WorldWideScience

Sample records for n-heterocyclic carbene ligands

  1. Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand.

    Vieille-Petit, Ludovic; Luan, Xinjun; Gatti, Michele; Blumentritt, Sascha; Linden, Anthony; Clavier, Hervé; Nolan, Steven P; Dorta, Reto

    2009-07-01

    The introduction of N-heterocyclic carbene ligands that incorporate correctly substituted naphthyl side chains leads to increased activity and stability in second generation ruthenium metathesis catalysts. PMID:19557281

  2. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    Agnieszka Hryniewicka

    2015-12-01

    Full Text Available The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify.

  3. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    Suchodolski, Szymon; Wojtkielewicz, Agnieszka; Morzycki, Jacek W

    2015-01-01

    Summary The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify. PMID:26877801

  4. Latent ruthenium–indenylidene catalysts bearing a N-heterocyclic carbene and a bidentate picolinate ligand

    Thibault E. Schmid

    2015-09-01

    Full Text Available A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr(picolinateRuCl(indenylidene complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenylimidazolidin-2-ylidene demonstrated excellent latent behaviour in ring closing metathesis (RCM reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM and enyne metathesis reactions.

  5. Tethered N-heterocyclic carbene-carboranes: unique ligands that exhibit unprecedented and versatile coordination modes at rhodium.

    Holmes, Jordan; Pask, Christopher M; Fox, Mark A; Willans, Charlotte E

    2016-05-11

    Four brand new hybrid ligands combining an N-heterocyclic carbene tethered with two isomeric nido-dicarbaundecaborane dianions, a neutral closo-dicarbadodecaborane or a closo-dicarbadodecaborane anion are described. Versatile coordination of the ligands to Rh(I) is demonstrated, in which both NHC and carborane moieties covalently coordinate a metal centre. PMID:27098432

  6. Atmospheric Hydrogenation of Esters Catalyzed by PNP-Ruthenium Complexes with an N-Heterocyclic Carbene Ligand.

    Ogata, Osamu; Nakayama, Yuji; Nara, Hideki; Fujiwhara, Mitsuhiko; Kayaki, Yoshihito

    2016-08-01

    New pincer ruthenium complexes bearing a monodentate N-heterocyclic carbene ligand were synthesized and demonstrated as powerful hydrogenation catalysts. With an atmospheric pressure of hydrogen gas, aromatic, heteroaromatic, and aliphatic esters as well as lactones were converted into the corresponding alcohols at 50 °C. This reaction protocol offers reliable access to alcohols using an easy operational setup. PMID:27439106

  7. Nickel N-heterocyclic carbene complexes in homogeneous catalysis

    Berding, Joris

    2009-01-01

    Described in this thesis are the investigations into the chemistry of N-heterocyclic carbene (NHC) ligands and transition-metal complexes thereof. Specifically, a variety of N-heterocyclic carbene complexes of nickel were prepared, characterized and used as catalysts in three types of homogeneous ca

  8. Homo- and Heteropolynuclear Complexes Containing Bidentate Bridging 4-Phosphino-N-Heterocyclic Carbene Ligands.

    Han, Zeyu; Bates, Joshua I; Strehl, Dominik; Patrick, Brian O; Gates, Derek P

    2016-05-16

    The abnormal reaction of phosphaalkenes with N-heterocyclic carbenes (NHC) offers a convenient method to introduce new functionality at the backbone of an NHC. The 4-phosphino-substituted NHC (1a) derived from 1,3-dimesitylimidazol-2-ylidene (IMes) and MesP═CPh2 is shown to be an effective bifunctional ligand for Au(I) and Pd(II). Several new complexes are reported: 2a: 1a·AuCCl, 3a: 1a·(AuCl)2, 4a: [(1a)2AuC]Cl, 5a: [(1a·AuPCl)2AuC]Cl], and 6a: 1a·(PdC) (AuPCl). The reaction of 4-phosphino-NHC 1b, derived from 1,3-di(cyclohexyl)imidazol-2-ylidene (ICy) and MesP═C(4-C6H4F)2, with (tht)AuCl (2 equiv, tht = tetrahydrothiophene) affords the fascinating tetranuclear 5b [(1b·AuPCl)2AuC][AuCl2]. The molecular structure of 5b features a close Au···Au contact (3.0988(4) Å) between the bis(carbene)gold(I) cation and the dichloroaurate(I) anion. The buried volumes (%Vbur) and Tolman cone angles for representative 4-phosphino-NHCs calculated from structural data are compared to related carbenes and phosphines. The molecular structures are reported for complexes 3a, 4a, 5b, and 6a. PMID:27125258

  9. Rhenium and technetium tricarbonyl complexes of N-heterocyclic carbene ligands.

    Chan, Chung Ying; Pellegrini, Paul A; Greguric, Ivan; Barnard, Peter J

    2014-10-20

    A strategy for the conjugation of N-heterocyclic carbene (NHC) ligands to biomolecules via amide bond formation is described. Both 1-(2-pyridyl)imidazolium or 1-(2-pyridyl)benzimidazolium salts functionalized with a pendant carboxylic acid group were prepared and coupled to glycine benzyl ester using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. A series of 10 rhenium(I) tricarbonyl complexes of the form [ReX(CO)3(ĈN)] (ĈN is a bidentate NHC ligand, and X is a monodentate anionic ligand: Cl(-), RCO2(-)) were synthesized via a Ag2O transmetalation protocol from the Re(I) precursor compound Re(CO)5Cl. The synthesized azolium salts and Re(I) complexes were characterized by elemental analysis and by (1)H and (13)C NMR spectroscopy, and the molecular structures for one imidazolium salt and seven Re(I) complexes were determined by single-crystal X-ray diffraction. (1)H NMR and mass spectrometry studies for an acetonitrile-d3 solution of [ReCl(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)] show that the monodentate chloride ligand is labile and exchanges with this solvent yielding a cationic acetonitrile adduct. For the first time the labeling of an NHC ligand with technetium-99m is reported. Rapid Tc-99m labeling was achieved by heating the imidazolium salt 1-(2-pyridyl)-3-methylimidazolium iodide and Ag2O in methanol, followed by the addition of fac-[(99m)Tc(OH2)3(CO)3](+). To confirm the structure of the (99m)Tc-labeled complex, the equivalent (99)Tc complex was prepared, and mass spectrometric studies showed that the formed Tc complexes are of the form [(99m/99)Tc(CH3CN)(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)](+) with an acetonitrile molecule coordinated to the metal center. PMID:25280253

  10. Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: An artifical heme analogue?

    Anneser, Markus R.

    2015-04-20

    An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds. © 2015 American Chemical Society.

  11. Nickel N-heterocyclic carbene complexes in homogeneous catalysis

    Berding, Joris

    2009-01-01

    Described in this thesis are the investigations into the chemistry of N-heterocyclic carbene (NHC) ligands and transition-metal complexes thereof. Specifically, a variety of N-heterocyclic carbene complexes of nickel were prepared, characterized and used as catalysts in three types of homogeneous catalytic processes. First, nickel(II) complexes of monodentate NHC ligands were successfully used as catalysts in the hydrosilylation of internal alkynes. Second, nickel(II) complexes bearing bident...

  12. Ruthenium complexes of chelating amido-functionalized N-heterocyclic carbene ligands: Synthesis, structure and DFT studies

    Sachin Kumar; Anantha Narayanan; Mitta Nageswar Rao; Mobin M Shaikh; Prasenjit Ghosh

    2011-11-01

    Synthesis, structure and density functional theory (DFT) studies of a series of new ruthenium complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]RuCl(-cymene) [R = Me (1c), -Pr (2c), CH2Ph (3c); -cymene = 4--propyltoluene] supported over /-functionalized N-heterocyclic carbene (NHC) ligands are reported. In particular, the ruthenium (1-3)c complexes were synthesized from the respective silver complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]2Ag+Cl− [R = Me (1b), -Pr (2b), CH2Ph (3b)] by the treatment with [Ru(-cymene)Cl2]2 in 65-76% yields. The molecular structures of (1-3)c revealed the chelation of the N-heterocylic carbene ligand through the carbene center and an amido sidearm of the ligand in all of the three complexes. The density functional theory studies on the ruthenium (1-3)c complexes indicated strong binding of the NHC ligand to the metal center as was observed from the deeply buried NHC-Ru -bonding molecular orbitals.

  13. Titanocene–Gold Complexes Containing N-Heterocyclic Carbene Ligands Inhibit Growth of Prostate, Renal, and Colon Cancers in Vitro

    2016-01-01

    We report on the synthesis, characterization, and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = −OC(O)-p-C6H4-S−) bound to gold(I)–N-heterocyclic carbene fragments through the thiolate group: [(η5-C5H5)2TiMe(μ-mba)Au(NHC)]. The cytotoxicities of the heterometallic compounds along with those of novel monometallic gold–N-heterocyclic carbene precursors [(NHC)Au(mbaH)] have been evaluated against renal, prostate, colon, and breast cancer cell lines. The highest activity and selectivity and a synergistic effect of the resulting heterometallic species was found for the prostate and colon cancer cell lines. The colocalization of both titanium and gold metals (1:1 ratio) in PC3 prostate cancer cells was demonstrated for the selected compound 5a, indicating the robustness of the heterometallic compound in vitro. We describe here preliminary mechanistic data involving studies on the interaction of selected mono- and bimetallic compounds with plasmid (pBR322) used as a model nucleic acid and the inhibition of thioredoxin reductase in PC3 prostate cancer cells. The heterometallic compounds, which are highly apoptotic, exhibit strong antimigratory effects on the prostate cancer cell line PC3. PMID:27182101

  14. Ligand Exchange Reaction of Au(I) R-N-Heterocyclic Carbene Complexes with Cysteine.

    Dos Santos, H F; Vieira, M A; Sánchez Delgado, G Y; Paschoal, D

    2016-04-14

    The chemotherapy with gold complexes has been attempted since the 90s after the clinical success of auranofin, a gold(I) coordination complex. Currently, the organometallics compounds have shown promise in cancer therapy, mainly in those complexes containing N-heterocylic carbenes (NHC) as a ligand. The present study shows a kinetic analysis of the reaction of six alkyl-substituted NHC with cysteine (Cys), which is taken as an important bionucleophile representative. The first and second ligand exchange processes were analyzed with the complete description of the mechanism and energy profiles. For the first reaction step, which is the rate-limiting step of the whole substitution reaction, the activation enthalpy follows the order 1/Me2 order is correlated with the r(Au-S) calculated for the transition state structures where S is the sulfur ligand from the Cys entering group. This means that longer r(Au-S) leads to higher activation enthalpy and is consistent with the effectiveness of gold shielding from nucleophile attack by bulkier alkyl-substituted NHC ligand. When electronic effect was addressed we found that higher activation barrier was predicted for strongly electron-donating NHC ligand, represented by the eigenvalue of σ-HOMO orbital of the free ligands. The molecular interpretation of the electronic effects is that strong donating NHC forms strong metal-ligand bond. For the second reaction step, similar structure-reactivity relationships were obtained, however the activation energies are less sensitive to the structure. PMID:27010796

  15. Luminescent Ruthenium(II) Complex Bearing Bipyridine and N-Heterocyclic Carbene-based C∧N∧C Pincer Ligand for Live-Cell Imaging of Endocytosis

    Tsui, Wai-Kuen; Chung, Lai-Hon; Wong, Matthew Man-Kin; Tsang, Wai-Him; Lo, Hoi-Shing; Liu, Yaxiang; Leung, Chung-Hang; Ma, Dik-Lung; Chiu, Sung-Kay; Wong, Chun-Yuen

    2015-03-01

    Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2'-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1-500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells.

  16. Palladium complexes of a new type of N-heterocyclic carbene ligand derived from a tricyclic triazolooxazine framework

    Manoj Kumar Gangwar; Alok Ch Kalita; Prasenjit Ghosh

    2014-09-01

    A new type of tricyclic triazolooxazine derived N-heterocyclic carbene precursors were developed by the alkylation reaction of a tricyclic triazolooxazine framework. In particular, the reaction of 5a,6,7,8,9,9ahexahydro-4-benzo[][1,2,3]triazolo[1,5-][1,4]oxazine with methyl iodide and ethyl iodide yielded the tricyclic triazolooxazine derived N-heterocyclic carbene precursors, (1−2)a, in 67−84% yield. The tricyclic triazolooxazinium iodide salts, (1−2)a, underwent metallation in a straight forward manner upon treatment with PdCl2 in the presence of K2CO3 in pyridine to give the trans-{3-(R)-5a,6,7,8,9,9a-hexahydro-4-benzo[][1,2,3]triazolo[1,5-][1,4]oxazin-4-ylidene} PdI2(pyridine) [R = Me (1b), Et (2b)] complexes in 23−25% yield. The new tricyclic triazolooxazine derived N-heterocyclic carbene moiety, as stabilized upon binding to palladium in the (1−2)b complexes, was structurally characterized by the X-ray single crystal diffraction studies.

  17. Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences.

    Peris, Eduardo

    2016-04-30

    In the course of our most recent research, we demonstrated how homogeneous catalysts with polyaromatic functionalities possess properties that clearly differ from those shown by analogues lacking these polyaromatic systems. The differences arise from the ability of the polyaromatic groups to afford non-covalent interactions with aromatic molecules, which can either be substrates in a homogeneous catalysed reaction, or the same catalysts to afford self-assembled systems. This article summarizes all our efforts toward understanding the fundamental effects of π-stacking interactions in homogenous catalysis, particularly in those cases where catalysts bearing polyaromatic functionalities are used. The study reveals several important implications regarding the influence of ligand-ligand interactions, ligand-additive interactions, and ligand-substrate interactions, in the performance of the catalysts used. In particular, the electronic properties of ligands with fused polyconjugated systems, are modified if molecules with π-stacking abilities are added, via a ligand-additive interaction. Also, the kinetics of the reactions in which aromatic substrates and catalysts with polyaromatic ligands are used, are strongly influenced by the self-association of the catalysts and by the non-covalent interaction between the catalyst and the aromatic substrates. The nature and the magnitude of these supramolecular interactions were unveiled by using host-guest chemistry methods applied to organometallic catalysis. Finally, non-covalent interactions afford a very convenient approach for the immobilization of catalysts decorated with polyaromatic systems onto the surfaces of graphene derivatives, hence affording an easy yet extremely effective way to support catalysts and facilitate recycling. The results given have fundamental implications in the design of future catalysts containing rigid polyaromatic systems, and may inspire future researchers in the design of improved homogeneous

  18. Synthesis and Characterization of Divalent Manganese, Iron, and Cobalt Complexes in Tripodal Phenolate/N-Heterocyclic Carbene Ligand Environments

    Käß, Martina; Hohenberger, Johannes; Adelhardt, Mario;

    2014-01-01

    Two novel tripodal ligands, (BIMPNMes,Ad,Me)− and (MIMPNMes,Ad,Me)2–, combining two types of donor atoms, namely, NHC and phenolate donors, were synthesized to complete the series of N-anchored ligands, ranging from chelating species with tris(carbene) to tris(phenolate) chelating arms. The compl...

  19. Organometallic rhenium(III) chalcogenide clusters: coordination of N-heterocyclic carbenes.

    Durham, Jessica L; Wilson, Wade B; Huh, Daniel N; McDonald, Robert; Szczepura, Lisa F

    2015-07-01

    The preparation of rhenium based octahedral clusters containing N-heterocyclic carbenes is described. These represent the first examples of [M6(μ3-Q)8](n+) or [M6(μ3-X)8](n+) clusters to contain a carbene ligand of any type (NHC, Fischer or Schrock). Surprisingly, the NHC ligands attenuate their luminescent properties. PMID:26041404

  20. How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?

    Poater, Albert

    2013-01-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. © 2013 The Royal Society of Chemistry.

  1. "Decarbonization" of an imino N-heterocyclic carbene via triple benzyl migration from hafnium

    An imino N-heterocyclic carbene underwent three sequential benzyl migrations upon reaction with tetrabenzylhafnium, resulting in complete removal of the carbene carbon from the ligand. The resulting eneamido-amidinato hafnium complex showed alkene polymerization activity comparable to that of a prec...

  2. π-face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis

    Credendino, Raffaele

    2012-05-16

    In this work, we calculate the redox potential in a series of Ir and Ru complexes bearing a N-heterocyclic carbene (NHC) ligand presenting different Y groups in the para position of the aromatic N-substituent. The calculated redox potentials excellently correlate with the experimental ΔE 1/2 potentials, offering a handle to rationalize the experimental findings. Analysis of the HOMO of the complexes before oxidation suggests that electron-donating Y groups destabilize the metal centered HOMO. Energy decomposition of the metal-NHC interaction indicates that electron-donating Y groups reinforce this interaction in the oxidized complexes. Analysis of the electron density in the reduced and oxidized states of representative complexes indicates a clear donation from the C ipso of the N-substituents to an empty d orbital on the metal. In case of the Ru complexes, this mechanism involves the Ru-alkylidene moiety. All of these results suggest that electron-donating Y groups render the aromatic N-substituent able to donate more density to electron-deficient metals through the C ipso atom. This conclusion suggests that electron-donating Y groups could stabilize higher oxidation states during catalysis. To test this hypothesis, we investigated the effect of differently donating Y groups in model reactions of Ru-catalyzed olefin metathesis and Pd-catalyzed C-C cross-coupling. Consistent with the experimental results, calculations indicate an easier reaction pathway if the N-substituent of the NHC ligand presents an electron-donating Y group. © 2012 American Chemical Society.

  3. Synthesis and Properties of Chelating N-Heterocyclic Carbene Rhodium(I) Complexes: Synthetic Experiments in Current Organometallic Chemistry

    Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena

    2011-01-01

    The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…

  4. A molecular mechanical model for N-heterocyclic carbenes.

    Gehrke, Sascha; Hollóczki, Oldamur

    2016-08-10

    In this work we present a set of force fields for nine synthetically relevant and/or structurally interesting N-heterocyclic carbenes, including imidazol-, thiazol-, triazol-, imidazolidin-, and pyridine-ylidenes. The bonding parameters were calculated by using a series of geometry optimizations by ab initio methods. For fitting the non-bonding interactions, a water molecule was employed as a probe. The interaction energy between the carbene and the probe molecule was sampled along two coordinates for each carbene, representing the interaction through the lone pair, or the π system of the molecule. The corresponding reference interaction energies were obtained by CCSD(T)/CBS calculations. To describe the direction dependence of the intermolecular potential energy, an extra, massless Coulombic interaction site was included for all carbenes, which represents the lone pair of the divalent carbon atom. The resulting fitted carbene force field (CaFF) showed a robust behavior regarding probe molecule, as changing the molecular mechanical water model, or employing, instead, an OPLS methanol molecule did not introduce significant deviations in the potential energies. The obtained CaFF models are easy to merge with standard OPLS or AMBER force fields, therefore the molecular simulations of a large number of N-heterocyclic carbenes becomes available. PMID:27426687

  5. Double hydrophosphination of alkynes promoted by rhodium: the key role of an N-heterocyclic carbene ligand.

    Di Giuseppe, Andrea; De Luca, Roberto; Castarlenas, Ricardo; Pérez-Torrente, Jesús J; Crucianelli, Marcello; Oro, Luis A

    2016-04-12

    The regioselective double hydrophosphination of alkynes mediated by rhodium catalysts is presented. The distinctive stereoelectronic properties of the NHC ligand prevent the catalyst deactivation by diphosphine coordination thereby allowing for the closing of a productive catalytic cycle. PMID:27022648

  6. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone. PMID:26608162

  7. Synthesis, structures, and selective toxicity to cancer cells of gold(I) complexes involving N-heterocyclic carbene ligands

    L. Boselli; Ader, I.; Carraz, Maëlle; Hemmert, C.; Cuvillier, O.; Gornitzka, H.

    2014-01-01

    New gold(I) complexes containing two 1-[2-(diethylamino)ethyl]imidazolydene ligands have been synthesized and characterized. The X-ray structures of two key compounds are presented. All complexes have been tested for their antiproliferative activities in prostate cancer cell line PC-3. Lipophilicity (Log P) has been determined for these complexes. The most active complex has been tested for the cytotoxic activities in five human cancer cell lines and primary endothelial cells. The most active...

  8. Synthesis, structures, and selective toxicity to cancer cells of gold(I) complexes involving N-heterocyclic carbene ligands.

    Boselli, Luca; Ader, Isabelle; Carraz, Maëlle; Hemmert, Catherine; Cuvillier, Olivier; Gornitzka, Heinz

    2014-10-01

    New gold(I) complexes containing two 1-[2-(diethylamino)ethyl]imidazolydene ligands have been synthesized and characterized. The X-ray structures of two key compounds are presented. All complexes have been tested for their antiproliferative activities in prostate cancer cell line PC-3. Lipophilicity (Log P) has been determined for these complexes. The most active complex has been tested for the cytotoxic activities in five human cancer cell lines and primary endothelial cells. The most active complex demonstrated a potent selectivity for cancer cells. PMID:25078312

  9. Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems

    Lesieur, Mathieu

    2015-01-01

    Nowadays, the requirement to design highly valuable compounds is undoubtedly one of the major challenges in the field of organic and organometallic chemistry. The use of the versatile and efficient N-heterocyclic carbenes (NHCs) combined with transition metals represents a key feature in modern organometallic chemistry and homogeneous catalysis. In the course of this thesis, the straightforward design and synthesis of a library of Pd(0) bearing NHC ligands was achieved. Their catalytic per...

  10. Cyclopentadienyl-functionalised N-heterocyclic carbenes: synthesis, coordination to Mo, Ru, Rh

    Costa, André Pontes da

    2011-01-01

    This thesis deals with the synthesis of cyclopentadienyl-functionalised N-heterocyclic carbenes and its coordination to both middle and late transition metals. One of the goals was to gain chemical knowledge on the reactivity patterns of these complexes, and explore their potential applications in catalysis. The imidazolium salts synthesised in the course of this thesis represent a series containing changes in the electronic and steric parameters. The ligand precursors we...

  11. Oxidation and β-Alkylation of Alcohols Catalysed by Iridium(I) Complexes with Functionalised N-Heterocyclic Carbene Ligands.

    Jiménez, M Victoria; Fernández-Tornos, Javier; Modrego, F Javier; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-12-01

    The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for CC bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and β-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3 )(cod)(MeIm(2- methoxybenzyl))][BF4 ] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0 ) of 1283 h(-1) , and also in the β-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross-aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new CC bond that involves the reaction of an O-bound enolate generated in the basic medium with the electrophilic aldehyde. PMID:26493780

  12. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  13. N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol

    Guang-Fen Du; Hao Guo; Ying Wang; Wen-Juan Li; Wei-Jie Shi; Bin Dai

    2015-01-01

    An organocatalytic protocol for the synthesis of dimethyl carbonate has been developed. Under the catalysis of 5 mol% N-heterocyclic carbenes, ethylene carbonate undergoes transesterification reaction with methanol under very mild reaction conditions, producing dimethyl carbonate with high efficiency. Furthermore, this N-heterocyclic carbene promoted transesterification can be scaled-up easily without lose of the conversion of dimethyl carbonate.

  14. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…

  15. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis.

    Di Marco, Lorenzo; Hans, Morgan; Delaude, Lionel; Monbaliu, Jean-Christophe M

    2016-03-18

    Two methods were assessed for the generation of common N-heterocyclic carbenes (NHCs) from stable imidazol(in)ium precursors using convenient and straightforward continuous-flow setups with either a heterogeneous inorganic base (Cs2 CO3 or K3 PO4 ) or a homogeneous organic base (KN(SiMe3 )2 ). In-line quenching with carbon disulfide revealed that the homogeneous strategy was most efficient for the preparation of a small library of NHCs. The generation of free nucleophilic carbenes was next telescoped with two benchmark NHC-catalyzed reactions; namely, the transesterification of vinyl acetate with benzyl alcohol and the amidation of N-Boc-glycine methyl ester with ethanolamine. Both organocatalytic transformations proceeded with total conversion and excellent yields were achieved after extraction, showcasing the first examples of continuous-flow organocatalysis with NHCs. PMID:26880372

  16. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.

