemically evaluated. Conductivity values, activation energies, and lithium transference numbers indicate that the PCNs are single ion conductors with transference numbers close to unity. The activation energies are in the range of 0.02 V, two orders of magnitude lower than the conventional polymer electrolytes.

  5. Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites

    New hectorite and organo-hectorite clays have been prepared using different silica sol sources, in order to examine the importance of sol particle size, pH, and surface chemistry on the final matrix. Polymer-clay nanocomposites (PCN) are prepared by intercalating polyethylene oxide in the clay layers of lithium hectorites. The resulting films are physically and electrochemically evaluated. Conductivity values, activation energies, and lithium transference numbers indicate that the PCNs are single ion conductors with transference numbers close to unity. The activation energies are in the range of 0.02 V, two orders of magnitude lower than the conventional polymer electrolytes

  6. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection

    Larsen, Simon T.; Vreeland, Richard F.; Heien, Michael L.; Taboryski, Rafael J.

    2012-01-01

    In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical...... applications such as capillary electrophoresis, high-performance liquid chromatography, and constant potential amperometry at living cells. Band electrodes with widths down to 3 μm were fabricated on polymer substrates using UV lithographic methods. The electrodes are electrochemically stable in a range...

  7. Calculation of the band structure of 2d conducting polymers using the network model

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  8. Enhanced ionic conductivity and optical studies of plasticized (PEO-KCl) solid polymer electrolytes

    Chapi, Sharanappa; H, Devendrappa

    2015-06-01

    Solid polymer electrolytes (SPEs) based on Polyethylene oxide (PEO) doped with potassium chloride (KCl) were prepared by the solution cast technique. The conductivity increases from 10-10 to 10-6 Scm-1 at 303K with dopant. Optical absorption study shows that the direct & indirect optical band gaps were found decreased from 5.45-4.46eV and 4.96-3.86eV respectively with increasing the KCl. The XRD patterns reveal increasing the amorphous with increasing the dopent. The obtained results suggest that, these polymer systems are suitable candidates for solid state battery, electro chromic devices & optoelectronics display etc.

  9. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria; Jepsen, Søren Terpager; Sørensen, Henrik Schiøtt; Utko, Pawel; Selmeczi, Dávid; Hansen, Thomas Steen; Larsen, Niels Bent; Rozlosnik, Noemi; Taboryski, Rafael Jozef

    2010-01-01

    cells in suspension is presented. The working principle of the electroporation device is based on a focusing of the electric field by means of a constriction in the flow channel for the cells. We demonstrate the use of AC voltage for electroporation by applying a 1 kHz, +/- 50 V square pulse train to......We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological...

  10. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    Mller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at 2 ?s, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  11. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature.

    Shanker, G Shiva; Swarnkar, Abhishek; Chatterjee, Arindom; Chakraborty, S; Phukan, Manabjyoti; Parveen, Naziya; Biswas, Kanishka; Nag, Angshuman

    2015-05-28

    Electronic grade semiconductor films have been obtained via the sintering of solution processed PbS and PbSe nanocrystals at room temperature. Prior attempts to achieve similar films required the sintering of nanocrystals at higher temperatures (>350 °C), which inhibits the processing of such films on a flexible polymer substrate, and it is also expensive. We reduced the sintering temperature by employing two important strategies: (i) use of ligand-free nanocrystals and (ii) oriented attachment of nanocrystals. Colloidal ligand-free PbS and PbSe nanocrystals were synthesized at 70 °C with high yield (∼70%). However, these nanocrystals start to agglomerate with time in formamide, and upon the removal of the solvation energy, nanocrystals undergo oriented attachment, forming larger elongated crystals. PbS and PbSe nanocrystal films made on both glass and flexible substrates at room temperature exhibit Ohmic behavior with optimum DC conductivities of 0.03 S m(-1) and 0.08 S m(-1), respectively. Mild annealing of the films at 150 °C increases the conductivity values to 1.1 S m(-1) and 137 S m(-1) for PbS and PbSe nanocrystal films, respectively. AC impedance was measured to distinguish the contributions from grain and grain boundaries to the charge transport mechanism. Charge transport properties remain similar after the repeated bending of the film on a flexible polymer substrate. Reasonably high thermoelectric Seebeck coefficients of 600 μV K(-1) and 335 μV K(-1) for PbS and PbSe nanocrystal pellets, respectively, were obtained at room temperature. PMID:25926291

  12. Ionic Conductivity of PEMA-LiClO4 Polymer Electrolytes

    Solid polymer electrolytes comprised of various weight percent ratios of poly(ethyl methacrylate) (PEMA) and lithium perchlorate (LiClO4) salt were prepared via solution casting technique using N,N-dimethylformamide (DMF) as the solvent. The conductivity values of the electrolytes were determined via impedance spectroscopy. The conductivity of the PEMA-LiClO4 electrolytes increased with increasing salt concentration and the highest conductivity obtained was in the order of 10-6 S cm-1 at salt concentration of 20 wt %. The conductivity decreased for higher salt concentration. In order to understand the conductivity behavior, XRD and dielectric studies were done. The results showed that the conductivity was influenced by the fraction of amorphous region and number of charge carriers in the system. The transference number measurement was also performed on the highest conducting electrolyte systems. The result of the measurement indicated that the systems were ionic conductors. (author)

  13. Fabrication and Testing of a Bi-Conductive Polymer Membrane Fuel Cell

    Hamel, S.; Tsukamoto, T.; Tanaka, T.; Fréchette, L. G.

