WorldWideScience

Sample records for nanocrystal conducting polymer

  1. Lead sulfide nanocrystal: conducting polymer solar cells

    International Nuclear Information System (INIS)

    In this paper, we report photovoltaic devices fabricated from lead sulfide nanocrystals and the conducting polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene). This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n = 1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials

  2. Semiconductor-nanocrystal/conjugated polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  3. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  4. Optical spectroscopic studies of composites of conducting PANI with CdSe and ZnO nanocrystals

    Science.gov (United States)

    Bhat, S. V.; Vivekchand, S. R. C.

    2006-12-01

    Composites of CdSe and ZnO nanocrystals with conducting polyaniline have been prepared and investigated by optical spectroscopic method. A decrease in nanocrystal photoluminescence has been observed with the increase in the concentration of the polymer in the composites. The study shows that polyaniline causes the quenching of the nanocrystal luminescence.

  5. Cellulose based conductive polymers

    OpenAIRE

    Lin, Haishu

    2015-01-01

    Conductive fibers show potential applications in different areas. In this thesis, cellulose and its derivatives, including carboxymethyl cellulose, cellulose acetate as well as methyl cellulose were used to produce fibers via wet spinning. Different conductive materials were also introduced in an attempt to obtain cellulose-derived conductive fibers. Different conductive fillers (Zelec, carbon black, conductive polymers) were evaluated. Among them, PEDOT and PPy conductive polymers showed...

  6. Polymer-Conducting Polymer Composites

    Science.gov (United States)

    Monrreal, Juan; Foltz, Heinrich D.; Garcia, Elsa; Lozano, Karen; Villareal, Marcos; Tidrow, Steven C.; Dorina Chipara, Magdalena; Chipara, Mircea

    2008-03-01

    Polyaniline is a conducting polymer with high electrical conductivity, good thermal and thermo-oxidative resistance, and poor mechanical properties. To overcome these weaknesses, the conducting nanoparticles were dispersed within polymeric matrices characterized by high mechanical strength or high elasticity. Such composite materials found applications as lightweight antistatic materials (at low doping levels) and electromagnetic shielding capabilities (at high doping levels, typically above the percolation threshold for electrical conductivity) and exhibit potential applications as metamaterials. Nanosized particles of polyaniline were dispersed within polymeric matrices (polystyrene, polyvinylchloride, and polyethylene). The thermal properties were investigated by Thermal Analysis and Differential Scanning Calorimetry. FTIR/ATR, Raman spectroscopy, and Electron Spin Resonance spectroscopy provided additional information about the effect of nanofiller on the polymeric matrix. Electrical (dc) measurements confirmed the increase of the electrical conductivity as the concentration of conducting nanoparticle is increased and revealed a broad percolation behavior. The effect of the conducting nanofiller on the mechanical properties is reported.

  7. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (inventors)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  8. Ligand engineering in hybrid polymer:nanocrystal solar cells

    Directory of Open Access Journals (Sweden)

    Matthew J. Greaney

    2015-01-01

    Full Text Available Blends of semiconducting polymers and inorganic semiconductor nanocrystals are receiving renewed interest as a type of inexpensive, solution-processed third generation solar cell. In these hybrid bulk heterojunctions (BHJs, the interface between the disparate organic and inorganic phases is a dominating factor in the overall performance of the resulting devices. Paramount to this interface is the ligand landscape on the nanocrystal surface, which as a result of the inherently large surface area to volume ratio of the nanocrystals, has a significant spatial and electronic influence on the boundary between the donor polymer and acceptor nanocrystal. We have investigated the importance of this three-part polymer/ligand/nanocrystal interface by studying the ligand effects in hybrid BHJ solar cells. In this article, we highlight the major research advances and the state-of-the-art in hybrid BHJ solar cells with respect to ligand engineering, as well as outline future research avenues deemed necessary for continued technological advancement.

  9. Polyaniline: a conducting polymer.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchov, Miroslava

    Busan : IUPAC, 2015. MT-P0373-MON. [World Chemistry Congress /45./. 09.08.2015-14.08.2015, Busan] R&D Projects: GA Mk(CZ) LG13037 Institutional support: RVO:61389013 Keywords : conductivity * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry

  10. Spectroscopy of conducting polymers.

    Czech Academy of Sciences Publication Activity Database

    Trchov, Miroslava; Stejskal, Jaroslav

    Busan : IUPAC, 2015. MT-P0387-MON. [World Chemistry Congress /45./. 09.08.2015-14.08.2015, Busan] R&D Projects: GA Mk(CZ) LG13037 Institutional support: RVO:61389013 Keywords : vibration spectroscopy * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry

  11. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld; Wallace, Gordon

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the...... present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  12. Conductive Polymer Composites

    OpenAIRE

    Pierini, Filippo

    2013-01-01

    In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, ...

  13. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjrn; Chen, Jun; West, Keld; Wallace, Gordon

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped...

  14. Superstructures of PbS nanocrystals in a conjugated polymer and the aligning role of oxidation.

    OpenAIRE

    Stavrinadis, A.; Xu, S; Warner, JH; Hutchison, JL; Smith, JM; Watt, AA

    2009-01-01

    We present a method to directly align PbS nanocrystals in micron-sized superstructures within a conjugated polymer. First, lead sulfide nanocrystals are directly synthesized in a MEH-PPV suspension via a single pot, surfactant-free method. Post-synthesis precipitation of the composite solution involving mild oxidation of the nanocrystals results in the formation of nanocrystal-polymer and nanocrystal-oxide superstructures. Detailed TEM is used to study the crystallographic nature of these str...

  15. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo, Jaime; Emnus, Jenny; Svendsen, Winnie Edith

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  16. Conductivity and superconductivity in polymers

    International Nuclear Information System (INIS)

    Most of the paper is concerned with the mechanism of conduction in organic materials, and properties of particular classes of organic conductor. The final section reviews about 20 papers on attempts to prepare superconducting organic polymers. Following the general introduction, the sections are entitled: molecular conductivity, conjugated molecules, charge-transfer complexes, radical ions, radical cations, photoconduction, organometallic polymers, superconduction, conclusions. (U.K.)

  17. Variable range hopping conduction in semiconductor nanocrystal solids

    OpenAIRE

    Yu, Dong; Wang, Congjun; Wehrenberg, Brian L.; Guyot-Sionnest, Philippe

    2004-01-01

    The temperature and electrical field dependent conductivity of n-type CdSe nanocrystal thin films is investigated. In the low electrical field regime, the conductivity follows G ~ exp(-(T*/T)^0.5) in the temperature range 10K

  18. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI); Dourado, Sunil K. (Ann Arbor, MI); Dulebohn, Joel I. (Lansing, MI); Hanchar, Robert J. (Charlotte, MI)

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  19. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  20. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  1. Culture experiments on conductive polymers

    International Nuclear Information System (INIS)

    Fibroblast L929 and myoblast C2C12 cells of the mouse connective tissue origin were sown on the surface of conductive polymer films (polypyrrole, PPy and poly(3,4-ethylenedioxythiophene), PEDOT) in the cell culture medium, and the proliferative process of these cells was observed. Without changing the form, fibroblast L929 and myoblast C2C12 cells were observed to proliferate almost similarly to the cell which cultured on a dish on the market and to maintain compatibility. In other word, it has been understood these two kinds of conductive polymers used in this study, the PEDOT films maintain the secretion function of the cell cultured on the surface of these polymers. Therefore, the PPy- and the PEDOT-coated electrode suggested the possibility usable as a nerve stimulation electrode with biocompatibility, because these polymers were effective to culture the cell.

  2. Theory of hopping conduction in arrays of doped semiconductor nanocrystals

    OpenAIRE

    Skinner, Brian; Chen, Tianran; Shklovskii, B. I.

    2012-01-01

    The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way on the level of doping as well as on the NC size and spacing. The choice of these parameters determines whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at different doping levels and for different types of NCs. In th...

  3. Superstructures of PbS nanocrystals in a conjugated polymer and the aligning role of oxidation

    International Nuclear Information System (INIS)

    We present a method to directly align PbS nanocrystals in micron-sized superstructures within a conjugated polymer. First, lead sulfide nanocrystals are directly synthesized in a MEH-PPV suspension via a single pot, surfactant-free method. Post-synthesis precipitation of the composite solution involving mild oxidation of the nanocrystals results in the formation of nanocrystal-polymer and nanocrystal-oxide superstructures. Detailed TEM is used to study the crystallographic nature of these structures and the roles of polymer and lead sulfate. An epitaxial relationship between lead sulfide and lead sulfate at the nanoscale is shown, giving insight into the oxidation rates of the PbS nanocrystals' facets.

  4. Electrically conductive polymer concrete overlays

    Science.gov (United States)

    Fontana, J. J.; Webster, R. P.

    1984-08-01

    The use of cathodic protection to prevent the corrosion of reinforcing steel in concrete structures has been well established. Application of a durable, skid-resistant electrically conductive polymer concrete overlay would advance the use of cathodic protection for the highway industry. Laboratory studies indicate that electrically conductive polymer concrete overlays using conductive fillers, such as calcined coke breeze, in conjunction with polyester or vinyl ester resins have resistivities of 1 to 10 ohm-cm. Both multiple-layer and premixed mortar-type overlays were made. Shear bond strengths of the conductive overlays to concrete substrates vary from 600 to 1300 psi, with the premixed overlays having bond strengths 50 to 100% higher than the multiple-layer overlays.

  5. Nanocrystal-polymer nanocomposite electrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  6. Water-soluble conductive polymers

    Science.gov (United States)

    Aldissi, Mahmoud (Sante Fe, NM)

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  7. Synthesis and characterization of carbon nanotubes covalently functionalized with amphiphilic polymer coated superparamagnetic nanocrystals

    OpenAIRE

    Bear, JC; McNaughter, PD; Jurkschat, K; Crossley, A.; Aldous, L; Compton, RG; Mayes, AG; Wildgoose, GG

    2012-01-01

    Herein, we report the synthesis of three covalently linked superparamagnetic nanocrystal-multi-walled carbon nanotube (MWCNT) composites. A generic strategy for amphiphilic polymer coating of nanocrystals and further functionalization for amide bond formation with the MWCNTs is discussed. This approach can in principle allow attachment of any colloidal nanocrystal to the MWCNTs. The materials were characterized at each stage of the syntheses using DLS, zeta-potential measurements, FT-IR, TEM,...

  8. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  9. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  10. Optical Gain from InAs Nanocrystal Quantum Dots in a Polymer Matrix

    CERN Document Server

    Chen, G; Fuchs, D; Vilan, S; Aharoni, A; Banin, U; Chen, Gang; Rapaport, Ronen; Fuchs, Dan; Vilan, Sahar; Aharoni, Assaf; Banin, Uri

    2005-01-01

    We report on the first observation of optical gain from InAs nanocrystal quantum dots emitting at 1.55 microns based on a three-beam, time resolved pump-probe technique. The nanocrystals were embedded into a transparent polymer matrix platform suitable for the fabrication of integrated photonic devices.

  11. Electrically conducting polymers for aerospace applications

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  12. Molecular and supramolecular orientation in conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Aldissi, M.

    1987-01-01

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives ..pi..-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs.

  13. Molecular and supramolecular orientation in conducting polymers

    International Nuclear Information System (INIS)

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  14. A merocyanine-based conductive polymer

    OpenAIRE

    Wagner, Klaudia; Zanoni, Michele; Elliott, Anastasia B.S.; Wagner, Pawel; Byrne, Robert; Florea, Larisa; Diamond, Dermot; Gordon, Keith; Wallace, Gordon; Officer, David

    2013-01-01

    We report the first example of a conducting polymer with a merocyanine incorporated into the polymer backbone by electropolymerisation of a spiropyran moiety covalently linked between two alkoxythiophene units. Utilising the known metal coordination capabilities of merocyanines, introduction of cobalt ions into the electropolymerisation led to an enhancement of the conductivity, morphology and optical properties of the polymer films.

  15. A Platform for Functional Conductive Polymers

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik; Hansen, Thomas Steen; Larsen, Niels Bent; Hvilsted, Sren

    Conductive polymers have been studied extensively during recent years. In order to broaden the application field of conductive polymers different methods have been tested and recently an azide functional poly(3,4-ethylenedioxythiophene) (PEDOT-N3) was developed(1, 2). The azide functional...... conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... polymer can be prepared with a subsurface layer of highly conductive polymer where only the upper surface has been grafted with functional groups to ensure selectivity of the surface layer for e.g. interaction with specific biospecies. The conductive polymer can be patterned using selective etching, which...

  16. Nonconjugated Conductive Polymers; Nonlinear Optical Effects

    Science.gov (United States)

    Thakur, Mrinal

    2011-10-01

    Nonconjugated conductive polymers are polymers with at least one double bond per repeat unit and having a double-bond number fraction less than 1/2 along the polymer backbone. In this presentation, recent results on nonlinear optical properties of nonconjugated conductive polymers will be discussed. Exceptionally large (the largest known) quadratic electro-optic effect and two-photon absorption coefficients have been recently reported for doped nonconjugated conductive polymers including: cis-polyisoprene (natural rubber), poly(?-pinene), trans-polyisoprene, and others. These large nonlinearities have been attributed to the nanometallic-like structures with subnanometer domains which are formed upon doping and charge-transfer involving nonconjugated conductive polymers. Various applications of nonconjugated conductive polymers such as in sensors, rechargeable batteries, light emission, photovoltaics, optical limiting, electro-optic modulation and laser-writing will be briefly discussed.

  17. Application potential of conducting polymers

    International Nuclear Information System (INIS)

    Intrinsically conducting polymers (ICPs) represent a special class of weak materials with electronic and ionic conductivity. Chemical and physical properties are dependent on their redox state. These properties allow a wide application as functional coatings. At constant film conditions, ICPs can be used in the dry or wet state due to their electronic conductivity, due to their porous structure or due to their processibility in microstructuring processes. The production of conducting electrodes on electrolyte condensers and the through hole plating of printed circuit boards (PCBs) represent typical examples. In sensors and membranes, the pore structure is applied. The application of variable properties, however, is of much greater interest. It is based on the change of charge, electronic states, chemical composition and mechanical properties during the reversible redox process. In contrast to original expectations, small intercalation factors hinder the application in batteries or supercaps. For OLEDs, however, most problems seem to be solved. Application of switching hydrophilic/hydrophobic properties is proved for offset printing but not yet applied. Usually, the anodic doping is investigated. The correspondent cathodic doping opens additional applications. The application of ICPs in functional coatings requires special properties such as fast response (e.g. in ms), stability for 103 cycles for batteries and 106 switches for displays, and a constant potential of discharge for batteries. Moreover, the stability against corrosion, overoxidation and delamination has to be guaranteed. Chemical modification of the monomer allows wide variations of properties, but economic requirements limit the price of the monomer and, thereby, the thickness or quality of the coating

  18. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  19. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole; Larsen, Niels Bent

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers...

  20. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  1. Prospects of conducting polymers in biosensors

    International Nuclear Information System (INIS)

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  2. ELECTRICALLY CONDUCTIVE POLYMER-POLYMER COMPOSITES

    OpenAIRE

    Galvin, M; Wnek, G.

    1983-01-01

    Conductive composites have been prepared by polymerization of acelene in polyethylene films followed by iodine doping. The attainment of high conductivity (5-10 S/cm) at low (CH)x concentrations (?3 wt%) is explained with a simple percolation model.

  3. Colloidal transparent conducting oxide nanocrystals: A new infrared plasmonic material

    Indian Academy of Sciences (India)

    Bharat Tandon; Aswathi Ashok; Angshuman Nag

    2015-06-01

    Thin films of transparent conducting oxides (TCO) are technologically important for applications as a visible light transparent electrode in a wide variety of optoelectronic devices. In the last few years, researchers started to explore novel size- and shape-dependent properties of TCO, where the crystallite size is ?10 nm. So far, the localized surface plasmon resonance (LSPR) properties of TCO nanocrystals (NCs) have been found to be the most interesting. TCOs like Sn-doped In2O3, Al-doped ZnO and In-doped CdO NCs, exhibit LSPR band in near- to mid-infrared region. LSPR from a TCO NC exhibits many intrinsic differences with that of a metal NC. Carrier density in a TCO NC can easily be tuned by controlling the dopant concentration, which allows the LSPR band to be tuned over a range of ?2000 nm (?0.62 eV) in the near- to mid-infrared region. This review discusses recent advances in the understanding of plasmonic properties of various TCO NCs and highlights the potential applications of such unique plasmonic properties.

  4. Nanostructured conductive polymers for advanced energy storage.

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-01

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions. PMID:26119242

  5. Kinetics of radiation conductivity of polymer dielectrics

    International Nuclear Information System (INIS)

    Peculiarity of radiation conductivity kinetics of partially crystalline polymers (PTFE, PENP, PEVP, PP) at continuous electrons action (75 eV), dose rate D>10 Gy/s, within temperature range 100-373 K is existence of two and more maxima at certain irradiation temperatures. It is determined, that radiation conductivity in examined polymers have at less three kinetically distinguishable stages, and it does not approximating with simple power function going after the dispersion transport theory. Radiation conductivity of indicated polymers is determining by competition of jump and diffusion-controlled mechanism of charge carriers. It is stated, that radiation electric conductivity in the indicated objects is determining by molecular relaxation spectrum

  6. Morphology in electrochemically grown conducting polymer films

    Science.gov (United States)

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  7. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole; Larsen, Niels Bent

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested, with...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties of the...

  8. Electro-Click on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik

    An azide substituted 3,4-ethylenedioxythiophene monomer is polymerised to yield a PEDOT like polymer with available azide groups (Figure 1). The azide groups enable post polymerization functionalization of the conducting polymer using a 1,3 dipolar cycloaddition reaction also denoted click chemistry. This facilitates the addition of compounds that can otherwise not withstand the polymerization conditions. Several biological active molecules have been attached and tested on the films. Furthermore conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. Electro-click on conducting polymer films shows the potential for being an important platform for biological devices and sensors.

  9. CONDUCTIVE POLYMERS AS ELECTRODE MATERIALS

    OpenAIRE

    Armand, M.

    1983-01-01

    Polyacetylene and its related polymers are amphoteric insertion compounds accomodating both cations and anions. This property make them ideal candidates for electrochemical energy storage. However the electrochemistry of these compounds is not fully clarified and the main remaining problems are evoked here.

  10. Hybrid conducting polymer-silver composites.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchov, Miroslava

    Ljubljana : Centre of Excellence PoliMaT, 2013 - (igon, M.; Rajp, T.), s. 228-230 ISBN 978-961-269-992-5. [Austrian - Slovenian Polymer Meeting /3./ - ASPM 2013. Bled (SI), 03.04.2013-05.04.2013] R&D Projects: GA ?R GA202/09/1626; GA TA ?R TE01020022 Institutional support: RVO:61389013 Keywords : conducting polymers * polymer-silver composites * polyaniline Subject RIV: BK - Fluid Dynamics

  11. Electronically conducting polymers with silver grains

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dolibor (Inventor)

    1999-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  12. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin; Vigild, Martin Etchells; Ndoni, Sokol; Chen, Jun

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking. The resulting nanoporous polymers exhibited a promising electroactivity.

  13. A New Approach to the Synthesis of Conjugated Polymer: Nanocrystal Composites for Heterojunction Optoelectronics

    OpenAIRE

    Watt, A.; Thomsen, E; Meredith, P; Rubinsztein-Dunlop, H.

    2004-01-01

    We report a simple one pot process for the preparation of lead sulfide (PbS) nanocrystals in the conjugated polymer poly (2-methoxy-5-(2'ethyl-hexyloxy)-p-phenylene vinylene)(MEH-PPV), and we demonstrate electronic coupling between the two components.

  14. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  15. Electrochemical sensor based on conductive polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ribes, C.; Cisneros, B.; Noding, S.A.; Ribes, A.J. [Dow Chemical Co., Plaquemine, LA (United States)

    1995-12-31

    A novel conductive polymer film has been incorporated into an electrochemical sensor for the determination of toxic gases. The conductive film consists of an inert polymer, a completing agent, and a salt. A variety of gases can be determined with this sensor. The specific detection of sulfuryl fluoride (SO{sub 2}F{sub 2}) in air will be discussed as an example of the capability and flexibility of technology.

  16. Nondestructive photolithography of conducting polymer structures

    Science.gov (United States)

    Chan, J. R.; Huang, X. Q.; Song, A. M.

    2006-01-01

    We have demonstrated a nondestructive method using ultraviolet (UV) photolithography to fabricate micrometer-sized conducting polymer structures. By coating a polymer film on patterned photoresist and then performing liftoff, UV exposure to the conducting polymer film was prevented throughout the lithography processes. We created features down to 1 ?m with high yield. Such complementary metal-oxide-semiconductor-compatible microfabrication can be applied generally to various organic films, and may allow the speed of organic electronics to be improved. Organic thin-film transistors (OTFTs) were fabricated using poly(3-hexylthiophene) as the active material, and typical OTFT characteristics were obtained.

  17. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  18. Direct synthesis of PbS nanocrystals capped with 4-fluorothiophenol in semiconducting polymer

    International Nuclear Information System (INIS)

    We report on a simple chemical route to directly synthesize PbS nanocrystals capped with 4-fluorothiophenol in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] semiconducting polymer. An intermediate composite, which has been characterized by X-ray photoelectron spectroscopy, has been synthesized to be used as nanocrystal precursor that contains both the metal and capping agent. Transmission electron microscopy images show that good quality nanoparticles with a mean size of ?5 nm are obtained with this method. Optical absorption measurements show that the absorption band of the polymer is extended as the PbS nanoparticles are included. Photoluminescence of the polymer becomes partially quenched as the concentration of the nanoparticles is increased in the composite.

  19. Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics

    International Nuclear Information System (INIS)

    The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be ?10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics

    Science.gov (United States)

    Kovalevskij, V.; Gulbinas, V.; Piskarskas, A.; Hines, M. A.; Scholes, G. D.

    2004-07-01

    The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be 10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host.

  1. Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevskij, V. [Institute of Physics, Savanoriu Av. 231, LT-2053 Vilnius (Lithuania); Gulbinas, V. [Institute of Physics, Savanoriu Av. 231, LT-2053 Vilnius (Lithuania); Vilnius University, Sauletekio al. 9, bldg. 3, LT-2040 Vilnius (Lithuania); Piskarskas, A. [Vilnius University, Sauletekio al. 9, bldg. 3, LT-2040 Vilnius (Lithuania); Hines, M.A.; Scholes, G.D. [University of Toronto, Department of Chemistry, 80 St. George St., Toronto, Ontario M5S 3H6 (Canada)

    2004-07-01

    The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be {proportional_to}10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Tactile Sensors Based on Conductive Polymers

    OpenAIRE

    Macicior, Haritz; Sikora, Tomasz; Ochoteco, Estbalitz; Castellanos Ramos, Julin; Navas Gonzlez, Rafael; Vidal Verd, Fernando

    2010-01-01

    This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive material. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The ...

  3. Liquid crystal-templated conducting organic polymers

    Science.gov (United States)

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  4. Phonon dispersion and thermal conductivity of nanocrystal superlattices using three-dimensional atomistic models

    Energy Technology Data Exchange (ETDEWEB)

    Zanjani, Mehdi B.; Lukes, Jennifer R., E-mail: jrlukes@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-04-14

    A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.11?W/m K that are consistent with reported experimental results.

  5. Electrodeposited metals at conducting polymer electrodes

    International Nuclear Information System (INIS)

    Conducting polymers are electrochemically polymerized at platinum electrode substrates. The thickness, porosity and surface morphology of the resulting films are controlled by the charge passing during electropolymerization step and the synthesis conditions. The polymer films are modified by electrochemically depositing platinum particles. The technique of deposition depends on applying a programmed potential pulse at the polymer film from a solution containing platinum complex that resulted in the formation of platinum particles of controlled size and distribution. The effect of changing the size of platinum particles and polymer film thickness on the voltammetric behavior of the resulting hybrid material showed noticeable changes in the electro-catalytic current in acid medium. On the other hand, the electrochemical impedance spectroscopy experiments showed that diffusion and charge-transfer rate increased in the order: unmodified polymer films, thin polymer films containing small size/amount of platinum particles and relatively thick polymer films containing larger size/amount of platinum particles. The morphology of polymer films, size and distribution of platinum particles in the film were studied by scanning electron microscopy. The presence of platinum and its distribution over the film surface was confirmed from the X-ray dispersive analysis and surface mapping. The hybrid materials are good candidates for the application in devices for exchange of hydrogen ions

  6. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.; Christensen, A.; Boisen, Anja

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer ba...

  7. Interpenetrating networks of two conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjrn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and because its reaction products can be removed efficiently after the formation of the composite. Several combinations of polymers are demonstrated, and the versatility of the proposed method allows extensions ...

  8. Enhanced luminescence in metal/ (conducting polymer) nanocomposites

    International Nuclear Information System (INIS)

    Full text: We will discuss the ELINOR effect, the Enhanced Luminescence of INorganic and ORganic origin, which we recently identified in different (noble metal)/(conducting polymer) nanocomposites. The intense fluorescence of these composites can be pinned down to a synergic interaction between the plasmonic response of the nanostructured metallic aggregate and the electronic relaxation offered by the conducting polymer chains. We have shown that by careful control of the preparation conditions we can tune both the intensity and the wavelength of the emission maximum. We will discuss possible applications of these nanocomposites as molecular biomarkers (where we exploit the electrical affinity between conducting polymer chains and DNA molecules) and in the increase of efficiency of photovoltaic devices and solid state displays. Preliminary results of the ELINOR effect as a tool for rapid diagnosis of viral diseases and genetic polymorphisms will be also presented

  9. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  10. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  11. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity

    International Nuclear Information System (INIS)

    We study the processes of charge separation and transport in composite materials formed by mixing cadmium selenide or cadmium sulfide nanocrystals with the conjugated polymer poly(2-methoxy,5-(2'-ethyl)-hexyloxy-p-phenylenevinylene) (MEH-PPV). When the surface of the nanocrystals is treated so as to remove the surface ligand, we find that the polymer photoluminescence is quenched, consistent with rapid charge separation at the polymer/nanocrystal interface. Transmission electron microscopy of these quantum/conjugated-polymer composites shows clear evidence for phase segregation with length scales in the range 10 endash 200 nm, providing a large area of interface for charge separation to occur. Thin-film photovoltaic devices using the composite materials show quantum efficiencies that are significantly improved over those for pure polymer devices, consistent with improved charge separation. At high concentrations of nanocrystals, where both the nanocrystal and polymer components provide continuous pathways to the electrodes, we find quantum efficiencies of up to 12%. We describe a simple model to explain the recombination in these devices, and show how the absorption, charge separation, and transport properties of the composites can be controlled by changing the size, material, and surface ligands of the nanocrystals. copyright 1996 The American Physical Society

  12. /?SR of conducting and non-conducting polymers

    Science.gov (United States)

    Pratt, F. L.; Blundell, S. J.; Jestdt, Th; Lovett, B. W.; Husmann, A.; Marshall, I. M.; Hayes, W.; Monkman, A.; Watanabe, I.; Nagamine, K.; Martin, R. E.; Holmes, A. B.

    2000-08-01

    ?SR has been used to study a variety of polymers with very different electronic properties. In conducting polymers, the muon-generated radical states take the form of highly mobile polarons. Muon spin relaxation has been used to study the mobility of these polarons and to measure the temperature dependence of their intra-chain and inter-chain diffusion rates. It is found that the transport properties are strongly influenced by the librational ring modes of the phenylene rings in these polymers. In contrast, the muon-generated radical states in non-conducting polymers such as polybutadiene remain localised near the site of the muon. High field muon spin rotation, avoided level crossing resonance and longitudinal relaxation studies have been made, using the muon radical state as a probe of the dynamical properties of the polymer. Dramatic changes in the ?SR signals are seen on going through the glass-rubber transition, as various dynamical degrees of freedom become frozen out. Additional information about the stability of the muon radical states on the microsecond timescale has also been obtained using RF muon spin rotation techniques. Using time-delayed RF resonance of the diamagnetic state at the RIKEN-RAL muon facility, the transition rate between paramagnetic and diamagnetic states could be studied as a function of temperature.

  13. Conductive polymer/high-Tc superconductor assemblies

    International Nuclear Information System (INIS)

    The fabrication of electronic devices from conductive polymer materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodies have all been prepared utilizing such substances. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa2Cu3O7-? microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa2Cu3O7-? film, the oxidized (conductive) polymer depresses Tc by up to 15 K. Thus, a new type of molecular switch for controlling superconductivity is demonstrated

  14. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Sren

    2008-01-01

    Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed to functionalize films of PEDOT-N3 and copolymers prepared from EDOT-N3 and 3,4-ethylenedioxythiophene (EDOT). This approach enables new functionalities on PEDOT that could otherwise not withstand the polymerization conditions. Reactions on the thin polymer films have been optimized using an alkynated fluorophore, with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20 and -20/-25, respectively. The targeted chemical surface modifications have been verified by X-ray photoelectron spectroscopy analysis.

  15. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Sren; Hansen, Thomas Steen; Larsen, Niels Bent

    2008-01-01

    , with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20 and -20/-25, respectively. The targeted......Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed to...... functionalize films of PEDOT-N3 and copolymers prepared from EDOT-N3 and 3,4-ethylenedioxythiophene (EDOT). This approach enables new functionalities on PEDOT that could otherwise not withstand the polymerization conditions. Reactions on the thin polymer films have been optimized using an alkynated fluorophore...

  16. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin; Vigild, Martin Etchells; Ndoni, Sokol; Chen, Jun

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  17. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggal

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 46 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  18. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Sren; Hansen, Thomas Steen; Larsen, Niels Bent

    2008-01-01

    , with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20 and -20/-25, respectively. The targeted...

  19. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  20. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved.

  1. Ion-Conducting Organic/Inorganic Polymers

    Science.gov (United States)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  2. Polarons and irradiation conductivity of polymer materials

    International Nuclear Information System (INIS)

    The theoretical description of irradiation conductivity of polymer materials has for a long time lagged behind the requirements for practical applications and the theory has not developed to the point of explaining the accumulated experimental data. The only model deserving discussion is the Rose-Fowler-Waisberg model, formulated more than 30 years ago. One of the main initial assumptions of this model is that the material is uniform and isotropic. Real polymer materials, however, have a complicated heterogeneous structure, which should significantly influence their electrophysical characteristics. For example, it has been established that amorphous a tactic polystyrene contains uniform blocks (domains) up to 3 nm in size with close-range order and high density and the space between the blocks contains much more loosely packed intercallations in which the short-range order of the molecular packing is destroyed. Loosely packed intercallations are also present in crystalline polymer materials. Evidence for the existence of bipolarons in irradiated polymer material is provided mainly by the results of analysis of experimental data on the EPR and optical absorption spectra and the spectra of thermally stimulated currents in irradiated polystyrene. The analysis performed in this work still does not prove convincingly that irradiated polystyrene contains bipolarons and that bipolarons play a significant role in the formation of the irradiation conduction current. This is because the characteristic features of bipolaron formation in polymer materials have not been adequately studied. However, existing theoretical ideas and comparison of these ideas with experimental data on EPR and optical-absorption spectra as well as other effects in irradiated polystyrene are already sufficient grounds for concluding that bipolarons cannot be neglected in the construction of physical and mathematical models of irradiation conduction current

  3. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  4. Soliton and polaron dynamics in conducting polymers

    International Nuclear Information System (INIS)

    Solitons and polarons in conducting polymers are strongly coupled electron-lattice excitations. The lattice relaxation theory generalized by us to include the self-consistency of multi-electron states with lattice symmetry-breaking is summarized. The discrete symmetries and corresponding selection rules for both radiative and nonradiative processes are discussed. Theoretically calculated probability of nonradiative decay of an electron-hole pair into a soliton pair and that of electron (hole) into polaron as well as the probability of soliton pair photo-generation is compared with results of numerical and laboratory experiments. The resonance Raman scattering data of cis-polyacetylene are interpreted in terms of a bipolaron model. The parameters involved are determined directly from experimental data. Other applications of lattice relaxation theory to conducting polymers are briefly mentioned. (author). 40 refs, 5 figs

  5. Ionically conductive polymers for ER fluid preparation

    Energy Technology Data Exchange (ETDEWEB)

    Krzton-Maziopa, A; Plocharski, J [Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa (Poland)], E-mail: anka@ch.pw.edu.pl

    2009-02-01

    Two groups of electrorheological (ER) suspensions containing polyelectrolytes and solid polymer electrolytes as dispersed phases of ionic conductivity were synthesized and their ER effect at elevated temperatures was studied. Polymers were carefully characterised and detailed analysis of their ionic conductivity change with temperature was performed. It was found that in suspensions comprising both types of materials ER effect and current density were closely related to cation type presented in resin and in salt added to solid electrolyte. If small monovalent cations of high mobility were present in the solid phase the ER effect of suspensions as well as their current densities increased strongly with temperature both for polyelectrolytes and solid electrolytes. Presence of spatial cations resulted in lower power consumption and reasonable ER effect within wide temperature range.

  6. Ion conducting organic/inorganic hybrid polymers

    Science.gov (United States)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  7. Conductive polymers for carbon dioxide sensing

    OpenAIRE

    Doan, T.C.D.

    2012-01-01

    Augmented levels of carbon dioxide (CO2) in greenhouses stimulate plant growth through photosynthesis. Wireless sensor networks monitoring CO2 levels in greenhouses covering large areas require preferably low power sensors to minimize energy consumption. Therefore, the main objective of this research is to develop CO2 sensors using conductive polymer/polyelectrolyte blends as low power sensing layers operating at room temperature. The transduction principle is based on a relative change in co...

  8. Functional composite coatings containing conducting polymers

    OpenAIRE

    Jafarzadeh, Shadi

    2014-01-01

    Organic coatings are widely used to lower the corrosion rate of metallic structures. However, penetration of water, oxygen and corrosive ions through pores present in the coating results in corrosion initiation and propagation once these species reach the metal substrate. Considering the need for systems that offer active protection with self-healing functionality, composite coatings containing polyaniline (PANI) conducting polymer are proposed in this study. In the first phase of my work, PA...

  9. Electrochromic window with lithium conductive polymer electrolyte

    OpenAIRE

    Baudry, Paul; Aegerter, Michel A.; Deroo, Daniel; Valla, Bruno

    1990-01-01

    An electrochromic window was built using WO3 as the electrochromic material and V2O5 as the counter-electrode. Both were deposited onto ITO coated glass panes by vacuum evaporation and were amorphous to X-ray diffraction. The electrolyte was a lithium conducting polymer constituted by a Poly (ethylene oxide) - lithium salt complex. The electrochemical characterization of electrodes was realized by cyclic voltammetry, coulometric titration, and impedance spectroscopy, which allowd the determin...

  10. Gas Sensors Based on Conducting Polymers

    OpenAIRE

    Gaoquan Shi; Hua Bai

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  11. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Institute of Technology

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  12. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of click-chemistry to modify...... developed in this thesis are highly generic, and can therefore be applied for fabricating a diversity of microsystems based on conducting polymers, with multiple types of localized and highly bio-specific surfaces chemistries.......In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of click-chemistry to modify......-N3 thin film substrates. Complementing these findings, we introduce a novel technique for fabricating surface chemical gradients on PEDOT-N3 substrates. The technique is based on applying electro-click chemistry to locally induce covalent modifications. Further supplementing these results, we...

  13. Radiation-induced electric conductivity of polymers

    International Nuclear Information System (INIS)

    Radiation-induced electric conductivity of polystyrene, polyethylene and polypropylene, excited by pulses of accelerated (60 keV) electrons of 1 ms to 10 s duration with a change in electric field to prebreak down voltage (? 2x108 V/m) in vacuum at room temperature was studied. Specific features of recombination effects at increased dose rate were considered. General theoretic problems of radiation-induced electric conductivity of the polymers, especially of heminal mechanism realized in polypropylene, and for pulses of radiation shorter than 0.1 s in polyethylene, as well, are discussed

  14. Conducting polymer-hydrogels for medical electrode applications

    OpenAIRE

    Rylie A Green, Sungchul Baek, Laura A Poole-Warren and Penny J Martens

    2010-01-01

    Conducting polymers hold significant promise as electrode coatings; however, they are characterized by inherently poor mechanical properties. Blending or producing layered conducting polymers with other polymer forms, such as hydrogels, has been proposed as an approach to improving these properties. There are many challenges to producing hybrid polymers incorporating conducting polymers and hydrogels, including the fabrication of structures based on two such dissimilar materials and evaluatio...