    Liu, Yizhu; Persson, Petter; Sundström, Villy; Wärnmark, Kenneth

    2016-08-16

    The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first

  17. Frustrated N-heterocyclic carbene-silylium ion Lewis pairs.

    Silva Valverde, Miguel F; Theuergarten, Eileen; Bannenberg, Thomas; Freytag, Matthias; Jones, Peter G; Tamm, Matthias

    2015-05-28

    The reaction of the N-heterocyclic carbene 1,3-di-tert-butyl-4,5-dimethylimidazolin-2-ylidene () with trimethylsilyl iodide, triflate and triflimidate [Me3SiX, X = I, CF3SO3 (OTf), (CF3SO2)2N (NTf2)] by mixing the neat, liquid starting materials afforded the corresponding 2-(trimethylsilyl)imidazolium salts [()SiMe3]X as highly reactive, white crystalline solids. Only the triflimidate (X = NTf2) proved to be stable in solution and could be characterized by means of NMR spectroscopy (in C6D5Br) and X-ray diffraction analysis, whereas dissociation into free and Me3SiOTf was observed for the triflate system, in agreement with the trend derived by DFT calculations; the iodide was too insoluble for characterization. The compounds [()SiMe3]X showed the reactivity expected for frustrated carbene-silylium pairs, and treatment with carbon dioxide, tert-butyl isocyanate and diphenylbutadiyne gave the 1,2-addition products [()CO2SiMe3]X (X = I, OTf, NTf2), [()C(NtBu)OSiMe3]OTf and [()C(Ph)C(SiMe3)CCPh]OTf, respectively. Upon reaction with [AuCl(PPh3)], metal-chloride bond activation was observed, with formation of the cationic gold(i) complexes [()Au(PPh3)]X (X = OTf, NTf2). PMID:25912291

  18. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    Manzini, Simone

    2015-03-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  19. N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol

    Guang-Fen Du

    2015-01-01

    Full Text Available An organocatalytic protocol for the synthesis of dimethyl carbonate has been developed. Under the catalysis of 5 mol% N-heterocyclic carbenes, ethylene carbonate undergoes transesterification reaction with methanol under very mild reaction conditions, producing dimethyl carbonate with high efficiency. Furthermore, this N-heterocyclic carbene promoted transesterification can be scaled-up easily without lose of the conversion of dimethyl carbonate.

  20. Activation of 7-Silanorbornadienes by N-Heterocyclic Carbenes: A Selective Way to N-Heterocyclic-Carbene-Stabilized Silylenes.

    Lutters, Dennis; Severin, Claudia; Schmidtmann, Marc; Müller, Thomas

    2016-05-11

    The synthesis of hydridosilylenes Ter(H)Si: 3a (Ter: 2,6-bis(2,4,6-trimethylphenyl)phenyl) and Ter*(H)Si: 3b (Ter*: 2,6-bis(2,4,6-triiso-propylphenyl)phenyl) stabilized by the N-heterocyclic carbene (NHC) ImMe4 is reported. The synthesis of stabilized hydridosilylenes 3 was accomplished by a previously unknown NHC-induced fragmentation of silanorbornadiene derivatives. Structural studies of the stabilized silylenes 3 and of its Fe(CO)4 complex 12 accompanied by a theoretical analysis of their bonding situation indicate that stabilized silylenes such as 3 can be regarded as neutral silyl anion equivalents. A computational investigation of the reaction course indicate a virtual one-step reaction between the NHC and the silanorbornadiene. A theoretical assessment of the scope and limitations of this reaction suggests that it is general and can be used also for the synthesis of other carbene analogues such as germylenes and phosphinidenes. PMID:27120697

  1. Synthetic and Structural Studies of N-Heterocyclic Carbene Complexes of Nickel

    WANG,Jun-Wen; XU,Fang-Bo; LI,Qiang-Shan; SONG,Hai-Bin; LIU,Yong-Sheng; ZHANG,Zheng-Zhi

    2004-01-01

    @@ Transition metal complexes of stable N-heterocyclic carbenes have recently gained increasing attention as pre-catalysts for a number of important reactions primarily based on the analogy between N-heterocyclic carbenes and strong ó-donating tertiary phosphines,[1] Although a large number of transition-metal carbene complexes have been reported, very few incorporate chelating carbenes were reported.[2,3] Therefore, we have set out to prepare and study transition-metal compounds with chelating di-N-heterocyclic carbenes, and we now report new dicationic tetra(carbine)nickel(Ⅱ) complexes in this class (Scheme 1). Their structures have been determined by single-crystal X-ray diffraction studies (Figure 1).

  2. Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes

    Queval, Pierre

    2013-12-04

    A low-cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl-imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand. A low-cost, modular, and easily scalable multicomponent procedure, affording access to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl- imidazolium salts in good yields and excellent selectivities, is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron-donor ability, high steric discrimination, and modular steric demand. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes

    Falivene, Laura

    2014-07-12

    This chapter states that the main handles for tuning steric and electronic effects are the substituents on N atoms, the nature of the C4-C5 bridge (either saturated or unsaturated), and the substituents on the C4 and C5 atoms. The initial intuition that steric properties of N-heterocyclic carbenes (NHCs) could be modulated and could impact catalytic behavior stimulated the development of steric descriptors to quantify the steric requirement of different NHCs and, possibly, to compare them with tertiary phosphines. NHCs can be classified as typically strong σ-basic/π-acid ligands, although they have been also shown to exhibit reasonable π-basic properties. This electronic modularity allows NHC ligands to adapt flexibly to different chemical environments represented by a transition metal and the other ligands. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved.

  4. Preparation of a N-Heterocyclic Carbene Nickel(II) Complex: Synthetic Experiments in Current Organic and Organometallic Chemistry

    Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.

    2008-01-01

    A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…

  5. Biscarbene palladium(II) complexes. Reactivity of saturated versus unsaturated N-heterocyclic carbenes

    C.F. Fu; C.C. Lee; Y.H. Liu; S.M. Peng; S. Warsink; C.J. Elsevier; J.T. Chen; S.T. Liu

    2010-01-01

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by 1H and 13C NMR spectroscopy as well as X-ray diffraction analysis. The r

  6. Superior Oxygen Stability of N-Heterocyclic Carbene-Coated Au Nanocrystals: Comparison with Dodecanethiol.

    Ling, Xiang; Schaeffer, Nicolas; Roland, Sylvain; Pileni, Marie-Paule

    2015-12-01

    The stability of Au nanocrystals (NCs) coated with different N-heterocyclic carbenes (NHCs) or dodecanethiol (DDT) to oxygen-based treatments was investigated. A dominant effect of the ligand type was observed with a significantly greater oxygen resistance of NHC-coated Au NCs compared to that of the thiol-based analogues. NHC-coated Au NCs are stable to 10 W oxygen plasma etching for up to 180 s whereas the integrity of DDT-coated Au NCs is strongly affected by the same treatment from 60-80 s. In the latter case, the average size of the NCs (from 2.6 to 6.3 nm) and the method of synthesis have no effect on the stability. NHC-coated Au NCs were found to generate of a smaller quantity of ligand-derived species under molecular oxygen treatment, which could account for the increased stability. PMID:26550843

  7. Silver complexes of 1,2,4-triazole derived N-heterocyclic carbenes: Synthesis, structure and reactivity studies

    Chandrakanta Dash; Mobin M Shaikh; Prasenjit Ghosh

    2011-03-01

    Two silver(I) complexes {[1-R-4-(-t4-butylacetamido)-1,2,4-triazol-5-ylidene]2Ag}+ Cl− [R = Et (1b), -Pr (2b)] of /-functionalized N-heterocyclic carbenes derived from 1,2,4-triazoles are reported. The silver complexes, 1b and 2b, have been synthesized from the reaction of the /-functionalized triazolium chloride salts namely, 1-R-4-(N-t-butylacetamido)-1,2,4-triazolium chloride [R = Et (1a), -Pr (2a)] by treatment with Ag2O in 53-56% yield. The 1,2,4-triazolium chloride salts 1a and 2a were prepared by the alkylation reaction of 1-R-1,2,4-triazole (R = Et, -Pr) with --butyl-2-chloro acetamide in 47-63% yield. The molecular structures of the silver(I) complexes, 1b and 2b, have been determined by X-ray diffraction studies. The density functional theory studies on the silver 1b and 2b complexes suggest that the 1,2,4-triazole derived N-heterocyclic carbenes to be strong −donating ligands similar to the now much recognized imidazolebased N-heterocyclic carbenes. The reactivity studies with (SMe2)AuCl and (SMe2)CuBr indicated the silver complexes, 1b and 2b, to be good transmetallating agents.

  8. Impact of Substituents Attached to N-Heterocyclic Carbenes on the Catalytic Activity of Copper Complexes in the Reduction of Carbonyl Compounds with Triethoxysilane

    PENG, Jiajian; CHEN, Lingzhen; XU, Zheng; HU, Yingqian; LI, Jiayun; BAI, Ying; QIU, Huayu; LAI, Guoqiao

    2009-01-01

    By using functionalized imidazolium salts such as 1-allyl-3-alkylimidazolium or 1-alkyi-3-vinylimidazolium salts as carbene ligand precursors, the reduction of aryl ketones with triethoxysilane may be catalyzed by copper salt/imidazolium salt/KO~tBu systems. The functional substituents attached to the N-heterocyclic carbene (NHC) serve to enhance the catalytic activity. Different copper salts also have an effect on the catalytic activity, with copper(Ⅱ) acetate monohydrate being superior to copper(I) chloride.

  9. Direct estimate of the internal π-donation to the carbene centre within N-heterocyclic carbenes and related molecules

    Andrada, Diego M; Holzmann, Nicole; Hamadi, Thomas

    2015-01-01

    Summary Fifteen cyclic and acylic carbenes have been calculated with density functional theory at the BP86/def2-TZVPP level. The strength of the internal X→p(π) π-donation of heteroatoms and carbon which are bonded to the C(II) atom is estimated with the help of NBO calculations and with an energy decomposition analysis. The investigated molecules include N-heterocyclic carbenes (NHCs), the cyclic alkyl(amino)carbene (cAAC), mesoionic carbenes and ylide-stabilized carbenes. The bonding analysis suggests that the carbene centre in cAAC and in diamidocarbene have the weakest X→p(π) π-donation while mesoionic carbenes possess the strongest π-donation. PMID:26877795

  10. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  11. Mild and rational synthesis of palladium complexes comprising C(4)-bound N-heterocyclic carbenes

    Kluser, Evelyne; Neels, Antonia; Albrecht, Martin

    2007-01-01

    Oxidative addition of pyridyl-functionalised 4-iodoimidazolium salts to palladium(0) gives catalytically active complexes in which the N-heterocyclic carbene is bound to the palladium(II) centre in a non-classical bonding mode via C(4).

  12. Synthesis, characterization, and reactivity of furan- and thiophene-functionalized bis(n-heterocyclic carbene) complexes of iron(II)

    Rieb, Julia

    2014-09-15

    The synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (2a) and tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenethiophene)methane]iron(II) hexafluorophosphate (2b) were obtained by aminolysis of [Fe{N(SiMe3)2}2(THF)] with furan- and thiophene-functionalized bis(imidazolium) salts 1a and 1b in acetonitrile. The SC-XRD structures of 2a and 2b show coordination of the bis(carbene) ligand in a bidentate fashion instead of a possible tetradentate coordination. The four other coordination sites of these distorted octahedral complexes are occupied by acetonitrile ligands. Crystallization of 2a in an acetone solution by the slow diffusion of Et2O led to the formation of cisdiacetonitriledi[ bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (3a) with two bis(carbene) ligands coordinated in a bidentate manner and two cis-positioned acetonitrile molecules. Compounds 2a and 2b are the first reported iron(II) carbene complexes with four coordination sites occupied by solvent molecules, and it was demonstrated that those solvent ligands can undergo ligand-exchange reactions.

  13. Unexpected rearrangements in the synthesis of an unsymmetrical tridentate dianionic N-heterocyclic carbene

    Despagnet-Ayoub, Emmanuelle

    2013-01-01

    Starting from the same ethylenediamine species, three valuable carbene precursors were synthesized under differing conditions: a tridentate dianionic N-heterocyclic carbene bearing an aniline, a phenol and a central dihydroimidazolium salt, its benzimidazolium isomer by intramolecular rearrangement and a dicationic benzimidazolium-benzoxazolium salt by changing the Brønsted acid from HCl to HBF4. A DFT study was performed to understand the rearrangement pathway. The structure of a bis[(NCO)carbene] zirconium complex was determined. © 2013 The Royal Society of Chemistry.

  14. Efficient Negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes.

    Xi, Zhenxing; Zhou, Yongbo; Chen, Wanzhi

    2008-11-01

    We describe the first nickel-N-heterocyclic carbene catalyzed Negishi cross-coupling reaction of a variety of unactivated aryl chlorides, heterocyclic chlorides, aryl dichlorides, and vinyl chloride. The mononuclear and binuclear nickel-NHC complexes supported by heteroarene-functionalized NHC ligands are found to be highly efficient for the coupling of unactivated aryl chlorides and organozinc reagents, leading to biaryls and terphenyls in good to excellent yields under mild conditions. For all aryl chlorides, the binuclear nickel catalysts show activities higher than those of mononuclear nickel complexes because of possible bimetallic cooperative effect. PMID:18841915

  15. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. PMID:27059290

  16. Catalytic applications of magnetic nanoparticles functionalized using iridium N-heterocyclic carbene complexes

    Iglesias Bernardo, Diego; Sabater López, Sara; Azua Barrios, Arturo; Mata Martínez, José Antonio

    2015-01-01

    synthetic modular methodology allows the preparation of catalytic materials based on magnetic nanoparticles with iridium N-heterocyclic carbene (NHC) complexes. Imidazolium salts containing a ketone/aldehyde as a pendant functional group are the key species prepared. The condensation reaction of the Cp*IrNHC–CHO compound with magnetic nanoparticles containing amine groups on the surface yields the covalent anchoring of the iridium complex to the surface of the magnetite. The catalytic propert...

  17. Masked N-Heterocyclic Carbene-Catalyzed Alkylation of Phenols with Organic Carbonates.

    Lui, Matthew Y; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2016-09-01

    An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs. PMID:27528488

  18. Bis-ligated Ti and Zr complexes of chelating N-heterocyclic carbenes

    El-Batta, Amer

    2011-07-01

    In this communication we report the synthesis of novel titanium and zirconium complexes ligated by bidentate "salicylaldimine-like" N-heterocyclic carbenes (NHC). Double addition of the NHC chelate to either TiCl4(thf)2 or ZrCl4 forms bis-ligated organometallic fragments with a distorted octahedral geometry. These complexes are rare examples of group IV transition-metal NHC adducts. Preliminary catalytic tests demonstrate that in the presence of methylaluminoxane (MAO) these complexes are useful initiators for the polymerization of ethylene and the copolymerization of ethylene with norbornene and 1-octene. © 2011 Elsevier B.V. All rights reserved.

  19. Backbone tuning in indenylidene–ruthenium complexes bearing an unsaturated N-heterocyclic carbene

    César A. Urbina-Blanco

    2010-11-01

    Full Text Available The steric and electronic influence of backbone substitution in IMes-based (IMes = 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene N-heterocyclic carbenes (NHC was probed by synthesizing the [RhCl(CO2(NHC] series of complexes to quantify experimentally the Tolman electronic parameter (electronic and the percent buried volume (%Vbur, steric parameters. The corresponding ruthenium–indenylidene complexes were also synthesized and tested in benchmark metathesis transformations to establish possible correlations between reactivity and NHC electronic and steric parameters.

  20. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06). The...... it is one of several slow steps in the catalytic cycle. Rapid scrambling of hydrogen and deuterium at the a position of the alcohol was observed with deuterium-labeled substrates, which implies that the catalytically active species is a ruthenium dihydride. The experimental results were supported by...

  1. Anionic and zwitterionic carboranyl N-heterocyclic carbene Au(i) complexes.

    Fisher, Steven P; El-Hellani, Ahmad; Tham, Fook S; Lavallo, Vincent

    2016-06-14

    The syntheses of the first carboranyl N-heterocyclic carbene complexes with transition metals are reported. Both unsymmetrical mono-anionic and symmetrical dianionic NHCs readily react with ClAuSMe2 to afford unusual zwitterionic and anionic Au(i) dimethyl sulfide adducts. The compounds are characterized by NMR, mass spectrometry, and single crystal X-ray diffraction studies. Percent buried volume (%Vbur) calculations indicate that replacement of an adamantyl group by a hydride substituted icosahedral carborane anion results in a 3.7% increase in %Vbur. PMID:26922968

  2. A RhIII-N-heterocyclic carbene complex from metal-metal singly bonded [RhII−RhII] precursor

    Arup Sinha; Abir Sarbajna; Shrabani dinda; Jitendra K Bera

    2011-11-01

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory (DFT) optimized structure has been computed for the unbridged centro-symmetric structure. Reaction of 1 with PIN.HBr results in the [Rh(PIN)2(H2O)Br][OTf]2 (2) in high yield. The reaction involves metal-oxidation from RhII to RhIII accompanied by the metal-metal bond cleavage. The X-ray structure of 2 has been determined which reveals the incorporation of two N-heterocyclic carbene (NHC) ligands to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  3. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism.

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination. PMID:27283477

  4. Sulfur-Functionalized N-Heterocyclic Carbene Complexes of Pd(II: Syntheses, Structures and Catalytic Activities

    Dan Yuan

    2012-03-01

    Full Text Available N-heterocyclic carbenes (NHCs can be easily modified by introducing functional groups at the nitrogen atoms, which leads to versatile coordination chemistry as well as diverse catalytic applications of the resulting complexes. This article summarizes our contributions to the field of NHCs bearing different types of sulfur functions, i.e., thioether, sulfoxide, thiophene, and thiolato. The experimental evidence for the truly hemilabile coordination behavior of a Pd(II thioether-NHC complex has been reported as well. In addition, complexes bearing rigid CSC-pincer ligands have been synthesized and the reasons for pincer versus pseudo-pincer formation investigated. Incorporation of the electron-rich thiolato function resulted in the isolation of structurally diverse complexes. The catalytic activities of selected complexes have been tested in Suzuki-Miyaura, Mizoroki-Heck and hydroamination reactions.

  5. Self-Supported N-Heterocyclic Carbenes and Their Use as Organocatalysts.

    Ma, Shuang; Toy, Patrick H

    2016-01-01

    The study of N-heterocyclic carbenes (NHCs) as organocatalysts has proliferated in recent years, and they have been found to be useful in a variety of reactions. In an attempt to further expand their utility and to study their recyclability, we designed and synthesized a series of self-supported NHCs in which the catalytic carbene groups form part of a densely functionalized polymer backbone, and studied them as organocatalysts. Of the self-Supported NHCs examined, a benzimidazole derived polymer with flexible linkers connecting the catalytic groups was found to be the most efficient organocatalyst in a model benzoin condensation reaction, and thus it was used in a variety of such reactions, including some involving catalyst recycling. Furthermore, it was also used to catalyze a set of redox esterification reactions involving conjugated unsaturated aldehydes. In all of these reactions the catalyst afforded good yield of the desired product and its polymeric nature facilitated product purification. PMID:27556435

  6. N-Heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis

    Rob De Vreese

    2012-03-01

    Full Text Available The interplay between metals and N-heterocyclic carbenes (NHCs has provided a window of opportunities for the development of novel catalytic strategies within the past few years. The recent successful combination of Brønsted acids with NHCs has added a new dimension to the field of cooperative catalysis, enabling the stereoselective synthesis of functionalized pyrrolidin-2-ones as valuable scaffolds in heterocyclic chemistry. This Commentary will briefly highlight the concept of N-heterocyclic carbene/Brønsted acid cooperative catalysis as a new and powerful methodology in organic chemistry.

  7. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  8. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties.

    Bertrand, Benoît; Stefan, Loic; Pirrotta, Marc; Monchaud, David; Bodio, Ewen; Richard, Philippe; Le Gendre, Pierre; Warmerdam, Elena; de Jager, Marina H; Groothuis, Geny M M; Picquet, Michel; Casini, Angela

    2014-02-17

    A new series of gold(I) N-heterocyclic carbene (NHC) complexes based on xanthine ligands have been synthesized and characterized by mass spectrometry, NMR, and X-ray diffraction. The compounds have been tested for their antiproliferative properties in human cancer cells and nontumorigenic cells in vitro, as well as for their toxicity in healthy tissues ex vivo. The bis-carbene complex [Au(caffein-2-ylidene)2][BF4] (complex 4) appeared to be selective for human ovarian cancer cell lines and poorly toxic in healthy organs. To gain preliminary insights into their actual mechanism of action, two biologically relevant in cellulo targets were studied, namely, DNA (more precisely a higher-order DNA structure termed G-quadruplex DNA that plays key roles in oncogenetic regulation) and a pivotal enzyme of the DNA damage response (DDR) machinery (poly-(adenosine diphosphate (ADP)-ribose) polymerase 1 (PARP-1), strongly involved in the cancer resistance mechanism). Our results indicate that complex 4 acts as an efficient and selective G-quadruplex ligand while being a modest PARP-1 inhibitor (i.e., poor DDR impairing agent) and thus provide preliminary insights into the molecular mechanism that underlies its antiproliferative behavior. PMID:24499428

  9. N-Heterocyclic-Carbene-Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2-(Trimethylsilyloxy)furan and Enones

    Wang, Ying

    2015-10-15

    N-heterocyclic carbenes have been utilised as highly efficient nucleophilic organocatalysts to mediate vinylogous Mukaiyama/Michael reactions of 2-(trimethylsilyloxy)furan with enones to afford γ-substituted butenolides in 44-99% yield with 3:1-32:1 diastereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  11. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions.

    Marion, Nicolas; Nolan, Steven P

    2008-11-18

    Metal-catalyzed cross-coupling reactions, notably those permitting C-C bond formation, have witnessed a meteoritic development and are now routinely employed as a powerful synthetic tool both in academia and in industry. In this context, palladium is arguably the most studied transition metal, and tertiary phosphines occupy a preponderant place as ancillary ligands. Seriously challenging this situation, the use of N-heterocyclic carbenes (NHCs) as alternative ligands in palladium-catalyzed cross-coupling reactions is rapidly gaining in popularity. These two-electron donor ligands combine strong sigma-donating properties with a shielding steric pattern that allows for both stabilization of the metal center and enhancement of its catalytic activity. As a result, the number of well-defined NHC-containing palladium(II) complexes is growing, and their use in coupling reactions is witnessing increasing interest. In this Account, we highlight the advantages of this family of palladium complexes and review their synthesis and applications in cross-coupling chemistry. They generally exhibit high stability, allowing for indefinite storage and easy handling. The use of well-defined complexes permits a strict control of the Pd/ligand ratio (optimally 1/1), avoiding the use of excess costly ligand that usually requires end-game removal. Furthermore, it partly removes the "black box" character often associated with cross-coupling chemistry and catalyst formation. In the present Account, four main classes of NHC-containing palladium(II) complexes will be presented: palladium dimers with bridging halogens, palladacycles, palladium acetates and acetylacetonates, and finally pi-allyl complexes. These additional ligands are best described as a protecting shell that will be discarded going from the palladium(II) precatalyst to the palladium(0) true catalyst. The synthesis of all these precatalysts generally requires simple and short synthetic procedures. Their catalytic activity in

  12. Abnormal N-heterocyclic carbene main group organometallic chemistry: a debut to the homogeneous catalysis.

    Sen, Tamal K; Sau, Samaresh Chandra; Mukherjee, Arup; Hota, Pradip Kumar; Mandal, Swadhin K; Maity, Bholanath; Koley, Debasis

    2013-10-21

    Abnormal N-heterocyclic carbene (aNHC) adducts of zinc(II) (1) and aluminum(III) (2) were synthesized. The compounds were characterized by NMR spectroscopy and elemental analysis. The solid state structures of these complexes (1 and 2) were determined by single crystal X-ray study. Furthermore, these organozinc and organoaluminum adducts (1 and 2) were tested for the ring opening polymerization of cyclic esters. These adducts were found to be quite efficient catalysts for the polymerization of cyclicesters such as rac-lactide (rac-LA), ε-caprolactone (ε-CL), and δ-valerolactone (δ-VL). Furthermore, aNHC zinc adduct has been used as catalyst for the synthesis of a tri-block copolymer. PMID:23945705

  13. Dimerisation, rhodium complex formation and rearrangements of N-heterocyclic carbenes of indazoles

    Zong Guan

    2014-04-01

    Full Text Available Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes which can be trapped as rhodium complexes (X-ray analysis. In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring closure to an indazole–indole spiro compound which possesses an exocyclic imine group. The E/Z isomers of the imines can be separated by column chromatography when methanol is used as eluent. We present results of a single crystal X-ray analysis of one of the E-isomers, which equilibrate in solution as well as in the solid state. Heating of the indazole–indole spiro compounds results in the formation of quinazolines by a ring-cleavage/ring-closure sequence (X-ray analysis. Results of DFT calculations are presented.