    2014-11-01

    This paper reports the fabrication process and testing of a bi-conductive polymer membrane (BCPM) fuel cell that integrates lateral current collectors on both sides with an ionic conductive path through the membrane. The new membrane shows major advantages over standard Nafion® membranes used in Polymer Electrolyte Fuel Cells (PEMFCs). In addition to being mechanically stable when wet, the flexible BCPM integrates efficient thin film current collectors (ICCs) on an ionic conductive membrane with a high active area ratio. Also, ICCs leave all the surface of the electrode free to eventually integrate a more efficient water and gas management system than traditional gas diffusion layers. Moreover, the fabricated membrane has shown superior volumetric power density than standard PEMFC (0.76 vs 0.47 mW/cm2μm).

  14. Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells

    Li, Ru; Tang, Qunwei; Yu, Liangmin; Yan, Xuefeng; Zhang, Zhiming; Yang, Peizhi

    2016-03-01

    Creation of cost-effective and platinum-free counter electrodes (CEs) is persistent for developing advanced dye-sensitized solar cells (DSSCs). We present here the fabrication of conducting polymers such as polyaniline (PANi), polypyrole (PPy), or poly(3,4-ethylenedioxythiophene) (PEDOT) intercalated reduced graphene oxide (rGO) CEs on flexible Ti foil or polyethylene-terephthalate substrate for liquid-junction DSSC applications. The ration architecture integrates the high electron-conducting ability of graphene and good electrocatalytic activity of a conducting polymer into a single CE material. The preliminary results demonstrate that the resultant CEs follow an order of rGO/PPy > rGO/PANi > rGO/PEDOT > rGO. A maximal cell efficiency of 6.23% is determined on the optimized solar cell device, yielding 104.9% enhancement in comparison to rGO based device.

  15. Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid.

    Luo, Xiliang; Cui, Xinyan Tracy

    2011-01-01

    A conducting polymer-based smart coating for magnesium (Mg) implants that can both improve the corrosion resistance of Mg and release a drug in a controllable way is reported. As the ionic liquid is a highly conductive and stable solvent with a very wide electrochemical window, the conducting polymer coatings can be directly electrodeposited on the active metal Mg in ionic liquid under mild conditions, and Mg is highly stable during the electrodeposition. The electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) coatings on Mg are uniform and can significantly improve the corrosion resistance of Mg. In addition, the PEDOT coatings can load the anti-inflammatory drug dexamethasone during the electrodeposition, which can be subsequently released upon electric stimulation. PMID:20832505

  16. Fabrication and Testing of a Bi-Conductive Polymer Membrane Fuel Cell

    This paper reports the fabrication process and testing of a bi-conductive polymer membrane (BCPM) fuel cell that integrates lateral current collectors on both sides with an ionic conductive path through the membrane. The new membrane shows major advantages over standard Nafion® membranes used in Polymer Electrolyte Fuel Cells (PEMFCs). In addition to being mechanically stable when wet, the flexible BCPM integrates efficient thin film current collectors (ICCs) on an ionic conductive membrane with a high active area ratio. Also, ICCs leave all the surface of the electrode free to eventually integrate a more efficient water and gas management system than traditional gas diffusion layers. Moreover, the fabricated membrane has shown superior volumetric power density than standard PEMFC (0.76 vs 0.47 mW/cm2μm)

  17. Synthesis and characterization of thiol-functionalized polymer as binder in conductive ink

    Lee, Jungmin; Varadan, Vijay K.

    2011-04-01

    The technology of electrical printing has received industrial and scientific attention due to wide variety of application such as sensors, radio frequency identification cards (RFIDs), flexible display, and flexible solar cell. Especially a roll to roll gravure printing technique has been useful for mass production of electrical products. For the more high quality of conductive ink, the compatibility of organic binder and inorganic filler is very important. In this study, Thiol-functionalized polymer and core-shell conductive nanoparticles were used as the binder and filler. The thiol moieties in binder contribute to functionality of the synthesized polymer. Also, the conductivity and viscosity of synthesized ink and compatibility of filler with binder were characterized in various conditions.