  15. Electrochemical Analysis of Conducting Polymer Thin Films

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-04-01

    Full Text Available Polyelectrolyte multilayers built via the layer-by-layer (LbL method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene (PPV, in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randles circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values.

  16. HREELS and Auger studies of conducting polymers

    Science.gov (United States)

    Jennings, W. D.; Chottiner, G. S.; Natarajan, C.; Melo, A. V.; Hoffman, R. W.; O'Grady, W. E.; Lundstrm, I.; Salaneck, W. R.

    1985-04-01

    High Resolution Electron Energy Loss Spectroscopy (HREELS) and Auger Spectroscopy have been used to examine the surface of conducting polymer samples. The samples were 100 nm thick films of polypyrrole doped with either BF 4 or ClO 4 negative ions. The films were made in Sweden and shipped to the USA for study. HREELS spectra could be obtaineed without difficulty in the samples' "as-is" condition. These spectra showed broad bands corresponding to known polypyrrole vibrational modes. Exposure of the polymer to oxygen had no effect, but water could be adsorbed on the samples at 130 K. In addition to vibrational excitations, broader electronic transitions were also identified. Auger studies were performed in an effort to characterize the surface. These studies indicate that considerable non-stoichiometry exists in the surface region. There were, as expected, problems due to questionable sample cleanliness, sample charging, and electron beam damage.

  17. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly.

    Science.gov (United States)

    Wang, Shuman; Zhang, Xinxing; Wu, Xiaodong; Lu, Canhui

    2016-01-21

    Conductive polymer composites (CPCs) just above the percolation threshold exhibit a unique strain-reversible electric response upon application of tensile strain, which can be used to prepare strain sensors. However, it is difficult to balance the electric conductivity which is fundamental to a stable output signal and the strain sensing sensitivity due to the relatively dense conductive pathways of the traditional CPCs. Constructing a "brittle" but effective conductive network structure in CPCs is the essential foundation of a desirable sensing material. Here, we demonstrate for the first time that highly flexible, stretchable, sensitive, and reversible strain sensors can be fabricated by a facile latex assembly approach, in which nontoxic, sustainable and biodegradable cellulose nanocrystals played a key role in tailoring the percolating network of conductive natural rubber (NR)/carbon nanotube (CNT) composites. The resulting nanocomposites with a continuous 3D conductive structure exhibited a very low electrical conductivity percolation threshold (4-fold lower than that of the conventional NR/CNT composites), high resistivity and sensitivity (gauge factor ? 43.5) and meanwhile good reproducibility of up to 100% strain. The proposed materials and principles in this study open up a novel practical approach to design high performance flexible sensors for a broad range of multifunctional applications. PMID:26542376

  18. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Sren; Larsen, Niels Bent

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence...

  19. Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials

    Science.gov (United States)

    Toshima, Naoki; Ichikawa, Shoko

    2015-01-01

    Conducting polymers have received much attention recently as organic thermoelectric materials, because of such advantages as plentiful resources, easy synthesis, easy processing, low cost, low thermal conductivity, and easy fabrication of flexible, light, and printable devices with large area. Many reports on organic thermoelectric materials have recently been published. We have studied conducting polymers as organic thermoelectric materials since 1999. During these investigations, we found that the thermal conductivity of conducting polymers did not increase even though electrical conductivity increased; this was a major advantage of conducting polymers as organic thermoelectric materials. We also observed that molecular alignment was one of the most important factors for improvement of the thermoelectric performance of conducting polymers. Stretching of conducting polymers or their precursors was one of the most common techniques used to achieve good molecular alignment. Recently, alignment of the clusters of conducting polymers by treatment with solvents has been proposed as a means of achieving high electrical conductivity. Hybridization of conducting polymers with inorganic nanoparticles has also been found to improve thermoelectric performance. Here we present a brief history and discuss recent progress of research on conducting polymers as organic thermoelectric materials, and describe the techniques used to improve thermoelectric performance by treatment of conducting polymers with solvents and hybridization of conducting polymers with Bi2Te3 and gold nanoparticles.

  20. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jrme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Lucasz; Daussin, Raphal; Saib, Aimad

    2006-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 to 6 wt% carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loads. Th...

  1. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jrme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Luikasz; Daussin, Raphal; Saib, Aimad; Baudouin, Anne-Christine; Laloyaux, Xavier

    2007-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt % to 6 wt % carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loa...

  2. Conductive inks for metalization in integrated polymer microsystems

    Science.gov (United States)

    Davidson, James Courtney (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Tovar, Armando R. (San Antonio, TX)

    2006-02-28

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  3. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial. PMID:25647407

  4. Catalytic synthesis of metal crystals using conductive polymers

    Science.gov (United States)

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Los Alamos, NM)

    2008-01-15

    A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.

  5. Hybrid solar cells based on colloidal nanocrystals and conjugated polymers

    International Nuclear Information System (INIS)

    In this study, monodispersed colloidal titanium dioxide (TiO2) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM:TiO2/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO2 content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO2 content (15 wt.%) and annealing temperature (150 C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO2 absorbed more light photons in the P3OT:PCBM:TiO2 active layer. The charge transfer in the P3OT:PCBM:TiO2 active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm2, 34.46%, and 2.09%, respectively. - Highlights: Solar cell based on titania and conjugated polymer was fabricated. Optimal titania content and annealing temperature were investigated. Solar cell with 2.09% efficiency was obtained

  6. Characterizations of proton conducting polymer electrolytes for electrochemical capacitors

    International Nuclear Information System (INIS)

    Solid polymer electrolytes containing phosphotungstic acid (PWA) and/or silicotungstic acid (SiWA) in polyvinyl alcohol (PVA) were investigated for their proton conductivities. Enhanced conductivity was obtained when mixing PWA and SiWA at equal ratio. This polymer electrolyte was found viable for electrochemical capacitors. Thermal and structural analyses were conducted with DSC, XRD, and FTIR. The polymer electrolyte exhibited a different structure and different thermal properties from its respective components. The polymer electrolyte retained its original Keggin structure but contained crystallized protonated water in the form of H5O2+. The protonated water may contribute to the proton conductivity of the polymer electrolyte.

  7. Electrical Properties of Conductive Ge Nanocrystal Thin Films Fabricated by Low Temperature In-situ Growth

    OpenAIRE

    Zhang, B.; Y. Yao; Patterson, R.; Shrestha, S; Green, M. A.; Conibeer, G.

    2011-01-01

    Thin films composed of Ge nanocrystals embedded in amorphous SiO2 matrix (Ge-NCs TFs) were prepared using a low temperature in-situ growth method. Unexpected high p-type conductivity was observed in the intrinsic Ge-NCs TFs. Unintentional doping from shallow dopants was excluded as a candidate mechanism of hole generation. Instead, the p-type characteristic was attributed to surface state induced hole accumulation in NCs, and the hole conduction was found to be a thermally a...

  8. Light-induced instability in current conduction of aluminum nitride thin films embedded with Al nanocrystals

    International Nuclear Information System (INIS)

    Al nanocrystals (nc-Al) embedded in AlN thin films have been synthesized by rf magnetron sputtering. The influence of ultraviolet (UV) illumination on electrical characteristics of the nc-Al/AlN thin film system has been investigated. It is shown that the UV illumination could lead to a random change in the conductance of the thin film system. The change in the conductance is attributed to the charge trapping and detrapping in the nc-Al due to the UV illumination

  9. Chemical synthesis of chiral conducting polymers

    Science.gov (United States)

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Los Alamos, NM)

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  10. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    OpenAIRE

    Lijia Pan; Hao Qiu; Chunmeng Dou; Yun Li; Lin Pu; Jianbin Xu; Yi Shi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template met...

  11. Conducting polymers a new era in electrochemistry

    CERN Document Server

    Inzelt, Gyrgy

    2012-01-01

    The 2nd edition of this successful book is thoroughy updated to include additional polymers such as polyindole and polyazines, composites of polymers with carbon nanotubes, metals, and metal oxides, as well as bending-beam techniques for characterization.

  12. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  13. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  14. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    OpenAIRE

    Hyeonseok Yoon

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to buil...

  15. Potential profile in a conducting polymer strip

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Vlachopoulos, Nikolaos; Skaarup, Steen

    2002-01-01

    Many conjugated polymers show an appreciable difference in volume between their oxidized and reduced forms. This property can be utilized in soft electrochemically driven actuators, "artificial muscles". Several geometries have been proposed for the conversion of the volume expansion into useful mechanical work. In a particularly simple geometry, the length change of polymer strips is exploited. The polymer strips are connected to the driving circuit at the end of the strip that is attached to t...

  16. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  17. Proton Conducting Polymer Electrolyte Based on Pva-Pan

    Science.gov (United States)

    Devi, S. Siva; Selvasekarapandian, S.; Rajeswari, N.; Genova, F. Kingslin Mary; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    Proton conducting polymer electrolytes based on blend polymer using Poly Vinyl Alcohol (PVA) and Poly Acrylo Nitrile (PAN) doped with ammonium nitrate have been prepared by solution casting method. The highest conductivity at room temperature (305K) has been found to be 1.810-3 S cm-1 for 15 mole % NH4NO3 doped PVA-PAN system. X ray Diffraction pattern of the doped and the undoped blend polymer electrolyte confirms the amorphous nature of blend polymer, when salt is added. The complex formation between the blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy.

  18. Role of Cellulose Nanocrystals on the Microstructure of Maleic Anhydride Plasma Polymer Thin Films.

    Science.gov (United States)

    Brioude, Michel M; Roucoules, Vincent; Haidara, Hamidou; Vonna, Laurent; Laborie, Marie-Pierre

    2015-07-01

    Recently, it was shown that the microstructure of a maleic anhydride plasma polymer (MAPP) could be tailored ab initio by adjusting the plasma process parameters. In this work, we aim to investigate the ability of cellulose nanocrystals (CNCs) to induce topographical structuration. Thus, a new approach was designed based on the deposition of MAPP on CNCs model surfaces. The nanocellulosic surfaces were produced by spin-coating the CNC suspension on a silicon wafer substrate and on a hydrophobic silicon wafer substrate patterned with circular hydrophilic microsized domains (diameter of 86.9 4.9 ?m), resulting in different degrees of CNC aggregation. By depositing the MAPP over these surfaces, it was possible to observe that the surface fraction of nanostructures increased from 20% to 35%. This observation suggests that CNCs can act as nucleation points resulting in more structures, although a critical density of the CNCs is required. PMID:26035334

  19. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld; Skaarup, Steen

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion of the polymer phase. The osmotic effect causes solvent molecules to move into the polymer in a number far in excess of those bound strongly in the solvation shell of the mobile ion, resulting in larg...

  20. In situ growth of well-dispersed CdS nanocrystals in semiconducting polymers

    Science.gov (United States)

    Laera, Anna Maria; Resta, Vincenzo; Piscopiello, Emanuela; Miceli, Valerio; Schioppa, Monica; Scalone, Anna Grazia; Benedetto, Francesca Di; Tapfer, Leander

    2013-09-01

    A straight synthetic route to fabricate hybrid nanocomposite films of well-dispersed CdS nanocrystals (NCs) in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) is reported. A soluble cadmium complex [Cd(SBz)2]2MI, obtained by incorporating a Lewis base (1-methylimidazole, MI) on the cadmium bis(benzyl)thiol, is used as starting reagent in an in situ thermolytic process. CdS NCs with spherical shape nucleate and grow well below 200C in a relatively short time (30 min). Photoluminescence spectroscopy measurements performed on CdS/MEH-PPV nanocomposites show that CdS photoluminescence peaks are totally quenched inside MEH-PPV, if compared to CdS/PMMA nanocomposites, as expected due to overlapping of the polymer absorption and CdS emission spectra. The CdS NCs are well-dispersed in size and homogeneously distributed within MEH-PPV matrix as proved by transmission electron microscopy. Nanocomposites with different precursor/polymer weight ratios were prepared in the range from 1:4 to 4:1. Highly dense materials, without NCs clustering, were obtained for a weight/weight ratio of 2:3 between precursor and polymer, making these nanocomposites particularly suitable for optoelectronic and solar energy conversion applications.

  1. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  2. Proton-Conducting Magnetic Coordination Polymers.

    Science.gov (United States)

    Biswas, Soumava; Jena, Himanshu Sekhar; Sanda, Suresh; Konar, Sanjit

    2015-09-21

    Three isostructural lanthanide-based two- dimensional coordination polymers (CPs) {[Ln2 (L)3 (H2 O)2 ]n ?2n?CH3 OH)?2n?H2 O} (Ln=Gd(3+) (1), Tb(3+) (2), Dy(3+) (3); H2 L=cyclobutane-1,1-dicarboxylic acid) were synthesized by using a low molecular weight dicarboxylate ligand and characterized. Single-crystal structure analysis showed that in complexes 1-3 lanthanide centers are connected by ?3 -bridging cyclobutanedicarboxylate ligands along the c axis to form a rod-shaped infinite 1D coordination chain, which is further linked with nearby chains by ?4 -connected cyclobutanedicarboxylate ligands to form 2D CPs in the bc plane. Viewing the packing of the complexes down the b axis reveals that the lattice methanol molecules are located in the interlayer space between the adjacent 2D layers and form H-bonds with lattice and coordinated water molecules to form 1D chains. Magnetic properties of complexes 1-3 were thoroughly investigated. Complex 1 exhibits dominant ferromagnetic interaction between two nearby gadolinium centers and also acts as a cryogenic magnetic refrigerant having a significant magnetic entropy change of -?Sm =32.8?J?kg(-1) ?K(-1) for ?H=7?T at 4?K (calculated from isothermal magnetization data). Complex 3 shows slow relaxation of magnetization below 10?K. Impedance analysis revealed that the complexes show humidity-dependent proton conductivity (?=1.510(-5) ?S?cm(-1) for 1, ?=2.0710(-4) ?S?cm(-1) for 2, and ?=1.110(-3) ?S?cm(-1) for 3) at elevated temperature (>75?C). They retain the conductivity for up to 10?h at high temperature and high humidity. Furthermore, the proton conductivity results were correlated with the number of water molecules from the water-vapor adsorption measurements. Water-vapor adsorption studies showed hysteretic and two-step water vapor adsorption (182000??L?g(-1) for 1, 184000??L?g(-1) for 2, and 1874000??L?g(-1) for 3) in the experimental pressure range. Simulation of water-vapor adsorption by the Monte Carlo method (for 1) confirmed the high density of adsorbed water molecules, preferentially in the interlayer space between the 2D layers. PMID:26274020

  3. Applications of conducting polymers: robotic fins and other devices

    Science.gov (United States)

    Tangorra, James L.; Anquetil, Patrick A.; Weideman, Nathan S.; Fofonoff, Timothy; Hunter, Ian W.

    2007-04-01

    Conducting polymers are becoming viable engineering materials and are gradually being integrated into a wide range of devices. Parallel efforts conducted to characterize their electromechanical behavior, understand the factors that affect actuation performance, mechanically process films, and address the engineering obstacles that must be overcome to generate the forces and displacements required in real-world applications have made it possible to begin using conducting polymers in devices that cannot be made optimal using traditional actuators and materials. The use of conducting polymers has allowed us to take better advantage of biological architectures for robotic applications and has enabled us to pursue the development of novel sensors, motors, and medical diagnostic technologies. This paper uses the application of conducting polymer actuators to a biorobotic fin for unmanned undersea vehicles (UUVs) as a vehicle for discussing the efforts in our laboratory to develop conducting polymers into a suite of useful actuators and engineering components.

  4. Proton-conducting electrolyte membranes based on aromatic condensation polymers

    International Nuclear Information System (INIS)

    The results of investigations in the field of development and applications of proton-conducting electrolyte membranes based on aromatic condensation polymers are analysed and summarised. Primary attention is paid to the properties of the starting polymers, such as the thermal stability, water uptake and proton conductivity. General approaches to the preparation of aromatic condensation polymers with high proton conductivity are considered, including sulfonation, synthesis from monomers containing sulfonic acid groups, incorporation of alkylsulfonated substituents and formation of acid-basic polymer complexes. The bibliography includes 115 references.

  5. Nobel Prize 2000: from conducting polymers to molecular electronics

    International Nuclear Information System (INIS)

    In this paper the development of conducting organic polymers is reviewed. Poly(3-alkylthiophenes) with regioregularity exceeding 99% are especially interesting because if used as a thin semiconducting layer in the field effect transistor (FET) configuration they become superconducting at 2.35 K. This is the first example of the superconductivity of an organic polymer. Fields of use of conducting polymers are reviewed, too

  6. Solid Polymer Lithium-ion Conducting Electrolytes for Structural Batteries

    OpenAIRE

    Willgert, Markus

    2012-01-01

    This work comprises the manufacture and characterization of solid polymer lithium ion conducting electrolytes for structural batteries. In the study, polymer films are produced in situ via a rapid versatile UV irradiation polymerization route, in which ethylene oxide methacrylates are polymerized into thermoset networks. In the first part of the study, the simplicity and efficiency of this manufacturing route is emphasized. Polymer electrolytes are pro-duced with an ionic conductivity ranging...

  7. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Sren; Larsen, Niels Bent

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials.

  8. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    International Nuclear Information System (INIS)

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author)

  9. Nanostructured conducting polymer hydrogels for energy storage applications

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-07-01

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  10. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  11. Solar cells based on colloidal nanocrystals

    CERN Document Server

    Borchert, Holger

    2014-01-01

    This book presents a new system of solar cells. Colloidal nanocrystals possess many physical and chemical properties which can be manipulated by advanced control over structural features like the particle size. One application field is photovoltaics where colloidal semiconductor nanocrystals are explored as components of photo-active layers which can be produced from liquid media, often in combination with conductive polymers. The further development of this interdisciplinary field of research requires a deep understanding of the physics and chemistry of colloidal nanocrystals, conducting poly

  12. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (inventors)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  13. Bulk-heterojunction solar cells based on nanocrystal-polymer hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yunfei; Krueger, Michael [Freiburg Materials Research Centre (FMF), University of Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Urban, Gerald [Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany)

    2009-07-01

    Organic solar cells have the promising advantages of low-cost and large-area fabrication on flexible substrates. State-of-the-art organic solar cells based on blends of conjugated polymers and fullerene derivatives achieve efficiencies up to 5-6%. Inorganic semiconductor nanocrystals (NCs) e.g. out of CdSe, with tunable bandgaps and high intrinsic carrier mobilities, can be incorporated into conjugated polymers e.g. poly(3-hexylthiophene) (P3HT) to form bulk-heterojunction hybrid solar cells. In our group, a highly reproducible synthesis method for CdSe NCs has been developed, leading to monodisperse NCs with excellent photophysical properties. Current research is performed to control the shape and the lattice structure of the NCs within the same synthesis approach. Various solar cells based on bulk-heterojunction nanocomposite materials have been fabricated and characterized. We systematically checked how the solar cell device performance is affected by different NC ligands and by different thermal annealing treatments. Devices using spherical NCs capped with aromatic ligands and appropriate thermal annealing treatment exhibit so far power conversion efficiencies over 0.5% under standard measurement condition. Further investigations to improve the materials and device performance are currently in progress.

  14. White light generation tuned by dual hybridization of nanocrystals and conjugated polymers

    International Nuclear Information System (INIS)

    Dual hybridization of highly fluorescent conjugated polymers and highly luminescent nanocrystals (NCs) is developed and demonstrated in multiple combinations for controlled white light generation with high color rendering index (CRI) (> 80) for the first time. The generated white light is tuned using layer-by-layer assembly of CdSe/ZnS core-shell NCs closely packed on polyfluorene, hybridized on near-UV emitting nitride-based light emitting diodes (LEDs). The design, synthesis, growth, fabrication and characterization of these hybrid inorganic-organic white LEDs are presented. The following experimental realizations are reported: (i) layer-by-layer hybridization of yellow NCs (?PL=580 nm) and blue polyfluorene (?PL=439 nm) with tristimulus coordinates of (x, y)=(0.31, 0.27), correlated color temperature of Tc=6962 K and CRI of Ra=53.4; (ii) layer-by-layer assembly of yellow and green NCs (?PL=580 and 540 nm) and blue polyfluorene (?PL=439 nm) with (x, y)=(0.23, 0.30), Tc=14395 K and Ra=65.7; and (iii) layer-by-layer deposition of yellow, green and red NCs (?PL=580, 540 and 620 nm) and blue polyfluorene (?PL=439 nm) with (x, y)=(0.38, 0.39), Tc=4052 K and Ra= 83.0. The CRI is demonstrated to be well controlled and significantly improved by increasing multi-chromaticity of the NC and polymer emitters

  15. Polyvinyl alcohol as photoluminescent conductive polymer

    Science.gov (United States)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares-Pérez, A.; Ponce-Lee, E. L.; Hernández-Garay, M. P.; Páez-Trujillo, G.; Toxqui-López, S.; Fuentes-Tapia, I.

    2007-02-01

    We synthesized a photoluminescent conductor polymer composed of polyvinyl alcohol, which was doped with nickel chloride to decrease its resistivity (300 Ωcm) and benzalkonium chloride to obtain photoluminescence properties, when it is radiated with a green laser beam (532 nm). We compared its absorbance curve and its energy emitted curve to observe the amount energy that is taken advantage of this process. Besides we research the photoluminescence behavior when an electric currant is applied in our conductor polymer, obtaining a modulation capacity.

  16. Radiation induced synthesis of conducting polymer nanocomposite

    International Nuclear Information System (INIS)

    In this work, we prepared a series of Ag/PVA and Ag/PANI nano composites were prepared successfully using a modern and new method. Our synthetic route did not need complicated apparatus, expensive surfactants or additional reducing agents. The prepared nano composite developed optically functional material that does not exist for metal or polymer alone. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the Ag/PVA and Ag/PANI nano composites processing and analysis. Ag nanoparticles with different particle sizes were prepared via chemical method and gamma- irradiation method. Several techniques were used to detect the structural changes of the nano composites as UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrometer, and thermogravimetric analysis (TGA). Chapter 4 includes the obtained results and their discussions: Part I: Synthesis of Ag/PVA nano composite via gamma irradiation From UV/VIS spectroscopy the surface plasmon bands appearing in the visible region (406-422 nm) for Ag/PVA nano composite films are characteristic of the noble metal nanoparticles. The obtained data regarding the change of the absorption intensity and wavelength at maximum absorption and the size of Ag nanoparticles as a function of either irradiation dose or Ag+ concentration pointed the following remark: The particle size of Ag nanoparticles in the as-prepared Ag/PVA nano composite films decreases with increasing either irradiation dose or Ag+ ion concentration. Transmission electron microscope images illustrated that the average diameter of the Ag nanoparticles is indicated as the peak position of the Gaussian curves of the histogram to be from 40-16 nm. The nano structured Ag/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity. The XRD pattern of irradiated Ag/PVA nano composite samples show four new diffraction peaks which reveal that the Ag nanoparticles are formed in the PVA matrix and their crystal structure is face center cubic (fcc) structure. Also, it can be seen that, with increasing irradiation dose, the particle size decreases, whereas the particle size increase gradually with increasing AgNO3 concentration. FTIR spectra illustrate that the formation of Ag/PVA nano composites leads to disappearance and/or weakening of some characteristic peaks followed by the change in peak position, peak shape and peak intensity due to incorporation of various content of Ag nanoparticles and irradiation doses. Decrease in the transmittance of some bands reveals that there is an interaction between Ag and PVA. Thermal gravimetric analysis (TGA) showed that, pure PVA sample proceed in three main weight loss stages. The appearance of the fourth stage with incorporation of Ag nanoparticles; confirm the coordination between AgNPs and OH groups. Finally, from the thermal parameters of Ag/PVA degradation reaction, thermal stability of Ag/PVA nano composites is higher than in pure PVA. The antifungal and antibacterial activities of AgNPs were tested against some of pathogenic clinical isolates and some of gram-positive S. aureus and some gram-negative E. coli, respectively. AgNPs exhibited a potent antifungal and antibacterial activity against some of fungal and bacterial strains tested. The antifungal and antibacterial activity increases (according to increase the high specific surface area) with either increasing irradiation dose or decreasing AgNO3 concentration. Part II: Synthesis of Ag/PANI nano composite via gamma irradiation UV/VIS absorption shows the formation and growth of Ag nanoparticles through absorption band at (398-406). For a given samples, as the irradiation dose is increased, a gradual red shift in was observed. This indicates formation of larger particles with increasing irradiation dose. With increase in Ag concentration the absorption maximum shifts towards longer wavelengths (larger particle size formation). The XRD pattern of irradiated PANI exhibits four new diffraction peaks, corresponding to face centered cubic structure (fcc) of silver. With increasing of either AgNO3 concentration or irradiation dose the particle size was increased. FTIR spectra of Ag/PANI nano composites illustrate that the incorporation of silver nanoparticles in poly aniline matrix leads to small shift of some peaks to the higher wavelengths and also decreases in the intensity of other peaks, which indicates that the structural change of polymer occurs with doping. The variation of dc electrical conductivity for pure PANI and irradiated Ag/PANI nano composites showed that the dc electrical conductivity of the irradiated Ag/PANI nano composites is higher than that of pure PANI and also it increases with increasing either irradiation dose or AgNO3 concentrations. Catalytic evaluation of Ag/PANI and Ag/PVA in the reduction of 4-Nitro phenol (4-NP) showed that, either Ag/PANI or Ag/PVA is successive catalyst for a reduction of 4-nitrophenol which a carcinogenic material present in waste water and some petroleum product.

  17. Electrical properties of conductive Ge nanocrystal thin films fabricated by low temperature in situ growth.

    Science.gov (United States)

    Zhang, B; Yao, Y; Patterson, R; Shrestha, S; Green, M A; Conibeer, G

    2011-03-25

    Thin films composed of Ge nanocrystals embedded in an amorphous SiO(2) matrix (Ge-NC TFs) were prepared using a low temperature in situ growth method. Unexpected high p-type conductivity was observed in the intrinsic Ge-NC TFs. Unintentional doping from shallow dopants was excluded as a candidate mechanism of hole generation. Instead, the p-type characteristic was attributed to surface state induced hole accumulation in NCs, and the hole conduction was found to be a thermally activated process involving charge hopping from one NC to its nearest neighbor. Theoretical analysis has shown that the density of surface states in Ge-NCs is sufficient to induce adequate holes for measured conductivity. The film conductivity can be improved significantly by post-growth rapid thermal annealing and this effect is explained by a simple thermodynamic model. The impact of impurities on the conduction properties was also studied. Neither compensation nor enhancement in conduction was observed in the Sb- and Ga-doped Ge-NC TFs, respectively. This could be attributed to the fact that these impurities are no longer shallow dopants in NCs and are much less likely to be effectively activated. Finally, the photovoltaic effect of heterojunction diodes employing such Ge-NC TFs was characterized in order to demonstrate its functionality in device implementation. PMID:21325714

  18. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    Science.gov (United States)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  19. Conducting Polymer Actuators: Prospects and Limitations

    DEFF Research Database (Denmark)

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (...

  20. Light harvesting by dye linked conducting polymers

    DEFF Research Database (Denmark)

    Nielsen, Kim Troensegaard

    2006-01-01

    . A large effort has been made during the project todevelop a method to remove remnants of metal catalysts from organic compounds and in particular polymers so that functional solar cells and LEDs could be made. It was succeeded to find a very effective method to remove remnants of metal catalysts...

  1. Making Conductive Polymers By Arc Tracking

    Science.gov (United States)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  2. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  3. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent; Hvilsted, Sren

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface. By...

  4. Conducting polymers a new era in electrochemistry

    CERN Document Server

    Inzelt, Gyrgy

    2008-01-01

    This book is a systematic survey of the knowledge accumulated in this field in the last thirty years. It includes material on the thermodynamic aspects of the polymers, the theory of the mechanism of charge transport processes, and the chemical and physical properties of these compounds. Also covered are the techniques of characterization, the electrochemical methods of synthesis, and the application of these systems. Inzelt's book is a must-read for electrochemists and others.

  5. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  6. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Directory of Open Access Journals (Sweden)

    Hyeonseok Yoon

    2013-08-01

    Full Text Available Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

  7. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  8. Development of Conducting Polymer Sensor Arrays for Wound Monitoring

    OpenAIRE

    Bailey, Arthur Lionel Paul stuart

    2010-01-01

    The aim of this research was to develop an array of conducting polymer gas sensors as part of an electronic nose designed for monitoring the metabolites produced from the bacteria present in wounds. The device was designed to be a portable system that could discriminate between relevant bacteria non-invasively using solid phase microextraction and an array of conducting polymers and metal oxide sensors in conjunction with pattern-recognition software.In order to develop the sensors, GC/MS hea...

  9. Recent developments in intrinsically conductive polymer coatings for corrosion protection

    OpenAIRE

    M. Z. Iqbal; M. K. Zahoor; Hashim, S; Ali Usman Chaudhry; Khan, M.I.

    2010-01-01

    Intrinsically conductive polymers have achieved demanding interest in the field of corrosion control coatings owing to their conductive ability and also due to the strict environmental regulations on conventional heavy metals coatings. This multipurpose class of polymers has shown to be effective and proven themselves as a potential alternate for these hazardous heavy metal coatings in order to control the corrosion properties of metals or alloys. The basic purpose of this paper is only to hi...

  10. Influence of electron irradiation on composite polymer materials thermal conductivity

    International Nuclear Information System (INIS)

    Temperature dependences of thermal conductivity of polymer composite materials irradiated by electrons in temperature range 80-330 K are investigated. It is established, that thermal conductivity of both the irradiated and the non-irradiated composites increase with temperature increasing. The thermal conductivity of composites decrease with increasing radiation dose. (author)

  11. Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement.

    Science.gov (United States)

    Qin, Xin; Xia, Wenjie; Sinko, Robert; Keten, Sinan

    2015-10-14

    Cellulose nanocrystals (CNCs) exhibit impressive interfacial and mechanical properties that make them promising candidates to be used as fillers within nanocomposites. While glass-transition temperature (Tg) is a common metric for describing thermomechanical properties, its prediction is extremely difficult as it depends on filler surface chemistry, volume fraction, and size. Here, taking CNC-reinforced poly(methyl-methacrylate) (PMMA) nanocomposites as a relevant model system, we present a multiscale analysis that combines atomistic molecular dynamics (MD) surface energy calculations with coarse-grained (CG) simulations of relaxation dynamics near filler-polymer interfaces to predict composite properties. We discover that increasing the volume fraction of CNCs results in nanoconfinement effects that lead to an appreciation of the composite Tg provided that strong interfacial interactions are achieved, as in the case of TEMPO-mediated surface modifications that promote hydrogen bonding. The upper and lower bounds of shifts in Tg are predicted by fully accounting for nanoconfinement and interfacial properties, providing new insight into tuning these aspects in nanocomposite design. Our multiscale, materials-by-design framework is validated by recent experiments and breaks new ground in predicting, without any empirical parameters, key structure-property relationships for nanocomposites. PMID:26340693

  12. Top-down prepared silicon nanocrystals and a conjugated polymer-based bulk heterojunction: Optoelectronic and photovoltaic applications

    International Nuclear Information System (INIS)

    Blends consisting of doped silicon nanocrystals (Si-ncs) and two conjugated polymers (poly(3-hexylthiophene) (P3HT) and poly(methoxy ethylexyloxy phenylenevinilene) (MEH PPV)) with improved photostability were fabricated. We show that a top-down approach by electrochemical etching is suitable for preparing doped (boron and phosphorus) freestanding and surfactant-free Si-ncs. The doping of Si-ncs was confirmed by low temperature photoluminescence and electron spin resonance analysis. It is demonstrated that such Si-ncs can be successfully used for the fabrication of room temperature photoluminescent and photosensitive blends. We argue that the luminescence and transport properties of the blends are controlled by the Si-ncs properties and could be assigned to quantum confinement of excitons in nanocrystalites with an energy band gap of ?2 eV. Furthermore, the blending of doped Si-ncs in both conjugated polymers led to the establishment of a bulk heterojunction between the Si-ncs and polymer. The difference in electron affinity and ionization potential between nanocrystals and polymer dissociated the excitons. Those blends showed increased carrier transport and photoconductivity under ambient conditions. It was found that introduction of less defective p-type doped Si-ncs significantly improved overall photostability of the blend. The Si-ncs non-toxicity and easy integration into well-established silicon technologies might bring considerable benefit for hybrid optoelectronic and photovoltaic device development.

  13. Radiation-induced electric conductivity of polymers under continuous irradiation

    International Nuclear Information System (INIS)

    Rdaiation-induced electyric conductivity of 15 polymers under continuous irradiation by electrons (60 and 75 keV energy) and by protons (7.7 MeV) within 1-104 Gr/s dose rate range at room temperature is studied. Parameters of all studied polymers, that is, Am, ? and ? are determined. Both free-charge (in PETPh, PS, PENPh, PPMI) and heminal (in PP, PTFE, PMMA etc.) mechanism of radiation electric conductivity is shown to occur. Mixed type of conductivity is observed in HPPE. Rouse-Fouler-Weisberg theory is modified for heminal electric conductivity case

  14. FTIR AND IONIC CONDUCTIVITY STUDIES ON BLEND POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    J. Senthil

    2011-08-01

    Full Text Available Investigations on structural and conductivity properties of solid polymer complexes have attracted a high degree of attention. The main applications of solid polymer electrolytes (SPEs are found in varioussecondary batteries and energy conversion units. In view of the abundant resources, low costs and relatively low reactivity of magnesium, solid-state batteries using magnesium metal are worthy of investigations. The polymer electrolytes were prepared using poly methyl methacrylate (PMMA, poly vinyl chloride (PVC and magnesium chloride (MgCl2 by solvent casting technique. The complex formation and ionic conductivity were characterized by Fourier Transform Infra Red spectroscopy (FTIR and impedance spectroscopy respectively.The FTIR studies provide the evidence of interaction of cation Mg2+ with the polymers. The maximum conductivity found for PMMA-MgCl2 is 0.57 x 10-7 Scm-1 at room temperature.

  15. Synthesis, characterization and femtosecond nonlinear saturable absorption behavior of copper phthalocyanine nanocrystals doped-PMMA polymer thin films

    Science.gov (United States)

    Zongo, S.; Dhlamini, M. S.; Neethling, P. H.; Yao, A.; Maaza, M.; Sahraoui, B.

    2015-12-01

    In this work, we report the femtosecond nonlinear saturable absorption response of synthesized copper phthalocyanine nanocrystals (CPc-NCs)-doped PMMA polymer thin films. The samples were initially characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis and scanning electron microscopy (SEM) techniques. The crystalline phase and morphological analysis revealed nanocrystals of monoclinic structure with an average crystallite size between 31.38 nm and 42.5 nm. The femtosecond Z-scan study at 800 nm central wavelength indicated a saturable absorption behavior of which the mechanism is closely related to the surface plasmon resonance (SPR) of the particles. This nonlinear effect could potentially make the CPc-NCs useful in nonlinear optical devices.

  16. Phonon studies of intercalated conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Prassides, K.; Bell, C.J. (School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom)); Dianoux, A.J. (Inst. Laue-Langevin, 38 - Grenoble (France)); Wu Chunguey; Kanatzidis, M.G. (Dept. of Chemistry, Michigan State Univ., East Lansing (United States))

    1992-06-01

    The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).