  14. Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity

    Elzatahry AA

    2012-06-01

    Full Text Available Ahmed A Elzatahry1,4, Abdullah M Al-Enizi1, Elsayed Ahmed Elsayed2,5, Rachel R Butorac3, Salem S Al-Deyab1, Mohammad AM Wadaan2, Alan H Cowley31Petrochemical Research Chair, Department of Chemistry, 2Chair of Advanced Proteomics & Cytomics Research, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 3Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA; 4Institute of Advanced Technology and New Materials, City for Scientific Research and Technology Applications, New Borg Alrab, Alexandria, Egypt; 5Natural & Microbial Products Department, National Research Centre, Dokki, Cairo, EgyptAbstract: This report concerns nanofiber composites that incorporate N-heterocyclic carbenes and the use of such composites for testing antimicrobial and antifungal activities. The nanofiber composites were produced by electrospinning mixtures of the gold chloride or gold acetate complexes of a bis(iminoacenaphthene (BIAN-supported NHC with aqueous solutions of polyvinyl alcohol (PVA. The products were characterized by scanning-electron microscopy, which revealed that nanofibers in the range of 250–300 nm had been produced. The biological activities of the nanofiber composites were tested against two Gram-positive bacteria, six Gram-negative bacteria, and two fungal strains. No activity was evident against the fungal strains. However, the gold chloride complex was found to be active against all the Gram-positive pathogens and one of the Gram-negative pathogens. It was also found that the activity of the produced nanofibers was localized and that no release of the bioactive compound from the nanofibers was evident. The demonstrated antimicrobial activities of these novel nanofiber composites render them potentially useful as wound dressings.Keywords: nanofiber, electrospinning, N-Heterocyclic carbene, biopolymer, antimicrobial

  15. Redox and luminescent properties of robust and air-stable N-heterocyclic carbene group 4 metal complexes.

    Romain, Charles; Choua, Sylvie; Collin, Jean-Paul; Heinrich, Martine; Bailly, Corinne; Karmazin-Brelot, Lydia; Bellemin-Laponnaz, Stéphane; Dagorne, Samuel

    2014-07-21

    Robust and air-stable homoleptic group 4 complexes of the type M(L)2 [1-3; M = Ti, Zr, Hf; L = dianionic bis(aryloxide) N-heterocyclic carbene (NHC) ligand] were readily synthesized from the NHC proligand 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)imidazolinium chloride (H3L,Cl) and appropriate group 4 precursors. As deduced from cyclic voltammetry studies, the homoleptic bis-adduct zirconium and hafnium complexes 2 and 3 can also be oxidized, with up to four one-electron-oxidation signals for the zirconium derivative 2 (three reversible signals). Electron paramagnetic resonance data for the one-electron oxidation of complexes 1-3 agree with the formation of ligand-centered species. Compounds 2 and 3 are luminescent upon excitation in the absorption band at 362 nm with emissions at 485 and 534 nm with good quantum yields (ϕ = 0.08 and 0.12) for 2 and 3, respectively. In contrast, the titanium complex 1 does not exhibit luminescent properties upon excitation in the absorption band at 310 and 395 nm. Complexes 2 and 3 constitute the first examples of emissive nonmetallocene group 4 metal complexes. PMID:24957272

  16. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    Guo, Hao

    2015-11-16

    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  17. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  18. Spherical core-shell magnetic particles constructed by main-chain palladium N-heterocyclic carbenes

    Zhao, Huaixia; Li, Liuyi; Wang, Jinyun; Wang, Ruihu

    2015-02-01

    The encapsulation of the functional species on magnetic core is a facile approach for the synthesis of core-shell magnetic materials, and surface encapsulating matrices play crucial roles in regulating their properties and applications. In this study, two core-shell palladium N-heterocyclic carbene (NHC) particles (Fe3O4@PNP1 and Fe3O4@PNP2) were prepared by a one-pot reaction of semi-rigid tripodal imidazolium salts and palladium acetate in the presence of magnetite nanoparticles. The magnetite nanoparticles are encapsulated inside the main-chain palladium, which act as cores. The conjugated effects of triphenyltriazine and triphenylbenzene in the imidazolium salts have important influence on their physical properties and catalytic performances. Fe3O4@PNP2 shows better recyclability than Fe3O4@PNP1. Unexpectedly, Pd(ii) is well maintained after six consecutive catalytic runs in Fe3O4@PNP2, and Pd(0) and Pd(ii) coexist in Fe3O4@PNP1 under the same conditions; moreover, the morphologies of these spherical core-shell particles show no significant variation after six consecutive catalytic runs.The encapsulation of the functional species on magnetic core is a facile approach for the synthesis of core-shell magnetic materials, and surface encapsulating matrices play crucial roles in regulating their properties and applications. In this study, two core-shell palladium N-heterocyclic carbene (NHC) particles (Fe3O4@PNP1 and Fe3O4@PNP2) were prepared by a one-pot reaction of semi-rigid tripodal imidazolium salts and palladium acetate in the presence of magnetite nanoparticles. The magnetite nanoparticles are encapsulated inside the main-chain palladium, which act as cores. The conjugated effects of triphenyltriazine and triphenylbenzene in the imidazolium salts have important influence on their physical properties and catalytic performances. Fe3O4@PNP2 shows better recyclability than Fe3O4@PNP1. Unexpectedly, Pd(ii) is well maintained after six consecutive catalytic runs in

  19. Tunable and Efficient White Light Phosphorescent Emission Based on Single Component N-Heterocyclic Carbene Platinum(II) Complexes.

    Bachmann, Michael; Suter, Dominik; Blacque, Olivier; Venkatesan, Koushik

    2016-05-16

    A new class of cyclometalated pyridine N-heterocyclic carbene (NHC) Pt(II) complexes with electronically different alkyne derivatives (C≡CR; R = C6H4C(CH3)3 (1), C6H5 (2), C6H4F (3), C6H3(CF3)2 (4)) as ancillary ligands were synthesized, and the consequences of the electronic properties of the different substituted phenylacetylene ligands on the phosphorescent emission efficiencies were studied, where C≡CC6H4C(CH3)3 = 4-tert-butylphenylacetylene, C≡CC6H5 = phenylacetylene, C≡CC6H4F = 4-fluorophenylacetylene, and C≡CC6H3(CF3)2 = 3,5-bis(trifluoromethyl)phenylacetylene. Structural characterization, electrochemistry, and photophysical investigations were performed for all four compounds. Moreover, the emission quantum efficiencies and wavelength emission intensities of the complexes were also recorded in different weight percents in poly(methyl methacrylate) films (PMMA) and evaluated in the CIE-1931 chromaticity diagram. The square planar coordination geometry with the alkynyl ligands was corroborated for complexes 1, 2, and 3 by single crystal X-ray diffraction studies. These complexes show tunable monomeric high energy triplet emission and an additional concentration-dependent low-energy excimer-based phosphorescence. While adopting weight percent concentrations between 15 and 25%, the two emission bands covering the entire visible spectrum were obtained with these particular complexes displaying the properties of an efficient white light triplet emitter with excellent CIE-1931 coordinates (0.31, 0.33). On the basis of the high luminescent quantum efficiency of over 50% for white light emission, these compounds could be potentially useful for white organic light-emitting diodes (WOLEDs) based applications. PMID:27135529

  20. Efficient synthetic protocols for the preparation of common N-heterocyclic carbene precursors

    Morgan Hans

    2015-11-01

    Full Text Available The one-pot condensation of glyoxal, two equivalents of cyclohexylamine, and paraformaldehyde in the presence of aqueous HBF4 provided a straightforward access to 1,3-dicyclohexylimidazolium tetrafluoroborate (ICy·HBF4. 1,3-Dibenzylimidazolium tetrafluoroborate (IBn·HBF4 was obtained along the same lines. To synthesize 1,3-diarylmidazolium salts, it was necessary to isolate the intermediate N,N'-diarylethylenediimines prior to their cyclization. Although this additional step required more time and reagents, it led to a much more efficient overall process. It also proved very convenient to carry out the synthesis of imidazolinium salts in parallel to their imidazolium counterparts via the reduction of the diimines into diammonium salts. The critical assembly of the C2 precarbenic unit was best achieved with paraformaldehyde and chlorotrimethylsilane in the case of imidazolium derivatives, whereas the use of triethyl orthoformate under microwave irradiation was most appropriate for the fast and efficient synthesis of imidazolinium salts. This strategy was applied to the synthesis of six common N-heterocyclic carbene precursors, namely, 1,3-dimesitylimidazolium chloride (IMes·HCl, 1,3-dimesitylimidazolium tetrafluoroborate (IMes·HBF4, 1,3-dimesitylimidazolinium chloride (SIMes·HCl, 1,3-bis(2,6-diisopropylphenylimidazolium chloride (IDip·HCl or IPr·HCl, 1,3-bis(2,6-diisopropylphenylimidazolinium chloride (SIDip·HCl or SIPr·HCl, and 1,3-bis(2,6-bis(diphenylmethyl-4-methylphenylimidazolium chloride (IDip*·HCl or IPr*·HCl.

  1. N-Heterocyclic Carbene-Gold(I) Complexes Conjugated to a Leukemia-Specific DNA Aptamer for Targeted Drug Delivery.

    Niu, Weijia; Chen, Xigao; Tan, Weihong; Veige, Adam S

    2016-07-25

    This report describes the synthesis and characterization of novel N-heterocyclic carbene (NHC)-gold(I) complexes and their bioconjugation to the CCRF-CEM-leukemia-specific aptamer sgc8c. Successful bioconjugation was confirmed by the use of fluorescent tags on both the NHC-Au(I) complex and the aptamer. Cell-viability assays indicated that the NHC-Au(I) -aptamer conjugate was more cytotoxic than the NHC-gold complex alone. A combination of flow cytometry, confocal microscopy, and cell-viability assays provided clear evidence that the NHC-Au(I) -aptamer conjugate was selective for targeted CCRF-CEM leukemia cells. PMID:27311814

  2. Dynamic Behavior of N-Heterocyclic Carbene Boranes: Boron-Carbene Bonds in B,B-Disubstituted N,N-Dimethylimidazol-2-ylidene Boranes Have Substantial Rotation Barriers.

    Damodaran, Krishnan; Li, Xiben; Pan, Xiangcheng; Curran, Dennis P

    2015-05-01

    Dynamic NMR spectroscopy has been used to measure rotation barriers in five B,B-disubstituted 1,3-dimethylimidazol-2-ylidene boranes. The barriers are attributed to the sp(2)-sp(3) bond between C(1) of the N-heterocyclic carbene ring and the boron atom. Bonds to boron atoms bearing a thexyl (1,1,2-trimethylpropyl) group show especially high barriers, ranging from 75-86 kJ mol(-1). 2-Isopropyl-1,3,5-trimethylbenzene is used as a comparable to help understand the nature and magnitude of the barriers. PMID:25843519

  3. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    Shawna L. Balof

    2015-10-01

    Full Text Available Three new ruthenium alkylidene complexes (PCy3Cl2(H2ITapRu=CHSPh (9, (DMAP2Cl2(H2ITapRu=CHPh (11 and (DMAP2Cl2(H2ITapRu=CHSPh (12 have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl-4,5-dihydroimidazol-2-ylidene. Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP and ring closing metathesis (RCM reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA, however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD and mixtures of DCPD with cyclooctene (COE in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  4. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  5. Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

    Zhang, Xinghui; Wang, Ketai; Niu, Teng; Li, Shanshan [Lanzhou Univ. of Arts and Science, Lanzhou (Korea, Republic of)

    2014-05-15

    The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity.

  6. Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

    The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity

  7. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing.

    Crudden, Cathleen M; Horton, J Hugh; Narouz, Mina R; Li, Zhijun; Smith, Christene A; Munro, Kim; Baddeley, Christopher J; Larrea, Christian R; Drevniok, Benedict; Thanabalasingam, Bheeshmon; McLean, Alastair B; Zenkina, Olena V; Ebralidze, Iraklii I; She, Zhe; Kraatz, Heinz-Bernhard; Mosey, Nicholas J; Saunders, Lisa N; Yagi, Akiko

    2016-01-01

    The formation of organic films on gold employing N-heterocyclic carbenes (NHCs) has been previously shown to be a useful strategy for generating stable organic films. However, NHCs or NHC precursors typically require inert atmosphere and harsh conditions for their generation and use. Herein we describe the use of benzimidazolium hydrogen carbonates as bench stable solid precursors for the preparation of NHC films in solution or by vapour-phase deposition from the solid state. The ability to prepare these films by vapour-phase deposition permitted the analysis of the films by a variety of surface science techniques, resulting in the first measurement of NHC desorption energy (158±10 kJ mol(-1)) and confirmation that the NHC sits upright on the surface. The use of these films in surface plasmon resonance-type biosensing is described, where they provide specific advantages versus traditional thiol-based films. PMID:27585494

  8. A highly active water-soluble cross-coupling catalyst based on dendritic polyglycerol N-heterocyclic carbene palladium complexes.

    Meise, Markus; Haag, Rainer

    2008-01-01

    A new water-soluble polyglycerol derivative functionalized with N-heterocyclic carbene palladium complexes was prepared and applied as catalyst for Suzuki cross-coupling reactions in water. The complex displays a metal loading of around 65 metal centers per dendrimeric molecule, which is estimated to contain 130 chelating groups and thus corresponds approximately to the formation of 2:1 NHC/metal complexes. Monomeric analogues were also synthesized to validate the reactivity of the dendritic catalyst. Both types of catalysts were tested with various aryl bromides and arylboronic acids. Turnover frequencies of up to 2586 h(-1) at 80 degrees C were observed with the dendritic catalyst along with turnover numbers of up to 59 000, which are among the highest turnover numbers reported for polymer-supported catalysts in neat water. The dendritic catalyst could be used (reused) in five consecutive reactions without loss in activity. PMID:18702166

  9. N-Heterocyclic Carbenes as Promotors for the Rearrangement of Phosphaketenes to Phosphaheteroallenes: A Case Study for OCP to OPC Constitutional Isomerism.

    Li, Zhongshu; Chen, Xiaodan; Benkő, Zoltán; Liu, Liu; Ruiz, David A; Peltier, Jesse L; Bertrand, Guy; Su, Chen-Yong; Grützmacher, Hansjörg

    2016-05-10

    The concept of isomerism is essential to chemistry and allows defining molecules with an identical composition but different connectivity (bonds) between their atoms (constitutional isomers) and/or a different arrangement in space (stereoisomers). The reaction of phosphanyl ketenes, (NHP)-P=C=O (NHP=N-heterocyclic phosphenium) with N-heterocyclic carbenes (NHCs) leads to phosphaheteroallenes (NHP)-O-P=C=NHC in which the PCO unit has been isomerized to OPC. Based on the isolation of several intermediates and DFT calculations, a mechanism for this fundamental isomerisation process is proposed. PMID:27060924

  10. A chiral 6-membered N-heterocyclic carbene copper(I) complex that induces high stereoselectivity.

    Park, Jin Kyoon; Lackey, Hershel H; Rexford, Matthew D; Kovnir, Kirill; Shatruk, Michael; McQuade, D Tyler

    2010-11-01

    A chiral 6-membered annulated N-heterocyclic (6-NHC) copper complex that catalyzes β-borylations with high yield and enantioselectivity was developed. The chiral 6-NHC copper complex is easy to prepare on the gram scale and is very active, showing 10,000 turnovers at 0.01 mol % of catalyst without significant decrease of enantioselectivity and with useful reaction rates. PMID:20919706

  11. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  12. Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator.

    Iqbal, Muhammad Adnan; Umar, Muhammad Ihtisham; Haque, Rosenani A; Khadeer Ahamed, Mohamed B; Asmawi, Mohd Zaini Bin; Majid, Amin Malik Shah Abdul

    2015-05-01

    Chronic inflammation intensifies the risk for malignant neoplasm, indicating that curbing inflammation could be a valid strategy to prevent or cure cancer. Cancer and inflammation are inter-related diseases and many anti-inflammatory agents are also used in chemotherapy. Earlier, we have reported a series of novel ligands and respective binuclear Ag(I)-NHC complexes (NHC=N-heterocyclic carbene) with potential anticancer activity. In the present study, a newly synthesized salt (II) and respective Ag(I)-NHC complex (III) of comparable molecular framework were prepared for a further detailed study. Preliminarily, II and III were screened against HCT-116 and PC-3 cells, wherein III showed better results than II. Both the compounds showed negligible toxicity against normal CCD-18Co cells. In FAM-FLICA caspase assay, III remarkably induced caspase-3/7 in HCT-116 cells most probably by tumor necrosis factor-alpha (TNF-α) independent intrinsic pathway and significantly inhibited in vitro synthesis of cytokines, interleukin-1 (IL-1) and TNF-α in human macrophages (U937 cells). In a cell-free system, both the compounds inhibited cyclooxygenase (COX) activities, with III being more selective towards COX-2. The results revealed that III has strong antiproliferative property selectively against colorectal tumor cells which could be attributed to its pro-apoptotic and anti-inflammatory abilities. PMID:25699476

  13. Spectroscopic and electrochemical correlations in triangular ruthenium clusters containing N-heterocyclic ligands

    A series of clusters of general formula [Ru sub(3) O (OOCCH sub(3)) sub(6) L sub(3)] sup(+), where L = N-heterocyclic ligands, were synthesized and characterized based on elemental analysis. UV-VIS and IR spectra. Voltametric studies revealed the existence of up to six acessible oxidation states, with a high degree of electronic delocalization. The Ru sub(3) O trigonal center possesses many delocalized electrons and can be visualized as a source of electrons. The ligands coordinated to the clusters tune their redox potentials, determine the differences in their electronic spectra, and are responsible for the special conditions required for their synthesis. (author)

  14. N, N′-Olefin functionalized Bis-Imidazolium Pd(II) chloride N-Heterocyclic carbene complex builds a supramolecular framework and shows catalytic efficacy for `C–C' coupling reactions

    Gourisankar Roymahapatra; Tapastaru Samanta; Saikat Kumar Seth; Ambikesh Mahapatra; Shyamal Kumar Chattopadhyay; Joydev Dinda

    2015-06-01

    The ligand 3,3′-(-phenylenedimethylene)bis{1-(2-methylallyl)} imidazolium bromide (1) and its Palladium(II) N-heterocyclic carbene (NHC) complex (3) has been synthesized and characterized by several spectroscopic techniques and the solid-state structure of 3 has been determined by single crystal X-ray diffraction studies. The Pd(II) complex possesses ring head to tail – stacking interactions (3.767 A°) through imidazole rings. Complex 3 catalyzes Suzuki-Miyaura `C–C' coupling reaction. DFT calculations have been used to understand the HOMO/LUMO energy and hence the stability and reactivity of Pd(II) complex in syn and anti-configuration.

  15. Chemistry of Iron N -heterocyclic carbene complexes: Syntheses, structures, reactivities, and catalytic applications

    Riener, Korbinian

    2014-05-28

    Iron is the most abundant transition metal in Earth\\'s crust. It is relatively inexpensive, not very toxic, and environmentally benign. Undoubtedly, due to the involvement in a multitude of biological processes, which heavily rely on the rich functionalities of iron-containing enzymes, iron is one of the most important elements in nature. Additionally, three-coordinate iron complexes have been reported during the past several years. In this review, the mentioned iron NHC complexes are categorized by their main structure and reactivity attributes. Thus, monocarbene and bis-monocarbene complexes are presented first. This class is subdivided into carbonyl, nitrosyl, and halide compounds followed by a brief section on other, more unconventional iron NHC motifs. Subsequently, donor-substituted complexes bearing bi-, tri-, tetra-, or even pentadentate ligands and further pincer as well as scorpionato motifs are described.

  16. Synthesis and characterization of a cationic phthalimido-functionalized N-heterocyclic carbene complex of palladium(II) and its catalytic activity

    Goh, Li Min Serena

    2014-01-29

    A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been synthesized from [3-methyl-1-(2′- phthalimidoethyl)imidazolium] hexafluorophosphate ([NHCMe,PhtH] PF6) by transmetalation and isolated in 67 % yield. The title complex has been applied as catalyst in the Suzuki-Miyaura cross-coupling reaction under benign aqueous conditions. The catalyst is active without any observable initiation period. High average turnover frequencies (TOFs) of up to 55000 h-1 have been reached with catalyst concentrations as low as 0.01 mol-%. A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been prepared in high yield. The complex was activated instantly, without an initiation period, in the Suzuki-Miyaura cross-coupling reaction under benign aqueous aerobic conditions. Turnover frequencies (TOFs) up to 55000 h-1, were achieved with 0.01 mol-% of the complex. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Air-stable, convenient to handle Pd based PEPPSI (pyridine enhanced precatalyst preparation, stabilization and initiation) themed precatalysts of N/O-functionalized N-heterocyclic carbenes and its utility in Suzuki-Miyaura cross-coupling reaction.

    Ray, Lipika; Shaikh, Mobin M; Ghosh, Prasenjit

    2007-10-28

    Several new air-stable, convenient to handle and easily synthesized Pd based PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) type precatalysts supported over N/O-functionalized N-heterocyclic carbenes (NHC) namely, trans-[1-(benzyl)-3-(N-t-butylacetamido)imidazol-2-ylidene]Pd(pyridine)Cl2 (), trans-[1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]Pd(pyridine)Cl2 () and trans-[1-(o-methoxybenzyl)-3-(t-butyl)imidazol-2-ylidene]Pd(pyridine)Br2 (), have been designed. Specifically, the Pd-NHC complexes, , and , were conveniently synthesized from their respective imidazolium halide salts by the reaction with PdCl2 in pyridine in presence of K2CO3 as a base. A new imidazolium chloride salt, 1-(benzyl)-3-(N-t-butylacetamido)imidazolium chloride () was synthesized by the alkylation reaction of benzyl imidazole with N-t-butyl-2-chloroacetamide. The molecular structures of the imidazolium chloride salt, , and the Pd-NHC complexes, , and , have been determined by X-ray diffraction studies. The density functional theory studies of the , and complexes were carried out to in order to gain insight about their structure, bonding and the electronic properties. The nature of the NHC-metal bond in these complexes was examined using Charge Decomposition Analysis (CDA), which revealed that the N-heterocyclic carbene ligands are effective sigma-donors. In addition, the catalysis studies revealed that the Pd-NHC complexes, , and , are effective catalysts for the Suzuki-Miyaura type C-C cross-coupling reactions. PMID:17928912

  18. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl2(PPh3)2L2 and RuCl2(PPh3)2A, obtained from the reaction of RuCl2(PPh3)3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b1(dxz)->b1(pi) and a2(dxy)->a2(pi) transitions, and a third, weak band ascribed to the b2(dyz)->a2(pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh3)3Cl2. In the presence of CO, RuCl2(CO)2L2 complexes were gennerated. Several derivatives were isolated and characterized. (author)

  19. Influence of Electronic Effects on the Reactivity of Triazolylidene-Boryl Radicals: Consequences for the use of N-Heterocyclic Carbene Boranes in Organic and Polymer Synthesis.