  18. Conductivity and Structural Studies of Plasticised Polyacrylonitrile (PAN)-Lithium Triflate Polymer Electrolyte Films

    The effect of different plasticizers on the properties of PAN-LiCF3SO3 polymer electrolytes has been studied. Propylene carbonate (PC) and ethylene carbonate (EC) having different values of donor numbers, dielectric constant and viscosity have been used as plasticizers. The highest room temperature conductivity for the film in the PAN-LiCF3SO3 system was 3.04 x 10-4 S cm-1. The highest room temperature conductivity for the films in the PAN-EC-LiCF3SO3 system and the PAN-PC-LiCF3SO3 system was 1.32 x 10-3 and 8.64 x 10-4 S cm-1. The addition of plasticizers has been found to enhance the conductivity of polymer electrolytes by increasing the amorphous content as well as by dissociating the ion aggregates present in polymer electrolyte. Conductivity temperature-dependence studies of these plasticised PAN-salt systems were carried out in the temperature range of 303 to 373 K. The conductivity versus temperature plots obeyed an Arrhenius type variation. The structural and complex formations were studied by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. (author)

  19. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer.

    Nezakati, Toktam; Tan, Aaron; Seifalian, Alexander M

    2014-12-01

    An electrically conductive polymer using polyhedral oligomeric silsesquioxane (POSS) nanocage incorporated into a modified poly [caprolactone based urea-urethane] (PCL)/graphene hybrid nanocomposite is described. Multilayer graphene flakes (8nm) were homogeneously dispersed into POSS-PCL at 0.1, 2, 5, and 10wt.% concentrations. This dispersion process of the graphene flakes was achieved by the use of stable dimethylacetamide (DMAc), via solution intercalation with POSS-PCL nanocomposites. The impedance spectroscopy of 5.0wt.% and higher concentration of graphene in POSS-PCL represented major improvement in conductivity over pristine POSS-PCL. The percolation threshold occurred at 5.0wt.% graphene concentration, converting the insulator POSS-PCL into a conductive POSS-PCL/graphene hybrid nanocomposite. The structures of the obtained hybrid materials were characterized with atomic force microscopy (AFM), Fourier transform infra-red (FT-IR), and Raman spectroscopy. The conductivity of the resultant nanocomposite polymer was investigated with electrochemical impedance spectroscopy (EIS). Herein, for the first time, we demonstrate a facile method of synthesizing, and describe the electrical properties of a conductive POSS-PCL/graphene nanocomposite polymer. PMID:25240216

  20. Ion-beam modifications of the surface morphology and conductivity in some polymer thin films

    M Ramakrishna Murthy; E Venkateshwar Rao

    2002-10-01

    Studies on the surface micromorphology and surface conductivity in thin polymer films of poly vinyl alcohol (PVA) and poly ethylene oxide (PEO) in both as-grown and ion-implanted polymer films have been carried out to reveal certain specific features of the ordered state in these materials. Optical microscopic investigations revealed the existence and enhanced formation in number of spherulites and dendrites in ionimplanted films relative to the as-grown films. The number and rate of formation of spherulites indicated an increase in the degree of crystallinity in these films. Measurements of surface conductivity of as-grown and ion-implanted polymer films, employing four-point probe method, indicated a decrease in electrical conductivity on ion-implantation. Photomicrographic analysis of the PVA and PEO thin film surfaces, has enabled to propose a temperature–stress induced mechanism of crystallization in conjunction with the surface conductivity measurements. The decrease in surface conductivity on ion-implantation in both PVA and PEO thin films, is attributed to a decrease in mobility of macromolecular charged species due to an increase in degree of crystallinity as has been observed by optical microscopy.

  1. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-01

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05912g

  2. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  3. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V−1 s−1 with corresponding electrical resistivity and sheet resistances as low as 1 × 10−3 Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods

  4. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Qiong Nian

    2015-06-01

    Full Text Available Commercial production of transparent conducting oxide (TCO polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC of solution deposited aluminium-doped zinc oxide (AZO nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V−1 s−1 with corresponding electrical resistivity and sheet resistances as low as 1 × 10−3 Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  5. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells.

    Svrcek, V; Yamanari, T; Mariotti, D; Mitra, S; Velusamy, T; Matsubara, K

    2015-07-21

    Silicon nanocrystal (Si-nc) down-conversion is demonstrated to enhance organic and hybrid organic/inorganic bulk heterojunction solar cells based on PTB7:[70]PCBM bulk heterojunction devices. Surfactant free surface-engineered Si-ncs can be integrated into the device architecture to be optically active and provide a means of effective down-conversion of blue photons (high energy photons below ?450 nm) into red photons (above ?680 nm) leading to 24% enhancement of the photocurrent under concentrated sunlight. We also demonstrate that the down-conversion effect under 1-sun is enhanced in the case of hybrid solar cells where engineered Si-ncs are also included in the active layer. PMID:26084561

  6. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  7. Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties

    Zhang, Teng; Wu, Xufei; Luo, Tengfei

    2014-01-01

    Polymer nanofibers with high thermal conductivities and outstanding thermal stabilities are highly desirable in heat transfer-critical applications such as thermal management, heat exchangers and energy storage. In this work, we unlock the fundamental relations between the thermal conductivity and thermal stability of polymer nanofibers and their molecular characteristics by studying the temperature-induced phase transitions and thermal transport of a series of polymer nanofibers. Ten differe...