  17. Light harvesting by dye linked conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Troensegaard Nielsen, K.

    2006-06-15

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obvious abundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention in the last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separation can only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an n-conductor and a p-conductor. The facts that the charge carrier separation only happens at the heterojunctions limits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecular heterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5-dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20-bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain. Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl)- ethynylene], Nn. On the other hand light emitting diodes, LEDs, made of Nn and NPN works very well. The LEDs made of Nn emits greenish blue light while LEDs made of NPN emits light in the near-infrared region. During the synthesis of Nn and NPN it was found that remnants of the palladium catalysts caused problems in the control of the polymers and further made the resistance in the solar cells and LEDs so low that they did not work. A large effort has been made during the project to develop a method to remove remnants of metal catalysts from organic compounds and in particular polymers so that functional solar cells and LEDs could be made. It was succeeded to find a very effective method to remove remnants of metal catalysts from organic compounds by the discovery of the fact that azothioformamides are capable of dissolving metal nanoparticles by forming electron transfer complexes. Even metal wires of some metals can be dissolved by the azothioformamides within a reasonable time range. (au)

  18. Light harvesting by dye linked conducting polymers

    DEFF Research Database (Denmark)

    Nielsen, Kim Troensegaard

    2006-01-01

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obviousabundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention inthe last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separationcan only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an nconductor and a pconductor. The facts that the charge carrier separation only happens at the heterojunctionslimits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecularheterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5- dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20- bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain.Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl)- ethynylene], Nn. On the other hand light emitting diodes, LEDs, made of Nn and NPN works very well. The LEDs made of Nn emits greenish blue light while LEDs made of NPN emits light in the nearinfrared region. During the synthesis of Nnand NPN it was found that remnants of the palladium catalysts caused problems in the control of the polymers and further made the resistance in the solar cells and LEDs so low that they did not work. A large effort has been made during the project todevelop a method to remove remnants of metal catalysts from organic compounds and in particular polymers so that functional solar cells and LEDs could be made. It was succeeded to find a very effective method to remove remnants of metal catalysts fromorganic compounds by the discovery of the fact that azothioformamides are capable of dissolving metal nanoparticles by forming electron transfer complexes. Even metal wires of some metals can be dissolved by the azothioformamides within a reasonable timerange.

  19. The Effect Of Dopant, Temperature And Band Gap On Conductivity Of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    S.SRILALITHA, K.N.JAYAVEERA, S.S.MADHVENDHRA

    2013-07-01

    Full Text Available Polymers By Virtue Of Light Weight And Greater Easy Of Fabrication, Have Replaced And Are Continuing To Replace Metals In Several Areas Of Applications. Polymers With Conjugated ? Electron Backbones Displays Unusual Electronic Properties Such As Low Energy Optical Transitions, Low Ionization Potentials And High Electron Affinities. They Have Been Considered As Good Electrical Insulators And A Variety Of Their Applications Have Been Based Upon The Insulating Property. Polymers Which Are Conjugated Exhibit Semiconducting Behaviour And Can Be Doped To Give Materials With High Conductivity. Conducting Polymers Represent An Important Research Area With Diverse Scientific Problems Of Fundamental Significance And The Potential For Commercial Applications. The Effect Of Dopant On Conductivity, Mechanism Of Conduction, The Effect Of Band Gap And Temperature Has Been Studied. Conducting Polymers Like Poly Pyrrole, Poly Aniline And Poly Thiophene Etc. Have Been Synthesized And Their Conductivities Have Been Determined. Some Polar Organic Materials Such As Poly (Ethylene Oxide Will Complex Alkali Salts And Manifest Rapid Alkali-Ion Conductivity. Although The Absolute Conductivities Of Such Polymer Based Materials Are Not As High As Those Of Crystalline Solid Electrolytes In General, These May Be Made Into Thin Pin Hole-Free Plastic Sheets With Sufficient Conductance For Use In Cells And Batteries.

  20. Intercalation of ionically conductive polymers into Lithium Hectorite

    Science.gov (United States)

    Saada, Iskandar

    Renewable energy sources such as wind and solar have become appealing sources of energy with low environmental impact. However, the challenge with using these energy sources is their intermittent and unpredictable power generation. In order to overcome this challenge, energy storage mechanisms such as lithium-ion batteries are dependable systems for such applications. The purpose of this project is intended to synthesize environmentally benign and safe materials which can be used as electrolytes in lithium-ion batteries. The ionically conductive polymers POEGO, POMOE, and MEEP were successfully intercalated into the two-dimensional layered structure Lithium Hectorite. The goal of the project was to synthesize a series of nanocomposites with increasing polymer molar ratios to Lithium Hectorite, and investigate the thermal and ionic conductivity properties of the synthesized nanocomposites. A second series of nanocomposites using the same polymer molar ratio to Lithium Hectorite were synthesized after the polymers were complexed with lithium triflate. The salt-complexed nanocomposites were compared to the pristine nanocomposites based on thermal stability, polymer flexibility, as well as their ionic conductivity. The synthesized polymers, nanocomposites, and salt-complexed materials were characterized using powder X-ray diffraction, attenuated total reflectance spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Ionic conductivity data was investigated using AC impedance spectroscopy.

  1. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  2. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Directory of Open Access Journals (Sweden)

    A. J. Patton

    2015-01-01

    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of pre-polymerised conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  3. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Science.gov (United States)

    Patton, A. J.; Green, R. A.; Poole-Warren, L. A.

    2015-01-01

    This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol) methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1) particles and a secondary mechanism via introduction of "pre-polymerised" conducting polymer within the hydrogel (PEDOT:PSS). Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  4. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    Science.gov (United States)

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang; Yeh, Jui-Ming

    2015-12-01

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  5. Conducting polymer interaction with gaseous substances. Pt. 1. Water

    Energy Technology Data Exchange (ETDEWEB)

    Timofeeva, O.N.; Lubentsov, B.Z.; Sudakova, Ye.Z.; Chernyshov, D.N.; Khidekel, M.L. (Inst. of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka (USSR))

    1991-03-01

    Interaction of conducting thin polymer films with water vapour was investigated. Polyaniline and polypyrrole thin films were deposited on various inert supporting materials. Systematic studies have shown that the presence of water vapour increases electrical conductivity in polyaniline films. This effect might find application in sensor production. (orig.).

  6. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Indian Academy of Sciences (India)

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  7. Stochastic System Identification of the Compliance of Conducting Polymers

    OpenAIRE

    Hunter, Ian; Pillai, Priam Vasudevan

    2008-01-01

    Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out of the polymer film during electrochemical cycling. The diffusion of ions into the bulk of the film causes the dynamic mechanical compliance (or modulus) of the material to change during the actuation process. The mechanism of this change in compliance is not fully understood...

  8. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent; Hvilsted, Sren

    2011-01-01

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface. By use of an alkyne modified fluorescein derivative the reaction conditions have been optimized in a conventional MW oven, enabling the use of different sizes of substrates. The optimization resulted in a...

  9. Anhydrous proton conductivity of acid doped vinyltriazole-based polymers

    International Nuclear Information System (INIS)

    Poly(1,2,4-vinyltriazole) (PVTr) and poly(1,2,4-vinyltriazole-co-5-vinyltetrazole-co-acrylonitrile) (P(VTr-VT-AN)) were prepared by normal free radical polymerization and click chemistry, respectively. The structure of the polymers was characterized by FTIR spectra, H NMR spectrum and elemental analysis. Compared with polybenzimidazole (PBI) which is one of the most widely studied anhydrous proton conducting polymers, the solubility of vinyltriazole-based polymers is improved significantly. They are soluble in a lot of polar solvents. The glass-transition temperatures of such kind of polymers are between 70 and 85 oC, thus indirectly indicating the improvement of fabricating properties. In phosphoric acid doped membranes, the higher the basicity of the vinyltriazole-based polymers is, the higher the proton conductivity is. The temperature dependence of the proton conductivity of the acid doped membranes can always be fitted by a simple Arrhenius equation. Transmittance of phosphoric acid doped vinyltriazole-based polymers is above 80% in the range of visual spectra and changes a little with the different structure and basicity of the copolymers

  10. Study of PEDOT conductive polymer films by admittance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tamburri, Emanuela, E-mail: Emanuela.Tamburri@uniroma2.it [Dip.to di Scienze e Tecnologie Chimiche and Interdisciplinary Micro and NAno-structured Systems laboratory (MINAS), Universita di Roma ' Tor Vergata' , Via Della Ricerca Scientifica, 00133 Roma (Italy); Sarti, Stefano [Dip.to di Fisica, Universita di Roma ' Sapienza' , P.le Aldo Moro 2, 00185 Roma (Italy); Orlanducci, Silvia; Terranova, Maria Letizia [Dip.to di Scienze e Tecnologie Chimiche and Interdisciplinary Micro and NAno-structured Systems laboratory (MINAS), Universita di Roma ' Tor Vergata' , Via Della Ricerca Scientifica, 00133 Roma (Italy); Rossi, Marco [Dip. di Scienze di Base e Applicate per l' Ingegneria, Universita di Roma ' Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy)

    2011-02-15

    Research highlights: {yields} Microwave technique to measure the conductivity of PEDOT films. {yields} PEDOT conductivity depends on its mesoscopic scale structure and oxidation level. {yields} Raman spectroscopy and SEM analysis to study structure and morphology of PEDOT. {yields} Microwave measurements allow determination of the macroscopic scale conductivity. {yields} Microwave measurements overcome problems related to the local structural defects and inhomogeneities of PEDOT. - Abstract: In this paper we propose the use of a microwave technique to measure the conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films. The PEDOT layers were prepared by electropolymerization from aqueous solutions using both poly(sodium 4-styrene sulphonate) (NaPSS) and sodium dodecyl sulphate (NaDS) acting as monomer solubilizer and dopant for the polymer. The conductive properties of a series of samples produced under different synthesis conditions and characterized by different structures have been investigated by microwave measurements in the frequency range from 40 MHz to 40 GHz by using a Corbino disc geometry. Such technique allows to estimate the mean conductivity of the polymer samples overcoming the limitations of the measuring configurations typically imposed by the conventional d.c. measurements. The morphology of PEDOT films and the structure of polymer chains were studied by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The correlated morphological, structural and microwave analysis enabled us to evidence several factors that affect the macroscopic scale conductivity of the polymer sample films and to identify the conditions for preparation of PEDOT films with functional properties relevant to technological applications.

  11. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Science.gov (United States)

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where

  12. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Science.gov (United States)

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  13. Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules

    Science.gov (United States)

    Pundsack, Thomas J.

    To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in CZTS NCs) was measured using pump-probe spectroscopy and found to be in agreement with theoretical results. The density of states shifted and dilated for smaller NCs indicative of quantum confinement. The excited state lifetime was found to be short (CZTS photovoltaic devices. Finally, triplet-triplet annihilation (TTA) was studied in platinum octaethylporphyrin (PtOEP) thin films. By analyzing pump-probe spectra, the product of TTA in PtOEP thin films was assigned to a long-lived metal-centered state. To elucidate the mechanism of TTA, the annihilation dynamics were modeled using second order kinetics as well as Forster and Dexter energy transfer. Dexter energy transfer provided the best fits and the most reasonable fitting parameters.

  14. Ion-Conducting Polymer Films as Chemical Sensors

    International Nuclear Information System (INIS)

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little work on using these films as chemical sensors. We have found that thin films of polymers like polyethyleneoxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCS) like common solvents. We will present impedance spectroscopy of PEO films in the frequency range 0.01 Hz to 1 MHz for different concentrations of VOCS. We find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and parasitic capacitances

  15. Conductivity of oriented bis-azo polymer films

    DEFF Research Database (Denmark)

    Apitz, D.; Bertram, R.P.; Benter, N.; Sommer-Larsen, P.; Johansen, P.M.; Buse, K.

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures before and after heating the material to above the glass transition temperature. The results show that the orientation of the chromophores changes the charge-carrier mobility. Ionic conductivity dominates i...

  16. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    OpenAIRE

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose. M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude ...

  17. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    Science.gov (United States)

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-01

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance. PMID:25782069

  18. Corrosion-protective coatings from electrically conducting polymers

    Science.gov (United States)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  19. Bioreceptor-conducting polymer multilayer assemblies for biosensing

    Science.gov (United States)

    Samuelson, Lynne A.; Alva, Shridhara; Kumar, Jayant; Kaplan, David L.; Tripathy, Sukant K.

    1998-04-01

    This research focuses on the organized integration of biological receptors and polymers into thin film architectures for biosensing applications. Layer-by-layer electrostatic adsorption was used for the first time to form alternating protein-conducting polymer multilayers. The light-harvesting, phycobiliproteins and the enzyme, alkaline phosphatase were the bioreceptors investigated and sulfonated polystyrene, poly(diallyl dimethyl ammonium chloride) and a new enzymatically polymerized, water soluble, polyaniline were the polymer counterions used for deposition. Spectroscopic characterization was used to determine both multilayer formation and biosensing function of the final bioreceptor-polymer assemblies. These techniques have proven to be simple, chemically mild, and versatile and are expected to find application in the fabrication of ultrathin films for biosensors, opto- electronic devices and biomedical applications.

  20. Thin film conductive polymer for microactuator and micromuscle applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.P.; Hong, K.; Trevino, J.; Northrup, M.A.

    1994-04-14

    Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.

  1. Conductivity of oriented bis-azo polymer films

    DEFF Research Database (Denmark)

    Apitz, D.; Bertram, R.P.; Benter, N.; Sommer-Larsen, P.; Johansen, P.M.; Buse, K.

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures bef...... takes over as a transition to a liquid-crystalline phase occurs when the material is heated to much higher than the gloss transition temperature. Such micro-crystallization strongly enhances the conductivity.......The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures...

  2. Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide nanocomposites as hole transport layer for polymer solar cells

    Science.gov (United States)

    Tan, Licheng; Zhang, Yan; Chen, Yiwang; Chen, Yufeng

    2015-02-01

    Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide (CZTSe@GO) nanocomposite as hole transport layer (HTL) applied in polymer solar cells has been fabricated through a simple and solution-processed strategy, which not only arrests the aggregation of nanoparticles caused by ligand-exchanging, but also guarantees the intimate interfacial contact between graphene oxide and semiconductor nanocrystals. Comparing with Cu2ZnSnSe4 nanocrystals, the optimization of interfacial charge carrier transfer pathways for CZTSe@GO nanocomposites makes it more suitable as HTL which shows enhanced charge carrier transport and electron-blocking capacity, and well-matched work function facilitating collection of charges to anode. Besides, it also affords an efficient way to manufacture multifunctional nanocomposites based on nanocrystals.

  3. Decoupled ion conduction mechanism of poly(vinyl alcohol) based Mg-conducting solid polymer electrolyte

    International Nuclear Information System (INIS)

    Investigation on solid state rechargeable magnesium batteries are considered important similar to lithium batteries. In view of negligible hazard and less reactivity of the magnesium, in comparison with lithium, studies on rechargeable magnesium batteries are expected to have a wide scope in future. In the present investigations, decoupled ion conduction of poly(vinyl alcohol) (PVA)-based Mg-conducting solid polymer electrolytes (SPEs) is essential component of the studies. In common SPEs, ion transport has mostly been associated with the segmental motion of the polymer, so significant conductivity is only observed above the glass transition temperature of the system. But the results of ac impedance spectroscopy, FT-IR, XRD and AFM indicated that prepared PVA-based Mg-conducting SPE shows ionic transport decoupled from polymer segmental motion and high ionic conductivity at room temperature

  4. Effects of preparation temperature on the conductivity of polypyrrole conducting polymer

    Indian Academy of Sciences (India)

    Anuar Kassim; Zarina Bte Basar; H N M Ekramul Mahmud

    2002-04-01

    An attempt has been made to investigate the effect of temperature on the conductivity of polypyrrole conducting polymer films prepared by an electrochemical method in an aqueous medium using camphor sulfonate as the dopant. The polymer was grown from aqueous solutions employing a range of temperatures (1-60°C). It was found that with increase in temperature the conductivity decreased and the optimum temperature was found to be between 10 and 30°C. The results show that the polymer formed at low temperature has higher conductivity and is stronger than that formed at higher temperatures. Characterization by X-ray scattering shows that interlayer distance, Bragg (Å), increases with increasing temperature. The morphology of the films formed was studied by using a scanning electron microscope (SEM). The changes in conductivity and physical appearance were interpreted as being due to compactness in the molecular packing and formation of linkages in the film.

  5. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the main backbone chain, or by protonation of the imine groups [de Acevedo, 1999]. There are several types of radiation sensors commercially available, including ionization chambers, geiger counters, proportional counters, scintillators and solid state detectors. Each type has advantages, although many of these sensors require expensive electronics for signal amplification, are large and bulky, have limited battery life or require expensive materials for fabrication. A radiation sensor constructed of a polymeric material could be flexible, light, and the geometry designed to suit the application. Very simple and inexpensive electronics would be necessary to measure the change in conductivity with exposure to radiation and provide an alarm system when a set change of conductivity occurs in the sensor that corresponds to a predetermined radiation dose having been absorbed by the polymer. The advantages of using a polymeric sensor of this type rather than those currently in use are the flexibility of sensor geometry and relatively low cost. It is anticipated that these sensors can be made small enough for glovebox applications or have the ability to monitor the air tritium levels in places where a traditional monitor cannot be placed. There have been a few studies on the changes in conductivity of polyaniline specifically for radiation detection [de Acevedo, 1999; Lima Pacheco, 2003], but there have been no reports on the effects of tritium (beta radiation) on conducting polymers, such as polyaniline or polythiophene. The direct implementation of conducting polymers as radiation sensor materials has not yet been commercialized due to differing responses with total dose, dose rate, etc. Some have reported a large increase in the surface conductivity with radiation dose while others report a marked decrease in conductive properties; these differing observations may reflect the competing mechanisms of chain scission and cross-linking. However, it is clear that the radiation dose effects on conducting polymers must be fully understood before these materials c

  6. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.

    2011-01-01

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface. By use of an alkyne modified fluorescein derivative the reaction conditions have been optimized in a conventional MW oven, enabling the use of different sizes of substrates. The optimization resulted in a reduction of reaction times of approximately 20h to only 2min for bulk film functionalization. The method has been applied for anchoring of the chelating agent nitrilotriacetic acid (NTA) on the conductive polymer. The chelating linkage ability of NTA on the surface was investigated through a sandwich ELISA study confirming the selective bonding of a histidine tagged protein.

  7. Electrical and surface properties of clay-conducting polymer composites

    Science.gov (United States)

    Eastman, M. P.; Hagerman, M. E.; Porter, T. L.; Parnell, R. A.; Attuso, J. L.; Bradley, M.; Thompson, D.

    1997-08-01

    Organic guests such as aniline, pyrrole and thiophene polymerize on the surface and in the intergallery regions of smectite clays which contain exchangeable transition metal cations such as Cu2+ and Fe3+. We monitor these reactions in thin films of smectite clays using electron spin resonance (ESR) and impedance spectroscopies. Polymers that form on the surface and in the interlayer region are studied by scanning force microscopy (SFM). ESR studies have shown that the transition metal ions are reduced during the polymerization process. Impedance measurements indicate that the formation of conducting polymer in the interlayer region of dry, Cu2+ exchanged hectorite thin films results in a dramatic reduction in observed impedance. SFM scans indicate that the conducting polymers can adopt a variety of morphologies on the surfaces of the films and within the intergalleries of the host framework. These studies have applications in the development of advanced materials including microsensors and novel nanocomposites.

  8. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede; Hvilsted, Søren; Larsen, Niels Bent

    chemistry”. This facilitates the addition of compounds that can otherwise not withstand the polymerization conditions. Several biological active molecules have been attached and tested on the films. Furthermore conducting polymer microelectrodes can electrochemically generate the catalyst required for their...... shows the potential for being an important platform for biological devices and sensors....

  9. The conversion of conducting polymers to nitrogen-containing carbons.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchov, Miroslava

    Riva del Garda : Elsevier, 2013. P1.011. [International Conference on Diamond and Carbon Materials 2013. 02.09.2013-05.09.2013, Riva del Garda] R&D Projects: GA ?R GAP205/12/0911 Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * carbon Subject RIV: CD - Macromolecular Chemistry

  10. Purification of a conducting polymer, polyaniline, for biomedical applications.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Hajn, Milena; Kaprkov, V.; Humpol?ek, P.; Zhigunov, Alexander; Trchov, Miroslava

    2014-01-01

    Ro?. 195, September (2014), s. 286-293. ISSN 0379-6779 R&D Projects: GA ?R(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : biocompatibility * conducting polymer * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  11. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    DEFF Research Database (Denmark)

    Bggild, Peter; Grey, Francois; Hassenkam, T.; Greve, D.R.; Bjrnholm, Thomas

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...

  12. Conductivity study of a gelatin-based polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Diogo F.; Pawlicka, Agnieszka [Departamento de Fisico-Quimica, Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970, Sao Carlos, SP (Brazil); Avellaneda, Cesar O. [LIEC - Departamento de Quimica, Universidade Federal de Sao Carlos, C.P. 676, CEP 13565-905, Sao Carlos, SP (Brazil)

    2007-12-31

    Natural polymers are particularly interesting due to their richness in nature, very low cost and principally biodegradation properties. For these reasons different solid polymeric electrolytes (SPE) have been obtained using cellulose derivatives, starch, chitosan and rubber. This work presents the results of gelatin-based protonic SPEs, which were characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM). The ionic conductivity results obtained for these SPEs were 4.5 x 10{sup -5} S/cm and 3.6 x 10{sup -4} S/cm at room temperature and 80 C, respectively. Temperature-dependent ionic conductivity measurements were taken to analyze the mechanism of ionic conduction in polymer electrolytes. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based SPEs are very promising materials to be used as solid electrolyte in electrochromic devices. (author)

  13. Soft capacitor fibers using conductive polymers for electronic textiles

    OpenAIRE

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a si...

  14. Simulation of conductivity of polymer films on metal surface

    Science.gov (United States)

    Maksimova, O. G.; Maksimov, A. V.; Baidganov, A. R.

    2015-09-01

    In this paper, protective properties of polymer films are analyzed. The simulation is performed by means of the Monte-Carlo method on the basis of three-dimensional lattice model of polymer system with orientational interactions [1]. Initially, configuration of polymer system is calculated by the Metropolis algorithm taking into account the characteristics of the internal structure (constants of intermolecular interactions etc.), temperature regime and metal quality. Further, for the study of conductivity, the motion of charged particles within the proposed lattice model is investigated on the basis of the calculated configuration. The interaction energy of the oxygen atom with eight neighboring links of polymer chains and electric double layer on the metallic surface is accounted. The direction of movement of charged particles is calculated by the Monte-Carlo method according to the energy advantage of its position. This method allows to calculate the number of charged particles passing through the polymer film and reaching the metal sheet surface. The dependences of conductivity on temperature, film thickness, and distance between molecular layers are obtained. It is shown that there is an optimum density for the given film thickness at which it possesses protective properties. The adequacy of the developed mathematical models and calculated dependences are verified by comparison with laboratory data and production testing.

  15. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  16. Confinement-induced nanocrystal alignment of conjugated polymer by the soft-stamped nanoimprint lithography

    Science.gov (United States)

    Li, Xiao-Hui; Yu, Ji-Cheng; Lu, Nai-Yan; Zhang, Wei-Dong; Weng, Yu-Yan; Gu, Zhen

    2015-10-01

    Soft-stamped nanoimprint lithography (NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the poly (9, 9-dioctylfluorene) film. By reducing the linewidth of the nanogratings on the stamp, the orientations of nanocrystals are confined along the grating vector in the nanoimprint process, where the confinement linewidth is comparable to the geometrical size of the nanocrystal. When the linewidth is about 400 nm, the poly (9, 9-dioctylfluorene) (PFO) nanocrystals could be orderly arranged in the nanogratings, so that both pattern transfer and well-aligned nanocrystal arrangement could be achieved in a single step by the soft-stamped NIL. The relevant mechanism of the nanocrystalline alignment in these nanogratings is fully discussed. The modulation of nanocrystal alignment is of benefit to the charge mobilities and other performances of PFO-based devices for the future applications. Project supported by the National Natural Science Foundation of China (Grant No. 21204058).

  17. Conduction mechanisms in silicon-polymer-metal heterostructures

    International Nuclear Information System (INIS)

    Conduction mechanisms in thin films of wide-gap polymers in silicon-based heterostructures have been experimentally studied. Measuring the temperature dependence of the current-voltage characteristics of samples in the temperature range 80-300 K was used as the basic method. Multilayer Si-SiO2-polymer-metal structures were prepared for measurements. Films of poly(diphenylene phthalide), in which a transition from the insulating to a highly conducting state is observed, were used as polymeric layers. The results obtained were used to explain the features of the charge transport in the samples in terms of the hopping conductivity via trap levels, Schottky emission, and field-assisted tunneling emission

  18. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks

    Science.gov (United States)

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated.

  19. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.; Ulstrup, Jens; Walbrand, S.

    2001-01-01

    of the specific membrane conductivity obtained from the theory agree very well with typical experimental data, thereby confirming the appropriateness of the theoretical concepts. Moreover, the versatility of the models offers a useful and transparent frame for combining the analysis of both......We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events in...... and the water content of the pores. The effect of the average distance between the sulfonate groups, which changes during membrane swelling, is analyzed in particular, and the factors which determine the temperature dependence of the macroscopic membrane conductance are disclosed. Numerical estimates...

  20. Investigations of proton conducting polymers and gas diffusion electrodesin the polymer electrolyte fuel cell

    OpenAIRE

    Gode, Peter

    2005-01-01

    Polymer electrolyte fuel cells (PEFC) convert the chemically bound energy in a fuel, e.g. hydrogen, directly into electricity by an electrochemical process. Examples of future applications are energy conversion such as combined heat and power generation (CHP), zero emission vehicles (ZEV) and consumer electronics. One of the key components in the PEFC is the membrane / electrode assembly (MEA). Both the membrane and the electrodes consist of proton conducting polymers (ionomers). In the membr...

  1. Thiophene in Conducting Polymers: Synthesis of Poly(thiophene)s and Other Conjugated Polymers Containing Thiophenes, for Application in Polymer Solar Cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Carl, Jon Eggert; Bundgaard, Eva

    2015-01-01

    Conducting polymers based on thiophene are described. The polymers include poly(thiophene) with and without side-chains and other conjugated polymers in general, based on thiophene. The synthesis and characteristics of the polymers are described along with the application of these as light-absorbing materials in polymer solar cells.

  2. Kinetic features of radiation-induced electric conductivity in polymers

    International Nuclear Information System (INIS)

    Dependence of radiation-induced electric conductivity (EC) of certain polymers on the time of irradiation by accelerated electrons (75 keV in the range of dose rate D = 20-500 Gy/s) with varying irradiation temperature, dose rate and electric field intensity has been studied. Existence of three stages of EC increase has been revealed in all the polymers studied: 'instant' (time of increment t << 1 s), 'fast' (t = 1-10 s) and 'decelerated' (t = 10-1000 s). It is shown that kinetic regularities of polymer EC can not be coordinated in the framework of the model of multiple capture of charges. The conclusion is made on determining role of molecular mobility in transfer of charge carriers generated by ionizing radiation. 12 refs., 4 figs., 1 tab

  3. Electrically conductive, optically transparent polymer/carbon nanotube composites

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  4. Synthesis of polymer nanostructures with conductance switching properties

    Energy Technology Data Exchange (ETDEWEB)

    Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh

    2015-03-03

    The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.

  5. Carboxy-Endcapped Conductive Polypyrrole: Biomimetic Conducting Polymer for Cell Scaffolds and Electrodes

    OpenAIRE

    Lee, Joo-Woon; Serna, Francisco; Schmidt, Christine E

    2006-01-01

    Numerous regenerating tissues respond favorably to electrical stimulation, creating a need for a bioactive conducting platform for tissue engineering applications. The drive for biosensors and electrode coatings further requires control of the surface properties of promising conductive materials such as polypyrrole. Here we present carboxy-endcapped polypyrrole (PPy-?-COOH), a unique bioactive conducting polymer with a carboxylic acid layer, composed of a polypyrrole (PPy) surface modified wi...

  6. Shrinkage Effects of the Conduction Zone in the Electrical Properties of Metal Oxide Nanocrystals: The Basis for Room Temperature Conductometric Gas Sensor

    OpenAIRE

    Morante, J. R.; Cirera, A; F. Hernandez-Ramrez; Arbiol, J.; Prades, J. D.; Manzanares, M.; Andreu, T.

    2009-01-01

    The influence of charge localized at the surface of minute metal oxide nanocrystals was studied in WO3 and In2O3 nanostructures, which were obtained replicating mesoporous silica templates. Here, it is shown that the very high resistive states observed at room temperature and dark conditions were originated by the total shrinkage of the conductive zone in the inner part of these nanocrystals. On the contrary, at room temperature and under UV illumination, both photogenerated electron-hole pai...

  7. Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization.

    Science.gov (United States)

    Li, Junwei; Yoon, Soon Joon; Hsieh, Bao-Yu; Tai, Wanyi; O'Donnell, Matthew; Gao, Xiaohu

    2015-12-01

    Despite broad applications ranging from electronics to biomedical sensing and imaging, a long-standing problem of conducting polymers is the poor resistance to dedoping, which directly affects their signature electrical and optical properties. This problem is particularly significant for biomedical uses because of fast leaching of dopant ions in physiological environments. Here, we describe a new approach to engineer multimodal core-shell nanoparticles with a stably doped conductive polymer shell in biological environments. It was achieved by making a densely packed polymer brush rather than changing its molecular structure. Polyaniline (PANI) was used as a model compound due to its concentrated near-infrared (NIR) absorption. It was grafted onto a magnetic nanoparticle via a polydopamine intermediate layer. Remarkably, at pH 7 its conductivity is ca. 2000 higher than conventional PANI nanoshells. Similarly, its NIR absorption is enhanced by 2 orders of magnitude, ideal for photothermal imaging and therapy. Another surprising finding is its nonfouling property, even outperforming polyethylene glycol. This platform technology is also expected to open exciting opportunities in engineering stable conductive materials for electronics, imaging, and sensing. PMID:26588215

  8. Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends

    Directory of Open Access Journals (Sweden)

    Antti Takala

    2015-08-01

    Full Text Available The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs, the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene (PAT blends with ethylenevinylacetate-elastomers (EVA and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology.

  9. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  10. Sub-Micrometer Size Structure Fabrication Using a Conductive Polymer

    Directory of Open Access Journals (Sweden)

    Junji Sone

    2014-12-01

    Full Text Available Stereolithography that uses a femtosecond laser was employed as a method for multiphoton-sensitized polymerization. We studied the stereolithography method, which produces duplicate solid shapes corresponding to the trajectory of the laser focus point and can be used to build a three-dimensional (3D structure using a conductive polymer. To achieve this, we first considered a suitable polymerization condition for line stereolithography. However, this introduced a problem of irregular polymerization. To overcome this, we constructed a support in the polymerized part using a protein material. This method can stabilize polymerization, but it is not suited for building 3D shapes. Therefore, we considered whether heat accumulation causes the irregular polymerization; consequently, the reduction method of the repetition rate of the femtosecond laser was used to reduce the heating process. This method enabled stabilization and building of a 3D shape using photo-polymerization of a conductive polymer.

  11. New conducting polymers/carbon composite materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, V. [Kiev National University of Technologies and Design, Kiev (Ukraine)]|[CNRS-University, Orleans (France). CRMD; Barsukov, V. [Kiev National University of Technologies and Design, Kiev (Ukraine); Frckowiak, E. [Poznan University of Technology, Poznan (Poland); Beguin, F. [CNRS-University, Orleans (France). CRMD

    2003-07-01

    This paper describes the combination of the complementary properties of electronically conducting polymers (ECPs) with effective conductive materials such as thermally exfoliated graphite (TEG) from Superior Graphite Co. (SGC) in Chicago, United States, and multi walled carbon nanotubes (MWCN) from CMRD, CNRS-University in France. The objective was to improve the electrochemical characteristics of electrodes based on ECPs for energy storage. Scanning and transmission electron microscopy were used to determine the structural characterization of nano-composites. The results showed that a homogeneous layer of ECP has been deposited on the multi-walled nano tubes (MWNTs). When the percentage of ECP was greater than 60 per cent, the behaviour of the nano-composites was similar. At low degrees of ECPs oxidation, the faradaic process applies, and at higher degrees, involved charges transforms ECPs in a metal-like state. These polymer materials are interesting for application in electrochemical capacitors. 2 refs., 1 tab.

  12. Coating of zinc ferrite particles with a conducting polymer, polyaniline.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchov, Miroslava; Brodinov, J.; Kalenda, P.; Fedorova, S.; Proke, J.; Zemek, Josef

    2006-01-01

    Ro?. 298, ?. 1 (2006), s. 87-93. ISSN 0021-9797 R&D Projects: GA AV ?R IAA4050313; GA AV ?R IAA400500504; GA ?R GA202/06/0419; GA ?R GA202/06/0459 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100521 Keywords : conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.233, year: 2006

  13. Electrofragmentation modeling of conductive coatings on polymer substrates

    OpenAIRE

    Leterrier, Yves; Pinyol, Albert; Rougier, Luc; Waller, Judith H.; Mnson, Jan-Anders E.

    2009-01-01

    Damage occurring under tensile loading and the resulting increase of electrical resistance of indium-doped tin oxide and amorphous graphite coatings on various polymer substrates are investigated, using an electro-fragmentation method in situ in an optical microscope. The electrical resistance is modeled as a function of damage state assuming that the resistance of coating cracks is proportional to their opening, and that there exists a conducting path of constant thickness at the coating/sub...

  14. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    Actuators based on conducting polymers are attracting increasing interest due to their desirable features such as large mechanical stress generated, sufficient maximum strain values, high reversibility, good safety properties and the possibility of precise control using small voltages. Many attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethy...

  15. Conductive Polymer Combined Silk Fiber Bundle for Bioelectrical Signal Recording

    OpenAIRE

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in bot...

  16. A practical multilayered conducting polymer actuator with scalable work output

    International Nuclear Information System (INIS)

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m?3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required

  17. Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity.

    Science.gov (United States)

    Xiong, Rui; Hu, Kesong; Grant, Anise M; Ma, Ruilong; Xu, Weinan; Lu, Canhui; Zhang, Xinxing; Tsukruk, Vladimir V

    2016-02-01

    Ultra-robust nanomembranes possessing high mechanical strength combined with excellent stiffness and toughness rarely achieved in nanocomposite materials are presented. These are fabricated by alternately depositing 1D cellulose nanocrystals and 2D graphene oxide nanosheets by using a spin assisted layer-by-layer assembly technique. Such a unique combination of 1D and 2D reinforcing nanostructures results in layered nanomaterials. PMID:26643976

  18. CdTe nanocrystal-polymer composite thin film without fluorescence resonance energy transfer by using polymer nanospheres as nanocrystal carriers.

    Science.gov (United States)

    Li, Minjie; Xu, Xiang; Tang, Yue; Guo, Zhinan; Zhang, Henan; Zhang, Hao; Yang, Bai

    2010-06-15

    A series of positively charged polystyrene (PS) nanosphere emulsions were prepared by copolymerization of quaternary ammonium chloride cationic monomer with styrene via emulsifier-free emulsion polymerization. The average diameter of the nanospheres was tuned in the range of 35-100 nm by adjusting the recipe. The PS nanospheres were used as carriers of aqueous CdTe nanocrystals (NCs) by adsorbing them on the surface through static interaction. After attached to the nanospheres, NCs' stability against pH change and UV light irradiation was enhanced. The CdTe-PS composite nanospheres were blended with compatible poly (vinyl alcohol) (PVA) matrix to prepare fluorescent thin film by spin coating. CdTe-PS nanospheres had homogenous distribution in the thin film and their light scattering performance was largely reduced after solvent evaporated, as a result, the composite thin film was highly transparent. In the meantime, the immobilization effect of PS nanospheres prevented NCs from aggregation, thus they preserved original high fluorescence without fluorescence resonance energy transfer. The CdTe-PS/PVA composite solution has potential applications in light emitting devices by inkjet printing. PMID:20356601

  19. Critical Dependence of Polarization Phenomena on Conductivity in Ferroelectric Polymers

    Directory of Open Access Journals (Sweden)

    S.N.Fedosov

    2014-01-01

    Full Text Available Experimentally obtained data on the polarization dynamics in polyvinylidene fluoride, a typical ferroe-lectric polymer, are analyzed during initial poling, short circuiting and polarization switching. Considering a two-component structure of the samples, namely, presence of ferroelectric and non-ferroelectric phases, it is shown that value and stability of the ferroelectric polarization significantly depend on conductivity and space charges. Application of a simple two-layer theoretical model with an explicit conductivity allowed ex-plaining such important features, as slow development and switching of the ferroelectric polarization and a partial back-switching of the already formed polarization after short-circuiting of the sample.