    Telitel, Sofia; Vallet, Anne-Laure; Flanigan, Darrin M; Graff, Bernadette; Morlet-Savary, Fabrice; Rovis, Tomislav; Lalevée, Jacques; Lacôte, Emmanuel

    2015-09-21

    A small library of triazolylidene-boranes that differ only in the nature of the aryl group on the external nitrogen atom was prepared. Their reactivity as hydrogen-atom donors, as well as that of the corresponding N-heterocyclic carbene (NHC)-boryl radicals toward methyl acrylate and oxygen, was investigated by laser flash photolysis, molecular orbital calculations, and ESR spin-trapping experiments, and benchmarked relative to the already known dimethyltriazolylidene-borane. The new NHC-boranes were also used as co-initiators for the Type I photopolymerization of acrylates. This allowed a structure-reactivity relationship with regard to the substitution pattern of the NHC to be established and the role of electronic effects in the reactivity of NHC-boryl radicals to be probed. Although their rate of addition to methyl acrylate depends on their electronegativity, the radicals are all nucleophilic and good initiators for photopolymerization reactions. PMID:26239157

  20. Stabilities of Immonium Ions Derived from N-Heterocyclic Carbenes Probed by Collision-Induced Dissociation Mass Spectrometry

    Polyakova, Svetlana; Kunetskiy, Roman Alexejevič; Schröder, Detlef

    -, č. 20 (2012), s. 3852-3862. ISSN 1434-193X Grant ostatní: European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : carbenes * cations * collision-induced dissociation * density functional calculations * electrospray ionization * lipophilic cations * mass spectrometry * phase-transfer catalysis Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  1. Cobalt and Iron Complexes with N-heterocyclic Ligands as Pyrolysis Precursors for Oxygen Reduction Catalysts

    Cobalt and Iron based catalysts for the Oxygen Reduction Reaction (ORR) are a promising alternative to the use of Pt in Polymer Electrolyte Fuel Cells (PEMFC). A systematic study on the influence of the nitrogenated ligand in the precursor complex on the ORR activity was performed. Several Fe and Co complexes were prepared with different N-heterocyclic ligands, namely: meso-tetra-(4-carboxyphenyl)-porphyrin (TCPP), N-methylimidazole (N-Me-Im), 3-amino-1,2,4-triazole-5-carboxylic acid (ATZC), 2,2′-bis(4,5-dimethylimidazole) (bis-Me-Im), phenanthroline (phen), 2-pyrazinecarboxylic acid (CO2-Pz), 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ) and 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), adsorbed on a carbon substrate and submitted to thermal treatment. These ligands comprise five and six membered rings with one to four N-atoms. Key parameters such as the pyrolysis temperature, the complex load and the metal: ligand ratio were studied, in order to optimize the efficiency of the catalysts. The synthesized catalysts were characterized by several physical bulk and surface techniques, namely XRD, TGA, Raman spectroscopy, XPS, EDX and electron microscopies (SEM and TEM). The best catalyst was obtained from a Cobalt-phenanthroline precursor, adsorbed on a mesoporous carbon material, and pyrolyzed at 700 °C. The equilibrium potential was 0.90 V vs NHE (1.0 V for Pt), exchange current density 25 μA cm−2, Tafel slope was 90 mV dec−1, and 4.0 exchanged electrons, less than 9 % in H2O2 yield, and half wave potential only 80 mV lower than that of Platinum (10%). This catalyst exhibited the highest N content as determined by XPS. The electrochemical data of the prepared catalysts were analyzed in the context of the TGA, XRD and XPS information. A correlation between ORR activity and the N content (XPS) was found. This result strongly supports the model that proposes N atoms as the active sites, and provides a rational tool for designing new catalysts

  2. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters.

    Hong, Miao; Tang, Xiaoyan; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-02-17

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition-proton transfer-NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability. Four MeO- and Cl-substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, (Rx)TPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), (OMe2)TPT and (OMe3)TPT, have been synthesized, while (OMe2)TPT(MeO/H) and (OMe2)TPT have also been structurally characterized. The structure/reactivity relationship study revealed that (OMe2)TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl-substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out, and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species. PMID:26779897

  3. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters

    Hong, Miao

    2016-01-18

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition–proton transfer–NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability Four MeO– and Cl–substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, RxTPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), OMe2TPT and OMe3TPT, have been synthesized, while OMe2TPT(MeO/H) and OMe2TPT have also been structurally characterized. The structure/reactivity relationship study revealed that OMe2TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl–substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species.

  4. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    Xu, Songchen [Ames Laboratory; Manna, Kuntal [Ames Laboratory; Ellern, Arkady [Ames Laboratory; Sadow, Aaron D [Ames Laboratory

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes′CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes′CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  5. Experimental and computational studies on the mechanism of zwitterionic ring-opening polymerization of δ-valerolactone with N-heterocyclic carbenes.

    Acharya, Ashwin K; Chang, Young A; Jones, Gavin O; Rice, Julia E; Hedrick, James L; Horn, Hans W; Waymouth, Robert M

    2014-06-19

    Experimental and computational investigations of the zwitterionic ring-opening polymerization (ZROP) of δ-valerolactone (VL) catalyzed by the N-heterocyclic carbenes (NHC) 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (1) and 1,3,4,5-tetramethyl-imidazol-2-ylidene (2) were carried out. The ZROP of δ-valerolactone generates cyclic poly(valerolactone)s whose molecular weights are higher than predicted from [VL]0/[NHC]0. Kinetic studies reveal the rate of polymerization is first order in [VL] and first order in [NHC]. Density functional theory (DFT) calculations were carried out to elucidate the key steps involved in the ring-opening of δ-valerolactone and its subsequent oligomerization. These studies have established that the initial steps of the mechanism involve nucleophilic attack of the NHC on δ-valerolactone to form a zwitterionic tetrahedral intermediate. DFT calculations indicate that the highest activation barrier of the entire mechanism is associated with the ring-opening of the tetrahedral intermediate formed from the NHC and δ-valerolactone, a result consistent with inefficient initiation to generate reactive zwitterions. The large barrier in this step is due to the fact that ring-opening requires a partial positive charge to develop next to the directly attached NHC moiety which already bears a delocalized positive charge. PMID:24702523

  6. N-Heterocyclic Carbene-Catalyzed Ring Opening Polymerization of ε-Caprolactone with and without Alcohol Initiators: Insights from Theory and Experiment.

    Jones, Gavin O; Chang, Young A; Horn, Hans W; Acharya, Ashwin K; Rice, Julia E; Hedrick, James L; Waymouth, Robert M

    2015-04-30

    Computational investigations with density functional theory (DFT) have been performed on the N-heterocyclic carbene (NHC) catalyzed ring-opening polymerization of ε-caprolactone in the presence and in the absence of a methanol initiator. Much like the zwitterionic ring opening (ZROP) of δ-valerolactone which was previously reported, calculations predict that the mechanism of the ZROP of caprolactone that occurs without an alcohol present involves a high-barrier step involving ring opening of the zwitterionic tetrahedral intermediate formed after the initial nucleophilic attack of NHC on caprolactone. However, the operative mechanism by which caprolactone is polymerized in the presence of an alcohol initiator does not involve the analogous mechanism involving initial nucleophilic attack by the organocatalytic NHC. Instead, the NHC activates the alcohol through hydrogen bonding and promotes nucleophilic attack and the subsequent ring-opening steps that occur during polymerization. The largest free energy barrier for the hydrogen-bonding mechanism in alcohol involves nucleophilic attack, while that for both ZROP processes involves ring opening of the initially formed zwitterionic tetrahedral intermediate. The DFT calculations predict that the rate of polymerization in the presence of alcohol is faster than the reaction performed without an alcohol initiator; this prediction has been validated by experimental kinetic studies. PMID:25848823

  7. Regioselective Alkylative Carboxylation of Allenamides with Carbon Dioxide and Dialkylzinc Reagents Catalyzed by an N-Heterocyclic Carbene-Copper Complex.

    Gholap, Sandeep Suryabhan; Takimoto, Masanori; Hou, Zhaomin

    2016-06-13

    The alkylative carboxylation of allenamide catalyzed by an N-heterocyclic carbene (NHC)-copper(I) complex [(IPr)CuCl] with CO2 and dialkylzinc reagents was investigated. The reaction of allenamides with dialkylzinc reagents (1.5 equiv) and CO2 (1 atm.) proceeded smoothly in the presence of a catalytic quantity of [(IPr)CuCl] to afford (Z)-α,β-dehydro-β-amino acid esters in good yields. The reaction is regioselective, with the alkyl group introduced onto the less hindered γ-carbon, and the carboxyl group introduced onto the β-carbon atom of the allenamides. The first step of the reaction was alkylative zincation of the allenamides to give an alkenylzinc intermediate followed by nucleophilic addition to CO2 . A variety of cyclic and acyclic allenamides were found to be applicable to this transformation. Dialkylzinc reagents bearing β-hydrogen atoms, such as Et2 Zn or Bu2 Zn, also gave the corresponding alkylative carboxylation products without β-hydride elimination. The present methodology provides an easy route to alkyl-substituted α,β-dehydro-β-amino acid ester derivatives under mild reaction conditions with high regio- and stereoselectivtiy. PMID:27167688

  8. Structure, bonding and energetics of N-heterocyclic carbene (NHC) stabilized low oxidation state group 2 (Be, Mg, Ca, Sr and Ba) metal complexes: A theoretical study

    Ashim Baishya; V Rao Mundlapati; Sharanappa Nembenna; Himansu S Biswal

    2014-11-01

    A series of N-heterocyclic carbene stabilized low oxidation state group 2 metal halide and hydrides with metal-metal bonds ([L(X) M-M(X) L]; L = NHC ((CHNH)2C:), M = Be, Mg, Ca, Sr and Ba, and X = Cl or H) has been studied by computational methods. The main objective of this study is to predict whether it is possible to stabilize neutral ligated low oxidation state alkaline-earth metal complexes with metal-metal bonds. The homolytic metal-metal Bond Dissociation Energy (BDE) calculation, Natural Bond Orbital (NBO) and Energy Decomposition Analyses (EDA) on density functional theory (DFT) optimized [L(X)M-M(X)L] complexes revealed that they are as stable as their -diketiminate, guanidinate and -diimine counterparts. The optimized structures of the complexes are in trans-linear geometries. The bond order analyses such as Wiberg Bond Indices (WBI) and Fuzzi Bond Order (FBO) confirm the existence of single bond between two metal atoms, and it is covalent in nature.

  9. Intermolecular insertion of an N,N-heterocyclic carbene into a nonacidic C-H bond: Kinetics, mechanism and catalysis by (K-HMDS)2 (HMDS = Hexamethyldisilazide).

    Lloyd-Jones, Guy C; Alder, Roger W; Owen-Smith, Gareth J J

    2006-07-01

    The reaction of 2-[13C]-1-ethyl-3-isopropyl-3,4,5,6-tetrahydropyrimidin-1-ium hexafluorophosphate ([13C1]-1-PF6) with a slight excess (1.03 equiv) of dimeric potassium hexamethyldisilazide ("(K-HMDS)2") in toluene generates 2-[13C]-3-ethyl-1-isopropyl-3,4,5,6-tetrahydropyrimid-2-ylidene ([13C1]-2). The hindered meta-stable N,N-heterocyclic carbene [13C1]-2 thus generated undergoes a slow but quantitative reaction with toluene (the solvent) to generate the aminal 2-[13C]-2-benzyl-3-ethyl-1-isopropylhexahydropyrimidine ([13C1]-14) through formal C-H insertion of C2 (the "carbene carbon") at the toluene methyl group. Despite a significant pKa mismatch (Delta pKa 1+ and toluene estimated to be ca. 16 in DMSO) the reaction shows all the characteristics of a deprotonation mechanism, the reaction rate being strongly dependent on the toluene para substituent (rho = 4.8(+/-0.3)), and displaying substantial and rate-limiting primary (k(H)/k(D) = 4.2(+/-0.6)) and secondary (k(H)/k(D) = 1.18(+/-0.08)) kinetic isotope effects on the deuteration of the toluene methyl group. The reaction is catalysed by K-HMDS, but proceeds without cross over between toluene methyl protons and does not involve an HMDS anion acting as base to generate a benzyl anion. Detailed analysis of the reaction kinetics/kinetic isotope effects demonstrates that a pseudo-first-order decay in 2 arises from a first-order dependence on 2, a first-order dependence on toluene (in large excess) and, in the catalytic manifold, a complex noninteger dependence on the K-HMDS dimer. The rate is not satisfactorily predicted by equations based on the Brønsted salt-effect catalysis law. However, the rate can be satisfactorily predicted by a mole-fraction-weighted net rate constant: -d[2]/dt = ({x2 k(uncat)} + {(1-x2) k(cat)})[2]1[toluene]1, in which x2 is determined by a standard bimolecular complexation equilibrium term. The association constant (Ka) for rapid equilibrium-complexation of 2 with (K-HMDS)2 to form [2(K

  10. Synthesis, Crystal Structure and Catalytic Behavior of 1-Ethyl-3-benyl-imidazolyl Tetranuclear N-Heterocyclic Carbene Silver Bromide

    WANG Zhi-Guo; SU Zhi-Xian; BIAN Qing-Quan; LIU Si-Man; LIU Ting

    2012-01-01

    The title complex [Ag(carbene)2]2[Ag2Br4] has been synthesized by the reaction of Ag2O with 1-ethyl-3-benyl-imidazolium bromide in DMSO at room temperature, and characterized by elemental analysis, 1H NMR and single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P with a = 10.1597(10), b =11.0646(11), c = 13.0245(14) , α = 102.230(2), β = 90.606, γ = 113.9250(10)o, V = 1300.3(2) 3, Mr = 748.06, Z = 2, Dc = 1.911 g/cm3, μ(MoKα) = 4.60 mm-1 and F(000) = 728. The structure was refined to R = 0.0316 and wR = 0.0835 for 3744 observed reflections with I 〉 2σ(I). The title compound crystallizes as a centrosymmetric tetranuclear compound. One half of the molecule comprises the asymmetric unit of the structure. The Ag(1) atom is nearly linear or T-shaped when the Ag(1)-Ag(2) interaction is taken into consideration, which is bi-coordinated by two carbene carbon atoms. The Ag(2) atom adopts tetrahedral geometry. The catalytic behavior of the title complex has been investigated, and the results indicate it has a highly catalytic activation for L-lactide polymerization.

  11. Steric and electronic parameters of a bulky yet flexible N-heterocyclic carbene: 1,3-bis(2,6-bis(1-ethylpropyl)phenyl)imidazol-2-ylidene (IPent)

    Collado, Alba

    2013-06-10

    The free N-heterocyclic carbene IPent (1; IPent = 1,3-bis(2,6-bis(1- ethylpropyl)phenyl)imidazol-2-ylidene) was prepared from the corresponding imidazolium chloride salt (2). The steric and electronic parameters of 1 were determined by synthesis of the gold(I) chloride complex [Au(IPent)Cl] (3) and the nickel-carbonyl complex [Ni(IPent)(CO)3] (4), respectively. 3 and 4 were fully characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction studies on single crystals. © 2013 American Chemical Society.

  12. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions.

    Namitharan, Kayambu; Zhu, Tingshun; Cheng, Jiajia; Zheng, Pengcheng; Li, Xiangyang; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2014-01-01

    Transition metal and organic catalysts have established their own domains of excellence. It has been expected that merging the two unique domains should provide complimentary or unprecedented opportunities in converting simple raw materials to functional products. N-heterocyclic carbenes alone are excellent organocatalysts. When used with transition metals such as copper, N-heterocyclic carbenes are routinely practiced as strong-coordinating ligands. Combination of an N-heterocyclic carbene and copper therefore typically leads to deactivation of either or both of the two catalysts. Here we disclose the direct merge of copper as a metal catalyst and N-heterocyclic carbenes as an organocatalyst for relay activation of alkynes. The reaction involves copper-catalysed activation of alkynes to generate ketenimine intermediates that are subsequently activated by an N-heterocyclic carbene organocatalyst for stereoselective reactions. Each of the two catalysts (copper metal catalyst and N-heterocyclic carbene organocatalyst) accomplishes its own missions in the activation steps without quenching each other. PMID:24865392

  13. Luminescent pillared LnIII–ZnII heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new LnIII–ZnII heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1)2(L2)(H2O)m]·nH2O)∞ (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H2L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln2O3, ZnO, H2L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding LnIII ions. - Graphical abstract: Four new 3D LnIII–ZnII coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new LnIII–ZnII heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated

  14. Synthesis and behavior of novel sulfonated water-soluble N-heterocyclic carbene (η(4)-diene) platinum(0) complexes.

    Ruiz-Varilla, Andrea M; Baquero, Edwin A; Silbestri, Gustavo F; Gonzalez-Arellano, Camino; de Jesús, Ernesto; Flores, Juan C

    2015-11-14

    A series of water-soluble (NHC)Pt(0)(dvtms) and (NHC)Pt(0)(AE) complexes containing different sulfonated NHC ligands (dvtms = divinyltetramethyldisiloxane and AE = diallyl ether) are reported. The dvtms compounds have been found to be quite robust and to display some conformational rigidity, whereas their AE counterparts are less stable and more flexible. The catalytic evaluation of these complexes in the hydrosilylation of alkynes in water revealed no benefits in favor of the complexes containing the more labile spectator diene (AE), and a fairly regular catalytic behavior for all complexes that restricts the location of the sulfonate group to the proximity of the metal site. PMID:26346995

  15. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  16. Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry.

    Arz, Marius I; Straßmann, Martin; Geiß, Daniel; Schnakenburg, Gregor; Filippou, Alexander C

    2016-04-01

    Protonation and alkylation of (Idipp)Si═Si(Idipp) (1) afforded the mixed-valent disilicon(I)-borates [(Idipp)(R)Si(II)═Si(0)(Idipp)][B(Ar(F))4] (1R[B(Ar(F))4]; R = H, Me, Et; Ar(F) = C6H3-3,5-(CF3)2; Idipp = C[N(C6H3-2,6-iPr2)CH]2) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the "σ-bonded" tautomers of 1H[B(Ar(F))4], which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion ("π-bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium ions formed upon protonation of olefins. The topomerization of 1H[B(Ar(F))4] provides the first example of a reversible 1,2-H migration along a Si═Si bond observed in a molecular system. In contrast, 1Me[B(Ar(F))4] adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the "σ-bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates 1M[BAr4] (M = Li, Ar = C6F5; M = Na, Ar = Ar(F)) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of 1M[BAr4] suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation-π interactions with the Si═Si π-bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR](-) interrelates the cations [(NHC)(R)Si═Si(NHC)](+) to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures. PMID:26978031

  17. Nitrosyl and carbene iron complexes bearing a κ(3)-SNS thioamide pincer type ligand.

    Suzuki, Tatsuya; Matsumoto, Jun; Kajita, Yuji; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2015-01-21

    The previously reported monochelate iron complex with κ(3) SNS thioamide pincer ligand, 2,6-bis(N-2,6-bis(diphenylmethyl)-4-isopropylphenyliminothiolate)pyridine (L(DPM)), [Fe(THF)2(κ(3)-L(DPM))], gave novel complexes, [Fe(NHC)(κ(3)-L(DPM))] and [Fe(NO)2(κ(3)-L(DPM))], by substitution reactions with N-heterocyclic carbene (NHC) and NO molecules, respectively. The X-ray crystal structure of the [Fe(NHC)(κ(3)-L(DPM))] complex revealed a unique square planar iron(ii) complex, which was determined to be in an intermediate spin state (S = 1) in benzene from the Evans method. The [Fe(NO)2(κ(3)-L(DPM))] complex was determined to have a trigonal bipyramidal geometry from X-ray analysis and was indicated to be diamagnetic from the (1)H NMR spectrum. The ν(NO) stretching vibration of this complex showed two peaks at 1840 cm(-1) and 1790 cm(-1), and also the Fe-N-O bond angles were 168.9(2)° and 168.03(19)°. These findings suggest that the two coordinated NO molecules have neutral radical character, and they are antiferromagnetically coupled with the high-spin iron center. PMID:25407757

  18. Electronic bond tuning with heterocyclic carbenes

    Falivene, Laura

    2013-01-01

    We discuss the impact of the nature of the heterocyclic carbene ring, when used as a complex forming ligand, on the relative stability of key intermediates in three typical Ru, Pd and Au promoted reactions. Results show that P-heterocyclic carbenes have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions, dissociation of a P-heterocyclic carbene is easier than dissociation of the N-heterocyclic analogue. In the case of the Au-OH synthon, the Au-OH bond is weakened with the P-heterocyclic carbene ligands. A detailed energy decomposition analysis is performed to rationalize these results. © 2013 The Royal Society of Chemistry.

  19. Abnormal carbenes as ligands in transition metal chemistry: curiosities with exciting perspectives

    Albrecht, Martin

    2009-01-01

    This review compiles the advances achieved in our laboratories using abnormal and less heteroatom-stabilized carbenes as ligands for transition metal chemistry. Fundamental studies allowed the evaluation of the impact of this new class of ligands both electronically and sterically. Based on these results, initial catalytic applications have been devised in the area of H-H and C-H bond activation, demonstrating the potential of abnormal carbenes as unique ligands for transition metals.

  20. Luminescent pillared Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    Liu, Sui-Jun; Jia, Ji-Min; Cui, Yu; Han, Song-De; Chang, Ze, E-mail: changze@nankai.edu.cn

    2014-04-01

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new Ln{sup III}–Zn{sup II} heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1){sub 2}(L2)(H{sub 2}O){sub m}]·nH{sub 2}O){sub ∞} (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H{sub 2}L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln{sub 2}O{sub 3}, ZnO, H{sub 2}L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding Ln{sup III} ions. - Graphical abstract: Four new 3D Ln{sup III}–Zn{sup II} coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated.

  1. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group

    Muenzner, Julienne K.; Rehm, Tobias; Biersack, Bernhard; Casini, Angela; de Graaf, Inge A. M.; Worawutputtapong, Pawida; Noor, Awal; Kempe, Rhett; Brabec, Viktor; Kasparkova, Jana; Schobert, Rainer

    2015-01-01

    Five platinum(LI) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotomicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a-c increased with the steric shi

  2. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group.

    Muenzner, Julienne K; Rehm, Tobias; Biersack, Bernhard; Casini, Angela; de Graaf, Inge A M; Worawutputtapong, Pawida; Noor, Awal; Kempe, Rhett; Brabec, Viktor; Kasparkova, Jana; Schobert, Rainer

    2015-08-13

    Five platinum(II) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotoxicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a-c increased with the steric shielding of their leaving chloride ligand, and complex 3c, featuring two triphenylphosphanes, was the most efficacious, with submicromolar IC50 concentrations. Complexes 3a-c interacted with DNA in electrophoretic mobility shift and ethidium bromide binding assays. The cationic complex 3c did not bind coordinatively to DNA but led to its aggregation, damage that is not amenable to the usual repair mechanisms. Accordingly, it arrested the cell cycle of melanoma cells in G1 phase, whereas cis-dichlorido[(1,3-dibenzyl)imidazol-2-ylidene](dimethyl sulfoxide) platinum(II) 3a induced G2/M phase arrest. Complex 3c also disrupted the blood vessels in the chorioallantoic membrane of fertilized chicken eggs. Ex vivo studies using precision-cut tissue slices suggested the nephrotoxicities of 3a-c to be clinically manageable. PMID:26182125

  3. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes?

    Vummaleti, Sai V. C.

    2015-01-02

    The electronic nature of the interaction of NHCs with metal centres is of interest when exploring their properties, how these properties influence those of metal complexes, and how these properties might depend on ligand structure. Selenourea and phosphinidene complexes have been proposed to allow the measurement of the π-accepting ability of NHCs, independent of their σ-donating ability, via the collection of 77Se or 31P NMR spectra, respectively. Herein, the synthesis and characterisation of selenoureas derived from a range of imidazol-2-ylidenes, 4,5-dihydroimidazol-2-ylidenes and triazol-2-ylidenes are documented. Computational studies are used to explore the link between the shielding of the selenium centre and the electronic properties of the NHCs. Results show that δSe is correlated to the energy gap between a filled lone pair orbital on Se and the empty π* orbital corresponding to the Se–NHC bond. Bond energy decomposition analysis indicated no correlation between the orbital σ-contribution to bonding and the chemical shielding, while a good correlation was found between the π-contribution to bonding and the chemical shielding, confirming that this technique is indeed able to quantify the ability of NHCs to accept π-electron density. Calculations conducted on phosphinidene adducts yielded similar results. With the link between δSe and δP and π-back bonding ability clearly established, these compounds represent useful ways in which to fully understand and quantify this aspect of the electronic properties of NHCs.

  4. Imidazole-2-ylidenes as Ligands for Palladium Catalyzed Heck Cross Coupling Reaction

    CHEN Jing-Bo; LIU Jing-Ping; SHAO Zhi-Hui; LI Jie; ZHANG Hong-Bin

    2003-01-01

    @@ N-Heterocyclic carbenes have become universal ligands in coordination chemistry. [1] The design, synthesis, and application of imidazolium salts as precursors of imidazole-2-ylidenes are therefore of substantial interest. [2] The free carbenes with imidazole-2-ylidene structure of A (Scheme 1 ), so called "phosphine mimics", can form metal complexes with high thermal and hydrolytic durability, while N-substituted by different functional groups could produce, in principle, water-soluble; unsymmetrical; and immobilized catalysts. [3

  5. Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond

    Donnelly, Kate F.; Petronilho, Ana; Albrecht, Martin

    2013-01-01

    Triazolylidenes have rapidly emerged as a powerful subclass of N-heterocyclic carbene ligands for transition metals. They are readily available through regioselective [2 + 3] cycloaddition of alkynes and azides and subsequent metallation according to procedures established for related carbenes. Due to their mesoionic character, triazolylidenes are stronger donors than Arduengo-type imidazol-2-ylidenes. Spurred by these attractive attributes and despite their only recent emergence, triazolylid...