  8. Comparison of solar cell performance of conducting polymer dyes with different functional groups

    Yoon, Jang-Hee; Kim, Dong-Min; Yoon, Sang-Su; Won, Mi-Sook; Shim, Yoon-Bo

    2011-10-01

    Conductive polymer precursors, including carboxylic acid, cyano groups, amino groups, 5,2‧:5‧,2″-terthiophene-3‧-carboxylic acid (TTCA), 3‧-cyano-5,2‧:5‧,2″-terthiophene (CTT), and 3‧,4‧-diamino-2,2‧:5‧,2″-terthiophene (DATT) are synthesized. Electrochemically polymerized films of the precursors on a nanocrystalline TiO2 layer are examined as photo sensitizers, and the cell performance is compared. The photovoltaic cells are assembled with a polymer-coated TiO2 layer treated with TiCl4 as an anode and a Pt layer as a cathode in a propionitrile solution containing an iodide ion-based redox electrolyte. The charge-transfer processes of polymer-dyed cells are studied using impedance spectroscopy. The polymer dyes on the TiO2 surfaces are characterized by scanning electron microscope (SEM), atomic force microscope (AFM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that the conducting polymer dye, bearing a carboxylic acid group, is more strongly bound to the TiO2 layer in comparison with other groups. Various experimental parameters affecting the cell efficiency are optimized, including the scan rate, number of potential cycles, and terthiophene monomer concentration. Of these polymers, the best cell efficiency is attained for poly-TTCA containing a carboxylic acid group. The optimized cell with the poly-TTCA dye shows a short-circuit current of 6.78 mA cm-2, an open-circuit voltage of 0.54 V, and a fill factor of 63.6. An energy conversion efficiency of 2.32% is obtained with a cell area of 0.24 cm2 under an air mass 1.5 solar simulated light irradiation of 100 mW cm-2.

  9. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  10. Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes

    Wang Guang-Feng

    2009-01-01

    Full Text Available Abstract A conductive polymer, poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate (PEDOT:PSS, was modified with dimethyl sulfoxide (DMSO in solution state, together with sub-sequential thermal treatment of its spin-coated film. The electrical conductivity increased by more than three orders of magnitude improvement was achieved. The mechanism for the conductivity improvement was studied at nanoscale by particle size analysis, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS. Smaller particle size was observed, resulting in larger contact area and better electrical conductive connections. Connection of conductive PEDOT increased on the surface of the PEDOT:PSS particles, which promoted high conductivity. Flexible anodes based on the modified PEDOT:PSS were fabricated. Flexible organic light-emitting diodes (FOLED based the polymeric anodes have a comparable performance to those on indiumtinoxide (ITO anodes.

  11. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.

    Neira-Carrillo, Andrnico; Acevedo, Diego F; Miras, Maria C; Barbero, Cesar A; Gebauer, Denis; Clfen, Helmut; Arias, Jos L

    2008-11-01

    Conducting polymers are interesting materials of technological applications, while the use of polymers as additives controlling crystal nucleation and growth is a fast growing research field. In the present article, we make a first step in combining both topics and report the effect of conducting polymer derivatives, which are based on carboxylated polyanilines (c-PANIs), on in vitro CaCO3 crystallization by the Kitano and gas diffusion method. This is the first example of the mineralization control of CaCO3 by a rigid carboxylated polymer. Both the concentration of c-PANI and the presence of carboxylate groups have a strong influence on the CaCO3 crystallization behavior and crystal morphology. X-ray diffraction (XRD) analysis shows crystalline calcite particles confirmed by FTIR spectra. pH and Ca2+ measurements during CaCO3 crystallization utilizing the Kitano and a constant-pH approach show a defined nucleation period of CaCO3 particles. The measurements allow for the calculation of the supersaturation time development, and the kinetic data can be combined with time-dependent light microscopy. The presence of c-PANIs delays the time of nucleation indicative of calcite nucleation inhibition. Microscopy illustrates the morphologies of CaCO3 crystals at all crystallization stages, from homogeneous spherical amorphous CaCO3 (ACC) particles corresponding to the first steps of crystallization to transition stage calcite crystals also involving a dissolution-recrystallization process in a late stage of crystallization. The data show that it is not possible to conclude the crystallization mechanism even for a very simple additive controlled crystallization process without time-resolved microscopic data supplemented by the analysis of the species present in the solution. Finally, fluorescence analysis indicates that conducting polymer derivatives can be incorporated into precipitated calcite particles. This gives rise to CaCO3 particles with novel and interesting optical properties. PMID:18839967

  12. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.