  20. Vertical single nanowire devices based on conducting polymers

    International Nuclear Information System (INIS)

    A simple scheme for single conducting polymer nanowire fabrication and device integration is presented. We discuss a combined top-down and bottom-up approach for the sequential, precise manufacture of vertical polyaniline nanowires. The method is scalable and can be applied on rigid as well as on flexible substrates. The kinetics of the template-confined growth is presented and discussed. We further study the electrical behavior of single vertical polyaniline nanowires and address the fabrication of crossbar latches using a criss-cross arrangement of electrodes. The as-synthesized polyaniline nanowires display electric conductivities reaching values as high as 0.4 S cm?1. (paper)

  1. Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes

    OpenAIRE

    Angesh Chandra; Archan Chandra; Kiran Thakurb

    2012-01-01

    Synthesis, characterization and polymeric battery studies of Na+ ion conducting Nano- Composite Polymer Electrolyte (NCPE) membranes: (1-x) [75PEO: 25NaPO3]: x SiO2, where x = 0 - 15 wt. (%), has been reported. NCPE membranes have been casted using a novel hot-press technique in place of the traditional solution cast method. The dispersal of SiO2 in SPE host: (75PEO: 25NaPO3), a conductivity enhancement of an order of magnitude achieved in NCPE film: [93 (75PEO: 25NaPO3): 7 SiO2]. This has be...

  2. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  3. Feasibility and benefits of using interdigitated electrodes for conductivity measurements on conducting polymers.

    Czech Academy of Sciences Publication Activity Database

    Varga, M.; Proke, J.; Konyushenko, Elena; Stejskal, Jaroslav

    Atlanta : Center for Organic Photonics and Electronics - Georgia Institute of Technology, 2012. s. 324. [International Conference on Science and Technology of Synthetic Metals 2012 - ICSM 2012. 08.07.2012-13.07.2012, Atlanta] Institutional support: RVO:61389013 Keywords : conducting polymers * interdigitated electrodes Subject RIV: CD - Macromolecular Chemistry

  4. Self-assembly of CdTe nanocrystals at the water/oil interface by amphiphilic hyperbranched polymers

    International Nuclear Information System (INIS)

    A general strategy for realizing the self-assembly of aqueous CdTe nanocrystals (NCs) at the water/oil interface by means of an amphiphilic core-shell hyperbranched polymer has been proposed. Aqueous CdTe NCs were firstly transferred into the chloroform phase in the presence of palmityl chloride functionalized hyperbranched poly(amidoamine) (HPAMAM-PC), and then self-assembled at the water/chloroform interface by decreasing the pH value of the aqueous phase or introducing ?-CDs to the aqueous phase. The resulting CdTe/HPAMAM-PC self-assembly film was characterized by fluorescence microscopy, UV-vis, PL, TEM, EDS, FT-IR, DSC and TGA.

  5. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  6. Conductivity of oriented bis-azo polymer films

    DEFF Research Database (Denmark)

    Apitz, D.; Bertram, R.P.

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures before and after heating the material to above the glass transition temperature. The results show that the orientation of the chromophores changes the charge-carrier mobility. Ionic conductivity dominates in a more disordered configuration of the material, while the competing process of hole hopping takes over as a transition to a liquid-crystalline phase occurs when the material is heated to much higher than the gloss transition temperature. Such micro-crystallization strongly enhances the conductivity.

  7. Smart conducting polymer composites having zero temperature coefficient of resistance.

    Science.gov (United States)

    Chu, Kunmo; Lee, Sung-Chul; Lee, Sangeui; Kim, Dongearn; Moon, Changyoul; Park, Sung-Hoon

    2015-01-14

    Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self-heating properties for thermal stability and reliable temperature control. The bi-layer composites consisted of a carbon nanotube (CNT)-based layer having an NTC of resistance and a carbon black (CB)-based layer having a PTC of resistance which was in direct contact with electrodes to stabilize the electrical resistance change during electric Joule heating. The composite showed nearly constant resistance values with less than 2% deviation of the normalized resistance until 200 C. The CB layer worked both as a buffer and as a distributor layer against the current flow from an applied voltage. This behavior, which was confirmed both experimentally and theoretically, has been rarely reported for polymer-based composite systems. PMID:25351278

  8. Electrochemical studies on the formation and properties of conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, J.; Hinkelmann, K.; Dietrich, M.; Mortensen, J.

    1985-11-01

    PA can be reversibly oxidized in SO/sub 2/ up to 8 mol-% of charging, while in propylenecarbonate (PC) the discharging process becomes partly irreversible at an oxidation level of 4 mol-% or higher. The experimental results obtained in both solvents reveal that the degradation of 'p-doped' PA in the range of its first oxidation wave is caused mainly by nucleophilic attack of the solvent. Degradation of the 'n-doped' species in a THF/Na/sup +/-electrolyte is probably due to the attack of Na on the polymer or on the solvent. Cyclic voltammetric measurements on N-phenyl-carbazol show that the anodic formation of conducting polymers is due to a radical-radical ion dimerisation (R-R route).

  9. Multifunctional and biomimicking electrochemical properties of conducting polymers

    Science.gov (United States)

    Otero, Toribio

    2005-06-01

    Electrochemical oxidation and reduction taking place in films of a conducting polymer involve: generation and annihilation of positive charges on the polymeric chains, conformational changes along the polymeric chains, coulombic repulsions and generation of free volume with interchange of ions and water molecules between the polymer and the solution. So, electric pulses, conformational changes, ionic and aqueous interchanges are involved, as it occurs during most of the biological functions. Those changes induce, simultaneously, different electrochemical properties: electrochemomechanical by swelling and shrinking processes, electrochromic by change of the molecular orbitals, charge storage by accumulation of positive or negative charges, electron-ion transduction between an electronic conductor and an electrolyte. All those properties mimic biological functions: muscles, mimicking skins, electric organs or nervous pulses. Some of the developed devices as sensing actuators (muscles), or smart membranes are presented.

  10. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Science.gov (United States)

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li(+)) and other ions can also be transported. If we can optimize the crystal structures, this could offer further improvements in terms of both conductivity and the working temperature range. Another useful characteristic of PCP/MOFs is their wide application to materials fabrication. We can easily prepare heterodomain crystal systems, such as core-shell or solid solution. Other anisotropic morphologies (thin film, nanocrystal, nanorod, etc.,) are also possible, with retention of the ion conductivity. The flexible nature also lets us design morphology-dependent ion-conduction behaviors that we cannot observe in the bulk state. We propose (1) multivalent ion and anion conductions with the aid of redox activity and defects in structures, (2) control of ion transport behavior by applying external stimuli, (3) anomalous conductivity at the hetero-solid-solid interface, and (4) unidirectional ion transport as in the ion channels in membrane proteins. In the future, scientists may use coordination polymers not only to achieve higher conductivity but also to control ion behavior, which will open new avenues in solid-state ionics. PMID:23730917

  11. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  12. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    Science.gov (United States)

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices. PMID:23591876

  13. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors

    Science.gov (United States)

    Hou, Ying; Chen, Luyang; Zhang, Ling; Kang, Jianli; Fujita, Takeshi; Jiang, Jianhua; Chen, Mingwei

    2013-03-01

    A high energy density is critical for supercapacitors to supersede conventional batteries for the applications where both high power and high energy are demanded. Here we report nanoporous metal/conductive polymer hybrid electrodes fabricated by electrochemically plating conductive polypyrrole into nanoporous channels of a dealloyed nanoporous metal. The low electric resistance and open porosity of the nanoporous metal give rise to excellent conductivity of electrons and ions and hence dramatically improved electrochemical performances of the pseudocapacitive polypyrrole. Supercapacitors based on the hybrid electrodes show an ultrahigh energy density of 100 Wh kg-1 in a three-electrode, comparable to NiMH batteries, as well as high power density of 57 kW kg-1. Cycling stability measurements demonstrate that the hybrid electrode can retain 85% of the maximum capacitance after 3000 cycles and the degeneration is mainly caused by the dissolution of polypyrrole during charge/discharge cycling.

  14. High-throughput screening of ionic conductivity in polymer membranes

    International Nuclear Information System (INIS)

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  15. Current passage tubes in conductive polymer composite for fluid heating

    International Nuclear Information System (INIS)

    This communication reports the design and testing of a tubular heat exchanger in conductive polymer composites (CPC) using the ohmic effect (current passage tube). The weak inertia and the good thermal efficiencies of such a device are fully suitable for water or thermo-sensitive products heating. The materials of the extruded tubes are obtained by blending an insulating thermoplastic polymer matrix with a conductive filler like carbon black nano particles. The electrical resistivity of the composite can be adjusted by the nature and content of the filler. Consequently, an electrical transformer is no longer needed for the electrical input of the heat exchanger. The results presented deal with two different poly(propylene) tubes. The first one is filled with carbon black only, whereas short carbon fibres are added in the second one. First, the effect of the filler content on the electrical and thermal conductivities is quantified. Then, the coupling of the electrical and thermal phenomena is studied. Experimental tests, performed with and without water flow inside the tubes, were completed on a device developed in our laboratory. These experiments were performed under direct current to show the thermal and electrical behaviours of the tubes. The numerical simulation of the temperature profile in the thickness of the pipes corresponds well with the experimental results

  16. Photoelectron studies of electrochemical diffusion of conducting polymer/transparent conductive metal oxide film interfaces

    Science.gov (United States)

    Takemura, S.; Kato, H.; Nakajima, Y.

    1999-04-01

    X-ray photoelectron spectroscopy (XPS) investigations of conducting polymer polythiophene (PT)/indium tin oxide (ITO) and PT/SnO 2 interfaces have been conducted. Interfacial electrochemical diffusion of the metal oxide substrate species has been observed in both cases through electrochemical reduction process. XPS investigation has focused on the core-level energies and spectral profiles of the diffused substrate species into polymer matrix. A larger part of the diffused species is metal oxides in both cases determined by measuring chemical shifts of core-levels of In 3d 5/2 and Sn 3d 5/2. However, increase in lower binding energy components of In 3d 5/2 and Sn 3d 5/2 spectra of the diffused species indicates that the diffused species in polymer matrix are a mixture of metallic and oxide states of In and Sn. Furthermore, with regard to PT backbone-originated S 2p lines, a large splitting was observed indicating the large interaction between diffused metal oxides and sulfur sites of the polymer backbone.

  17. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    OpenAIRE

    Yuqi Teng; Yuqi Zhang; Liping Heng; Xiangfu Meng; Qiaowen Yang; Lei Jiang

    2015-01-01

    A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM) via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA) of 144.7 could be transferred into a hydrophilic surface with CA of 25 by applying a vol...

  18. A chemically diverse conducting polymer-based "electronic nose".

    Science.gov (United States)

    Freund, M S; Lewis, N S

    1995-03-28

    We describe a method for generating a variety of chemically diverse broadly responsive low-power vapor sensors. The chemical polymerization of pyrrole in the presence of plasticizers has yielded conducting organic polymer films whose resistivities are sensitive to the identity and concentration of various vapors in air. An array of such sensing elements produced a chemically reversible diagnostic pattern of electrical resistance changes upon exposure to different odorants. Principal component analysis has demonstrated that such sensors can identify and quantify different airborne organic solvents and can yield information on the components of gas mixtures. PMID:11607521

  19. Application of Proton Conducting Polymer Electrolytes to Electrochromic Devices

    OpenAIRE

    BOZKURT, Ayhan

    2002-01-01

    Electrochromic display devices have been fabricated using Polydiallyldimethylammonium dihydrogenphosphate (PAMA+ H2PO4-) blended with H3PO4 as the electrolyte and WO3 as the electrochromic film. The WO3 deposited glass electrodes were doped with protons to form HxWO3 in which color depends on the charge density (CD) ranging from 0.01 to 0.04 C/cm2. Proton conducting films of PAMA+ H2PO4- 2 H3PO4 (2 moles of acid per polymer repeat unit) were sandwiched between two electrodes to obtai...

  20. Synthesis and applications of electrically conducting polymer nanocomposites

    Science.gov (United States)

    Ku, Bon-Cheol

    This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize surfaces with conductive polyaniline and a potential method of reusability of the catalyst for improved cost effectiveness. For fabrication of multifunctional nanocomposite membranes, (P2EPy-R/Saponite) n on NafionRTM substrate was demonstrated by electrostatic layer-by layer assembly technique. (Abstract shortened by UMI.)

  1. Electrical conductivity of radiation-processed wood polymer composites

    International Nuclear Information System (INIS)

    Two species of wood, viz. Haldu (Adina Cordifolia) and Jamun (Syzygium Cumini) were vacuum-impregnated with two styrene-based monomer systems and polymerized in situ with gamma radiation from a cobalt-60 source. The electrical conductivity of these specimens was determined at various polymer loadings under dry conditions, after wetting and after wet recovery as per ASTM standards. The water absorption characteristics are also presented. The results are discussed with special reference to the role of water. Potential applications are also discussed. 7 figures

  2. Utilization of novel bithiazole based conducting polymers in electrochromic applications

    International Nuclear Information System (INIS)

    In this paper we disclose the synthesis of a novel monomer (2,2′-di-pyrrol-1-yl-[4,4′]bithiazolyl, PyDBTH) and the optoelectronic properties of the resultant conducting polymers. PyDBTH was synthesized via the Clauson-Kaas reaction of 2,2′-diamino-4,4′-bithiazole with 2,5-dimethoxytetrahydrofuran in acetic acid which was characterized by 1H, 13C-NMR, FTIR and MS analyses. Homopolymerization and copolymerization (in the presence of 3,4-ethylenedioxythiophene) were achieved in a tetrabutylammonium hexafluorophosphate (TBAPF6) dichloromethane system. The electrochemical and electrochromic properties of the homopolymer and copolymers were examined by cyclic voltammetry, FTIR, spectroelectrochemistry and kinetic studies. Depending on the synthesis conditions, the bithiazole based polymers exhibited optical band gaps ranging from 2.60 to 1.75 eV and the copolymers displayed multichromism within a wide span of the visible spectrum. The copolymers revealed short switching times and useful optical contrast of 0.6 s and 54%, respectively. Due to its favorable electrochromic properties, utilization of bithiazole based polymers in electrochromic devices was also investigated. These devices exhibited low switching voltages and switching times with reasonable stability under atmospheric conditions. (paper)

  3. Calculation of thermal conductivity of polymer solutions in a wide range of temperatures and pressure

    International Nuclear Information System (INIS)

    Present article is devoted to calculation of thermal conductivity of polymer solutions in a wide range of temperatures and pressure. The dependence of thermal conductivity of polymers on temperature and pressure was studied. The dependence of thermal conductivity of polymers on molar mass was studied as well.

  4. Smart conducting polymer composites having zero temperature coefficient of resistance

    Science.gov (United States)

    Chu, Kunmo; Lee, Sung-Chul; Lee, Sangeui; Kim, Dongearn; Moon, Changyoul; Park, Sung-Hoon

    2014-12-01

    Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self-heating properties for thermal stability and reliable temperature control. The bi-layer composites consisted of a carbon nanotube (CNT)-based layer having an NTC of resistance and a carbon black (CB)-based layer having a PTC of resistance which was in direct contact with electrodes to stabilize the electrical resistance change during electric Joule heating. The composite showed nearly constant resistance values with less than 2% deviation of the normalized resistance until 200 C. The CB layer worked both as a buffer and as a distributor layer against the current flow from an applied voltage. This behavior, which was confirmed both experimentally and theoretically, has been rarely reported for polymer-based composite systems.Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self-heating properties for thermal stability and reliable temperature control. The bi-layer composites consisted of a carbon nanotube (CNT)-based layer having an NTC of resistance and a carbon black (CB)-based layer having a PTC of resistance which was in direct contact with electrodes to stabilize the electrical resistance change during electric Joule heating. The composite showed nearly constant resistance values with less than 2% deviation of the normalized resistance until 200 C. The CB layer worked both as a buffer and as a distributor layer against the current flow from an applied voltage. This behavior, which was confirmed both experimentally and theoretically, has been rarely reported for polymer-based composite systems. Electronic supplementary information (ESI) available: Normalized resistance as a function of increasing temperature for CNTs with different aspect ratios, other configurations of the bi-layered composite with the corresponding circuit diagrams, an SEM image of the CNT/PDMS composite with low resolution and dependence of DC conductivity on the number of three roll passes, numerically calculated normalized resistance of the bi-layer composite with different thickness ratios, streamlines and arrow plots of the current densities of the bi-layer composites with other configurations. See DOI: 10.1039/c4nr04489d

  5. Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Angesh Chandra

    2012-03-01

    Full Text Available Synthesis, characterization and polymeric battery studies of Na+ ion conducting Nano- Composite Polymer Electrolyte (NCPE membranes: (1-x [75PEO: 25NaPO3]: x SiO2, where x = 0 - 15 wt. (%, has been reported. NCPE membranes have been casted using a novel hot-press technique in place of the traditional solution cast method. The dispersal of SiO2 in SPE host: (75PEO: 25NaPO3, a conductivity enhancement of an order of magnitude achieved in NCPE film: [93 (75PEO: 25NaPO3: 7 SiO2]. This has been referred to as Optimum Conducting Composition (OCC. Material characterizations have been done with the help of XRD, SEM and DSC techniques. The ion transport behaviour in hot-pressed NCPEs has been discussed on the basis of experimental measurements on some basic ionic parameters viz. conductivity (?, ionic mobility (?, mobile ion concentration (n and ionic transference number (t ion. The temperature dependent conductivity studies have been done to compute the activation energy (Ea values from the 'log s - 1/T' Arrhenius plots. The ion conducting solid state polymeric battery was fabricated and cell-potential discharge characteristics have been studied at different load conditions.

  6. Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes

    Scientific Electronic Library Online (English)

    Angesh, Chandra; Archan, Chandra; Kiran, Thakurb.

    2012-03-01

    Full Text Available Synthesis, characterization and polymeric battery studies of Na+ ion conducting Nano- Composite Polymer Electrolyte (NCPE) membranes: (1-x) [75PEO: 25NaPO3]: x SiO2, where x = 0 - 15 wt. (%), has been reported. NCPE membranes have been casted using a novel hot-press technique in place of the traditi [...] onal solution cast method. The dispersal of SiO2 in SPE host: (75PEO: 25NaPO3), a conductivity enhancement of an order of magnitude achieved in NCPE film: [93 (75PEO: 25NaPO3): 7 SiO2]. This has been referred to as Optimum Conducting Composition (OCC). Material characterizations have been done with the help of XRD, SEM and DSC techniques. The ion transport behaviour in hot-pressed NCPEs has been discussed on the basis of experimental measurements on some basic ionic parameters viz. conductivity (?), ionic mobility (?), mobile ion concentration (n) and ionic transference number (t ion). The temperature dependent conductivity studies have been done to compute the activation energy (Ea) values from the 'log s - 1/T' Arrhenius plots. The ion conducting solid state polymeric battery was fabricated and cell-potential discharge characteristics have been studied at different load conditions.

  7. Effect of thermal treatment on electrical conductivities of poly pyrrole conducting polymers

    International Nuclear Information System (INIS)

    Some poly pyrrole free standing films or membranes doped with different electrolytes (aromatic sulphonated) were prepared from aqueous monomer solution in order to investigate the effect of thermal treatment on their electrical conductivity. It was found that the nature of count erion has the most important effect on determining the electrical conductivity and stability of conductivity when the polymer is exposed to high temperatures. However, mild heating can improve conductivity of poly pyrrole conducting polymers. In order to carry out thermal effect studies on conductivity and measure the thermal stability of the P Py film, a variety of anions were examined. It was found that when poly pyrrole is being doped with aromatic sulphonates (mainly benzene or naphthalene sulphonates) as counterions, it produces flexible and smooth films that can be readily detached from working electrode as membrane and they have good mechanical properties. Other counterions such as inorganic s (e. g., Cl-, So42-), aliphatic surfactants (e. g., Ds), and polymeric s (Pvs) produce films that are either impossible to remove from working electrode, or give brittle, and rough films

  8. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-?' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-?' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  9. Abnormal temperature dependence of mobility in conjugated polymer / nanocrystal composite: experiment and theory

    OpenAIRE

    Zhang, Yating; Yao, Jianquan; Kwok, Hoi Sing

    2013-01-01

    Instead of normal non-Arrhenius relationship, the carrier mobility $ln({\\mu})$ v.s. $1/T^2$ showed abnormal dependence in an MEH-PPV / InP nanocrystal composite system that a critical temperature $(T_c)$ behavior is prominent in temperature range of 233 K to 333 K. Here, in the model of variable range hopping theory, an analytical model is developed within a Gaussian trap distribution, which is successfully implemented on that phenomenon. The results show that Tc becomes the...

  10. Effect of ZnCdTe-Alloyed Nanocrystals on PolymerFullerene Bulk Heterojunction Solar Cells

    OpenAIRE

    Wang Yan; Hou Yanbing; Tang Aiwei; Feng Zhihui; Feng Bin; Li Yan; Teng Feng

    2009-01-01

    Abstract The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene) (MEH-PPV), fullerene (C60), and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe) nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with differe...

  11. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  12. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  16. Electrofragmentation modeling of conductive coatings on polymer substrates

    Science.gov (United States)

    Leterrier, Yves; Pinyol, Albert; Rougier, Luc; Waller, Judith H.; Mnson, Jan-Anders E.

    2009-12-01

    Damage occurring under tensile loading and the resulting increase in electrical resistance of tin-doped indium oxide and amorphous graphite coatings on various polymer substrates are investigated, using an electrofragmentation method in situ in an optical microscope. The electrical resistance is modeled as a function of damage state assuming that the resistance of coating cracks is proportional to their opening, and that there exists a conducting path of constant thickness at the coating/substrate interface across the crack. The model reproduces the experimental data with good accuracy apart from the damage initiation and saturation stages where it underestimates the measured coating resistance. This is due to the presence of stable cracks of finite length in the initiation stage and delamination in the saturation stage. Impedance spectroscopy measurements confirm the purely resistive nature of the conducting path, whose resistivity is found to be three to four orders of magnitude higher than that of the uncracked coating.

  17. New proton conducting polymer blends and their fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Gourdoupi, N. [Department of Chemistry, University of Patras, University Campus, GR-26500 Rio-Patras (Greece); Kallitsis, J.K. [Department of Chemistry, University of Patras, University Campus, GR-26500 Rio-Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, ICE/HT-FORTH, P.O. Box 1414, 26500 Patras (Greece); Neophytides, S. [Institute of Chemical Engineering and High Temperature Chemical Processes, ICE/HT-FORTH, P.O. Box 1414, 26500 Patras (Greece)

    2010-01-01

    Novel polymer blends based on aromatic polyethers with pyridine units have been prepared for their use as electrolytes after being doped with phosphoric acid for high temperature PEM fuel cells. They exhibit very good film-forming properties, mechanical integrity, high modulus up to 230 C, high glass transition temperatures (up to 260 C) and high thermal stability up to 400 C. In addition to the above required properties, these novel materials show high oxidative stability and acid doping ability, enabling proton conductivity in the range of 10{sup -2} S cm{sup -1} at 130 C. The preparation and fuel cell testing of membrane electrode assemblies, demonstrated very promising performance, and an initial study has shown the positive effect of humidity on the measured conductivity. (author)

  18. Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, T N; Yezhov, P V; Kokhtych, L M [Institute of Physics, National Academy of Science, prospect Nauki 46, 03028 Kiev (Ukraine); Sakhno, O V; Stumpe, J [Fraunhofer Institute for Applied Polymer Research, Science Campus Golm, Geiselbergstrasse 69, D-14476 Potsdam (Germany); Goldenberg, L M [Institute for Thin Film Technology and Microsensorics, Kantstrasse 55, D-14513 Teltow (Germany)], E-mail: smirnova@iop.kiev.ua, E-mail: Oksana.Sakhno@iap.fraunhofer.de

    2009-06-17

    Amplified spontaneous emission (ASE) is demonstrated in volume-distributed feedback (DFB) structures, formed by colloidal CdSe/ZnS nanocrystals and ZrO{sub 2} nanoparticles (NPs) in a polymer matrix. Periodic redistribution of the NPs in an organic matrix was carried out by holographic photopolymerization in a specially developed light-sensitive nanocomposite. The composite consists of two acrylate monomers and two types of inorganic NPs. The NPs provide for the formation of two co-phased gratings-a refractive index grating and an optical gain (losses) grating. The core-shell CdSe/ZnS nanocrystals are used as a gain medium, while ZrO{sub 2} NPs create the refractive index grating and enhance the distributed feedback. The period of the volume structure provides the feedback for lasing at the wavelength {lambda}{sub las} of about 575 nm in the second diffraction order. In contrast to known laser systems based on volume DFB cavities, in which the different components of the formulation provide optical gain and feedback, in our case the inorganic NPs serve as an emitting material and can provide simultaneously for feedback. By pumping of DFB structures by a titanium-sapphire laser ({lambda}{sub pump} = 400 nm, pulse duration of 120 fs) normal to the sample plane, the appearance of a sharp stimulated emission along the grating-vector direction is observed. Output intensity of ASE as a function of the pump energy shows a threshold behavior and full width at half-maximum (FWHM) of the ASE spectral band decreases from 33 to 12 nm.

  19. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-07-21

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  20. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.

    2013-10-17

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    Science.gov (United States)

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 m thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  2. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    Science.gov (United States)

    Tenrio-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection. PMID:26838898

  3. Analysis of surface modified polymers: XPS and conductivity measurements

    International Nuclear Information System (INIS)

    Full text: Design specific, surface modified polymers are finding ever increasing application in technological, manufacturing and medical areas. A brief review will be presented of such, followed by specific reference to electrical properties of surface modified polymeric materials, their application and analysis. A new method has been devised for the measurement of resistivity in the surface region of insulating materials, including many well known polymers. It measures resistivity through recording of the decay of surface charge placed on the surface of a sample. This method will be outlined and results presented. An ionic charge transport theory has also been developed, based on self field driven motion of, and diffusion transport of, charge carriers; which provides greater insight into the way carriers move in the surface region of insulators in general. The agreement between this theory and the measurements obtained has resulted in an accurate technique for the measurement of electrical resistivity in the surface region of insulators. Values may also be simultaneously obtained for the carrier diffusion coefficient, and the carrier occupancy depth. The methodology has been applied to a series of surface modified polymers under various grafting conditions (graft concentration, temperature and time). The chosen substrates were: polyaniline (PAN), low density polyethylene (LDPE) and teflon (PTFE), pretreated for grafting by either Ar plasma or ozone. The graft monomers used for copolymerisation were acrylic acid (Mc), sodium salt of styrene sulfonic acid (NaSS) and N,N-dimethylacrylamide (DMAA). XPS measurements of the samples will also be used to infer the conduction mechanisms in the materials resulting from grafting procedures. Copyright (1999) Australian X-ray Analytical Association Inc

  4. Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study

    OpenAIRE

    S. Fakirov; S. M. Panamoottil; P. Potschke; R. J. T. Lin; Bhattacharyya, D.

    2013-01-01

    Conductive polymer composites have wide ranging applications, but when they are produced by conventional melt blending, high conductive filler loadings are normally required, hindering their processability and reducing mechanical properties. In this study, two types of polymer-polymer composites were studied: i) microfibrillar composites (MFC) of polypropylene (PP) and 5 wt% carbon nanotube (CNT) loaded poly(butylene terephthalate) (PBT) as reinforcement, and ii) maleic anhydride-grafted poly...

  5. Organic-Inorganic Shish-Kebabs: Nanocrystal Kebabs Periodically Assembled on Stretched Flexible Polymer Shish

    Science.gov (United States)

    Lin, Zhiqun; Xu, Hui; Xu, Yuci; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Xia, Haiping

    2015-03-01

    We report an unconventional yet general strategy to craft an exciting variety of 1D necklace-like nanostructures comprising uniform functional nanodisks periodically assembled along a stretched flexible polymer chain by capitalizing on judiciously designed amphiphilic worm-like diblock copolymer as nanoreactors. These nanostructures can be regarded as organic-inorganic shish-kebabs, in which nanodisk kebabs periodically situated on a stretched polymer shish. Simulations based on self-consistent field theory reveal that the formation of organic-inorganic shish-kebabs is guided by the self-assembled elongated star-like diblock copolymer constituents constrained on the highly stretched polymer chain.

  6. Refractive Indices of Specific Nonconjugated Conductive Polymers: Organic Nanometallic Systems

    Science.gov (United States)

    Dubey, Prashant; Shrivastava, Sapana; Thakur, Mrinal

    2011-03-01

    Exceptionally large quadratic electro-optic effect and two-photon absorption coefficients have been recently reported for nonconjugated conductive polymers after doping. These polymers include: cis- and trans- polyisoprene, poly(? -pinene) and others. The large optical nonlinearities observed in these materials have been attributed to the nanometallic state with subnanometer dimensions that is formed upon doping and charge-transfer. Measurement and calculation of linear refractive indices of these novel nonlinear optical systems before and after doping are important. Linear absorption coefficients (UV-Visible) of trans-1,4-polyisoprene have been measured for different doping levels of iodine. Refractive indices have been calculated using Kramers-Kronig transformation of absorption data for different doping levels. Numerical integration using MATLAB software was used for these calculations. Refractive indices at specific wavelengths have been determined by measuring reflectivity at normal incidence. The calculated and measured values of refractive indices have been compared. Results on calculations and measurements on these novel systems will be discussed.

  7. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers.

    Science.gov (United States)

    Agarwal, Mangilal; Xing, Qi; Shim, Bong Sup; Kotov, Nicholas; Varahramyan, Kody; Lvov, Yuri

    2009-05-27

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10(-2)-2 S cm(-1) depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm(-1) by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm(-1). A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported. PMID:19423933

  8. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    International Nuclear Information System (INIS)

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10-2-2 S cm-1 depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm-1 by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm-1. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  9. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  10. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Directory of Open Access Journals (Sweden)

    Yuqi Teng

    2015-04-01

    Full Text Available A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene (P3HT and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA of 144.7 could be transferred into a hydrophilic surface with CA of 25 by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

  11. Electrically Conductive Metal Polymer Nanocomposites for Electronics Applications

    Science.gov (United States)

    Karttunen, Mikko; Ruuskanen, Pekka; Pitknen, Ville; Albers, Willem M.

    2008-07-01

    An electrically conductive nanocomposite composed of thermoplastic elastomer and nanosized silver particles was developed. Nanosized silver particles were produced by the liquid flame spraying method. Nanocomposites were produced employing a batch mixing process in the melt state. The percolation curve and the minimum resistivity as a function of silver content were defined. A plasticized styrene block-copolymer was used as the matrix polymer. The results showed that the agglomeration of the silver particles has a major influence on the percolation threshold and the resistivity of the compound. With slightly agglomerated silver particles a percolation threshold with a silver content of 13 16 vol.% was achieved. The corresponding resistivity was 2.0 10-1 ? cm. With heavily agglomerated particles the resistivity is high (2.9 103 ? cm), even with a silver content of 20 vol.%. With a low primary silver particle size (under 100 nm), the resistivity of the compound was high (5.6 105 ? cm).

  12. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors.

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-28

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. PMID:26598964

  13. Controlled synthesis of transition metal/conducting polymer nanocomposites

    International Nuclear Information System (INIS)

    A novel displacement reaction has been observed to occur between conducting polymers (CP) and metal salts which can be used to fabricate nanostructured CP–metal composites in a one-pot manner. Vanadium pentoxide (V 2O5) nanofiber is used during the synthesis as the reactive seeds to induce the nanofibril CP–metal network formation. The CP–metal nanocomposites exhibit excellent sensory properties for hydrogen peroxide (H2O2) detection, where both high sensitivity and a low detection limit can be obtained. The sensory performance of the CP–metal composite can be further enhanced by a facile microwave treatment. It is believed that the CP–metal nanofibril network can be converted to a carbon–metal network by a microwave-induced carbonization process and result in the sensory enhancement. (paper)

  14. Functionalised inherently conducting polymers as low biofouling materials.

    Science.gov (United States)

    Zhang, Binbin; Nagle, Alex R; Wallace, Gordon G; Hanks, Timothy W; Molino, Paul J

    2015-01-01

    Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and>98% reduction in diatom adhesion. PMID:26218247

  15. Effect of ZnCdTe-Alloyed Nanocrystals on PolymerFullerene Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2009-01-01

    Full Text Available Abstract The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene (MEH-PPV, fullerene (C60, and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with different ZnCdTe:[MEH-PPV + C60] weight ratios of 10 wt% (D11, 20 wt% (D12, 40 wt% (D13, and 70 wt% (D14, it was found that the device D13exhibits the best performance. The power conversion efficiency (? is improved doubly compared with that of the MEH-PPV:C60device.

  16. Encapsulation of novel fluorescent nanocrystals (quantum dots) with a nanocomposite polymer and their assessment by in-vitro and in-vivo studies

    Science.gov (United States)

    Iga, Arthur M.

    Advance in nanotechnology has led to the development of novel fluorescent probes called quantum dots which are being exploited for potential new methods of early cancer detection spread and therapeutic management. Concerns regarding the release of potentially toxic inorganic core atoms into their surrounding environment and possession of hydrophobic surfaces are hindering the development of quantum dots. In order to abrogate their toxicity and solubilise the nanocrystals in aqueous solution a novel polyhedral oligomeric silsesquioxanes (POSS) poly(carbonate-urea)urethane (PCU), a silica nanocomposite (NC) polymer has been used to coat them. Physical and chemical analysis of the coated quantum dots with UV-Visible spectrometry, Photoluminescence, transmission electron microscopy, X-ray microanalysis and diffraction. Atomic force microscope and FTIR Spectrophotometry has enabled us ascertain the characteristics of these unique nanocrystals. The biocompatibility of the nanocomposite coated quantum dots (NCCQD) was assessed by using Alamar blue metabolic assay, Pico green assay and by measuring lactate dehydrogenase release on endothelial cell damage. Potential interference of NCCQD with a rat's normal physiology and systemic tissue distribution were assessed in an in-vivo animal model. Results demonstrated that the nanocrystals retained their unique optical properties, had a mean hydrodynamic diameter of 10.5 nm, excellent monodispersivity, large absorption spectrum with a narrow emission band at 790 nm and were highly photostable after polymer coating. NCCQD were compatible with endothelial cells as viable cells were demonstrated to be present after 14 days of growing cells in cell culture medium exposed to NCCQD at concentrations of 2.25 X 10"2 nM. There was no significant disturbance in the physiological parameters on injecting the NCCQD in an in-vivo rat model over a 2 hour period. NCCQD were seen to be deposited in the spleen and thymus as they are reticuloendothelial organs. In conclusion polymer encapsulated CdTe nanocrystals have tremendous potential to be exploited as a medical device in in-vivo imaging.