  6. Pyridylidene ligand facilitates gold-catalyzed oxidative C–H arylation of heterocycles

    Hata, Kazuhiro; Ito, Hideto

    2015-01-01

    Summary Triaryl-2-pyridylidene effectively facilitates the gold-catalyzed oxidative C–H arylation of heteroarenes with arylsilanes as a unique electron-donating ligand on gold. The employment of the 2-pyridylidene ligand, which is one of the strongest electron-donating N-heterocyclic carbenes, resulted in the rate acceleration of the C–H arylation reaction of heterocycles over conventional ligands such as triphenylphosphine and a classical N-heterocyclic carbene. In situ observation and isolation of the 2-pyridylidene-gold(III) species, as well as a DFT study, indicated unusual stability of gold(III) species stabilized by strong electron donation from the 2-pyridylidene ligand. Thus, the gold(I)-to-gold(III) oxidation process is thought to be facilitated by the highly electron-donating 2-pyridylidene ligand. PMID:26877796

  7. 表面活性剂对水溶性氮杂环卡宾钯催化Suzuki反应的影响%Influence of surfactant for the water-soluble N-heterocyclic carbene palladium catalyzed Suzuki reaction in water

    柳云玲; 于宏伟; 贾莉; 施继成

    2012-01-01

    The influence of surfactant for the N-heterocyclic carbene palladium catalyst(5) with 15 of glycol units has been evaluated.It was found that those routine surfactants can recover the activity of the catalyst 5 for Suzuki reaction carried out in water to the level in 1,4-dioxane,affording another way to improve the activity of 5 in water.%开展了添加表面活性剂对带15个左右的乙二醇单元的氮杂环卡宾钯催化剂(5)在水介质中催化Suzuki偶联反应性能的影响研究;发现常见的阳离子或阴离子表面活性剂均可将催化剂5在水介质中的催化性能恢复到在二氧六环中的水平;故发现了一条提高催化剂5在水介质的性能途径.

  8. Insights Into the Carbene-Initiated Aggregation of [Fe(cot)2

    Lavallo, Vincent

    2010-11-25

    Carbenes attack! Stable carbenes react with [Fe(cot)2] in very different ways. Whereas the classical N-heterocyclic carbenes induce the formation of tetra- and trimetallic iron clusters, abnormal NHCs and carbocyclic carbenes (BACs) form mono- and bimetallic iron complexes. Cyclic (alkyl)(amino)carbenes (CAACs) react with [Fe(cot)2] in a completely different manner, namely through outersphere [4+1] cycloaddition.

  9. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  10. N,N'-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity.

    Moerdyk, Jonathan P; Schilter, David; Bielawski, Christopher W

    2016-08-16

    Since the first reported isolation of a carbene just over a quarter century ago, the study of such compounds-including stable derivatives-has flourished. Indeed, N-heterocyclic carbenes (NHCs), of which imidazolylidenes and their derivatives are the most pervasive subclass, feature prominently in organocatalysis, as ligands for transition metal catalysts, and as stabilizers of reactive species. However, imidazolylidenes (and many other NHCs) typically lack the reactivity characteristic of electrophilic carbenes, including insertion into unactivated C-H bonds, participation in [2 + 1] cycloadditions, and reaction with carbon monoxide. This has led to debates over whether NHCs are truly carbenic in nature or perhaps better regarded as ylides. The fundamental and synthetic utility of transformations that involve electrophilic carbenes has motivated our group and others to expand the reactivity of NHCs and other stable carbenes to encompass electrophilic carbene chemistry. These efforts have led to the development of the diamidocarbenes (DACs), a stable and unique subset of the NHCs that feature carbonyl groups inserted into the N-heterocyclic scaffold. To date, crystalline five-, six-, and seven-membered DACs have been prepared and studied. Unlike imidazolylidenes, which are often designated as prototypical NHCs, the DACs exhibit a reactivity profile similar to that of bona fide carbenes, reactive species that are less "tamed" by heteroatom π conjugation. The DACs engage in [2 + 1] cycloadditions with electron-rich or -poor alkenes, aldehydes, alkynes, and nitriles, and doing so in a reversible manner in some cases. They also react with isonitriles, reversibly couple to CO, and mediate the dehydrogenation of hydrocarbons. Such rich chemistry may be rationalized in terms of their ambiphilicity: DACs are nucleophilic, as required for some of the reactions above, yet also have electrophilic character, as evidenced by their insertions into unactivated N-H and C-H bonds

  11. Synthesis and photophysical studies of tetrazolate-based Eu(III) photoluminescent ternary complexes containing N-heterocyclic phosphine oxides auxiliary co-ligands.

    Mal, Suraj; Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana

    2016-08-01

    Two new ternary tetrazolate Eu(III) complexes with phosphine oxide co-ligands Eu(PTO)3 ·(P1/P2) [PTO = 5-(2-pyridyl-1-oxide)tetrazole, P1 = diphenylphosphorylamino-phenylphosphoryl-benzene, P2 = diphenylphosphorylpyridine)-bis-isobutyricphosphoryl] were synthesized and characterized using UV, fluorescence, IR and (1) H NMR spectroscopic techniques. The analytical data prove that the complexes are mononuclear in nature and the central Eu(III) ion is coordinated by three N and three O atoms of tetrazolate, and two O atoms of the corresponding bidentate phosphine oxide ligands. The ancillary ligand increased the photoluminescence efficiency of Eu(PTO)3 ·P1 (complex 3) by twofold compared with our previously reported Eu(PTO)3 complex (complex 1). Copyright © 2015 John Wiley & Sons, Ltd. PMID:26679054

  12. Ligands rock & roll: stepwise twisting of two cis-coordinated lopsided N-heterocycles in an octahedral bis(2-phenylazopyridine)-ruthenium(II) complex with seven atropisomers.

    Velders, Aldrik H; Hotze, Anna C G; Reedijk, Jan

    2005-02-01

    1H NMR data of alpha-[Ru(azpy)2(MeBim)2](PF6)2 (azpy=2-phenylazopyridine, MeBim=1-methylbenzimidazole), 2, revealed the presence of a total of seven atropisomers at -95 degrees C: three head-to-tail, HT, isomers (A, C, and D), and four head-to-head, HH, isomers which, due to the presence of an intrinsic C2 axis in the alpha-[Ru(azpy)2] moiety, are two sets of identical pairs (B/B and E/E). The NMR data of 2 represent a unique example of a coordination compound that shows a variable temperature (VT) behavior with more, well-defined steps of slow-to-fast exchange of its atropisomers. At 65 degrees C, all atropisomers are in fast exchange; on lowering the temperature the sharp signals first broaden (at room temperature) and consecutively split up into two sets of relatively sharp signals, in slow exchange, at about 0 degrees C (D, 40 %, and the coalesced signals of ABBCEE, 60 %). Upon further cooling, the set of peaks belonging to D remain sharp until the lowest recording temperatures. The signals of the other set of resonances, on the other hand, first broaden again and then separate into two sets of broad peaks (C/E/E and A) and one set of sharp peaks (B and B in fast exchange); on lowering the temperature even more, these signals broaden once again and finally, at -95 degrees C, are split up into a total of four sets of signal (A, B/B, C, and E/E). At low temperatures, ROESY experiments revealed that atropisomerization occurs through the synchronous rotation of both MeBim ligands in the interconversion of the two "identical" HH atropisomers B and B, as well as in the interconversion between C and E/E. The HH rotamers B/B furthermore exhibit a slow-to-fast exchange atropisomerization behavior that is observed independently from the other dynamic processes in this compound. The versatile cis bifunctional binding of the DNA model bases (MeBim ligands) in 2 parallels the observation of alpha-[Ru(azpy)2Cl2] which shows extraordinarly high cytotoxicity against tumor cell

  13. Chiral NHC Ligands Bearing a Pyridine Moiety in Copper-Catalyzed 1,2-Addition of Dialkylzinc Reagents to β-Aryl-α,β-unsaturated N-Tosylaldimines.

    Soeta, Takahiro; Ishizaka, Tomohiro; Ukaji, Yutaka

    2016-04-01

    Asymmetric 1,2-addition of dialkylzinc reagents to α,β-unsaturated N-tosylaldimines was catalyzed by copper salt in the presence of chiral imidazolium salts having a pyridine ring, which were derived from amino acid, to afford the corresponding chiral allylic amines with up to 91% ee in reasonably high yields. The chiral N-heterocyclic carbene (NHC) ligand played an important role in controlling chemoselectivity. PMID:26967950

  14. Dearomatization Reactions of N-Heterocycles Mediated by Group 3 Complexes

    Miller, Kevin L [Univ. of California, Los Angeles, CA (United States); Williams, Bryan N [Univ. of California, Los Angeles, CA (United States); Benitez, Diego [California Inst. of Technology (CalTech), Pasadena, CA (United States); Carver, Colin T [Univ. of California, Los Angeles, CA (United States); Ogilby, Kevin R [Univ. of California, Los Angeles, CA (United States); Tkatchouk, Ekaterina [California Inst. of Technology (CalTech), Pasadena, CA (United States); Goddard, William A [California Inst. of Technology (CalTech), Pasadena, CA (United States); Diaconescu, Paula L [Univ. of California, Los Angeles, CA (United States)

    2010-01-13

    Group 3 (Sc, Y, Lu, La) benzyl complexes supported by a ferrocene diamide ligand are reactive toward aromatic N-heterocycles by mediating their coupling and, in a few cases, the cleavage of their C-N bonds. When these complexes reacted with 2,2'-bipyridine or isoquinoline, they facilitated the alkyl migration of the benzyl ligand onto the pyridine ring, a process accompanied by the dearomatization of the N-heterocycle. The products of the alkyl-transfer reactions act as hydrogen donors in the presence of aromatic N-heterocycles, ketones, and azobenzene. Experimental and computational studies suggest that the hydrogen transfer takes place through a concerted mechanism. An interesting disproportionation reaction of the dearomatized, alkyl-substituted isoquinoline complexes is also reported.

  15. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  16. Cyclic (Amino)(aryl)carbenes (CAArCs) as Strong σ-Donating and π-Accepting Ligands for Transition Metals.

    Rao, Bin; Tang, Huarong; Zeng, Xiaoming; Liu, Liu; Melaimi, Mohand; Bertrand, Guy

    2015-12-01

    Cyclic (amino)(aryl)carbenes (CAArCs) result from the replacement of the alkyl substituent of cyclic (alkyl)(amino) carbenes (CAACs) by an aryl group. This structural modification leads to enhanced electrophilicity of the carbene center with retention of the high nucleophilicity of CAACs, and therefore CAArCs feature a small singlet-triplet gap. The isoindolium precursors are readily prepared in good yields, and deprotonation at low temperature, in the presence of [RhCl(cod)]2 and [(Me2S)AuCl] lead to air-stable rhodium and gold CAArC-supported complexes, respectively. The rhodium complexes promote the [3+2] cycloaddition of diphenylcyclopropenone with ethyl phenylpropiolate, and induce the addition of 2-vinylpyridine to alkenes by CH activation. The gold complexes allow for the catalytic three-component preparation of 1,2-dihydroquinolines from aniline and phenyl acetylene. These preliminary results illustrate the potential of CAArC ligands in transition-metal catalysis. PMID:26457345

  17. Stereoselectively fluorinated N-heterocycles: a brief survey

    Hu, Xiang-Guo; Hunter, Luke

    2013-01-01

    The stereoselective incorporation of fluorine atoms into N-heterocycles can lead to dramatic changes in the molecules’ physical and chemical properties. These changes can be rationally exploited for the benefit of diverse fields such as medicinal chemistry and organocatalysis. This brief review will examine some of the effects that fluorine substitution can have in N-heterocycles, including changes to the molecules’ stability, their conformational behaviour, their hydrogen bonding ability, an...

  18. Synthetic and Thermodynamic Investigations of Ancillary Ligand Influence on Catalytic Organometallic Systems. Final Report

    Nolan, Steven

    2003-03-20

    During the grant period we have been involved in synthesizing and experimentally determining solution enthalpy values associated with partially fluorinated ligands. This has lead to the publication of manuscripts dealing with synthetic, calorimetric and catalytic behavior of partially fluorinated ligands. The collaboration with Los Alamos researchers has lead to the publication of catalytic results in sc CO{sub 2} which have proven very interesting. Furthermore, we have also examined ligands that behave as phosphine mimics. The N-heterocyclic carbenes have been explored as alternatives for tertiary phosphines and have resulted in the design and construction of efficient palladium and nickel system capable of performing C-C and C-N cross coupling reactions. The initial studies in this areas were made possible by exploratory work conducted under the DOE/EPSCoR grant.

  19. Uranium nucleophilic carbene complexes

    The only stable f-metal carbene complexes (excluding NHC) metals f present R2C2- groups having one or two phosphorus atoms in the central carbon in alpha position. The objective of this work was to develop the chemistry of carbenes for uranium (metal 5f) with the di-anion C{Ph2P(=S)}22- (SCS2-) to extend the organometallic chemistry of this element in its various oxidation states (+3-+6), and to reveal the influence of the 5f orbitals on the nature and reactivity of the double bond C=U. We first isolated the reactants M(SCHS) (M = Li and K) and demonstrated the role of the cation M+ on the evolution of the di-anion M2SCS (M = Li, K, Tl) which is transformed into LiSCHS in THF or into product of intramolecular cyclization K2[C(PhPS)2(C6H4)]. We have developed the necessary conditions mono-, bis- and tris-carbene directly from the di-anion SCS2- and UCl4, as the precursor used in uranium chemistry. The protonolysis reactions of amides compounds (U-NEt2) by the neutral ligand SCH2S were also studied. The compounds [Li(THF)]2[U(SCS)Cl3] and [U(SCS)Cl2(THF)2] were then used to prepare a variety of cyclopentadienyl and mono-cyclo-octa-tetra-enyliques uranium(IV) carbene compounds of the DFT analysis of compounds [M(SCS)Cl2(py)2] and [M(Cp)2(SCS)] (M = U, Zr) reveals the strong polarization of the M=C double bond, provides information on the nature of the σ and π interactions in this binding, and shows the important role of f orbitals. The influence of ancillary ligands on the M=C bond is revealed by examining the effects of replacing Cl- ligands and pyridine by C5H5- groups. Mulliken and NBO analyzes show that U=C bond, unlike the Zr=C bond, is not affected by the change in environment of the metal center. While the oxidation tests of carbene complexes of U(IV) were disappointing, the first carbene complex of uranium (VI), [UO2(SCS)(THF)2], was isolated with the uranyl ion UO22+. The reactions of compounds UO2X2 (X = I, OTf) with anions SCS2- and SCHS- provide the

  20. Synthesis of novel chelating benzimidazole-based carbenes and their nickel(II) complexes: activity in the Kumada coupling reaction

    Berding, J.; Lutz, M.; Spek, A.L.; Bouwman, E.

    2009-01-01

    Nickel(II) halide complexes of novel chelating bidentate benzimidazole-based N-heterocyclic carbenes have been prepared from Ni(OAc)2 and bisbenzimidazolium salts. Single-crystal X-ray structure determination on four complexes revealed a cis-geometry on a square-planar nickel center. The complexes a

  1. Exploring Coordination Modes: Late Transition Metal Complexes with a Methylene-bridged Macrocyclic Tetra-NHC Ligand.

    Altmann, Philipp J; Weiss, Daniel T; Jandl, Christian; Kühn, Fritz E

    2016-05-20

    A tetranuclear silver(I) N-heterocyclic carbene (NHC) complex bearing a macrocyclic, exclusively methylene-bridged, tetracarbene ligand was synthesized and employed as transmetalation agent for the synthesis of nickel(II), palladium(II), platinum(II), and gold(I) derivatives. The transition metal complexes exhibit different coordination geometries, the coinage metals being bound in a linear fashion forming molecular box-type complexes, whereas the group 10 metals adapt an almost ideal square planar coordination geometry within the ligand's cavity, resulting in saddle-shaped complexes. Both the Ag(I) and the Au(I) complexes show ligand-induced metal-metal contacts, causing photoluminescence in the blue region for the gold complex. Distinct metal-dependent differences of the coordination behavior between the group 10 transition metals were elucidated by low-temperature NMR spectroscopy and DFT calculations. PMID:27017146

  2. Theory of the formation and decomposition of N-heterocyclic aminooxycarbenes through metal-assisted [2+3]-dipolar cycloaddition/retro-cycloaddition.

    Novikov, Alexander S; Kuznetsov, Maxim L; Pombeiro, Armando J L

    2013-02-18

    The theoretical background of the formation of N-heterocyclic oxadiazoline carbenes through a metal-assisted [2+3]-dipolar cycloaddition (CA) reaction of nitrones R(1)CH=N(R(2))O to isocyanides C≡NR and the decomposition of these carbenes to imines R(1)CH=NR(2) and isocyanates O=C=NR is discussed. Furthermore, the reaction mechanisms and factors that govern these processes are analyzed in detail. In the absence of a metal, oxadiazoline carbenes should not be accessible due to the high activation energy of their formation and their low thermodynamic stability. The most efficient promotors that could assist the synthesis of these species should be "carbenophilic" metals that form a strong bond with the oxadiazoline heterocycle, but without significant involvement of π-back donation, namely, Au(I), Au(III), Pt(II), Pt(IV), Re(V), and Pd(II) metal centers. These metals, on the one hand, significantly facilitate the coupling of nitrones with isocyanides and, on the other hand, stabilize the derived carbene heterocycles toward decomposition. The energy of the LUMO(CNR) and the charge on the N atom of the C≡N group are principal factors that control the cycloaddition of nitrones to isocyanides. The alkyl-substituted nitrones and isocyanides are predicted to be more active in the CA reaction than the aryl-substituted species, and the N,N,C-alkyloxadiazolines are more stable toward decomposition relative to the aryl derivatives. PMID:23296691

  3. Carbene-mediated self-assembly of diamondoids on metal surfaces

    Adhikari, Bibek; Meng, Sheng; Fyta, Maria

    2016-04-01

    N-heterocyclic carbenes (NHC)s are emerging as an alternative class of molecules to thiol-based self-assembled monolayers (SAMs), making carbene-based SAMs much more stable under harsh environmental conditions. In this work, we have functionalized tiny diamondoids using NHCs in order to prepare highly stable carbene-mediated diamondoid SAMs on metal substrates. Using quantum-mechanical simulations and two different configurations for the carbene-functionalized diamondoids attached on gold, silver, and platinum surfaces we were able to study in detail these materials. Specifically, we focus on the binding characteristics, stability, and adsorption of the NHC-mediated diamondoid SAMs on the metal surfaces. A preferential binding to platinum surfaces was found, while a modulation of the work function in all cases was clear. The surface morphology of all NHC-based diamondoid SAMs was revealed through simulated STM images, which show characteristic features for each surface.

  4. A Brief Survey of our Contribution to Stable Carbene Chemistry

    Martin, David; Melaimi, Mohand; Soleilhavoup, Michele; Bertrand, Guy

    2011-01-01

    This personal account summarizes our work, beginning with the discovery of the first stable carbene in 1988 up until the recent isolation of mesoionic carbenes. It explains why we have moved our focus from acyclic to cyclic carbenes, and shows that these stable species are not limited to the role of ligand for transition metals, but that they are also powerful agents for the activation of small molecules, and for the stabilization of highly reactive diamagnetic and paramagnetic species.

  5. Investigation of the properties of 4,5-dialkylated N-heterocyclic carbenes

    Urban, S.; Tursky, Matyas; Frohlich, R.; Glorius, F.

    The investigation of the electronic and steric properties of 4,5-disubstituted imidazolylidenes is reported, as well as their successful application as organocatalysts in the formation of gamma-butyrolactones by conjugate Umpolung....

  6. Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer

    Bukhryakov, Konstantin V.

    2015-10-02

    An approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst. © 2015 American Chemical Society.

  7. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk;

    2010-01-01

    not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction...... mixture. Addition of the amine forms the hemiaminal that undergoes dehydrogenation to the amide. A catalytic cycle is proposed with the {(IiPr)Ru-II} species as the catalytically active components....

  8. Chiral linker-bridged bis-N-heterocyclic carbenes: design, synthesis, palladium complexes, and catalytic properties.

    Zhang, Dao; He, Yu; Tang, Junkai

    2016-08-01

    A series of chiral bis(benzimidazolium) salts 10-19 with (1R,2R)-cyclohexene, (1R,2R)-diphenylethylene and (aR)-binaphthylene linkers have been designed and synthesized in 30-94% yield. Ten chiral bis(NHC) palladium complexes 20-28 have been synthesized and characterized by NMR, HRMS, elemental analysis and further confirmed by X-ray single crystal analysis. These bis(NHC)-Pd complexes showed obviously different catalytic properties in the asymmetric Suzuki-Miyaura coupling reactions. The (1R,2R)-cyclohexene-bridged bis(NHC)-Pd complex, (R,R)-23, achieved the highest yield of 90%, while complex (aR)-28, with a binaphthylene linker, showed the best enantioselectivity of 60 ee%. The structural analysis of these complexes suggested that such difference of catalytic performance has a close relationship with their coordination surroundings around metal centres. PMID:27230553

  9. Technetium(I) tricarbonyl complexed with the N-heterocyclic aldehyde thiosemicarbazones: potential precursors of the radiopharmaceuticals

    Technetium(I) tricarbonyl complexes may form with the pyridine aldehyde thiosemicarbazones (TSCs), in which chelating ligand is bound tri- or bidentately. Intend of the presented work was to check, if labeling the N-heterocyclic TSCs with tricarbonyl [99mTc]-technetium(I) may lead to formation of the complexes suitable for the radiopharmaceutical purposes. Syntheses of the complexes were provided in the conditions analogous to those performed in the nuclear medicine laboratories. Main physicochemical properties of the complexes important in the medicinal chemistry were studied. Relevant results of the numerical calculations remain in fair agreement with these properties. (author)

  10. Carbenes and Nitrenes

    Coyle, J. D.

    1974-01-01

    Summarizes the general methods for carbene and nitrene formation and the reactions in which carbenes and nitrenes are involved such as their reactions with transition metal atoms, alkenes of aromatic compounds, and uncharged oxygen or nitrogen nucleophiles. (CC)

  11. A Stereoelectronic Basis for the Kinetic Resolution of N-Heterocycles with Chiral Acylating Reagents

    Hsieh, Sheng-Ying; Wanner, Benedikt; Wheeler, Philip; Beauchemin, André M.; Rovis, Tomislav; Bode, Jeffrey W.

    2014-01-01

    The kinetic resolution of N-heterocycles with chiral acylating agents reveals a previously unrecognized stereoelectronic effect in amine acylation. Combined with a new achiral hydroxamate, this effect makes possible the resolution of various N-heterocycles using easily prepared reagents. A transition state model to rationalize the stereochemical outcome of this kinetic resolution is also proposed.

  12. Examination of the Impact of Copper(II) α-(N)-Heterocyclic Thiosemicarbazone Complexes on DNA Topoisomerase IIα.

    Wilson, James T; Jiang, Xiaohua; McGill, Bradley C; Lisic, Edward C; Deweese, Joseph E

    2016-04-18

    Type II DNA topoisomerases resolve topological knots and tangles in DNA that result from routine cellular processes and are effective targets for anticancer therapeutics. To this end, thiosemicarbazones have been identified as having the ability to kill cancer cells from several cell lines. Literature evidence suggests that at least some thiosemicarbazones have an impact on topoisomerase II activity. However, the mechanism is not as clearly defined. Therefore, we set out to analyze the activity of four α-(N)-heterocyclic thiosemicarbazone compounds against topoisomerase IIα. The ligands, acetylpyridine-ethylthiosemicarbazone (APY-ETSC) and acetylpyrazine-methylthiosemicarbazone (APZ-MTSC), and their copper(II) [Cu(II)] complexes [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] were examined for the ability to impact the catalytic cycle of human topoisomerase IIα. Both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] were more effective at inhibiting DNA relaxation compared with the ligands alone. Further, both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] increased double-stranded DNA cleavage levels without inhibiting topoisomerase IIα-mediated DNA ligation. The Cu(II) complexes inactivate enzyme activity over time suggesting a critical interaction with the enzyme. Additionally, we found that the Cu(II)-thiosemicarbazone complexes do not significantly impact DNA cleavage by the catalytic core of the enzyme. This evidence is supported by the fact that both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl], and to a lesser extent the ligands, inhibit topoisomerase IIα-mediated ATP hydrolysis. Based upon kinetic analysis, the Cu(II) complexes appear to be noncompetitive inhibitors of the ATPase domain of topoisomerase IIα. Taken together, our results provide evidence that Cu(II) complexes of α-(N)-heterocyclic thiosemicarbazones catalytically inhibit the enzyme through the ATPase domain but also promote double-stranded DNA cleavage by the enzyme. PMID:26982206

  13. Structural, spectral and magnetic studies of two Co(II)-N-heterocyclic diphosphonates based on multinuclear units

    Zhao, Chen; Ma, Kui-Rong; Zhang, Yu; Kan, Yu-He; Li, Rong-Qing; Hu, Hua-You

    2016-01-01

    Two examples of Co(II)-N-heterocyclic coordination polymers based on 1-hydroxyethylidenediphosphonic acid (H5L = CH3C(OH)(PO3H2)2), namely 0.5(H3NCH2CH2NH3)·[Co6(Cl2)(H3L)2(H2L)(HL)(2,2‧-bipy)6] 1 and 2(NH4)·[Co3(HL)2(H2O)2(phen)2]·2(H2O) 2, have been solvothermally obtained by introducing the second ligands 2,2‧-bipyridine/1,10-phenanthroline (2,2‧-bipy/phen) and characterized by powder X-ray diffraction (PXRD), elemental analysis, IR, TG-DSC. The single-crystal X-ray diffractions show that compound 1 possesses a 0-D structure with hexa-nuclear cluster [Co6(O-P-O)8] built through single/double O-P-O bridges and compound 2 displays a 1-D ladder-like chain structure with magnetic topology building blocks [Co4(O-P-O)4]n. Then H-bonding and π-π stacking interactions further expand the two low-dimensional structures into three-dimensional supramolecular frameworks. Fluorescent measurements reveal that both the maximum emission peaks of 1-2 are centered at 423 nm, mainly deriving from intraligand π*-π transition state of N-heterocyclic ligand 2,2‧-bipy/phen, respectively. Magnetism data indicate that 1 exhibits antiferromagnetic behavior within hexa-nuclear Co(II) clusters, while 2 shows weak ferromagnetic interactions in 1-D topology Co(II)-chain, showing promising potential as magnetic materials.