  13. Manganese dioxide nanoparticle enrichment in porous conducting polymer as high performance supercapacitor electrode materials

    Graphical abstract: A MnO2 nanoparticle-enriched poly(3,4-ethylenedioxythiophene) (PEDOT) porous structure is demonstrated as high performance electrochemical electrode materials. The high specific capacitance and good cycling stability of this porous electrode can be achieved either by coupling the advantages of metal oxide nanoparticle and conducting polymers. Display Omitted - Abstract: We demonstrated preparation of porous conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT)/MnO2 nanoparticles (NPs) composites as high performance electrochemical energy storage electrode. NPs-enriched PEDOT porous structures are prepared by simple thermal treatment and chemical vapor polymerization (VPP) methods. The incorporation of MnO2 NPs in PEDOT is characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectroscopy, which indicate the uniform dispersion of MnO2 NPs into porous PEDOT matrix. This porous composite contains large and highly opened surface area with excellent electrochemical activity. A specific capacitance of as high as 321.4 F/g at a 0.5 A/g current density was achieved. The highly conductive and porous PEDOT matrix facilitates fast charge/discharge of the MnO2 NPs and prevents them from agglomerating. These synergic properties enable the metal oxide nanoparticle-enriched porous conducting polymer with both high specific capacitance and good cycling stability as promising electrode materials for electrochemical energy storages

  14. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  15. Investigation of uniaxial stretching effects on the electrical conductivity of CNT–polymer nanocomposites

    A theoretical study is carried out to investigate the effects of uniaxial stretching on the electrical conductivity of carbon nanotube (CNT)–polymer composites using a mixed micromechanics model, which incorporates two conductivity mechanisms: electron hopping and conductive networks. The uniaxial stretching induces volume expansion of the composites, re-orientation of CNTs and a change in conductive networks, which are characterized by the variation of the CNT concentration, the CNT orientation distribution function and the percolation threshold, respectively. Modelling results demonstrate that stretching decreases the electrical conductivity of the composite in both the longitudinal and transverse directions. It is also observed that stretching has more significant effects on the electrical conductivity of the composites with a lower CNT volume fraction. Furthermore, the effects of Poisson's ratio on the electrical conductivity are also investigated. Possible reasons for the observed phenomena are interpreted. This work can be claimed to provide a theoretical prediction on the trend of the stretching effects on the electrical properties of CNT–polymer composites. (paper)

  16. Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties

    Zhang, Teng; Luo, Tengfei

    2014-01-01

    Polymer nanofibers with high thermal conductivities and outstanding thermal stabilities are highly desirable in heat transfer-critical applications such as thermal management, heat exchangers and energy storage. In this work, we unlock the fundamental relations between the thermal conductivity and thermal stability of polymer nanofibers and their molecular characteristics by studying the temperature-induced phase transitions and thermal transport of a series of polymer nanofibers. Ten different polymer nanofibers with systematically chosen molecular structures are studied using large scale molecular dynamics simulations. We found that high thermal conductivity and good thermal stability can be achieved in polymers with rigid backbones, exemplified by {\\pi}-conjugated polymers, due to suppressed segmental rotations and large phonon group velocities. The low probability of segmental rotation does not only prevent temperature-induced phase transition but also enables long phonon mean free paths due to reduced di...

  17. Preparation of Composite Polymer Electrolytes by Electrons-Induced Grafting: Proton and Lithium Conducting Membranes

    Polymer electrolyte membranes (PEMs) are a class of materials that is receiving an increasing attention due to their applicability to a wide number of solid state devices and chemical processes. Proton (H+) and lithium ion (Li+) conducting membranes are of particular interest as both on increasing demand to prompt the commercialization of polymer electrolyte fuel cell and polymer electrolyte lithium battery. Radiation-induced grafting is a potential alternative method to prepare PEMs. During PEMs preparation, grafting reaction is often carried out using pre-irradiation method or simultaneous irradiation method (with γ-rays). However, reports on the use of simultaneous method with electron beam (EB) to prepare such membranes are very scarce. The objective of this work is to prepare and characterize two distinct polymer electrolyte membranes for possible use in fuel cell and lithium battery using single simultaneous radiation-induced grafting method with EB. Initially, styrene was impregnated into the porous structure of poly(vinylidene fluoride) (PVDF) films followed by simultaneous irradiation with EB using doses up to 50 kGy under N2 and at room temperature. Subsequently, the obtained polystyrene pore filled PVDF films (membrane precursor) were functionalized using two different chemical treatments. The first treatment includes sulfonation with chlorosulfonic acid/1,1,2,2-tetrachloroethane mixture to obtain H+ conducting composite membranes. The second treatment involves activation of the polystyrene pore filled PVDF films with LiPF6/EC/DC liquid electrolyte under to obtain Li+ conducting composite membranes. The micro-structure of both composite membranes was investigated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The content of polystyrene grafted in the pores, water uptake, electrolyte uptake and ionic conductivity were measured. The obtained composite electrolyte membranes were found to achieve grafting yield up to 46% with superior Li+ conductivity values up to 1.9 10-3 S/cm when treated with LiPH6/EC/DC electrolyte solution and H+ conductivity of 5.95 x 10-2 S/cm when sulfonated with 10% chlorosulfonic acid. The results of this work suggests that simultaneous radiation-induced grafting with EB offers a single versatile root to prepare two high quality composite polymer electrolyte membranes conducting H+ and Li+ for possible use in fuel cell and lithium batteries, respectively

  18. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires.