  17. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  18. Quantum soliton conductivity in polymers: a field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Leonardo [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), RJ (Brazil). Dept. de Ciencias Naturais; Marino, E.C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: The discovery of a tremendous increase in the electrical conductivity of polyacetylene, the simplest linear conjugated polymer, when doped with either halogens or alkalis, was a breakthrough of far reaching consequences in physics and chemistry. The fact that the trans-isomer occurs in two degenerate species opens the possibility of occurrence of soliton defects interconnecting them. Indeed, quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. In this work, we present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This strongly suggests that dynamic solitons are not the charge carriers in polyacetylene. Rather, polarons, which are basically soliton-anti soliton bound states should be responsible for the transport of charge in the intermediate doping regime of polyacetylene. This result is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM (Takayama, Lin-Liu and Maki) dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field. (author)

  19. Quantum soliton conductivity in polymers: a field theory approach

    International Nuclear Information System (INIS)

    Full text: The discovery of a tremendous increase in the electrical conductivity of polyacetylene, the simplest linear conjugated polymer, when doped with either halogens or alkalis, was a breakthrough of far reaching consequences in physics and chemistry. The fact that the trans-isomer occurs in two degenerate species opens the possibility of occurrence of soliton defects interconnecting them. Indeed, quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. In this work, we present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This strongly suggests that dynamic solitons are not the charge carriers in polyacetylene. Rather, polarons, which are basically soliton-anti soliton bound states should be responsible for the transport of charge in the intermediate doping regime of polyacetylene. This result is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM (Takayama, Lin-Liu and Maki) dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field. (author)

  20. Understanding hopping transport and thermoelectric properties of conducting polymers

    Science.gov (United States)

    Ihnatsenka, S.; Crispin, X.; Zozoulenko, I. V.

    2015-07-01

    We calculate the conductivity ? and the Seebeck coefficient S for the phonon-assisted hopping transport in conducting polymers poly(3,4-ethylenedioxythiophene) or PEDOT, experimentally studied by Bubnova et al. [J. Am. Chem. Soc. 134, 16456 (2012)], 10.1021/ja305188r. We use the Monte Carlo technique as well as the semianalytical approach based on the transport energy concept. We demonstrate that both approaches show a good qualitative agreement for the concentration dependence of ? and S . At the same time, we find that the semianalytical approach is not in a position to describe the temperature dependence of the conductivity. We find that both Gaussian and exponential density of states (DOS) reproduce rather well the experimental data for the concentration dependence of ? and S giving similar fitting parameters of the theory. The obtained parameters correspond to a hopping model of localized quasiparticles extending over 2-3 monomer units with typical jumps over a distance of 3-4 units. The energetic disorder (broadening of the DOS) is estimated to be 0.1 eV. Using the Monte Carlo calculation we reproduce the activation behavior of the conductivity with the calculated activation energy close to the experimentally observed one. We find that for a low carrier concentration a number of free carriers contributing to the transport deviates strongly from the measured oxidation level. Possible reasons for this behavior are discussed. We also study the effect of the dimensionality on the charge transport by calculating the Seebeck coefficient and the conductivity for the cases of three-, two-, and one-dimensional motion.

  1. Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review

    OpenAIRE

    Han, Zhidong; Fina, Alberto

    2011-01-01

    Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon ...

  2. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    International Nuclear Information System (INIS)

    Understanding the structure - conductivity relationship is of paramount importance for the development of polymer electrolytes. The present studies present the techniques found useful in the elucidation of structure - conductivity relationship in PEOn:ZnBr2 (n = 8, 1000, 2000, 3000, 4000 and 5000) and PEOn:FeBrx (n= 8, 20 and 50; x = 2 and 3). Local structural studies have been undertaken using X-ray absorption fine structures (XAFS) which includes extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). EXAFS provides interatomic distance and coordination numbers of the nearest neighbours and results from the EXAFS studies showed that high conductivity is associated with stretched M - O interatomic distance. In the studies on ultra dilute Zn samples it was found that the cation is highly solvated by the heteroatom forming a tightly bound environment which inhibits local segmental motion thus impeding ion migration. XANES studies on the PEO and modified PEO complexes of NiBr2 revealed the sensitivity of XANES to the structural differences. XANES on Zn and Fe samples also revealed the sensitivity to changes in interatomic distances reflected in shifts of the white line. The complementary nature of EXAFS and XANES was reflected in the studies conducted. Morphological studies were undertaken employing differential scanning calorimetry (DSC), variable temperature polarising microscopy (VTPM) and atomic force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO8:FeBr2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle-spike plot but the Fe(lll) samples displayed an extra semicircle before the spike reflecting a surface effect. This is also manifested in the Arrhenius plots of the same samples where a dip was shown at 100 deg C. From the conductivity studies on the iron systems it was found that for the dry samples the optimum conductivity was observed in PEO8:FeBrx irrespective of the valence state of the cation. For the air-cast samples the optimum conductivity composition depends on the valence state and were shown to be at more dilute compositions. (author)

  3. Soft capacitor fibers using conductive polymers for electronic textiles

    International Nuclear Information System (INIS)

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 m. A typical measured capacitance of our fibers is 60100 nF m?1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 k? m L?1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

  4. Soft capacitor fibers using conductive polymers for electronic textiles

    CERN Document Server

    Gu, Jian Feng; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials...

  5. A New Conducting Polymer Electrode for Organic Electroluminescence Devices

    International Nuclear Information System (INIS)

    Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescence devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(8-hydroxyquinoline) aluminium. The capacitance-voltage (C - V), capacitance-frequency (C - F), current-voltage (I - V), radiation intensity-voltage (R - V) and luminance efficiency-voltage (E - V) measurements are systematically studied to investigate the conductivity, Fermi alignment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function ofPDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28 eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Synthesis of Conductive Nanofillers/Nanofibers and Electrical Properties of their Conductive Polymer Composites

    Science.gov (United States)

    Sarvi, Ali

    Thanks to their corrosion resistance, light weight, low cost, and ease of processing, electrically conducting polymer composites (CPCs) have received significant attention for the replacement of metals and inorganic materials for sensors, actuators, supercapacitors, and electromagnetic interference (EMI) shields. In this PhD thesis, high aspect ratio conductive nanofillers namely copper nanowires (CuNWs) and multiwall carbon nanotubes (MWCNTs) were coated with polyaniline (PANi) using solution mixing and in-situ polymerization method, respectively. Transmission electron microscopy (TEM) showed a smooth polyaniline nano-coating between 5--18 nm in thickness on the nanofillers' surface. The coating thickness and; consequently, electrical conductivity was controlled and tuned by polyaniline/aniline concentration in solution. Composites with tunable conductivity may be used as chemisensors, electronic pressure sensors and switches. Coated nanofillers demonstrated better dispersion in polystyrene (PS) and provided lower electrical percolation threshold. Dispersion of nanofillers in PS was investigated using rheological measurements and confirmed with electron micrographs and nano-scale images of CPCs. Polyaniline (PANi), when used as a coating layer, was able to attenuate electromagnetic (EM) waves via absorption and store electrical charges though pseudocapacitance mechanism. The dielectric measurements of MWCNT-PANi/PS composites showed one order of magnitude increase in real electrical permittivity compared to that of MWCNT/PS composites making them suitable for charge storage purposes. Incorporation of PANi also brought a new insight into conductive network formation mechanism in electrospun mats where the orientation of conductive high aspect ratio nanofillers is a major problem. Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with coated multiwall carbon nanotubes (MWCNTs) were fabricated using electrospinning. These highly oriented PVDF nanofibers exhibited high beta (beta) crystal content and enhanced piezoelectricity. Moreover, multilayer electrospun nanofibers, in which MWCNTs were located at the shell layer, were fabricated for further decrease in electrical percolation threshold. In addition the PANi coated nanofillers, immiscible polymer blends (poly(methyl methacrylate) (PMMA) and styrene-acrylonitrile copolymer (SAN) blends) were employed to deliver lower percolation threshold via double percolation phenomenon. Conductivity measurements revealed a significant decrease in electrical percolation threshold (0.4 wt%) for PMMA70/SAN30 blends compared with MWCNT-filled SAN and PMMA (ca 0.8 wt%).

  7. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    OpenAIRE

    Drzal, Lawrence T.; Hiroyuki Fukushima; Kyriaki Kalaitzidou

    2010-01-01

    Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape), intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforce...

  8. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    OpenAIRE

    Lawrence T. Drzal; Hiroyuki Fukushima; Kyriaki Kalaitzidou

    2010-01-01

    Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and fillers geometric and physical properties. This work focuses on investigating the effect of fillers geometry (aspect ratio and shape), intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforce...

  9. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. Electronic supplementary information (ESI) available: BET surface area and pore distribution of palladium architectures without CPPyNPs; Hydrogen sensing ability of palladium architectures without CPPyNPs; HR-TEM image of Pd@CPPy_C16 after 100 cycle exposure of H2. See DOI: 10.1039/c5nr06193h

  10. A conducting polymer artificial muscle with 12% linear strain

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Sommer-Larsen, P.; Skaarup, Steen; Benslimane, M.

    2003-01-01

    The efforts given to optimize the linear strain response of polypyrrole (PPy) doped with alkyl benzene sulfonate (ABS) as these systems show particularly good chemical stability in aqueous systems and little toxicity are presented. The aims of the optimization is to obtain maximum length changes in a freely suspended polymer foil in response to a potential change and it includes attention to the composition of the polymer, to the synthesis conditions, and involves microstructuring of the polymer...

  11. In situ synthesis and characterization of silver/polymer nanocomposites by thermal cationic polymerization processes at room temperature: initiating systems based on organosilanes and starch nanocrystals.

    Science.gov (United States)

    Tehfe, Mohamad-Ali; Jamois, Romain; Cousin, Patrice; Elkoun, Sad; Robert, Mathieu

    2015-04-14

    New methods for the preparation of silver nanoparticles/polymer nanocomposite materials by thermal cationic polymerization of ?-caprolactone (?-CL) or ?-pinene oxide (?-PO) at room temperature (RT) and under air were developed. The new initiating systems were based on silanes (Si), starch nanocrystals (StN) and metal salts. Excellent polymerization profiles were revealed. It was shown that silver nanoparticles (Ag(0) NPs) were in situ formed and that the addition of StN improves the polymerization efficiency. The as-synthesized nanocomposite materials contained spherical nanoparticles homogeneously dispersed in the polymer matrices. Polymers and nanoparticles were characterized by gel permeation chromatography (GPC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. A coherent picture of the involved chemical mechanisms is presented. PMID:25793620

  12. Crystalline polymers with exceptionally low thermal conductivity studied using molecular dynamics

    Science.gov (United States)

    Robbins, Andrew B.; Minnich, Austin J.

    2015-11-01

    Semi-crystalline polymers have been shown to have greatly increased thermal conductivity compared to amorphous bulk polymers due to effective heat conduction along the covalent bonds of the backbone. However, the mechanisms governing the intrinsic thermal conductivity of polymers remain largely unexplored as thermal transport has been studied in relatively few polymers. Here, we use molecular dynamics simulations to study heat transport in polynorbornene, a polymer that can be synthesized in semi-crystalline form using solution processing. We find that even perfectly crystalline polynorbornene has an exceptionally low thermal conductivity near the amorphous limit due to extremely strong anharmonic scattering. Our calculations show that this scattering is sufficiently strong to prevent the formation of propagating phonons, with heat being instead carried by non-propagating, delocalized vibrational modes known as diffusons. Our results demonstrate a mechanism for achieving intrinsically low thermal conductivity even in crystalline polymers that may be useful for organic thermoelectrics.

  13. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  14. Using artificial intelligence methods to design new conducting polymers

    Directory of Open Access Journals (Sweden)

    Ronaldo Giro

    2003-12-01

    Full Text Available In the last years the possibility of creating new conducting polymers exploring the concept of copolymerization (different structural monomeric units has attracted much attention from experimental and theoretical points of view. Due to the rich carbon reactivity an almost infinite number of new structures is possible and the procedure of trial and error has been the rule. In this work we have used a methodology able of generating new structures with pre-specified properties. It combines the use of negative factor counting (NFC technique with artificial intelligence methods (genetic algorithms - GAs. We present the results for a case study for poly(phenylenesulfide phenyleneamine (PPSA, a copolymer formed by combination of homopolymers: polyaniline (PANI and polyphenylenesulfide (PPS. The methodology was successfully applied to the problem of obtaining binary up to quinternary disordered polymeric alloys with a pre-specific gap value or exhibiting metallic properties. It is completely general and can be in principle adapted to the design of new classes of materials with pre-specified properties.

  15. Incorporation of Metallic Nanoparticles into Conducting Polymer Actuator Films

    Science.gov (United States)

    Costa, Alexsandro Santos; Li, Kwong-Chi; Kilmartin, Paul A.; Travas-Sejdic, Jadranka

    2009-07-01

    Nanocomposites of conducting polymer films (CP) with metal nanoparticles have been prepared. Electropolymerization of pyrrole on stainless steel electrodes was undertaken galvanostatically until the thickness of the polypyrrole (PPy) film reached around 7.5 ?m, which is suitable for the future application of these films in micropumps and microvalves. Subsequently platinum nanoparticles were deposited from a solution of a platinum precursor (K2PtCl6) onto the PPy coated stainless steel electrodes by applying a potential of -0.1 V for between 3 and 15 s. The length of the deposition time led to significant differences in the morphology and size of the particles obtained. The actuation of the free standing films was studied by electrochemomechanical deformation measurements (ECMD) on strips of films cycled in NaPF6. Depending upon the test conditions, the strain rate and ultimate strain of films containing Pt nanoparticles could be increased by a factor of 2 or more compared to those of pristine PPy films.

  16. The catalytic activity of conducting polymers toward oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, V.G. [Kiev National University of Technologies and Design, 2 Nemirovich-Danchenko Str., Kiev 02011 (Ukraine); Barsukov, V.Z. [Kiev National University of Technologies and Design, 2 Nemirovich-Danchenko Str., Kiev 02011 (Ukraine)]. E-mail: chemi@mail.kar.net; Katashinskii, A.S. [Kiev National University of Technologies and Design, 2 Nemirovich-Danchenko Str., Kiev 02011 (Ukraine)

    2005-02-15

    The reduction of oxygen at electronically conducting polymers (ECPs) such as polyaniline (PANI), polypyrrole (PPy), polythiophen (PTh), and poly(3-methyl)thiophen (PMeT), poly(3,4-ethylenedioxythiophene) (PEDOT) have been studied. The electrochemical investigations of ECPs based catalytic electrodes in oxygen-saturated electrolytes indicate the existence of electrocatalytic activity toward the oxygen reduction at different ECPs with the exception of PEDOT. To explain the reasons of the catalytic activity of ECPs, a quantum-chemical modeling of ECPs and adsorption complexes of ECPs with oxygen have been performed. To calculate the electronic structure of molecular clusters and their complexes with oxygen, the PM 3 program of the MOPAC computer system was used. The catalytic activity takes place due to the unique electronic structure of ECPs. The calculations showed that the bond orders in chemisorbed oxygen molecules at PANI decrease by a third, and the bond length increases by more than 20% in comparison with that in a free oxygen molecule. Thus, chemisorbed oxygen molecules have a fairly high degree of activation and can be readily reduced at the polymeric surface. The similar mechanism takes place on the active carbon atoms of PPy, PTh, and PMeT.

  17. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  18. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    International Nuclear Information System (INIS)

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO)8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO)10 and LiClO4.P(EO)10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO)8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  19. Influence of Conducting Polymers Based on Carboxylated Polyaniline on In Vitro CaCO3 Crystallization

    OpenAIRE

    Neira-Carrillo, Andronico; Acevedo, Diego F.; Miras, Maria C.; Barbero, Cesar A.; Gebauer, Denis; Clfen, Helmut; Arias, Jose L.

    2008-01-01

    Conducting polymers are interesting materials of technological applications, while the use of polymers as additives controlling crystal nucleation and growth is a fast growing research field. In the present article, we make a first step in combining both topics and report the effect of conducting polymer derivatives, which are based on carboxylated polyanilines (c-PANIs), on in vitro CaCO3 crystallization by the Kitano and gas diffusion method. This is the first example of the mineralization ...

  20. Electrochemical characterisation of conducting polymer layers and their use as gas sensors

    OpenAIRE

    McCormac, Timothy Paul

    1994-01-01

    The main aim of this work was to develop an SO2 sensor based upon a conducting polymer. The methodology and properties of a conducting polymer sensor along with the electrochemical characterisation of various polypyrrole layers is described. It was found that polypyrrole layers containing Copper (11) Phthalocyanine - 3,4',4", 4"'-tetrasulphonate anions (PPTSP), as the dopant, upon electrochemical switching exhibit cation movement in and out of the polymer matrix. A concentration, pH, temp...

  1. Performance of conducting polymer electrodes for stimulating neuroprosthetics

    Science.gov (United States)

    Green, R. A.; Matteucci, P. B.; Hassarati, R. T.; Giraud, B.; Dodds, C. W. D.; Chen, S.; Byrnes-Preston, P. J.; Suaning, G. J.; Poole-Warren, L. A.; Lovell, N. H.

    2013-02-01

    Objective. Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is examined in comparison to platinum (Pt), to demonstrate the potential performance of these coatings in neuroprosthetic applications. Approach. PEDOT is coated on Pt microelectrode arrays and assessed in vitro for charge injection limit and long-term stability under stimulation in biologically relevant electrolytes. Physical and electrical stability of coatings following ethylene oxide (ETO) sterilization is established and efficacy of PEDOT as a visual prosthesis bioelectrode is assessed in the feline model. Main results. It was demonstrated that PEDOT reduced the potential excursion at a Pt electrode interface by 72% in biologically relevant solutions. The charge injection limit of PEDOT for material stability was found to be on average 30 larger than Pt when tested in physiological saline and 20 larger than Pt when tested in protein supplemented media. Additionally stability of the coating was confirmed electrically and morphologically following ETO processing. It was demonstrated that PEDOT-coated electrodes had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the visual cortex. Significance. These studies demonstrate that PEDOT can be produced as a stable electrode coating which can be sterilized and perform effectively and safely in neuroprosthetic applications. Furthermore these findings address the necessity for characterizing in vitro properties of electrodes in biologically relevant milieu which mimic the in vivo environment more closely.

  2. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula; Areephong, Jetsuda; Hjelm, Johan; Feringa, Ben L.; Browne, Wesley R.

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity of t...

  3. Conducting polymer nanostructures for photocatalysis under visible light.

    Science.gov (United States)

    Ghosh, Srabanti; Kouam, Natalie A; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics. PMID:25774954

  4. Towards p-type conductivity in SnO2 nanocrystals through Li doping

    International Nuclear Information System (INIS)

    This paper examines electrical transport properties and Li doping in SnO2 synthesized by the sol-gel method. Solid-state 7Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25-350 deg. C temperature range, follows an Efros-Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(ρ) versus T-1/2) at temperatures below 100 deg. C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(ρ) versus T-1/3) conduction at temperatures above 250 deg. C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

  5. Towards p-type conductivity in SnO2 nanocrystals through Li doping

    Science.gov (United States)

    Chaparadza, Allen; Rananavare, Shankar B.

    2010-01-01

    This paper examines electrical transport properties and Li doping in SnO2 synthesized by the sol-gel method. Solid-state 7Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25-350 °C temperature range, follows an Efros-Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(ρ) versus T-1/2) at temperatures below 100 °C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(ρ) versus T-1/3) conduction at temperatures above 250 °C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

  6. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. 2014 Elsevier B.V. All rights reserved.

  7. A review of properties and potential aerospace applications of electrically conducting polymers

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. Richard; Meador, Michael A.

    1990-01-01

    An overview of current research in conducting polymers is presented. Emphasis is placed on development of materials useful for aeronautic and space applications. Research on organic conducting polymers began in the early 1970s with the discovery of polyacetylene. Since then, many polymers which share structural characteristics with polyacetylene have been prepared which conduct electricity, especially when they are doped with suitable agents. Problems with environmental instability, difficult processing, poor mechanical properties and high cost have slowed the development of conducting polymers. However, practical use of these materials is imminent, based on recent refinements in understanding how polymers conduct, more systematic approaches to the development of new materials, and significant improvements in both the processing and properties.

  8. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  9. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    OpenAIRE

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-01-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs ...

  10. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration

    OpenAIRE

    Sirivisoot, Sirinrath; Pareta, Rajesh; Harrison, Benjamin S.

    2014-01-01

    It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a na...

  11. A polymer electrolyte with high luminous transmittance and low solar throughput : Polyethyleneimine-lithium bis(trifluoromethylsulfonyl) imide with In2O3:Sn nanocrystals

    OpenAIRE

    Bayrak Pehlivan, I.; Runnerstrom, E. L.; Li, Shuyi(Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, 210093, China); Niklasson, Gunnar A.; Milliron, D. J.; Granqvist, Claes-Gran

    2012-01-01

    Chemically prepared similar to 13-nm-diameter nanocrystals of In2O3:Sn were included in a polyethyleneiminelithium bis(trifluoromethylsulfonyl) imide electrolyte and yielded high haze-free luminous transmittance and strong near-infrared absorption without deteriorated ionic conductivity. The optical properties could be reconciled with effective medium theory, representing the In2O3:Sn as a free electron plasma with tin ions screened according to the random phase approximation corrected for el...

  12. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  13. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying moisture levels because even low humidity levels saturate the sample surface within a few minutes. Because of this, it was not perfect to distinguish the effects of etching the PEDOT film for humidity detection and difficult to apply nano-columned PEDOT films as a humidity sensors under continuously changing humidity conditions. However, nano-columned PEDOT films showed excellent performance in simulated breath tests, i.e., an area where the medical needs sensors for pulmonary monitoring. Since the polymers are sensitive to heat, it was important to characterize the influence of temperature on the sensor performance. PANI nanowires and nano-columned PEDOT sensors were tested in the environmental chamber developed in this work as a function of temperature with the humidity fixed, and only the temperature was varied. The PANI nanowires showed very fast degradation at temperatures above room temperature, while the nano-columned PEDOT film performed up to 50 °C. The influence of other gases was also tested for the potential of gas sensing, selectivity, and chemical stability. In order to exclude the moisture effect during the measurement, the samples were characterized under the lowest humidity condition, RH 14% preserved in the system. Under these conditions the PANI nanowires responded to the gases (hydrogen and carbon monoxide were used), but the moisture inside the PANI nanowire was forced to influence the gas detection. Therefore, samples were dried overnight under a nitrogen environment and tested again. With this careful control of the moisture present, it was found that PANI nanowires respond to both hydrogen and carbon monoxide gases, however, there is no selectivity between gases. Nano-columned PEDOT films were also tested under the same experimental moisture-controlling conditions. It was shown that there was little response to other gases. Any response that may have been presented was buried in the electrical noise. Finally, both samples were tested for long-term stability. PANI nanowires showed almost linear degradation with continuous use, while nano-columned PEDOT was stable over extended periods of time. The PANI nanowires were more reactive to the environment compared to the nano-columned PEDOT films. The only disadvantage of the nano-columned PEDOT sensor structure is that it loses its durability when it is directly exposed to liquid water or highly saturated humidity for long periods of time. A surface treatment of PEDOT was developed that enhanced its durability against water without degrading its sensor performance. Nano-columned PEDOT films look promising for breath sensors for medical usage because they have sub-second response times and are relatively chemically and physically stable.

  14. Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals

    KAUST Repository

    Wang, Mingfeng

    2009-12-15

    We report the incorporation of various inorganic nanoparticles (NPs) (PbS, LaOF, LaF3, and TiO2, each capped by oleic acid, and CdSe/ZnS core/shell QDs capped by trioctylphosphine oxide) into vesicles (d = 70-150 nm) formed by a sample of poly(styrene-b-acrylic acid) (PS4o4-b-PAA 62, where the subscripts refer to the degree of polymerization) in mixtures of tetrahydrofuran (THF), dioxane, and water. The block copolymer formed mixtures of crew-cut micelles and vesicles with some enhancement of the vesicle population when the NPs were present. The vesicle fraction could be isolated by selective sedimentation via centrifugation, followed by redispersion in water. The NPs appeared to be incorporated into the PAA layers on the internal and external walls of the vesicles (strongly favoring the former). NPs on the exterior surface of the vesicles could be removed completely by treating the samples with a solution of ethylenediaminetetraacetate (EDTA) in water. The triangular nanoplatelets of LaF3 behaved differently. Stacks of these platelets were incorporated into solid colloidal entities, similar in size to the empty vesicles that accompanied them, during the coassembly as water was added to the polymer/LaF3/THF/ dioxane mixture. 2009 American Chemical Society.

  15. Effects of ?-rays on electrical conductivity of polyvinyl alcohol-polypyrrole composite polymer films

    International Nuclear Information System (INIS)

    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of ?-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of choloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10-5 Scm-1 indicates that ?-ray is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 ? S ? 0.49 and obeyed simple power law dispersion ?S. The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased. (Author)

  16. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; Ravi Shanker Babu; M Usha Rani

    2011-12-01

    Solid polymer electrolyte membrane comprising poly(vinyl chloride) (PVC), poly(ehylene oxide) (PEO) and different lithium salts (LiClO4, LiBF4 and LiCF3SO3) were prepared by the solution casting technique. The effect of complexing salt on the ionic conductivity of the PVC/PEO host polymer is discussed. Solid polymer electrolyte films were characterized by X-ray diffraction, FTIR spectroscopy, TG/DTA and ac impedance spectroscopic studies. The conductivity studies of these solid polymer electrolyte (SPE) films are carried out as a function of frequency at various temperatures ranging from 302 K to 353 K. The maximum room temperature ionic conductivity is found to be 0.079 × 10-4 S cm-1 for the film containing LiBF4 as the complexing salt. The temperature dependence of the conductivity of polymer electrolyte films seems to obey the Vogel–Tamman–Fulcher (VTF) relation.

  17. Hybrid solar cells of conjugated polymers metal-oxide nanocrystals blends; state of the art and future research challenges in Indonesia

    Science.gov (United States)

    Bahtiar, Ayi

    2013-09-01

    Ever-increasing world energy demand, depleting non-renewable energy resources and disruptive climate change due to greenhouse gases has aroused much interest in alternative renewable energy sources. Solar energy is one of the best available alternatives, for it is both abundant and clean. Solar cell is an effective device for converting solar energy into electricity. Indonesia is located on the equator where the sunlight is always available in abundance throughout the year; therefore solar cell would become the main source of electrical energy in Indonesia. However, the high cost of inorganic solar cells in spite of their high power conversion efficiency (PCE) has been a major constrain for their mass utilization in Indonesia. The only way to reduce the cost of production and installation is to find other materials which offer low-cost and easy processing into solar cells. Polymer solar cells have been intensively investigated for high performance and low-cost solar cells. Today, 9-11% power conversion efficiency (PCE) of small area polymer solar cells and 2-4% PCE of large area or module solar cells are already achieved. However, for practical application and mass production, 10% or higher PCE of module solar cells is highly required. The main strategic issue for improving the PCE is to use blend of conjugated polymer-metal oxide nanocrystals as active materials for hybrid solar cells, due to the good combination of the versatile solution processability of conjugated polymers and high charge carrier mobility of metal-oxide nanocrystals. In this paper, current development of hybrid solar cells worldwide and future research challenges in Indonesia will be discussed.

  18. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    CERN Document Server

    Webster, M I

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) sub 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) sub 1 sub 0 and LiClO sub 4.P(EO) sub 1 sub 0 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stabl...

  19. Fabrication and characterization of dry conducting polymer actuator by vapor phase polymerization of polypyrrole.

    Science.gov (United States)

    Ramasamy, Madeshwaran Sekkarapatti; Mahapatra, Sibdas Singha; Cho, Jae Whan

    2014-10-01

    A trilayered dry conducting polymer actuator was fabricated via application of a polypyrrole (PPy) coating on both sides of a solid polymer electrolyte film using vapor phase polymerization (VPP). The solid polymer electrolyte film was prepared by incorporation of different weight ratios of dodecylbenzene sulfonic acid sodium salt in poly(vinyl alcohol) (PVA) by solvent casting. The successful polymerization of PPy was confirmed by Fourier transform infrared spectroscopy; a uniform PPy coating on the solid polymer electrolyte film surface was also observed by scanning electron microscopy. The dry PVA/PPy actuator demonstrated good actuation behavior at a low applied voltage of 1-3 V. The actuator bending displacement was found to increase with an increase in the applied voltage. The VPP approach in this study provides a very effective method for achieving a uniform polymer coating in the fabrication of a dry conducting polymer actuator. PMID:25942824

  20. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula; Areephong, Jetsuda; Hjelm, Johan; Feringa, Ben L.; Browne, Wesley R.

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity of the polymer can be switched electrochemically in a reversible manner by redox triggered opening and closing of the diarylethene unit. In the closed state, the conductivity of the modified electrode is hig...

  1. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent; Clark, N.B.

    2007-01-01

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). The agarose stamping produced 50 ?m wide conducting lines with high spatial fidelity. The deactivation agent was found to cause some degradation of the remaining con...

  2. Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene Sponges

    OpenAIRE

    Yuanqing Li; Yarjan Abdul Samad; Kyriaki Polychronopoulou; Alhassan, Saeed M.; Kin Liao

    2014-01-01

    Conductive polymer composites require a threedimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuumassisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined ...

  3. Carbon nanotubes coated with a conducting polymer, polyaniline.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Konyushenko, Elena; Trchov, Miroslava; Sapurina, I.; Kazantseva, N. E.; Tomishko, M. M.; Demicheva, O. M.

    Rio de Janeiro : International Union of Pure and Applied Chemistry, 2006, s. 1-2. [World Polymer Congress Macro 2006 /41./. Rio de Janeiro (BR), 16.07.2006-21.07.2006] R&D Projects: GA AV ?R IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * ferromagnetism * polyaniline Subject RIV: CD - Macromolecular Chemistry

  4. FINAL REPORT. SENSORS USING MOLECULAR RECOGNITION IN LUMINESCENT, CONDUCTIVE POLYMERS

    Science.gov (United States)

    The purpose of this project is to develop sensor technology for detecting specific heavy metal ions, such as transition metals, lead, lanthanides, and actinides in waste streams. The sensing strategy uses molecular recognition of the metal ions by polymers that change their lumin...

  5. Conductivity studies of a chitosan-based polymer electrolyte

    International Nuclear Information System (INIS)

    Ionic conductivity for the chitosan-NH4CF3SO3 system was conducted over a wide range of frequency and at temperatures between 298 and 313 K. Dielectric data were analyzed using complex permittivity ? * and complex electrical modulus M * for the sample with the highest ionic conductivity at various temperatures. The temperature-dependent conductivity data obeys Arrhenius relationship. Jonschers universal power law was used to analyze AC conductivity of the sample. Hopping frequency was determined and activation energy of hopping is almost equal to the activation energy of conduction. The AC conductivity master curve was obtained for the highest conducting sample when scaled vertically by ? DC and horizontally by ? P

  6. Sntese de polmeros condutores em matrizes slidas hospedeiras Conductive polymer synthesis in solid host matrices

    OpenAIRE

    Daltamir J. Maia; Marco-A De Paoli; Oswaldo L. Alves; Zarbin, Aldo J.G.; Silmara das Neves

    2000-01-01

    This review discusses the methods used to prepare conductive polymers in confined environments. This spatial restriction causes formation of defect-free polymer chains in the interlayer as porous cavities of inorganic hosts. The properties of the different composites obtained are a synergist combination of the characteristics of the inorganic host and the polymer. This opens new perspectives for the preparation of these materials and widens its potential applications.

  7. Sntese de polmeros condutores em matrizes slidas hospedeiras / Conductive polymer synthesis in solid host matrices

    Scientific Electronic Library Online (English)

    Daltamir J., Maia; Marco-A., De Paoli; Oswaldo L., Alves; Aldo J. G., Zarbin; Silmara das, Neves.

    2000-04-01

    Full Text Available [...] Abstract in english This review discusses the methods used to prepare conductive polymers in confined environments. This spatial restriction causes formation of defect-free polymer chains in the interlayer as porous cavities of inorganic hosts. The properties of the different composites obtained are a synergist combina [...] tion of the characteristics of the inorganic host and the polymer. This opens new perspectives for the preparation of these materials and widens its potential applications.

  8. Conducting polymers as driving electrodes for Polymer-Dispersed Liquid-Crystals display devices: On the electro-optical efficiency

    Science.gov (United States)

    Roussel, F.; Chan-Yu-King, R.; Buisine, J.-M.

    2003-07-01

    Intrinsically conducting polymer (ICP) thin films are used as driving electrodes for Polymer-Dispersed Liquid-Crystals (PDLC) display devices. In order to investigate the electro-optical efficiency of these organic electrodes, three different kinds of conducting polymers, i.e. polyaniline doped with 10-camphorsulfonic acid (PANI(HCSA)), polypyrrole doped with dodecylbenzenesulfonic acid (PPY(DBSA)), and polyethylenedioxythiophene doped with polystyrenesulfonate (PEDOT(PSS)), were prepared or purchased, and coated either on glass or plastic substrates. Optical absorption studies in the UV-Vis range of the conducting polymer-coated substrates were first performed showing the presence of conducting species for the three types of polymers. The electrical characteristics of the resulting films were measured with the four-probes technique. PANI(HCSA) exhibits a higher conductivity ?sim 122\\un{S\\cdot cm^{-1}} (R_S=1.2 ; 10^3; ?\\cdotBox^{ -1}) compared to PPY(DBSA) ?sim 2.6\\un{S\\cdot cm^{-1}} (R_S=150.7 ;10^3;?\\cdotBox^{-1}), and PEDOT(PSS) ?sim 1.6\\un{S\\cdot cm^{-1}} (R_S=637.3 ; 10^3; ?\\cdotBox^{-1}). It is also shown that for a given conducting polymer, its electrical conductivity decreases when a plastic substrate is used. These observations have been related to significant morphological changes observed by scanning electron microscopy (SEM). A mixture of Norland Optical Adhesive 65 and nematic liquid-crystal E7 in the weight ratio (\\chem{35:65}) was used as precursor of the PDLC material. Better electro-optical responses (transmission properties, drive voltages and switching times) of PDLC films were obtained for devices prepared with (PPY(DBSA))-based electrodes. The electro-optical performances of the PDLC display devices also depend on the nature of the ICP substrate used.

  9. Electrochemomechanical Behaviour of Bilayer and Trilayer Films with PEDOT and PPY Conducting Polymers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    A detailed study on bilayer and trilayer films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers is reported. Both polymers are doped with dodecyl benzenesulfonate (DBS) anions. These multi layer films were prepared electrochemically so that the PEDOT...

  10. Regiochemistry of Poly(3-Hexylthiophene): Synthesis and Investigation of a Conducting Polymer

    Science.gov (United States)

    Pappenfus, Ted M.; Hermanson, David L.; Kohl, Stuart G.; Melby, Jacob H.; Thoma, Laura M.; Carpenter, Nancy E.; Filho, Demetrio A. da Silva; Bredas, Jean-Luc

    2010-01-01

    A series of experiments for undergraduate laboratory courses (e.g., organic, polymer, inorganic) have been developed. These experiments focus on understanding the regiochemistry of the conducting polymer poly(3-hexylthiophene) (P3HT). The substitution patterns in P3HTs control their conformational features, which, in turn, dictates the [pi]…

  11. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    Science.gov (United States)

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the

  12. Superparamagnetism of transition metal nanoparticles in conducting polymer film

    International Nuclear Information System (INIS)

    Magnetic properties of transition metal (cobalt, iron, nickel, manganese, chromium) nanoparticles prepared by ion-exchange method in the perfluorinated sulfo-cation polymeric membrane (MF-4SK) have been investigated. While manganese and chromium in MF-4SK exhibited paramagnetic properties, cobalt, iron and nickel particles showed superparamagnetic behaviors. Our experimental evidence suggests that cobalt, iron and nickel nanoparticles in the polymer film obey a single-domain theory

  13. Conducting Polymer Actuators for Medical Devices and Cell Mechanotransduction

    OpenAIRE

    Jager, Edwin

    2013-01-01

    Actuators made of conjugated polymers such aspolypyrrole are interesting candidates as active elements inmedical devices since they can be fabricated in small sizes andoperated in saline solutions. In addition they can bemicrofabricated and integrated on silicon chips for instance forlab-on-a-chip and cell biology applications. Here, devicescomprising polypyrrole (PPy) microactuators for mechanicalstimulation of single cells are presented. In addition, novelinterfacing and patterning methods ...

  14. Thermal stability of the conducting polymer-ionic liquid composite.

    Czech Academy of Sciences Publication Activity Database

    Trchov, Miroslava; ed?nkov, Ivana; Morvkov, Zuzana; Stejskal, Jaroslav

    Prague : Institute of Macromolecular Chemistry AS CR, v. v. i, 2013. s. 71. ISBN 978-80-85009-77-4. [European Symposium on Polymer Spectroscopy /19./ - ESOPS19. Prague Meeting on Macromolecules /77./. 07.07.2013-11.07.2013, Prague] R&D Projects: GA ?R GAP205/12/0911 Institutional support: RVO:61389013 Keywords : polyaniline * ionic liquid * thermal stability Subject RIV: CD - Macromolecular Chemistry

  15. Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF6

    Indian Academy of Sciences (India)

    Jitender Paul Sharma; S S Sekhon

    2013-08-01

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ionic conductivity, whereas the addition of nano-sized fumed silica improves mechanical strength of electrolytes along with a small increase in ionic conductivity. It was observed that the simultaneous addition of PC and fumed silica results in electrolytes with optimum value of ionic conductivity and other properties.

  16. Design of conducting polymer matrix derived from the C{sub 60}-based star-shaped polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, L.Y.; Wang, L.Y. [National Taiwan Univ., Taipei (Taiwan, Province of China)

    1995-12-01

    Synthetic methods leading to the preparation of water-soluble polyhydroxylated C{sub 60} derivative (fullerenol) have been extensively investigated recently. This type of molecule, containing multiple polar hydroxyl functions in a ball-shaped fullerene structure, is suitable for utilization as a versatile intermediate in the prospective design of three-dimensionally stretched polymers. The strategy involves the use of fullerenol as a molecular core for anchoring various polymer arms on the C{sub 60} cage. Since the spherical space of fullerenol, covering the outer radius of hydroxyl groups, is in a diameter of approximately 13 {Angstrom}. The truly star-bursted polymer molecules can be made. The treatment of fullerenol with a prepolymer of diisocyanated urethane polyether under a mild condition afforded the C{sub 60}-based polyurethane polyether star-polymers with a narrow distribution of the number of polymer arms. We will discuss the use of C{sub 60}-based star-shaped polymer in the design and fabrication of polyaniline analog conducting polymer matrix.

  17. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    Debangshu Chaudhuri; D D Sarma

    2006-07-01

    We review the unusual structural, transport and magnetic properties of highly conducting polyaniline, doped with boron trifluoride. Our studies establish the unique conducting state of this system, which is in distinct contrast with the conventional proton-doped polyaniline samples.

  18. The synthesis of conducting polymers for corrosion prevention

    Science.gov (United States)

    Mattson, Guy C.

    1988-01-01

    The formation of an electrically conducting form of polyaniline by the oxidative polymerization of aniline was studied. Optimum yield and conductivities were obtained by treating aniline in 2 molar hydrochloric acid at 0 to 5 C with ammonium persulfate in 1.15 mole ratio. The yield was 37.6 percent of theory and the conductivity of the product was 10.5 S/cm. This material was formulated into epoxy and acrylic coatings which were also electrically conductive.

  19. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO

    Directory of Open Access Journals (Sweden)

    I. Blaszczyk-Lezak

    2016-03-01

    Full Text Available Intrinsically or extrinsically conducting polymers are considered good candidates for replacement of metals in specific applications. In order to further expand their applications, it seems necessary to examine the influence of confinement effects on the electric properties of nanostructured conducting polymers in comparison to the bulk. The present study reports a novel way to fabricate and characterize high quality and controllable one-dimensional (1D polymer nanostructures with promising electrical properties, with the aid of two examples polyaniline (PANI and poly(vinylidene fluoride with multiwall carbon nanotubes (PVDF-MWCNT as representative of intrinsically and extrinsically conducting polymers, respectively. In this work, porous anodic aluminum oxide (AAO templates have been used both as a nanoreactor to synthesize 1D PANI nanostructures by polymerization of the ANI monomer and as a nanomold to prepare 1D PVDFMWCNT nanorods by melt infiltration of the precursor PVDF-MWCNT film. The obtained polymer nanostructures were morphologically and chemically characterized by SEM and Confocal Raman Spectroscopy, respectively, and the electrical properties determined by Broadband Dielectric Spectroscopy (BDS in a non-destructive way. SEM study allowed to establish the final nanostructure of PANI and PVDF-MWCNT and confirmed, in both cases, the well-aligned and uniform rodlike polymer nanostructures. Confocal Raman Microscopy has been performed to study the formation of the conducting emeraldine salt of PANI through all the length of AAO nanocavities. Finally, the electrical conductivity of both types of polymer nanostructures was easily evaluated by means of Dielectric Spectroscopy.

  20. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments.

    Czech Academy of Sciences Publication Activity Database

    Kalendov, A.; Vesel, D.; Kohl, M.; Stejskal, Jaroslav

    2015-01-01

    Ro?. 78, January (2015), s. 1-20. ISSN 0300-9440 Institutional support: RVO:61389013 Keywords : conducting polymer * zinc metal * organic coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.358, year: 2014

  1. ION AND MOLECULE SENSORS USING MOLECULAR RECOGNITION IN LUMINESCENT, CONDUCTIVE POLYMERS

    Science.gov (United States)

    This program integrates three individual, highly interactive projects that will use molecular recognition strategies to develop sensor technology based on luminescent, conductive polymers that contain sites for binding specific molecules or ions in the presence of related molecul...

  2. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    Science.gov (United States)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  3. Investigation of electrode patterns suitable for nano-litre drop coated conducting polymer composite sensors

    OpenAIRE

    Arshak, Khalil; Cunniffe, Colm; Moore, Edward G.; Cavanagh, Leon M.

    2006-01-01

    This study presents an analysis of electrode patterns suitable for use with drop coated conducting polymer gas sensors. A thin-film technique was used to efficiently fabricate the copper electrode patterns [1]. Conducting Polymer Composite (CPC) materials were deposited using a 500 nano-litre syringe onto the electrode patterns to produce an array of sensors for organic solvent vapour detection. The sensors were exposed to propanol vapour in steps of 3000 ppm from a minimum concentratio...

  4. Design, synthesis, characterization and development of novel organic conducting polymers with technological applications

    OpenAIRE

    Aradilla Zapata, David

    2013-01-01

    In this thesis, a series of novel organic conducting polymers have been synthesized using alternative methods based on electrochemical techniques, which have allowed to broaden the knowledge in the field of the characterization by means of topological, spectroscopic, electrochemical and structural techniques. Among the variety of synthesis techniques of conducting polymers, layer-by-layer (LbL) has been one of the most important to build multilayered systems. Thus, in this thesis ...

  5. OPTIMIZED DESIGN OF BIO-SENSOR USING CONDUCTING POLYMERS AND NANOCOMPOSITES

    OpenAIRE

    Usha.A,; Ramachandra, B

    2011-01-01

    This Research work is focused on the design, development and technological evolution of emerging fields of Nanotechnology and Conducting Polymer Electronics, Bio-Tech based Embedded Sensors and Smart Systems employing System-0n- Chip (SOC) Core, as applied to Health Monitoring of Human and Complex Systems in Engineering and Medicine. With the Invention of Thin-Film Technology, it is now possible to fabricate Novel Conducting-Polymer based sensors and devices with built-in-flexible electronics...

  6. Properties and processing by extrusion of electrically conductive multilayer filaments comprising polymer composites

    OpenAIRE

    R S Martins; Gonalves, Renato Ferreira; Azevedo, Tiago; Nbrega, J.M.; Carvalho, Helder; Lanceros-Mndez, S.; Rocha, J.G.

    2013-01-01

    This work describes the production and characterization of three-layer piezoelectric filaments using two different electrically conductive polymers. The filaments were produced in a filament extrusion line, equipped with a coextrusion die that enabled a coaxial arrangement for a three-layer filament. For the inner and outer layers two different electrically conductive compounds were used, and the middle layer was made of the electroactive polymer PVDF. The produced filament can be used as a p...

  7. Electrochemical evaluation of the p-Si/conducting polymer interfacial properties

    Science.gov (United States)

    Nagasubramanian, G.; Distefano, S.; Moacanin, J.

    1988-01-01

    Results are presented from an experimental investigation of the contact resistance and interfacial properties of a p-Si/conducting polymer interface for solar cell applications. The electronic character of the polymer/semiconductor function is determined by studying the electrochemical behavior of both poly(isothianapthene) (PITN) and polypyrrole (PP) in an acetonitrile solution on p-silicon electrodes. The results obtained indicate that while PITN is intrinsically more conductive than PP, neither passivates surface states nor forms ohmic contact.

  8. DOPANT FLEXIBILITY AND PROCESSABILITY STUDIES WITH ELECTRICALLY CONDUCTIVE, FACE-TO-FACE METALLOMACROCYCLIC POLYMERS

    OpenAIRE

    Inabe, T.; Lyding, J.; Moguel, M.; Marks, T.

    1983-01-01

    In doping experiments on the cofacially arrayed phthalocyanine polymer [Si(Pc)O]n using high potential quinone, halogen, or nitrosyl electron acceptors, the achievable degree of partial oxidation, the inhomogeneity of the doping process, and the conductivity mechanism remain remarkably constant. Using wet spinning techniques, it has proven possible to prepare electrically conductive fibers of [Si(Pc)O]n alone or blended with the high performance aramid polymer Kevlar.

  9. A unified model for temperature dependent electrical conduction in polymer electrolytes

    OpenAIRE

    Mikrajuddin; Lenggoro, I. Wuled; Okuyama, Kikuo

    2001-01-01

    The observed temperature dependence of electrical conduction in polymer electrolytes is usually fitted with two separated equations: an Arrhenius equation at low temperatures and Vogel-Tamman-Fulcher (VTF) at high temperatures. We report here a derivation of a single equation to explain the variation of electrical conduction in polymer electrolytes at all temperature ranges. Our single equation is in agreement with the experimental data

  10. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10-4 to 10-3 S cm-1 at room temperature. Gelation was found to cause little change in the 7Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  11. Luminescence quenching of conductive Si nanocrystals via “Linkage emission”: Hopping-like propagation of infrared-excited Auger electrons

    International Nuclear Information System (INIS)

    Phosphorus (P) is an n-type dopant for conductive silicon nanocrystals (Si-nc's), the electrical activation of which may be monitored through a non-radiative Auger recombination process that quenches the Si-nc luminescence. We investigated this quenching mechanism through electrical measurements of Si-nc's. Infrared-excited Auger electron emission as the non-radiative process was directly probed and the dynamics of the process are determined from a frequency response analysis. To explain the dynamics, we propose a model in which Auger electrons with a low kinetic energy establish a local inter-nanocrystal conductance and the repetition of this local conductance results in a constant photocurrent (“linkage emission”). This emission becomes significant by electron filling in the Si-nc's owing to the electrical activation of P, which is consistent with observed luminescence quenching behavior. We found that the IR photo-excited emission is distinct from the thermally induced hopping conduction and show that confined, rather than trapped, charges are the source of the Auger electrons. Thus, the process consumes both confined charges and the recombination energy for Auger emission, which explains the luminescence quenching mechanism of Si-nc:P

  12. Hot-pressed Ag+ Ion Conducting Glass-Polymer Electrolytes: Synthesis and Battery Application

    Scientific Electronic Library Online (English)

    Angesh, Chandra.

    2012-07-01

    Full Text Available Synthesis of new Ag+ ion conducting glass-polymer electrolytes (GPEs): (1-x) PEO: x [0.75(0.75AgI:0.25AgCl):0.25(Ag2O:P2O5)], where 0 [...] )], with conductivity (?) ? 6.0 10-6 S cm-1, was identified from the compositional dependent conductivity studies and this has been referred to as the Optimum Conducting Composition (OCC). Approximately three orders of conductivity enhancement have been achieved in GPE OCC from that of the pure polymer PEO. The glass-polymer complexation has been confirmed by SEM and DSC analysis. Ion transport parameters viz. ionic conductivity (?), ionic mobility (?), mobile ion concentration (n) and ionic transference number (tion) have been characterized using different experimental techniques. Solid-state polymeric batteries were fabricated using GPE OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions at room temperature.

  13. Highly electrically conductive nanocomposites based on polymer-infused graphene sponges.

    Science.gov (United States)

    Li, Yuanqing; Samad, Yarjan Abdul; Polychronopoulou, Kyriaki; Alhassan, Saeed M; Liao, Kin

    2014-01-01

    Conductive polymer composites require a three-dimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuum-assisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GS/epoxy composites prepared display consistent isotropic electrical conductivity around 1 S/m, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GS/epoxy has a 12-orders-of-magnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding. PMID:24722145

  14. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    OpenAIRE

    Somashekar, R.; Manjunath, A.; Nanda Prakash, M. B.

    2013-01-01

    PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD) data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 ...

  15. Study of charge transport in highly conducting polymers based on a random resistor network

    International Nuclear Information System (INIS)

    Based on a random resistor network (RRN), we study the unusual ac conductivity ?(?) of highly conducting polymer such as PF6 doped polypyrrole. The system is modeled as a composite medium consisting of metallic regions randomly distributed in the amorphous parts. Within the metallic regions, the polymer chains are regularly and densely packed, outside which the poorly arranged chains form amorphous host. The metallic grains are connected by resonance quantum tunneling, which occurs through the strongly localized states in the amorphous media. ?(?), calculated from this model, reproduces the main experimental features associated with the metal-insulator transition in these polymers

  16. Conducting Ni nanoparticles in an ion-modified polymer

    International Nuclear Information System (INIS)

    Conductive-atomic force microscopy has been used to perform nanoscale current imaging of Ni-ion-implanted polythylene terephthlate films. A reduction in bulk sheet resistivity, as the Ni dose is increased, is found to be accompanied by an evolution in local conductivity from a spatially homogeneous insulator to an interconnected network of conducting Ni crystallites. The crystallites have a mean dimension of 12.3 nm, confirmed by x-ray-diffraction analysis

  17. Intrinsically conducting polymers and copolymers containing triazole moieties

    Energy Technology Data Exchange (ETDEWEB)

    Martwiset, Surangkhana; Woudenberg, Richard C.; Granados-Focil, Sergio; Coughlin, E. Bryan [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003 (United States); Yavuzcetin, Ozgur; Tuominen, Mark T. [Department of Physics, University of Massachusetts Amherst, 411 Hasbrouck Laboratory, Amherst, MA 01003 (United States)

    2007-08-15

    Random copolymer and terpolymers of 1,2,3-triazole-containing acrylates and poly(ethylene glycol)methyl ether acrylate (PEGMEA) have been synthesized and characterized. Proton conductivity measurements were made using impedance spectroscopy. The range of conductivity values from 80 C to 200 C spans only 1.5 orders of magnitude, demonstrating reduced temperature dependence over previously reported heterocycle based anhydrous proton conducting membranes. Introduction of PEG graft chains increased conductivity on both an absolute and T-T{sub g} normalized scale up to 30 mol% PEGMEA. Further increases in conductivity were achieved through addition of trifluoroacetic acid where increases of 0.5 to 1.5 orders of magnitude were observed depending on doping level. (author)

  18. Effect of electron beam irradiation on the conductivity of PEG based solid polymer electrolytes

    International Nuclear Information System (INIS)

    Conductivity in polymer-salt complexes is known to be influenced by the concentration of the defects and their mobility. The defect concentration can be increased by exposing them to high energy ionizing radiations. We report here the results of the effect of electron beam irradiation on the conductivity of two polymer-salt complexes viz., PEG-2000:NH4I and PEG-2000:NH4NO3. The irradiation results in the increase of ionic conductivity. The conductivity variation as a function of salt concentration shows a characteristic double peak as expected. (author)

  19. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    Directory of Open Access Journals (Sweden)

    Lawrence T. Drzal

    2010-02-01

    Full Text Available Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape, intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforcements used are exfoliated graphite nanoplatelets, carbon black, vapor grown carbon fibers and polyacrylonitrile carbon fibers. The composites are made using melt mixing followed by injection molding. A coating method is also employed to improve the nanofiller’s dispersion within the polymer and compression molding is used to alter the nanofiller’s alignment.

  20. Synthesis and conductivity of PEGME branched poly(ethylene-alt-maleimide) based solid polymer electrolyte

    International Nuclear Information System (INIS)

    A thermally stable comb-like polymer electrolyte, poly(ethylene glycol) monomethyl ether (PEGME) grafted poly(ethylene-alt-maleimide), has been synthesized and characterized. The copolymer was thermally stable up to 250.deg.C and had good film forming property. The copolymer was well mixed with poly(ethylene glycol) dimethyl ether(PEGDME, Mw = 400). The activation energy of ionic conduction decreased and conductivity increased with the increase of PEGDME content in the polymer electrolyte. The maximum conductivity of the resulting polymer electrolyte containing 66 wt% of PEGDME was found to be 3 x 10-4 S/cm at 30.deg.C. The polymer electrolyte showed electrochemical stability window of greater than 4.7 V

  1. Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Highlights: ? PVAc/PVdF-co-HFP based polymer blend electrolyte for various concentration of LiClO4 were prepared and characterized. ? It is found that all the prepared electrolyte systems exhibited a maximum ionic conductivity of the order of x10-4 Scm-1. ? Surface morphology of the polymer electrolyte membrane sample having maximum ionic conductivity is studied by atomic force microscopy. ? SEM and DSC studies were also carried in the present study. - Abstract: The present work describes the Li-ion conduction in Poly(vinyl acetate) (PVAc) based polymer blend electrolytes have been synthesized by solvent casting technique for lithium battery applications. Characterization by XRD, SEM, AFM, FTIR, TG/DTA and photoluminescence was performed for synthesized polymer electrolytes. The thermal behaviour of the samples was ascertained from differential scanning calorimeter (DSC) and TG/DTA. The temperature dependence of conductivity of the polymer electrolytes was measured and the maximum ionic conductivity of 0.5269 x 10-4 Scm-1 at 303 K for PVAc:PVdF-co-HFP ((25/75) wt%):LiClO4 (8 wt%) complex. Surface morphology was examined from various surface scanning techniques such as scanning electron microscope (SEM) and atomic force microscope (AFM). Photoluminescence measurements demonstrated that the PVAc based polymer blend electrolyte shows minimum intensity and the results are detailed in this paper.

  2. Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulaganathan, M., E-mail: nathanphysics@gmail.com [School of Physics, Alagappa University, Karaikudi, Tamil Nadu 630003 (India); ZECA Power Pte Ltd, 16D Enterprise Road Enterprise 10, Singapore 627653 (Singapore); Pethaiah, S. Sundar [Gashub Technology Pte Ltd, No. 17 Wodlands Terrace, Woodlands East Industrial Estate, Singapore 738442 (Singapore); Rajendran, S., E-mail: sraj54@yahoo.com [School of Physics, Alagappa University, Karaikudi, Tamil Nadu 630003 (India)

    2011-09-15

    Highlights: {yields} PVAc/PVdF-co-HFP based polymer blend electrolyte for various concentration of LiClO{sub 4} were prepared and characterized. {yields} It is found that all the prepared electrolyte systems exhibited a maximum ionic conductivity of the order of x10{sup -4} Scm{sup -1}. {yields} Surface morphology of the polymer electrolyte membrane sample having maximum ionic conductivity is studied by atomic force microscopy. {yields} SEM and DSC studies were also carried in the present study. - Abstract: The present work describes the Li-ion conduction in Poly(vinyl acetate) (PVAc) based polymer blend electrolytes have been synthesized by solvent casting technique for lithium battery applications. Characterization by XRD, SEM, AFM, FTIR, TG/DTA and photoluminescence was performed for synthesized polymer electrolytes. The thermal behaviour of the samples was ascertained from differential scanning calorimeter (DSC) and TG/DTA. The temperature dependence of conductivity of the polymer electrolytes was measured and the maximum ionic conductivity of 0.5269 x 10{sup -4} Scm{sup -1} at 303 K for PVAc:PVdF-co-HFP ((25/75) wt%):LiClO{sub 4} (8 wt%) complex. Surface morphology was examined from various surface scanning techniques such as scanning electron microscope (SEM) and atomic force microscope (AFM). Photoluminescence measurements demonstrated that the PVAc based polymer blend electrolyte shows minimum intensity and the results are detailed in this paper.

  3. Study of AC electrical conduction mechanisms in an epoxy polymer

    Science.gov (United States)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  4. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly[(D,L-lactide-co-glycolide)-co-polyethylene glycol] (PLGA-PEG) nanoparticles and then demonstrated scalable incorporation and controlled release. In a functional application, electronically-controlled release of minocycline nanoparticles was used to rescue primary spinal cord neurons from an excitotoxic environment in vitro. This approach offers a wide range of therapeutic possibilities, especially for treating traumatic lesions of the central nervous system. Finally, we explored use of conductive polymers for directed differentiation of progenitor cells. Retinal progenitors were seeded on custom polypyrrole cell culture devices and subjected to a biomimetic pattern of electrical stimulation. Stimulated cells showed phenotypic changes, increased neurite outgrowth, increased immunocytochemical expression of cone rod homeobox (CRX) and protein kinase C (PK-C), and decreased expression of glial fibrillary acidic protein (GFAP). Biomimetic stimulation thus led cells towards early photoreceptor and bipolar cell fates, and away from an astrocytic cell fate. Electrical stimulation via a conductive polymer offers a novel approach for directing differentiation of progenitor cells.

  5. Transdutores potenciomtricos a base de polmeros condutores: aplicaes analticas Potentiometric transducers based in conducting polymers: analytical applications

    OpenAIRE

    Larcio Rover Jnior; Graciliano de Oliveira Neto; Lauro Tatsuo Kubota

    1997-01-01

    A review is given about the most relevant advances on the analytical applications of conducting polymers in potentiometric sensors. These organic polymers represent a new class of materials with conducting properties due to its doping by ions. Several polymers already were synthesized such as polypyrrole, polyaniline, polythiophene, among others. Particular attention is devoted to the main advantages supplied by ion selective electrodes and gas sensors using conducting polymers, as well as th...

  6. A study on nanocomposites made of a conducting polymer and metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.

  7. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    Science.gov (United States)

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (?CP). To prepare ink for ?CP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during ?CP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites. PMID:22900673

  8. Simulation of ultraviolet- and soft X-ray-pulse generation as a result of cooperative recombination of excitons in diamond nanocrystals embedded in a polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru [Russian Academy of Sciences, Institute for Applied Physics (Russian Federation)

    2013-11-15

    Using numerical simulation, it is shown that the recombination of free excitons photoexcited in diamond nanocrystals embedded in a polymer film can occur in the cooperative mode. It is found that this mode can be implemented despite the fact that diamond is an 'indirect' semiconductor. It is shown that the power of the generated radiation at the pulse peak during the cooperative recombination of free excitons can exceed that of the incoherent spontaneous emission of the same initial number of free excitons by more than an order of magnitude. Finally, it is shown that the process under consideration can be used to generate picosecond pulses of ultraviolet and soft X-ray electromagnetic field at a wavelength of 235 nm.

  9. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yi.

    1991-10-07

    Several new types of silicon-containing preceramic polymers, i.e., poly(diorganosilacetylene) and poly(diorganosilvinylene) have been synthesized with molecular weights from 10,000 to 120,000. These polymers could be thermally converted to SiC with a moderate to high char yields. Ready solubility and good processability made these types of polymers attractive in their applications to ceramics. The thermal polymerization of diethynyldiphenyl-silane, which was reported in 1968 to afford poly(diphenylsilyldiacetylene) via dehydrogenation, was reinvestigated. Spectroscopic studies showed that the polymer had a structure of polyacetylene type not diacetylene. Diphenyldiethynylgermane and a series of diorganodiethynylsilances were synthesized. These could be polymerized in the presence of MoCl{sub 5} or WCl{sub 6} to afford a soluble, violet material with Mw as high as 108,000. 100 refs., 56 figs., 16 tabs.

  10. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    Energy Technology Data Exchange (ETDEWEB)

    Liepins, R.; Aldissi, M.

    1988-07-05

    The electrically conductive material is described comprising a polymer with a conjugated backbone selected from the group consisting of polyacetylene, polypyrrone, and polyphenylquinoxaline, the polymer being electron-donor doped to a controlled degree with an agent derived from an electride dopant or a dopant derived from an alkalide both of which contain a trapping agent being selected from the group consisting of: a crown ether, 1,4,7,10,13,16-hexaoxacyclooctadecane, cryptand, methyl ether cyclodextrin, spherand, methyl ether calixarene, podand, and an octopus molecule, the agent being made in the presence of lithium.

  11. An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole; Larsen, Niels Bent

    2007-01-01

    An all-polymer micropunlp was realized using the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDT) as the active cODlponent. The pUlnping effect originated fronl an ac potential applied to an aSylnlnetric array of interdigitat.ed electrodes. The PEDT electrodes were fabricated using optical lithography and reactive ion etching, and dimensions down to 2 jtD) could be successfully realized. The channel systeDl wasm.ade froln a flexible thennoplastic polyurethane. The chosen polyurethane ...

  12. Mechanical Properties of Nanocrystal Supercrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  13. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-12-16

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  14. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    Science.gov (United States)

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  15. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes.

    Science.gov (United States)

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations. PMID:26676996

  16. Effective Thermal Conductivity of Polymer Composites Using Local Fractal Techniques

    Directory of Open Access Journals (Sweden)

    Rajpal Singh Bhoopal,

    2013-02-01

    Full Text Available The model developed by Springer and Tsai is extended using non-linear volume fraction in place of physical porosity for the effective thermal conductivity of composite materials with the help of local fractal techniques. The expression for non-linear volume fraction is obtained using data available in the literature. Present model is constructed in terms of fiber volume fraction, the fiber-matrix thermal conductivity ratio and the local fractal dimensions. The effective thermal conductivity ratio is evaluated using the model with the approximation of the fractal dimensions. These fractal dimensions [PdandTd] are considered to be equal in the absence of information about the arrangement of fibers in the composites. The technique of local fractal dimensions is used to reduce the geometric complexity of the fiber arrangements. Better agreement of predicted effective thermal conductivity values with experimental results is obtained. A comparison with other models is also done and found that our model predict the values of effective thermal conductivity quite well.

  17. Electrical Characterization and Morphological Studies of Conducting Polymer Nanofibers

    Science.gov (United States)

    Pinto, N. J.; Zhou, Y. X.; Freitag, M.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    Doped polyaniline blended with poly(ethylene oxide) has been electrospun in air to give fibers with diameters in the range 3 nm 200 nm. These fibers were captured on wafers of degenerately doped Si/SiO2 by placing the wafer in the path of the fiber jet formed during the electrospinning process. Individual fibers were contacted using shadow mask evaporation and were also captured on prepatterned wafers. Fibers having diameters greater than 100 nm show a slight increase in the conductivity as compared to the bulk film, while fibers with diameters less than 30 nm had lower conductivity than the bulk. Data on Scanning Conductance Microscopy along the length of individual fibers will be presented. For fibers where the diameter was not uniform, we found that below a certain diameter ( approx.15 nm) the fiber was less conducting as compared to thicker diameter fibers. Dependence of the fiber conductivity on a gate bias is underway and these results will also be presented.

  18. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer

    Science.gov (United States)

    Akai-Kasaya, M.; Okuaki, Y.; Nagano, S.; Mitani, T.; Kuwahara, Y.

    2015-11-01

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  19. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    International Nuclear Information System (INIS)

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics

  20. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    International Nuclear Information System (INIS)

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  1. Printed organic conductive polymers thermocouples in textile and smart clothing applications.

    Science.gov (United States)

    Seeberg, Trine M; Ryset, Arne; Jahren, Susannah; Strisland, Frode

    2011-01-01

    This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4 styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38 C) and 350 K (+77 C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 ?V/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 ?V/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations. PMID:22255039

  2. Charge dissipation in e-beam lithography with Novolak-based conducting polymer films

    International Nuclear Information System (INIS)

    Charging of common resist materials during electron beam (e-beam) writing leads to deflection of the electron beam path, which can result in significant pattern displacement. Here we report a new conducting polymer to eliminate charging. A common approach is to place the conducting layer underneath the e-beam resist layer. Conductivity equal or greater than 10-4 S cm-1 has been reported to prevent pattern displacement. Some other properties such as a flat surface layer, chemical inertness and insolubility in both the top resist solvent and the developer are also necessary. The way to achieve all these properties consisted in synthesizing a conducting polymer inside an insulating polymer to form an interpenetrating polymer network (IPN) which could combine their properties. Novolak was used as the host polymer and terthiophene (3T) as the monomer to polymerize. Cu(ClO4)2 initiates simultaneously the oxidative polymerization of the 3T and its subsequent doping inside Novolak during the bake step in a one-step reaction. Solvent-resistant and homogeneous conducting films with smooth surfaces were achieved. The conductivity was of the order of 10-2 S cm-1. Patterning of the top resist was carried out without disturbing its lithographic performance

  3. Oxireductases in the Enzymatic Synthesis of Water-Soluble Conducting Polymers

    Science.gov (United States)

    Ochoteco, Estibalitz; Mecerreyes, David

    This chapter reviews recent advances in the field of biocatalytic synthesis of water-soluble conducting polymers. Biocatalysis is proposed as a versatile tool for synthesis of conducting polymers. First, the enzymatic synthesis of conducting polymers and its mechanism is discussed as well as the use of different type of enzymes. Next, we describe the use of a new bifunctional template (sodium dodecyl diphenyloxide disulfonate) in the synthesis of polyaniline as a strategy to improve the water solubility and electrical conductivity in the obtained polymer. The recent development of enzyme-catalyzed polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of polystyrenesulfonate is discussed. This method results in PEDOT materials that show an electrical conductivity of 2 1{0}^{-3} {S cm}^{-1} and posses excellent film formation ability, as confirmed by atomic force microscopy images. Finally, a simple method for immobilizing horseradish peroxidases in the biocatalytic synthesis of water-soluble conducting polymers is presented. This method is based on a biphasic catalytic system in which the enzyme is encapsulated inside the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, while other components remain in the aqueous phase. The enzyme is easily recovered after reaction and can be reused several times.

  4. Electrical conductivity of polyaniline doped PVC–PMMA polymer blends

    Indian Academy of Sciences (India)

    S H Deshmukh; D K Burghate; V P Akhare; V S Deogaonkar; P T Deshmukh; M S Deshmukh

    2007-02-01

    The electrical conductivity of polyaniline doped polyvinylchloride (PVC) and poly(methyl methacrylate) (PMMA) thin films has been measured by studying the – characteristics at various temperatures in the range 323–363 K. The results are presented in the form of – characteristics and analysis has been made by interpretation of Poole–Frenkel, Fowler–Nordheim, Schottky ln() vs plots, Richardson and Arrhenius plots. The analysis of these results suggests that Schottky and Richardson mechanisms are primarily responsible for the observed conduction.

  5. Substitutional doping in nanocrystal superlattices

    Science.gov (United States)

    Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.; Wong, Eric; Datta, Bianca; Damodhar, Divij; Doan-Nguyen, Vicky V. T.; Herzing, Andrew A.; Kagan, Cherie R.; Murray, Christopher B.

    2015-08-01

    Doping is a process in which atomic impurities are intentionally added to a host material to modify its properties. It has had a revolutionary impact in altering or introducing electronic, magnetic, luminescent, and catalytic properties for several applications, for example in semiconductors. Here we explore and demonstrate the extension of the concept of substitutional atomic doping to nanometre-scale crystal doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices. Towards this goal, we show that gold nanocrystals act as substitutional dopants in superlattices of cadmium selenide or lead selenide nanocrystals when the size of the gold nanocrystal is very close to that of the host. The gold nanocrystals occupy random positions in the superlattice and their density is readily and widely controllable, analogous to the case of atomic doping, but here through nanocrystal self-assembly. We also show that the electronic properties of the superlattices are highly tunable and strongly affected by the presence and density of the gold nanocrystal dopants. The conductivity of lead selenide films, for example, can be manipulated over at least six orders of magnitude by the addition of gold nanocrystals and is explained by a percolation model. As this process relies on the self-assembly of uniform nanocrystals, it can be generally applied to assemble a wide variety of nanocrystal-doped structures for electronic, optical, magnetic, and catalytic materials.

  6. Development, characterization and applications of electrodes modified with conductive polymers, ionic liquids and proteins

    Science.gov (United States)

    Tang, Yijun

    My research involves both fundamental studies and applications of the electrodes whose surfaces are chemically modified. Conductive polymers are one of the major materials that are used to modify electrode surfaces. The thorough understanding of the behavior of conductive polymers in ionic liquids is interesting and important as the ionic liquids are becoming promising solvents. With poly(vinyl ferrocene) as the model conductive polymer, electrochemical studies were performed in various ionic liquid electrolytes. A theoretical square model and dynamic equilibrium were proposed to describe the interaction between conductive polymers and ionic liquids when the electrons transferred between the electrode and electrolyte. These findings were applied to enable and accelerate the structure relaxation of conductive polymers so that the conductive polymers were capable of delivering peptides efficiently. Incorporation of metallic nanoparticles to the conductive polymer matrix entitled new properties to the conductive polymer, increasing conductivity and providing catalytic abilities. This modification on electrode surface might bring potential uses in gas sensing, energy storage, energy conversion, etc. Conductive polymer coated electrodes produced unique double layer in ionic liquids and a fundamental study of quantum charging help to understand the double layer properties. I also studied the application of surface modified electrodes in chemo- and biosensing. A nonregeneration protocol was created to save the cost and the time in analyzing interfacial binding activities and to prevent the potential of deterioration caused to biological ligands by the conventional regeneration. In the study of carbohydrate/protein interactions, a "click" chemical reaction was first used in constructing a carbohydrate-based biosensor, which was capable of detecting and analyzing proteins specifically and accurately. In another biosensor design, the hydrogen bonding between the template and the ligand was used and enhanced the ability, sensitivity and accuracy of the studies of antibody-antigen binding. We successfully developed a lab course with a homemade SPR device at a very affordable price. The characterization showed the homemade SPR device is accurate and it is a good tool for preliminary studies and for the college education.

  7. Thermally stimulated discharge conductivity in polymer composite thin films

    Indian Academy of Sciences (India)

    V S Sangawar; P S Chikhalikar; R J Dhokne; A U Ubale; S D Meshram

    2006-08-01

    This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of activated charcoal and polyvinyl chloride chains.

  8. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    CERN Document Server

    Aziz, M

    1996-01-01

    force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO sub 8 :FeBr sub 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle-spike plot but the Fe(lll) samples displayed an extra semicircle before the spike reflecting a surface effect. This is also manifested in the Arrhenius plots of the same samples where a dip was shown at 100 deg C. From the conductivity studies on the iron systems it was found that for the dry samples the optimum conductivity was observed in PEO sub 8 :FeBr sub x irrespective of the valence state of the cation. For the air-cast samples the optimum conductivity composition depends on the...

  9. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    Showing advancements in colloidal nanocrystals and quantum-confined nanostructures, this title focuses on the semiconductor nanocrystals known as nanocrystal quantum dots. This title includes chapters on carrier multiplication, doping of semiconductor nanocrystals, and applications of nanocrystals in biology.

  10. Sensing of environmental pollutant by conductive composite from prepared from hyperbranched polymer-grafted carbon black and crystalline polymer

    International Nuclear Information System (INIS)

    Complete text of publication follows. The hyperbranched (HB) polymer-grafted (PG) carbon blacks (CB) have the possibility of utilizing as a support of catalyst and enzyme, and a curing agent of epoxy resin, because they have much terminal amino or hydroxyl groups. The postgrafting of crystalline polymer onto HB PG CB and the sensing of environmental pollutant by the conductive composite prepared from the polymer-postgrafted CB was discussed. The grafting of poly(amidoamide) onto CB surface was achieved by repeating either Michael addition of methyl acrylate to amino group on the surface or the amidation of the resulting terminal methyl ester group with ethylene diamine. HB polyester onto CB surface was grafted by stepwise growth of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) from surface carboxyl and hydroxyl groups on CB as a core in the presence of p-toluenesulfonic acid (p-TSA). The one-pot grafting of HB polyester onto CB as core was also achieved by the polycondensation of bis-MPA in the presence of p-TSA. Postgrafting of crystalline polymer onto HB polymer-grafted CB was achieved by the reaction of terminal amino or hydroxyl groups of grafted chain with COCl-terminated crystalline polymer. The electric resistance of the composite prepared from crystalline polymer-postgrafted CB was found to increase drastically in hexane, containing environmental pollutant, such as chloroform and trichloroethane, and returned immediately to the initial resistance when it was transferred into pure hexane. Based on the above results, it is concluded that the composite can be used as a novel sensor for environmental pollutant in solution

  11. One-step inkjet printing of conductive silver tracks on polymer substrates

    International Nuclear Information System (INIS)

    A one-step process to fabricate conductive features on flexible polymer substrates by inkjet printing an organometallic silver ink directly onto a substrate that is heated to 130 deg. C is presented. This process led to the immediate sintering of the printed features. The samples were left for 5 min at elevated temperature, which resulted in conductive silver features with a resistivity of eight times the bulk silver value. The combination of this ink and the simultaneous printing/sintering process opens up routes for the direct fabrication of conductive features on common polymer substrates that could be applied, for example, in roll-to-roll production of flexible microelectronic systems.

  12. Ion Conductive Polymer Electrolyte Membranes and Simulation of Their Fractal Growth Patterns

    International Nuclear Information System (INIS)

    Due to their high ionic conductivity, solid polymer electrolyte (SPE) systems have attracted wide spread attention as the most appropriate choice to fabricate all-solid-state electrochemical devices, namely batteries, sensors and fuel cells. In this work, ion conductive polymer electrolyte membranes have been prepared for battery fabrication. However, fractals were found to grow in these polymer electrolyte membranes weeks after they were prepared. It was believed that the formation of fractal aggregates in these membranes were due to ionic movement. The discovery of fractal growth pattern can be used to understand the effects of such phenomenon in the polymer electrolyte membranes. Digital images of the fractal growth patterns were taken and a simulation model was developed based on the Brownian motion theory and a fractal dialect known as L-system. A computer coding has been designed to simulate and visualize the fractal growth. (author)

  13. Influence of prehistory of polymer samples on radiation electric conductivity induced by ionizing radiation

    International Nuclear Information System (INIS)

    Radiation electric conductivity of PS films prepared from solutions in various solvents at various initial concentrations and temperatures and various power of absorbed dose (?-radiation of 60Co) has been measured. The results are compared with the change of density of films and existing theoretical concepts of the role of microvoids and free volume in electrical conductivity of a polymer

  14. The material combining conducting polymer and ionic liquid: hydrogen bonding interactions between polyaniline and imidazolium salt.

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Dybal, Ji?; Trchov, Miroslava

    2014-01-01

    Ro?. 197, November (2014), s. 168-174. ISSN 0379-6779 R&D Projects: GA ?R(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * conductivity * imidazolium salt Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  15. Hybrid polymer:colloidal nanoparticle photovoltaic cells incorporating a solution-processed, multi-functioned ZnO nanocrystal layer

    Science.gov (United States)

    Yang, Jihua; Qian, Lei; Zhou, Renjia; Zheng, Ying; Tang, Aiwei; Holloway, Paul H.; Xue, Jiangeng

    2012-02-01

    We report significant improvement in both the power conversion efficiency and the environmental stability of solution-processed hybrid organic-inorganic solar cells by including a solution-processed ZnO nanocrystal layer between the photoactive layer and the cathode. For devices based on blends of poly(3-hexylthiophene) (P3HT) and mostly-spherical CdSe nanocrystals, incorporation of the ZnO layer leads to an up to 70% increase in the power conversion efficiency. Compared to only a few hours of shelf lifetime for unencapsulated devices with the metal cathode directly deposited on the hybrid active layer, devices with the ZnO layer can retain approximately 70% of the original efficiency when they are exposed to the laboratory ambient without encapsulation for more than two months. We attribute the function of this ZnO nanocrystal layer to a combination of optical, electronic, morphological, and chemical effects, including blocking leakage of photogenerated holes to the cathode, optimizing the optical intensity profile in the hybrid active layer, minimizing recombination or quenching of photogenerated excitons and charge carriers, significantly reducing the transport rate of oxygen and water molecules to the active layer and reducing degradation/oxidation of any low work function layer at the cathode interface.

  16. Cellulose nanocrystals: synthesis, functional properties, and applications

    Science.gov (United States)

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  17. Conducting Ni nanoparticles in an ion-modified polymer

    International Nuclear Information System (INIS)

    Full text: Conductive atomic force microscopy has been used to perform nanoscale current mapping of Ni-implanted polythylene terephthlate films at low temperature. The films were implanted using a filtered cathodic arc with pulse substrate biasing. Our interest is in the study of electrical transport in the implanted surface layer, which demonstrates a reduction in bulk sheet resistance for Ni surface concentration of 14-18%. The local transport properties are found to evolve with increasing Ni content from a near continuous conducting surface to the formation of a quasi-regular array of conducing Ni clusters, about 30 nm in size, consistent with X-ray analysis. We shall discuss temperature dependent electrical measurements, that are indicative of an insulator-metal transition accompanying the formation of Ni crystallites, and the magnetic properties of the films. Copyright (2005) Australian Institute of Physics

  18. Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite

    OpenAIRE

    Mahnaz M. Abdi; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R.; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md.

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonanc...

  19. Process for depositing strong adherend polymer coating onto an electrically conductive surface

    OpenAIRE

    Bertrand, Olivier; Jrme, Robert; Gautier, Sandrine; Maquet, Vronique; Detrembleur, Christophe; Jrme, Christine; Voccia, Samuel; Claes, Michal; Lou, Xudong; Labaye, David-Emmanuel

    2002-01-01

    Process for depositing by electrografting a strong adherent polymer coating onto an electrically conductive surface comprising an electrochemical grafting at the surface of an active monomer for forming a primer coating P onto said surface and having as general formula: X0 (meth)acrylate wherein X is either part of a preformed polymer or is an intermediate agent for polyaddition reaction or is an anchoring group for attachment of a molecule having at least one complementary reactive group. Su...

  20. High Yield Sample Preconcentration Using a Highly Ion-conductive Charge-selective Polymer

    OpenAIRE

    Chun, Honggu; Chung, Taek Dong; Ramsey, J. Michael

    2010-01-01

    The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer (poly-AMPS) is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentra...

  1. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen; Larsen, Niels Bent

    2011-01-01

    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS 5013) covering a PEDOT layer. The sudden drop in electrical resistance between the metal drill and the PEDOT layer upon physical contact was employed as stop criterion for the drilling process. Arrays of 33 micro...

  2. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Vreeland, Richard F.; Heien, Michael L.; Taboryski, Rafael J.

    2012-01-01

    In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical applications such as capillary electrophoresis, high-performance liquid chromatography, and constant potential amperometry at living cells. Band electrodes with widths down to 3 ?m were fabricated on polymer ...

  3. Microtexturing of the Conductive PEDOT:PSS Polymer for Superhydrophobic Organic Electrochemical Transistors

    OpenAIRE

    Francesco Gentile; Nicola Copped; Giuseppe Tarabella; Marco Villani; Davide Calestani; Patrizio Candeloro; Salvatore Iannotta; Enzo Di Fabrizio

    2014-01-01

    Superhydrophobic surfaces are bioinspired, nanotechnology artifacts, which feature a reduced friction coefficient, whereby they can be used for a number of very practical applications including, on the medical side, the manipulation of biological solutions. In this work, we integrated superhydrophobic patterns with the conducting polymer PEDOT:PSS, one of the most used polymers in organic electronics because highly sensitive to ionized species in solution. In doing so, we combined geometry an...

  4. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    DEFF Research Database (Denmark)

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria; Jepsen, Sren Terpager; Srensen, Henrik Schitt; Utko, Pawel; Selmeczi, Dvid; Hansen, Thomas Steen; Larsen, Niels Bent; Rozlosnik, Noemi; Taboryski, Rafael Jozef

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological cells in suspension is presented. The working principle of the electroporation device is based on a focusing of the electric field by means of a constriction in the flow channel for the cells. We demonstra...

  5. Tattoo conductive polymer nanosheets for skin-contact applications.

    Science.gov (United States)

    Zucca, Alessandra; Cipriani, Christian; Sudha; Tarantino, Sergio; Ricci, Davide; Mattoli, Virgilio; Greco, Francesco

    2015-05-01

    Conductive tattoo nanosheets are fabricated on top of decal transfer paper and transferred on target surfaces as temporary transfer tattoos. Circuits are patterned with ink-jet printing. Tattoo nanosheets are envisioned as unperceivable human-device interfaces because of conformal adhesion to complex surfaces including skin. They are tested as dry electrodes for surface electromyography (sEMG), which permits the control of a robotic hand. PMID:25702914

  6. Rate dependence of electrical and mechanical properties of conductive polymer nanocomposites

    Science.gov (United States)

    Foley, J. R.; Stilson, C. L.; Smith, K. K. G.; McKinion, C. M.; Chen, C.; Ganguli, S.; Roy, A. K.

    2015-09-01

    Conductive polymer nanocomposites with enhanced electrical and thermal properties show promise as an alternative solution for electronic materials. For example, electronic interconnect materials will have comparable electrical and thermal conductivity to solder with an increased operating range of strain and temperature. This paper documents the fabrication and experimental evaluation of a prototype conductive polymer nanocomposite. Material selection, fabrication processes, and initial characterization of a low Tg polymer with a high fill ratio of carbon nanotubes is presented. The electrical and thermal properties of the composite are measured and compared with predictions. The mechanical properties are measured using dynamic mechanical analysis (DMA) over a wide temperature range. The mechanical and electrical responses of the conductive polymer composite are simultaneously measured at higher strain rates using a modified split Hopkinson pressure bar (SHPB) apparatus. The dynamic stress-strain response is obtained using traditional analytic methods (e.g., two- and three-wave analysis). The electrical response is observed using constant current excitation with high bandwidth (>500 kHz) instrumentation. The dynamic compression data implies the change in electrical resistance is solely a function of the material deformation, i.e., the material exhibits constant electrical conductivity and is insensitive to the applied loads. DMA and SHPB dynamic data are used to estimate the parameters in a Mulliken-Boyce constitutive model, and the resulting behavior is critically evaluated. Finally, progress towards improving the polymer composite's mechanical, electrical, and thermal properties are discussed.

  7. Rate dependence of electrical and mechanical properties of conductive polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Foley J.R.

    2015-01-01

    Full Text Available Conductive polymer nanocomposites with enhanced electrical and thermal properties show promise as an alternative solution for electronic materials. For example, electronic interconnect materials will have comparable electrical and thermal conductivity to solder with an increased operating range of strain and temperature. This paper documents the fabrication and experimental evaluation of a prototype conductive polymer nanocomposite. Material selection, fabrication processes, and initial characterization of a low Tg polymer with a high fill ratio of carbon nanotubes is presented. The electrical and thermal properties of the composite are measured and compared with predictions. The mechanical properties are measured using dynamic mechanical analysis (DMA over a wide temperature range. The mechanical and electrical responses of the conductive polymer composite are simultaneously measured at higher strain rates using a modified split Hopkinson pressure bar (SHPB apparatus. The dynamic stress-strain response is obtained using traditional analytic methods (e.g., two- and three-wave analysis. The electrical response is observed using constant current excitation with high bandwidth (>500?kHz instrumentation. The dynamic compression data implies the change in electrical resistance is solely a function of the material deformation, i.e., the material exhibits constant electrical conductivity and is insensitive to the applied loads. DMA and SHPB dynamic data are used to estimate the parameters in a Mulliken-Boyce constitutive model, and the resulting behavior is critically evaluated. Finally, progress towards improving the polymer composite's mechanical, electrical, and thermal properties are discussed.

  8. Tunnelling conductivity in conducting polymer composites: a manifestation of chemical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kalasad, M N; Rabinal, M K, E-mail: mkrabinal@yahoo.co [Department of Physics, Karnatak University, Dharwad-580003, Karnataka State (India)

    2009-03-21

    Charge transport is studied in conducting composites of polyaniline and cis-1,4-polyisoprene (rubber). Films of different compositions are prepared by the solution route that are easily compressible under low pressure. Electrical conductivity is measured across the film thickness with the applied pressure. The results clearly indicate that conductivity is dominated by quantum tunnelling of charge carriers between conducting particles through an insulating barrier for all compositions. These findings are attributed to a strong chemical interaction between the conducting and non-conducting phases. It is demonstrated that such chemical interaction is a vital phenomenon in controlling charge transport of composites.

  9. Current state and future directions of research and development in conducting polymers

    International Nuclear Information System (INIS)

    Polymers that inherently conduct electricity have been researched intensively for a little over 20 years. An enormous research effort in academic and industrial institutions has resulted in over 17,000 publications published in the last 10 years alone. Significant advances in the synthesis of new polymers and the methods for processing these polymers into products have resulted from this research activity. A number of commercial developments have emerged, some of which have reached maturity as marketed products. Some others have failed in the marketplace. The diversity of applications for conducting polymers continues to fuel research and development and ensures that new products will emerge over the foreseeable future. In the more distant future, truly intelligent polymer systems remain as an achievable objective. By developing appropriate processing and fabrication technologies, it should be possible to integrate sensing, actuating and energy storage functions into a single system. Further developments in self-assembly of conducting polymers from the nano- to the meso-scale will open up applications in MEMS and nanotechnology

  10. Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

    International Nuclear Information System (INIS)

    Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10?2 10?4 S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O+1 with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs

  11. Effect of electrodes in the radiation induced conductivity for polymers

    International Nuclear Information System (INIS)

    Samples of PET with 23 ?m thickness were exposed to continuous X-rays and the radiation-induced conductivity (RIC) as a function of time were measured, using electrodes of evaporated aluminum and gold. The results showed that the use of higher atomic number metal electrodes increase the received dose rate by sample, without almost modifying the time evolution of the RIC or its dependence with the applied electric field intensity. It is also showed that this increase is caused by the electrode placed in the face of the sample where the radiation strikes, as well as by the one placed in the oposite face. (author)

  12. Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic diagrams of an electrochemical double layer type capacitor showing the charged (left) and discharged (right) states. Highlights: ? The Graphene-PEDOT nanocomposite based smart coating has shown the excellent redox properties in acidic, organic electrolytes, which is promising for suprecapcitor application. ? The electrochemical impedance studies have also been estimated which clearly indicates the high conductivity and less charge transfer resistance in the synthesized material. ? The specific capacitance of 380F/g have been calculated for G-Pedot material, also it shows the columbic efficiency of 95% for 800 cycles, which tells the remarkable stability of synthesized material. - Abstract: We present here the synthesis, characterization and application of graphene (G)-polyethylenedioxythiophene (PEDOT) nanocomposites as electrode material for supercapacitor applications. The G-PEDOT nanocomposite was synthesized using a chemical oxidative polymerization technique, and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, FTIR spectroscopy, X-ray-diffraction, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) techniques. The electrochemical charge/discharge characteristics of G-PEDOT nanocomposites were investigated in different electrolytic media, and the specific discharge capacitance was estimated to be 374 Farad/gram (F/gm). This manuscript presents the capacitance studies on supercapacitor G-PEDOT electrode with respect to stability of material, specific capacitance, electrical conductivity and specific charge/discharge properties of the supercapacitor electrodes. Our study has revealed that the G-PEDOT nanocomposite could be a transformable and viable electrode material for supercapacitor applications.

  13. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    Energy Technology Data Exchange (ETDEWEB)

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  14. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    Energy Technology Data Exchange (ETDEWEB)

    Liepins, Raimond (Los Alamos, NM); Aldissi, Mahmoud (Los Alamos, NM)

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  15. Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array

    International Nuclear Information System (INIS)

    An efficient, site-specific and scalable approach has been developed to produce high-quality and individually addressable conducting polymer nanowire electrode junctions (CPNEJs) in a parallel-oriented array. Polypyrrole and PEDOT conducting polymer nanowires (CPNWs) with uniform diameters (ca. 60-150 nm) were introduced into the desired electrode junctions in a precise manner by performing a three-step constant-current electrochemical process at a low current density and a low concentration of monomers. A low scan rate, cyclic voltammetric method was also employed and gave similar results. These CPNEJ arrays function as a miniaturized sensor for the parallel and real-time detection of gas and organic vapour. The electrochemical approaches utilized allow the conducting polymer chains to self-organize in the CPNWs to form novel polycrystalline structures, observed by high resolution TEM. The weak diffraction rings at 4.88 A and 4.60 A were observed for PEDOT and polypyrrole CPNWs, respectively

  16. Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites

    International Nuclear Information System (INIS)

    A computational model was developed to study the thermal conductivity of single-walled carbon nanotube (SWNT)-polymer composites. A random walk simulation was used to model the effect of interfacial resistance on the heat flow in different orientations of SWNTs dispersed in the polymers. The simulation is a modification of a previous model taking into account the numerically determined thermal equilibrium factor between the SWNTs and the composite matrix material. The simulation results agreed well with reported experimental data for epoxy and polymethyl methacrylate (PMMA) composites. The effects of the SWNT orientation, weight fraction and thermal boundary resistance on the effective conductivity of composites were quantified. The present model is a useful tool for the prediction of the thermal conductivity within a wide range of volume fractions of the SWNTs, so long as the SWNTs are not in contact with each other. The developed model can be applied to other polymers and solid materials, possibly even metals

  17. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    International Nuclear Information System (INIS)

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH6/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10-3 S cm-1 when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties

  18. Electrochemical synthesis of electronic and ionic conductive polymer composite polyaniline/PEO network

    International Nuclear Information System (INIS)

    A bilayer composite of conducting polyaniline was prepared by electrochemical polymerization of anilinium salt (dissolved in appropriate solvent like DMF, methanol, or water) in poly(ethylene oxide) PEO network. When washed, dried and doped with LiClO4, the bilayer showed electro-chemical activity corresponding to doping and undoping reactions in the solid state. The bilayer was characterized by FT-IR (reflection), UV spectroscopy and microscopic examination while the electrochemical activity in the solid state was examined by cyclic voltammetry. Cyclic voltammetry of the composite conductive polymer and polymer electrolyte in the solid state against Pt produced oxidation peaks at 0.26 and 0.78 V. Against Li, a broad oxidation peak appeared between 0.5 and 4.5; doping efficiency in the Li cell reached 95% between 2-4 V at a scan rate of 100 mV/s. The color of the conducting polymer as anode changed from transparent yellow to green and then to blue during the doping process. Cole-cole plots of the composite obtained by AC impedance measurements showed an arc at high frequency region (>2.82 MHx) due to polymer electrolyte impedance. Another arc due to impedance of the doping reaction, at lower frequency (>20 Hz) followed as doping of the conductive polymer preceeded; the arc is then joined by a Warburg line, which characterizes diffusion controlled kinetics at the low frequency region (<20 Hz). (auth.). 17 refs.; 14 figs. 2 tabs

  19. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    International Nuclear Information System (INIS)

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely

  20. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    OpenAIRE

    Marcin Molenda; Michał Świętosławski; Marek Drozdek; Barbara Dudek; Roman Dziembaj

    2014-01-01

    Conductive carbon nanocoatings (conductive carbon layers—CCL) were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA). We demonstrate that these properties orig...

  1. Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes

    OpenAIRE

    Wang Guang-Feng; Tao Xiao-Ming; Xin John; Fei Bin

    2009-01-01

    Abstract A conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), was modified with dimethyl sulfoxide (DMSO) in solution state, together with sub-sequential thermal treatment of its spin-coated film. The electrical conductivity increased by more than three orders of magnitude improvement was achieved. The mechanism for the conductivity improvement was studied at nanoscale by particle size analysis, field emission scanning electron microscopy (FESEM), and X-...

  2. Novel conducting polymer-heteropoly acid hybrid material for artificial photosynthetic membranes.

    Science.gov (United States)

    McDonald, Michael B; Freund, Michael S

    2011-04-01

    Artificial photosynthetic (AP) approaches to convert and store solar energy will require membranes capable of conducting both ions and electrons while remaining relatively transparent and chemically stable. A new approach is applied herein involving previously described in situ chemical polymerization of electronically conducting poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of proton conducting heteropoly acid (HPA) phosphomolybdic acid (PMA). The electrochemical behaviour of the PEDOT/PMA hybrid material was investigated and it was found that the conducting polymer (CP) is susceptible to irreversible oxidative processes at potentials where water is oxidized. This will be problematic in AP devices should the process occur in very close proximity to a conducting polymer-based membrane. It was found that PEDOT grants the system good electrical performance in terms of conductivity and stability over a large pH window; however, the presence of PMA was not found to provide sufficient proton conductivity. This was addressed in an additional study by tuning the ionic (and in turn, electronic) conductivity in creating composites with the proton-permselective polymer Nafion. It was found that a material of this nature with near-equal conductivity for optimal chemical conversion efficiency will consist of roughly three parts Nafion and one part PEDOT/PMA. PMID:21384827

  3. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    International Nuclear Information System (INIS)

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging

  4. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers

    Science.gov (United States)

    Zhong, Zhenxin; Wingert, Matthew C.; Strzalka, Joseph; Wang, Hsien-Hau; Sun, Tao; Wang, Jin; Chen, Renkun; Jiang, Zhang

    2014-06-01

    Polymers that are thermally insulating in bulk forms have been found to exhibit higher thermal conductivities when stretched under tension. This enhanced heat transport performance is believed to arise from the orientational alignment of the polymer chains induced by tensile stretching. In this work, a novel high-sensitivity micro-device platform was employed to determine the axial thermal conductivity of individual Nylon-11 polymer nanofibers fabricated by electrospinning and post-stretching. Their thermal conductivity showed a correlation with the crystalline morphology measured by high-resolution wide-angle X-ray scattering. The relationship between the nanofiber internal structures and thermal conductivities could provide insights into the understanding of phonon transport mechanisms in polymeric systems and also guide future development of the fabrication and control of polymer nanofibers with extraordinary thermal performance and other desired properties.Polymers that are thermally insulating in bulk forms have been found to exhibit higher thermal conductivities when stretched under tension. This enhanced heat transport performance is believed to arise from the orientational alignment of the polymer chains induced by tensile stretching. In this work, a novel high-sensitivity micro-device platform was employed to determine the axial thermal conductivity of individual Nylon-11 polymer nanofibers fabricated by electrospinning and post-stretching. Their thermal conductivity showed a correlation with the crystalline morphology measured by high-resolution wide-angle X-ray scattering. The relationship between the nanofiber internal structures and thermal conductivities could provide insights into the understanding of phonon transport mechanisms in polymeric systems and also guide future development of the fabrication and control of polymer nanofibers with extraordinary thermal performance and other desired properties. Electronic supplementary information (ESI) available: E-beam platinum bonding induced damage, estimation of contact resistance between nanofibers and suspended pads, effects of heat loss from suspended devices, estimation of heat loss along nanofibers, diameter calculation for beaded fibers, schematics of the electrospinning and WAXS setup, orientation analysis of the inter-fiber alignment, WAXS patterns from bulk samples, the WAXS data analysis strategy, and estimation of the crystallinity. See DOI: 10.1039/c4nr00547c

  5. Water harvesting using a conducting polymer: A study by molecular dynamics simulation

    International Nuclear Information System (INIS)

    The results of extensive molecular simulations of adsorption and diffusion of water vapor in polyaniline, made conducting by doping it with HCl or HBr over a broad range of temperatures, are reported. The atomistic model of the polymers was generated using energy minimization, equilibrium molecular dynamics simulations, and two different force fields. The computed sorption isotherms are in excellent agreement with the experimental data. The computed activation energies for the diffusion of water molecules in the polymers also compare well with what has been reported in the literature. The results demonstrate the potential of conducting polyaniline for water harvesting from air.

  6. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent; Clark, N.B.

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3....... Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test...

  7. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor

    Directory of Open Access Journals (Sweden)

    Ulrich W. Scherer

    2006-04-01

    Full Text Available A polyaniline-based conducting composite was prepared by oxidativepolymerisation of aniline in a polyvinylchloride (PVC matrix. The coherent free standingthin films of the composite were prepared by a solution casting method. The polyvinylchloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluenceranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammoniagas than the unirradiated composite. The response time of the irradiated composites wasobserved to be comparably shorter. We report for the first time the application of swiftheavy ion modified insulating polymer conducting polymer (IPCP composites for sensingof ammonia gas.

  8. Reversible shape memory of nanoscale deformations in inherently conducting polymers without reprogramming.

    Science.gov (United States)

    Higgins, Michael J; Grosse, Willo; Wagner, Klaudia; Molino, Paul J; Wallace, Gordon G

    2011-04-01

    By using inherently conducting polymers, we introduce new shape memory functionality for stimuli-responsive polymers. The shape memory process is unique in that it utilizes electrochemical control of the polymer redox state to conceal, and temporarily store, preformed nanoscale surface patterns, which can later be recalled. Unlike classical thermoset and thermoplastic shape memory polymers, the electrochemical control does not completely perturb the low entropy state of the deformed polymer chains, thus enabling the concept of reversible transition between the permanent and temporary shapes. This is demonstrated using electrochemical-atomic force microscopy/quartz crystal microbalance to characterize the modulation of nanoscale deformations in electroactive polybithiophene films. Experimental results reveal that cation/solvent exchange with the electrolyte and its effect on reconfiguration of the film structure is the mechanism behind the process. In addition to incorporating conductive properties into shape-memory polymers, the ability to reversibly modulate surface nanopatterns in a liquid environment is also of significant interest in tribology and biointerface applications. PMID:21401135

  9. Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites.

    Science.gov (United States)

    Moreno, Ivan; Navascues, Nuria; Arruebo, Manuel; Irusta, Silvia; Santamaria, Jesus

    2013-07-12

    Silver nanowires (AgNW) synthesized by a solvothermal method were incorporated into a polycarbonate matrix by a solution mixing procedure. Films with a thickness around 18 ?m were obtained, showing a good distribution of the wires within the polymer matrix. The thermal stability of the polymer matrix increased significantly, with the main decomposition peak shifting up to 74 C for an AgNW loading of 4.35 wt%. The percolation threshold was obtained at very low AgNW content (0.04 wt%), and the composite electrical conductivity at the maximum loading (4.35 wt%) was 41.3 ? cm. Excellent transparency was obtained at the percolation threshold, with negligible reduction in the transmittance of the polymer matrix (from 88.2 to 87.6% at 0.04 wt% loading of AgNW). In addition, the polymer matrix protected the silver nanowires from oxidation, as demonstrated by the XPS analysis. PMID:23743565

  10. Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites

    International Nuclear Information System (INIS)

    Silver nanowires (AgNW) synthesized by a solvothermal method were incorporated into a polycarbonate matrix by a solution mixing procedure. Films with a thickness around 18 ?m were obtained, showing a good distribution of the wires within the polymer matrix. The thermal stability of the polymer matrix increased significantly, with the main decomposition peak shifting up to 74? C for an AgNW loading of 4.35 wt%. The percolation threshold was obtained at very low AgNW content (0.04 wt%), and the composite electrical conductivity at the maximum loading (4.35 wt%) was 41.3 ? cm. Excellent transparency was obtained at the percolation threshold, with negligible reduction in the transmittance of the polymer matrix (from 88.2 to 87.6% at 0.04 wt% loading of AgNW). In addition, the polymer matrix protected the silver nanowires from oxidation, as demonstrated by the XPS analysis. (paper)

  11. ?-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions

    Science.gov (United States)

    Gu, Cheng; Huang, Ning; Chen, Youchun; Qin, Leiqiang; Xu, Hong; Zhang, Shitong; Li, Fenghong; Ma, Yuguang; Jiang, Donglin

    2015-01-01

    Conjugated microporous polymers are a unique class of polymers that combine extended ?-conjugation with inherent porosity. However, these polymers are synthesized through solution-phase reactions to yield insoluble and unprocessable solids, which preclude not only the evaluation of their conducting properties but also the fabrication of thin films for device implementation. Here, we report a strategy for the synthesis of thin films of ?-conjugated microporous polymers by designing thiophene-based electropolymerization at the solutionelectrode interface. High-quality films are prepared on a large area of various electrodes, the film thickness is controllable, and the films are used for device fabrication. These films are outstanding hole conductors and, upon incorporation of fullerenes into the pores, function as highly efficient photoactive layers for energy conversions. Our film strategy may boost the applications in photocatalysis, energy storage, and optoelectronics. PMID:26418672

  12. Cellulose nanocrystals: synthesis, functional properties, and applications

    OpenAIRE

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  13. Nanofiber preparation by whisker method using solvent-soluble conducting polymers

    International Nuclear Information System (INIS)

    We prepared conducting polymer nanofibers by means of whisker formation in a solution by using solvent-soluble conducting polymers with alkyl or alkoxy side chains. A morphological characterization using an atomic force microscope indicated that they have one-dimensional nanofibrillar structures with typical heights of 3-10 nm. The conductivity of a single poly(3-hexylthiophene) (P3HT) nanofiber was measured using 300-nm-spacing Pt electrodes and the conductivity of 0.25 S/cm at 290 K was achieved by chemical doping using nitrosonium tetrafluoroborate. Considering the temperature dependence of the conductivity, the carrier transport in the single nanofiber was explained by a quasi-one-dimensional variable range-hopping model

  14. Selective sensing of volatile organic compounds using novel conducting polymer-metal nanoparticle hybrids

    International Nuclear Information System (INIS)

    Conducting polymer-metal nanoparticle hybrids, fabricated by assembling metal nanoparticles on top of functionalized conducting polymer film surfaces using conjugated linker molecules, enable the selective sensing of volatile organic compounds (VOCs). In these conducting polymer-metal nanoparticle hybrids, selectivity is achieved by assembling different metals on the same conducting polymer film. This eliminates the need to develop either different polymers chemistries or device configurations for each specific analyte. In the hybrids, chemisorption of the analyte vapor induces charge redistribution in the metal nanoparticles and changes their work function. The conjugated linker molecule causes this change in the work function of the tethered nanoparticles to affect the electronic states in the underlying conducting polymer film. The result is an easily measurable change in the resistance of the hybrid structure. The fabrication of these sensing elements involved the covalent assembly of nickel (Ni) and palladium (Pd) metal nanoparticles on top of poly(3,4-ethylenedioxythiophene-co-thiophene-3-acetic acid), poly(EDOT-co-TAA), films using 4-aminothiophenol linker molecules. The change in resistance of hybrid Pd/poly(EDOT-co-TAA) and Ni/poly(EDOT-co-TAA) hybrid films to acetone and toluene, respectively, is observed to be in proportion to their concentrations. The projected detection limits are 2 and 10 ppm for toluene and acetone, respectively. A negligible response (resistance change) of the Pd/poly(EDOT-co-TAA) films to toluene exposure confirmed its selectivity for detecting acetone. Similarly, lack of response to acetone confirmed the selectivity of the Ni/poly(EDOT-co-TAA) stacks for detecting toluene. It is anticipated that the assembly of other metals such as Ag, Au and Cu on top of poly(EDOT-co-TAA) would provide selectivity for detecting and discriminating other VOCs.

  15. Observation of irreversible current path in polymer dielectric using conductive atomic force microscope

    Science.gov (United States)

    Jung, Ji-Hoon; Kim, Woo Young; Kim, Do-Kyung; Kwon, Jin-Hyuk; Lee, Hee Chul; Bae, Jin-Hyuk

    2015-03-01

    During the measurement of the electrical properties of a metal-polymer-metal capacitor, it was found that the capacitor exhibited write-once-read-many-times (WORM) memory behavior, even though it was made of the dielectric polymer, polystyrene. The initial low conductance state changed to a high conductance state when a threshold voltage was applied, but this final state never reverted to the initial state. This phenomenon only appeared in sub-100-nm-thick films. To understand this phenomenon, conductive atomic force microscopy (CAFM) was used. The current distribution measured with CAFM showed an irreversible current path had formed near particles in the polymer film. For reproducibility, particles were intentionally inserted into the polymer film during the fabrication of metal-polymer-metal capacitors, and the same current mechanism was found. From these results, it is concluded that the purification and cleaning process of organic devices severely affects the device characteristics. In addition, particle-insertion appears to be a promising method for fabrication low-cost and air-stable WORM type memory for various applications. [Figure not available: see fulltext.

  16. Ionic Conductivity and Dielectric Properties of the PAN-Ion Conducting Polymers

    Science.gov (United States)

    Isa, K. B. Md.; Ali, N. M.; Othman, L.; Ahmad, A.; Osman, Z.

    2008-05-01

    In this work, the ion conducting films of polyacrylonitrile (PAN) containing plasticizer and dopant salts were prepared by the solution casting technique. The salts selected for this study are lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3). The ionic conductivity measurements were carried out using impedance spectroscopy. The room temperature conductivity for pure polyacrylonitrile film is 1.5110-11 S cm-1. The room temperature conductivity for the highest conducting film in the PAN-LiCF3SO3 system and the PAN-NaCF3SO3 system is 3.0410-4 and 7.1310-4 S cm-1, respectively. The conductivity-temperature studies were performed in the temperature range between 303 K and 373 K. The variation of the conductivity with temperature is obeys the Arrhenius rule. The increase and decrease in the number of ions can be implied from the plots of dielectric constant, ?r-frequency and dielectric loss, ?i-frequency.

  17. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature

    Science.gov (United States)

    Shanker, G. Shiva; Swarnkar, Abhishek; Chatterjee, Arindom; Chakraborty, S.; Phukan, Manabjyoti; Parveen, Naziya; Biswas, Kanishka; Nag, Angshuman

    2015-05-01

    Electronic grade semiconductor films have been obtained via the sintering of solution processed PbS and PbSe nanocrystals at room temperature. Prior attempts to achieve similar films required the sintering of nanocrystals at higher temperatures (>350 C), which inhibits the processing of such films on a flexible polymer substrate, and it is also expensive. We reduced the sintering temperature by employing two important strategies: (i) use of ligand-free nanocrystals and (ii) oriented attachment of nanocrystals. Colloidal ligand-free PbS and PbSe nanocrystals were synthesized at 70 C with high yield (~70%). However, these nanocrystals start to agglomerate with time in formamide, and upon the removal of the solvation energy, nanocrystals undergo oriented attachment, forming larger elongated crystals. PbS and PbSe nanocrystal films made on both glass and flexible substrates at room temperature exhibit Ohmic behavior with optimum DC conductivities of 0.03 S m-1 and 0.08 S m-1, respectively. Mild annealing of the films at 150 C increases the conductivity values to 1.1 S m-1 and 137 S m-1 for PbS and PbSe nanocrystal films, respectively. AC impedance was measured to distinguish the contributions from grain and grain boundaries to the charge transport mechanism. Charge transport properties remain similar after the repeated bending of the film on a flexible polymer substrate. Reasonably high thermoelectric Seebeck coefficients of 600 ?V K-1 and 335 ?V K-1 for PbS and PbSe nanocrystal pellets, respectively, were obtained at room temperature.Electronic grade semiconductor films have been obtained via the sintering of solution processed PbS and PbSe nanocrystals at room temperature. Prior attempts to achieve similar films required the sintering of nanocrystals at higher temperatures (>350 C), which inhibits the processing of such films on a flexible polymer substrate, and it is also expensive. We reduced the sintering temperature by employing two important strategies: (i) use of ligand-free nanocrystals and (ii) oriented attachment of nanocrystals. Colloidal ligand-free PbS and PbSe nanocrystals were synthesized at 70 C with high yield (~70%). However, these nanocrystals start to agglomerate with time in formamide, and upon the removal of the solvation energy, nanocrystals undergo oriented attachment, forming larger elongated crystals. PbS and PbSe nanocrystal films made on both glass and flexible substrates at room temperature exhibit Ohmic behavior with optimum DC conductivities of 0.03 S m-1 and 0.08 S m-1, respectively. Mild annealing of the films at 150 C increases the conductivity values to 1.1 S m-1 and 137 S m-1 for PbS and PbSe nanocrystal films, respectively. AC impedance was measured to distinguish the contributions from grain and grain boundaries to the charge transport mechanism. Charge transport properties remain similar after the repeated bending of the film on a flexible polymer substrate. Reasonably high thermoelectric Seebeck coefficients of 600 ?V K-1 and 335 ?V K-1 for PbS and PbSe nanocrystal pellets, respectively, were obtained at room temperature. Electronic supplementary information (ESI) available: Powder XRD, TEM, surface profilometry, infrared absorption, FESEM, I vs. V plot, ?-potential, and PL data. See DOI: 10.1039/c5nr01016k

  18. Controlled Aloin Release from Crosslinked Polyacrylamide Hydrogels: Effects of Mesh Size, Electric Field Strength and a Conductive Polymer

    OpenAIRE

    Anuvat Sirivat; Amornrat Niansiri; Sumonman Niamlang; Tawansorn Buranut

    2013-01-01

    The aim of this paper is to investigate the effects of hydrogel mesh size, a conductive polymer, and electric field strength on controlled drug delivery phenomena using drug-loaded polyacrylamide hydrogels prepared at various crosslinking ratios both with and without a conductive polymer system. Poly(p-phenylene vinylene), PPV, as the model conductive polymer, was used to study its ability to control aloin released from aloin-doped poly(p-phenylene vinylene)/polyacrylamide hydrogel (aloin-dop...

  19. Nanostructured conducting polymers as intelligent implant surface: fabricated on biomedical titanium with a potential-induced reversible switch in wettability.

    Science.gov (United States)

    Liao, Jingwen; Ning, Chengyun; Yin, Zhaoyi; Tan, Guoxin; Huang, Shishu; Zhou, Zhengnan; Chen, Junqi; Pan, Haobo

    2013-12-01

    Conducting polypyrrole (PPy) nanotube arrays, nanotube networks and irregular films are deposited on biomedical titanium. By in situ application of weak periodic potentials, the nanostructured conducting polymers undergo a reversible switch in wettability, which is a redox process of dopant molecules (as hydrophilic groups) immobilized and de-immobilized on the surface of the conducting polymers. PMID:24151250

  20. Microfabrication of a Polymer Based Bi-Conductive Membrane for a Polymer Electrolyte Membrane Fuel Cell

    International Nuclear Information System (INIS)

    This paper reports a novel fabrication process of a high active area ratio bi-conductive membrane for PEMFCs. The fabricated device is a 50?m thick flexible polyimide based membrane that integrates for the first time lateral electrical conductive layers on both sides with a through ionic conductive path. With the use of thermo-conductive rubber as a bonding agent allowing a quick-flip process, five configurations of double-sided multilayer metal sputtering on polyimide were tested. An approach for filling through pores in the membrane with the ionic conductor (Nafion) with a temporary reservoir was also developed. The development of these new processes allowed to fabricate a membrane with 50?m wide holes filled with ionic conductor with double-sided electrical conductive layers

  1. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells

    Science.gov (United States)

    Svrcek, V.; Yamanari, T.; Mariotti, D.; Mitra, S.; Velusamy, T.; Matsubara, K.

    2015-07-01

    Silicon nanocrystal (Si-nc) down-conversion is demonstrated to enhance organic and hybrid organic/inorganic bulk heterojunction solar cells based on PTB7:[70]PCBM bulk heterojunction devices. Surfactant free surface-engineered Si-ncs can be integrated into the device architecture to be optically active and provide a means of effective down-conversion of blue photons (high energy photons below ~450 nm) into red photons (above ~680 nm) leading to 24% enhancement of the photocurrent under concentrated sunlight. We also demonstrate that the down-conversion effect under 1-sun is enhanced in the case of hybrid solar cells where engineered Si-ncs are also included in the active layer.Silicon nanocrystal (Si-nc) down-conversion is demonstrated to enhance organic and hybrid organic/inorganic bulk heterojunction solar cells based on PTB7:[70]PCBM bulk heterojunction devices. Surfactant free surface-engineered Si-ncs can be integrated into the device architecture to be optically active and provide a means of effective down-conversion of blue photons (high energy photons below ~450 nm) into red photons (above ~680 nm) leading to 24% enhancement of the photocurrent under concentrated sunlight. We also demonstrate that the down-conversion effect under 1-sun is enhanced in the case of hybrid solar cells where engineered Si-ncs are also included in the active layer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02703a

  2. Alumina/polymer-coated nanocrystals with extremely high stability used as a color conversion material in LEDs

    International Nuclear Information System (INIS)

    The long-term stability of quantum dot (QD)-based devices under harsh environmental conditions has been a critical bottleneck to be resolved for commercial use. Here, we demonstrate an extremely stable QD/alumina/polymer hybrid structure by combining internal atomic layer deposition (ALD) infilling with polymer encapsulation. ALD infilling and polymer encapsulation of QDs synergistically prohibit the degradation of QDs in terms of optical, thermal and humid attacks. Our hybrid QD/alumina/polymer film structure showed no noticeable reduction in photoluminescence even in a commercial grade test (85% humidity at 85? C) over 28 days. In addition, we successfully fabricated a QD-based light-emitting device with excellent long-term stability by incorporating hybrid QD/alumina/polymer film as a color conversion material on light-emitting diode chips. (paper)

  3. Alumina/polymer-coated nanocrystals with extremely high stability used as a color conversion material in LEDs

    Science.gov (United States)

    Woo, Ju Yeon; Lee, Jongsoo; Han, Chang-Soo

    2013-12-01

    The long-term stability of quantum dot (QD)-based devices under harsh environmental conditions has been a critical bottleneck to be resolved for commercial use. Here, we demonstrate an extremely stable QD/alumina/polymer hybrid structure by combining internal atomic layer deposition (ALD) infilling with polymer encapsulation. ALD infilling and polymer encapsulation of QDs synergistically prohibit the degradation of QDs in terms of optical, thermal and humid attacks. Our hybrid QD/alumina/polymer film structure showed no noticeable reduction in photoluminescence even in a commercial grade test (85% humidity at 85? C) over 28 days. In addition, we successfully fabricated a QD-based light-emitting device with excellent long-term stability by incorporating hybrid QD/alumina/polymer film as a color conversion material on light-emitting diode chips.

  4. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2008-04-01

    Full Text Available Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylenes, poly(pyrroles, poly(thiophenes, poly(terthiophenes, poly(anilines, poly(fluorines, poly(3-alkylthiophenes, polytetrathiafulvalenes, polynapthalenes, poly(p-phenylene sulfide, poly(p-phenylenevinylenes, poly(3,4-ethylenedioxythiophene, polyparaphenylene, polyazulene, polyparaphenylene sulfide, polycarbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs, i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE, Single-Piece ISE (SPISE, Conducting Polymer (CP-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed.

  5. Conductivity and Dielectric Properties of Proton Conducting Poly (Vinyl) Chloride (PVC) Based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Poly (vinyl) chloride (PVC)-NH4I-EC films have been prepared by the solution cast technique. The sample containing 30 wt. % NH4I exhibited the highest room temperature conductivity of 4.60 x 10-7 S cm-1. The conductivity increased to 1.08 x 10-6 S cm-1 when 15 wt. % of ethylene carbonate (EC) was added to 70 wt. % PVC - 30 wt. % NH4I. The effects of ethylene carbonate (EC) addition on the frequency dependent dielectric properties of PVC based electrolytes were investigated by electrochemical impedance spectroscopy (EIS), in the temperature range of 300 K to 373 K. The dielectric properties and ac conductivity of the samples prepared have been analyzed. The values of dielectric constant were found to increase with increasing conductivity of the samples. Analysis of the ac conductivity data revealed the electrolytes to be of the non-Debye type with conduction mechanism of the overlapping-large-polaron-tunneling (OLPT) model. (author)

  6. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  7. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Science.gov (United States)

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  8. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    Science.gov (United States)

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described. PMID:26774092

  9. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Scientific Electronic Library Online (English)

    Cristiane M., Becker; Amanda B., Biagini; Maria M. C., Forte; Sandro C., Amico; Jos V. C., Vargas; Denise S., Azambuja.

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the conten [...] t of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride). The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  10. Fabrication and Optical Properties of Electrospun Conductive Polymer Nanofibers from Blended Polymer Solution

    Science.gov (United States)

    Chuangchote, Surawut; Sagawa, Takashi; Yoshikawa, Susumu

    2008-01-01

    Ultrafine poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV)/poly(vinyl pyrrolidone) (PVP) composite fibers with the average diameters ranging from 43 nm to 1.7 m were prepared by electrospinning of blended polymer solutions in mixed solvent of chlorobenzene and methanol. The average diameter of the as-spun fibers was found to decrease into nanometer scale with decreasing the PVP concentration and/or addition of a volatile organic salt, pyridinium formate (PF). PVP was easily removed from MEH-PPV/PVP fibers by the Soxhlet extraction, and after the removal, pure MEH-PPV fibers were obtained as a ribbon-like structure aligned with wrinkled surface in fiber direction. Comparison with the cast film, as-spun fibers showed relatively higher crystallinity, higher conjugation length, and there was a remarkable blue shift of photoluminescence (PL) peak.

  11. Microwave synthesis: An alternative approach to synthesize conducting end-capped polymers.

    Czech Academy of Sciences Publication Activity Database

    Marcasuzaa, P.; Reynaud, S.; Grassl, B.; Preudhomme, H.; Desbrieres, J.; Trchov, Miroslava; Donard, O. F. X.

    2011-01-01

    Ro?. 52, ?. 1 (2011), s. 33-39. ISSN 0032-3861 Grant ostatn: Eco-net project(FR) 16256SA Institutional research plan: CEZ:AV0Z40500505 Keywords : tetra-aniline * microwave synthesis * intrinsically conducting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  12. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers

    International Nuclear Information System (INIS)

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes

  13. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Vreeland, Richard F.; Heien, Michael L.; Taboryski, Rafael J.

    2012-01-01

    In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical appli...

  14. Integration of microwave MEMS devices into rectangular waveguide with conductive polymer interposers

    OpenAIRE

    Baghchehsaraei, Zargham; Sterner, Mikael; berg, Jan; Oberhammer, Joachim

    2013-01-01

    This paper investigates a novel method of integrating microwave microelectromechanical systems (MEMS) chips into millimeter-wave rectangular waveguides. The fundamental difficulties of merging micromachined with macromachined microwave components, in particular, surface topography, roughness, mechanical stress points and air gaps interrupting the surface currents, are overcome by a double-side adhesive conductive polymer interposer. This interposer provides a uniform electrical contact, stabl...

  15. Electric conductivity of polymer composite materials. Composite on propylene and silicon base

    International Nuclear Information System (INIS)

    Electric conductivity in polymer composites of the polypropylene-silicon type prepared by the method of polymerization filling is studied. The four-probe method is used to plot the dependence of electric resistance on silicon content and temperature in the 160-300 deg K range. The conclusion is made that the current value in composite is limited by resistance of insulating layers

  16. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Z.V.

    1993-01-01

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes.

  17. Conducting polymer and ionic liquid: improved thermal stability of the material - a spectroscopic study.

    Czech Academy of Sciences Publication Activity Database

    Trchov, Miroslava; ed?nkov, Ivana; Morvkov, Zuzana; Stejskal, Jaroslav

    2014-01-01

    Ro?. 109, November (2014), s. 27-32. ISSN 0141-3910 R&D Projects: GA ?R GAP205/12/0911 Institutional support: RVO:61389013 Keywords : polyaniline * conducting polymer * ionic liquid Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.163, year: 2014

  18. THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)

    Science.gov (United States)

    AbstractThe modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...

  19. Electrical conductivity and dielectric properties of SiO2 nanoparticles dispersed in conducting polymer matrix

    International Nuclear Information System (INIS)

    Electrical and dielectric properties of conducting polypyrrole-wide band gap silica (PPY-SiO2) nanocomposites have been investigated as a function of temperature and frequency for different concentrations of polypyrrole. The average grain size of the nanocomposites is in the range of 40-80 nm. Impedance spectra reveal two distorted semicircles corresponding to grain and grain boundary effects. The magnitude of conductivity and its temperature variation are significantly different from polypyrrole and silica. A very large dielectric constant of about 4800 at 30 kHz and at room temperature has been observed for the highest concentration of silica. Inhomogeneous behavior of nanocomposites gives rise to high dielectric constant

  20. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  1. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    OpenAIRE

    Makled, M.H.; Sheha, E.; Shanap, T.S.; El-Mansy, M.K.

    2012-01-01

    PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, ?, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is r...

  2. Tunable architecture for flexible and highly conductive graphene-polymer composites

    OpenAIRE

    Nol, Amlie; Faucheu, Jenny; Rieu, Mathilde; Viricelle, Jean-Paul; Bourgeat-Lami, Elodie

    2014-01-01

    Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 - neither clogging nor flocculation, 2 - spontaneous film formation around room temperature, 3 - high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process i...

  3. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    OpenAIRE

    Makled, M.H.; SHEHA, E.; Shanap, T.S.; El-Mansy, M.K.

    2012-01-01

    PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is r...

  4. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  5. Electric conductivity of solid-phase mixtures polymer-tungstophosphoric acid

    International Nuclear Information System (INIS)

    The results of study of electric conductivity of composite materials based on polymer (polyvinyl alcohol (PVA) and fluoroplastic) and tungstophosphoric acid (TPA) are presented. The measurements were conducted at room temperature (203 deg C) and alternating current in the 1-50 kHz frequency range. It is shown that introduction into fluoroplastic composition results in a monotonous decrease of electric conductivity. The dependence of electric conductivity on composition for the TPA-PVA system includes two parts and reflects chemical interaction in the solid phase. An analytical form of the composition of double-composite mixtures is derived

  6. Conductivity studies of LiCF{sub 3}SO{sub 3} doped PVA: PVdF blend polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilselvi, P.; Hema, M., E-mail: mhema2006@gmail.com

    2014-03-15

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF{sub 3}SO{sub 3}) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF{sub 3}SO{sub 3} polymer electrolyte exhibits the maximum ionic conductivity of 2.710{sup ?3} S cm{sup ?1} at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF{sub 3}SO{sub 3} polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute ?-relaxation peak.

  7. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte

    International Nuclear Information System (INIS)

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF3SO3) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF3SO3 polymer electrolyte exhibits the maximum ionic conductivity of 2.710?3 S cm?1 at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF3SO3 polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute ?-relaxation peak

  8. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (??) and dissipation factor (tan ?) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  9. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Qiong Nian

    2015-06-01

    Full Text Available Commercial production of transparent conducting oxide (TCO polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC of solution deposited aluminium-doped zinc oxide (AZO nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V?1 s?1 with corresponding electrical resistivity and sheet resistances as low as 1 10?3 ? cm and 75 ?/sq, respectively. The high mobility also enabled a high transmittance (T of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  10. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Science.gov (United States)

    Nian, Qiong; Callahan, Michael; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V-1 s-1 with corresponding electrical resistivity and sheet resistances as low as 1 10-3 ? cm and 75 ?/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  11. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup ?1} s{sup ?1} with corresponding electrical resistivity and sheet resistances as low as 1 10{sup ?3} ? cm and 75 ?/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  12. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    International Nuclear Information System (INIS)

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V?1 s?1 with corresponding electrical resistivity and sheet resistances as low as 1 10?3 ? cm and 75 ?/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods

  13. Electrical and Electrochemical Properties of New Mg2+ - Ion Conducting Polymer Electrolyte Membranes

    Science.gov (United States)

    Agrawal, R. C.; Sahu, Dinesh K.; Mahipal, Y. K.; Ashrafi, Rehana

    2013-07-01

    Investigations on ion transport behaviour and All-Solid-State battery performance of Mg2+-ion conducting Composite Polymer Electrolyte (CPE) films: [80PEO: 20 Mg (CF3SO3)2] + x MgO are reported. Solid Polymer Electrolyte (SPE) composition: [80PEO: 20Mg (CF3SO3)2], identified earlier as the highest conducting composition with room temperature conductivity ? 2.77 10-6 S/cm, has been chosen as as Ist - phase host matrix and submicron (?m & nm) particles of active filler material MgO as IInd - phase dispersoid. SPE/CPE membranes have been casted by a completely dry/solution free hotpress technique. The ion transport behaviour in the Optimum Conducting CPE film has been characterized in terms of ionic conductivity (?), ionic transference number (tion) as well as cationic transport number (t+). The temperature dependent conductivity measurement has also been carried out and the activation energy (Ea) has been computed from the least square linear fitting of `log ? - 1/T' Arrhenius plot. All-Solid-State battery has been fabricated in the cell configuration: Anode (Mg) // NCPE film // Cathode (C + MnO2 + Electrolyte). Open Circuit Voltage (OCV) 1.82 Volt was obtained for both the nano/micro MgO dispersed composite polymer electrolyte films. The cell performance has been studied under different load conditions and some important cell parameters have been calculated from the cell-potential discharge profiles.

  14. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures

    International Nuclear Information System (INIS)

    Poly(vinyl alcohol), PVA, produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to those of polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion rate of the electrolyte across the PVA film to the indium tin oxide (ITO) electrode. In particular, a solvent with a hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method of forming an electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using the conducting polymer, PPy. Then, by applying a similar technique, we fabricated poly(3,4-ethylenedioxythiophene), PEDOT/PVA, composite films and investigated their basic electrochemical properties. Moreover, in this study, in order to develop a novel cell-culture system which makes it possible to communicate with cultured cells, fibroblasts were cultured on PPy- and PEDOT-coated ITO conductive glass plates for 7 days. The result reveals that the PPy and PEDOT films support the secretory functions of the cells cultured on its surface. The PPy- and PEDOT-coated electrodes may be useful to culture the cells on.

  15. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells.

    Science.gov (United States)

    Svrcek, V; Yamanari, T; Mariotti, D; Mitra, S; Velusamy, T; Matsubara, K

    2015-07-21

    Silicon nanocrystal (Si-nc) down-conversion is demonstrated to enhance organic and hybrid organic/inorganic bulk heterojunction solar cells based on PTB7:[70]PCBM bulk heterojunction devices. Surfactant free surface-engineered Si-ncs can be integrated into the device architecture to be optically active and provide a means of effective down-conversion of blue photons (high energy photons below ?450 nm) into red photons (above ?680 nm) leading to 24% enhancement of the photocurrent under concentrated sunlight. We also demonstrate that the down-conversion effect under 1-sun is enhanced in the case of hybrid solar cells where engineered Si-ncs are also included in the active layer. PMID:26084561

  16. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing

    Science.gov (United States)

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M.

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m-1 range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering scaffolds.

  17. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions

    International Nuclear Information System (INIS)

    Highlights: ► Single lithium-ion conducting polymer electrolytes based on highly delocalized polyanions are prepared. ► Phase behavior and transport properties are measured. ► They show high lithium ion transference number approaching unity. ► They show high ionic conductivity at room temperature. - Abstract: New single lithium-ion conducting polymer electrolytes are prepared by a copolymerization of the two monomers, lithium (4-styrenesulfonyl)(trifluoromethanesulfonyl)imide (LiSTFSI) and methoxy-polyethylene glycol acrylate (MPEGA, CH2=CHCO2-(CH2CH2O)n-CH3, n = 8) in various monomer ratios. The structures and compositions of the prepared lithium poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl) imide-co-methoxy-polyethylene glycol acrylate] (Li[PSTFSI-co-MPEGA]) copolymers are characterized by 1H and 19F NMR, and gel permeation chromatography (GPC). For comparison, the corresponding blended polymer electrolytes comprising lithium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] (LiPSTFSI) and poly(ethylene oxide) (PEO) are also prepared and characterized. The fundamental properties of these two types of lithium-ion conducting polymer electrolytes are comparatively studied, in terms of phase transitions, thermal stability, XRD, ionic conductivities, lithium-ion transference numbers (tLi+), and electrochemical stabilities. Both types of the polymer electrolytes are thermally stable up to 300 °C. While both types of polymer electrolytes exhibit single lithium-ion conducting behavior with tLi+ > 0.9, the solid-state ionic conductivities of the Li[PSTFSI-co-MPEGA] copolymer electrolytes are all higher by 1–3 orders in magnitude than those of the blended ones, irrespective of the concentration of lithium ions. The highest ionic conductivities for the copolymer electrolytes are 7.6 × 10−6 S cm−1 at 25 °C and reach 10−4 S cm−1 at 60 °C, which are obtained at the ethylene oxide (EO) unit/Li+ ratio of 20.5

  18. Nanoscale direct mapping of localized and induced noise sources on conducting polymer films

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Lee, Hyungwoo; Cho, Dong-Guk; Hong, Seunghun

    2015-12-01

    The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films.The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06896g

  19. Calculation of the band structure of 2d conducting polymers using the network model

    International Nuclear Information System (INIS)

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  20. Criteria for differentiating electron and ion conductivity in high-ohmic polymer solids

    International Nuclear Information System (INIS)

    The differentiation of electron and ion charge carriers is of principal importance for explaining the electrical properties of high polymer solids. Experimental methods allowing the differentiation between electron and ion charge carrier transport are summarized and estimated, particularly mass transport (mass spectroscopy, neutron activation analysis, and tracer technique) as direct methods as well as 'internal' electrical effects (d.c. characteristics and dielectric measurements) and 'external' electrical effects (electrochemical cell, electrode conditions, pressure dependence of conductivity, photoelectric effects) as indirect methods. The results obtained with various high-ohmic polymer solids are summarized and discussed. (author)

  1. Enhanced ionic conductivity and optical studies of plasticized (PEO-KCl) solid polymer electrolytes

    Science.gov (United States)

    Chapi, Sharanappa; H, Devendrappa

    2015-06-01

    Solid polymer electrolytes (SPEs) based on Polyethylene oxide (PEO) doped with potassium chloride (KCl) were prepared by the solution cast technique. The conductivity increases from 10-10 to 10-6 Scm-1 at 303K with dopant. Optical absorption study shows that the direct & indirect optical band gaps were found decreased from 5.45-4.46eV and 4.96-3.86eV respectively with increasing the KCl. The XRD patterns reveal increasing the amorphous with increasing the dopent. The obtained results suggest that, these polymer systems are suitable candidates for solid state battery, electro chromic devices & optoelectronics display etc.

  2. Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, Giselle [Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)]. E-mail: gsandi@anl.gov; Kizilel, Riza [Chemical and Environmental Engineering Department, Illinois Institute of Technology, Chicago, IL 60616 (United States); Carrado, Kathleen A. [Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Fernandez-Saavedra, Rocio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Castagnola, Norma [Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2005-06-30

    New hectorite and organo-hectorite clays have been prepared using different silica sol sources, in order to examine the importance of sol particle size, pH, and surface chemistry on the final matrix. Polymer-clay nanocomposites (PCN) are prepared by intercalating polyethylene oxide in the clay layers of lithium hectorites. The resulting films are physically and electrochemically evaluated. Conductivity values, activation energies, and lithium transference numbers indicate that the PCNs are single ion conductors with transference numbers close to unity. The activation energies are in the range of 0.02 V, two orders of magnitude lower than the conventional polymer electrolytes.

  3. Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites

    International Nuclear Information System (INIS)

    New hectorite and organo-hectorite clays have been prepared using different silica sol sources, in order to examine the importance of sol particle size, pH, and surface chemistry on the final matrix. Polymer-clay nanocomposites (PCN) are prepared by intercalating polyethylene oxide in the clay layers of lithium hectorites. The resulting films are physically and electrochemically evaluated. Conductivity values, activation energies, and lithium transference numbers indicate that the PCNs are single ion conductors with transference numbers close to unity. The activation energies are in the range of 0.02 V, two orders of magnitude lower than the conventional polymer electrolytes

  4. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    Science.gov (United States)

    Mller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at 2 ?s, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  5. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    Science.gov (United States)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-03-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuators step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical.

  6. Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid.

    Science.gov (United States)

    Luo, Xiliang; Cui, Xinyan Tracy

    2011-01-01

    A conducting polymer-based smart coating for magnesium (Mg) implants that can both improve the corrosion resistance of Mg and release a drug in a controllable way is reported. As the ionic liquid is a highly conductive and stable solvent with a very wide electrochemical window, the conducting polymer coatings can be directly electrodeposited on the active metal Mg in ionic liquid under mild conditions, and Mg is highly stable during the electrodeposition. The electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) coatings on Mg are uniform and can significantly improve the corrosion resistance of Mg. In addition, the PEDOT coatings can load the anti-inflammatory drug dexamethasone during the electrodeposition, which can be subsequently released upon electric stimulation. PMID:20832505

  7. Study on power generation using electro-conductive polymer and its mixture with magnetic fluid

    International Nuclear Information System (INIS)

    A new power generation system using electro-conductive polymer and its mixture with magnetic fluid is introduced. The system using non-poison electro-conductive polymer and its mixture with magnetic fluid and operating at room temperature is proposed in the present paper. The system could be used as a micro-distributed energy supply system for domestic use in the future. An experimental set-up is designed and established to investigate the performance of the power generation with an aid of a theoretical analysis of the power generation. It is found that the theoretical results are in good agreement with the measured data. Based on the obtained results, the electric output increases with Reynolds number, size of the test channel, magnetic strength and electric conductivity. It is understood that in order to obtain a practical power generation, priority should be put on increasing fluid flow velocity and magnetic field strength

  8. Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates

    Science.gov (United States)

    Huh, Jin Woo; Kim, Young Min; Park, Young Wook; Choi, Jin Hwan; Lee, Jin Woo; Lee, Jong Woo; Yang, Jae Woong; Ju, Sung Hoo; Paek, Kyeong Kap; Ju, Byeong Kwon

    2008-02-01

    The fabrication of conducting polymer films by a screen-printing method and characterization of an organic light-emitting diode (OLED) implemented using these films as an anode on plastic substrates are reported. Organic transparent electrode materials containing poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonic acid) (PSS) (PEDOT:PSS) were used after the modification by a unique nanoparticle binder design. The electro-optical properties as well as mechanical stabilities of these films were measured. The OLED performances when employing these films were comparable to that of OLEDs using indium tin oxide (ITO) despite their relatively poor conductivity. An external quantum efficiency of the OLED using this anode is 3.5%, which is about twice as that of OLEDs using ITO. These results show that the organic transparent electrode of a conducting polymer film patterned by the screen-printing method is a potential candidate for an electrode of the flexible OLED.

  9. Dielectric relaxation and electrical conductivity in ferroelectric ceramic/polymer composites around the glass transition

    Science.gov (United States)

    Peliz-Barranco, A.

    2012-05-01

    The electrical conductivity behavior of the [(Pb0.88Sm0.08)(Ti0.99Mn0.01)O3]/polyetherketoneketone ceramic/polymer composite is studied in a wide temperature and frequency ranges around the glass transition of the polymer phase (Tg). The universal relaxation law is applied to model the experimental response. The dc conductivity (?dc) and the hopping frequency (?H) follow an Arrhenius dependence. The activation energy values for ?dc are associated to oxygen migration. The contribution of the conductive processes to the dielectric relaxation is analyzed, considering the oxygen vacancies concentration in the ceramic phase. It is also considered the structural change around Tg and its influence on the dielectric relaxation.

  10. Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells

    Science.gov (United States)

    Li, Ru; Tang, Qunwei; Yu, Liangmin; Yan, Xuefeng; Zhang, Zhiming; Yang, Peizhi

    2016-03-01

    Creation of cost-effective and platinum-free counter electrodes (CEs) is persistent for developing advanced dye-sensitized solar cells (DSSCs). We present here the fabrication of conducting polymers such as polyaniline (PANi), polypyrole (PPy), or poly(3,4-ethylenedioxythiophene) (PEDOT) intercalated reduced graphene oxide (rGO) CEs on flexible Ti foil or polyethylene-terephthalate substrate for liquid-junction DSSC applications. The ration architecture integrates the high electron-conducting ability of graphene and good electrocatalytic activity of a conducting polymer into a single CE material. The preliminary results demonstrate that the resultant CEs follow an order of rGO/PPy > rGO/PANi > rGO/PEDOT > rGO. A maximal cell efficiency of 6.23% is determined on the optimized solar cell device, yielding 104.9% enhancement in comparison to rGO based device.

  11. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer.

    Science.gov (United States)

    Nezakati, Toktam; Tan, Aaron; Seifalian, Alexander M

    2014-12-01

    An electrically conductive polymer using polyhedral oligomeric silsesquioxane (POSS) nanocage incorporated into a modified poly [caprolactone based urea-urethane] (PCL)/graphene hybrid nanocomposite is described. Multilayer graphene flakes (8nm) were homogeneously dispersed into POSS-PCL at 0.1, 2, 5, and 10wt.% concentrations. This dispersion process of the graphene flakes was achieved by the use of stable dimethylacetamide (DMAc), via solution intercalation with POSS-PCL nanocomposites. The impedance spectroscopy of 5.0wt.% and higher concentration of graphene in POSS-PCL represented major improvement in conductivity over pristine POSS-PCL. The percolation threshold occurred at 5.0wt.% graphene concentration, converting the insulator POSS-PCL into a conductive POSS-PCL/graphene hybrid nanocomposite. The structures of the obtained hybrid materials were characterized with atomic force microscopy (AFM), Fourier transform infra-red (FT-IR), and Raman spectroscopy. The conductivity of the resultant nanocomposite polymer was investigated with electrochemical impedance spectroscopy (EIS). Herein, for the first time, we demonstrate a facile method of synthesizing, and describe the electrical properties of a conductive POSS-PCL/graphene nanocomposite polymer. PMID:25240216

  12. Conductivity and Structural Studies of Plasticised Polyacrylonitrile (PAN)-Lithium Triflate Polymer Electrolyte Films

    International Nuclear Information System (INIS)

    The effect of different plasticizers on the properties of PAN-LiCF3SO3 polymer electrolytes has been studied. Propylene carbonate (PC) and ethylene carbonate (EC) having different values of donor numbers, dielectric constant and viscosity have been used as plasticizers. The highest room temperature conductivity for the film in the PAN-LiCF3SO3 system was 3.04 x 10-4 S cm-1. The highest room temperature conductivity for the films in the PAN-EC-LiCF3SO3 system and the PAN-PC-LiCF3SO3 system was 1.32 x 10-3 and 8.64 x 10-4 S cm-1. The addition of plasticizers has been found to enhance the conductivity of polymer electrolytes by increasing the amorphous content as well as by dissociating the ion aggregates present in polymer electrolyte. Conductivity temperature-dependence studies of these plasticised PAN-salt systems were carried out in the temperature range of 303 to 373 K. The conductivity versus temperature plots obeyed an Arrhenius type variation. The structural and complex formations were studied by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. (author)

  13. Ion-beam modifications of the surface morphology and conductivity in some polymer thin films

    Indian Academy of Sciences (India)

    M Ramakrishna Murthy; E Venkateshwar Rao

    2002-10-01

    Studies on the surface micromorphology and surface conductivity in thin polymer films of poly vinyl alcohol (PVA) and poly ethylene oxide (PEO) in both as-grown and ion-implanted polymer films have been carried out to reveal certain specific features of the ordered state in these materials. Optical microscopic investigations revealed the existence and enhanced formation in number of spherulites and dendrites in ionimplanted films relative to the as-grown films. The number and rate of formation of spherulites indicated an increase in the degree of crystallinity in these films. Measurements of surface conductivity of as-grown and ion-implanted polymer films, employing four-point probe method, indicated a decrease in electrical conductivity on ion-implantation. Photomicrographic analysis of the PVA and PEO thin film surfaces, has enabled to propose a temperature–stress induced mechanism of crystallization in conjunction with the surface conductivity measurements. The decrease in surface conductivity on ion-implantation in both PVA and PEO thin films, is attributed to a decrease in mobility of macromolecular charged species due to an increase in degree of crystallinity as has been observed by optical microscopy.

  14. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas

    Science.gov (United States)

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-01

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05912g

  15. Importance of energetics in the design of small bandgap conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yongsok; Kertesz, M. (Georgetown Univ., Washington, DC (USA)); Elsenbaumer, R.L. (Allied-Signal Co., Morristown, NJ (USA))

    With a combination of semiempirical quantum chemical methods applicable for geometry optimization and energy band structure calculation, several heteroatomic conjugated polymers based on polythiophene have been studied with the goal to correlate the chemical composition and topology of the unit cells with energetics and bandgaps. In the theoretical design of small E{sub g} polymers the relative stability of structural isomers of a given polymer plays a crucial role. The authors have found for the materials investigated in this work that the structure having the larger bandgap among structural isomorphs is the more stable one. The combination of MNDO and Hueckel crystal orbital methods provide a firm theoretical basis to the synthesis of small-bandgap conducting polymeric materials.

  16. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  17. Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties

    OpenAIRE

    ZHANG, Teng; Wu, Xufei; Luo, Tengfei

    2014-01-01

    Polymer nanofibers with high thermal conductivities and outstanding thermal stabilities are highly desirable in heat transfer-critical applications such as thermal management, heat exchangers and energy storage. In this work, we unlock the fundamental relations between the thermal conductivity and thermal stability of polymer nanofibers and their molecular characteristics by studying the temperature-induced phase transitions and thermal transport of a series of polymer nanof...

  18. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    Science.gov (United States)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  19. Organic-Inorganic Nanocomposites via Placing Monodisperse Ferroelectric Nanocrystals in Direct and Permanent Contact with Ferroelectric Polymers.

    Science.gov (United States)

    Jiang, Beibei; Pang, Xinchang; Li, Bo; Lin, Zhiqun

    2015-09-16

    Organic-inorganic nanocomposites composed of polymers and nanoparticles offer a vast design space of potential material properties, depending heavily on the properties of these two constituents and their spatial arrangement. The ability to place polymers in direct contact with functional nanoparticles via strong bonding, that is, stable chemical interaction without the dissociation of surface capping polymers, provides a means of preventing nanoparticles from aggregation and increasing their dispersibility in nanocomposites, and promises opportunities to explore new properties and construction of miniaturized devices. However, this is still a challenging issue and has not yet been largely explored. Here, we report an unconventional strategy to create in situ organic-inorganic nanocomposites comprising monodisperse ferroelectric nanoparticles directly and permanently tethered with ferroelectric polymers by capitalizing on rationally designed amphiphilic star-like diblock copolymer as nanoreactors. The diameter of ferroelectric nanoparticles and the chain length of ferroelectric polymers can be precisely tuned. The dielectric and ferroelectric properties of nanocomposites containing different sizes of ferroelectric nanoparticles were scrutinized. Such bottom-up crafting of intimate organic-inorganic nanocomposites offers new levels of tailorability to nanostructured materials and promises new opportunities for achieving exquisite control over the surface chemistry and properties of nanocomposites with engineered functionality for diverse applications in energy conversion and storage, catalysis, electronics, nanotechnology, and biotechnology. PMID:26314224

  20. Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study

    Directory of Open Access Journals (Sweden)

    S. Fakirov

    2013-07-01

    Full Text Available Conductive polymer composites have wide ranging applications, but when they are produced by conventional melt blending, high conductive filler loadings are normally required, hindering their processability and reducing mechanical properties. In this study, two types of polymer-polymer composites were studied: i microfibrillar composites (MFC of polypropylene (PP and 5 wt% carbon nanotube (CNT loaded poly(butylene terephthalate (PBT as reinforcement, and ii maleic anhydride-grafted polypropylene (PP-g-MA compatibilizer, loaded with 5 wt% CNTs introduced into an MFC of PP and poly(ethylene terephthalate (PET in concentrations of 5 and 10 wt%. For the compatibilized composite type, PP and PET were melt-blended, cold-drawn and pelletized, followed by dry-mixing with PP-g-MA/CNT, re-extrusion at 200C, and cold-drawing. The drawn blends produced were compression moulded to produce sheets with MFC structure. Using scanning electron microscopy, CNTs coated with PP-g-MA could be observed at the interface between PP matrix and PET microfibrils in the compatibilized blends. The volume resistivities tested by four-point test method were: 2.87108 and 9.93107 ?cm for the 66.5/28.5/5 and 63/27/10 (by wt% PP/PET/(PP-g-MA/CNT blends, corresponding to total CNT loadings (in the composites of 0.07 vol% (0.24 wt% and 0.14 vol% (0.46 wt%, respectively. For the non-compatibilized MFC types based on PP/(PBT/CNT with higher and lower melt flow grades of PP, the resistivities of 70/(95/5 blends were 1.9106 and 1.5107 ?cm, respectively, corresponding to a total filler loading (in the composite of 0.44 vol% (1.5 wt% in both MFCs.