  14. Steric Maps to Evaluate the Role of Steric Hindrance on the IPr NHC Ligand

    Poater, Albert

    2013-06-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) (IPr) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes effect the metal environment and therefore the related catalytic behaviour by simple steric maps. Bearing in mind that there is a significant structural difference between IPr and IPr* ligands, that translated in different reactivity for several olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. Furthermore, this communication endeavours to modify further the skeleton of the IPr NHC ligand. The optimization of these bulky new systems go to the limits of the DFT computational method.

  15. Gold(I) catalysts with bifunctional P, N ligands.

    Wetzel, Corinna; Kunz, Peter C; Thiel, Indre; Spingler, Bernhard

    2011-08-15

    A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds [(5)(2)Au(3)Cl(2)]Cl and [(3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene). PMID:21761834

  16. Interference of PAHs and their N-heterocyclic analogs with signaling of retinoids in vitro.

    Benísek, Martin; Bláha, Ludek; Hilscherová, Klára

    2008-12-01

    Retinoids are dietary hormones acting through nuclear receptors for retinoic acid, important especially during embryonic development. This study focuses on the disruption of signaling pathways of retinoids by polycyclic aromatic hydrocarbons (PAHs) and their N-heterocyclic analogs (N-PAHs), important environmental contaminants with numerous biological effects. In vitro test with P19/A15 cell line stably transfected with luciferase reporter gene under control of retinoic acid-responsive elements was used to investigate both direct activation of retinoic acid receptors and modulation of response induced by natural ligand all-trans retinoic acid (ATRA) by 26 PAHs and N-PAHs. While none of individual compounds alone activated retinoic acid receptors, many of them modulated ATRA-mediated activity both after 6 h and 24 h exposure. Majority of compounds active after 6h downregulated ATRA-mediated activity (most effective were two analogs of dibenz[a,h]anthracene with LOECs about 185 nM), while most compounds active after 24h upregulated the effects of ATRA (most effective benz[a]acridine and dibenz[a,i]acridine caused 400% induction of ATRA response). Quantitative structure-activity relationship analysis identified molecular volume and dipole moment as the most important descriptors of inhibitory effects after 6h, while length, total molecular energy, gap-HOMO/LUMO and Van der Waals energy are important descriptors for stimulatory effects of PAHs and N-PAHs. This study demonstrates those abundant pollutants such as PAHs and their analogs interfere in vitro with retinoid signaling, which could play role in some in vivo effects of these organic contaminants such as teratogenicity. PMID:18835432

  17. A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3-triazol-5-ylidene) Ligands: Taming the MLCT Excited State of Iron(II)

    Liu, Yizhu; Kjær, Kasper Skov; Fredin, Lisa A.;

    2015-01-01

    Strongly sigma-donating N-heterocyclic carbenes (NHCs) have revived research interest in the catalytic chemistry of iron, and are now also starting to bring the photochemistry and photophysics of this abundant element into a new era. In this work, a heteroleptic Fe-II complex (1) was synthesized...

  18. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride as the c...

  19. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    applied to a variety of primary alcohols and amines and can be combined with a subsequent addition reaction. A deuterium labeling experiment indicates that the catalytically active species is a ruthenium dihydride. The reaction is believed to proceed by initial dehydrogenation of the alcohol to the...

  20. Correlations between electrochemical and spectrochemical parameters of ruthenium sulfoxides series with N-heterocyclic

    A systematic study of Ru Cl sub(2) (DMSO) sub(2) L sub(2) derivates, where L = N-heterocyclic base is described, contributing for a best understanding of chemical behaviour and electronic structure of the ruthenium sulfoxides. The correlations between the electrochemical and the spectroscopical parameters of the serie are presented with more emphasis. (author)

  1. Carbene insertion into a P-H bond: parent phosphinidene-carbene adducts from PH3 and bis(phosphinidene)mercury complexes.

    Bispinghoff, Mark; Tondreau, Aaron M; Grützmacher, Hansjörg; Faradji, Charly A; Pringle, Paul G

    2016-04-14

    PH3 reacts with the in situ generated N-heterocyclic carbene DippNHC* (DippNHC* = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) to give the phosphanyl-imidazolidine [(Dipp)NHC*-H]-[PH2]. Upon treatment with an ortho-quinone, [(Dipp)NHC*-H]-[PH2] is dehydrogenated to give the parent phosphinidene-carbene adduct (Dipp)NHC*[double bond, length as m-dash]PH. Alternative routes to [(Dipp)NHC*-H]-[PH2] and (Dipp)NHC*[double bond, length as m-dash]PH employ NaPH2 and (TMS)3P7 (TMS = trimethylsilyl), respectively, as phosphorus sources. The adduct (Dipp)NHC*[double bond, length as m-dash]PH and the related adduct (Dipp)NHC[double bond, length as m-dash]PH ((Dipp)NHC = bis(2,6-diisopropylphenyl)imidazol-2-ylidene) possessing an unsaturated NHC backbone both react with HgCl2 to give the bis(carbene-phosphinidenyl) complexes [((Dipp)NHC*[double bond, length as m-dash]P)2Hg] and [((Dipp)NHC[double bond, length as m-dash]P)2Hg]. PMID:26122315

  2. Ionic Liquids as Carbene Catalyst Precursors in the One-Pot Four-Component Assembly of Oxo Triphenylhexanoates (OTHOs

    Anton Axelsson

    2015-11-01

    Full Text Available Ionic liquids (ILs are a convenient and inexpensive source of N-heterocyclic carbenes (NHCs. In this study, dialkyl imidazolium-based ILs are used as carbene precursors in a four-component synthesis of oxo triphenylhexanoates (OTHOs, where it was found that IL outperformed commonly used NHC precatalysts in terms of reaction efficiency. The reaction is highly stereoselective, delivering the anti-diastereomer (20:1 dr, and the OTHOs can be obtained in high-to-excellent yields. By virtue of the four-component reaction-setup, facile construction of the OTHO scaffold with a diverse set of functional groups (21 examples can be achieved. In the context of sustainability, the IL can be recovered and reused several times without affecting selectivity or yield. Moreover, most compounds can be isolated by precipitation and filtration, mitigating the use of solvent-demanding chromatography.

  3. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. Homoleptic gold(i) N-heterocyclic allenylidene complexes: excited-state properties and lyotropic chromonics.

    Xiao, Xin-Shan; Zou, Chao; Guan, Xiangguo; Yang, Chen; Lu, Wei; Che, Chi-Ming

    2016-03-29

    A series of phosphorescent Au(i) bis(N-heterocyclic allenylidene) complexes, namely [Au([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CR(1)R(2))2](+)X(-), were synthesized and structurally characterized. These organometallic complexes exhibit panchromatic transient absorption upon electronic photo-excitation and can self-organize into lyotropic chromonic mesophases in aqueous solutions. PMID:26928852

  5. α-N-heterocyclic thiosemicarbazone derivatives as potential antitumor agents: A structure-activity relationships approach

    Matesanz, Ana I.; Souza, Pilar

    2009-01-01

    α-N-Heterocyclic thiosemicarbazones, (N)-TSCs, are potent inhibitors of ribonucleotide reductase (RR). This enzyme plays a critical role in DNA synthesis and repair, and is a well-recognized target for cancer chemotherapeutic agents. In this review the structural features of (N)-TSCs, required for maximum antitumour activity have been explored. Special attention is given to the mechanisms of action and structure-activity relationships

  6. Catalytic Chemo- and Regioselective Coupling of 1,3-Dicarbonyls with N-Heterocyclic Nucleophiles.

    Kenny, Miles; Kitson, Daniel J; Franckevičius, Vilius

    2016-06-17

    The development of a decarboxylative palladium-catalyzed coupling of 1,3-dicarbonyl compounds with indole, pyrrole, imidazole, and pyrazole nucleophiles via an allylic linker under neutral conditions is disclosed. This process enables the installation of an all-carbon quaternary center and new C-C and C-N bonds in a single operation. Despite the weakly acidic nature of N-heterocycles, the reactions proceed with good efficiency and complete regio- and chemoselectivity. PMID:27211875

  7. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  8. Highly selective palladium–benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions

    Antonio Monopoli; Pietro Cotugno; Zambonin, Carlo G.; Francesco Ciminale; Angelo Nacci

    2015-01-01

    The Pd–benzothiazol-2-ylidene complex I was found to be a chemoselective catalyst for the Tsuji–Trost allylation of active methylene compounds carried out under neutral conditions and using carbonates as allylating agents. The proposed protocol consists in a simplified procedure adopting an in situ prepared catalyst from Pd2dba3 and 3-methylbenzothiazolium salt V as precursors. A comparison of the performance of benzothiazole carbene with phosphanes and an analogous imidazolium carbene ligand...

  9. Experimental and Theoretical Study of the Reactivity of Gold Nanoparticles Towards Benzimidazole-2-ylidene Ligands.

    Rodríguez-Castillo, María; Lugo-Preciado, Gustavo; Laurencin, Danielle; Tielens, Frederik; van der Lee, Arie; Clément, Sébastien; Guari, Yannick; López-de-Luzuriaga, José M; Monge, Miguel; Remacle, Françoise; Richeter, Sébastien

    2016-07-18

    The reactivity of benzimidazol-2-ylidenes with respect to gold nanoparticles (AuNPs) has been investigated using a combined experimental and computational approach. First, the grafting of benzimidazol-2-ylidenes bearing benzyl groups on the nitrogen atoms is described, and comparisons are made with structurally similar N-heterocyclic carbenes (NHCs) bearing other N-groups. Similar reactivity was observed for all NHCs, with 1) the erosion of the AuNPs under the effect of the NHC and 2) the formation of bis(NHC) gold complexes. DFT calculations were performed to investigate the modes of grafting of such ligands, to determine adsorption energies, and to rationalize the spectroscopic data. Two types of computational models were developed to describe the grafting onto large or small AuNPs, with either periodic or cluster-type DFT calculations. Calculations of NMR parameters were performed on some of these models, and discussed in light of the experimental data. PMID:27344993

  10. Tip-induced gating of molecular levels in carbene-based junctions.

    Foti, Giuseppe; Vázquez, Héctor

    2016-03-29

    We study the conductance of N-heterocyclic carbene-based (NHC) molecules on gold by means of first-principles calculations based on density-functional theory and non-equilibrium Green's functions. We consider several tip structures and find a strong dependence of the position of the NHC molecular levels with the atomistic structure of the tip. The position of the lowest unoccupied molecular orbital (LUMO) can change by almost 0.8 eV with tip shape. Through an analysis of the net charge transfer, electron redistribution and work function for each tip structure, we rationalize the LUMO shifts in terms of the sum of the work function and the maximum electrostatic potential arising from charge rearrangement. These differences in the LUMO position, effectively gating the molecular levels, result in large conductance variations. These findings open the way to modulating the conductance of NHC-based molecular circuits through the controlled design of the tip atomistic structure. PMID:26891059

  11. Palladium/Imidazolium Salts: A General and Highly Efficient Catalytic System for Coupling Reaction

    YANG Chu-Luo; Steven P. Nolan

    2003-01-01

    @@ Nucleophilic N-heterocyclic carbenes have attracted considerable attention. These ligands are strong σ-donor with negligible π-accepting ability, and in this regard, they resemble electron-donor phosphines and can be addressed as "phosphine mimics". [ 1

  12. Utilization of N-X bonds in the synthesis of N-heterocycles.

    Minakata, Satoshi

    2009-08-18

    Nitrogen-containing heterocycles--such as aziridines, pyrrolidines, piperidines, and oxazolines--frequently show up as substructures in natural products. In addition, some of these species show potent biological activities. Therefore, researchers would like to develop practical and convenient methods for constructing these heterocycles. Among the available methods, the transfer of N(1) units to organic molecules, especially olefins, is a versatile method for the synthesis of N-heterocycles. This Account reviews some of our recent work on the synthesis of N-heterocycles using the N-X bond. A nitrogen-halogen bond bearing an electron-withdrawing group on the nitrogen can be converted to a halonium ion. In the presence of C-C double bonds, these species produce three-membered cyclic halonium intermediates, which can be strong electrophiles and can produce stereocontrolled products. N-Halosuccinimides are representative sources of halonium ions, and the nitrogen of succinimide is rarely used in organic synthesis. If the nitrogen could act as a nucleophile, after releasing halonium ions to C-C double bonds, we expect great advances would be possible in the stereoselective functionalization of olefins. We chose N-chloro-N-sodio-p-toluenesulfonamide (chloramine-T, CT), an inexpensive and commercially available reagent, as our desired reactant. In the presence of a catalytic amount of CuCl or I(2) and AgNO(3), we achieved the direct aziridination of olefins with CT. The reaction catalyzed by I(2) could be carried out in water or silica-water as a green process. The reaction of iodoolefins with CT gave pyrrolidine derivatives under extremely mild conditions with complete stereoselectivity. We also extended the utility of the N-chloro-N-metallo reagent, which is often unstable and difficult to work with. Although CT does not react with electron-deficient olefins without a metal catalyst or an additive, we found that N-chloro-N-sodiocarbamates react with electron

  13. Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties

    Du, Jiehao; Huang, Jingjing; Xia, Huan; Yang, Ling; Xu, Weilin

    2016-01-01

    Summary A series of copper complexes (3–6) stabilized by 1,2,3-triazole-tethered N-heterocyclic carbene ligands have been prepared via simple reaction of imidazolium salts with copper powder in good yields. The structures of bi- and trinuclear copper complexes were fully characterized by NMR, elemental analysis (EA), and X-ray crystallography. In particular, [Cu2(L2)2](PF6)2 (3) and [Cu2(L3)2](PF6)2 (4) were dinuclear copper complexes. Complexes [Cu3(L4)2](PF6)3 (5) and [Cu3(L5)2](PF6)3 (6) consist of a triangular Cu3 core. These structures vary depending on the imidazolium backbone and N substituents. The copper–NHC complexes tested are highly active for the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in an air atmosphere at room temperature in a CH3CN solution. Complex 4 is the most efficient catalyst among these polynuclear complexes in an air atmosphere at room temperature. PMID:27340477

  14. Synthesis, structure and DFT study of cymantrenyl Fischer carbene complexes of group VI and VII transition metals

    Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé

    2016-02-01

    Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.

  15. Highly selective palladium–benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions

    Antonio Monopoli

    2015-06-01

    Full Text Available The Pd–benzothiazol-2-ylidene complex I was found to be a chemoselective catalyst for the Tsuji–Trost allylation of active methylene compounds carried out under neutral conditions and using carbonates as allylating agents. The proposed protocol consists in a simplified procedure adopting an in situ prepared catalyst from Pd2dba3 and 3-methylbenzothiazolium salt V as precursors. A comparison of the performance of benzothiazole carbene with phosphanes and an analogous imidazolium carbene ligand is also proposed.

  16. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  17. Amino Group Functionalized N-Heterocyclic 1,2,4-Triazole-Derived Carbenes: Structural Diversity of Rhodium(I) Complexes

    Turek, J.; Panov, I.; Horáček, Michal; Černošek, Z.; Padělková, Z.; Růžička, A.

    2013-01-01

    Roč. 32, č. 23 (2013), s. 7234-7240. ISSN 0276-7333 Institutional support: RVO:61388955 Keywords : TRANSITION-METAL COMPLEXES * BIFUNCTIONAL MECHANISM * TRANSFER HYDROGENATION Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.253, year: 2013

  18. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid

    Broggi, Julie

    2013-03-27

    The [Pd(SIPr)(PCy3)] complex efficiently promotes a tandem process involving dehydrogenation of formic acid and hydrogenation of C-C multiple bonds using H2 formed in situ. The isolation of a key catalytic hydridoformatopalladium species, [Pd{OC(O)H}(H)(IPr)(PCy 3)], is reported. The complex plays a key role in the Pd(0)-mediated formation of hydrogen from formic acid. Mechanistic and computational studies delineate the operational role of the palladium complex in this efficient tandem sequence. © 2013 American Chemical Society.

  19. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group

    Muenzner, J.K.; Rehm, T.; Biersack, B.; Casini, A.; de Graaf, I.; Worawutputtapong, P.; Noor, A.; Kempe, R.; Brabec, Viktor; Kašpárková, Jana; Schobert, R.

    2015-01-01

    Roč. 58, č. 15 (2015), s. 6283-6292. ISSN 0022-2623 R&D Projects: GA ČR(CZ) GA14-21053S Institutional support: RVO:68081707 Keywords : PLATINUM COMPLEXES * CANCER-CELLS * CISPLATIN Subject RIV: BO - Biophysics Impact factor: 5.447, year: 2014

  20. Investigation on reactivity of non-classical carbenes with sterically hindered Lewis acid, B(C6F5)3 under inert and open conditions

    Arunabha Thakur; Pavan K Vardhanapu; Gonela Vijaykumar; Sushil Ranjan Bhatta

    2016-04-01

    Reactions of B(C6F5)3 with abnormal N-heterocyclic carbene (NHC), L1 and cyclic (alkyl)(amino) carbene (AAC), L2 in the presence of moisture as well as in its absence, have been investigated in toluene. Reaction of NHC with 1 equivalent of B(C6F5)3 under inert condition produced classical Lewis acid-base adduct, [L1.B(C6F5)3], 1. Further, probing the same reaction with cyclic (alkyl)(amino) carbene (AAC), having different electronic property, led to the isolation of [L2.B(C6F5)3], 2 under inert condition. Interestingly, reaction of NHC or AAC with 1 equivalent of B(C6F5)3 in the presence of moisture resulted in water splitting leading to the formation of [L1-H][(OH)B(C6F5)3], 3 and [L2-H][(OH)B(C6F5)3, 4. All these compounds (1-4) were characterized in solution by 1H, 13C, 19F and 11B NMR spectroscopy. Additionally, the solid-state structures were unambiguously established by crystallographic analysis of compounds 1-4.

  1. Computational Chemistry Studies on the Carbene Hydroxymethylene

    Marzzacco, Charles J.; Baum, J. Clayton

    2011-01-01

    A density functional theory computational chemistry exercise on the structure and vibrational spectrum of the carbene hydroxymethylene is presented. The potential energy curve for the decomposition reaction of the carbene to formaldehyde and the geometry of the transition state are explored. The results are in good agreement with recent…

  2. Stereolability of chiral ruthenium catalysts with frozen NHC ligand conformations investigated by dynamic-HPLC.

    Menta, Sergio; Pierini, Marco; Cirilli, Roberto; Grisi, Fabia; Perfetto, Alessandra; Ciogli, Alessia

    2015-10-01

    The stereolability of chiral Hoveyda-Grubbs II type ruthenium complexes bearing N-heterocyclic carbene (NHC) ligands with Syn-phenyl groups on the backbone and Syn- or Anti-oriented o-tolyl N-substituents was studied by resorting to dynamic high-performance liquid chromatography (D-HPLC). A complete chromatographic picture of the involved stereoisomers (four for Anti- and two for Syn-complexes) was achieved at very low temperatures (-53°C and -40°C respectively), at which the NHC-Ru bond rotations were frozen out. Inspection of the chromatographic profiles recorded at higher temperatures revealed the presence of plateau zones between the couples of either Syn or Anti stereoisomers, attesting to the active interconversion between the eluted species. Such dynamic chromatograms were successfully simulated through procedures based on both theoretical plate and classical stochastic models. The good superimposition achieved between experimental and simulated chromatographic profiles allowed determination of the related isomerization energy barriers (ΔGisom (#) ), all derived by rotation around the NHC-Ru bond. The obtained diastereomerization barriers between the Anti isomers were found in very good agreement with those previously measured by experimental nuclear magnetic resonance (NMR) and assessed through Density Functional Theory (DFT) calculations. With the same approach, for the first time we also determined the enantiomerization barrier of the Syn isomer. Focused changes to the structure of complex Syn, studied by a molecular modeling approach, were found suitable to strongly reduce the stereolability arising from rotation around the NHC-Ru bond. PMID:26250890

  3. Uranium-Carbene-Imido Metalla-Allenes: Ancillary-Ligand-Controlled cis-/trans-Isomerisation and Assessment of trans Influence in the R2 C=U(IV) =NR' Unit (R=Ph2 PNSiMe3 ; R'=CPh3 ).

    Lu, Erli; Cooper, Oliver J; Tuna, Floriana; Wooles, Ashley J; Kaltsoyannis, Nikolas; Liddle, Stephen T

    2016-08-01

    Uranium(IV)-carbene-imido complexes [U(BIPM(TMS) )(NCPh3 )(κ(2) -N,N'-BIPY)] (2; BIPM(TMS) =C(PPh2 NSiMe3 )2 ; BIPY=2,2-bipyridine) and [U(BIPM(TMS) )(NCPh3 )(DMAP)2 ] (3; DMAP=4-dimethylamino-pyridine) that contain unprecedented, discrete R2 C=U=NR' units are reported. These complexes complete the family of E=U=E (E=CR2 , NR, O) metalla-allenes with feasible first-row hetero-element combinations. Intriguingly, 2 and 3 contain cis- and trans-C=U=N units, respectively, representing rare examples of controllable cis/trans isomerisation in f-block chemistry. This work reveals a clear-cut example of the trans influence in a mid-valent uranium system, and thus a strong preference for the cis isomer, which is computed in a co-ligand-free truncated model-to isolate the electronic trans influence from steric contributions-to be more stable than the trans isomer by approximately 12 kJ mol(-1) with an isomerisation barrier of approximately 14 kJ mol(-1) . PMID:27405793

  4. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    Zhou, Yong Hong [Huaibei Normal Univ., Huaibei (China)

    2013-04-15

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH{sub 2}){sub n}, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures.

  5. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH2)n, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures

  6. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    Diver, Steven T.

    2007-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in en...

  7. Rh-Catalyzed rearrangement of vinylcyclopropane to 1,3-diene units attached to N-heterocycles

    Alberto Brandi

    2011-03-01

    Full Text Available Dienes embedded in quinolizidine and indolizidine structures can be prepared in four steps from cyclic nitrones and bicyclopropylidene. The key intermediates α-spirocyclopropanated N-heterocyclic ketones, generated via a domino 1,3-dipolar cycloaddition/thermal rearrangement sequence, were converted by Wittig methylenation to the corresponding vinylcyclopropanes (VCPs, which underwent rearrangement to 1,3-dienes in the presence of the Wilkinson Rh(I complex under microwave heating. The previously unexplored Rh(I-catalyzed opening of the VCP moiety embedded in an azapolycyclic system occurs at high temperature (110–130 °C to afford the corresponding 1,3-dienes in moderate yield (34–53%.

  8. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.

    Chirik, Paul J

    2015-06-16

    The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group's efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the interplay of the electronic structure of the base metal compounds and their catalytic performance. First generation, aryl-substituted pyridine(diimine) iron dinitrogen catalysts exhibited high turnover frequencies at low catalyst loadings and hydrogen pressures for the hydrogenation of unactivated terminal and disubstituted alkenes. Exploration of structure-reactivity relationships established smaller aryl substituents and more electron donating ligands resulted in improved performance. Second generation iron and cobalt catalysts where the imine donors were replaced by N-heterocyclic carbenes resulted in dramatically improved activity and enabled hydrogenation of more challenging unactivated, tri- and tetrasubstituted alkenes. Optimized cobalt catalysts have been discovered that are among the most active homogeneous hydrogenation catalysts known. Synthesis of enantiopure, C1 symmetric pyridine(diimine) cobalt complexes have enabled rare examples of highly enantioselective

  9. Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic N-heterocycles.

    Jumde, Ravindra P; Lanza, Francesco; Veenstra, Marieke J; Harutyunyan, Syuzanna R

    2016-04-22

    Catalytic asymmetric conjugate addition reactions represent a powerful strategy to access chiral molecules in contemporary organic synthesis. However, their applicability to conjugated alkenyl-N-heteroaromatic compounds, of particular interest in medicinal chemistry, has lagged behind applications to other substrates. We report a highly enantioselective and chemoselective catalytic transformation of a wide range of β-substituted conjugated alkenyl-N-heteroaromatics to their corresponding chiral alkylated products. This operationally simple methodology can introduce linear, branched, and cyclic alkyl chains, as well as a phenyl group, at the β-carbon position. The key to this success was enhancement of the reactivity of alkenyl-heteroaromatic substrates via Lewis acid activation, in combination with the use of readily available and highly reactive Grignard reagents and a copper catalyst coordinated by a chiral chelating diphosphine ligand. PMID:27102477

  10. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  11. The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity

    More, Vijaykumar

    2014-01-01

    2010 - 2011 The thesis entitled “The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity" is divided into three chapters. The title of the thesis clearly reflects the importance of nitrogen heterocycles compounds: in fact they are extremely pivotal structural motifs responsible for eliciting various biological activities in natural products and synthetic medicines. This has attracted the medicinal chemists towards the synth...

  12. Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions

    The ethenylene bridges on the walls of an ethenylene-bridged periodic mesoporous organosilica were successfully modified with a variety of pyrrole derivatives – pyrrole, methylpyrrole, dimethylpyrrole, trimethylpyrrole and 1-phenylpyrrole – through Diels–Alder reactions. X-ray diffraction measurements and N2 adsorption–desorption analysis confirmed the preservation of the ordering and mesoporosity of the parent material as well as the decoration of the pores with the surface Diels–Alder adducts. Moreover, other techniques such as DRIFT, 13C and 29Si nuclear magnetic resonances revealed the formation of the surface N-heterocyclic compounds at the parent ethenylene sites. - Highlights: • Chemical modification of the double bonds on an ethene-PMO through the Diels–Alder reaction. • A family of pyrrole derivatives act as dienes in the Diels–Alder reaction. • Well-ordering and mesoporosity are retained after the post-functionalization. • N-containing compounds on the surface of ethene-PMO are present after the Diels–Alder reaction

  13. Supramolecular hydrogen-bonding patterns of co-crystals containing the active pharmaceutical ingredient (API) phloroglucinol and N-heterocycles.

    Cvetkovski, Aleksandar; Bertolasi, Valerio; Ferretti, Valeria

    2016-06-01

    The active pharmaceutical ingredient phloroglucinol (PHL) has been taken as an illustrative molecule to explore the intermolecular interactions which can be established with other molecular entities to build PHL pharmaceutical co-crystals. The crystal structures of five newly synthesized co-crystals are reported, where PHL is crystallized with N-heterocycles, namely 2-hydroxy-6-methylpyridine (1), 2,4-dimethyl-6-hydroxypyrimidine (2), 4-phenylpyridine (3), 2-hydroxypyridine (4) and 2,3,5,6-tetramethylpyrazine (5). The structural characteristics of these co-crystals, as far as the hydrogen-bonding networks and the crystalline architectures are concerned, are strongly dependent on the chemical features of the coformer molecules, as well as on their size and shape. A detailed analysis of the intermolecular interactions established in all the PHL co-crystals of known structures has allowed the recognition of some regularities in the packing modes that can be useful in the design of new supramolecular adducts forming predictable structural motifs. PMID:27240764

  14. Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions

    Esquivel, Dolores; De Canck, Els [Center for Ordered Materials, Organometallics and Catalysis, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent (Belgium); Jiménez-Sanchidrián, César [Department of Organic Chemistry, Nanochemistry and Fine Chemistry Research Institute (IUIQFN), Faculty of Sciences, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV, km 396, 14071 Córdoba (Spain); Romero-Salguero, Francisco J., E-mail: qo2rosaf@uco.es [Department of Organic Chemistry, Nanochemistry and Fine Chemistry Research Institute (IUIQFN), Faculty of Sciences, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV, km 396, 14071 Córdoba (Spain); Van Der Voort, Pascal, E-mail: pascal.vandervoort@ugent.be [Center for Ordered Materials, Organometallics and Catalysis, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2014-11-14

    The ethenylene bridges on the walls of an ethenylene-bridged periodic mesoporous organosilica were successfully modified with a variety of pyrrole derivatives – pyrrole, methylpyrrole, dimethylpyrrole, trimethylpyrrole and 1-phenylpyrrole – through Diels–Alder reactions. X-ray diffraction measurements and N{sub 2} adsorption–desorption analysis confirmed the preservation of the ordering and mesoporosity of the parent material as well as the decoration of the pores with the surface Diels–Alder adducts. Moreover, other techniques such as DRIFT, {sup 13}C and {sup 29}Si nuclear magnetic resonances revealed the formation of the surface N-heterocyclic compounds at the parent ethenylene sites. - Highlights: • Chemical modification of the double bonds on an ethene-PMO through the Diels–Alder reaction. • A family of pyrrole derivatives act as dienes in the Diels–Alder reaction. • Well-ordering and mesoporosity are retained after the post-functionalization. • N-containing compounds on the surface of ethene-PMO are present after the Diels–Alder reaction.

  15. Blue-emitting dinuclear N-heterocyclic dicarbene gold(I) complex featuring a nearly unit quantum yield

    Baron, Marco

    2012-02-06

    Dinuclear N-heterocyclic dicarbene gold(I) complexes of general formula [Au 2(RIm-Y-ImR) 2](PF 6) 2 (R = Me, Cy; Y = (CH 2) 1-4, o-xylylene, m-xylylene) have been synthesized and screened for their luminescence properties. All the complexes are weakly emissive in solution whereas in the solid state some of them show significant luminescence intensities. In particular, crystals or powders of the complex with R = Me, Y = (CH 2) 3 exhibit an intense blue emission (λ max = 450 nm) with a high quantum yield (Φ em = 0.96). The X-ray crystal structure of this complex is characterized by a rather short intramolecular Au•••Au distance (3.272 Ǻ). Time dependent density functional theory (TDDFT) calculations have been used to calculate the UV/vis properties of the ground state as well as of the first excited state of the complex, the latter featuring a significantly shorter Au•••Au distance. © 2012 American Chemical Society.

  16. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    Nitrogen-rich heterocycles represent a unique class of energetic frameworks featuring high heats of formation and high nitrogen content, which have generated considerable research interest in the field of high energy density materials (HEDMs). Although traditional C-functionalization methodology of aromatic hydrocarbons has been fully established, studies on N-functionalization strategies of nitrogen-containing heterocycles still have great potential to be exploited by virtue of forming diverse N-X bonds (X = C, N, O, B, halogen, etc.), which are capable of regulating energy performance and the stability of the resulting energetic compounds. In this sense, versatile N-functionalization of N-heterocyclic frameworks offers a flexible strategy to meet the requirements of developing new-generation HEDMs. In this Account, the role of strategic N-functionalization in designing new energetic frameworks, including the formation of N-C, N-N, N-O, N-B and N-halogen bonds, is emphasized. In the family of N-functionalized HEDMs, energetic derivatives, by virtue of forming N-C bonds, are the most widely used type due to the good nucleophilic capacity of most heterocyclic backbones. Although introduction of carbon tends to decrease energetic performance, significant improvement in material sensitivity makes this strategy attractive for safety concerns. More importantly, most "explosophores" can be readily introduced into the N-C linkage, thus providing a promising route to various HEDMs. Formation of additional N-N bonds typically gives rise to higher heats of formation, implying the potential enhancement in detonation performance. In many cases, the increased hydrogen bonding interactions within N-N functionalized heterocycles also improve thermal stability accordingly. Introduction of a single N,N'-azo bridge into several azole moieties leads to an extended nitrogen chain, demonstrating a new strategy for designing high-nitrogen compounds. The strategy of N-O functionalization

  17. Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis.

    Werlé, Christophe; Goddard, Richard; Philipps, Petra; Farès, Christophe; Fürstner, Alois

    2016-03-23

    Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology. PMID:26910883

  18. Ruthenium catalysts bearing a benzimidazolylidene ligand for the metathetical ring-closure of tetrasubstituted cycloolefins

    Borguet, Yannick

    2015-01-01

    © The Royal Society of Chemistry. Deprotonation of 1,3-di(2-tolyl)benzimidazolium tetrafluoroborate with a strong base afforded 1,3-di(2-tolyl)benzimidazol-2-ylidene (BTol), which dimerized progressively into the corresponding dibenzotetraazafulvalene. The complexes [RhCl(COD)(BTol)] (COD is 1,5-cyclooctadiene) and cis-[RhCl(CO)2(BTol)] were synthesized to probe the steric and electronic parameters of BTol. Comparison of the percentage of buried volume (%VBur) and of the Tolman electronic parameter (TEP) of BTol with those determined previously for 1,3-dimesitylbenzimidazol-2-ylidene (BMes) revealed that the two N-heterocyclic carbenes displayed similar electron donicities, yet the 2-tolyl substituents took a slightly greater share of the rhodium coordination sphere than the mesityl groups, due to a more pronounced tilt. The anti,anti conformation adopted by BTol in the molecular structure of [RhCl(COD)(BTol)] ensured nonetheless a remarkably unhindered access to the metal center, as evidenced by steric maps. Second-generation ruthenium-benzylidene and isopropoxybenzylidene complexes featuring the BTol ligand were obtained via phosphine exchange from the first generation Grubbs and Hoveyda-Grubbs catalysts, respectively. The atropisomerism of the 2-tolyl substituents within [RuCl2(=CHPh)(PCy3)(BTol)] was investigated by using variable temperature NMR spectroscopy, and the molecular structures of all four possible rotamers of [RuCl2(=CH-o-OiPrC6H4)(BTol)] were determined by X-ray crystallography. Both complexes were highly active at promoting the ring-closing metathesis (RCM) of model α,ω-dienes. The replacement of BMes with BTol was particularly beneficial to achieve the ring-closure of tetrasubstituted cycloalkenes. More specifically, the stable isopropoxybenzylidene chelate enabled an almost quantitative RCM of two challenging substrates, viz., diethyl 2,2-bis(2-methylallyl

  19. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  20. Allylpalladium(II) Histidylidene Complexes and Their Application in Z-Selective Transfer Semihydrogenation of Alkynes

    Drost, Ruben M.; Broere, Daniël L J; Hoogenboom, Jorin; de Baan, Simone N.; Lutz, Martin; de Bruin, B.; Elsevier, C. J.

    2015-01-01

    We have studied the use of amino acid histidine as a precursor for N-heterocyclic carbene (NHC) ligands. This natural amino acid possesses an imidazole substituent, which makes it an interesting NHC precursor that contains both an acid and an amino functionality. These functionalities may be used fo

  1. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics

    Pápai, Mátyás Imre; Vankó, György; Rozgonyi, Tamas;

    2016-01-01

    Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands de...

  2. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion. PMID:27104299

  3. 1,2 Migration in Carbenoid and Carbene Reactions

    MA Ming; JIANG Nan; SHI Wei-Feng; WANG Jian-Bo

    2003-01-01

    @@ 1,2-Hydride, 1,2-alkyl and 1,2-aryl migrations are common in free carbene chemistry, and they are also fre quently encountered in the reactions of metal carbenes. In some cases, these migration reactions can compete with the typical reactions of metal carbenes, such as X-H (X = Si, C, O, N, S, etc. ) insertions and cyclopropanations. [1] The 1,2-migration also found synthetic application. An example is the SnCl2-promoted 1,2-hydride migration of α-diazo-β-hydroxy esters, known as Roskamp homologation, which leads to the formation of β-keto esters. [2

  4. TOF-SIMS analysis of N-heterocyclic compounds-implications for the Rosetta/COSIMA Mission

    Le Roy, Léna; Briois, Christelle; Thirkell, Laurent; Cottin, Hervé; Fray, Nicolas; Poulet, Gilles; Hilchenbach, Martin

    The European Rosetta spacecraft launched on March 2004 will reach the comet 67/P-Churyumov-Gerasimenko in 2014 to perform the most exhaustive study ever achieved on comets (Glassmeier et al. 2007). The COmetary Secondary Ion Mass Analyser (COSIMA) carried on board will focus on chemical analysis of cometary dust grains collected in situ on a variety of metallic targets. COSIMA's goals are the in-situ characterisation of the atomic, molecular and isotopic composition of cometary dust grains. These analyses will provide inorganic and organic data about pristine solar system material (Kissel et al. 2007). COSIMA is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) using an indium liquid metal ion source. Spectra inter-pretation of complex unknown samples with COSIMA instrument will be difficult due to the limited mass resolution (M/M of 2000 at m=100 amu) which excludes unambiguous compounds identification and requires preliminary work with reference samples. To help the interpretation of COSIMA spectra calibration laboratory work is in progress using the twin of the COSIMA flight instrument located at Katlenburg-Lindau (Germany) and the prototype of COSIMA in Orléans (France). Here we report the analysis of 100-400m deposits of organics performed with the COSIMA prototype based in Orléans. The organics are expected to be minor peaks, making their identification not simple. Nucleobase molecules, especially the purine bases, are among the building of the replicating molecules of life (DNA and RNA). Scour the universe in an attempt to find such a natural source of nucleobases is of fundamental significance in considerations of the origin of life (Lazcano Miller 1996) Therefore we focused our work on N-heterocyclic compounds which are believed to be present in comets or which belong to the chemical family of such molecules (Krueger Kissel 2006). Experiments have been performed on nine compounds: adenine, guanine, imidazole, 2-aminopyrimidine, cytosine

  5. Synthesis, spectroscopic characterization and electronic structure of some new Cu(I) carbene complexes

    Chinnappan Sivasankar; Christina Baskaran; Ashoka G Samuelson

    2006-05-01

    Reaction of oligomeric Cu(I) complexes [Cu{-S-C(=NR)(O-Ar-CH3)}] with Lewis acids gave Cu(I) carbene complexes, which were characterized by 1H and 13C NMR spectroscopy. Cu(I) carbene complexes could be directly generated from RNCS, Cu(I)-OAr and Lewis acids; this method can be used to prepare Cu(I) carbene complexes with different substitutents on the carbene carbon. The complexes were unreactive towards olefins and do not undergo cyclopropanation. Electronic structure calculations (DFT) show that the charge on the carbene carbon plays an important role in controlling the reactivity of the carbene complex.

  6. Enantiocontrol in Macrocycle Formation from Catalytic MetalCarbene Transformations

    DOYLE, Michael P.; DOYLE, Michael P; HU, Wen-Hao(胡文浩); 胡文浩

    2001-01-01

    The development of catalytic metal carbene transformations for the construction of macrocyclic lactones has dramatically increased their synthetic advantages.This is the first review of this developing methodology.

  7. Metal carbenes in homogeneous alkene metathesis: computational investigations

    du Toit, J I; Van Sittert, C.G.C.E.; H. C. M. Vosloo

    2013-01-01

    This paper demonstrates the contribution of molecular modeling as a tool to understanding alkene metathesis e by giving an overview of computational studies done of the four main types of metal carbenes tested in homogeneous alkene metathesis as catalysts after the discovery of the Chauvin mechanism. Three areas were discussed, namely: properties of transition metal complexes, the theoretical treatment of the four main types of metal carbenes and the computational studies done on ...

  8. Mutagenic activity of some platinum and ruthenium complexes with N-heterocyclic ligands in salmonella typhimurium Ta 1530 and Ta 98

    The mutagenic activity of some platinum and ruthenium complexes with 2,2'-biquinoline (b iq) and 2-(2' -pyridyl) quinoline (p q) was examined in strains of salmonella typhimurium Ta 1530 and Ta 98. The complexes cis-[Pt(Nn)X2)] (Nn=b iq, X=CI; Nn=p q, X=CI, Br), Pt3(b iq)2I6 and me r-[Ru(b iq)2CI3].2H2O exhibit significant mutagenic activity while me r-[Ru(p q)CI3(C2H5OH)], [Ru(p q)CI4]. 3a-2a and [Ru(p q) (DMSO)2CI2].0.5H2O show much weaker mutagenic activity. the platinum complexes appear to be more active via induction of frameshift than base substitution mutation while me r-[Ru(b iq)2CI3].2H2O is highly mutagenic via base substitution. (authors). 16 refs., 2 tabs

  9. A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent.

    McCarty, Zachary R; Lastovickova, Dominika N; Bielawski, Christopher W

    2016-04-01

    The synthesis and study of a cyclic (alkyl)(amido)carbene is described. The carbene was found to undergo C-H insertion at low temperatures, formed cyclopropenes upon exposure to alkynes, and facilitated desulfurization reactions. Spectroscopic studies revealed that the carbene is strongly π-accepting but retains a complimentary degree of σ-donating properties. PMID:27010415

  10. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  11. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Keitz, Benjamin K.; Endo, Koji; Patel, Paresma R.; Herbert, Myles B.; Grubbs, Robert H.

    2011-01-01

    Several new C-H activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts were evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g...

  12. Bonding, Luminescence, Metallophilicity in Linear Au3 and Au2Ag Chains Stabilized by Rigid Diphosphanyl NHC Ligands.

    Ai, Pengfei; Mauro, Matteo; Gourlaouen, Christophe; Carrara, Serena; De Cola, Luisa; Tobon, Yeny; Giovanella, Umberto; Botta, Chiara; Danopoulos, Andreas A; Braunstein, Pierre

    2016-09-01

    The heterofunctional and rigid ligand N,N'-diphosphanyl-imidazol-2-ylidene (PCNHCP; P = P(t-Bu)2), through its phosphorus and two N-heterocyclic carbene (NHC) donors, stabilizes trinuclear chain complexes, with either Au3 or AgAu2 cores, and dinuclear Au2 complexes. The two oppositely situated PCNHCP (L) ligands that "sandwich" the metal chain can support linear and rigid structures, as found in the known tricationic Au(I) complex [Au3(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 (OTf = CF3SO3; [Au3L2](OTf)3; Chem. Commun. 2014, 50, 103-105) now also obtained by transmetalation from [Ag3(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 ([Ag3L2](OTf)3), or in the mixed-metal tricationic [Au2Ag(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 ([Au2AgL2](OTf)3). The latter was obtained stepwise by the addition of AgOTf to the digold(I) complex [Au2(μ2-PCNHCP,κP,κCNHC)2](OTf)2 ([Au2L2](OTf)2). The latter contains two dangling P donors and displays fluxional behavior in solution, and the Au···Au separation of 2.8320(6) Å in the solid state is consistent with metallophilic interactions. In the solvento complex [Au3Cl2(tht)(μ3-PCNHCP,κP,κCNHC,κP)](OTf)·MeCN ([Au3Cl2(tht)L](OTf)·MeCN), which contains only one L and one tht ligand (tht = tetrahydrothiophene), the metal chain is bent (148.94(2)°), and the longer Au···Au separation (2.9710(4) Å) is in line with relaxation of the rigidity due to a more "open" structure. Similar features were observed in [Au3Cl2(SMe2)L](OTf)·2MeCN. A detailed study of the emission properties of [Au3L2](OTf)3, [Au3Cl2(tht)L](OTf)·MeCN, [Au2L2](OTf)2, and [Au2AgL2](OTf)3 was performed by means of steady state and time-resolved photophysical techniques. The complex [Au3L2](OTf)3 displays a bright (photoluminescence quantum yield = 80%) and narrow emission band centered at 446 nm with a relatively small Stokes' shift and long-lived excited-state lifetime on the microsecond timescale, both in solution and in the solid state. In line with the very narrow emission

  13. Two Equilibria of (N-Methyl-3-pyridinium)chlorocarbene, a Cationic Carbene.

    Cang, Hui; Moss, Robert A; Krogh-Jespersen, Karsten

    2016-02-11

    Equilibrium constants and the associated thermodynamic parameters are reported for the equilibria established between the cationic carbene (N-methyl-3-pyridinium)chlorocarbene tetrafluoroborate (MePyr(+)CCl BF4(-), 3) and 1,3,5-trimethoxybenzene (TMB) to form a carbene-TMB complex, as well as between carbene 3 and chloride ion to form the zwitterion, N-methyl-3-pyridinium dichloromethide (10). These equilibrium constants and thermodynamic parameters are contrasted with analogous data for several related carbenes, and the influence of the pyridinium unit in carbene 3 is thereby highlighted. Computational studies augment and elucidate the experimental results. PMID:26830199

  14. Cu(I) and Ag(I) complexes of 7,10-bis-N-heterocycle-diazafluoranthenes: programmed molecular grids?

    Rahanyan, Nelli; Duttwyler, Simon; Linden, Anthony; Baldridge, Kim K; Siegel, Jay S

    2014-07-28

    Reactions of 7,10-disubstituted diazafluoranthene derivatives with three different silver(I) salts AgX (X = [PF6](-), [SbF6](-), [CB11HCl11](-)) and [Cu(CH3CN)4]PF6 afforded complexes exhibiting five different motifs. The crystal structures of the free ligands and nine new complexes from this series of reactions are reported. The use of 2,5-di-tert-butyl-7,10-di(pyridin-2-yl)-8,9-diazafluoranthene as a ligand leads to the formation of the tetranuclear compounds [Ag4(C32H30N4)4][PF6]4·3C6H6·4MeCN, [Ag4(C32H30N4)4][SbF6]4·4C5H12 and [Cu4(C32H30N4)4][PF6]4·8C3H6O, which exhibit "propeller" and saddle-type geometry, respectively, as well as a dinuclear complex [Ag2(C32H30N4)2][CHB11Cl11]2·4C6H4Cl2·CH2Cl2. The reactions involving the less sterically hindered 2,5-di-tert-butyl-7,10-di-(pyrimidin-2-yl)-8,9-diazafluoranthene and 2,5-di-tert-butyl-7,10-di(thiazol-2-yl)-8,9-diazafluoranthene afforded crystals of the dinuclear complexes [Ag2(C30H28N6)2][PF6]2·0.5CH2Cl2·0.5C6H5Cl·0.5C6H12, [Ag2(C30H28N6)2][SbF6]2·C3H6O·0.5C6H14·0.5C6H6, the polymeric species [Ag2(C28H26N4S2)2]n·2n[PF6]n·nC3H6O and the tetranuclear compounds [Cu4(C26H25N4S2)4][PF6]4·2CHCl3·2C3H6O and [Cu4(C30H28N6)4][PF6]4·2.17H2O, which possess saddle and grid-like architectures, respectively. Conformational analysis of the free ligands showed that they exhibit N-C-C-N torsion angles ranging from syn clinal (58°) to fully anti-periplanar conformations; the syn clinal conformation dominates in the complexes. The relative energies of the possible structural conformations of the synthesized ligands, as well as of oxazole disubstituted diazafluoranthenes, were calculated using density functional theory at the B97D/Def2-TZVPP level of theory. PMID:24915516

  15. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. PMID:26428172

  16. Group 4 Transition-Metal Complexes of an Aniline–Carbene–Phenol Ligand

    Despagnet-Ayoub, Emmanuelle

    2013-05-24

    Attempts to install a tridentate aniline-NHC-phenol (NCO) ligand on titanium and zirconium led instead to complexes resulting from unexpected rearrangement pathways that illustrate common behavior in carbene-early- transition-metal chemistry. © 2013 American Chemical Society.

  17. Selective hydrogenation of levulinic acid to γ-valerolactone using in situ generated ruthenium nanoparticles derived from Ru-NHC complexes.