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M D; Wright, Nicholas G; Houlton, Andrew; Horrocks, Benjamin R

    2016-03-01

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on ?-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of [Formula: see text] with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.10.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.50.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.370.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E a=0.430.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd. PMID:26855053

  19. Electrosynthesis and absorbance spectra of TiO2 nanoparticles dispersed in the conductive polymer

    Ehsani, Ali; Babaei, Ferydon; Nasrollahzadeh, Mahmoud

    2013-10-01

    Poly ortho aminophenol (POAP)/nanocrystalline TiO2 composite were electrodeposited from through cyclic voltammetry scans to afford conductive polymer/TiO2 nanocomposite. Polymerization of ortho aminophenol (OAP) proceeded after ultrasonic irradiation of nanocrystalline TiO2. The aggregation of nano TiO2 can be reduced under ultrasonic irradiation, and the nanoparticles can be redispersed in the aqueous solution. The presence of nanocrystalline TiO2 strengthens the UV absorption of POAP and leads to a blue shift of the π-polaron absorption of POAP. Experimental absorbance spectra of TiO2/conductive polymer nanocomposite compared with results that obtained from the Maxwell-Garnett theory (MGT).

  20. Electrosynthesis and absorbance spectra of TiO{sub 2} nanoparticles dispersed in the conductive polymer

    Ehsani, Ali, E-mail: a.ehsani@qom.ac.ir [Department of Chemistry, Faculty of Science, University of Qom, Qom (Iran, Islamic Republic of); Babaei, Ferydon [Department of Physics, Faculty of Science, University of Qom, Qom (Iran, Islamic Republic of); Nasrollahzadeh, Mahmoud [Department of Chemistry, Faculty of Science, University of Qom, Qom (Iran, Islamic Republic of)

    2013-10-15

    Poly ortho aminophenol (POAP)/nanocrystalline TiO{sub 2} composite were electrodeposited from through cyclic voltammetry scans to afford conductive polymer/TiO{sub 2} nanocomposite. Polymerization of ortho aminophenol (OAP) proceeded after ultrasonic irradiation of nanocrystalline TiO{sub 2}. The aggregation of nano TiO{sub 2} can be reduced under ultrasonic irradiation, and the nanoparticles can be redispersed in the aqueous solution. The presence of nanocrystalline TiO{sub 2} strengthens the UV absorption of POAP and leads to a blue shift of the π-polaron absorption of POAP. Experimental absorbance spectra of TiO{sub 2}/conductive polymer nanocomposite compared with results that obtained from the Maxwell–Garnett theory (MGT).

  1. Electron-induced growth mechanism of conducting polymers: a coupled experimental and computational investigation.

    Coletta, Cecilia; Cui, Zhenpeng; Archirel, Pierre; Pernot, Pascal; Marignier, Jean-Louis; Remita, Samy

    2015-04-23

    Pulse radiolysis was used to study the mechanism of HO()-induced polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, in aqueous solution. A step-by-step mechanism has been found which involves a recurrent oxidation process by HO() hydroxyl radicals produced by water radiolysis. Furthermore, the cation radical, EDOT()(+), has been proposed as the promoter of the first step of polymerization. The determination of rate constants values and the attribution of transient and stable species were confirmed by molecular simulations and spectrokinetic analysis. Moreover, applying a series of electron pulses enabled in situ PEDOT polymerization. These polymers, which were characterized in solution or after deposition, form globular self-assembled structures with interesting conducting properties. Such a synthesis initiated for the first time by an electron accelerator gives us a glimpse of future promising industrial applications in the field of conducting polymers synthesis. PMID:25822000

  2. Radiation-induced reduction-polymerization route for the synthesis of PEDOT conducting polymers

    Cui, Zhenpeng; Coletta, Cecilia; Rebois, Rolando; Baiz, Sarah; Gervais, Matthieu; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Remita, Samy

    2016-02-01

    Synthesis of conducting poly(3,4-ethylenedioxythiophene), PEDOT, is achieved through an original reduction-polymerization route: γ-radiolysis of aqueous solutions containing EDOT monomers under N2 atmosphere. According to UV-vis absorption spectrophotometry and ATR-FTIR spectroscopy, reduction of EDOT is initiated by hydrated electrons produced by water radiolysis and leads to PEDOT polymers through coupling reactions. The morphology of PEDOT is characterized by Cryo- TEM microscopy in aqueous solution and by SEM after deposition. In an original way, high resolution AFM microscopy, coupled with infrared nanospectroscopy, is used to probe the local chemical composition of PEDOT nanostructures. The results demonstrate that spherical self-assembled PEDOT nanostructures are formed. TGA analysis and four point probe measurements demonstrate that thermal stability and electrical conductivity of PEDOT polymers obtained by the present original reduction-polymerization method are close to those of PEDOT we previously prepared by radiolysis according to an oxidation-polymerization route.

  3. Electrochemical and Optical Investigation of Conductive Polymer and MWCNT Nanocomposite Film

    Ali, Ehsani; Ferydon, Babaei; Hossein, Mostaanzadeh.