    Tay, Boon Ying; Wang, Cun; Phua, Pim Huat; Stubbs, Ludger Paul; Huynh, Han Vinh

    2016-02-28

    Hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was studied by using mono- and bidentate p-cymene ruthenium(ii) N-heterocyclic carbene (NHC) complexes as catalyst precursors. In water, all complexes were found to be reduced in situ to form ruthenium nanoparticles (RuNPs) with a high hydrogenation activity. In organic solvents, complexes with monodentate NHC ligands also formed nanoparticles, while complexes with bidentate ligands gave rise to stable homogeneous catalysts with moderate hydrogenation activities. PMID:26806644

  18. Design and Synthesis of Ruthenium based Olefin Metathesis Catalysts

    Singstad, Åsmund

    2010-01-01

    The present Master thesis seeks to develop new unsymmetrical ruthenium-based olefin metathesis catalysts and therein a better understanding of olefin metathesis catalysis with unsymmetrical active complexes. Such catalysts have a potential for chemoselectivity and in best case, stereoselectivity. Two different classes of catalysts, coordinated by a hemilabile amine ligand and by a novel N-heterocyclic carbene (NHC) ligand respectively, have been investigated. Two new amine-based olefin metath...

  19. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  1. Unusual NHC-Iridium(I) Complexes and Their Use in the Intramolecular Hydroamination of Unactivated Aminoalkenes.

    Sipos, Gellért; Ou, Arnold; Skelton, Brian W; Falivene, Laura; Cavallo, Luigi; Dorta, Reto

    2016-05-10

    N-heterocyclic carbene (NHC) ligands with naphthyl side chains were employed for the synthesis of unsaturated, yet isolable [(NHC)Ir(cod)](+) (cod=1,5-cyclooctadiene) complexes. These compounds are stabilised by an interaction of the aromatic wingtip that leads to a sideways tilt of the NHC-Ir bond. Detailed studies show how the tilting of such N-heterocyclic carbenes affects the electronic shielding properties of the carbene carbon atom and how this is reflected by significant upfield shifts in the (13) C NMR signals. When employed in the intramolecular hydroamination, these [(NHC)Ir(cod)](+) species show very high catalytic activity under mild reaction conditions. An enantiopure version of the catalyst system produces pyrrolidines with excellent enantioselectivities. PMID:27059164

  2. Synthesis and structure-activity correlation studies of metal complexes of alpha-N-heterocyclic carboxaldehyde thiosemicarbazones in Shewanella oneidensis.

    Wilson, Barbara A; Venkatraman, Ramaiyer; Whitaker, Cedrick; Tillison, Quintell

    2005-04-01

    This investigation involved the synthesis of metal complexes to test the hypothesis that structural changesand metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn) and platinum (Pt) complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm) was performed. The wild type (MR-1) grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 X 10(8) +/- 4.3 X 10(7) SD) than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 x 10(8) +/- 6.4 X 10(7) SD) under comparable aerobic conditions (p = 0.0004). No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p = 0.425) or the thiosemicarbazone ligand (p = 0.313). Growth of MR-1 in the presence of diphenyl Sn-thiosemicarbazone was significantly different among treatment groups (p = 0.012). MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05). The mean number of DSP-010 variant strain cells also differed among

  3. Synthesis and Structure-Activity Correlation Studies of Metal Complexes of α-N-heterocyclic Carboxaldehyde Thiosemicarbazones in Shewanella oneidensis

    Wilson, Barbara A.; Venkatraman, Ramaiyer; Whitaker, Cedrick; Tillison, Quintell

    2005-01-01

    This investigation involved the synthesis of metal complexes to test the hypothesis that structural changes and metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn) and platinum (Pt) complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm) was performed. The wild type (MR-1) grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 × 108 ± 4.3 × 107 SD) than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 × 108 ± 6.4 × 107 SD) under comparable aerobic conditions (p=0.0004). No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p= 0.425) or the thiosemicarbazone ligand (p=0.313). Growth of MR-1 in the presence of diphenyl Sn- thiosemicarbazone was significantly different among treatment groups (p=0.012). MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05). The mean number of DSP-010 variant strain cells also differed among diphenyl Sn

  4. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  5. The reactions of anthronylidene carbene with some heterocyclic compounds

    The action of the anthronylidene carbene, generated by photochemical decomposition of 9-diazo 10-anthron, on four heterocyclic compounds (furan, thiophene, 1-methyl-pyrrole and 2,5-dihydrofuran) has been examined. Two classical carbene reactions have been observed: the addition on double bond (furan, thiophene, 1-methylpyrrole) and hydrogen atom abstraction of the heterocyclic compound (2,5-dihydrofuran). In the case of furan and thiophene, the cyclo-propanic compound resulting from the addition is spontaneously transformed into an ethylenic derivative by valence isomerization. The furan derivative undergoes a cis-trans isomerization, while the thiophene one undergoes an extra carbene attack. In the case of 1-methylpyrrole, the corresponding cyclo-propanic compound undergoes a ring cleavage, followed by a hydrogen atom migration leading to the formation of a substituted anthron. Only an allylic hydrogen atom selective abstraction of heterocyclic compound takes place in the reaction of anthronylidene carbene with 2,5-dihydrofuran. The asymmetrical coupling of radicals so obtained yields the corresponding substituted anthron. (author)

  6. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium‐to‐Gold Transmetalation

    Werlé, Christophe; Goddard, Richard

    2015-01-01

    Abstract The dirhodium carbene derived from bis(4‐methoxyphenyl)diazomethane and [Rh(tpa)4]⋅CH2Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X‐ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4‐methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  7. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium-to-Gold Transmetalation.

    Werlé, Christophe; Goddard, Richard; Fürstner, Alois

    2015-12-14

    The dirhodium carbene derived from bis(4-methoxyphenyl)diazomethane and [Rh(tpa)4 ]⋅CH2 Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X-ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4-methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2 ] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  8. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  9. A very peculiar family of N-heterocyclic phosphines: unusual structures and the unique reactivity of 1,3,2-diazaphospholenes.

    Gudat, D

    2016-04-14

    This Perspective gives an account of the peculiar electronic and molecular structures of N-heterocyclic phosphines featuring either a single 1,3,2-diazaphospholene (DAP) ring with an exocyclic P-substituent X or two DAP rings linked by a P-P bond (bis-diazaphospholenyls), respectively, and their impact on the chemical properties of these molecules. The bonding situation in simple DAPs is epitomized by strong hyperconjugation between endocyclic π-type electrons and the exocyclic P-X bond. This interaction may induce a perceptible ionic polarization of the P-X bond which can persist even in the limit of a vanishing electronegativity gradient between P and X, and becomes visible in unusual geometric distortions of molecular structures and a unique chemical behaviour. Structural distortions are particularly evident in bond lengthening effects in P-halogen and P-phosphino derivatives R2P-DAP (with R2P ≠ DAP) which span the whole range from covalent molecules to contact ion pairs with a close relation to frustrated Lewis-pairs. The most significant impact on the chemical properties is found for P-phosphino- and P-hydrogen derivatives where reactions at substantially accelerated rates or totally new reaction modes can be observed, and new stoichiometric and first catalytic processes exploiting these features are currently emerging. The recently discovered bis-diazaphospholenyls differ from the simple derivatives as their central bond remains unpolarised as a consequence of the symmetric molecular structure. The occurrence of low-energy P-P bond homolysis that was nonetheless observed in one case is according to the results of thermochemical studies of P-P bond fission reactions attributable to the effects of steric congestion and induces chemical reactivity that can be considered complementary to that of the simple R2P-DAPs. Some concluding remarks will pay attention to a facet of DAP reactivity that has so far been widely neglected but is currently receiving

  10. The bicyclo[2.2.2]octyl carbene system as a probe for migratory aptitudes of hydrogen to carbenic centers.

    Creary, X; Butchko, M A

    2001-02-28

    A series of tosylhydrazone derivatives of exo-6-substituted bicylo[2.2.2]octan-2-ones have been prepared. Thermal decomposition of the sodium salts of these tosylhydrazones gives carbene-derived products from 1,3-migration of either the C6 hydrogen (perturbed) or the C7 hydrogen (unperturbed), along with smaller amounts of alkenes derived from 1,2-hydrogen migration. The exo-6-substituent strongly activates 1,3-hydrogen migration in the case of SiMe(3) and weakly activates it in the case of CH(3) substitution. Thiomethoxy and carbomethoxy are weakly deactivating, while cyano and methoxy groups are strongly deactivating. B3LYP/6-31G* calculations on these substituted carbenes and transition states are in qualitative agreement with the ease of 1,3-hydrogen migration of perturbed vs unperturbed hydrogen. These experimental results and computational studies suggest carbene stabilization due to the exo-6-silyl group. They also suggest a reactant-like transition state for 1,3-hydrogen migration in which the inductive effect influences ease of migration. In the case of the exo-6-methoxy group, the inductive effect overwhelms any potential resonance-stabilizing effects. PMID:11456755

  11. Phosphine-Based Z‑Selective Ruthenium Olefin Metathesis Catalysts

    Smit, Wietse; Koudriavtsev, Vitali; Occhipinti, Giovanni; Törnroos, Karl Wilhelm; Jensen, Vidar Remi

    2016-01-01

    Whereas a number of highly Z-selective ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands have been reported in recent years, Zselectivity has so far been difficult to achieve for phosphinebased catalysts. Guided by predictive density functional theory (DFT) calculations, we have developed phosphine-based ruthenium olefin metathesis catalysts giving 70−95% of the Zisomer product in homocoupling of terminal alkenes such as allylbenzene, 1...

  12. Thermally Stable, Latent Olefin Metathesis Catalysts

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  13. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Jiu-Fu, Lu; Hong-Guang, Ge; Juan, Shi

    2015-12-01

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag( DIM)2]BF4, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/ c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å3, Z = 4, D x = 1.771 g/cm3, F (000) = 864, µ(Mo K α) = 1.278 mm-1. The final R 1 = 0.0711 and wR 2 = 0.1903 for reflections with I > 2σ( I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  14. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Jiu-Fu, Lu, E-mail: jiufulu@163.com; Hong-Guang, Ge; Juan, Shi [Chemical Engineering College, Shaanxi University of Technology (China)

    2015-12-15

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag(DIM){sub 2}]BF{sub 4}, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å{sup 3}, Z = 4, D{sub x} = 1.771 g/cm{sup 3}, F (000) = 864, µ(MoK{sub α}) = 1.278 mm{sup –1}. The final R{sup 1} = 0.0711 and wR{sup 2} = 0.1903 for reflections with I > 2σ(I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  15. Highly Active Carbene Ruthenium Catalyst for Metathesis of 1-Hexene

    BAI Chen-Xi; ZHANG Zhi-Qiang; L(U) Xiao-Bing; HE Ren; ZHANG Wen-Zhen; LU Shu-Lai

    2006-01-01

    A new carbene ruthenium complex, 1,3-bis(2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene)(PPh3)Cl2-Ru=CHPh, was synthesized and used as catalyst for the metathesis of 1-hexene. The resulting complex exhibited very high catalytic activity whose TOF is up to 6680 h-1. However, at the same time significant olefin isomerization was observed and could be surpressed by changing reaction conditions, such as temperature, time, alkene/Ru molar ratio and solvent.

  16. Gold-Catalyzed Reactions via Cyclopropyl Gold Carbene-like Intermediates

    Dorel, Ruth; Echavarren, Antonio M.

    2015-01-01

    Cycloisomerizations of 1,n-enynes catalyzed by gold(I) proceed via electrophilic species with a highly distorted cyclopropyl gold(I) carbene-like structure, which can react with different nucleophiles to form a wide variety of products by attack at the cyclopropane or the carbene carbons. Particularly important are reactions in which the gold(I) carbene reacts with alkenes to form cyclopropanes either intra- or intermolecularly. In the absence of nucleophiles, 1,n-enynes lead to a variety of ...

  17. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  18. Fischer carbene complexes with two chromium centers as potential molecular wires

    Metelková, R.; Tobrman, T.; Hoskovcová, I.; Ludvík, Jiří

    Lausanne : International Society of Electrochemistry , 2014. ise142050. [Annual Meeting of the International Society of Electrochemistry /65./. 31.08.2014-05.09.2014, Lausanne] Institutional support: RVO:61388955 Keywords : Fiescher carbene complexes * electron transfer * electrochemistry Subject RIV: CG - Electrochemistry

  19. Ab initio study of the transition-metal carbene cations

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  20. Copper(I Complexes of Mesoionic Carbene: Structural Characterization and Catalytic Hydrosilylation Reactions

    Stephan Hohloch

    2015-04-01

    Full Text Available Two series of different Cu(I-complexes of “click” derived mesoionic carbenes are reported. Halide complexes of the type (MICCuI (with MIC = 1,4-(2,6-diisopropyl-phenyl-3-methyl-1,2,3-triazol-5-ylidene (for 1b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene (for 1c and cationic complexes of the general formula [Cu(MIC2]X (with MIC =1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = CuI2− (for 2á, 1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2a, 1,4-(2,6-diisopropylphenyl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2c have been prepared from CuI or [Cu(CH3CN4](BF4 and the corresponding ligands, respectively. All complexes were characterized by elemental analysis and standard spectroscopic methods. Complexes 2á and 1b were studied by single-crystal X-ray diffraction analysis. Structural analysis revealed 2á to adopt a cationic form as [Cu(MIC2](CuI2 and comparison of the NMR spectra of 2á and 2a confirmed this conformation in solution. In contrast, after crystallization complex 1b was found to adopt the desired neutral form. All complexes were tested for the reduction of cyclohexanone under hydrosilylation condition at elevated temperatures. These complexes were found to be efficient catalysts for this reaction. 2c was also found to catalyze this reaction at room temperature. Mechanistic studies have been carried out as well.

  1. Cobalt azide complexes with a tris(carbene)borate ligand scaffold.

    Scepaniak, Jeremiah J; Margarit, Charles G; Bontchev, Ranko P; Smith, Jeremy M

    2013-09-01

    The four-coordinate Co(II) complex, (azido-κN)[1,1,',1''-(phenylboranetriyl)tris(3-tert-butyl-1H-imidazol-2-ylidene)]cobalt(II), [Co(C27H38BN6)(N3)], (1), denoted PhB(t-BuIm)3CoN3, was prepared by the reaction of the corresponding chloride complex with NaN3. One-electron oxidation results in the isolation of the five-coordinate Co(III) complex, bis(azido-κN)[1,1,',1''-(phenylboranetriyl)tris(3-tert-butyl-1H-imidazol-2-ylidene)]cobalt(III), [Co(C27H38BN6)(N3)2], (2), denoted PhB(t-BuIm)3Co(N3)2. Attempts to prepare cobalt nitrides by thermolysis or photolysis of these complexes were unsuccessful. PMID:24005501

  2. Artificial Diels-Alderase based on the transmembrane protein FhuA.

    Osseili, Hassan; Sauer, Daniel F; Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi; Okuda, Jun

    2016-01-01

    Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVF(tev)). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels-Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. PMID:27559380

  3. Co(III)-Carbene Radical Approach to Substituted 1H-Indenes.

    Das, Braja Gopal; Chirila, Andrei; Tromp, Moniek; Reek, Joost N H; Bruin, Bas de

    2016-07-20

    A new strategy for the catalytic synthesis of substituted 1H-indenes via metalloradical activation of o-cinnamyl N-tosyl hydrazones is presented, taking advantage of the intrinsic reactivity of a Co(III) carbene radical intermediate. The reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of functionalized 1H-indene derivatives. The cheap and easy to prepare low spin cobalt(II) complex [Co(II)(MeTAA)] (MeTAA = tetramethyltetraaza[14]annulene) proved to be the most active catalyst among those investigated, which demonstrates catalytic carbene radical reactivity for a nonporphyrin cobalt(II) complex, and for the first time catalytic activity of [Co(II)(MeTAA)] in general. The methodology has been successfully applied to a broad range of substrates, producing 1H-indenes in good to excellent yields. The metallo-radical catalyzed indene synthesis in this paper represents a unique example of a net (formal) intramolecular carbene insertion reaction into a vinylic C(sp(2))-H bond, made possible by a controlled radical ring-closure process of the carbene radical intermediate involved. The mechanism was investigated computationally, and the results were confirmed by a series of supporting experimental reactions. Density functional theory calculations reveal a stepwise process involving activation of the diazo compound leading to formation of a Co(III)-carbene radical, followed by radical ring-closure to produce an indanyl/benzyl radical intermediate. Subsequent indene product elimination involving a 1,2-hydrogen transfer step regenerates the catalyst. Trapping experiments using 2,2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) radical or dibenzoylperoxide (DBPO) confirm the involvement of cobalt(III) carbene radical intermediates. Electron paramagnetic resonance spectroscopic spin-trapping experiments using phenyl N-tert-butylnitrone (PBN) reveal the radical nature of the reaction. PMID

  4. Chemical functionalization of graphene by carbene cycloaddition: A density functional theory study

    Graphical abstract: - Highlights: • The reaction process of graphene functionalization with CCl2 group in atomic scales was studied. • The potential candidate carbenes CR2 (R = H, F, CN, NO20, NO290, CH3, OCH3, CCH, C6H5) were separately combined with graphene. • The functionalization of graphene nanoribbon with dichlorocarbene group was investigated. • The electronic properties of graphene functionalized by carbene groups were discussed. - Abstract: In this work, we have systematically studied the structural, energetic and electronic properties of graphene functionalized with carbene groups by using density functional theory. Introducing a low concentration of CCl2 group in graphene was studied in detail by DFT, and closed cyclopropane-like three-membered ring structure was formed, meanwhile, the potential candidate carbene groups CR2 (R = H, F, CH3, CN, NO2, OCH3, CCH, C6H5) were added to graphene sheet, and CR2 (R = H, NO2, CH3) groups were expected to be good reactive species to covalently modify graphene. The graphene functionalization with carbene groups above can open graphene's band gap. More CCl2 molecules were added to graphene, and different concentrations of CCl2 group can tune graphene's band gap. In addition, the addition of CCl2 group to graphene edges was investigated, and the stronger binding energy was found. Multiple CCl2 molecules preferred to be bound with the same edge of graphene nanoribbon. This work provides an insight into the detailed molecular mechanism of graphene functionalization with carbene groups

  5. Chemical functionalization of graphene by carbene cycloaddition: A density functional theory study

    Zan, Wenyan, E-mail: zanwy11@lzu.edu.cn

    2014-08-30

    Graphical abstract: - Highlights: • The reaction process of graphene functionalization with CCl{sub 2} group in atomic scales was studied. • The potential candidate carbenes CR{sub 2} (R = H, F, CN, NO{sub 2}{sup 0}, NO{sub 2}{sup 90}, CH{sub 3}, OCH{sub 3}, CCH, C{sub 6}H{sub 5}) were separately combined with graphene. • The functionalization of graphene nanoribbon with dichlorocarbene group was investigated. • The electronic properties of graphene functionalized by carbene groups were discussed. - Abstract: In this work, we have systematically studied the structural, energetic and electronic properties of graphene functionalized with carbene groups by using density functional theory. Introducing a low concentration of CCl{sub 2} group in graphene was studied in detail by DFT, and closed cyclopropane-like three-membered ring structure was formed, meanwhile, the potential candidate carbene groups CR{sub 2} (R = H, F, CH{sub 3}, CN, NO{sub 2}, OCH{sub 3}, CCH, C{sub 6}H{sub 5}) were added to graphene sheet, and CR{sub 2} (R = H, NO{sub 2}, CH{sub 3}) groups were expected to be good reactive species to covalently modify graphene. The graphene functionalization with carbene groups above can open graphene's band gap. More CCl{sub 2} molecules were added to graphene, and different concentrations of CCl{sub 2} group can tune graphene's band gap. In addition, the addition of CCl{sub 2} group to graphene edges was investigated, and the stronger binding energy was found. Multiple CCl{sub 2} molecules preferred to be bound with the same edge of graphene nanoribbon. This work provides an insight into the detailed molecular mechanism of graphene functionalization with carbene groups.

  6. Fullerene–Carbene Lewis Acid–Base Adducts

    Li, Huaping

    2011-08-17

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths similar to those of n-doped fullerenes were observed for the product, consistent with a net transfer of electron density to the C60 core. Corroborating information was obtained using UV photoelectron spectroscopy, which revealed that the adduct has an ionization potential ∼1.5 eV lower than that of C60. Density functional theory calculations showed that the C-C bond is polarized, with a total charge of +0.84e located on the NHC framework and -0.84e delocalized on the C 60 cage. The combination of reactivity, characterization, and theoretical studies demonstrates that fullerenes can behave as Lewis acids that react with C-based Lewis bases and that the overall process describes n-doping via C-C bond formation. © 2011 American Chemical Society.

  7. Rhodium (II) carbene C-H insertion in water and catalyst reuse

    A five-session laboratory experiment is described for the synthesis of a beta-lactam via Rh(II) catalysed intramolecular C-H insertion of a alpha-diazo-alpha-ethoxycarbonyl acetamide. The metallo-carbene, responsible for the C-H bond activation, was generated from the diazo substrate and the catalyst Rh2(OAc)4. The high stability and solubility of the catalyst and the exclusive C-H insertion of the Rh-carbene allows the synthesis of this important heterocycle in water and the catalyst reutilization. (author)

  8. Toward new organometallic architectures: synthesis of carbene-centered rhodium and palladium bisphosphine complexes. stability and reactivity of [PC(BIm)PRh(L)][PF6] pincers.

    Plikhta, Andriy; Pöthig, Alexander; Herdtweck, Eberhardt; Rieger, Bernhard

    2015-10-01

    In this article, we report the synthesis of a tridentate carbene-centered bisphosphine ligand precursor and its complexes. The developed four-step synthetic strategy of a new PC(BIm)P pincer ligand represents the derivatization of benzimidazole in the first and third positions by (diphenylphosphoryl)methylene synthone, followed by phosphine deprotection and subsequent insertion of a noncoordinating anion. The obtained ligand precursor undergoes complexation, with PdCl2 and [μ-OCH3Rh(COD)]2 smoothly forming the target organometallics [PC(BIm)PPdCl][PF6] and [PC(BIm)PRh(L)][PF6] under mild hydrogenation conditions. A more detailed study of the rhodium complexes [PC(BIm)PRh(L)][PF6] reveals significant thermal stability of the PC(BIm)PRh moiety in the solid state as well as in solution. The chemical behavior of 1,3-bis(diphenylphosphinomethylene)benzimidazol-2-ylrhodium acetonitrile hexafluorophosphate has been screened under decarbonylation, hydrogenation, and hydroboration reaction conditions. Thus, the PC(BIm)PRh(I) complex is a sufficiently stable compound, with the potential to be applied in catalysis. PMID:26390389

  9. Synthesis and Structure-Activity Correlation Studies of Metal Complexes of α-N-heterocyclic Carboxaldehyde Thiosemicarbazones in Shewanella oneidensis

    Quintell Tillison

    2005-04-01

    Full Text Available This investigation involved the synthesis of metal complexes to test the hypothesis that structural changes and metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn and platinum (Pt complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm was performed. The wild type (MR-1 grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 X 108 + 4.3 X 107 SD than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 x 108 + 6.4 X 107 SD under comparable aerobic conditions (p=0.0004. No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p= 0.425 or the thiosemicarbazone ligand (p=0.313. Growth of MR-1 in the presence of diphenyl Sn- thiosemicarbazone was significantly different among treatment groups (p=0.012. MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05. The mean number of DSP-010 variant strain cells also differed among diphenyl Sn

  10. Complexation of trivalent cationic lanthanides by N.O donor ligands: physico-chemical studies of the association and selectivity in solution

    The aim of this work is to study the complexation of f-elements in solution by ligands incorporating N-heterocyclic donors. These ligands display interesting properties for the selective separation of An(III)/Ln(III) have been studied to obtain a better understanding of the coordination properties with f-elements and to develop more selective extractants. The hepta-dentate ligand tpaam shows an affinity for Ln(III) similar to the tetradentate ligand tpa in water even when the three additional amide groups are bonded to the metal. Even though the complexation with tpa is exothermic, that with tpaam is endothermic with a more positive entropy. The dehydration of the cation disfavours the formation of Ln(III) complexes with ligands containing weak donors. The analysis of the solution paramagnetic relaxation times of the tpaam complexes is in agreement with data in the solid-state. There is little difference between the formation constants of the Ln3+ complexes with different ligands (tpaam, tpzen, tpa and tpza) as determined by UV-vis spectrophotometry in anhydrous acetonitrile. The limitations encountered during this study are intrinsic to the ligands studied. The preliminary study of two tetrapodal ligands containing acid and pyridine groups (Lpy)or pyrazine (Lpz) show the formation of 1:1 complexes in water. Analysis of the formation constants of the corresponding Gd(III) complexes shows that replacement of a pyridine group by pyrazine result in a loss of stability of 1.6 logarithmic units. (author)