    2015-02-01

    Full Text Available Composites of multi-walled carbon nanotubes (MWCNT) and conductive polymer with good uniformity were prepared by electropolymerization. Molecular modeling calculations were carried out for electroactive monomer (OAP) polymerization with density functional theory (DFT) level using 6-311G(d,p) basis s [...] et for all atoms and Gaussian 03 program package. The reflectance and transmittance amplitudes of the composite were obtained, using the continuity of the tangential components of electrical and magnetic fields at interfaces and solving the algebraic matrix equation. The calculated absorbance spectra as a function of wavelength for MWCNTs dispersed in the conductive polymer are depicted. Band gap of the p-type semiconducting film was obtained from the plot of (?hv)2 vs. photon energy.

  4. Elucidation of charge storage characteristics of conducting polymer film using redox reaction

    Contractor, Asfiya Q

    2013-01-01

    A general technique to investigate charge storage characteristics of conducting polymer films has been developed. A redox reaction is conducted on a polymer film on a rotating disk electrode under potentiostatic condition so that the rate of charging of the film equals the rate of removal of the charge by the reaction. In an experiment on polyaniline film deposited on platinum substrate, using Fe2+/Fe3+ in HCl as the redox system, the voltammogram shows five distinct linear segments (bands) with discontinuity in the slope at specific transition potentials. These bands are the same as those indicated by ESR/Raman spectroscopy with comparable transition potentials. From the dependence of the slopes of the bands on concentration of ferrous and ferric ions, it was possible to estimate the energies of the charge carrier in different bands. It is shown that the charge storage in the film is capacitive.

  5. Nanofluidic Diodes with Dynamic Rectification Properties Stemming from Reversible Electrochemical Conversions in Conducting Polymers.

    Pérez-Mitta, Gonzalo; Marmisollé, Waldemar A; Trautmann, Christina; Toimil-Molares, María Eugenia; Azzaroni, Omar

    2015-12-16

    The use of solid state nanochannels as nanofluidic diodes is currently a topic of large interest in nanotechnology. Particularly, there is a focus in the development of nanochannels with surface functionalities that make them responsive to multiple environmental variables. Here, we present for the first time the construction of electrochemical potential- and pH-responsive nanofluidic diodes using a novel approach based on a controlled electrochemical polymerization of aniline on gold-coated polycarbonate asymmetric nanochannels. The polyaniline-modified nanochannels showed three different levels of reversible ionic rectification corresponding to the degrees of oxidation of the conducting polymer. Our results demonstrate that this strategy enables an accurate and reversible control of the rectification properties due to the well-defined and predictable electrochemical conversion of charged species generated on the pore walls. We envision that these results will create novel avenues to fabricate electrochemically modulated nanofluidic diodes using conducting polymers integrated into single conical nanopores. PMID:26587977

  6. Electrosynthesis and absorbance spectra of TiO2 nanoparticles dispersed in the conductive polymer

    Poly ortho aminophenol (POAP)/nanocrystalline TiO2 composite were electrodeposited from through cyclic voltammetry scans to afford conductive polymer/TiO2 nanocomposite. Polymerization of ortho aminophenol (OAP) proceeded after ultrasonic irradiation of nanocrystalline TiO2. The aggregation of nano TiO2 can be reduced under ultrasonic irradiation, and the nanoparticles can be redispersed in the aqueous solution. The presence of nanocrystalline TiO2 strengthens the UV absorption of POAP and leads to a blue shift of the π-polaron absorption of POAP. Experimental absorbance spectra of TiO2/conductive polymer nanocomposite compared with results that obtained from the Maxwell–Garnett theory (MGT).

  7. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo [Kwangwoon University, Seoul (Korea, Republic of); and others

    2012-03-15

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  8. Exploiting the colloidal nanocrystal library to construct electronic devices

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  9. How the type of input function affects the dynamic response of conducting polymer actuators

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators. (paper)

  10. Conducting polymers and hybrid derivates with specific applications as sensors and bioactive platforms

    Fabregat Jové, Georgina

    2014-01-01

    The principal focus of this Thesis is the development and design of promising hybrid nanocomposites based on conducting polymers with the main objective of achieving applications in the field of biotechnology and biomedicine. The main lines of research can be summarized as follows;1) Preparation, characterization and evaluation of N-substituted polypyrrole derivatives and poly(3,4-ethylenedioxythiophene) (PEDOT) for electrochemical detection of dopamine, one of the neurotransmitters associate...

  11. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes. PMID:23035436

  12. Conducting polymers as positive electrodes in rechargeable lithium-ion batteries

    Otero, T.F.; Cantero, I. [Universidad del Pais Vasco, San Sebastian (Spain). Faculty of Chemistry

    1999-09-01

    The influence of the conditions of synthesis, such as both monomer and electrolyte concentrations, the electric potential of synthesis and temperature of work or the chosen solvent, on the properties of the polymeric material to be used as cathode of lithium-ion batteries, was studied. A similar study was performed to obtain three conducting polymers, as polypyrrole, polythiophene or poly-3-methylthiophene. Specific charges of the obtained materials, as a function of the conditions of synthesis were analysed. (orig.)

  13. Influence of electrically conductive polymers on the operating parameters of lead/acid batteries

    Dmitrenko, V.E.; Lubentsov, B.Z.; Yevdokimenko, S.G.; Lisyansky, I.I.; Soldatenko, V.A. [Electrozaryad Ltd., Galva Ltd., Moscow (Russian Federation)

    1997-07-01

    An investigation has been made of the possible application of electrically conductive polymers in efforts to improve the performance of lead/acid batteries. Results show that the new class of organic compounds may be used as modifiers of the active material to suppress self-discharge and irreversible sulfation and to increase the specific capacity of the battery, especially under automotive discharge rates and at low temperature. (orig.)

  14. Impedance Study of Drinking Water and Tastants Using Conducting Polymer and Metal Electrodes

    Pawan Kapur

    2012-05-01

    Full Text Available In this study the sensing capabilities of a combination of metals and conducting polymer electrodes for drinking water and dissolved tastants using an AC-impedance mode in frequency range 102 to 105 Hz at 0.1 V potential has been carried out. Classification of seven different bottled and municipal drinking water samples along with various tastants dissolved in DI water(DI water for KCl (5mM (salty, HCl (5 mM (sour quinine (0.1 mM (bitter, sucrose (5 mM (sweet, black tea liquor, black tea liquor with sucrose (2% sugar solution, and a bottle of “packed” orange juice has been made using six different working electrodes in a multi electrode setup using PCA. Working electrodes of Platinum (Pt, Gold (Au, Silver (Ag, Glassy Carbon (GC and conducting polymer electrodes of Polyaniline (PANI and Polypyrrole (PPY grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these water samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in water/tastants. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From PCA plots it was possible to classify drinking water in 3-4 classes using conducting polymer electrodes; however tastants were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  15. Freeze Drying Improves the Shelf-Life of Conductive Polymer Modified Neural Electrodes

    Mandal, Himadri S.; Richard O. Cliff; Pancrazio, Joseph J

    2015-01-01

    Coating microelectrodes with conductive polymer is widely recognized to decrease impedance and improve performance of implantable neural devices during recording and stimulation. A concern for wide-spread use of this approach is shelf-life, i.e., the electrochemical stability of the coated microelectrodes prior to use. In this work, we investigated the possibility of using the freeze-drying process in order to retain the native low impedance state and, thereby, improve the shelf-life of cond...

  16. Structural characterization and thermally stimulated discharge conductivity (TSDC) study in polymer thin films

    V S Sangawar; R J Dhokne; A U Ubale; P S Chikhalikar; S D Meshram

    2007-04-01

    The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature. The formation of charge transfer (CT) complexes and strong concentration dependence of carrier mobility point out that the current carriers are transported through doped polymer system via hopping among sites associated with the dopant molecules. The activation energy, a, was calculated from the graph of logvs 103/ plot within low and high temperature regions.

  17. Laser emission from spiral-shaped microdisc with waveguide of conducting polymer

    Spiral microdiscs with waveguide based on a conducting polymer have been fabricated on quartz substrates and the emission properties have been studied. The directivity and the polarization properties of laser emission from the spiral microcavities with waveguide based on a poly(p-phenylenevinylene) derivative have been investigated by pulsed photo-pumping. The red laser emission from the spiral microdisc with waveguide has been observed, and the directivity of this microdisc geometry has been discussed taking the mathematical simulation into consideration

  18. Laser emission from spiral-shaped microdisc with waveguide of conducting polymer

    Tsujimoto, Naoki; Takashima, Tetsuya; Nakao, Takashi; Masuyama, Kimihiro; Fujii, Akihiko; Ozaki, Masanori [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2007-03-21

    Spiral microdiscs with waveguide based on a conducting polymer have been fabricated on quartz substrates and the emission properties have been studied. The directivity and the polarization properties of laser emission from the spiral microcavities with waveguide based on a poly(p-phenylenevinylene) derivative have been investigated by pulsed photo-pumping. The red laser emission from the spiral microdisc with waveguide has been observed, and the directivity of this microdisc geometry has been discussed taking the mathematical simulation into consideration.

  19. Influence of conductive polymer doping on the viability of cardiac progenitor cells

    Gelmi, Amy; Kozak Ljunggren, Monika; Rafat, Mehrdad; Jager, Edwin

    2014-01-01

    Cardiac tissue engineering via the use of stem cells is the future for repairing impaired heart function that results from a myocardial infarction. Developing an optimised platform to support the stem cells is vital to realising this, and through utilising new smart materials such as conductive polymers we can provide a multi-pronged approach to supporting and stimulating the stem cells via engineered surface properties, electrical, and electromechanical stimulation. Here we present a fundame...

  20. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Beleze Fábio A.; Zarbin Aldo J. G.

    2001-01-01

    In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA) and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V) present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic...