WorldWideScience

Sample records for n-heterocyclic carbene ligands

  1. Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand.

    Vieille-Petit, Ludovic; Luan, Xinjun; Gatti, Michele; Blumentritt, Sascha; Linden, Anthony; Clavier, Hervé; Nolan, Steven P; Dorta, Reto

    2009-07-01

    The introduction of N-heterocyclic carbene ligands that incorporate correctly substituted naphthyl side chains leads to increased activity and stability in second generation ruthenium metathesis catalysts. PMID:19557281

  2. Influence of bulky yet flexible N-heterocyclic carbene ligands in gold catalysis

    Alba Collado

    2015-10-01

    Full Text Available Three new Au(I complexes of the formula [Au(NHC(NTf2] (NHC = N-heterocyclic carbene bearing bulky and flexible ligands have been synthesised. The ligands studied are IPent, IHept and INon which belong to the ITent (Tent for tentacular family of NHC derivatives. The effect of these ligands in gold-promoted transformations has been investigated.

  3. Influence of bulky yet flexible N-heterocyclic carbene ligands in gold catalysis

    Collado, Alba; Patrick, Scott R; Gasperini, Danila; Meiries, Sebastien

    2015-01-01

    Summary Three new Au(I) complexes of the formula [Au(NHC)(NTf2)] (NHC = N-heterocyclic carbene) bearing bulky and flexible ligands have been synthesised. The ligands studied are IPent, IHept and INon which belong to the ITent (Tent for tentacular) family of NHC derivatives. The effect of these ligands in gold-promoted transformations has been investigated. PMID:26664600

  4. N-Heterocyclic carbenes as supporting ligands in transition metal complexes of N2.

    Ohki, Yasuhiro; Seino, Hidetake

    2016-01-01

    Recent developments have substantially expanded the scope of N-heterocyclic carbenes (NHCs) as ancillary ligands in coordination chemistry and homogeneous catalysis. This review provides a short overview of the emerging field of NHC-supported transition metal complexes of N2 and the possibilities to catalytically activate N2 in these complexes. PMID:26646731

  5. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    Suchodolski, Szymon; Wojtkielewicz, Agnieszka; Morzycki, Jacek W

    2015-01-01

    Summary The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify. PMID:26877801

  6. Latent ruthenium–indenylidene catalysts bearing a N-heterocyclic carbene and a bidentate picolinate ligand

    Thibault E. Schmid

    2015-09-01

    Full Text Available A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr(picolinateRuCl(indenylidene complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenylimidazolidin-2-ylidene demonstrated excellent latent behaviour in ring closing metathesis (RCM reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM and enyne metathesis reactions.

  7. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands.

    Chan, Chung Ying; Barnard, Peter J

    2015-11-28

    A series of eight Rhenium(I)-N-heterocyclic carbene (NHC) complexes of the general form [ReCl(CO)3(C^C)] (where C^C is a bis(NHC) bidentate ligand), [ReCl(CO)3(C^C)]2 (where C^C is a bis-bidentate tetra-NHC ligand) and [Re(CO)3(C^N^C)](+)[X](-) (where C^N^C is a bis(NHC)-amine ligand and the counter ion X is either the ReO4(-) or PF6(-)) have been synthesised using a Ag2O transmetallation protocol. The novel precursor imidazolium salts and Re(I) complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for two imidazolium salt and six Re(I) complexes were determined by single crystal X-ray diffraction. These NHC ligand systems are of interest for possible applications in the development of Tc-99m or Re-186/188 radiopharmaceuticals and as such the stability of two complexes of the form [ReCl(CO)3(C^C)] and [Re(CO)3(C^N^C)][ReO4] were evaluated in ligand challenge experiments using the metal binding amino acids L-histidine or L-cysteine. These studies showed that the former was unstable, with the chloride ligand being replaced by either cysteine or histidine, while no evidence for transchelation was observed for the latter suggesting that bis(NHC)-amine ligands of this type may be suitable for biological applications. PMID:26477971

  8. Ligand-controlled regioselectivity in the hydrothiolation of alkynes by rhodium N-heterocyclic carbene catalysts

    Giuseppe, Andrea di; Castarlenas, Ricardo; Pérez-Torrente, Jesús J.; Crucianelli, Marcello; Polo, Víctor; Sancho, Rodrigo; FERNANDO J LAHOZ; LUIS A ORO

    2012-01-01

    Rh-N-heterocyclic carbene compounds [Rh(μ-Cl)(IPr)(ν 2- olefin)] 2 and RhCl(IPr)(py)(ν 2-olefin) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-carbene, py = pyridine, olefin = cyclooctene or ethylene) are highly active catalysts for alkyne hydrothiolation under mild conditions. A regioselectivity switch from linear to 1-substituted vinyl sulfides was observed when mononuclear RhCl(IPr)(py)(ν 2- olefin) catalysts were used instead of dinuclear precursors. A complex interplay between electron...

  9. Antimicrobial Studies of N-Heterocyclic Carbene Silver Complexes Containing Benzimidazol-2-ylidene Ligand

    Yetkin Gök; Yakup Sarı; Senem Akkoç; İlknur Özdemir; Selami Günal

    2014-01-01

    Seven novel 4-vinylbenzyl substituted N-heterocyclic carbene (NHC) silver complexes were synthesized from different benzimidazolium salts and silver (I) oxide in dichloromethane at room temperature. These new 4-vinylbenzyl substituted NHC silver complexes were characterized by spectroscopic (NMR, IR) and elemental analysis techniques. Using the agar dilution procedure, the antimicrobial activities of these synthesized new compounds were investigated against Gram (+)/(−) bacterial and fungal s...

  10. Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: An artifical heme analogue?

    Anneser, Markus R.

    2015-04-20

    An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds. © 2015 American Chemical Society.

  11. Nickel N-heterocyclic carbene complexes in homogeneous catalysis

    Berding, Joris

    2009-01-01

    Described in this thesis are the investigations into the chemistry of N-heterocyclic carbene (NHC) ligands and transition-metal complexes thereof. Specifically, a variety of N-heterocyclic carbene complexes of nickel were prepared, characterized and used as catalysts in three types of homogeneous catalytic processes. First, nickel(II) complexes of monodentate NHC ligands were successfully used as catalysts in the hydrosilylation of internal alkynes. Second, nickel(II) complexes bearing bident...

  12. Ruthenium complexes of chelating amido-functionalized N-heterocyclic carbene ligands: Synthesis, structure and DFT studies

    Sachin Kumar; Anantha Narayanan; Mitta Nageswar Rao; Mobin M Shaikh; Prasenjit Ghosh

    2011-11-01

    Synthesis, structure and density functional theory (DFT) studies of a series of new ruthenium complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]RuCl(-cymene) [R = Me (1c), -Pr (2c), CH2Ph (3c); -cymene = 4--propyltoluene] supported over /-functionalized N-heterocyclic carbene (NHC) ligands are reported. In particular, the ruthenium (1-3)c complexes were synthesized from the respective silver complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]2Ag+Cl− [R = Me (1b), -Pr (2b), CH2Ph (3b)] by the treatment with [Ru(-cymene)Cl2]2 in 65-76% yields. The molecular structures of (1-3)c revealed the chelation of the N-heterocylic carbene ligand through the carbene center and an amido sidearm of the ligand in all of the three complexes. The density functional theory studies on the ruthenium (1-3)c complexes indicated strong binding of the NHC ligand to the metal center as was observed from the deeply buried NHC-Ru -bonding molecular orbitals.

  13. An overview of N-heterocyclic carbenes

    Hopkinson, Matthew N.; Richter, Christian; Schedler, Michael; Glorius, Frank

    2014-06-01

    The successful isolation and characterization of an N-heterocyclic carbene in 1991 opened up a new class of organic compounds for investigation. From these beginnings as academic curiosities, N-heterocyclic carbenes today rank among the most powerful tools in organic chemistry, with numerous applications in commercially important processes. Here we provide a concise overview of N-heterocyclic carbenes in modern chemistry, summarizing their general properties and uses and highlighting how these features are being exploited in a selection of pioneering recent studies.

  14. An N-Heterocyclic Carbene as a Bidentate Hemilabile Ligand: A Synchrotron X-ray Diffraction and Density Functional Theory Study

    The N-heterocyclic carbene ligand IMes was shown by synchrotron crystallography and DFT computations to adopt a hemilabile bidentate coordination mode in CpM(CO)2(IMes)+B(C6F5)4- (M = Mo, W), with a C=C bond of one mesityl weakly coordinated to the metal.

  15. Palladium complexes of a new type of N-heterocyclic carbene ligand derived from a tricyclic triazolooxazine framework

    Manoj Kumar Gangwar; Alok Ch Kalita; Prasenjit Ghosh

    2014-09-01

    A new type of tricyclic triazolooxazine derived N-heterocyclic carbene precursors were developed by the alkylation reaction of a tricyclic triazolooxazine framework. In particular, the reaction of 5a,6,7,8,9,9ahexahydro-4-benzo[][1,2,3]triazolo[1,5-][1,4]oxazine with methyl iodide and ethyl iodide yielded the tricyclic triazolooxazine derived N-heterocyclic carbene precursors, (1−2)a, in 67−84% yield. The tricyclic triazolooxazinium iodide salts, (1−2)a, underwent metallation in a straight forward manner upon treatment with PdCl2 in the presence of K2CO3 in pyridine to give the trans-{3-(R)-5a,6,7,8,9,9a-hexahydro-4-benzo[][1,2,3]triazolo[1,5-][1,4]oxazin-4-ylidene} PdI2(pyridine) [R = Me (1b), Et (2b)] complexes in 23−25% yield. The new tricyclic triazolooxazine derived N-heterocyclic carbene moiety, as stabilized upon binding to palladium in the (1−2)b complexes, was structurally characterized by the X-ray single crystal diffraction studies.

  16. Synthesis and Characterization of Ag(I) and Pd(II) Complexes with a Pyridine Substituted N-Heterocyclic Carbene Ligand

    We have used our new tridentate pyridine substituted N-heterocyclic carbene to generate an interesting trinuclear [((MepyCH2)2-Im)3Ag3]3+ complex, displaying very short Ag-Ag separations. A Pd(II)-NHC complex was prepared from [((MepyCH2)2-Im)3Ag3]3+ via a facile transmetallation, leading to a dimeric [(MepyCH2)2-ImPdCl]22+ complex. Future plans are underway for the survey of the potential applications of these new NHC complexes as luminesent materials or homogeneous catalysts. Since Arduengo's discovery of the first isolable free carbene in 1991, N-heterocyclic carbenes (NHC) have been extensively utilized as ligands for transition metals. NHC are generally more stable than two extreme types of carbenes, the Fischer and the Schrock carbenes. They are good ? donors like most tertiary phosphins, PR3, but the ?-bonding with the metal is rather weak. The thriving studies of NHC-coordinated metal complexes produced a wide range of applications from homogeneous catalysts to materials science

  17. Iridium(I) complexes with anionic N-heterocyclic carbene ligands as catalysts for the hydrogenation of alkenes in nonpolar media.

    Kolychev, Eugene L; Kronig, Sabrina; Brandhorst, Kai; Freytag, Matthias; Jones, Peter G; Tamm, Matthias

    2013-08-21

    A series of lithium complexes of anionic N-heterocyclic carbenes that contain a weakly coordinating borate moiety (WCA-NHC) was prepared in one step from free N-heterocyclic carbenes by deprotonation with n-butyl lithium followed by borane addition. The reaction of the resulting lithium-carbene adducts with [M(COD)Cl]2 (M = Rh, Ir; COD = 1,5-cyclooctadiene) afforded zwitterionic rhodium(I) and iridium(I) complexes of the type [(WCA-NHC)M(COD)], in which the metal atoms exhibit an intramolecular interaction with the N-aryl groups of the carbene ligands. For M = Rh, the neutral complex [(WCA-NHC)Rh(CO)2] and the ate complex (NEt4)[(WCA-NHC)Rh(CO)2Cl] were prepared, with the latter allowing an assessment of the donor ability of the ligand by IR spectroscopy. The zwitterionic iridium-COD complexes were tested as catalysts for the homogeneous hydrogenation of alkenes, which can be performed in the presence of nonpolar solvents or in the neat alkene substrate. Thereby, the most active complex showed excellent stability and activity in hydrogenation of alkenes at low catalyst loadings (down to 10 ppm). PMID:23883399

  18. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands.

    Karata?, Mert Olgun; Olgundeniz, Begm; Gnal, Selami; zdemir, ?lknur; Al?c?, Blent; etinkaya, Engin

    2016-02-15

    Eight new coumarin substituted silver(I) N-heterocyclic carbene (NHC) complexes were synthesized by the interaction of the corresponding imidazolium or benzimidazolium chlorides and Ag2O in dichloromethane at room temperature. Structures of these complexes were established on the basis of elemental analysis, (1)H NMR, (13)C NMR, IR and mass spectroscopic techniques. The antimicrobial activities of carbene precursors and silver NHC complexes were tested against standard strains: Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and the fungi Candida albicans and Candida tropicalis. Results showed that all the compounds inhibited the growth of the all bacteria and fungi strains and some complexes performed good activities against different microorganisms. Among all the compounds, the most lipophilic complex bis[1-(4-methylene-6,8-dimethyl-2H-chromen-2-one)-3-(naphthalene-2-ylmethyl)benzimidazol-2-ylidene]silver(I) dichloro argentate (5e) was found out as the most active one. PMID:26740157

  19. Organometallic rhenium(III) chalcogenide clusters: coordination of N-heterocyclic carbenes.

    Durham, Jessica L; Wilson, Wade B; Huh, Daniel N; McDonald, Robert; Szczepura, Lisa F

    2015-07-01

    The preparation of rhenium based octahedral clusters containing N-heterocyclic carbenes is described. These represent the first examples of [M6(?3-Q)8](n+) or [M6(?3-X)8](n+) clusters to contain a carbene ligand of any type (NHC, Fischer or Schrock). Surprisingly, the NHC ligands attenuate their luminescent properties. PMID:26041404

  20. Theoretical study on the effect of annelation and carbonylation on the electronic and ligand properties of N-heterocyclic silylenes and germylenes: carbene comparisons begin to break down.

    Guha, Ankur Kanti; Phukan, Ashwini K

    2014-05-01

    Quantum chemical calculations have been carried out to investigate the effect of annelation and carbonylation on the electronic and ligand properties of N-heterocyclic silylenes and germylenes. The thermodynamic stability of these ligands has been found to increase with annelation, while the reverse is true for carbonylation. This is in sharp contrast to N-heterocyclic carbenes (NHCs) where annelation leads to a decrease in their thermodynamic stabilities. Compared to nonannelated derivatives, annelated and carbonylated ones are found to be weaker σ donors but better π acceptors. The effect of carbonylation is more pronounced than annelation toward increasing the π acidity of these ligands. Carbonylation at the α-position with respect to the N atom attached to the Si/Ge center has been found to be the most effective way of enhancing the π acidity of these ligands. The computed natural charges reveal that electrophilicity increases upon both annelation and carbonylation. The calculated values of (31)P NMR chemical shifts of corresponding phosphinidene adducts of these ligands have been found to correlate well with the π acidity of these Si/Ge centers. PMID:24738711

  1. How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?

    Poater, Albert

    2013-01-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. © 2013 The Royal Society of Chemistry.

  2. Platinum complexes bearing normal and mesoionic N-heterocyclic carbene based pincer ligands: syntheses, structures, and photo-functional attributes.

    Naziruddin, Abbas Raja; Lee, Chen-Shiang; Lin, Wan-Jung; Sun, Bing-Jian; Chao, Kang-Heng; Chang, Agnes Hsiu Hwa; Hwang, Wen-Shu

    2016-04-01

    Platinum complexes featuring pyridine bis-N-heterocyclic-imidazol-2-ylidene/-mesoionic-triazol-5-ylidene donors as pincer ligands and chloro (-Cl), acetonitrile (-NCCH3) or cyano (-CN) groups as auxiliary ligands are prepared as highly strained organometallic phosphors. X-ray structures of four of these complexes confirm a distorted square planar geometry, where the pincer ligand and its mesityl wingtips occur in a twisted conformation to each other. Electrochemical and photophysical characterization have been carried out and the experimental results are interpreted with the aid of density functional theory calculations. Emission responses of complexes under exposure to different vapors and mechanical shear are reported. Notably, the platinum complex featuring pyridine bis-imidazol-2-ylidene and a weakly donating acetonitrile auxiliary ligand exhibited strong aquachromic and mechanochromic emission responses, showing color changes from sky blue to green or yellow-green. PMID:26947757

  3. Synthesis and characterization of divalent manganese, iron, and cobalt complexes in tripodal phenolate/N-heterocyclic carbene ligand environments.

    K, Martina; Hohenberger, Johannes; Adelhardt, Mario; Zolnhofer, Eva M; Mossin, Susanne; Heinemann, Frank W; Sutter, Jrg; Meyer, Karsten

    2014-03-01

    Two novel tripodal ligands, (BIMPN(Mes,Ad,Me))(-) and (MIMPN(Mes,Ad,Me))(2-), combining two types of donor atoms, namely, NHC and phenolate donors, were synthesized to complete the series of N-anchored ligands, ranging from chelating species with tris(carbene) to tris(phenolate) chelating arms. The complete ligand series offers a convenient way of tuning the electronic and steric environment around the metal center, thus, allowing for control of the complex's reactivity. This series of divalent complexes of Mn, Fe, and Co was synthesized and characterized by (1)H NMR, IR, and UV/vis spectroscopy as well as by single-crystal X-ray diffraction studies. Variable-temperature SQUID magnetization measurements in the range from 2 to 300 K confirmed high-spin ground states for all divalent complexes and revealed a trend of increasing zero-field splitting |D| from Mn(II), to Fe(II), to Co(II) complexes. Zero-field (57)Fe Mssbauer spectroscopy of the Fe(II) complexes 3, 4, 8, and 11 shows isomer shifts ? that increase gradually as carbenes are substituted for phenolates in the series of ligands. From the single-crystal structure determinations of the complexes, the different steric demand of the ligands is evident. Particularly, the molecular structure of 1-in which a pyridine molecule is situated next to the Mn-Cl bond-and those of azide complexes 2, 4, and 6 demonstrate the flexibility of these mixed-ligand derivatives, which, in contrast to the corresponding symmetrical TIMEN(R) ligands, allow for side access of, e.g., organic substrates, to the reactive metal center. PMID:24299260

  4. Synthesis and reactivity of cationic triruthenium clusters derived from 2-methyl- and 4-methylpyrimidines: from conventional cyclometalated ligands to novel types of N-heterocyclic carbenes.

    Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Pruneda, Vanessa

    2013-03-01

    The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru(3)(μ-H)(μ-κ(2)N(1),C(6)-2-Mepyr)(CO)(10)] (1; 2-MepyrH = 2-methylpyrimidine) and [Ru(3)(μ-H)(μ-κ(2)N(1),C(6)-4-Mepyr)(CO)(10)] (9; 4-MepyrH = 4-methylpyrimidine) gives two similar cationic complexes, [Ru(3)(μ-H)(μ-κ(2)N(1),C(6)-2,3-Me(2)pyr)(CO)(10)](+) (2(+)) and [Ru(3)(μ-H)(μ-κ(2)N(1),C(6)-3,4-Me(2) pyr)(CO)(10)](+) (9(+)), respectively, whose heterocyclic ligands belong to a novel type of N-heterocyclic carbenes (NHCs) that have the C(carbene) atom in 6-position of a pyrimidine framework. The position of the C-methyl group in the ligands of complexes 2(+) (on C(2)) and 9(+) (on C(4)) is of key importance for the outcome of their reactions with K[N(SiMe(3))(2)], K-selectride, and cobaltocene. Although these reagents react with 2(+) to give [Ru(3)(μ-H)(μ-κ(2)N(1),C(6)-2-CH(2)-3-Mepyr)(CO)(10)] (3; deprotonation of the C(2)-Me group), [Ru(3)(μ-H)(μ(3)-κ(3)N(1),C(5),C(6)-4-H-2,3-Me(2)pyr)(CO)(9)] (4; hydride addition at C(4)), and [Ru(6)(μ-H)(2){μ(6)-κ(6) N(1),N(1'),C(5),C(5'),C(6),C(6')-4,4'-bis(2,3-Me(2)pyr)}(CO)(18)] (5; reductive dimerization at C(4)), respectively, similar reactions with 9(+) have only allowed the isolation of [Ru(3)(μ-H)(μ(3)-κ(2)N(1),C(6)-2-H-3,4-Me(2)pyr)(CO)(9)] (11; hydride addition at C(2)). Compounds 3 and 11 also contain novel six-membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2(+) and 9(+) (that have ligand-based LUMOs) are charge-controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions. PMID:23335264

  5. N-heterocyclic carbene catalyzed synthesis of oxime esters.

    Enders, Dieter; Grossmann, André; Van Craen, David

    2013-01-01

    A triazolium salt derived N-heterocyclic carbene catalyzes the redox esterification reaction between α-β-unsaturated aldehydes and oximes. The resulting saturated oxime esters were obtained in very good yields for a broad range of aliphatic, aromatic and heteroaromatic substrates. PMID:23104187

  6. π-face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis

    Credendino, Raffaele

    2012-05-16

    In this work, we calculate the redox potential in a series of Ir and Ru complexes bearing a N-heterocyclic carbene (NHC) ligand presenting different Y groups in the para position of the aromatic N-substituent. The calculated redox potentials excellently correlate with the experimental ΔE 1/2 potentials, offering a handle to rationalize the experimental findings. Analysis of the HOMO of the complexes before oxidation suggests that electron-donating Y groups destabilize the metal centered HOMO. Energy decomposition of the metal-NHC interaction indicates that electron-donating Y groups reinforce this interaction in the oxidized complexes. Analysis of the electron density in the reduced and oxidized states of representative complexes indicates a clear donation from the C ipso of the N-substituents to an empty d orbital on the metal. In case of the Ru complexes, this mechanism involves the Ru-alkylidene moiety. All of these results suggest that electron-donating Y groups render the aromatic N-substituent able to donate more density to electron-deficient metals through the C ipso atom. This conclusion suggests that electron-donating Y groups could stabilize higher oxidation states during catalysis. To test this hypothesis, we investigated the effect of differently donating Y groups in model reactions of Ru-catalyzed olefin metathesis and Pd-catalyzed C-C cross-coupling. Consistent with the experimental results, calculations indicate an easier reaction pathway if the N-substituent of the NHC ligand presents an electron-donating Y group. © 2012 American Chemical Society.

  7. Mild and selective H/D exchange at the β position of aromatic α-olefins by N-heterocyclic carbene-hydride-rhodium catalysts

    Giuseppe, Andrea di; Castarlenas, Ricardo; Pérez-Torrente, Jesús J.; FERNANDO J LAHOZ; Polo, Víctor; LUIS A ORO

    2011-01-01

    Pacman bites selectively! Stable rhodium(III)-N-heterocyclic carbene-hydride complexes (Pacman-like catalysts) are highly active and selective catalysts for H/D exchange at the β position of aromatic α-olefins (see picture). The interplay between bulky N-heterocyclic carbene and quinolinate ligands determines the size of the steric window responsible for this selectivity.

  8. Synthesis and Properties of Chelating N-Heterocyclic Carbene Rhodium(I) Complexes: Synthetic Experiments in Current Organometallic Chemistry

    Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena

    2011-01-01

    The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…

  9. Annulated boron substituted N-heterocyclic carbenes: theoretical prediction of highly electrophilic carbenes.

    Bharadwaz, Priyam; Borthakur, Bitupon; Phukan, Ashwini K

    2015-11-14

    Theoretical calculations were carried out to understand the effect of annulation on the electronic and ligand properties of boron substituted N-heterocyclic carbenes (B-NHCs). Annulation results in a decrease in stability as indicated by the calculated values of singlet-triplet separations and stabilization energies as well as HOMO-LUMO gaps. Annulated B-NHCs are found to be weaker σ-donors but better π-acceptors than the parent ones. The decrease in σ-donation ability and the increase in π-accepting ability are further supported by the calculated values of proton affinities, nucleophilicity and electrophilicity indices as well as (31)P NMR chemical shifts of the corresponding NHC-PPh adducts. Most of the annulated B-NHCs are found to have significantly enhanced electrophilicity than the other known carbenes. PMID:26455836

  10. Oxidation and β-Alkylation of Alcohols Catalysed by Iridium(I) Complexes with Functionalised N-Heterocyclic Carbene Ligands.

    Jiménez, M Victoria; Fernández-Tornos, Javier; Modrego, F Javier; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-12-01

    The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for CC bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and β-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3 )(cod)(MeIm(2- methoxybenzyl))][BF4 ] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0 ) of 1283 h(-1) , and also in the β-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross-aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new CC bond that involves the reaction of an O-bound enolate generated in the basic medium with the electrophilic aldehyde. PMID:26493780

  11. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  12. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…

  13. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic

  14. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis.

    Di Marco, Lorenzo; Hans, Morgan; Delaude, Lionel; Monbaliu, Jean-Christophe M

    2016-03-18

    Two methods were assessed for the generation of common N-heterocyclic carbenes (NHCs) from stable imidazol(in)ium precursors using convenient and straightforward continuous-flow setups with either a heterogeneous inorganic base (Cs2 CO3 or K3 PO4 ) or a homogeneous organic base (KN(SiMe3 )2 ). In-line quenching with carbon disulfide revealed that the homogeneous strategy was most efficient for the preparation of a small library of NHCs. The generation of free nucleophilic carbenes was next telescoped with two benchmark NHC-catalyzed reactions; namely, the transesterification of vinyl acetate with benzyl alcohol and the amidation of N-Boc-glycine methyl ester with ethanolamine. Both organocatalytic transformations proceeded with total conversion and excellent yields were achieved after extraction, showcasing the first examples of continuous-flow organocatalysis with NHCs. PMID:26880372

  15. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    A new method for the direct synthesis of imines from alcohols and amines is described where hydrogen gas is liberated. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex [RuCl2(IiPr)(p-cymene)] in the presence of the ligand DABCO and molecular sieves. The imination can be a...

  16. Hydroxo-rhodium-N-heterocyclic carbene complexes as efficient catalyst precursors for alkyne hydrothiolation

    Palacios, Laura; Artigas, Maria Jose; Polo, Víctor; FERNANDO J LAHOZ; Castarlenas, Ricardo; Pérez-Torrente, Jesús J.; LUIS A ORO

    2013-01-01

    The new Rh-hydroxo dinuclear complexes stabilized by an N-heterocyclic carbene (NHC) ligand of type [Rh(μ-OH)(NHC)(η2-olefin)] 2 (coe, IPr (3), IMes (4); ethylene, IPr (5)) are efficient catalyst precursors for alkyne hydrothiolation under mild conditions, presenting high selectivity toward α-vinyl sulfides for a varied set of substrates, which is enhanced by pyridine addition. The structure of complex 3 has been determined by X-ray diffraction analysis. Several intermediates relevant for the...

  17. Ruthenium(II) complexes of N-heterocyclic carbenes derived from imidazolium-linked cyclophanes.

    Caramori, Giovanni F; Garcia, Leone C; Andrada, Diego M; Frenking, Gernot

    2014-10-21

    The present work seeks to characterize, in the light of electronic structure calculations, an unusual metal-[(η(1)-NHC)2:(η(6)-arene)] bonding situation in a set of ruthenium(ii) complexes containing the ortho-xylylene-linked-bis(NHC)cyclophane ligand (NHC-cyclophane) (), which binds to the ruthenium center through two carbene carbons and one of the arene rings. The nature of ruthenium(ii)-[(η(1)-NHC)2:(η(6)-arene)] bonding was investigated in the light of EDA-NOCV, NBO and QTAIM analyses by adopting as a model compound. The interplay between the ortho-cyclophane scaffold with different families of five-membered carbenes, such as imidazole, , triazole-based NHCs (Enders' carbenes), , and P-heterocyclic carbenes (PHCs), , was investigated. The metal-[(η(1)-NHC)2:(η(6)-arene)] bonding situation was also extended to heavier analogues, such as N-heterocyclic silylenes (NHSi) and N-heterocyclic germylenes (NHGe), in order to address how the basicity of NHC, NHSi and NHGe is affected by the cyclophane framework. The results reveal that ruthenium(ii)-[(η(1)-NHC)2:(η(6)-arene)] is more covalently than electrostatically bonded and that the degree of covalence is larger in PHCs than in NHCs or Enders' carbenes. It is also revealed that the covalent character in the ruthenium(ii)-[(η(1)-NHGe)2:(η(6)-arene)] and ruthenium(ii)-[(η(1)-NHSi)2:(η(6)-arene)] bonds is larger than in ruthenium(ii)-[(η(1)-NHC)2:(η(6)-arene)]. PMID:25144142

  18. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    Manzini, Simone

    2015-03-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  19. Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes

    Queval, Pierre

    2013-12-04

    A low-cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl-imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand. A low-cost, modular, and easily scalable multicomponent procedure, affording access to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl- imidazolium salts in good yields and excellent selectivities, is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron-donor ability, high steric discrimination, and modular steric demand. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes

    Falivene, Laura

    2014-07-12

    This chapter states that the main handles for tuning steric and electronic effects are the substituents on N atoms, the nature of the C4-C5 bridge (either saturated or unsaturated), and the substituents on the C4 and C5 atoms. The initial intuition that steric properties of N-heterocyclic carbenes (NHCs) could be modulated and could impact catalytic behavior stimulated the development of steric descriptors to quantify the steric requirement of different NHCs and, possibly, to compare them with tertiary phosphines. NHCs can be classified as typically strong σ-basic/π-acid ligands, although they have been also shown to exhibit reasonable π-basic properties. This electronic modularity allows NHC ligands to adapt flexibly to different chemical environments represented by a transition metal and the other ligands. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved.

  1. Preparation of a N-Heterocyclic Carbene Nickel(II) Complex: Synthetic Experiments in Current Organic and Organometallic Chemistry

    Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.

    2008-01-01

    A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…

  2. Antimicrobial Properties of Some Bis(Iminoacenaphthene (BIAN)-Supported N-Heterocyclic Carbene Complexes of Silver and Gold

    Butorac, Rachel R; Alan H. Cowley; Al-Deyab, Salem S.

    2011-01-01

    The AgCl, AgOAc, AuCl, and AuOAc complexes of the new bis(imino)acenaphthene(BIAN)-supported N-heterocyclic carbene ligand and the precursor imidazolium salt have been investigated with respect to their antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Psudomonas aeruginosa. The most active antimicrobial is the precursor imidazolium salt, which has a minimum inhibitory concentration (MIC) value of

  3. Synthesis and antimicrobial studies of silver N-heterocyclic carbene complexes bearing a methyl benzoate substituent

    Knapp, Amanda R.; Panzner, Matthew J.; Medvetz, Doug A.; Wright, Brian D.; Tessier, Claire A.; Wiley J. Youngs

    2010-01-01

    Due to the properties of silver as an antimicrobial, our research group has synthesized many different silver carbene complexes. Two new silver N-heterocyclic carbene complexes derived from 4,5-dichloroimidazole and theobromine bearing methyl benzoate substituents were synthesized by in situ carbene formation using silver acetate as the base in the reaction. The new compounds were fully characterized by several methods including NMR spectroscopy and X-ray crystallography. Preliminary antimicr...

  4. Superior Oxygen Stability of N-Heterocyclic Carbene-Coated Au Nanocrystals: Comparison with Dodecanethiol.

    Ling, Xiang; Schaeffer, Nicolas; Roland, Sylvain; Pileni, Marie-Paule

    2015-12-01

    The stability of Au nanocrystals (NCs) coated with different N-heterocyclic carbenes (NHCs) or dodecanethiol (DDT) to oxygen-based treatments was investigated. A dominant effect of the ligand type was observed with a significantly greater oxygen resistance of NHC-coated Au NCs compared to that of the thiol-based analogues. NHC-coated Au NCs are stable to 10 W oxygen plasma etching for up to 180 s whereas the integrity of DDT-coated Au NCs is strongly affected by the same treatment from 60-80 s. In the latter case, the average size of the NCs (from 2.6 to 6.3 nm) and the method of synthesis have no effect on the stability. NHC-coated Au NCs were found to generate of a smaller quantity of ligand-derived species under molecular oxygen treatment, which could account for the increased stability. PMID:26550843

  5. Silver complexes of 1,2,4-triazole derived N-heterocyclic carbenes: Synthesis, structure and reactivity studies

    Chandrakanta Dash; Mobin M Shaikh; Prasenjit Ghosh

    2011-03-01

    Two silver(I) complexes {[1-R-4-(-t4-butylacetamido)-1,2,4-triazol-5-ylidene]2Ag}+ Cl− [R = Et (1b), -Pr (2b)] of /-functionalized N-heterocyclic carbenes derived from 1,2,4-triazoles are reported. The silver complexes, 1b and 2b, have been synthesized from the reaction of the /-functionalized triazolium chloride salts namely, 1-R-4-(N-t-butylacetamido)-1,2,4-triazolium chloride [R = Et (1a), -Pr (2a)] by treatment with Ag2O in 53-56% yield. The 1,2,4-triazolium chloride salts 1a and 2a were prepared by the alkylation reaction of 1-R-1,2,4-triazole (R = Et, -Pr) with --butyl-2-chloro acetamide in 47-63% yield. The molecular structures of the silver(I) complexes, 1b and 2b, have been determined by X-ray diffraction studies. The density functional theory studies on the silver 1b and 2b complexes suggest that the 1,2,4-triazole derived N-heterocyclic carbenes to be strong −donating ligands similar to the now much recognized imidazolebased N-heterocyclic carbenes. The reactivity studies with (SMe2)AuCl and (SMe2)CuBr indicated the silver complexes, 1b and 2b, to be good transmetallating agents.

  6. Direct estimate of the internal π-donation to the carbene centre within N-heterocyclic carbenes and related molecules

    Andrada, Diego M; Holzmann, Nicole; Hamadi, Thomas

    2015-01-01

    Summary Fifteen cyclic and acylic carbenes have been calculated with density functional theory at the BP86/def2-TZVPP level. The strength of the internal X→p(π) π-donation of heteroatoms and carbon which are bonded to the C(II) atom is estimated with the help of NBO calculations and with an energy decomposition analysis. The investigated molecules include N-heterocyclic carbenes (NHCs), the cyclic alkyl(amino)carbene (cAAC), mesoionic carbenes and ylide-stabilized carbenes. The bonding analysis suggests that the carbene centre in cAAC and in diamidocarbene have the weakest X→p(π) π-donation while mesoionic carbenes possess the strongest π-donation. PMID:26877795

  7. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  8. N-heterocyclic carbene-catalyzed internal redox reaction of alkynals: an efficient synthesis of allenoates.

    Zhao, Yu-Ming; Tam, Yik; Wang, Yu-Jie; Li, Zigang; Sun, Jianwei

    2012-03-16

    An efficient N-heterocyclic carbene (NHC)-catalyzed internal redox reaction of alkynals that bear a γ leaving group has been developed. This process provides a new access to a range of allenoates in good yields. Preliminary results demonstrate that the enantioselective variant can also be achieved. PMID:22352302

  9. N-Heterocyclic Carbene-Catalyzed Alcohol Acetylation: An Organic Experiment Using Organocatalysis

    Morgan, John P.; Shrimp, Jonathan H.

    2014-01-01

    Undergraduate students in the teaching laboratory have successfully used N-heterocyclic carbenes (NHCs) as organocatalysts for the acetylation of primary alcohols, despite the high water sensitivity of uncomplexed ("free") NHCs. The free NHC readily reacted with chloroform, resulting in an air- and moisture-stable adduct that liberates…

  10. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06). The...

  11. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk; Madsen, Robert

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems are...

  12. Synthesis, characterization, and reactivity of furan- and thiophene-functionalized bis(n-heterocyclic carbene) complexes of iron(II)

    Rieb, Julia

    2014-09-15

    The synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (2a) and tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenethiophene)methane]iron(II) hexafluorophosphate (2b) were obtained by aminolysis of [Fe{N(SiMe3)2}2(THF)] with furan- and thiophene-functionalized bis(imidazolium) salts 1a and 1b in acetonitrile. The SC-XRD structures of 2a and 2b show coordination of the bis(carbene) ligand in a bidentate fashion instead of a possible tetradentate coordination. The four other coordination sites of these distorted octahedral complexes are occupied by acetonitrile ligands. Crystallization of 2a in an acetone solution by the slow diffusion of Et2O led to the formation of cisdiacetonitriledi[ bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (3a) with two bis(carbene) ligands coordinated in a bidentate manner and two cis-positioned acetonitrile molecules. Compounds 2a and 2b are the first reported iron(II) carbene complexes with four coordination sites occupied by solvent molecules, and it was demonstrated that those solvent ligands can undergo ligand-exchange reactions.

  13. Unexpected rearrangements in the synthesis of an unsymmetrical tridentate dianionic N-heterocyclic carbene

    Despagnet-Ayoub, Emmanuelle

    2013-01-01

    Starting from the same ethylenediamine species, three valuable carbene precursors were synthesized under differing conditions: a tridentate dianionic N-heterocyclic carbene bearing an aniline, a phenol and a central dihydroimidazolium salt, its benzimidazolium isomer by intramolecular rearrangement and a dicationic benzimidazolium-benzoxazolium salt by changing the Brønsted acid from HCl to HBF4. A DFT study was performed to understand the rearrangement pathway. The structure of a bis[(NCO)carbene] zirconium complex was determined. © 2013 The Royal Society of Chemistry.

  14. Efficient Negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes.

    Xi, Zhenxing; Zhou, Yongbo; Chen, Wanzhi

    2008-11-01

    We describe the first nickel-N-heterocyclic carbene catalyzed Negishi cross-coupling reaction of a variety of unactivated aryl chlorides, heterocyclic chlorides, aryl dichlorides, and vinyl chloride. The mononuclear and binuclear nickel-NHC complexes supported by heteroarene-functionalized NHC ligands are found to be highly efficient for the coupling of unactivated aryl chlorides and organozinc reagents, leading to biaryls and terphenyls in good to excellent yields under mild conditions. For all aryl chlorides, the binuclear nickel catalysts show activities higher than those of mononuclear nickel complexes because of possible bimetallic cooperative effect. PMID:18841915

  15. Application of the π-accepting ability parameter of N-heterocyclic carbene ligands in iridium complexes for signal amplification by reversible exchange (SABRE).

    van Weerdenburg, Bram J A; Eshuis, Nan; Tessari, Marco; Rutjes, Floris P J T; Feiters, Martin C

    2015-09-21

    The new π-accepting ability parameter (PAAP) appears to be the best tool to analyse the electronic properties of NHC ligands in [Ir(H)2(NHC)(Py)3](+) complexes for SABRE. Together with the buried volume, the efficiency of hyperpolarisation transfer in SABRE, depending on the exchange rate of pyridine, can be described. PMID:26243153

  16. Gold (I) N-heterocyclic carbene complex inhibits mouse melanoma growth by p53 upregulation

    Nandy, Abhishek; Dey, Sumit Kumar; Das, Sujata; Munda, Rudra Narayan; Dinda, Joydev; Saha, Krishna Das

    2014-01-01

    Background Cancer treatment using gold (I) complexes is becoming popular. In this study, a gold (I) N-heterocyclic complex designated as complex 3 was synthesized, its cytotoxicity was examined, and its anti-melanoma activity was evaluated in vitro and in vivo. Methods Viability of cancer cells was determined by MTT assay upon treatment with various concentrations of a gold (I) N-heterocyclic carbene complex (complex 3) in a dose and time dependent manner. Mouse melanoma cells B16F10 were sel...

  17. A simple route to phosphamethine cyanines from S,N-heterocyclic carbenes.

    Binder, Justin F; Corrente, Andrea M; Macdonald, Charles L B

    2016-02-01

    Although salts of thiazolium cations are known, many readily prepared iodide salts have eluded spectroscopic and structural characterization; herein, data for a variety of such salts are reported. It has been demonstrated that thiazolium cations can be deprotonated to generate S,N-heterocyclic carbenes and their "electron rich olefin" dimers, but use of the former has been largely overshadowed by that of the more common N-heterocyclic carbenes. We report herein that the deprotonation of thiazolium iodides and their subsequent reaction with a conveniently prepared triphosphenium precursor grants phosphamethine cyanine cations with solid-state geometry and electronic structure unlike those of NHC-stabilized cations. Protection of the phosphorus atom in such ions with elemental sulfur provides an air- and moisture-stable dithiophosphinium salt. PMID:26536127

  18. An N-Heterocyclic Carbene/Lewis Acid Strategy for the Stereoselective Synthesis of Spirooxindole Lactones

    Dugal-Tessier, Julien; OBryan, Elizabeth A.; Schroeder, Thomas B. H.; Cohen, Daniel T.

    2012-01-01

    A cooperative catalysis approach for the enantioselective formal [3+2] addition of ?,?-unsaturated aldehydes to isatins has been developed. The N-heterocyclic carbene (NHC)-catalyzed homoenolate annulations of ?-aryl enals require the addition of lithium chloride for high levels of enantioselectivity. This NHC-catalyzed annulation provides efficient access to the 3-hydroxy indole skeleton and has been applied to the first eantioselective total synthesis of maremycin B. PMID:22489096

  19. Polymer-supported N-heterocyclic carbene-palladium complex for heterogeneous Suzuki cross-coupling reaction.

    Kim, Jong-Ho; Kim, Jung-Woo; Shokouhimehr, Mohammadreza; Lee, Yoon-Sik

    2005-08-19

    Poly(1-methylimidazoliummethyl styrene)-surface grafted-poly(styrene) resin was prepared for the first time as a polymer-supported N-heterocyclic carbene (NHC) precursor for palladium complex by suspension polymerization. To prepare this polymer-supported NHC precursor, 1-methyl-3-(4-vinylbenzyl)imidazolium hexafluorophosphate, [MVBIM][PF6-], was synthesized as a monomer and copolymerized with styrene and DVB in water. This polymer-supported NHC precursor with imidazolium as a ligand, which exists solely on the surface of the resin, was well characterized by FE-SEM, CLSM, and IR spectroscopy. The precursor containing imidazolium readily formed a stable complex with Pd(OAc)2, and this polymer-supported N-heterocyclic carbene-palladium complex exhibited excellent catalytic activity for Suzuki cross-coupling reaction in an aqueous medium. The catalyst was recovered quantitatively from the reaction mixture by simple filtration and was able to be reused for a number of recycles with consistent activity in all of the coupling reactions. PMID:16095291

  20. Enantioselective N-Heterocyclic Carbene Catalyzed Diene Regenerative (4 + 2) Annulation.

    Levens, Alison; Zhang, Changhe; Candish, Lisa; Forsyth, Craig M; Lupton, David W

    2015-11-01

    An enantioselective N-heterocyclic carbene (NHC)-catalyzed diene regenerative (4 + 2) annulation has been achieved through the use of highly nucleophilic morpholinone-derived catalysts. The reaction proceeds with good to excellent yields, high enantioselectivity (most >92% ee), and good diastereoselectivity (most >7:1). The generality of the reaction is high, with 19 examples reported. The utility of the products has been examined with subsequent derivatization in Diels-Alder reactions using electron-poor dienophiles. Furthermore, interception of the proposed β-lactone intermediate has been achieved, allowing the synthesis of compounds bearing four contiguous stereocenters with high levels of enantio- and diastereoselectivity. PMID:26484753

  1. Bis-ligated Ti and Zr complexes of chelating N-heterocyclic carbenes

    El-Batta, Amer

    2011-07-01

    In this communication we report the synthesis of novel titanium and zirconium complexes ligated by bidentate "salicylaldimine-like" N-heterocyclic carbenes (NHC). Double addition of the NHC chelate to either TiCl4(thf)2 or ZrCl4 forms bis-ligated organometallic fragments with a distorted octahedral geometry. These complexes are rare examples of group IV transition-metal NHC adducts. Preliminary catalytic tests demonstrate that in the presence of methylaluminoxane (MAO) these complexes are useful initiators for the polymerization of ethylene and the copolymerization of ethylene with norbornene and 1-octene. © 2011 Elsevier B.V. All rights reserved.

  2. Synthesis of Complexes with Abnormal "Protic" N-Heterocyclic Carbenes.

    Jin, Hanpeng; Tan, Tristan Tsai Yuan; Hahn, F Ekkehardt

    2015-11-01

    Neutral 4-iodo-N-ethylimidazole 3 oxidatively adds to [Pt(PPh3)4] to give, in the presence of different tetraalkylammonium salts, complexes trans-[4], trans-[5], and trans-[6] containing an anionic C4-bound heterocycle with an unsubstituted ring-nitrogen atom. Complex trans-[4] reacts with the proton source NH4 I under protonation of the ring-nitrogen atom to produce complex trans-[7]I which bears an NH,NR-substituted aNHC ligand. The reaction of trans-[4] with CH3I yields the complex trans-[8]I which has a classical aNHC ligand with two alkylated ring-nitrogen atoms. PMID:26403225

  3. A RhIII-N-heterocyclic carbene complex from metal-metal singly bonded [RhII−RhII] precursor

    Arup Sinha; Abir Sarbajna; Shrabani dinda; Jitendra K Bera

    2011-11-01

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory (DFT) optimized structure has been computed for the unbridged centro-symmetric structure. Reaction of 1 with PIN.HBr results in the [Rh(PIN)2(H2O)Br][OTf]2 (2) in high yield. The reaction involves metal-oxidation from RhII to RhIII accompanied by the metal-metal bond cleavage. The X-ray structure of 2 has been determined which reveals the incorporation of two N-heterocyclic carbene (NHC) ligands to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  4. 25 years of N-heterocyclic carbenes: activation of both main-group element-element bonds and NHCs themselves.

    Würtemberger-Pietsch, Sabrina; Radius, Udo; Marder, Todd B

    2016-04-14

    N-Heterocyclic carbenes (NHCs) are widely used ligands and reagents in modern inorganic synthesis as well as in homogeneous catalysis and organocatalysis. However, NHCs are not always innocent bystanders. In the last few years, more and more examples were reported of reactions of NHCs with main-group elements which resulted in modification of the NHC. Many of these reactions lead to ring expansion and the formation of six-membered heterocyclic rings involving insertion of the heteroatom into the C-N bond and migration of hydrides, phenyl groups or boron-containing fragments. Furthermore, a few related NHC rearrangements were observed some decades ago. In this Perspective, we summarise the history of NHC ring expansion reactions from the 1960s till the present. PMID:26675582

  5. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  6. Sulfur-Functionalized N-Heterocyclic Carbene Complexes of Pd(II: Syntheses, Structures and Catalytic Activities

    Dan Yuan

    2012-03-01

    Full Text Available N-heterocyclic carbenes (NHCs can be easily modified by introducing functional groups at the nitrogen atoms, which leads to versatile coordination chemistry as well as diverse catalytic applications of the resulting complexes. This article summarizes our contributions to the field of NHCs bearing different types of sulfur functions, i.e., thioether, sulfoxide, thiophene, and thiolato. The experimental evidence for the truly hemilabile coordination behavior of a Pd(II thioether-NHC complex has been reported as well. In addition, complexes bearing rigid CSC-pincer ligands have been synthesized and the reasons for pincer versus pseudo-pincer formation investigated. Incorporation of the electron-rich thiolato function resulted in the isolation of structurally diverse complexes. The catalytic activities of selected complexes have been tested in Suzuki-Miyaura, Mizoroki-Heck and hydroamination reactions.

  7. N-Heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis

    Rob De Vreese

    2012-03-01

    Full Text Available The interplay between metals and N-heterocyclic carbenes (NHCs has provided a window of opportunities for the development of novel catalytic strategies within the past few years. The recent successful combination of Brønsted acids with NHCs has added a new dimension to the field of cooperative catalysis, enabling the stereoselective synthesis of functionalized pyrrolidin-2-ones as valuable scaffolds in heterocyclic chemistry. This Commentary will briefly highlight the concept of N-heterocyclic carbene/Brønsted acid cooperative catalysis as a new and powerful methodology in organic chemistry.

  8. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  9. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties.

    Bertrand, Benoît; Stefan, Loic; Pirrotta, Marc; Monchaud, David; Bodio, Ewen; Richard, Philippe; Le Gendre, Pierre; Warmerdam, Elena; de Jager, Marina H; Groothuis, Geny M M; Picquet, Michel; Casini, Angela

    2014-02-17

    A new series of gold(I) N-heterocyclic carbene (NHC) complexes based on xanthine ligands have been synthesized and characterized by mass spectrometry, NMR, and X-ray diffraction. The compounds have been tested for their antiproliferative properties in human cancer cells and nontumorigenic cells in vitro, as well as for their toxicity in healthy tissues ex vivo. The bis-carbene complex [Au(caffein-2-ylidene)2][BF4] (complex 4) appeared to be selective for human ovarian cancer cell lines and poorly toxic in healthy organs. To gain preliminary insights into their actual mechanism of action, two biologically relevant in cellulo targets were studied, namely, DNA (more precisely a higher-order DNA structure termed G-quadruplex DNA that plays key roles in oncogenetic regulation) and a pivotal enzyme of the DNA damage response (DDR) machinery (poly-(adenosine diphosphate (ADP)-ribose) polymerase 1 (PARP-1), strongly involved in the cancer resistance mechanism). Our results indicate that complex 4 acts as an efficient and selective G-quadruplex ligand while being a modest PARP-1 inhibitor (i.e., poor DDR impairing agent) and thus provide preliminary insights into the molecular mechanism that underlies its antiproliferative behavior. PMID:24499428

  10. N-Heterocyclic-Carbene-Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2-(Trimethylsilyloxy)furan and Enones

    Wang, Ying

    2015-10-15

    N-heterocyclic carbenes have been utilised as highly efficient nucleophilic organocatalysts to mediate vinylogous Mukaiyama/Michael reactions of 2-(trimethylsilyloxy)furan with enones to afford γ-substituted butenolides in 44-99% yield with 3:1-32:1 diastereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  12. Dimerisation, rhodium complex formation and rearrangements of N-heterocyclic carbenes of indazoles

    Zong Guan

    2014-04-01

    Full Text Available Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes which can be trapped as rhodium complexes (X-ray analysis. In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring closure to an indazoleindole spiro compound which possesses an exocyclic imine group. The E/Z isomers of the imines can be separated by column chromatography when methanol is used as eluent. We present results of a single crystal X-ray analysis of one of the E-isomers, which equilibrate in solution as well as in the solid state. Heating of the indazoleindole spiro compounds results in the formation of quinazolines by a ring-cleavage/ring-closure sequence (X-ray analysis. Results of DFT calculations are presented.

  13. Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity

    Elzatahry AA

    2012-06-01

    Full Text Available Ahmed A Elzatahry1,4, Abdullah M Al-Enizi1, Elsayed Ahmed Elsayed2,5, Rachel R Butorac3, Salem S Al-Deyab1, Mohammad AM Wadaan2, Alan H Cowley31Petrochemical Research Chair, Department of Chemistry, 2Chair of Advanced Proteomics & Cytomics Research, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 3Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA; 4Institute of Advanced Technology and New Materials, City for Scientific Research and Technology Applications, New Borg Alrab, Alexandria, Egypt; 5Natural & Microbial Products Department, National Research Centre, Dokki, Cairo, EgyptAbstract: This report concerns nanofiber composites that incorporate N-heterocyclic carbenes and the use of such composites for testing antimicrobial and antifungal activities. The nanofiber composites were produced by electrospinning mixtures of the gold chloride or gold acetate complexes of a bis(iminoacenaphthene (BIAN-supported NHC with aqueous solutions of polyvinyl alcohol (PVA. The products were characterized by scanning-electron microscopy, which revealed that nanofibers in the range of 250–300 nm had been produced. The biological activities of the nanofiber composites were tested against two Gram-positive bacteria, six Gram-negative bacteria, and two fungal strains. No activity was evident against the fungal strains. However, the gold chloride complex was found to be active against all the Gram-positive pathogens and one of the Gram-negative pathogens. It was also found that the activity of the produced nanofibers was localized and that no release of the bioactive compound from the nanofibers was evident. The demonstrated antimicrobial activities of these novel nanofiber composites render them potentially useful as wound dressings.Keywords: nanofiber, electrospinning, N-Heterocyclic carbene, biopolymer, antimicrobial

  14. Cationic rhenium complexes ligated with N-heterocyclic carbenes - an overview.

    Hille, Claudia; Khn, Fritz E

    2015-12-14

    This review provides an overview of the currently known cationic rhenium NHC complexes. Synthesis, structures and properties are described. The title compounds are potential candidates for both catalytic and medical applications. Besides the variety of ancillary ligands, which are in some cases easily substituted, functionalization can be carried out in the side chain or at the backbone of the carbene ligand as well as - in the case of biscarbene ligands - at the bridging moiety. Cationic Re NHC complexes are promising precursors for radiopharmaceuticals and diagnostics - not only because of the possibility to radiolabel the metal (steps in this direction have been made and described already) - but rather the opportunity to link the complexes to biomolecules via the different possibilities provided by the ligands. The development of OLEDs based on luminescent Re(i) carbene complexes renders another potential application. PMID:26587970

  15. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    Guo, Hao

    2015-11-16

    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  16. Theoretical Insights on the Interaction of N-Heterocyclic Carbenes with Tetravalent Silicon Reagents.

    Pathak, Dipanjali; Deuri, Sanjib; Phukan, Prodeep

    2016-01-14

    Lewis acid-base type interaction between N-heterocyclic carbene (NHC) and tetravalent silicon reagent (SiR) has been investigated computationally. This NHC-Si interaction is of fundamental importance to the understanding of variety of NHC catalyzed organic transformations involving silicon compounds such as cyanosilylation, trifluoromethylsilylation, etc. Geometries of 24 NHCs, 10 silicon reagents, and their 61 Lewis acid-base complexes have been optimized using the B3LYP/6-31+G(d,p) and M05-2X/6-31+G(d,p) level of theory. The strength of NHC-Si interaction has been assessed in terms of binding energy of the complexes, charge transfer (CT) and the length of Si-CNHC bond. Energy decomposition analysis (EDA) and natural bond orbital (NBO) analysis at M052X/6-31+G(d,p) level of theory has been carried out to get a deeper understanding of the nature of bonding and charge delocalization. Proton affinity of the NHCs and fluoride affinity of the SiRs have been calculated and correlated with the binding energy of the resulting complexes. PMID:26654756

  17. Tunable and Efficient White Light Phosphorescent Emission Based on Single Component N-Heterocyclic Carbene Platinum(II) Complexes.

    Bachmann, Michael; Suter, Dominik; Blacque, Olivier; Venkatesan, Koushik

    2016-05-16

    A new class of cyclometalated pyridine N-heterocyclic carbene (NHC) Pt(II) complexes with electronically different alkyne derivatives (C≡CR; R = C6H4C(CH3)3 (1), C6H5 (2), C6H4F (3), C6H3(CF3)2 (4)) as ancillary ligands were synthesized, and the consequences of the electronic properties of the different substituted phenylacetylene ligands on the phosphorescent emission efficiencies were studied, where C≡CC6H4C(CH3)3 = 4-tert-butylphenylacetylene, C≡CC6H5 = phenylacetylene, C≡CC6H4F = 4-fluorophenylacetylene, and C≡CC6H3(CF3)2 = 3,5-bis(trifluoromethyl)phenylacetylene. Structural characterization, electrochemistry, and photophysical investigations were performed for all four compounds. Moreover, the emission quantum efficiencies and wavelength emission intensities of the complexes were also recorded in different weight percents in poly(methyl methacrylate) films (PMMA) and evaluated in the CIE-1931 chromaticity diagram. The square planar coordination geometry with the alkynyl ligands was corroborated for complexes 1, 2, and 3 by single crystal X-ray diffraction studies. These complexes show tunable monomeric high energy triplet emission and an additional concentration-dependent low-energy excimer-based phosphorescence. While adopting weight percent concentrations between 15 and 25%, the two emission bands covering the entire visible spectrum were obtained with these particular complexes displaying the properties of an efficient white light triplet emitter with excellent CIE-1931 coordinates (0.31, 0.33). On the basis of the high luminescent quantum efficiency of over 50% for white light emission, these compounds could be potentially useful for white organic light-emitting diodes (WOLEDs) based applications. PMID:27135529

  18. Lipophilicity-dependent ruthenium N-heterocyclic carbene complexes as potential anticancer agents.

    Lv, Gaochao; Guo, Liubin; Qiu, Ling; Yang, Hui; Wang, Tengfei; Liu, Hong; Lin, Jianguo

    2015-04-28

    Five Ru(II)-N-heterocyclic carbenes (NHC) (1-5) were synthesized by reacting the appropriately substituted imidazolium chlorides with Ag2O, forming the NHC-silver chloride in situ followed by transmetalation with dimeric p-cymene ruthenium(II) dichloride. All the complexes were characterized by NMR and ESI-MS, and complex 1 was also characterized by single-crystal X-ray diffraction. The IC50 values of these five complexes were determined by the MTT-based assay on four human cancer cell lines, SKOV-3 (ovarian), PC-3 (prostate), MDA-MB-231 (breast) and EC109 (esophagus). The cytotoxicities of these complexes changed from a moderate effect to a fine one, corresponding to the increasing lipophilicity order of the complex of 2 < 1 < 3 < 4 < 5 (0.91, 0.88, 1.36, 1.85 and 2.62 for 15 respectively). Complex 5 showed the most cytotoxicity with the IC50 values 10.3 0.3 ?M for SKOV-3, 2.9 0.1 ?M for PC-3, 8.2 0.6 ?M for MDA-MB-231, 6.4 0.2 ?M for EC109 cell lines. Due to the superior cytotoxicity of complex 5 against the PC-3 cell lines, further biological evaluations were carried out to elucidate its action mechanism. The morphologic changes and cell cycle analysis showed that complex 5 can inhibit PC-3 cell lines by inducing cell cycle arrest at the G2/M phase. The DNA binding experiments further demonstrate that complex 5 has a better binding ability for DNA (Kb = 2.2 10(6) M(-1)) than complexes 1-4 (3.8 10(5), 7.0 10(5), 5.7 10(5), and 1.9 10(5) respectively). PMID:25797411

  19. Synthesis of N-heterocyclic carbene-PdCl2-(iso)quinoline complexes and their application in arylamination at low catalyst loadings.

    Liu, Feng; Zhu, Yi-Ran; Song, Lu-Gan; Lu, Jian-Mei

    2016-02-16

    A new type of N-heterocyclic carbene-PdCl2-(iso)quinoline complexes were successfully achieved in acceptable to good yields from easily available starting materials under mild conditions, and their structures were unambiguously confirmed using X-ray single crystal diffraction. Furthermore, their catalytic activity toward Buchwald-Hartwig arylamination of aryl chlorides with primary and secondary amines was fully tested. Under the optimal reaction conditions, the expected arylated amines can be obtained in high to excellent yields at low catalyst loadings (0.005-0.05 mol%). It may be worth noting here that comparison of these complexes with other well-defined and easily available NHC-Pd(ii) complexes bearing different N-containing ancillary ligands was also carried out, showing their superior catalytic activity over all others. PMID:26880100

  20. Palladium-N-heterocyclic carbene (NHC)-catalyzed asymmetric synthesis of indolines through regiodivergent C(sp3)-H activation: scope and DFT study.

    Katayev, Dmitry; Larionov, Evgeny; Nakanishi, Masafumi; Besnard, Cline; Kndig, E Peter

    2014-11-10

    Two bulky, chiral, monodentate N-heterocyclic carbene ligands were applied to palladium-catalyzed asymmetric C-H arylation to incorporate C(sp(3))-H bond activation. Racemic mixtures of the carbamate starting materials underwent regiodivergent reactions to afford different trans-2,3-substituted indolines. Although this CAr-Calkyl coupling requires high temperatures (140-160?C), chiral induction is high. This regiodivergent reaction, when carried out with enantiopure starting materials, can lead to single structurally different enantiopure products, depending on the catalyst chirality. The C-H activation at a tertiary center was realized only in the case of a cyclopropyl group. No C-H activation takes place alpha to a tertiary center. A detailed DFT study is included and analyses of methyl versus methylene versus methine C-H activation is used to rationalize experimentally observed regio- and enantioselectivities. PMID:25262613

  1. Tungsten(VI) N-Heterocyclic Carbene Complexes: Synthetic, Structural, and Computational Study

    2011-01-01

    The reaction of WOCl4 with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (Idipp) leads to an orange solid whose spectroscopic data are consistent with the 1:1 adduct [WOCl4(Idipp)]. Computational studies at the DFT level further support this formulation. Exposure of this compound to the atmosphere results in rapid hydrolysis to various imidazolium salts. If air diffuses very slowly into solutions of [WOCl4(Idipp)], it also undergoes slow hydrolysis to form [WO2Cl2(Idipp)]. This has been crystallographically characterized and is the first five-coordinate, 1:1 adduct of WO2Cl2. This complex has also been subject to DFT calculations, and its metalligand bonding has been explored. The carbenemetal interaction is primarily ?-donor in nature. The mechanism of the hydrolysis has also been probed by computational methods, revealing a plausible, low-energy reaction pathway. PMID:24882916

  2. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    Shawna L. Balof

    2015-10-01

    Full Text Available Three new ruthenium alkylidene complexes (PCy3Cl2(H2ITapRu=CHSPh (9, (DMAP2Cl2(H2ITapRu=CHPh (11 and (DMAP2Cl2(H2ITapRu=CHSPh (12 have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl-4,5-dihydroimidazol-2-ylidene. Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP and ring closing metathesis (RCM reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA, however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD and mixtures of DCPD with cyclooctene (COE in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  3. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  4. Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

    Zhang, Xinghui; Wang, Ketai; Niu, Teng; Li, Shanshan [Lanzhou Univ. of Arts and Science, Lanzhou (Korea, Republic of)

    2014-05-15

    The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity.

  5. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  6. Application of Chan-Lam cross coupling for the synthesis of N-heterocyclic carbene precursors bearing strong electron donating or withdrawing groups

    Huang, Liliang; He, Chengxiang; Sun, Zhihua

    2015-07-01

    Chan-Lam cross coupling allowed efficient synthesis of N,N’-disubstituted ortho-phenylene diamines bearing strong electron donating or withdrawing groups, such as nitro or methoxy groups, with moderate to high yields. These diamines can then be turned into N-heterocyclic carbene precursors after condensation with trimethyl orthoformate. The same strategy can also be utilized for the synthesis of N-monosubstituted aniline derivatives containing a functionalized ortho-aminomethyl group as intermediates for chiral 6-membered ring carbene precursors.

  7. Spectroscopic and electrochemical correlations in triangular ruthenium clusters containing N-heterocyclic ligands

    A series of clusters of general formula [Ru sub(3) O (OOCCH sub(3)) sub(6) L sub(3)] sup(+), where L = N-heterocyclic ligands, were synthesized and characterized based on elemental analysis. UV-VIS and IR spectra. Voltametric studies revealed the existence of up to six acessible oxidation states, with a high degree of electronic delocalization. The Ru sub(3) O trigonal center possesses many delocalized electrons and can be visualized as a source of electrons. The ligands coordinated to the clusters tune their redox potentials, determine the differences in their electronic spectra, and are responsible for the special conditions required for their synthesis. (author)

  8. Synthesis, electronic structure, and magnetism of [Ni(6-Mes)2]+: a two-coordinate nickel(I) complex stabilized by bulky N-heterocyclic carbenes.

    Poulten, Rebecca C; Page, Michael J; Algarra, Andrs G; Le Roy, Jennifer J; Lpez, Isidoro; Carter, Emma; Llobet, Antoni; Macgregor, Stuart A; Mahon, Mary F; Murphy, Damien M; Murugesu, Muralee; Whittlesey, Michael K

    2013-09-18

    The two-coordinate cationic Ni(I) bis-N-heterocyclic carbene complex [Ni(6-Mes)2]Br (1) [6-Mes =1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene] has been structurally characterized and displays a highly linear geometry with a C-Ni-C angle of 179.27(13). Density functional theory calculations revealed that the five occupied metal-based orbitals are split in an approximate 2:1:2 pattern. Significant magnetic anisotropy results from this orbital degeneracy, leading to single-ion magnet (SIM) behavior. PMID:23971827

  9. Water-soluble IrIII N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water.

    Azua, Arturo; Sanz, Sergio; Peris, Eduardo

    2011-03-28

    Two new water-soluble [IrI(2)(AcO)(bis-NHC)] complexes (NHC=N-heterocyclic carbene) incorporating a sulfonate functionality have been synthesized. The two complexes have been tested in the reduction of CO(2) with H(2) and iPrOH, and their activity has been compared with similar species without the sulfonate moiety. In both reactions, the complex with the two abnormally bound NHCs shows the best catalytic efficiencies, due to the higher ?-electron-donor character of the ligand. Remarkably, the activities obtained for the reduction of CO(2) under the transfer hydrogenation conditions are the best reported to date in terms of TON value (max. TON=2700). The two new complexes have also shown very good activity in the selective deuteration of arylamines, a process that is known to proceed through a chelate assisted N-directed process. PMID:21365699

  10. N, N′-Olefin functionalized Bis-Imidazolium Pd(II) chloride N-Heterocyclic carbene complex builds a supramolecular framework and shows catalytic efficacy for `C–C' coupling reactions

    Gourisankar Roymahapatra; Tapastaru Samanta; Saikat Kumar Seth; Ambikesh Mahapatra; Shyamal Kumar Chattopadhyay; Joydev Dinda

    2015-06-01

    The ligand 3,3′-(-phenylenedimethylene)bis{1-(2-methylallyl)} imidazolium bromide (1) and its Palladium(II) N-heterocyclic carbene (NHC) complex (3) has been synthesized and characterized by several spectroscopic techniques and the solid-state structure of 3 has been determined by single crystal X-ray diffraction studies. The Pd(II) complex possesses ring head to tail – stacking interactions (3.767 A°) through imidazole rings. Complex 3 catalyzes Suzuki-Miyaura `C–C' coupling reaction. DFT calculations have been used to understand the HOMO/LUMO energy and hence the stability and reactivity of Pd(II) complex in syn and anti-configuration.

  11. Chemistry of Iron N -heterocyclic carbene complexes: Syntheses, structures, reactivities, and catalytic applications

    Riener, Korbinian

    2014-05-28

    Iron is the most abundant transition metal in Earth\\'s crust. It is relatively inexpensive, not very toxic, and environmentally benign. Undoubtedly, due to the involvement in a multitude of biological processes, which heavily rely on the rich functionalities of iron-containing enzymes, iron is one of the most important elements in nature. Additionally, three-coordinate iron complexes have been reported during the past several years. In this review, the mentioned iron NHC complexes are categorized by their main structure and reactivity attributes. Thus, monocarbene and bis-monocarbene complexes are presented first. This class is subdivided into carbonyl, nitrosyl, and halide compounds followed by a brief section on other, more unconventional iron NHC motifs. Subsequently, donor-substituted complexes bearing bi-, tri-, tetra-, or even pentadentate ligands and further pincer as well as scorpionato motifs are described.

  12. Synthesis and characterization of a cationic phthalimido-functionalized N-heterocyclic carbene complex of palladium(II) and its catalytic activity

    Goh, Li Min Serena

    2014-01-29

    A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been synthesized from [3-methyl-1-(2′- phthalimidoethyl)imidazolium] hexafluorophosphate ([NHCMe,PhtH] PF6) by transmetalation and isolated in 67 % yield. The title complex has been applied as catalyst in the Suzuki-Miyaura cross-coupling reaction under benign aqueous conditions. The catalyst is active without any observable initiation period. High average turnover frequencies (TOFs) of up to 55000 h-1 have been reached with catalyst concentrations as low as 0.01 mol-%. A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been prepared in high yield. The complex was activated instantly, without an initiation period, in the Suzuki-Miyaura cross-coupling reaction under benign aqueous aerobic conditions. Turnover frequencies (TOFs) up to 55000 h-1, were achieved with 0.01 mol-% of the complex. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reductive dimerization of triruthenium clusters containing cationic aromatic N-heterocyclic ligands.

    Cabeza, Javier A; del Río, Ignacio; Pérez-Carreño, Enrique; Pruneda, Vanessa

    2010-05-10

    The cationic cluster complexes [Ru(3)(mu-H)(mu-kappa(2)N,C-L(1) Me)(CO)(10)](+) (1(+); HL(1) Me=N-methylpyrazinium), [Ru(3)(mu-H)(mu-kappa(2)N,C-L(2) Me)(CO)(10)](+) (2(+); HL(2) Me=N-methylquinoxalinium), and [Ru(3)(mu-H)(mu-kappa(2)-N,C-L(3) Me)(CO)(10)](+) (3(+); HL(3) Me=N-methyl-1,5-naphthyridinium), which contain cationic N-heterocyclic ligands, undergo one-electron reduction processes to become short lived, ligand-centered, trinuclear, radical species (1-3) that end in the formation of an intermolecular C--C bond between the ligands of two such radicals, thus leading to neutral hexanuclear derivatives. These dimerization processes are selective, in the sense that they only occur through the exo face of the bridging ligands of trinuclear enantiomers of the same configuration, as they only afford hexanuclear dimers with rac structures (C(2) symmetry). The following are the dimeric products that have been isolated by using cobaltocene as reducing agent: [Ru(6)(mu-H)(2){mu(6)-kappa(4)N(2),C(2)-(L(1) Me)(2)}(CO)(18)] (5; from 1(+)), [Ru(6)(mu-H)(2){mu(6)-kappa(4)N(2),C(2)-(L(2) Me)(2)}(CO)(18)] (6; from 2(+)), and [Ru(6)(mu-H)(2){mu(4)-kappa(8)N(2),C(6)-(L(3) Me)(2)}(CO)(18)] (7; from 3(+)). The structures of the final hexanuclear products depend on the N-heterocyclic ligand attached to the starting materials. Thus, although both trinuclear subunits of 5 and 6 are face-capped by their bridging ligands, the coordination mode of the ligand of 5 is different from that of the ligand of 6. The trinuclear subunits of 7 are edge-bridged by its bridging ligand. In the presence of moisture, the reduction of 3(+) with cobaltocene also affords a trinuclear derivative, [Ru(3)(mu-H)(mu-kappa(2)N,C-L(3') Me)(CO)(10)] (8), whose bridging ligand (L(3') Me) results from the formal substitution of an oxygen atom for the hydrogen atom (as a proton) that in 3(+) is attached to the C(6) carbon atom of its heterocyclic ligand. The results have been rationalized with the help of electrochemical measurements and DFT calculations, which have also shed light on the nature of the odd-electron species, 1-3, and on the regioselectivity of their dimerization processes. It seems that the sort of coupling reactions described herein requires cationic complexes with ligand-based LUMOs. PMID:20373311

  14. Air-stable, convenient to handle Pd based PEPPSI (pyridine enhanced precatalyst preparation, stabilization and initiation) themed precatalysts of N/O-functionalized N-heterocyclic carbenes and its utility in Suzuki-Miyaura cross-coupling reaction.

    Ray, Lipika; Shaikh, Mobin M; Ghosh, Prasenjit

    2007-10-28

    Several new air-stable, convenient to handle and easily synthesized Pd based PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) type precatalysts supported over N/O-functionalized N-heterocyclic carbenes (NHC) namely, trans-[1-(benzyl)-3-(N-t-butylacetamido)imidazol-2-ylidene]Pd(pyridine)Cl2 (), trans-[1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]Pd(pyridine)Cl2 () and trans-[1-(o-methoxybenzyl)-3-(t-butyl)imidazol-2-ylidene]Pd(pyridine)Br2 (), have been designed. Specifically, the Pd-NHC complexes, , and , were conveniently synthesized from their respective imidazolium halide salts by the reaction with PdCl2 in pyridine in presence of K2CO3 as a base. A new imidazolium chloride salt, 1-(benzyl)-3-(N-t-butylacetamido)imidazolium chloride () was synthesized by the alkylation reaction of benzyl imidazole with N-t-butyl-2-chloroacetamide. The molecular structures of the imidazolium chloride salt, , and the Pd-NHC complexes, , and , have been determined by X-ray diffraction studies. The density functional theory studies of the , and complexes were carried out to in order to gain insight about their structure, bonding and the electronic properties. The nature of the NHC-metal bond in these complexes was examined using Charge Decomposition Analysis (CDA), which revealed that the N-heterocyclic carbene ligands are effective sigma-donors. In addition, the catalysis studies revealed that the Pd-NHC complexes, , and , are effective catalysts for the Suzuki-Miyaura type C-C cross-coupling reactions. PMID:17928912

  15. Solid-state structure, solution-state behaviour and catalytic activity of electronically divergent C,N-chelating palladium-N-heterocyclic carbene complexes.

    Chapman, Michael R; Lake, Benjamin R M; Pask, Christopher M; Nguyen, Bao N; Willans, Charlotte E

    2015-09-28

    A family of electronically diverse pyridyl- and picolyl-substituted imidazolium salts have been prepared and coordinated to palladium in a single step, to deliver a variety of palladium(ii)-N-heterocyclic carbene (NHC) complexes. Neutral Pd(NHC)X2, cationic [Pd(NHC)2X]X and dicationic [Pd(NHC)2]X2-type complexes have been isolated and fully characterised, with single-crystal X-ray analysis revealing a variety of coordination environments around the palladium centres. The pre-formed complexes have been employed in a model Suzuki-Miyaura cross-coupling reaction to yield a sterically congested tetra-ortho-substituted biaryl product, showcasing turnover numbers comparable to Pd-PEPPSI-IPr catalyst. PMID:26282010

  16. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl2(PPh3)2L2 and RuCl2(PPh3)2A, obtained from the reaction of RuCl2(PPh3)3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b1(dxz)->b1(pi) and a2(dxy)->a2(pi) transitions, and a third, weak band ascribed to the b2(dyz)->a2(pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh3)3Cl2. In the presence of CO, RuCl2(CO)2L2 complexes were gennerated. Several derivatives were isolated and characterized. (author)

  17. Stabilities of Immonium Ions Derived from N-Heterocyclic Carbenes Probed by Collision-Induced Dissociation Mass Spectrometry

    Polyakova, Svetlana; Kunetskiy, Roman Alexejevič; Schröder, Detlef

    -, č. 20 (2012), s. 3852-3862. ISSN 1434-193X Grant ostatní: European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : carbenes * cations * collision-induced dissociation * density functional calculations * electrospray ionization * lipophilic cations * mass spectrometry * phase-transfer catalysis Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  18. Cobalt and Iron Complexes with N-heterocyclic Ligands as Pyrolysis Precursors for Oxygen Reduction Catalysts

    Cobalt and Iron based catalysts for the Oxygen Reduction Reaction (ORR) are a promising alternative to the use of Pt in Polymer Electrolyte Fuel Cells (PEMFC). A systematic study on the influence of the nitrogenated ligand in the precursor complex on the ORR activity was performed. Several Fe and Co complexes were prepared with different N-heterocyclic ligands, namely: meso-tetra-(4-carboxyphenyl)-porphyrin (TCPP), N-methylimidazole (N-Me-Im), 3-amino-1,2,4-triazole-5-carboxylic acid (ATZC), 2,2′-bis(4,5-dimethylimidazole) (bis-Me-Im), phenanthroline (phen), 2-pyrazinecarboxylic acid (CO2-Pz), 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ) and 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), adsorbed on a carbon substrate and submitted to thermal treatment. These ligands comprise five and six membered rings with one to four N-atoms. Key parameters such as the pyrolysis temperature, the complex load and the metal: ligand ratio were studied, in order to optimize the efficiency of the catalysts. The synthesized catalysts were characterized by several physical bulk and surface techniques, namely XRD, TGA, Raman spectroscopy, XPS, EDX and electron microscopies (SEM and TEM). The best catalyst was obtained from a Cobalt-phenanthroline precursor, adsorbed on a mesoporous carbon material, and pyrolyzed at 700 °C. The equilibrium potential was 0.90 V vs NHE (1.0 V for Pt), exchange current density 25 μA cm−2, Tafel slope was 90 mV dec−1, and 4.0 exchanged electrons, less than 9 % in H2O2 yield, and half wave potential only 80 mV lower than that of Platinum (10%). This catalyst exhibited the highest N content as determined by XPS. The electrochemical data of the prepared catalysts were analyzed in the context of the TGA, XRD and XPS information. A correlation between ORR activity and the N content (XPS) was found. This result strongly supports the model that proposes N atoms as the active sites, and provides a rational tool for designing new catalysts

  19. N-heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes.

    Maftei, Catalin V; Fodor, Elena; Jones, Peter G; Freytag, Matthias; Franz, M Heiko; Kelter, Gerhard; Fiebig, Heinz-Herbert; Tamm, Matthias; Neda, Ion

    2015-08-28

    This work presents the synthesis, characterization and application of eleven new gold (I) complexes 13-23 with 1,2,4-oxadiazole-containing N-heterocyclic carbene (NHC) ligands and of the NHC silver(I) complex 24. The 1,2,4-oxadiazole unit, which can be found in a variety of biologically active natural products such as phidianidines or quisqualic acid, was incorporated, along with a variety of other biologically active moieties (anthracene, indole, 2-pyridine, 2,3,4,5-tetra-O-acetyl-D-glucopyranose, quincorine and quincoridine), in order to change the lipophilicity of the complexes, so that the transport of the active units (M-NHC) though the cell wall barrier is facilitated. The biological activity of the complexes was investigated. In vitro assessment of anti-tumor activity in a panel of 12 human tumor cell lines by a monolayer assay revealed impressive potency (mean IC50 < 0.1 μM) and tumor selectivity for 6 compounds, with individual IC50 values in the low nanomolar range. The solid state structures of compounds 13, 14, 15, 17, 18, 19 and 24 were determined by X-ray diffraction analyses. PMID:26185007

  20. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    Xu, Songchen [Ames Laboratory; Manna, Kuntal [Ames Laboratory; Ellern, Arkady [Ames Laboratory; Sadow, Aaron D [Ames Laboratory

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes′CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes′CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis-[Ir](H)(Ph) complex. Alternatively, the rhodium carbonyl 5 or iridium isocyanide {PhB(OxMe2)2ImMes}Ir(CO)CNtBu (15) reacts with PhSiH3 in the dark to form the silyl compound {PhB(OxMe2)2ImMes}RhH(SiH2Ph)CO (14) or {PhB(OxMe2)2ImMes}IrH(SiH2Ph)CNtBu (17). These examples demonstrate the enhanced thermal reactivity of {PhB(OxMe2)2ImMes}-supported iridium and rhodium carbonyl compounds in comparison to tris(oxazolinyl)borate, tris(pyrazolyl)borate, and cyclopentadienyl-supported compounds.

  1. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters

    Hong, Miao

    2016-01-18

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition–proton transfer–NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability Four MeO– and Cl–substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, RxTPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), OMe2TPT and OMe3TPT, have been synthesized, while OMe2TPT(MeO/H) and OMe2TPT have also been structurally characterized. The structure/reactivity relationship study revealed that OMe2TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl–substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species.

  2. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters.

    Hong, Miao; Tang, Xiaoyan; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-02-17

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition-proton transfer-NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability. Four MeO- and Cl-substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, (Rx)TPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), (OMe2)TPT and (OMe3)TPT, have been synthesized, while (OMe2)TPT(MeO/H) and (OMe2)TPT have also been structurally characterized. The structure/reactivity relationship study revealed that (OMe2)TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl-substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out, and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species. PMID:26779897

  3. Structure, bonding and energetics of N-heterocyclic carbene (NHC) stabilized low oxidation state group 2 (Be, Mg, Ca, Sr and Ba) metal complexes: A theoretical study

    Ashim Baishya; V Rao Mundlapati; Sharanappa Nembenna; Himansu S Biswal

    2014-11-01

    A series of N-heterocyclic carbene stabilized low oxidation state group 2 metal halide and hydrides with metal-metal bonds ([L(X) M-M(X) L]; L = NHC ((CHNH)2C:), M = Be, Mg, Ca, Sr and Ba, and X = Cl or H) has been studied by computational methods. The main objective of this study is to predict whether it is possible to stabilize neutral ligated low oxidation state alkaline-earth metal complexes with metal-metal bonds. The homolytic metal-metal Bond Dissociation Energy (BDE) calculation, Natural Bond Orbital (NBO) and Energy Decomposition Analyses (EDA) on density functional theory (DFT) optimized [L(X)M-M(X)L] complexes revealed that they are as stable as their -diketiminate, guanidinate and -diimine counterparts. The optimized structures of the complexes are in trans-linear geometries. The bond order analyses such as Wiberg Bond Indices (WBI) and Fuzzi Bond Order (FBO) confirm the existence of single bond between two metal atoms, and it is covalent in nature.

  4. Reactions of aromatic N-heterocycles with a lutetium benzyl complex supported by a ferrocene-diamide ligand.

    Wong, Allison W; Miller, Kevin L; Diaconescu, Paula L

    2010-08-01

    A comparison between the reactivity behavior of two lutetium benzyl complexes supported by different ferrocene-diamide ligands towards aromatic N-heterocycles, such as 1-methylimidazole, isoquinoline, and pyridines, is presented. The two ferrocene-diamide ancillary ligands differ in their nitrogen-donor substituent: adamantyl for one and t-butyldimethylsilyl for the other. The synthesis and characterization of the adamantyl-derived complex 1(Ad)-DME are reported. The ring opening of 1-methylimidazole by the THF analogue of 1(Ad)-DME, 1(Ad)-THF, was observed, analogously to the ring opening of the same substrate by the lutetium benzyl complex supported by the silyl-substituted ligand. Also, analogous products were observed in the reactions with isoquinoline. PMID:20454748

  5. Stepwise and one-pot syntheses of Ir(III) complexes with imidazolium-based carbene ligands.

    Chien, Chih-Hsien; Fujita, Singo; Yamoto, Suguru; Hara, Takeshi; Yamagata, Tsuneaki; Watanabe, Masami; Mashima, Kazushi

    2008-02-21

    We report the preparation, crystal structure, electrochemistry, and emission properties of Ir(Cinsertion markC:)3, where Cinsertion markC: is an N-heterocyclic carbene ligand. Two synthetic approaches are introduced for generating Ir(III) complexes bearing imidazolium-based carbene ligands whose precursors are [pypiH2][Cl] (1a) (pyridyl[1,2-a]{2-phenylimidazol}-3-ylidene chloride) and [pympiH2][Cl] (1b) (pyridyl[1,2-a-{2-(p-methoxy)phenylimidazol}-3-ylidene chloride). The first method is a stepwise reaction: treatment of [Ir(mu-Cl)(COD)]2, where COD is 1,5-cyclooctadiene, with 4 equiv. of the corresponding carbene (Cinsertion markC:) ligands in the presence of an excess amount of sodium methoxide affords Ir(III) dimers [Ir(mu-Cl)(Cinsertion markC:)2]2 (2a, Cinsertion markC: = pypi(-); 2b, Cinsertion markC: = pympi(-)). These chloro-bridged dimers 2a and 2b react with the corresponding carbene (Cinsertion markC:) ligands to form the desired homoleptic compounds Ir(Cinsertion markC:)3 (3a, Cinsertion markC: = pypi(-); 3b, Cinsertion markC: = pympi(-)). The second method, using a one-pot reaction of [Ir(mu-Cl)(COD)]2 with 6 equiv. of the corresponding carbene (Cinsertion markC:) ligands 1a and 1b in the presence of excess amounts of Ag2O, affords Ir(Cinsertion markC:)3. The two methods are convenient and reproducible procedures for the synthesis of Ir(Cinsertion markC:)3. Complexes 3a and 3b are obtained as mixtures of meridional and facial isomers, which can be separated by recrystallization or flash column chromatography. PMID:18259625

  6. Iridium(I) N-Heterocyclic Carbene (NHC)/Phosphine Catalysts for Mild and Chemoselective Hydrogenation Processes.

    Kerr, William J; Mudd, Richard J; Brown, Jack A

    2016-03-24

    The directed chemoselective hydrogenation of olefins has been established by using iridium(I) catalysts, which feature a tuned NHC/phosphine ligand combination. This selective reduction process has been demonstrated in a wide array of solvents, including more environmentally acceptable media, also allowing further refinement of hydrogenation selectivity. PMID:26854284

  7. The influence of electron delocalization upon the stability and structure of potential N-heterocyclic carbene precursors with 1,3-diaryl-imidazolidine-4,5-dione skeletons

    Hobbs, Matthew; Forster, Taryn; Borau-Garcia, Javier; Knapp, Chrissy; TUONONEN, Heikki; Roesler, Roland

    2010-01-01

    Targeting N-heterocyclic carbenes (NHCs) with increased π-acceptor character featuring N-fluorophenyl substituents, the molecular 2-chloro-1,3-bis(fluorophenyl)imidazolidine-4,5-diones (1a–c) were isolated from the condensation of the corresponding formamidine with oxalyl chloride. These formal adducts of NHCs with hydrogen chloride demonstrated reactivity akin to that of alkyl halides: 1,3,1′,3′-tetrakis(2,6-dimethylphenyl)-[2,2′]diimidazolidinyl-4,5,4′,5′-tetraone (2b) was formed via the re...

  8. Steric and electronic parameters of a bulky yet flexible N-heterocyclic carbene: 1,3-bis(2,6-bis(1-ethylpropyl)phenyl)imidazol-2-ylidene (IPent)

    Collado, Alba

    2013-06-10

    The free N-heterocyclic carbene IPent (1; IPent = 1,3-bis(2,6-bis(1- ethylpropyl)phenyl)imidazol-2-ylidene) was prepared from the corresponding imidazolium chloride salt (2). The steric and electronic parameters of 1 were determined by synthesis of the gold(I) chloride complex [Au(IPent)Cl] (3) and the nickel-carbonyl complex [Ni(IPent)(CO)3] (4), respectively. 3 and 4 were fully characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction studies on single crystals. © 2013 American Chemical Society.

  9. Synthesis and behavior of novel sulfonated water-soluble N-heterocyclic carbene (η(4)-diene) platinum(0) complexes.

    Ruiz-Varilla, Andrea M; Baquero, Edwin A; Silbestri, Gustavo F; Gonzalez-Arellano, Camino; de Jesús, Ernesto; Flores, Juan C

    2015-11-14

    A series of water-soluble (NHC)Pt(0)(dvtms) and (NHC)Pt(0)(AE) complexes containing different sulfonated NHC ligands (dvtms = divinyltetramethyldisiloxane and AE = diallyl ether) are reported. The dvtms compounds have been found to be quite robust and to display some conformational rigidity, whereas their AE counterparts are less stable and more flexible. The catalytic evaluation of these complexes in the hydrosilylation of alkynes in water revealed no benefits in favor of the complexes containing the more labile spectator diene (AE), and a fairly regular catalytic behavior for all complexes that restricts the location of the sulfonate group to the proximity of the metal site. PMID:26346995

  10. Luminescent pillared LnIII–ZnII heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new LnIII–ZnII heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1)2(L2)(H2O)m]·nH2O)∞ (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H2L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln2O3, ZnO, H2L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding LnIII ions. - Graphical abstract: Four new 3D LnIII–ZnII coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new LnIII–ZnII heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated

  11. Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry.

    Arz, Marius I; Straßmann, Martin; Geiß, Daniel; Schnakenburg, Gregor; Filippou, Alexander C

    2016-04-01

    Protonation and alkylation of (Idipp)Si═Si(Idipp) (1) afforded the mixed-valent disilicon(I)-borates [(Idipp)(R)Si(II)═Si(0)(Idipp)][B(Ar(F))4] (1R[B(Ar(F))4]; R = H, Me, Et; Ar(F) = C6H3-3,5-(CF3)2; Idipp = C[N(C6H3-2,6-iPr2)CH]2) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the "σ-bonded" tautomers of 1H[B(Ar(F))4], which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion ("π-bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium ions formed upon protonation of olefins. The topomerization of 1H[B(Ar(F))4] provides the first example of a reversible 1,2-H migration along a Si═Si bond observed in a molecular system. In contrast, 1Me[B(Ar(F))4] adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the "σ-bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates 1M[BAr4] (M = Li, Ar = C6F5; M = Na, Ar = Ar(F)) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of 1M[BAr4] suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation-π interactions with the Si═Si π-bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR](-) interrelates the cations [(NHC)(R)Si═Si(NHC)](+) to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures. PMID:26978031

  12. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine formation/dimerization through proton transfer vs polymerization through conjugate addition, and mapped out extensive energy profiles for chain initiation, propagation, and termination steps, thereby satisfactorily explaining the experimental observations. © 2013 American Chemical Society.

  13. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: mechanisms of chain initiation, propagation, and termination.

    Zhang, Yuetao; Schmitt, Meghan; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (I(t)Bu), 1,3-dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by I(t)Bu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, I(t)Bu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10,000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of M(n) = 70-85 kg/mol, regardless of the [MMBL]/[I(t)Bu] ratio employed. The I(t)Bu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s(-1) and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine formation/dimerization through proton transfer vs polymerization through conjugate addition, and mapped out extensive energy profiles for chain initiation, propagation, and termination steps, thereby satisfactorily explaining the experimental observations. PMID:24245532

  14. Electronic bond tuning with heterocyclic carbenes

    Falivene, Laura

    2013-01-01

    We discuss the impact of the nature of the heterocyclic carbene ring, when used as a complex forming ligand, on the relative stability of key intermediates in three typical Ru, Pd and Au promoted reactions. Results show that P-heterocyclic carbenes have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions, dissociation of a P-heterocyclic carbene is easier than dissociation of the N-heterocyclic analogue. In the case of the Au-OH synthon, the Au-OH bond is weakened with the P-heterocyclic carbene ligands. A detailed energy decomposition analysis is performed to rationalize these results. © 2013 The Royal Society of Chemistry.

  15. Luminescent pillared Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    Liu, Sui-Jun; Jia, Ji-Min; Cui, Yu; Han, Song-De; Chang, Ze, E-mail: changze@nankai.edu.cn

    2014-04-01

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new Ln{sup III}–Zn{sup II} heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1){sub 2}(L2)(H{sub 2}O){sub m}]·nH{sub 2}O){sub ∞} (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H{sub 2}L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln{sub 2}O{sub 3}, ZnO, H{sub 2}L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding Ln{sup III} ions. - Graphical abstract: Four new 3D Ln{sup III}–Zn{sup II} coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated.

  16. Pincer-CNC mononuclear, dinuclear and heterodinuclear Au(iii) and Pt(ii) complexes supported by mono- and poly-N-heterocyclic carbenes: synthesis and photophysical properties.

    Gonell, S; Poyatos, M; Peris, E

    2016-04-01

    A family of cyclometallated Au(iii) and Pt(ii) complexes containing a CNC-pincer ligand (CNC = 2,6-diphenylpyridine) supported by pyrene-based mono- or bis-NHC ligands have been synthesized and characterized, together with the preparation of a Pt-Au hetero-dimetallic complex based on a Y-shaped tris-NHC ligand. The photophysical properties of all the new species and of two related Ru(ii)-arene complexes were studied and compared. Whereas the pyrene-based complexes only exhibit emission in solution, those containing the Y-shaped tris-NHC ligand are only luminescent when dispersed in poly(methyl methacrylate) (PMMA). In particular, the pyrene-based complexes were found to be emissive in the range of 373-440 nm, with quantum yields ranging from 3.1 to 6.3%, and their emission spectra were found to be almost superimposable, pointing to the fluorescent pyrene-centered nature of the emission. This observation suggests that the emission properties of the pyrene fragment may be combined with some of the numerous applications of NHCs as supporting ligands allowing, for instance, the design of biological luminescent agents. PMID:26911885

  17. Synthesis and Characterization of Divalent Manganese, Iron, and Cobalt Complexes in Tripodal Phenolate/N-Heterocyclic Carbene Ligand Environments

    Käß, Martina; Hohenberger, Johannes; Adelhardt, Mario; Zolnhofer, Eva M.; Mossin, Susanne; Heinemann, Frank W.; Sutter, Jörg; Meyer, Karsten

    2014-01-01

    well as by single-crystal X-ray diffraction studies. Variable-temperature SQUID magnetization measurements in the range from 2 to 300 K confirmed high-spin ground states for all divalent complexes and revealed a trend of increasing zero-field splitting |D| from Mn(II), to Fe(II), to Co(II) complexes...

  18. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes?

    Vummaleti, Sai V. C.

    2015-01-02

    The electronic nature of the interaction of NHCs with metal centres is of interest when exploring their properties, how these properties influence those of metal complexes, and how these properties might depend on ligand structure. Selenourea and phosphinidene complexes have been proposed to allow the measurement of the π-accepting ability of NHCs, independent of their σ-donating ability, via the collection of 77Se or 31P NMR spectra, respectively. Herein, the synthesis and characterisation of selenoureas derived from a range of imidazol-2-ylidenes, 4,5-dihydroimidazol-2-ylidenes and triazol-2-ylidenes are documented. Computational studies are used to explore the link between the shielding of the selenium centre and the electronic properties of the NHCs. Results show that δSe is correlated to the energy gap between a filled lone pair orbital on Se and the empty π* orbital corresponding to the Se–NHC bond. Bond energy decomposition analysis indicated no correlation between the orbital σ-contribution to bonding and the chemical shielding, while a good correlation was found between the π-contribution to bonding and the chemical shielding, confirming that this technique is indeed able to quantify the ability of NHCs to accept π-electron density. Calculations conducted on phosphinidene adducts yielded similar results. With the link between δSe and δP and π-back bonding ability clearly established, these compounds represent useful ways in which to fully understand and quantify this aspect of the electronic properties of NHCs.

  19. Axial Ligand Exchange of N-heterocyclic Cobalt(III) Schiff Base Complexes: Molecular Structure and NMR Solution Dynamics

    Manus, Lisa M.; Holbrook, Robert J.; Atesin, Tulay A.; Heffern, Marie C.; Harney, Allison S.; Eckermann, Amanda L.; Meade, Thomas J.

    2013-01-01

    The kinetic and thermodynamic ligand exchange dynamics are important considerations in the rational design of metal-based therapeutics and therefore, require detailed investigation. Co(III) Schiff base complex derivatives of bis(acetylacetone) ethylenediimine [acacen] have been found to be potent enzyme and transcription factor inhibitors. These complexes undergo solution exchange of labile axial ligands. Upon dissociation, Co(III) irreversibly interacts with specific histidine residues of a ...

  20. An N-heterocyclic silylene-stabilized digermanium(0) complex.

    Shan, Yu-Liang; Yim, Wai-Leung; So, Cheuk-Wai

    2014-11-24

    The synthesis of an N-heterocyclic silylene-stabilized digermanium(0) complex is described. The reaction of the amidinate-stabilized silicon(II) amide [LSiN(SiMe3)2] (1; L=PhC(NtBu)2) with GeCl2⋅dioxane in toluene afforded the Si(II)-Ge(II) adduct [L{(Me3Si)2N}Si→GeCl2] (2). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N-heterocyclic carbene silylene-stabilized digermanium(0) complex [L{(Me3Si)2N}Si→Ge=Ge←Si{N(SiMe3)2}L] (3). X-ray crystallography and theoretical studies show conclusively that the N-heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor-acceptor interaction. PMID:25267490

  1. Abnormal carbene-silicon halide complexes.

    Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Robinson, Gregory H

    2016-04-14

    Reaction of the anionic N-heterocyclic dicarbene (NHDC), [:C{[N(2,6-Pr(i)2C6H3)]2CHCLi}]n (1), with SiCl4 gives the trichlorosilyl-substituted (at the C4 carbon) N-heterocyclic carbene complex (7). Abnormal carbene-SiCl4 complex (8) may be conveniently synthesized by combining 7 with HCl·NEt3. In addition, 7 may react with CH2Cl2 in warm hexane, giving the abnormal carbene-complexed SiCl3(+) cation (9). The nature of the bonding in 9 was probed with complementary DFT computations. PMID:26605692

  2. Pyridylidene ligand facilitates gold-catalyzed oxidative C–H arylation of heterocycles

    Hata, Kazuhiro; Ito, Hideto

    2015-01-01

    Summary Triaryl-2-pyridylidene effectively facilitates the gold-catalyzed oxidative C–H arylation of heteroarenes with arylsilanes as a unique electron-donating ligand on gold. The employment of the 2-pyridylidene ligand, which is one of the strongest electron-donating N-heterocyclic carbenes, resulted in the rate acceleration of the C–H arylation reaction of heterocycles over conventional ligands such as triphenylphosphine and a classical N-heterocyclic carbene. In situ observation and isolation of the 2-pyridylidene-gold(III) species, as well as a DFT study, indicated unusual stability of gold(III) species stabilized by strong electron donation from the 2-pyridylidene ligand. Thus, the gold(I)-to-gold(III) oxidation process is thought to be facilitated by the highly electron-donating 2-pyridylidene ligand. PMID:26877796

  3. NHC-based pincer ligands: carbenes with a bite.

    Andrew, Rhiann E; González-Sebastián, Lucero; Chaplin, Adrian B

    2016-01-19

    In this frontier article we overview the emergence and scope of NHC-based CCC and CNC pincer systems, i.e. complexes containing mer-tridentate ligands bearing two NHC donor groups, comment on their effectiveness in applications, and highlight areas for future development and exploitation. PMID:26673868

  4. Insights Into the Carbene-Initiated Aggregation of [Fe(cot)2

    Lavallo, Vincent

    2010-11-25

    Carbenes attack! Stable carbenes react with [Fe(cot)2] in very different ways. Whereas the classical N-heterocyclic carbenes induce the formation of tetra- and trimetallic iron clusters, abnormal NHCs and carbocyclic carbenes (BACs) form mono- and bimetallic iron complexes. Cyclic (alkyl)(amino)carbenes (CAACs) react with [Fe(cot)2] in a completely different manner, namely through outersphere [4+1] cycloaddition.

  5. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  6. Ruthenium(II) Complexes Containing Lutidine-derived Pincer CNC Ligands: Synthesis, Structure and Catalytic Hydrogenation of C=N bonds

    Hernández-Juárez, M.; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-01-01

    A series of Ru complexes 3-5 containing lutidine-derived pincer CNC ligands have been prepared by transmetallation with the corresponding silver-carbene derivatives 2. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. Ru-CNC complexes 3-4 are active, in the presence of tBuOK, in the hydrogenation of a series of imines. In addition, these complexes also catalyze the reversible hydrogen...

  7. Ligands rock & roll: stepwise twisting of two cis-coordinated lopsided N-heterocycles in an octahedral bis(2-phenylazopyridine)-ruthenium(II) complex with seven atropisomers.

    Velders, Aldrik H; Hotze, Anna C G; Reedijk, Jan

    2005-02-01

    1H NMR data of alpha-[Ru(azpy)2(MeBim)2](PF6)2 (azpy=2-phenylazopyridine, MeBim=1-methylbenzimidazole), 2, revealed the presence of a total of seven atropisomers at -95 degrees C: three head-to-tail, HT, isomers (A, C, and D), and four head-to-head, HH, isomers which, due to the presence of an intrinsic C2 axis in the alpha-[Ru(azpy)2] moiety, are two sets of identical pairs (B/B and E/E). The NMR data of 2 represent a unique example of a coordination compound that shows a variable temperature (VT) behavior with more, well-defined steps of slow-to-fast exchange of its atropisomers. At 65 degrees C, all atropisomers are in fast exchange; on lowering the temperature the sharp signals first broaden (at room temperature) and consecutively split up into two sets of relatively sharp signals, in slow exchange, at about 0 degrees C (D, 40 %, and the coalesced signals of ABBCEE, 60 %). Upon further cooling, the set of peaks belonging to D remain sharp until the lowest recording temperatures. The signals of the other set of resonances, on the other hand, first broaden again and then separate into two sets of broad peaks (C/E/E and A) and one set of sharp peaks (B and B in fast exchange); on lowering the temperature even more, these signals broaden once again and finally, at -95 degrees C, are split up into a total of four sets of signal (A, B/B, C, and E/E). At low temperatures, ROESY experiments revealed that atropisomerization occurs through the synchronous rotation of both MeBim ligands in the interconversion of the two "identical" HH atropisomers B and B, as well as in the interconversion between C and E/E. The HH rotamers B/B furthermore exhibit a slow-to-fast exchange atropisomerization behavior that is observed independently from the other dynamic processes in this compound. The versatile cis bifunctional binding of the DNA model bases (MeBim ligands) in 2 parallels the observation of alpha-[Ru(azpy)2Cl2] which shows extraordinarly high cytotoxicity against tumor cell lines. PMID:15643666

  8. Regarding the mechanism of olefin metathesis with sol-gel-supported Ru-based complexes bearing a bidentate carbene ligand. Spectroscopic evidence for return of the propagating Ru carbene.

    Kingsbury, Jason S; Hoveyda, Amir H

    2005-03-30

    Two isotopically and structurally labeled Ru-based carbenes (2-d4 and 13) have been prepared and attached to the surface of monolithic sol-gel glass. The resulting glass-supported complexes (18-dn and 19) exhibit significant catalytic activity in promoting olefin metathesis reactions and provide products of high purity. Through analysis of the derivatized glass pellets used in a sequence of catalytic ring-closing metathesis reactions mediated by various supported Ru carbenes, it is demonstrated that free Ru carbene intermediates in solution can be scavenged by support-bound styrene ether ligands prior to the onset of competing transition metal decomposition. The observations detailed herein provide rigorous evidence that the initially proposed release/return mechanism is, at least partially, operative. The present investigations shed light on a critical aspect of the mechanism of an important class of Ru-based metathesis complexes (those bearing a bidentate styrene ether ligand). PMID:15783234

  9. α-Hydroxy coordination of mononuclear vanadyl citrate, malate and S-citramalate with N-heterocycle ligand, implying a new protonation pathway of iron-vanadium cofactor in nitrogenase.

    Chen, Can-Yu; Chen, Mao-Long; Chen, Hong-Bin; Wang, Hongxin; Cramer, Stephen P; Zhou, Zhao-Hui

    2014-12-01

    Unlike the most of α-alkoxy coordination in α-hydroxycarboxylates to vanadium, novel α-hydroxy coordination to vanadium(IV) has been observed for a series of chiral and achiral monomeric α-hydroxycarboxylato vanadyl complexes [VO(H2cit)(bpy)]·2H2O (1), [VO(Hmal)(bpy)]·H2O (2), [VO(H2cit)(phen)]·1.5H2O (3), [VO(Hmal)(phen)]·H2O (4), and [(Δ)VO(S-Hcitmal)(bpy)]·2H2O (5), [VO(H2cit)(phen)]2·6.5H2O (6), which were isolated from the reactions of vanadyl sulfate with α-hydroxycarboxylates and N-heterocycle ligands in acidic solution. The complexes feature a tridentate citrate, malate or citramalate that chelates to vanadium atom through their α-hydroxy, α-carboxy and β-carboxy groups; while the other β-carboxylic acidic group of citrate is free to participate strong hydrogen bonds with lattice water molecule. The neutral α-hydroxy group also forms strong intermolecular hydrogen bonds with water molecule and the negatively-charged α-carboxy group in the environment. The inclusion of a hydrogen ion in α-alkoxy group results in the formation of a series of neutral complexes with one less positive charge. There are two different configurations of citrate with respect to the trans-position of axial oxo group, where the complex with trans-hydroxy configuration seems more stable with less hindrance. The average bond distances of V-Ohydroxy and V-Oα-carboxy are 2.196 and 2.003Å respectively, which are comparable to the VO distance (2.15Å) of homocitrate in FeV-cofactor of V-nitrogenase. A new structural model is suggested for R-homocitrato iron vanadium cofactor as VFe7S9C(R-Hhomocit) (H4homocit=homocitric acid) with one more proton in homocitrate ligand. PMID:25240212

  10. Recent Developments in the Chemistry of N-Heterocyclic Phosphines

    Gudat, Dietrich

    This chapter gives a survey on five- and six-membered phosphorus-nitrogen heterocyclic compounds whose rings combine a phosphazene (>N-P = N-) or phosphazane (>N-P(X)-N<) unit with an unsaturated C2 or C3 building block. Representatives contain structurally diverse species like aromatic 1,3,2-diazaphosphinines and (benzo)-1,3,2-diazaphospholes, cationic counterparts of subvalent main-group carbene analogues like 1,3,2-diazaphospholenium ions and phosphenium-diketiminates, and neutral heterocycles like 1,3,2-diazaphospholenes featuring unusual structures and reactivities. The exploration of these species developed rapidly in the last two decades in the wake of cutting edge research on multiple bonding and low coordination in the chemistry of heavier main-group elements, and the discovery of stable carbenes. This review summarizes the elaboration of synthetic approaches for different types of N-heterocyclic phosphine derivatives, discusses their characterization by physical and computational methods which furnished a thorough understanding of structure and bonding, and finally highlights accomplishments in the exploration of the chemical properties at the border of classical organic heterocyclic chemistry and molecular inorganic chemistry.

  11. Cyclic (Amino)(aryl)carbenes (CAArCs) as Strong ?-Donating and ?-Accepting Ligands for Transition Metals.

    Rao, Bin; Tang, Huarong; Zeng, Xiaoming; Liu, Liu; Melaimi, Mohand; Bertrand, Guy

    2015-12-01

    Cyclic (amino)(aryl)carbenes (CAArCs) result from the replacement of the alkyl substituent of cyclic (alkyl)(amino) carbenes (CAACs) by an aryl group. This structural modification leads to enhanced electrophilicity of the carbene center with retention of the high nucleophilicity of CAACs, and therefore CAArCs feature a small singlet-triplet gap. The isoindolium precursors are readily prepared in good yields, and deprotonation at low temperature, in the presence of [RhCl(cod)]2 and [(Me2 S)AuCl] lead to air-stable rhodium and gold CAArC-supported complexes, respectively. The rhodium complexes promote the [3+2] cycloaddition of diphenylcyclopropenone with ethyl phenylpropiolate, and induce the addition of 2-vinylpyridine to alkenes by CH activation. The gold complexes allow for the catalytic three-component preparation of 1,2-dihydroquinolines from aniline and phenyl acetylene. These preliminary results illustrate the potential of CAArC ligands in transition-metal catalysis. PMID:26457345

  12. Dearomatization Reactions of N-Heterocycles Mediated by Group 3 Complexes

    Miller, Kevin L [Univ. of California, Los Angeles, CA (United States); Williams, Bryan N [Univ. of California, Los Angeles, CA (United States); Benitez, Diego [California Inst. of Technology (CalTech), Pasadena, CA (United States); Carver, Colin T [Univ. of California, Los Angeles, CA (United States); Ogilby, Kevin R [Univ. of California, Los Angeles, CA (United States); Tkatchouk, Ekaterina [California Inst. of Technology (CalTech), Pasadena, CA (United States); Goddard, William A [California Inst. of Technology (CalTech), Pasadena, CA (United States); Diaconescu, Paula L [Univ. of California, Los Angeles, CA (United States)

    2010-01-13

    Group 3 (Sc, Y, Lu, La) benzyl complexes supported by a ferrocene diamide ligand are reactive toward aromatic N-heterocycles by mediating their coupling and, in a few cases, the cleavage of their C-N bonds. When these complexes reacted with 2,2'-bipyridine or isoquinoline, they facilitated the alkyl migration of the benzyl ligand onto the pyridine ring, a process accompanied by the dearomatization of the N-heterocycle. The products of the alkyl-transfer reactions act as hydrogen donors in the presence of aromatic N-heterocycles, ketones, and azobenzene. Experimental and computational studies suggest that the hydrogen transfer takes place through a concerted mechanism. An interesting disproportionation reaction of the dearomatized, alkyl-substituted isoquinoline complexes is also reported.

  13. N-Heterocyclic olefin stabilized boron dication.

    Lee, Wan-Hua; Lin, Ya-Fan; Lee, Gene-Hsiang; Peng, Shie-Ming; Chiu, Ching-Wen

    2016-04-14

    Boron mono- and di-cations featuring a nucleophilic N-heterocyclic olefin and the pentamethylcyclopentadienyl substituent have been prepared and structurally characterized. Experimental and theoretical investigations show that [η(5)-Cp*B-NHO](2+) is considerably more Lewis acidic than [η(5)-Cp*B-IMes](2+) due to the steric congestion imposed by the bent geometry of NHO around the central boron atom. PMID:26603655

  14. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  15. H(C)Ag: a triple resonance NMR experiment for (109) Ag detection in labile silver-carbene complexes.

    Weske, Sebastian; Li, Yingjia; Wiegmann, Sara; John, Michael

    2015-04-01

    In silver complexes, indirect detection of (109) Ag resonances via (1) H,(109) Ag-HMQC frequently suffers from small or absent JHAg couplings or rapid ligand dissociation. In these cases, it would be favourable to employ H(X)Ag triple resonance spectroscopy that uses the large one-bond JXAg coupling (where the donor atom of the ligand X is the relay nucleus). We have applied an HMQC-based version of the H(C)Ag experiment to a labile silver-NHC complex (NHC=N-heterocyclic carbene) at natural (13) C isotopic abundance and variable temperature. In agreement with simulations, H(C)Ag detection became superior to (1) H,(109) Ag-HMQC detection above -20?C. PMID:25641122

  16. Steering S-H and N-H bond activation by a stable n-heterocyclic silylene: different addition of H(2)S, NH(3), and organoamines on a silicon(II) ligand versus its Si(II)-->Ni(CO)(3) complex.

    Meltzer, Antje; Inoue, Shigeyoshi; Präsang, Carsten; Driess, Matthias

    2010-03-10

    The strikingly different behavior of the ylide-like, N-heterocyclic silylene LSi: (5: L = CH[(C horizontal lineCH(2))CMe(NAr)(2)]; Ar = 2,6-(i)PrC(6)H(3)) versus its LSi-->Ni(CO)(3) complex 13 to activate E-H bonds (E = S, N) of small molecules is reported. Remarkably, conversion of 5 with hydrogen sulfide leads exclusively to the first isolable silathioformamide, L'Si( horizontal lineS)H (16: L' = CH[C(Me)NAr](2); Ar = 2,6-(i)PrC(6)H(3)) with a donor-supported Si horizontal lineS double bond and four-coordinate silicon. The latter result demonstrates the unusual ambivalent reactivity of 5 by combining two modes of reactivity involving S-H bond activation and subsequent 1,4- and 1,1-addition, respectively. In addition, 5 can serve as a ligand with well-balanced sigma-donor and pi-acceptor capabilities toward transition metals. This has been demonstrated by the isolable [Ni(0)(arene)] complexes 12a-e (arene = Me(n)C(6)H(6-n), n = 0-3), which are ideal precursors for the formation of the corresponding Ni(CO)(3) complex 13. The latter activates a S-H bond in hydrogen sulfide, too, but the presence of the Ni(CO)(3) moiety governs the formation of the complex 17, bearing an unprecedented beta-diketiminate silicon(II) thiol ligand: L'Si(SH): (L' = CH[C(Me)NAr](2); Ar = 2,6-(i)PrC(6)H(3)). Likewise, the Si(II)-->Ni(CO)(3) coordination in 13 steers exclusively 1,4-addition of ammonia, isopropylamine, and phenylhydrazine onto the silylene ligand 5, leading to the corresponding beta-diketiminate silicon(II) amide or hydrazide complexes L'Si(NHR)-->Ni(CO)(3) (23a-c: R = H, (i)Pr, N(H)Ph). IR measurements reveal that the carbonyl stretching frequencies of the Ni(CO)(3) moiety in 23a-c are shifted to even lower wavenumbers in comparison to those of NHCs or phosphines. In other words, the beta-diketiminate silicon(II) amide ligands in 23a-c represent the strongest donors in the series of N-heterocyclic silylenes reported as yet. PMID:20148586

  17. Ruthenium(II) and osmium(II) 1,2,3-triazolylidene organometallics: a preliminary investigation into the biological activity of 'click' carbene complexes.

    Kilpin, Kelly J; Crot, Stphanie; Riedel, Tina; Kitchen, Jonathan A; Dyson, Paul J

    2014-01-21

    Taking advantage of the facile and versatile synthetic properties of 'click' 1,2,3-triazolylidene N-heterocyclic carbenes (tzNHC's), a range of new organometallic Ru(II) and Os(II) arene complexes containing functionalised tzNHC ligands, [M(?(6)-p-cymene)(tzNHC)Cl2] [M = Ru(II), Os(II)], have been synthesised and fully characterised, including the X-ray crystal structure of one of the Os(II) complexes. The tzNHC ligands remain coordinated to the metal centres under relevant physiological conditions, and following binding to the model protein, ubiquitin. The in vitro cytotoxicity of the compounds towards human ovarian cancer cells is dependent on the substituent on the tzNHC ligand but is generally cancer cells over healthy cells (1.85 ?M in A2780 ovarian cancer cells versus 435 ?M in human embryonic kidney cells in one case). PMID:24201979

  18. Effects of Phosphine-Carbene Substitutions on the Electrochemical and Thermodynamic Properties of Nickel Complexes

    Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.; Linehan, John C.; Appel, Aaron M.

    2014-05-12

    Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands can have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Synthetic and Thermodynamic Investigations of Ancillary Ligand Influence on Catalytic Organometallic Systems. Final Report

    Nolan, Steven

    2003-03-20

    During the grant period we have been involved in synthesizing and experimentally determining solution enthalpy values associated with partially fluorinated ligands. This has lead to the publication of manuscripts dealing with synthetic, calorimetric and catalytic behavior of partially fluorinated ligands. The collaboration with Los Alamos researchers has lead to the publication of catalytic results in sc CO{sub 2} which have proven very interesting. Furthermore, we have also examined ligands that behave as phosphine mimics. The N-heterocyclic carbenes have been explored as alternatives for tertiary phosphines and have resulted in the design and construction of efficient palladium and nickel system capable of performing C-C and C-N cross coupling reactions. The initial studies in this areas were made possible by exploratory work conducted under the DOE/EPSCoR grant.

  20. Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer

    Bukhryakov, Konstantin V.

    2015-10-02

    An approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst. © 2015 American Chemical Society.

  1. Investigation of the properties of 4,5-dialkylated N-heterocyclic carbenes

    Urban, S.; Tursky, Matyas; Frohlich, R.; Glorius, F.

    The investigation of the electronic and steric properties of 4,5-disubstituted imidazolylidenes is reported, as well as their successful application as organocatalysts in the formation of gamma-butyrolactones by conjugate Umpolung....

  2. Carbene-mediated self-assembly of diamondoids on metal surfaces

    Adhikari, Bibek; Meng, Sheng; Fyta, Maria

    2016-04-01

    N-heterocyclic carbenes (NHC)s are emerging as an alternative class of molecules to thiol-based self-assembled monolayers (SAMs), making carbene-based SAMs much more stable under harsh environmental conditions. In this work, we have functionalized tiny diamondoids using NHCs in order to prepare highly stable carbene-mediated diamondoid SAMs on metal substrates. Using quantum-mechanical simulations and two different configurations for the carbene-functionalized diamondoids attached on gold, silver, and platinum surfaces we were able to study in detail these materials. Specifically, we focus on the binding characteristics, stability, and adsorption of the NHC-mediated diamondoid SAMs on the metal surfaces. A preferential binding to platinum surfaces was found, while a modulation of the work function in all cases was clear. The surface morphology of all NHC-based diamondoid SAMs was revealed through simulated STM images, which show characteristic features for each surface.

  3. Triruthenium and triosmium carbonyl clusters containing chiral bidentate NHC-thiolate ligands derived from levamisole.

    Cabeza, Javier A; da Silva, Iván; del Río, Ignacio; Sánchez-Vega, M Gabriela

    2006-09-01

    The trinuclear complexes [M3(mu-Cl)(mu-S approximately CH)(CO)9] (M=Ru, Os; S approximately CH=1-ethylenethiolate-3-H-4-(S)-phenylimidazolin-2-ylidene) and [M3(mu-H)(mu-S approximately CMe)(CO)9] (M=Ru, Os; S approximately CMe=1-ethylenethiolate-3-methyl-4-(S)-phenylimidazolin-2-ylidene) have been prepared by treating [Ru3(CO)12] and [Os3(CO)10(MeCN)2] with levamisolium chloride or [M3(mu-H)(CO)11]- with methyl levamisolium triflate, respectively. The chiral N-heterocyclic carbene-thiolate ligands S approximately CH and S approximately CMe arise from the oxidative addition of the C-S bond of levamisolium or methyl levamisolium cations to anionic trinuclear clusters. PMID:17028704

  4. Propane activation by palladium complexes with chelating bis(NHC) ligands and aerobic cooxidation.

    Munz, Dominik; Strassner, Thomas

    2014-02-24

    The development of efficient aerobic oxidation methods remains a challenge for the selective functionalization of C-H bonds in alkanes. Herein we report the development of a C-H functionalization procedure for propane by using a palladium catalyst with chelating bis(N-heterocyclic carbene) ligands in trifluoroacetic acid together with a vanadium co-catalyst. Halides play a decisive role in the reaction. The experimental results are presented together with supporting kinetic data and an isotope effect. The reaction can be run with dioxygen as the oxidant if vanadium salts and halides are present in the reaction mixture. Experimental as well as computational results favor a mechanism involving C-H activation by palladium(II), followed by oxidation to palladium(IV) by bromine. PMID:24482080

  5. A continuum of progress: applications of N-hetereocyclic carbene catalysis in total synthesis.

    Izquierdo, Javier; Hutson, Gerri E; Cohen, Daniel T; Scheidt, Karl A

    2012-11-19

    N-Heterocyclic carbene (NHC) catalyzed transformations have emerged as powerful tactics for the construction of complex molecules. Since Stetter's report in 1975 of the total synthesis of cis-jasmon and dihydrojasmon by using carbene catalysis, the use of NHCs in total synthesis has grown rapidly, particularly over the last decade. This renaissance is undoubtedly due to the recent developments in NHC-catalyzed reactions, including new benzoin, Stetter, homoenolate, and aroylation processes. These transformations employ typical as well as Umpolung types of bond disconnections and have served as the key step in several new total syntheses. This Minireview highlights these reports and captures the excitement and emerging synthetic utility of carbene catalysis in total synthesis. PMID:23074146

  6. A carbene-carbene complex equilibrium.

    Moss, Robert A; Wang, Lei; Odorisio, Christina M; Krogh-Jespersen, Karsten

    2010-08-11

    Phenylchlorocarbene, generated by laser flash photolysis of phenylchlorodiazirine, formed highly stable pi-type complexes with 1,3,5-trimethoxybenzene in pentane. The carbene and carbene complexes were in equilibrium. We measured the equilibrium constant (K = 1264 M(-1) at 294 K) and, from its temperature dependence, extracted the associated thermodynamic parameters: DeltaH(o) = -7.1 kcal/mol, DeltaS(o) = -10.2 eu, and DeltaG(o) = -4.1 kcal/mol. The carbene complexes were characterized by UV-vis spectroscopy and computational analysis. PMID:20681697

  7. Synthesis and reactivity of fluorenyl-tethered N-heterocyclic stannylenes.

    Roselló-Merino, Marta; Mansell, Stephen M

    2016-04-14

    A fluorenyl (Fl) tethered diamine was synthesised by nucleophilic substitution of (bromoethyl)fluorene with a diisopropylphenyl (Dipp) substituted diamine to give FlC2H4N(H)C2H4N(H)Dipp (1a) in good yield (85%). Lithiation of 1a with n-BuLi proceeded with coordination of the Li cation to the aromatic fluorenide ring (2), and with subsequent equivalents of n-BuLi, the secondary amines were then sequentially deprotonated. A fluorenyl-tethered N-heterocyclic stannylene (NHSn) was synthesised from the reaction of 1a with SnN''2 {N'' = N(SiMe3)2} as a neutral dimeric species (5), and this was deprotonated with LiN'' to give the corresponding dianionic fluorenide-tethered NHSn (6). Reactions of [{Rh(cod)(μ-Cl)}2] with the mono-deprotonated ligand 2 led to the formation of a mixed-donor amide-amine Rh(i) compound (7), whereas reactions with the anionic NHSn 6 led to a Rh-fluorenyl complex of low stability with an uncoordinated pendent NHSn arm, which X-ray crystallography showed to be dimeric in the solid state. PMID:26757790

  8. Silver-Catalyzed Amidiniumation of Alkynes: Isolation of a Silver Intermediate, Synthesis of Enamine Amido Carbene Precursors, and an Unprecedented Umpolung of Propiolamide.

    Lv, Shichang; Wang, Jiwei; Zhang, Caiyun; Xu, Sheng; Shi, Min; Zhang, Jun

    2015-12-01

    A silver-catalyzed amidiniumation of N-propiolic formamidines for the synthesis of novel enamine amido carbene precursors is reported. Isolation of a first silver intermediate in silver-catalyzed amidiniumation of alkynes and other organogold intermediates supports our proposed mechanisms. Several control experiments reveal the unexpected effects of both HOTf and substrate substituents on the choice of either a ? or ?,??silver activation mode and the cyclization fashion. Bis(hydroxyimidazol)ium salts were obtained through an unprecedented umpolung of propiolamides. The byproduct Ag2 O as either an oxidant or silver source promotes the syntheses of N-heterocyclic carbene (NHC) precursors or Ag/NHC complexes. PMID:26473976

  9. Structural, spectral and magnetic studies of two Co(II)-N-heterocyclic diphosphonates based on multinuclear units

    Zhao, Chen; Ma, Kui-Rong; Zhang, Yu; Kan, Yu-He; Li, Rong-Qing; Hu, Hua-You

    2016-01-01

    Two examples of Co(II)-N-heterocyclic coordination polymers based on 1-hydroxyethylidenediphosphonic acid (H5L = CH3C(OH)(PO3H2)2), namely 0.5(H3NCH2CH2NH3)[Co6(Cl2)(H3L)2(H2L)(HL)(2,2?-bipy)6] 1 and 2(NH4)[Co3(HL)2(H2O)2(phen)2]2(H2O) 2, have been solvothermally obtained by introducing the second ligands 2,2?-bipyridine/1,10-phenanthroline (2,2?-bipy/phen) and characterized by powder X-ray diffraction (PXRD), elemental analysis, IR, TG-DSC. The single-crystal X-ray diffractions show that compound 1 possesses a 0-D structure with hexa-nuclear cluster [Co6(O-P-O)8] built through single/double O-P-O bridges and compound 2 displays a 1-D ladder-like chain structure with magnetic topology building blocks [Co4(O-P-O)4]n. Then H-bonding and ?-? stacking interactions further expand the two low-dimensional structures into three-dimensional supramolecular frameworks. Fluorescent measurements reveal that both the maximum emission peaks of 1-2 are centered at 423 nm, mainly deriving from intraligand ?*-? transition state of N-heterocyclic ligand 2,2?-bipy/phen, respectively. Magnetism data indicate that 1 exhibits antiferromagnetic behavior within hexa-nuclear Co(II) clusters, while 2 shows weak ferromagnetic interactions in 1-D topology Co(II)-chain, showing promising potential as magnetic materials.

  10. Steric Maps to Evaluate the Role of Steric Hindrance on the IPr NHC Ligand

    Poater, Albert

    2013-06-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) (IPr) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes effect the metal environment and therefore the related catalytic behaviour by simple steric maps. Bearing in mind that there is a significant structural difference between IPr and IPr* ligands, that translated in different reactivity for several olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. Furthermore, this communication endeavours to modify further the skeleton of the IPr NHC ligand. The optimization of these bulky new systems go to the limits of the DFT computational method.

  11. Springloaded porphyrin NHC hybrid rhodium(III) complexes: carbene dissociation and oxidation catalysis

    Olguín, Juan; Müller-Bunz, Helge; Albrecht, Martin

    2014-01-01

    Porphyrin rhodium(III) complexes accommodate one or two NHC ligands in the apical position, which leads to severe porphyrin distortion and dearomatization. The strain in the bis(carbene) complex induces facile carbene dissociation and the formation of a catalytically active site for alcohol oxidation.

  12. Enthalpies of ligand substitution for [Mo(η5C5H5)(CO)2(NO)] – The role of π-bonding effects in metal–ligand bond strengths

    Graphical abstract: - Highlights: • Enthalpies of ligand substitution are measured for Mo(C5H5)(CO)2(NO). • Phosphines and N-heterocyclic carbenes are stronger ligands and displace CO. • Backbonding to π∗ orbitals is an important part of complex stability. • FTIR studies show shifts to lower wavenumbers of ν-CO and ν-NO. • Structural studies show lengthening of the C-O and N-O bonds. - Abstract: Enthalpies of ligand substitution for [Mo(η5-C5H5)(CO)2(NO)] producing [Mo(η5-C5H5)Mo(CO)(L)(NO)] have been measured by solution calorimetry at 30 °C in THF for L = P(OMe)3 2 2Ph 3 (SIPr = 1,3-bis(2,6-bis(diisopropylphenyl)imidazolinylidene; IPr = 1,3-bis(2,6-bis(diisopropylphenyl)-imidazol-2-ylidene)). The accepting metal fragment [Mo(η5-C5H5)(CO)(NO)] has a vacant site containing strongly π-accepting carbonyl and nitrosyl ligands and this is shown to influence the stability of the product complex. Infrared studies of both νCO and νNO show that metal-to-ligand backbonding increases in the order P(OMe)3 3 5-C5H5)(CO)(IPr)(NO)] and [Mo(η5-C5H5)(CO)(SIPr)(NO)] are reported

  13. On the reactivity and stability of electrogenerated N-heterocyclic carbene in parent 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate: Formation and use of N-heterocyclic carbene-CO2 adduct as latent catalyst

    A simple electrolysis (under galvanostatic conditions) of the room temperature ionic liquid 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate, BMIm-BF4, yields, after bubbling CO2 into the catholyte, the adduct NHC-CO2. The considerable stability of this NHC-CO2 adduct, at room temperature, in the parent ionic liquid as solvent, has been compared with the one of free NHC in the same BMIm-BF4. The BMIm-BF4 solution containing NHC-CO2 adduct, suitably triggered (US irradiation or 120 C), is able to release free NHC. The NHC-CO2 adduct usefulness has been demonstrated using it as efficient latent catalyst, in BMIm-BF4 as solvent, in the benzoin condensation and in the oxidative esterification of cinnamaldehyde with benzyl alcohol

  14. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride as the c...

  15. Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA

    Fung, Sin Ki; Zou, Taotao; Cao, Bei; Chen, Tianfeng; To, Wai-Pong; Yang, Chen; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-01

    The selective targeting of mismatched DNA overexpressed in cancer cells is an appealing strategy in designing cancer diagnosis and therapy protocols. Few luminescent probes that specifically detect intracellular mismatched DNA have been reported. Here we used Pt(II) complexes with luminescence sensitive to subtle changes in the local environment and report several Pt(II) complexes that selectively bind to and identify DNA mismatches. We evaluated the complexes' DNA-binding characteristics by ultraviolet/visible absorption titration, isothermal titration calorimetry, nuclear magnetic resonance and quantum mechanics/molecular mechanics calculations. These Pt(II) complexes show up to 15-fold higher emission intensities upon binding to mismatched DNA over matched DNA and can be utilized for both detecting DNA abasic sites and identifying cancer cells and human tissue samples with different levels of mismatch repair. Our work highlights the potential of luminescent Pt(II) complexes to differentiate between normal cells and cancer cells which generally possess more aberrant DNA structures. PMID:26883164

  16. N-Heterocyclic carbenepalladium catalysts for the direct arylation of pyrrole derivatives with aryl chlorides

    Ismail zdemir

    2013-02-01

    Full Text Available New PdNHC complexes have been synthesized and employed for palladium-catalyzed direct arylation of pyrrole derivatives by using electron-deficient aryl chlorides as coupling partners. The desired coupling products were obtained in moderate to good yields by using 1 mol % of these air-stable palladium complexes. This is an advantage compared to the procedures employing air-sensitive phosphines, which have been previously shown to promote the coupling of aryl chlorides with heteroarenes.

  17. A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3-triazol-5-ylidene) Ligands: Taming the MLCT Excited State of Iron(II)

    Liu, Yizhu; Kjær, Kasper Skov; Fredin, Lisa A.; Chabera, Pavel; Harlang, Tobias C. B.; Canton, Sophie E.; Lidin, Sven; Zhang, Jianxin; Lomoth, Reiner; Bergquist, Karl-Erik; Persson, Petter; Wärnmark, Kenneth; Sundström, Villy

    2015-01-01

    Strongly sigma-donating N-heterocyclic carbenes (NHCs) have revived research interest in the catalytic chemistry of iron, and are now also starting to bring the photochemistry and photophysics of this abundant element into a new era. In this work, a heteroleptic Fe-II complex (1) was synthesized...

  18. Enantioselective Construction of Quaternary N-Heterocycles by Palladium-Catalyzed Decarboxylative Allylic Alkylation of Lactams

    Behenna, Douglas C; Liu, Yiyang; Yurino, Taiga; Kim, Jimin; White, David E.; Virgil, Scott C; Stoltz, Brian M

    2011-01-01

    The enantioselective synthesis of Nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines including the total synthesis of natural products and medicinal chemistry. In this manuscript, we describe the highly enantioselective palladium-catalyzed decarboxylative allylic alkylation of readily available lactams to form 3,3,-disubstituted pyrrolidinones, piperidinones, caprolactams, and structurally related lacta...

  19. Correlations between electrochemical and spectrochemical parameters of ruthenium sulfoxides series with N-heterocyclic

    A systematic study of Ru Cl sub(2) (DMSO) sub(2) L sub(2) derivates, where L = N-heterocyclic base is described, contributing for a best understanding of chemical behaviour and electronic structure of the ruthenium sulfoxides. The correlations between the electrochemical and the spectroscopical parameters of the serie are presented with more emphasis. (author)

  20. Bidentate NHC^pyrozolate ligands in luminescent platinum(II) complexes.

    Naziruddin, Abbas Raja; Galstyan, Anzhela; Iordache, Adriana; Daniliuc, Constantin G; Strassert, Cristian A; De Cola, Luisa

    2015-05-14

    A bidentate C^N donor set derived from an N-heterocyclic carbene (NHC) precursor linked to a trifluoromethyl (CF3) functionalized pyrazole ring is described for the first time. The ligands have been employed to prepare four new phosphorescent complexes by the coordination of platinum(II) centres bearing cyclometalated phenyl-pyridine/triazole-pyridine chelates. The electronic and steric environments of these complexes were tuned through the incorporation of suitable substituents in the phenyl-pyridine/triazole-pyridine ligands, wherein the position of the phenyl-ring substituent (a CF3 group) also directs the selective adoption of either a trans or a cis configuration between the C(NHC) and the C(phenyl) donor atoms. Molecular structures obtained by X-ray diffraction for three of the complexes confirm a distorted square-planar configuration around the platinum centre, and DFT calculations show that the substituents have a significant influence on the energies of the frontier orbitals. Moreover, a platinum(II) complex featuring the new bidentate NHC^pyrazolate ligand and a bulky adamantyl functionalized pyridine-triazole luminophore was observed to be highly emissive and exhibiting a sky-blue luminescence (λ(Em) = 470 nm) with photoluminescence quantum yields as high as 50% in doped PMMA matrices. A complete photophysical investigation of all of the complexes in solution as well as in the solid state is herein reported. PMID:25616069

  1. Carbene insertion into a P-H bond: parent phosphinidene-carbene adducts from PH3 and bis(phosphinidene)mercury complexes.

    Bispinghoff, Mark; Tondreau, Aaron M; Grützmacher, Hansjörg; Faradji, Charly A; Pringle, Paul G

    2016-04-14

    PH3 reacts with the in situ generated N-heterocyclic carbene DippNHC* (DippNHC* = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) to give the phosphanyl-imidazolidine [(Dipp)NHC*-H]-[PH2]. Upon treatment with an ortho-quinone, [(Dipp)NHC*-H]-[PH2] is dehydrogenated to give the parent phosphinidene-carbene adduct (Dipp)NHC*[double bond, length as m-dash]PH. Alternative routes to [(Dipp)NHC*-H]-[PH2] and (Dipp)NHC*[double bond, length as m-dash]PH employ NaPH2 and (TMS)3P7 (TMS = trimethylsilyl), respectively, as phosphorus sources. The adduct (Dipp)NHC*[double bond, length as m-dash]PH and the related adduct (Dipp)NHC[double bond, length as m-dash]PH ((Dipp)NHC = bis(2,6-diisopropylphenyl)imidazol-2-ylidene) possessing an unsaturated NHC backbone both react with HgCl2 to give the bis(carbene-phosphinidenyl) complexes [((Dipp)NHC*[double bond, length as m-dash]P)2Hg] and [((Dipp)NHC[double bond, length as m-dash]P)2Hg]. PMID:26122315

  2. Group 1 and 2 cyclic (alkyl)(amino)carbene complexes.

    Turner, Zoë R; Buffet, Jean-Charles

    2015-08-01

    The first examples of cyclic (alkyl)(amino)carbene (CAAC) ligands bound to electropositive metal centres (K, Mg, Sr and Ba) have been isolated and characterised. Preliminary studies demonstrate that all complexes are active for polar monomer polymerisation under ambient conditions affording desirable hydroxyl-terminated telechelic polymers. PMID:26133112

  3. Ionic Liquids as Carbene Catalyst Precursors in the One-Pot Four-Component Assembly of Oxo Triphenylhexanoates (OTHOs

    Anton Axelsson

    2015-11-01

    Full Text Available Ionic liquids (ILs are a convenient and inexpensive source of N-heterocyclic carbenes (NHCs. In this study, dialkyl imidazolium-based ILs are used as carbene precursors in a four-component synthesis of oxo triphenylhexanoates (OTHOs, where it was found that IL outperformed commonly used NHC precatalysts in terms of reaction efficiency. The reaction is highly stereoselective, delivering the anti-diastereomer (20:1 dr, and the OTHOs can be obtained in high-to-excellent yields. By virtue of the four-component reaction-setup, facile construction of the OTHO scaffold with a diverse set of functional groups (21 examples can be achieved. In the context of sustainability, the IL can be recovered and reused several times without affecting selectivity or yield. Moreover, most compounds can be isolated by precipitation and filtration, mitigating the use of solvent-demanding chromatography.

  4. Unique Properties and Reactivity of Electrophilic Metal Centers Supported by Ferrocene Diamide Ligands

    Miller, Kevin L

    2014-01-01

    The work reported herein represents various studies of group 3 metal complexes supported by ferrocene diamide ligands. Chapter 1 is a brief introduction and survey of relevant literature, and it outlines the reasoning behind the study of these compounds. Chapter 2 details the synthesis of Sc, Y, Lu, and La benzyl complexes supported by a ferrocene diamide ligand, and their reactions with aromatic N-heterocycles. The group 3 metal complexes facilitate an alkyl migration to the N-heterocycles, ...

  5. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    Behenna, Douglas C.; Liu, Yiyang; Yurino, Taiga; Kim, Jimin; White, David E.; Virgil, Scott C.; Stoltz, Brian M.

    2012-02-01

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures.

  6. Enantioselective Construction of Quaternary N-Heterocycles by Palladium-Catalyzed Decarboxylative Allylic Alkylation of Lactams

    Behenna, Douglas C.; Liu, Yiyang; Yurino, Taiga; Kim, Jimin; White, David E.; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    The enantioselective synthesis of Nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines including the total synthesis of natural products and medicinal chemistry. In this manuscript, we describe the highly enantioselective palladium-catalyzed decarboxylative allylic alkylation of readily available lactams to form 3,3,-disubstituted pyrrolidinones, piperidinones, caprolactams, and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envision that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously employed in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. PMID:22270628

  7. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Homoleptic gold(i) N-heterocyclic allenylidene complexes: excited-state properties and lyotropic chromonics.

    Xiao, Xin-Shan; Zou, Chao; Guan, Xiangguo; Yang, Chen; Lu, Wei; Che, Chi-Ming

    2016-03-29

    A series of phosphorescent Au(i) bis(N-heterocyclic allenylidene) complexes, namely [Au([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CR(1)R(2))2](+)X(-), were synthesized and structurally characterized. These organometallic complexes exhibit panchromatic transient absorption upon electronic photo-excitation and can self-organize into lyotropic chromonic mesophases in aqueous solutions. PMID:26928852

  9. Dicationic sulfur analogues of N-heterocyclic silylenes and phosphenium cations.

    Martin, Caleb D; Jennings, Michael C; Ferguson, Michael J; Ragogna, Paul J

    2009-01-01

    DABling with sulfur: Sulfur(II) dications can be prepared using alpha-diimines to stabilize the positive charge (see scheme; DAB = diazabutadiene, Dipp = 2,6-diisopropylphenyl, OTf = CF(3)SO(3)). The bonding is best described as that of a N,N-chelated sulfur(II) dication; these species represent the first sulfur-based structural mimics of N-heterocyclic silylene compounds and phosphenium cations. PMID:19137516

  10. Reversible Carbene Formation in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate by Vaporization and Condensation.

    Kar, Bishnu Prasad; Sander, Wolfram

    2015-12-01

    The role of N-heterocyclic carbenes in the chemistry of ionic liquids based on imidazolium salts has long been discussed. Here, we present experimental evidence that 1-ethyl-3-methylimidazolium-2-ylidene (EMIm) can coexist with its protonated imidazolium cation (EMImH(+) ) at low temperatures. If the vapor of the ionic liquid [EMImH(+) ][AcO(-) ] is trapped in solid argon or nitrogen at 9 K, only acetic acid (AcOH) and the carbene, but no ionic species, are found by IR spectroscopy. This indicates that during the evaporation of [EMImH(+) ][AcO(-) ] proton transfer occurs to form the neutral species. If the vapor of [EMImH(+) ][AcO(-) ] is trapped at 9 K as film in the absence of a host matrix, a solid consisting of EMImH(+) , EMIm, AcO(-) , and AcOH is formed. During warming to room temperature the proton transfer in the solid to form back the IL [EMImH(+) ][AcO(-) ] can be monitored by IR spectroscopy. This clearly demonstrates that evaporation and condensation of the IL [EMImH(+) ][AcO(-) ] results in a double proton transfer, and the carbene EMIm is only metastable even at low temperatures. PMID:26376583

  11. Stabilization of cyclic and acyclic carbon(0) compounds by differential coordination of heterocyclic carbenes: a theoretical assessment.

    Phukan, Ashwini K; Guha, Ankur Kanti

    2012-08-01

    Recently, donor stabilized divalent carbon(0) compounds have undergone intense experimental and theoretical investigation due to their strong electron rich character. In this Article, some new cyclic and acyclic carbon(0) compounds stabilized by differential coordination modes (such as abnormal, remote and a mixture of both) of N-heterocyclic carbenes are studied theoretically. The cyclic carbon(0) compounds proposed in this study are unusual in the sense that they contain a five membered ring consisting of only carbon atoms with a central carbon atom in the formal oxidation state of zero. All these compounds are found to be very strong nucleophiles which might have wide implications in catalysis. Calculation of first proton affinities of these molecules reveal that they are better ? donors than the carbon(0) compound supported by normal N-heterocyclic carbenes. Quantum chemical calculations indicate that these molecules possess very high donor-acceptor L ? C bond strengths and are thermodynamically stable. Calculation of the bond dissociation energies for the complexation of one and two molecules of AuCl indicates the possible isolation of their gem dimetalated derivatives. PMID:22717622

  12. Oxo-Centered Mixed-Ligand Triruthenium Complexes Having Redox-Active N-Methyl-4,4'-bipyridinium Ions (mbpy(+)). Reversible Multistep Electrochemical Properties of [Ru(III)(2)Ru(II)(&mgr;(3)-O)(&mgr;-CH(3)CO(2))(6)(mbpy(+))(2)(CO)](2+) and [Ru(III)(3)(&mgr;(3)-O)(&mgr;-CH(3)CO(2))(6)(mbpy(+))(2)(L)](3+) (L = H(2)O and N-Heterocyclic Ligands).

    Abe, Masaaki; Sasaki, Yoichi; Yamada, Yasuko; Tsukahara, Keiichi; Yano, Shigenobu; Yamaguchi, Tadashi; Tominaga, Masato; Taniguchi, Isao; Ito, Tasuku

    1996-11-01

    A new series of oxo-centered acetate-bridged triruthenium comlexes having two redox-active N-methyl-4,4'-bipyridinium ions (mbpy(+)) have been prepared, and their reversible multistep and multielectron electrochemical properties are reported: [Ru(III)(2)Ru(II)(&mgr;(3)-O)(&mgr;-CH(3)CO(2))(6)(mbpy(+))(2)(CO)](2+) and [Ru(III)(3)(&mgr;(3)-O)(&mgr;-CH(3)CO(2))(6)(mbpy(+))(2)(L)](3+) (L = H(2)O, pyrazine (pz), pyridine (py), imidazole (Him), and 4-(dimethylamino)pyridine (dmap)). Among these series, the CO complex, [Ru(III)(2)Ru(II)(&mgr;(3)-O)(&mgr;-CH(3)CO(2))(6)(mbpy(+))(2)(CO)](ClO(4))(2).2DMF (1b.2DMF) was structurally characterized by X-ray crystallography. 1b.2DMF crystallizes in the monoclinic space group P2(1)/m (No. 11) with a = 8.740(6) Å, b = 32.269(6) Å, c = 10.276(4) Å, beta = 103.37(5) degrees, V = 2820(2) Å(3), Z = 2, d(calcd) = 1.636 g cm(-)(3), and R = 0.071 (R(w) = 0.074) for 5277 independent reflections (|F(o)| > 3sigma(|F(o)|). The (CO)Ru.Ru distance (3.410(2) Å) is appreciably longer than the other Ru.Ru distance (3.276(2) Å), indicating that the trinuclear core is in the valence-trapped Ru(III)(2)Ru(II)(CO) oxidation state. The cyclic voltammogram of [Ru(III)(2)Ru(II)(&mgr;(3)-O)(&mgr;-CH(3)CO(2))(6)(mbpy(+))(2)(CO)](PF(6))(2) (1a) shows a total of seven reversible one-electron redox steps at E(1/2) = +0.90, +0.26, -1.07, -1.17, -1.56, -1.97, and -2.32 V and one irreversible step at E(pc) = -2.99 V vs Fc/Fc(+) in a 0.1 M [(n-C(4)H(9))(4)N]PF(6)-CH(3)CN solution (M = mol dm(-)(3)). All of the waves are clearly assignable to the triruthenium "Ru(3)(&mgr;(3)-O)" core-based or mbpy(+) ligand-based processes. The splitting of each ligand-based redox processes (mbpy(+)/mbpy(*) and mbpy(*)/mbpy(-)) into two one-electron steps indicates that electronic interactions between two terminal ligands occur through the triruthenium cluster core. Other mixed-ligand Ru(III)(3) analogs also show multistep redox behavior involving a total of eight or nine electrons. While the extent of interactions between ligands is much smaller than that found in the CO complex, it is systematically changed by the nature of L; with more basic L, interactions between two mbpy(+) ligands become larger. PMID:11666835

  13. Synthesis and structure of novel triphenylarsine-substituted tungsten(0) Fischer carbene complexes

    Jansen van Rensburg, Armand; Landman, Maril; van Rooyen, Petrus H.; Conradie, Marrigje M.; Conradie, Jeanet

    2016-02-01

    X-ray crystal structure determination, as well as IR and NMR spectroscopy of four novel triphenylarsine-substituted tetracarbonyl tungsten(0) Fischer carbene complexes of general formula [(CO)4(AsPh3)WC(OEt)(Ar)], with Ar=2-thienyl (1), 2-furyl (2), 2-(N-methyl)pyrrolyl (3), 2,2?-bithienyl (4), revealed a cis-configuration for the substituted AsPh3 group relative to the carbene ligand for all four novel complexes. All X-ray structures showed that the W-C bond trans AsPh3carbeneligands and carbene substituents to each other, correlated with the experimental results.

  14. Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study.

    Bowman, David N; Bondarev, Alexey; Mukherjee, Sriparna; Jakubikova, Elena

    2015-09-01

    Fe(II) polypyridines are an important class of pseudo-octahedral metal complexes known for their potential applications in molecular electronic switches, data storage and display devices, sensors, and dye-sensitized solar cells. Fe(II) polypyridines have a d(6) electronic configuration and pseudo-octahedral geometry and can therefore possess either a high-spin (quintet) or a low-spin (singlet) ground state. In this study, we investigate a series of complexes based on [Fe(tpy)2](2+) (tpy = 2,2';6',2″-terpyridine) and [Fe(dcpp)2](2+) (dcpp = 2,6-bis(2-carboxypyridyl)pyridine). The ligand field strength in these complexes is systematically tuned by replacing the central pyridine with five-membered (N-heterocyclic carbene, pyrrole, furan) or six-membered (aryl, thiazine-1,1-dioxide, 4-pyrone) moieties. To determine the impact of ligand substitutions on the relative energies of metal-centered states, the singlet, triplet, and quintet states of the Fe(II) complexes were optimized in water (PCM) using density functional theory at the B3LYP+D2 level with 6-311G* (nonmetals) and SDD (Fe) basis sets. It was found that the dcpp ligand scaffold allows for a more ideal octahedral coordination environment in comparison to the tpy ligand scaffold. The presence of six-membered central rings also allows for a more ideally octahedral coordination environment relative to five-membered central rings, regardless of the ligand scaffold. We find that the ligand field strength in the Fe(II) polypyridines can be tuned by altering the donor atom identity, with C donor atoms providing the strongest ligand field. PMID:26295275

  15. Tip-induced gating of molecular levels in carbene-based junctions

    Foti, Giuseppe; Vázquez, Héctor

    2016-03-01

    We study the conductance of N-heterocyclic carbene-based (NHC) molecules on gold by means of first-principles calculations based on density-functional theory and non-equilibrium Green’s functions. We consider several tip structures and find a strong dependence of the position of the NHC molecular levels with the atomistic structure of the tip. The position of the lowest unoccupied molecular orbital (LUMO) can change by almost 0.8 eV with tip shape. Through an analysis of the net charge transfer, electron redistribution and work function for each tip structure, we rationalize the LUMO shifts in terms of the sum of the work function and the maximum electrostatic potential arising from charge rearrangement. These differences in the LUMO position, effectively gating the molecular levels, result in large conductance variations. These findings open the way to modulating the conductance of NHC-based molecular circuits through the controlled design of the tip atomistic structure.

  16. Tip-induced gating of molecular levels in carbene-based junctions.

    Foti, Giuseppe; Vzquez, Hctor

    2016-03-29

    We study the conductance of N-heterocyclic carbene-based (NHC) molecules on gold by means of first-principles calculations based on density-functional theory and non-equilibrium Green's functions. We consider several tip structures and find a strong dependence of the position of the NHC molecular levels with the atomistic structure of the tip. The position of the lowest unoccupied molecular orbital (LUMO) can change by almost 0.8 eV with tip shape. Through an analysis of the net charge transfer, electron redistribution and work function for each tip structure, we rationalize the LUMO shifts in terms of the sum of the work function and the maximum electrostatic potential arising from charge rearrangement. These differences in the LUMO position, effectively gating the molecular levels, result in large conductance variations. These findings open the way to modulating the conductance of NHC-based molecular circuits through the controlled design of the tip atomistic structure. PMID:26891059

  17. Unprecedented silicon(II)→calcium complexes with N-heterocyclic silylenes.

    Blom, Burgert; Klatt, Günter; Gallego, Daniel; Tan, Gengwen; Driess, Matthias

    2015-01-14

    The first N-heterocyclic silylene (NHSi) complexes of any s-block element to date are reported for calcium: [(η(5)-C5Me5)2Ca←:Si(O-C6H4-2-(t)Bu){(N(t)Bu)2CPh}] (6) and [(η(5)-C5Me5)2Ca←:Si(N(t)BuCH)2] (7). Complexes 6 and 7 are isolable in a facile way upon reaction of the corresponding free N-heterocyclic silylenes (NHSis) with [(η(5)-C5Me5)2Ca] (2). Complexes 6 and 7 were fully characterised by spectroscopic means and the single crystal X-ray diffraction analysis of 6 is also reported. Analysis of the bonding situation by DFT methods including a Bader Atoms in molecules (AIM) analysis is also reported. The bonding interaction between the Si and Ca centres in complexes 6 and 7 can best be viewed as σ-donor-acceptor interactions, with a considerable ionic contribution in the bond. The reactivity towards the oxygen containing substrates THF and benzophenone is also discussed. PMID:25382093

  18. Magnetic properties of 1:2 mixed cobalt(II) salicylaldehyde Schiff-base complexes with pyridine ligands carrying high-spin carbenes (Scar = 2/2, 4/2, 6/2, and 8/2) in dilute frozen solutions: role of organic spin in heterospin single-molecule magnets.

    Karasawa, Satoru; Nakano, Kimihiro; Yoshihara, Daisuke; Yamamoto, Noriko; Tanokashira, Jun-ichi; Yoshizaki, Takahito; Inagaki, Yuji; Koga, Noboru

    2014-06-01

    The 1:2 mixtures of Co(p-tolsal)2, p-tolsal = N-p-tolylsalicylideniminato, and diazo-pyridine ligands, DXpy; X = 1, 2, 3l, 3b, and 4, in MTHF solutions were irradiated at cryogenic temperature to form the corresponding 1:2 cobalt-carbene complexes Co(p-tolsal)2(CXpy)2, with Stotal = 5/2, 9/2, 13/2, 13/2, and 17/2, respectively. The resulting Co(p-tolsal)2(CXpy)2, X = 1, 2, 3l, 3b, and 4, showed magnetic behaviors characteristic of heterospin single-molecule magnets with effective activation barriers, Ueff/kB, of 40, 65, 73, 72, and 74 K, for reorientation of the magnetic moment and temperature-dependent hysteresis loops with a coercive force, Hc, of ?0, 6.2, 10, 6.5, and 9.0 kOe at 1.9 K, respectively. The relaxation times, ?Q, due to a quantum tunneling of magnetization (QTM) were estimated to be 1.6 s for Co(p-tolsal)2(C1py)2, ?2.0 10(3) s for Co(p-tolsal)2(C2py)2, and >10(5) s for Co(p-tolsal)2(CXpy)2; X = 3b, 3l, and 4. In heterospin complexes, organic spins, carbenes interacted with the cobalt ion to suppress the QTM pathway, and the ?Q value increased with increasing the Stotal values. PMID:24816331

  19. Utilization of N-X bonds in the synthesis of N-heterocycles.

    Minakata, Satoshi

    2009-08-18

    Nitrogen-containing heterocycles--such as aziridines, pyrrolidines, piperidines, and oxazolines--frequently show up as substructures in natural products. In addition, some of these species show potent biological activities. Therefore, researchers would like to develop practical and convenient methods for constructing these heterocycles. Among the available methods, the transfer of N(1) units to organic molecules, especially olefins, is a versatile method for the synthesis of N-heterocycles. This Account reviews some of our recent work on the synthesis of N-heterocycles using the N-X bond. A nitrogen-halogen bond bearing an electron-withdrawing group on the nitrogen can be converted to a halonium ion. In the presence of C-C double bonds, these species produce three-membered cyclic halonium intermediates, which can be strong electrophiles and can produce stereocontrolled products. N-Halosuccinimides are representative sources of halonium ions, and the nitrogen of succinimide is rarely used in organic synthesis. If the nitrogen could act as a nucleophile, after releasing halonium ions to C-C double bonds, we expect great advances would be possible in the stereoselective functionalization of olefins. We chose N-chloro-N-sodio-p-toluenesulfonamide (chloramine-T, CT), an inexpensive and commercially available reagent, as our desired reactant. In the presence of a catalytic amount of CuCl or I(2) and AgNO(3), we achieved the direct aziridination of olefins with CT. The reaction catalyzed by I(2) could be carried out in water or silica-water as a green process. The reaction of iodoolefins with CT gave pyrrolidine derivatives under extremely mild conditions with complete stereoselectivity. We also extended the utility of the N-chloro-N-metallo reagent, which is often unstable and difficult to work with. Although CT does not react with electron-deficient olefins without a metal catalyst or an additive, we found that N-chloro-N-sodiocarbamates react with electron-deficient olefins in the presence of a phase transfer catalyst to give the corresponding aziridines. We also used this method to synthesize asymmetric aziridines using quaternary cinchona alkaloid catalysts. We also developed a facile synthetic method for preparing N-heterocycles that involves the in situ generation of an N-X bond using tert-butyl hypochlorite or tert-butyl hypoiodite (tert-BuOI). Treatment of alkenylamides containing an active hydrogen on the nitrogen with tert-BuOI led to the production of various N-heterocycles via intramolecular cyclization. Iodination of readily available sulfonamides or carboxamides with tert-BuOI generated reactive N-iodinated amides, which smoothly reacted with olefins to give aziridines or oxazolines. The reaction of fullerene, C(60), with CT also led to aziridination: the resulting aziridinofullerene underwent a unique rearrangement to an azafulleroid. Chlorination of readily available amide derivatives with tert-BuOCl, followed by a reaction with C(60) in the presence of an organic base, afforded aziridinofullerenes with various substituents on the nitrogen. The results in this Account contribute to the development of convenient methods for constructing simple and useful heterocycles. PMID:19480410

  20. Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction.

    Wang, Sibo; Wang, Xinchen

    2016-02-01

    Imidazolium ionic liquids (ILs), imidazolylidene N-heterocyclic carbenes (NHCs), and zeolitic imidazolate frameworks (ZIFs) are imidazolate motifs which have been extensively investigated for CO2 adsorption and conversion applications. Summarized in this minireview is the recent progress in the capture, activation, and photochemical reduction of CO2 with these three imidazolate building blocks, from homogeneous molecular entities (ILs and NHCs) to heterogeneous crystalline scaffolds (ZIFs). The developments and existing shortcomings of the imidazolate motifs for their use in CO2 utilizations is assessed, with more of focus on CO2 photoredox catalysis. The opportunities and challenges of imidazolate scaffolds for future advancement of CO2 photochemical conversion for artificial photosynthesis are discussed. PMID:26683833

  1. Stabilization of heterodiatomic SiC through ligand donation: theoretical investigation of SiC(L)2 (L=NHC(Me) , CAAC(Me) , PMe3 ).

    Andrada, Diego M; Frenking, Gernot

    2015-10-12

    Quantum chemical calculations have been carried out at the BP86/TZ2P+ level for the compounds SiC(L)2 with L=NHC(Me) , CAAC(Me) , PMe3 (NHC=N-heterocyclic carbene, CAAC=cyclic (alkyl)aminocarbene). The optimized geometries exhibit a trans arrangement of the ligands L at SiC with a planar coordination when L=NHC(Me) and PMe3 , while a twisted conformation is calculated when L=CAAC(Me) . The bending angle L-Si-C is significantly more acute than the angle L-C-Si. Both angles become wider with the trend PMe3 compounds SiC(L)2 have a very large first and second proton affinity, which takes place at the central carbon and silicon atoms, respectively. Energy decomposition analyses indicate that the best description of the bonding situation in SiC(L)2 features a cumulenic carbon-carbon bond and a dative carbon-silicon bond L?C?Si?L at the center. PMID:26193457

  2. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  3. Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles : A Complementary Approach to Predict Biodegradability

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-01-01

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QS...

  4. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid

    Broggi, Julie

    2013-03-27

    The [Pd(SIPr)(PCy3)] complex efficiently promotes a tandem process involving dehydrogenation of formic acid and hydrogenation of C-C multiple bonds using H2 formed in situ. The isolation of a key catalytic hydridoformatopalladium species, [Pd{OC(O)H}(H)(IPr)(PCy 3)], is reported. The complex plays a key role in the Pd(0)-mediated formation of hydrogen from formic acid. Mechanistic and computational studies delineate the operational role of the palladium complex in this efficient tandem sequence. © 2013 American Chemical Society.

  5. [CNN]-pincer nickel(II) complexes of N-heterocyclic carbene (NHC): synthesis and catalysis of the Kumada reaction of unactivated C-Cl bonds.

    Sun, Yunqiang; Li, Xiaoyan; Sun, Hongjian

    2014-07-01

    Three novel [CNN]-pincer nickel(ii) complexes with NHC-amine arms were synthesized in three steps. Complex was proven to be an efficient catalyst for the Kumada coupling of aryl chlorides or aryl dichlorides under mild conditions. PMID:24828414

  6. Crystal structure of bis-(1,3-di-meth-oxy-imidazolin-2-yl-idene)silver(I) hexa-fluorido-phosphate, N-heterocyclic carbene (NHC) complex.

    Rietzler, Barbara; Laus, Gerhard; Kahlenberg, Volker; Schottenberger, Herwig

    2015-12-01

    The title salt, [Ag(C5H8N2O2)2]PF6, was obtained by deprotonation and metalation of 1,3-di-meth-oxy-imidazolium hexa-fluorido-phosphate using silver(I) oxide in methanol. The C-Ag-C angle in the cation is 178.1?(2), and the N-C-N angles are 101.1?(4) and 100.5?(4). The meth-oxy groups adopt an anti conformation. In the crystal, anions (A) are sandwiched between cations (C) in a layered arrangement {CAC} n stacked along [001]. Within a CAC layer, the hexafluoridophosphate anions accept several C-H?F hydrogen bonds from the cationic complex. PMID:26870450

  7. Crystal structure of bis(1,3-dimethoxyimidazolin-2-ylidene)silver(I) hexafluoridophosphate, N-heterocyclic carbene (NHC) complex

    Rietzler, Barbara; Laus, Gerhard; Kahlenberg, Volker; Schottenberger, Herwig

    2015-01-01

    The title salt, [Ag(C5H8N2O2)2]PF6, was obtained by deprotonation and metalation of 1,3-dimethoxyimidazolium hexafluoridophosphate using silver(I) oxide in methanol. The CAgC angle in the cation is 178.1?(2), and the NCN angles are 101.1?(4) and 100.5?(4). The methoxy groups adopt an anti conformation. In the crystal, anions (A) are sandwiched between cations (C) in a layered arrangement {CAC}n stacked along [001]. Within a CAC layer, the hexafluoridophosphate anions accept several CH?F hydrogen bonds from the cationic complex. PMID:26870450

  8. Novel Synthesis of 3-Phenyl-chromen-4-ones Using N-Heterocyclic Carbene as Organocatalyst: An Efficient Domino Catalysis Type Approach

    Mishra, Priya; Singh, Sarita; Ankit, Preyas; Fatma, Shahin; Singh, Divya; Singh, Jagdamba [Univ. of Allahabad, Allahabad (India)

    2013-04-15

    Herein is reported a simple and efficient synthesis of isoflavones starting from various substituted phenacyl bromides and salicylaldehydes in presence of NHC. The mechanism involved domino catalysis type approach with consumption and regeneration of catalyst in two catalytic cycles. This method proved to be very lucrative and gives very good yield. The method described here represents an environmentally benign alternative to classical approach.

  9. Synthesis of chiral mono(N-heterocyclic carbene palladium and gold complexes with a 1,1'-biphenyl scaffold and their applications in catalysis

    Min Shi

    2011-05-01

    Full Text Available Axially chiral mono(NHC–Pd(II and mono(NHC–Au(I complexes with one side shaped 1,1'-biphenyl backbone have been prepared from chiral 6,6'-dimethoxybiphenyl-2,2'-diamine. The complexes were characterized by X-ray crystal structure diffraction. The Pd(II complex showed good catalytic activities in the Suzuki–Miyaura and Heck–Mizoroki coupling reactions, and the (S-Au(I complexes also showed good catalytic activities in the asymmetric intramolecular hydroamination reaction to give the corresponding product in moderate ee.

  10. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group

    Muenzner, J.K.; Rehm, T.; Biersack, B.; Casini, A.; de Graaf, I.; Worawutputtapong, P.; Noor, A.; Kempe, R.; Brabec, Viktor; Kašpárková, Jana; Schobert, R.

    2015-01-01

    Roč. 58, č. 15 (2015), s. 6283-6292. ISSN 0022-2623 R&D Projects: GA ČR(CZ) GA14-21053S Institutional support: RVO:68081707 Keywords : PLATINUM COMPLEXES * CANCER-CELLS * CISPLATIN Subject RIV: BO - Biophysics Impact factor: 5.447, year: 2014

  11. Amino Group Functionalized N-Heterocyclic 1,2,4-Triazole-Derived Carbenes: Structural Diversity of Rhodium(I) Complexes

    Turek, J.; Panov, I.; Horáček, Michal; Černošek, Z.; Padělková, Z.; Růžička, A.

    2013-01-01

    Roč. 32, č. 23 (2013), s. 7234-7240. ISSN 0276-7333 Institutional support: RVO:61388955 Keywords : TRANSITION-METAL COMPLEXES * BIFUNCTIONAL MECHANISM * TRANSFER HYDROGENATION Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.253, year: 2013

  12. Mineralization of polycyclic and n-heterocyclic aromatic compounds in hydrocarbon-contaminated soils

    The comparative mineralization of eight polycyclic aromatic compounds in five soils collected from an abandoned coal tar refinery in eastern Ohio was determined. The soils showed differences only in total extractable hydrocarbon content of the soil chemical characteristics measured. The compounds studied included five polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and carcinogenic benz[a]anthracene and benzo[a]pyrene) and three N-heterocyclic aromatics (9H-carbazole, and carcinogenic 7H-dibenzo[c,g]carbazole and dibenz[a,j]acridine). Mineralization was measured by serum bottle radiorespirometry. Only phenanthrene, anthracene, pyrene, benz[a]anthracene, and carbazole were mineralized in the soils after 64 d. Two of the soils with eight to 15 times the hexane -extractable hydrocarbon content consistently showed more rapid initial rates and higher overall extents of mineralization compared to the other three soils. Overall extents of mineralization ranged from 38 to 55% for phenanthrene, 10 to 60% for anthracene, 25 to 70% for pyrene, background to 40% for benz[a]anthracene, and 25 to 50% for carbazole after 64 d. Extents of mineralization by indigenous soil microbiota appear to be more dependent on the chemical characteristics of the soil and not soil total biomass and activity. Cultures capable of degrading phenanthrene, anthracene, and pyrene were obtained following enrichment techniques. A Mycobacterium sp. capable of degrading these three compounds was isolated and reintroduced into two of the soils, resulting in mineralization enhanced above that of the indigenous soil microbial population. These data indicate that the future success of bioremediation methods relies on the characterization of environmental parameters affecting microbial degradation as well as the isolation of microbial populations that can reduce toxicity in the environment

  13. Investigation on reactivity of non-classical carbenes with sterically hindered Lewis acid, B(C6F5)3 under inert and open conditions

    Arunabha Thakur; Pavan K Vardhanapu; Gonela Vijaykumar; Sushil Ranjan Bhatta

    2016-04-01

    Reactions of B(C6F5)3 with abnormal N-heterocyclic carbene (NHC), L1 and cyclic (alkyl)(amino) carbene (AAC), L2 in the presence of moisture as well as in its absence, have been investigated in toluene. Reaction of NHC with 1 equivalent of B(C6F5)3 under inert condition produced classical Lewis acid-base adduct, [L1.B(C6F5)3], 1. Further, probing the same reaction with cyclic (alkyl)(amino) carbene (AAC), having different electronic property, led to the isolation of [L2.B(C6F5)3], 2 under inert condition. Interestingly, reaction of NHC or AAC with 1 equivalent of B(C6F5)3 in the presence of moisture resulted in water splitting leading to the formation of [L1-H][(OH)B(C6F5)3], 3 and [L2-H][(OH)B(C6F5)3, 4. All these compounds (1-4) were characterized in solution by 1H, 13C, 19F and 11B NMR spectroscopy. Additionally, the solid-state structures were unambiguously established by crystallographic analysis of compounds 1-4.

  14. Rh-Catalyzed rearrangement of vinylcyclopropane to 1,3-diene units attached to N-heterocycles

    Alberto Brandi

    2011-03-01

    Full Text Available Dienes embedded in quinolizidine and indolizidine structures can be prepared in four steps from cyclic nitrones and bicyclopropylidene. The key intermediates ?-spirocyclopropanated N-heterocyclic ketones, generated via a domino 1,3-dipolar cycloaddition/thermal rearrangement sequence, were converted by Wittig methylenation to the corresponding vinylcyclopropanes (VCPs, which underwent rearrangement to 1,3-dienes in the presence of the Wilkinson Rh(I complex under microwave heating. The previously unexplored Rh(I-catalyzed opening of the VCP moiety embedded in an azapolycyclic system occurs at high temperature (110130 C to afford the corresponding 1,3-dienes in moderate yield (3453%.

  15. A DFT and structural investigation of the conformations of Fischer carbene complexes

    Landman, Maril

    2015-09-01

    A set of different Fischer carbene complexes of group VI and VII metals, with varied heteroatom and heteroaromatic substituents on the carbene carbon atom, was studied. Density functional theory as well as single crystal diffraction techniques were employed to investigated the most stable conformation of these complexes. The complexes studied, [M(CO)4L{C(X)Z}], with L = PPh3 or CO, X = ethoxy (-OCH2CH3) or amino (-NH2 or NHCy) substituents as the heteroatom carbene substituents, Z = 2-furyl (-C4H3O), 2-thienyl (-C4H3S), 2-(N-methyl)pyrrolyl (-C4H3NCH3) as the second carbene substituent had their substituents varied systematically to give all the possible conformations of these complexes. The conformations of the complexes, in particular the relative orientations of the heteroatoms in the molecule (syn vs. anti), E/Z isomerism in the aminocarbene complexes and cis/trans isomerism in the ligand substituted complexes as well as various combinations of these aspects, were studied. In general, it was found that the most stable conformation theoretically as well as in the solid state for most of the complexes preferred the syn conformation. The Z-isomer is generally preferred over the E isomer while the cis is more predominant than the trans isomer. Using DFT and NBO calculations, explanations for the preferred conformations were explored. It was concluded that both steric and electronic factors influence the conformations of the carbene complexes, with the extent of contribution of these two factors varying for each of the different carbene substituents.

  16. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    Zhou, Yong Hong [Huaibei Normal Univ., Huaibei (China)

    2013-04-15

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH{sub 2}){sub n}, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures.

  17. Diazirine-modified gold nanoparticle: template for efficient photoinduced interfacial carbene insertion reactions.

    Ismaili, Hossein; Lee, Soo; Workentin, Mark S

    2010-09-21

    Photolysis of a 3-aryl-3-(trifluoromethyl)diazirine-modified monolayer-protected gold nanoparticles (2-C(12)MPNs), with a core size of 1.8 ± 0.3 nm, in the presence of model carbene trapping reagents leads to efficient, essentially quantitative, modification of the interface via carbene insertion reactions. The utility of carbene insertion reactions as a general approach for the modification of Au-MPNs to provide a breadth of new structures available was demonstrated using acetic acid, methanol, benzyl alcohol, phenol, benzylamine, methyl acrylate, and styrene (10a-g, respectively) as electrophilic carbene trapping agents to form the corresponding modified 3a-g-C(12)MPNs. The 1.8 ± 0.3 nm gold nanoparticles bearing a diazirine group (2-C(12)MPNs) were synthesized using the ligand exchange reaction with the requisite 3-aryl-3-(trifluoromethyl)diazirinealkylthiol. The 2-C(12)MPNs and the resulting products of the reaction on the MPN (3a-g-C(12)MPN) were fully characterized by IR, (1)H NMR, and (19)F NMR spectroscopy and, when applicable, transmission electron microscopy (TEM). Verification for the 3a-g-C(12)MPNs was accomplished by comparison of the spectral data to those of obtained for the photoreactions of 3-(3-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine as a model with 10a-g. PMID:20735050

  18. Ru-Ag and Ru-Au dicarbene complexes from an abnormal carbene ruthenium system.

    Bitzer, Mario J; Pthig, Alexander; Jandl, Christian; Khn, Fritz E; Baratta, Walter

    2015-07-14

    Reaction of [Ru(OAc)2(PPh3)2] with a P-functionalized imidazolium bromide easily affords a cationic abnormal carbene Ru system. Metalation with Ag2O yields a Ru-Ag complex containing an anionic dicarbene ligand, while subsequent transmetalation with Au(tht)Cl leads to the corresponding Ru-Au system. The bimetallic complexes were characterized by single crystal X-ray diffraction and are the first examples of complexes bearing anionic dicarbene ligands connecting two different d-block elements. PMID:26053614

  19. Coal-Tar-Sealcoated Parking Lots: "Hot spots" of PAHs and N-heterocycles to Urban Streams and Lakes Result in "Hot Moments" of Toxicity

    Mahler, B. J.; Van Metre, P. C.; Ingersoll, C.; Kunz, J. L.

    2014-12-01

    Coal-tar (CT) sealcoat, a potent source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles, is applied to asphalt pavement of parking lots and driveways in many parts of the U.S. and Canada every 1 to 5 years. We measured the chemistry and toxicity of unfiltered runoff resulting from rain events simulated from 5 hours to 111 days after application of CT or asphalt (AS) sealcoat. PAHs and N-heterocycles were measured by GC/EIMS. Toxicity tests were done with Ceriodaphnia dubia and Pimephales promelas exposed 48 hours to undiluted and diluted (1 part runoff 9 parts control water) runoff under ambient lighting. Organisms were then transferred to fresh control water and subjected to a 4-hour pulse of ultraviolet radiation (UVR). Concentrations of 2- and 3-ringed PAHs and N-heterocycles in CT runoff, initially high (sum of 6 PAHs, 220 ?g/L; sum of 7 N-heterocycles, 904 ?g/L), decreased rapidly, whereas concentrations of 4-, 5- and 6-ringed PAHs more than doubled by 7 days after application (sum of 9 PAHs, 378 ?g/L) and remained elevated 111 days after application (sum of 9 PAHs, 283 ?g/L). Concentrations of PAHs and N-heterocycles in AS sealcoated runoff followed a similar pattern, but were ~10 times lower than those in CT runoff; concentrations in a sample of runoff from unsealed asphalt pavement were near or less than the detection limit. Organisms exposed to samples of undiluted CT-runoff collected during the 36 days following CT sealcoat application (no UVR exposure) experienced 100% mortality. Mortality (as much as 100%) of organisms exposed to the 10% dilution of CT runoff or to undiluted AS runoff occurred only with UVR; mortality of organisms exposed to the 10% solution of AS runoff and UVR was minimal. Results demonstrate that freshly CT-sealed parking lots and driveways are "hot spots" of PAH and N-heterocycle contamination and that prolonged "hot moments" of toxicity follow CT sealcoat application.

  20. Neutral pentacoordinate silicon fluorides derived from amidinate, guanidinate, and triazapentadienate ligands and base-induced disproportionation of Si2Cl6 to stable silylenes.

    Ghadwal, Rajendra S; Pröpper, Kevin; Dittrich, Birger; Jones, Peter G; Roesky, Herbert W

    2011-01-01

    Pentacoordinate silicon fluorides L(1)SiF(3) (2a), L(2)SiF(3) (2b), and (L(3)SiF(2))(2) (2c)(2) based on amidinate (L(1) = PhC(N(t)Bu)(2)), guanidinate (L(2) = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate), and triazapentadienate (L(3) = NC(NMe(2))NC(NMe(2))NAr; Ar = 2,6-(i)Pr(2)C(6)H(3)) ligands were prepared by fluorination of the corresponding chlorosilanes L(1)SiCl(3) (1a), L(2)SiCl(3) (1b), and L(3)SiCl(2) (1c) with Me(3)SnF at ambient temperature. Compounds 1b, 1c, 2a, 2b, and (2c)(2) were characterized by (1)H, (13)C, (19)F, and (29)Si NMR spectroscopic studies. Molecular structures of 1b, 1c, 2a, and (2c)(2) were determined by single crystal X-ray structural analysis. Invariom refinement involving non-spherical scattering factors of the Hansen-Coppens multipole model was performed for 1b. Compound L(3)SiF(2) (2c) is dimeric both in the solid state and in solution, whereas its chloro-analogue 1c is monomeric. The attempted synthesis of diamidinatotetrachlorodisilane by reaction of lithium amidinate with Si(2)Cl(6) led to the formation of the silane (1a) and the silylene L(1)SiCl (3). Reaction of Si(2)Cl(6) with N-heterocyclic carbenes (NHC) afforded NHC adducts of dichlorosilylene and SiCl(4). A one pot method for the preparation of base-stabilized silylenes from Si(2)Cl(6) is discussed. PMID:21126009

  1. Hammett analysis of a family of carbene-carbene complex equilibria.

    Wang, Lei; Moss, Robert A; Thompson, Jack; Krogh-Jespersen, Karsten

    2011-03-01

    p-X-substituted phenylchlorocarbenes (X = NO(2), CF(3), Cl, H, Me, and MeO) form ?-type complexes with trimethoxybenzene in pentane. The carbenes and complexes are in equilibrium, and logarithms of the measured equilibrium constants are well correlated by Hammett ?(p) constants with ? = 2.48. The carbene complexes are characterized by UV-vis spectroscopy, and computational analysis is afforded by DFT calculations. PMID:21309524

  2. Carbenes in matrices: reactions and rearrangements

    Sander, W. W.; Patyk, A.; Bucher, G.

    1990-05-01

    Carbenes and silylenes with a variety of substituents have been isolated and characterized in low temperature matrices. Reactions of these species with small molecules, especially 3O 2, have been studied. The structure of the primary addition products as well as the reactivity as a function of the spin-state (triplet T or singlet S) is discussed.

  3. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    Poulsen, Carina Storm; Madsen, Robert

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology develop...

  4. Application of imidazolinium salts and N-heterocyclic olefins for the synthesis of anionic and neutral tungsten imido alkylidene complexes.

    Imbrich, Dominik A; Frey, Wolfgang; Naumann, Stefan; Buchmeiser, Michael R

    2016-05-01

    The synthesis, single crystal X-ray structure and activity in olefin metathesis of novel anionic tungsten imido alkylidene complexes [1,3-bis-(2,4,6-trimethylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5-Me2Pyr)2Cl](-), [1,3-bis-(2,4,6-trimethylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5Me2Pyr)2(OC6F5)](-), and [1,3-bis-(2,6-diisopropylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5-Me2Pyr)Cl2](-) are reported. Additionally, the first example of a bis(N-heterocyclic olefinium) alkylidene tungstate, W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2-methylene-1,3,4,5-tetramethyl-imidazoline)2(OTf)2, is described, including preparation, crystal structure and catalytic activity. PMID:27068323

  5. Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions

    The ethenylene bridges on the walls of an ethenylene-bridged periodic mesoporous organosilica were successfully modified with a variety of pyrrole derivatives – pyrrole, methylpyrrole, dimethylpyrrole, trimethylpyrrole and 1-phenylpyrrole – through Diels–Alder reactions. X-ray diffraction measurements and N2 adsorption–desorption analysis confirmed the preservation of the ordering and mesoporosity of the parent material as well as the decoration of the pores with the surface Diels–Alder adducts. Moreover, other techniques such as DRIFT, 13C and 29Si nuclear magnetic resonances revealed the formation of the surface N-heterocyclic compounds at the parent ethenylene sites. - Highlights: • Chemical modification of the double bonds on an ethene-PMO through the Diels–Alder reaction. • A family of pyrrole derivatives act as dienes in the Diels–Alder reaction. • Well-ordering and mesoporosity are retained after the post-functionalization. • N-containing compounds on the surface of ethene-PMO are present after the Diels–Alder reaction

  6. Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions

    Esquivel, Dolores; De Canck, Els [Center for Ordered Materials, Organometallics and Catalysis, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent (Belgium); Jiménez-Sanchidrián, César [Department of Organic Chemistry, Nanochemistry and Fine Chemistry Research Institute (IUIQFN), Faculty of Sciences, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV, km 396, 14071 Córdoba (Spain); Romero-Salguero, Francisco J., E-mail: qo2rosaf@uco.es [Department of Organic Chemistry, Nanochemistry and Fine Chemistry Research Institute (IUIQFN), Faculty of Sciences, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV, km 396, 14071 Córdoba (Spain); Van Der Voort, Pascal, E-mail: pascal.vandervoort@ugent.be [Center for Ordered Materials, Organometallics and Catalysis, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2014-11-14

    The ethenylene bridges on the walls of an ethenylene-bridged periodic mesoporous organosilica were successfully modified with a variety of pyrrole derivatives – pyrrole, methylpyrrole, dimethylpyrrole, trimethylpyrrole and 1-phenylpyrrole – through Diels–Alder reactions. X-ray diffraction measurements and N{sub 2} adsorption–desorption analysis confirmed the preservation of the ordering and mesoporosity of the parent material as well as the decoration of the pores with the surface Diels–Alder adducts. Moreover, other techniques such as DRIFT, {sup 13}C and {sup 29}Si nuclear magnetic resonances revealed the formation of the surface N-heterocyclic compounds at the parent ethenylene sites. - Highlights: • Chemical modification of the double bonds on an ethene-PMO through the Diels–Alder reaction. • A family of pyrrole derivatives act as dienes in the Diels–Alder reaction. • Well-ordering and mesoporosity are retained after the post-functionalization. • N-containing compounds on the surface of ethene-PMO are present after the Diels–Alder reaction.

  7. Blue-emitting dinuclear N-heterocyclic dicarbene gold(I) complex featuring a nearly unit quantum yield

    Baron, Marco

    2012-02-06

    Dinuclear N-heterocyclic dicarbene gold(I) complexes of general formula [Au 2(RIm-Y-ImR) 2](PF 6) 2 (R = Me, Cy; Y = (CH 2) 1-4, o-xylylene, m-xylylene) have been synthesized and screened for their luminescence properties. All the complexes are weakly emissive in solution whereas in the solid state some of them show significant luminescence intensities. In particular, crystals or powders of the complex with R = Me, Y = (CH 2) 3 exhibit an intense blue emission (λ max = 450 nm) with a high quantum yield (Φ em = 0.96). The X-ray crystal structure of this complex is characterized by a rather short intramolecular Au•••Au distance (3.272 Ǻ). Time dependent density functional theory (TDDFT) calculations have been used to calculate the UV/vis properties of the ground state as well as of the first excited state of the complex, the latter featuring a significantly shorter Au•••Au distance. © 2012 American Chemical Society.

  8. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.

    Chirik, Paul J

    2015-06-16

    The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group's efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the interplay of the electronic structure of the base metal compounds and their catalytic performance. First generation, aryl-substituted pyridine(diimine) iron dinitrogen catalysts exhibited high turnover frequencies at low catalyst loadings and hydrogen pressures for the hydrogenation of unactivated terminal and disubstituted alkenes. Exploration of structure-reactivity relationships established smaller aryl substituents and more electron donating ligands resulted in improved performance. Second generation iron and cobalt catalysts where the imine donors were replaced by N-heterocyclic carbenes resulted in dramatically improved activity and enabled hydrogenation of more challenging unactivated, tri- and tetrasubstituted alkenes. Optimized cobalt catalysts have been discovered that are among the most active homogeneous hydrogenation catalysts known. Synthesis of enantiopure, C1 symmetric pyridine(diimine) cobalt complexes have enabled rare examples of highly enantioselective hydrogenation of a family of substituted styrene derivatives. Because improved hydrogenation performance was observed with more electron rich supporting ligands, phosphine cobalt(II) dialkyl complexes were synthesized and found to be active for the diastereoselective hydrogenation of various substituted alkenes. Notably, this class of catalysts was activated by hydroxyl functionality, representing a significant advance in the functional group tolerance of base metal hydrogenation catalysts. Through collaboration with Merck, enantioselective variants of these catalysts were discovered by high throughput experimentation. Catalysts for the hydrogenation of functionalized and essentially unfunctionalized alkenes have been discovered using this approach. Development of reliable, readily accessible cobalt precursors facilitated catalyst discovery and may, along with lessons learned from electronic structure studies, provide fundamental design principles for catalysis with earth abundant transition metals beyond alkene hydrogenation. PMID:26042837

  9. A study of the resistance of some N-heterocycles (BTPS) to radiolysis

    Full text of publication follows. One option for the selective extraction of trivalent minor actinides within highly active effluents coming from the PUREX process could be as follows: firstly, to co-extract trivalent actinides [An(III)Am(III) and Cm(III)] and also lanthanides [Ln(III)] from the PUREX raffinates; secondly, to separate An(III) from Ln(III) by means of selective extractants. Although efficient extractants for the co-extraction of An(III) and Ln(III) have been developed, selective extractants for An(III) are still required. The various tetra-alkyl substituted BTP molecules, which have been studied within the FP5 European integrated project PARTNEW have been shown to be too sensitive towards acidic hydrolysis and alpha-radiolysis for the development of an An(III)/Ln(III) separation process. Other extracting molecules have been developed within the framework of the FP6 European Integrated Project EUROPART. These molecules include some nitrogen heterocycles. This paper presents some of the basic research carried out in order to improve the resistance of the chosen molecules towards radiolytic degradation. Attempts to improve their extraction properties by the addition of synergists, which usually avoid third-phase formation and improve the kinetics of extraction, will be outlined. It appears that some reagents are not only more selective towards An(III) than tetra-alkyl substituted BTPs, but also more resistant to radiolysis. The carbon atoms on the alpha positions of their triazinyl rings are fully substituted, thus preventing oxidation and nitration of the alkyl groups. Although none of the presently studied ligands has yet met the requirements of a process development strategy, huge improvements have been made in the field of nitrogen heterocycles since the first reference molecule, tetra-n-propyl-bis-triazinyl-pyridine (nPr-BTP), was first chosen in 1998 to demonstrate the scientific feasibility of An(III)/Ln(III) separation from highly active waste of medium acidity ([HNO3] > 0.5 mol/L). Many of these developments have taken place within European research programmes. (authors)

  10. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    Nitrogen-rich heterocycles represent a unique class of energetic frameworks featuring high heats of formation and high nitrogen content, which have generated considerable research interest in the field of high energy density materials (HEDMs). Although traditional C-functionalization methodology of aromatic hydrocarbons has been fully established, studies on N-functionalization strategies of nitrogen-containing heterocycles still have great potential to be exploited by virtue of forming diverse N-X bonds (X = C, N, O, B, halogen, etc.), which are capable of regulating energy performance and the stability of the resulting energetic compounds. In this sense, versatile N-functionalization of N-heterocyclic frameworks offers a flexible strategy to meet the requirements of developing new-generation HEDMs. In this Account, the role of strategic N-functionalization in designing new energetic frameworks, including the formation of N-C, N-N, N-O, N-B and N-halogen bonds, is emphasized. In the family of N-functionalized HEDMs, energetic derivatives, by virtue of forming N-C bonds, are the most widely used type due to the good nucleophilic capacity of most heterocyclic backbones. Although introduction of carbon tends to decrease energetic performance, significant improvement in material sensitivity makes this strategy attractive for safety concerns. More importantly, most "explosophores" can be readily introduced into the N-C linkage, thus providing a promising route to various HEDMs. Formation of additional N-N bonds typically gives rise to higher heats of formation, implying the potential enhancement in detonation performance. In many cases, the increased hydrogen bonding interactions within N-N functionalized heterocycles also improve thermal stability accordingly. Introduction of a single N,N'-azo bridge into several azole moieties leads to an extended nitrogen chain, demonstrating a new strategy for designing high-nitrogen compounds. The strategy of N-O functionalization has become an increasingly efficient tool for exploring new HEDMs with both high energy and low sensitivity. As a highly dense building block, introduction of oxygen not only improves density significantly but also gives rise to a better oxygen balance. Furthermore, the N-O functionalized strategy is highly suitable for a broad variety of N-heterocycles including five-membered azoles and six-membered azines. Newly explored N-halogen and N-B functionalization strategies have endowed the resulting HEDMs with some new energetic characteristics. Typical examples include the N-halogenated fused triazole and FOX-7 as potential hypergolic oxidizers with very short ignition delay times. In addition, some exploratory studies of N-B functionalized heterocycles have expanded energetic applications as hypergolic ionic liquids, green pyrotechnic colorants, and high-oxygen carriers. Overall, flexible N-functionalization methodologies involving different N-X bond formation have not only provided an efficient approach to diverse energetic ingredients but also expanded the application scope of energetic materials. Discussion and perspectives of N-functionalized protocols are given to summarize possible structure-property correlations, thus providing efficient guidelines for future design of new HEDMs. PMID:26717271

  11. NHC→SiCl4 : an ambivalent carbene-transfer reagent.

    Böttcher, Tobias; Steinhauer, Simon; Lewis-Alleyne, Lesley C; Neumann, Beate; Stammler, Hans-Georg; Bassil, Bassem S; Röschenthaler, Gerd-Volker; Hoge, Berthold

    2015-01-01

    The addition of BCl3 to the carbene-transfer reagent NHC→SiCl4 (NHC=1,3-dimethylimidazolidin-2-ylidene) gave the tetra- and pentacoordinate trichlorosilicon(IV) cations [(NHC)SiCl3 ](+) and [(NHC)2 SiCl3 ](+) with tetrachloroborate as counterion. This is in contrast to previous reactions, in which NHC→SiCl4 served as a transfer reagent for the NHC ligand. The addition of BF3 ⋅OEt2 , on the other hand, gave NHC→BF3 as the product of NHC transfer. In addition, the highly Lewis acidic bis(pentafluoroethyl)silane (C2 F5 )2 SiCl2 was treated with NHC→SiCl4 . In acetonitrile, the cationic silicon(IV) complexes [(NHC)SiCl3 ](+) and [(NHC)2 SiCl3 ](+) were detected with [(C2 F5 )SiCl3 ](-) as counterion. A similar result was already reported for the reaction of NHC→SiCl4 with (C2 F5 )2 SiH2 , which gave [(NHC)2 SiCl2 H][(C2 F5 )SiCl3 ]. If the reaction medium was changed to dichloromethane, the products of carbene transfer, NHC→Si(C2 F5 )2 Cl2 and NHC→Si(C2 F5 )2 ClH, respectively, were obtained instead. The formation of the latter species is a result of chloride/hydride metathesis. These compounds may serve as valuable precursors for electron-poor silylenes. Furthermore, the reactivity of NHC→SiCl4 towards phosphines is discussed. The carbene complex NHC→PCl3 shows similar reactivity to NHC→SiCl4 , and may even serve as a carbene-transfer reagent as well. PMID:25363673

  12. Consecutive Cycloaddition/S(N)Ar/Reduction/Cyclization/Oxidation Sequences: A Copper-Catalyzed Multicomponent Synthesis of Fused N-Heterocycles.

    Jia, Feng-Cheng; Xu, Cheng; Zhou, Zhi-Wen; Cai, Qun; Li, Deng-Kui; Wu, An-Xin

    2015-06-01

    A highly efficient multicomponent domino protocol has been developed for the synthesis of 5-phenyl-[1,2,3]triazolo[1,5-c]quinazolines from simple and readily available (E)-1-bromo-2-(2-nitrovinyl)benzenes, aldehydes, and sodium azide. This elegant domino process involved consecutive [3 + 2] cycloaddition, copper-catalyzed S(N)Ar, reduction, cyclization, and oxidation sequences. Notably, sodium azide acted as a dual nitrogen source in the construction of this novel fused N-heterocycle. PMID:25996444

  13. Ruthenium catalysts bearing a benzimidazolylidene ligand for the metathetical ring-closure of tetrasubstituted cycloolefins

    Borguet, Yannick

    2015-01-01

    © The Royal Society of Chemistry. Deprotonation of 1,3-di(2-tolyl)benzimidazolium tetrafluoroborate with a strong base afforded 1,3-di(2-tolyl)benzimidazol-2-ylidene (BTol), which dimerized progressively into the corresponding dibenzotetraazafulvalene. The complexes [RhCl(COD)(BTol)] (COD is 1,5-cyclooctadiene) and cis-[RhCl(CO)2(BTol)] were synthesized to probe the steric and electronic parameters of BTol. Comparison of the percentage of buried volume (%VBur) and of the Tolman electronic parameter (TEP) of BTol with those determined previously for 1,3-dimesitylbenzimidazol-2-ylidene (BMes) revealed that the two N-heterocyclic carbenes displayed similar electron donicities, yet the 2-tolyl substituents took a slightly greater share of the rhodium coordination sphere than the mesityl groups, due to a more pronounced tilt. The anti,anti conformation adopted by BTol in the molecular structure of [RhCl(COD)(BTol)] ensured nonetheless a remarkably unhindered access to the metal center, as evidenced by steric maps. Second-generation ruthenium-benzylidene and isopropoxybenzylidene complexes featuring the BTol ligand were obtained via phosphine exchange from the first generation Grubbs and Hoveyda-Grubbs catalysts, respectively. The atropisomerism of the 2-tolyl substituents within [RuCl2(=CHPh)(PCy3)(BTol)] was investigated by using variable temperature NMR spectroscopy, and the molecular structures of all four possible rotamers of [RuCl2(=CH-o-OiPrC6H4)(BTol)] were determined by X-ray crystallography. Both complexes were highly active at promoting the ring-closing metathesis (RCM) of model α,ω-dienes. The replacement of BMes with BTol was particularly beneficial to achieve the ring-closure of tetrasubstituted cycloalkenes. More specifically, the stable isopropoxybenzylidene chelate enabled an almost quantitative RCM of two challenging substrates, viz., diethyl 2,2-bis(2-methylallyl)malonate and N,N-bis(2-methylallyl)tosylamide, within a few hours at 60°C.

  14. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  15. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    Carmen Mejuto; Beatriz Royo; Gregorio Guisado-Barrios; Eduardo Peris

    2015-01-01

    The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD)] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene) complex with three [IrCl(CO)2] fragments, allowed the estimation of the Tolman electronic parameter (TEP) for the ligand, which was...

  16. (Bis{2-[3-(2,4,6-trimethyl­benz­yl)imid­azolin-2-yliden-1-yl-κC 2]-4-methyl­phenyl}amido-κN)chloridopalladium(II)

    Guan-Jun Cheng; Wei Wei; Chuang Zhou; Mei-Ming Luo

    2010-01-01

    The coordination geometry about the Pd centre in the title compound, [Pd(C40H42N5)Cl], is approximately square-planar. The CNC pincer-type N-heterocyclic carbene ligand binds to the Pd atom in a tridentate fashion by the amido N atom and the two carbene atoms and generates two six-membered chelate rings, completing the coordination.

  17. Flexible Structural Features of Pentafulvene Titanium Derivatives: Isolation and Characterization of NHC Complexes.

    Manßen, Manfred; Adler, Christian; Beckhaus, Rüdiger

    2016-03-18

    The reaction of η(5) ,η(1) -pentafulvene titanium complexes with the strong N-heterocyclic carbene (NHC) donor 1,3,4,5-tetramethylimidazole-2-ylidene, leads to the formation of isolable NHC titanium adducts, featuring a haptotropic shift of the pentafulvene ligand, proved by single crystal X-ray diffraction as well as NMR spectroscopy studies. PMID:26852891

  18. Synthesis, spectroscopic characterization and electronic structure of some new Cu(I) carbene complexes

    Chinnappan Sivasankar; Christina Baskaran; Ashoka G Samuelson

    2006-05-01

    Reaction of oligomeric Cu(I) complexes [Cu{-S-C(=NR)(O-Ar-CH3)}] with Lewis acids gave Cu(I) carbene complexes, which were characterized by 1H and 13C NMR spectroscopy. Cu(I) carbene complexes could be directly generated from RNCS, Cu(I)-OAr and Lewis acids; this method can be used to prepare Cu(I) carbene complexes with different substitutents on the carbene carbon. The complexes were unreactive towards olefins and do not undergo cyclopropanation. Electronic structure calculations (DFT) show that the charge on the carbene carbon plays an important role in controlling the reactivity of the carbene complex.

  19. Heterogeneous SnCl2/SiO2 versus Homogeneous SnCl2 Acid Catalysis in the Benzo[N,N]-heterocyclic Condensation

    The scope of homogeneous Lewis acid-catalyzed benzo[N,N]-heterocyclic condensation was expanded to include the use of various metal salts not reported in the literature and SnCl2·2H2O was finally selected. Among various solid supports activated with SnCl2, heterogeneous SnCl2/SiO2 proved to be the most effective and significantly higher conversions were achieved compared to SnCl2·2H2O itself. The results of TG-DTA and BET indicated that dispersed SnCl2 coordinates with surface hydroxyl groups of silica leading to formation of stable Lewis acid sites. Low catalyst loading, operational simplicity, practicability and applicability to various substrates render this eco-friendly approach as an interesting alternative to previously applied procedures

  20. New vistas in N-heterocyclic silylene (NHSi) transition-metal coordination chemistry: syntheses, structures and reactivity towards activation of small molecules.

    Blom, Burgert; Stoelzel, Miriam; Driess, Matthias

    2013-01-01

    This account is a review on the synthesis and transition-metal coordination chemistry of N-heterocyclic silylenes (NHSi's) over the last 20 years till the present time (2012). Recently, fascinating and novel synthetic methods have been developed to access transition-metal-NHSi complexes as an emerging class of compounds with a wealth of intriguing reactivity patterns. The striking influence of coordinating NHSi's to transition-metal complex fragments affording different reactivities to the "free" NHSi is a connecting theme ("leitmotif") throughout the review, and highlights the potential of these compounds which lie at the interface of contemporary main-group and classical organometallic chemistry towards new molecular catalysts for small-molecule activation. PMID:23229274

  1. Electron-rich N-heterocyclic silylene (NHSi)-iron complexes: synthesis, structures, and catalytic ability of an isolable hydridosilylene-iron complex.

    Blom, Burgert; Enthaler, Stephan; Inoue, Shigeyoshi; Irran, Elisabeth; Driess, Matthias

    2013-05-01

    The first electron-rich N-heterocyclic silylene (NHSi)-iron(0) complexes are reported. The synthesis of the starting complex is accomplished by reaction of the electron-rich Fe(0) precursor [(dmpe)2Fe(PMe3)] 1 (dmpe =1,2-bis(dimethylphosphino)ethane) with the N-heterocyclic chlorosilylene LSiCl (L = PhC(N(t)Bu)2) 2 to give, via Me3P elimination, the corresponding iron complex [(dmpe)2Fe(?:Si(Cl)L)] 3. Reaction of in situ generated 3 with MeLi afforded [(dmpe)2Fe(?:Si(Me)L)] 4 under salt metathesis reaction, while its reaction with Li[BHEt3] yielded [(dmpe)2Fe(?:Si(H)L)] 5, a rare example of an isolable Si(II) hydride complex and the first such example for iron. All complexes were fully characterized by spectroscopic means and by single-crystal X-ray diffraction analyses. DFT calculations further characterizing the bonding situation between the Si(II) and Fe(0) centers were also carried out, whereby multiple bonding character is detected in all cases (Wiberg Bond Index >1). For the first time, the catalytic activity of a Si(II) hydride complex was investigated. Complex 5 was used as a precatalyst for the hydrosilylation of a variety of ketones in the presence of (EtO)3SiH as a hydridosilane source. In most cases excellent conversions to the corresponding alcohols were obtained after workup. The reaction pathway presumably involves a ketone-assisted 1,2-hydride transfer from the Si(II) to Fe(0) center, as a key elementary step, resulting in a betaine-like silyliumylidene intermediate. The appearance of the latter intermediate is supported by DFT calculations, and a mechanistic proposal for the catalytic process is presented. PMID:23570308

  2. Mutagenic activity of some platinum and ruthenium complexes with N-heterocyclic ligands in salmonella typhimurium Ta 1530 and Ta 98

    The mutagenic activity of some platinum and ruthenium complexes with 2,2'-biquinoline (b iq) and 2-(2' -pyridyl) quinoline (p q) was examined in strains of salmonella typhimurium Ta 1530 and Ta 98. The complexes cis-[Pt(Nn)X2)] (Nn=b iq, X=CI; Nn=p q, X=CI, Br), Pt3(b iq)2I6 and me r-[Ru(b iq)2CI3].2H2O exhibit significant mutagenic activity while me r-[Ru(p q)CI3(C2H5OH)], [Ru(p q)CI4]. 3a-2a and [Ru(p q) (DMSO)2CI2].0.5H2O show much weaker mutagenic activity. the platinum complexes appear to be more active via induction of frameshift than base substitution mutation while me r-[Ru(b iq)2CI3].2H2O is highly mutagenic via base substitution. (authors). 16 refs., 2 tabs

  3. A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent.

    McCarty, Zachary R; Lastovickova, Dominika N; Bielawski, Christopher W

    2016-04-01

    The synthesis and study of a cyclic (alkyl)(amido)carbene is described. The carbene was found to undergo C-H insertion at low temperatures, formed cyclopropenes upon exposure to alkynes, and facilitated desulfurization reactions. Spectroscopic studies revealed that the carbene is strongly π-accepting but retains a complimentary degree of σ-donating properties. PMID:27010415

  4. Two Equilibria of (N-Methyl-3-pyridinium)chlorocarbene, a Cationic Carbene.

    Cang, Hui; Moss, Robert A; Krogh-Jespersen, Karsten

    2016-02-11

    Equilibrium constants and the associated thermodynamic parameters are reported for the equilibria established between the cationic carbene (N-methyl-3-pyridinium)chlorocarbene tetrafluoroborate (MePyr(+)CCl BF4(-), 3) and 1,3,5-trimethoxybenzene (TMB) to form a carbene-TMB complex, as well as between carbene 3 and chloride ion to form the zwitterion, N-methyl-3-pyridinium dichloromethide (10). These equilibrium constants and thermodynamic parameters are contrasted with analogous data for several related carbenes, and the influence of the pyridinium unit in carbene 3 is thereby highlighted. Computational studies augment and elucidate the experimental results. PMID:26830199

  5. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. PMID:26428172

  6. Adsorbed States of phosphonate derivatives of N-heterocyclic aromatic compounds, imidazole, thiazole, and pyridine on colloidal silver: comparison with a silver electrode.

    Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M

    2009-09-01

    Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process. PMID:19670840

  7. The reactions of anthronylidene carbene with some heterocyclic compounds

    The action of the anthronylidene carbene, generated by photochemical decomposition of 9-diazo 10-anthron, on four heterocyclic compounds (furan, thiophene, 1-methyl-pyrrole and 2,5-dihydrofuran) has been examined. Two classical carbene reactions have been observed: the addition on double bond (furan, thiophene, 1-methylpyrrole) and hydrogen atom abstraction of the heterocyclic compound (2,5-dihydrofuran). In the case of furan and thiophene, the cyclo-propanic compound resulting from the addition is spontaneously transformed into an ethylenic derivative by valence isomerization. The furan derivative undergoes a cis-trans isomerization, while the thiophene one undergoes an extra carbene attack. In the case of 1-methylpyrrole, the corresponding cyclo-propanic compound undergoes a ring cleavage, followed by a hydrogen atom migration leading to the formation of a substituted anthron. Only an allylic hydrogen atom selective abstraction of heterocyclic compound takes place in the reaction of anthronylidene carbene with 2,5-dihydrofuran. The asymmetrical coupling of radicals so obtained yields the corresponding substituted anthron. (author)

  8. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  9. Group 4 Transition-Metal Complexes of an Aniline–Carbene–Phenol Ligand

    Despagnet-Ayoub, Emmanuelle

    2013-05-24

    Attempts to install a tridentate aniline-NHC-phenol (NCO) ligand on titanium and zirconium led instead to complexes resulting from unexpected rearrangement pathways that illustrate common behavior in carbene-early- transition-metal chemistry. © 2013 American Chemical Society.

  10. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  12. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene sigma donates, and subsequent back-bonding occurs into a pi* antibonding orbital. This is a different type of interaction not seen in the three existing classes of metal-carbene complexes, namely Fischer, Schrock, and Grubbs. Finally, the virtual engineering of enhanced chemical warfare agent (CWA) detection systems is discussed. As part of a U.S. Department of Defense supported research project, in silico chemical modifications to a previously synthesized zinc-porphyrin, ZnCS1, were made to attempt to achieve preferential binding of the nerve agent sarin versus its simulant, DIMP (diisopropyl methylphosphonate). Upon modification, a combination of steric effects and induced hydrogen bonding allowed for the selective binding of sarin. The success of this work demonstrates the role that high performance computing can play in national security research, without the associated costs and high security required for experimentation.

  13. Preparation and Isolation of a Chiral Methandiide and Its Application as Cooperative Ligand in Bond Activation.

    Feichtner, Kai-Stephan; Englert, Simon; Gessner, Viktoria H

    2016-01-11

    The activation of element-hydrogen bonds by means of metal-ligand cooperation has received increasing attention as alternative to classical activation processes, which exclusively occur at the metal center. Carbene complexes derived from methandiide precursors have been applied in this chemistry enabling the activation of a series of E?H bonds by addition reactions across the M?C bond. However, no chiral carbene complexes have been applied to realize stereoselective transformations to date. Herein, we report the isolation and structure elucidation of an enantiomerically pure dilithiomethane, which could be prepared by direct double deprotonation. The obtained dilithium salt was used for the preparation of the first chiral methandiide-derived carbene complex, which was applied in stereoselective cooperative S?H bond activation. PMID:26612739

  14. A very peculiar family of N-heterocyclic phosphines: unusual structures and the unique reactivity of 1,3,2-diazaphospholenes.

    Gudat, D

    2016-04-14

    This Perspective gives an account of the peculiar electronic and molecular structures of N-heterocyclic phosphines featuring either a single 1,3,2-diazaphospholene (DAP) ring with an exocyclic P-substituent X or two DAP rings linked by a P-P bond (bis-diazaphospholenyls), respectively, and their impact on the chemical properties of these molecules. The bonding situation in simple DAPs is epitomized by strong hyperconjugation between endocyclic π-type electrons and the exocyclic P-X bond. This interaction may induce a perceptible ionic polarization of the P-X bond which can persist even in the limit of a vanishing electronegativity gradient between P and X, and becomes visible in unusual geometric distortions of molecular structures and a unique chemical behaviour. Structural distortions are particularly evident in bond lengthening effects in P-halogen and P-phosphino derivatives R2P-DAP (with R2P ≠ DAP) which span the whole range from covalent molecules to contact ion pairs with a close relation to frustrated Lewis-pairs. The most significant impact on the chemical properties is found for P-phosphino- and P-hydrogen derivatives where reactions at substantially accelerated rates or totally new reaction modes can be observed, and new stoichiometric and first catalytic processes exploiting these features are currently emerging. The recently discovered bis-diazaphospholenyls differ from the simple derivatives as their central bond remains unpolarised as a consequence of the symmetric molecular structure. The occurrence of low-energy P-P bond homolysis that was nonetheless observed in one case is according to the results of thermochemical studies of P-P bond fission reactions attributable to the effects of steric congestion and induces chemical reactivity that can be considered complementary to that of the simple R2P-DAPs. Some concluding remarks will pay attention to a facet of DAP reactivity that has so far been widely neglected but is currently receiving increasing attention, namely well-defined ring-opening processes. PMID:26863391

  15. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Jiu-Fu, Lu, E-mail: jiufulu@163.com; Hong-Guang, Ge; Juan, Shi [Chemical Engineering College, Shaanxi University of Technology (China)

    2015-12-15

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag(DIM){sub 2}]BF{sub 4}, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å{sup 3}, Z = 4, D{sub x} = 1.771 g/cm{sup 3}, F (000) = 864, µ(MoK{sub α}) = 1.278 mm{sup –1}. The final R{sup 1} = 0.0711 and wR{sup 2} = 0.1903 for reflections with I > 2σ(I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  16. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Jiu-Fu, Lu; Hong-Guang, Ge; Juan, Shi

    2015-12-01

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag( DIM)2]BF4, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/ c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å3, Z = 4, D x = 1.771 g/cm3, F (000) = 864, µ(Mo K α) = 1.278 mm-1. The final R 1 = 0.0711 and wR 2 = 0.1903 for reflections with I > 2σ( I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  17. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag(DIM)2]BF4, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å3, Z = 4, Dx = 1.771 g/cm3, F (000) = 864, µ(MoKα) = 1.278 mm–1. The final R1 = 0.0711 and wR2 = 0.1903 for reflections with I > 2σ(I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity

  18. Probing Protein Surface with a Solvent Mimetic Carbene Coupled to Detection by Mass Spectrometry

    Gmez, Gabriela E.; Mundo, Mariana R.; Craig, Patricio O.; Delfino, Jos M.

    2012-01-01

    Much knowledge into protein folding, ligand binding, and complex formation can be derived from the examination of the nature and size of the accessible surface area (SASA) of the polypeptide chain, a key parameter in protein science not directly measurable in an experimental fashion. To this end, an ideal chemical approach should aim at exerting solvent mimicry and achieving minimal selectivity to probe the protein surface regardless of its chemical nature. The choice of the photoreagent diazirine to fulfill these goals arises from its size comparable to water and from being a convenient source of the extremely reactive methylene carbene (:CH2). The ensuing methylation depends primarily on the solvent accessibility of the polypeptide chain, turning it into a valuable signal to address experimentally the measurement of SASA in proteins. The superb sensitivity and high resolution of modern mass spectrometry techniques allows us to derive a quantitative signal proportional to the extent of modification (EM) of the sample. Thus, diazirine labeling coupled to electrospray mass spectrometry (ESI-MS) detection can shed light on conformational features of the native as well as non-native states, not easily addressable by other methods. Enzymatic fragmentation of the polypeptide chain at the level of small peptides allows us to locate the covalent tag along the amino acid sequence, therefore enabling the construction of a map of solvent accessibility. Moreover, by subsequent MS/MS analysis of peptides, we demonstrate here the feasibility of attaining amino acid resolution in defining the target sites.

  19. Heterolysis of Dihydrogen by Silver Alkoxides and Fluorides.

    Tate, Brandon K; Nguyen, Jenna T; Bacsa, John; Sadighi, Joseph P

    2015-07-01

    Alkoxide-bridged disilver cations react with dihydrogen to form hydride-bridged cations, releasing free alcohol. Hydrogenolysis of neutral silver fluorides affords hydride-bridged disilver cations as their bifluoride salts. These reactions proceed most efficiently when the supporting ligands are expanded N-heterocyclic carbenes (NHCs) derived from 6- and 7-membered cyclic amidinium salts. Kinetics studies show that silver fluoride hydrogenolysis is first-order in both silver and dihydrogen. PMID:26059331

  20. Transfer hydrogenation of ketones and activated olefins using chelating NHC ruthenium complexes

    Horn, Sabine; Gandolfi, Claudio; Albrecht, Martin, 1969-

    2011-01-01

    N-Heterocyclic carbene (NHC) ruthenium complexes consisting of different donor substituents attached to the NHC ligand efficiently catalyse the transfer hydrogenation of ketones and of activated olefins in α,β-unsaturated ketones to give saturated alcohols. The most active catalyst precursor contains a tethered olefin as a hemilabile donor site. This complex also converts nitriles and, depending on the reaction conditions, either benzylamines are produced by means of transfer hydrogenation, o...

  1. Fischer carbene complexes with two chromium centers as potential molecular wires

    Metelková, R.; Tobrman, T.; Hoskovcová, I.; Ludvík, Jiří

    Lausanne : International Society of Electrochemistry , 2014. ise142050. [Annual Meeting of the International Society of Electrochemistry /65./. 31.08.2014-05.09.2014, Lausanne] Institutional support: RVO:61388955 Keywords : Fiescher carbene complexes * electron transfer * electrochemistry Subject RIV: CG - Electrochemistry

  2. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform

    Zhang, Bojie; Rempel, Don L.; Gross, Michael L.

    2016-03-01

    Protein footprinting combined with mass spectrometry provides a method to study protein structures and interactions. To improve further current protein footprinting methods, we adapted the fast photochemical oxidation of proteins (FPOP) platform to utilize carbenes as the footprinting reagent. A Nd-YAG laser provides 355 nm laser for carbene generation in situ from photoleucine as the carbene precursor in a flow system with calmodulin as the test protein. Reversed-phase liquid chromatography coupled with mass spectrometry is appropriate to analyze the modifications produced in this footprinting. By comparing the modification extent of apo and holo calmodulin on the peptide level, we can resolve different structural domains of the protein. Carbene footprinting in a flow system is promising.

  3. Iron in the Service of Chromium – the ortho-Benzannulation of trans, trans-Dienyl Fischer Carbene Complexes

    Lian, Yiqian; Wulff, William D.

    2005-01-01

    Chromium Fischer carbene complexes with trans, trans-dienyl substituents on the carbene carbon will react with diiron nonacarbonyl to give 2-alkoxycyclohexa-2,4-dienone iron tricarbonyl complexes and/or 2-alkoxyphenols in excellent yields. In the presence of silica gel or base, the cyclohexadienone complex will suffer loss of the iron and aromatization to give 2-alkoxyphenols. The formation of 2-alkoxyphenols from dienyl chromium carbene complexes is a known process (ortho-benzannulation) tha...

  4. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  5. Copper(I Complexes of Mesoionic Carbene: Structural Characterization and Catalytic Hydrosilylation Reactions

    Stephan Hohloch

    2015-04-01

    Full Text Available Two series of different Cu(I-complexes of “click” derived mesoionic carbenes are reported. Halide complexes of the type (MICCuI (with MIC = 1,4-(2,6-diisopropyl-phenyl-3-methyl-1,2,3-triazol-5-ylidene (for 1b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene (for 1c and cationic complexes of the general formula [Cu(MIC2]X (with MIC =1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = CuI2− (for 2á, 1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2a, 1,4-(2,6-diisopropylphenyl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2c have been prepared from CuI or [Cu(CH3CN4](BF4 and the corresponding ligands, respectively. All complexes were characterized by elemental analysis and standard spectroscopic methods. Complexes 2á and 1b were studied by single-crystal X-ray diffraction analysis. Structural analysis revealed 2á to adopt a cationic form as [Cu(MIC2](CuI2 and comparison of the NMR spectra of 2á and 2a confirmed this conformation in solution. In contrast, after crystallization complex 1b was found to adopt the desired neutral form. All complexes were tested for the reduction of cyclohexanone under hydrosilylation condition at elevated temperatures. These complexes were found to be efficient catalysts for this reaction. 2c was also found to catalyze this reaction at room temperature. Mechanistic studies have been carried out as well.

  6. Cationic heterocycles as ligands: synthesis and reactivity with anionic nucleophiles of cationic triruthenium clusters containing C-metalated N-methylquinoxalinium or N-methylpyrazinium ligands.

    Cabeza, Javier A; del Río, Ignacio; Goite, María C; Pérez-Carreño, Enrique; Pruneda, Vanessa

    2009-07-27

    The cationic cluster complexes [Ru3(CO)10(mu-H)(mu-kappa2N,C-L1Me)]+ (3+; HL1=quinoxaline) and [Ru3(CO)10(mu-H)(mu-kappa2N,C-L2Me)]+ (5+; HL2=pyrazine) have been prepared as triflate salts by treatment of their neutral precursors [Ru3(CO)10(mu-H)(mu-kappa2N,C-Ln)] with methyl triflate. The cationic character of their heterocyclic ligands is responsible for their enhanced tendency to react with anionic nucleophiles relative to that of hydrido triruthenium carbonyl clusters that have neutral N-heterocyclic ligands. These clusters react instantaneously with methyl lithium and potassium tris-sec-butylborohydride (K-selectride) to give neutral products that contain novel nonaromatic N-heterocyclic ligands. The following are the products that have been isolated: [Ru3(CO)9(mu-H)(mu3-kappa2N,C-L1Me2)] (6; from 3+ and methyl lithium), [Ru3(CO)9(mu-H)(mu3-kappa2N,C-L1HMe)] (7; from 3+ and K-selectride), [Ru3(CO)9(mu-H)(mu3-kappa2N,C-L2Me2)] (8; from 5+ and methyl lithium), and [Ru3(CO)9(mu-H)(mu3-kappa2N,C-L2HMe)] (11; from 5+ and K-selectride). Whereas the reactions of 3+ lead to products that arise from the attack of the corresponding nucleophile at the C atom of the only CH group adjacent to the N-methyl group, the reactions of 5+ give mixtures of two products that arise from the attack of the nucleophile at one of the C atoms located on either side of the N-methyl group. The LUMOs and the atomic charges of 3+ and 5+ confirm that the reactions of these clusters with anionic nucleophiles are orbital-controlled rather than charge-controlled processes. The N-heterocyclic ligands of all of these neutral products are attached to the metal atoms in nonconventional face-capping modes. Those of compounds 6-8 have the atoms of a ligand C=N fragment sigma-bonded to two Ru atoms and pi-bonded to the other Ru atom, whereas the ligand of compound 11 has a C-N fragment attached to a Ru atom through the N atom and to the remaining two Ru atoms through the C atom. A variable-temperature 1H NMR spectroscopic study showed that the ligand of compound 7 is involved in a fluxional process at temperatures above -93 degrees C, the mechanism of which has been satisfactorily modeled with the help of DFT calculations and involves the interconversion of the two enantiomers of this cluster through a conformational change of the ligand CH(2) group, which moves from one side of the plane of the heterocyclic ligand to the other, and a 180 degrees rotation of the entire organic ligand over a face of the metal triangle. PMID:19544502

  7. Design, Synthesis, and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as μ Opioid Receptor Selective Antagonists

    Li, Guo; Aschenbach, Lindsey C.; Chen, Jianyang; Cassidy, Michael P.; Stevens, David L.; Gabra, Bichoy H.; Selley, Dana E.; Dewey, William L.; Westkaemper, Richard B.; Zhang, Yan

    2009-01-01

    Opioid receptor selective antagonists are important pharmacological probes in opioid receptor structural characterization and opioid agonist functional study. Thus far, a nonpeptidyl, highly selective and reversible μ opioid receptor (MOR) antagonist is unavailable. On the basis of our modeling studies, a series of novel naltrexamine derivatives have been designed and synthesized. Among them, two compounds were identified as leads based on the results of in vitro and in vivo assays. Both of them displayed high binding affinity for the MOR (Ki = 0.37 and 0.55 nM). Compound 6 (NAP) showed over 700-fold selectivity for the MOR over the δ receptor (DOR) and more than 150-fold selectivity over the κ receptor (KOR). Compound 9 (NAQ) showed over 200-fold selectivity for the MOR over the DOR and approximately 50-fold selectivity over the KOR. Thus these two novel ligands will serve as leads to further develop more potent and selective antagonists for the MOR. PMID:19199782

  8. The reactivity game: theoretical predictions for heavy atom tunneling in adamantyl and related carbenes.

    Kozuch, S

    2014-05-01

    The possibility of carbon atom tunneling at cryogenic temperatures for carbene-based ring expansion of adamantane analogues calls for a delicate balance of reactivity to experimentally detect the transpiring reaction. An overly reactive carbene will precipitously decay; an excessively stable carbene will not tunnel. Nevertheless, the factors that affect the quantum-mechanical tunneling (QMT) reactivity - mass, barrier height and width - are strikingly different from the classical "over the barrier" thermal mechanism. Herein, comparisons with experimental values and predictions on measurable rate constants for novel carbene systems are presented by way of small curvature tunneling (SCT) computations. Adamantane, noradamantane and bisnoradamantane have a significantly different C-C bond strain and reactivity, which can be modulated by tinkering with the carbene substituent atom (H, Cl or F) to obtain an observable lifetime of the reactant. The influence of barrier heights and widths, kinetic isotope effects (KIEs), the detection of the tunneling-determining atoms (TDA) and the comparisons with hydrogen-based reactions are discussed with the objective of finding the physical limits for QMT. PMID:24590008

  9. Stabilization of carbenes via α-ylide substitutions: a computational quest for new divalents at DFT.

    Haerizade, Bibi Narjes; Kassaee, Mohammad Zaman; Koohi, Maryam; Ghavami, Monire; Zandi, Hassan

    2014-01-01

    In our continued quest for novel stable carbenes, silylenes, and germylenes, here we compare and contrast multiplicities and relative stabilities of carbenes affected with four different α-ylides. The latter include carbon, immonium, phosphorus, and sulfur ylides substituted at the alpha positions of carbenes with acyclic, cyclic and cyclicunsaturated structural frameworks. Related thermodynamic data are calculated at B3LYP/6-311++G**//B3LYP/6-31+G* and B3LYP/AUG-cc-pVTZ//B3LYP/6-31+G* levels. Investigations reveal the enlargement of the singlet-triplet energy gaps (ΔΕs-t) in the order of immonium > phosphorus > sulfur > carbon. The observed trend, which is taken as an indication of stability, is thoroughly analyzed by applying appropriate isodesmic reactions which differentiate the substituent effects on each of our singlet or triplet carbene. The effect of unsaturation is also probed in each series of the ylide carbenes. The reactivity of the species is discussed in terms of nucleophilicity and electrophilicity. PMID:24807316

  10. Bond Activation by Metal-Carbene Complexes in the Gas Phase.

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-03-15

    "Bare" metal-carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2](+) complex brings about efficient C-C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2](+)/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2](+) (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)](+). Among the many noteworthy C-N bond-forming processes, the formation of CH3NH2 from [RhCH2](+)/NH3, the generation of CH2═NH2(+) from [MCH2](+)/NH3 (M = Pt, Au), and the production of [PtCH═NH2](+) from [PtCH2](+)/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt](+) (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C-N bond-forming step and unwanted soot formation. For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal-carbene complexes can be formed directly from methane, coupling of the so-generated [MCH2] species with an inert molecule such as CH4, CO2, or NH3 constitutes a route to activate and functionalize methane under ambient conditions. Clearly, while these gas-phase studies cannot be translated directly to formally related processes in solution or those that occur at a surface, they nevertheless provide a conceptual mechanistic understanding and permit researchers to probe directly the remarkable intrinsic features of these elusive molecules and, in a broader context, help to identify the active site of a catalyst, the so-called "aristocratic atoms". PMID:26870872

  11. A general access to organogold(iii) complexes by oxidative addition of diazonium salts.

    Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-05-11

    At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed. PMID:27094217

  12. Mild and Complete Carbonyl Ligand Scission on a Mononuclear Transition Metal Complex.

    Braunschweig, Holger; Celik, Mehmet Ali; Dewhurst, Rian D; Kachel, Stephanie; Wennemann, Benedikt

    2016-04-11

    The complete scission of the carbon-oxygen bond of carbon monoxide, while frequently observed on bulk metals and with bimetallic and cluster transition metal complexes, is unknown with monometallic systems. Reaction of a zerovalent iron bis(borylene) complex with a cyclic (alkyl)(amino)carbene revealed a highly selective intramolecular cleavage of the C-O bond of a carbonyl ligand at room temperature, leading to the formation of a highly unusual iron complex containing a base-stabilized (bora)alkylideneborane ligand. DFT investigation of the reaction mechanism suggested that the two Lewis acidic borylene boron atoms cooperate to cleave the C-O multiple bond. PMID:26990148

  13. Fullerene–Carbene Lewis Acid–Base Adducts

    Li, Huaping

    2011-08-17

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths similar to those of n-doped fullerenes were observed for the product, consistent with a net transfer of electron density to the C60 core. Corroborating information was obtained using UV photoelectron spectroscopy, which revealed that the adduct has an ionization potential ∼1.5 eV lower than that of C60. Density functional theory calculations showed that the C-C bond is polarized, with a total charge of +0.84e located on the NHC framework and -0.84e delocalized on the C 60 cage. The combination of reactivity, characterization, and theoretical studies demonstrates that fullerenes can behave as Lewis acids that react with C-based Lewis bases and that the overall process describes n-doping via C-C bond formation. © 2011 American Chemical Society.

  14. Design, synthesis, and biological evaluation of 6alpha- and 6beta-N-heterocyclic substituted naltrexamine derivatives as mu opioid receptor selective antagonists.

    Li, Guo; Aschenbach, Lindsey C; Chen, Jianyang; Cassidy, Michael P; Stevens, David L; Gabra, Bichoy H; Selley, Dana E; Dewey, William L; Westkaemper, Richard B; Zhang, Yan

    2009-03-12

    Opioid receptor selective antagonists are important pharmacological probes in opioid receptor structural characterization and opioid agonist functional study. Thus far, a nonpeptidyl, highly selective and reversible mu opioid receptor (MOR) antagonist is unavailable. On the basis of our modeling studies, a series of novel naltrexamine derivatives have been designed and synthesized. Among them, two compounds were identified as leads based on the results of in vitro and in vivo assays. Both of them displayed high binding affinity for the MOR (K(i) = 0.37 and 0.55 nM). Compound 6 (NAP) showed over 700-fold selectivity for the MOR over the delta receptor (DOR) and more than 150-fold selectivity over the kappa receptor (KOR). Compound 9 (NAQ) showed over 200-fold selectivity for the MOR over the DOR and approximately 50-fold selectivity over the KOR. Thus these two novel ligands will serve as leads to further develop more potent and selective antagonists for the MOR. PMID:19199782

  15. Chemical functionalization of graphene by carbene cycloaddition: A density functional theory study

    Graphical abstract: - Highlights: • The reaction process of graphene functionalization with CCl2 group in atomic scales was studied. • The potential candidate carbenes CR2 (R = H, F, CN, NO20, NO290, CH3, OCH3, CCH, C6H5) were separately combined with graphene. • The functionalization of graphene nanoribbon with dichlorocarbene group was investigated. • The electronic properties of graphene functionalized by carbene groups were discussed. - Abstract: In this work, we have systematically studied the structural, energetic and electronic properties of graphene functionalized with carbene groups by using density functional theory. Introducing a low concentration of CCl2 group in graphene was studied in detail by DFT, and closed cyclopropane-like three-membered ring structure was formed, meanwhile, the potential candidate carbene groups CR2 (R = H, F, CH3, CN, NO2, OCH3, CCH, C6H5) were added to graphene sheet, and CR2 (R = H, NO2, CH3) groups were expected to be good reactive species to covalently modify graphene. The graphene functionalization with carbene groups above can open graphene's band gap. More CCl2 molecules were added to graphene, and different concentrations of CCl2 group can tune graphene's band gap. In addition, the addition of CCl2 group to graphene edges was investigated, and the stronger binding energy was found. Multiple CCl2 molecules preferred to be bound with the same edge of graphene nanoribbon. This work provides an insight into the detailed molecular mechanism of graphene functionalization with carbene groups

  16. Toward new organometallic architectures: synthesis of carbene-centered rhodium and palladium bisphosphine complexes. stability and reactivity of [PC(BIm)PRh(L)][PF6] pincers.

    Plikhta, Andriy; Pthig, Alexander; Herdtweck, Eberhardt; Rieger, Bernhard

    2015-10-01

    In this article, we report the synthesis of a tridentate carbene-centered bisphosphine ligand precursor and its complexes. The developed four-step synthetic strategy of a new PC(BIm)P pincer ligand represents the derivatization of benzimidazole in the first and third positions by (diphenylphosphoryl)methylene synthone, followed by phosphine deprotection and subsequent insertion of a noncoordinating anion. The obtained ligand precursor undergoes complexation, with PdCl2 and [?-OCH3Rh(COD)]2 smoothly forming the target organometallics [PC(BIm)PPdCl][PF6] and [PC(BIm)PRh(L)][PF6] under mild hydrogenation conditions. A more detailed study of the rhodium complexes [PC(BIm)PRh(L)][PF6] reveals significant thermal stability of the PC(BIm)PRh moiety in the solid state as well as in solution. The chemical behavior of 1,3-bis(diphenylphosphinomethylene)benzimidazol-2-ylrhodium acetonitrile hexafluorophosphate has been screened under decarbonylation, hydrogenation, and hydroboration reaction conditions. Thus, the PC(BIm)PRh(I) complex is a sufficiently stable compound, with the potential to be applied in catalysis. PMID:26390389

  17. Solvent mimicry with methylene carbene to probe protein topography.

    Gmez, Gabriela Elena; Monti, Jos Luis E; Mundo, Mariana Roco; Delfino, Jos Mara

    2015-10-01

    The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca(2+) binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca(2+)-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91-106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel's differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions. PMID:26348271

  18. Intramolecular transannulation of alkynyl triazoles via alkyne-carbene metathesis step: access to fused pyrroles.

    Shi, Yi; Gevorgyan, Vladimir

    2013-10-18

    An intramolecular Rh-catalyzed transannulation reaction of alkynyl triazoles has been developed. This method allows efficient construction of various 5,5-fused pyrroles, including tetrahydropyrrolo and spiro systems. The method demonstrates excellent functional group compatibility. A rhodium carbene-alkyne metathesis mechanism is proposed for this transformation. PMID:24093728

  19. Cyclometalated Pd(II) and Ir(III) 2-(4-bromophenyl)pyridine complexes with N-heterocyclic carbenes (NHCs) and acetylacetonate (acac): synthesis, structures, luminescent properties and application in one-pot oxidation/Suzuki coupling of aryl chlorides containing hydroxymethyl.

    Xu, Chen; Li, Hong-Mei; Xiao, Zhi-Qiang; Wang, Zhi-Qiang; Tang, Si-Fu; Ji, Bao-Ming; Hao, Xin-Qi; Song, Mao-Ping

    2014-07-14

    A series of cyclopalladated 2-(4-bromophenyl)pyridine (bpp) complexes [Pd(bpp)(NHC)Cl] 1-3, [Pd(bpp)(acac)] 4, cyclometalated iridium(iii) complexes [Ir(bpp)2Cl]25 and [Ir(bpp)2(acac)] 6 have been synthesized and characterized. Their detailed structures have been determined by X-ray diffraction and many intermolecular C-HX (Cl, Br, ?) and ?? interactions were found in their crystals. Cyclometalated complexes 1-4 and 6 exhibit luminescence with emission peaks of 390-543 nm in dichloromethane solution under UV irradiation. Their application to coupling reactions of aryl chlorides containing hydroxymethyl was also investigated. An efficient 3/Cu cocatalyzed oxidation/Suzuki reaction for the synthesis of biarylaldehydes from chloro-phenylmethanol and arylboronic acids in air has been developed. In addition, a 6/3-cocatalyzed one-pot reaction of acetylferrocene, (2-amino-5-chlorophenyl)methanol, and arylboronic acids provided 6-aryl-2-ferrocenylquinolines in moderate to good yields. PMID:24878778

  20. Chimie de coordination de carbènes N-hétérocycliques substitués par des groupements alkyfluorényle : interactions faibles, effets stériques, catalyse

    Teci, Matthieu

    2015-01-01

    This thesis deals with a series of N-heterocyclic carbene ligands (NHCs) in which the N atoms bear expanded alkylfluorenyl (AF) substituents. Special focus has been put on the steric properties of these new ligands, as well as their influence on catalytic reactions involving Pd and Cu centres.The first part of this work describes the synthesis of a series of AF-substituted azolium salts suitable for the preparation of palladium PEPPSI-NHC complexes. These turned out to be very active in Suzuk...

  1. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  2. Crystal structure of {3-[3,5-bis(2,6-dimethylphenyl-1,2-phenylene]-1-(2,6,2??,6??-tetramethyl-1,1?:3?,1??-terphenyl-5?-ylimidazol-2-ylidene}chlorido(?6-p-cymeneruthenium(II benzene disolvate

    Shohei Sase

    2014-12-01

    Full Text Available The title compound, [Ru(C47H43N2Cl(C10H14]2C6H6, crystallized with two independent molecules of benzene. One of the N-aryl moieties of the N-heterocyclic carbene (NHC ligand underwent cyclometallation to form a five-membered ruthenacycle. The complex has a three-legged piano-stool structure with two C atoms incorporated in the five-membered ruthenacycle and a Cl atom as legs. The ruthenacycle is essentially coplanar with the imidazole ring of the NHC ligand, making a dihedral angle of 0.85?(8.

  3. Complexation of trivalent cationic lanthanides by N.O donor ligands: physico-chemical studies of the association and selectivity in solution

    The aim of this work is to study the complexation of f-elements in solution by ligands incorporating N-heterocyclic donors. These ligands display interesting properties for the selective separation of An(III)/Ln(III) have been studied to obtain a better understanding of the coordination properties with f-elements and to develop more selective extractants. The hepta-dentate ligand tpaam shows an affinity for Ln(III) similar to the tetradentate ligand tpa in water even when the three additional amide groups are bonded to the metal. Even though the complexation with tpa is exothermic, that with tpaam is endothermic with a more positive entropy. The dehydration of the cation disfavours the formation of Ln(III) complexes with ligands containing weak donors. The analysis of the solution paramagnetic relaxation times of the tpaam complexes is in agreement with data in the solid-state. There is little difference between the formation constants of the Ln3+ complexes with different ligands (tpaam, tpzen, tpa and tpza) as determined by UV-vis spectrophotometry in anhydrous acetonitrile. The limitations encountered during this study are intrinsic to the ligands studied. The preliminary study of two tetrapodal ligands containing acid and pyridine groups (Lpy)or pyrazine (Lpz) show the formation of 1:1 complexes in water. Analysis of the formation constants of the corresponding Gd(III) complexes shows that replacement of a pyridine group by pyrazine result in a loss of stability of 1.6 logarithmic units. (author)

  4. Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand

    Zhang, Wenqian; Yu, Jiancan [State Key Lab of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn [State Key Lab of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Rao, Xingtang; Yang, Yu [State Key Lab of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Qian, Guodong, E-mail: gdqian@zju.edu.cn [State Key Lab of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer A new N-heterocycle muticarboxylate ligand 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid (H{sub 4}dpda) was developed. Black-Right-Pointing-Pointer Several lanthanide metal-organic frameworks (Ln = Eu, Gd, Tb, Dy) and Eu/Tb mixed MOFs were synthesized. Black-Right-Pointing-Pointer The ligand H{sub 4}dpda can provide efficient sensitization for the lanthanide ion Tb(III) and Eu(III). Black-Right-Pointing-Pointer Luminescence color of the mixed MOFs can be easily tuned by varying the molar ratios of Eu(III)/Tb(III). - Abstract: A novel N-heterocycle multicarboxylate ligand 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid (H{sub 4}dpda) was synthesized, and then reacted with lanthanide salts to yield a series of lanthanide metal-organic frameworks, [Ln(Hdpda)(H{sub 2}O){sub 4}]{center_dot}0.5(H{sub 2}O) (Ln = Eu(1), Gd(2), Tb(3), Dy(4)) and [Tb{sub 1-x}Eu{sub x}(Hdpda)(H{sub 2}O){sub 4}]{center_dot}0.5(H{sub 2}O) (x = 0.1-10 mol%). Single crystal X-ray diffraction and powder XRD patterns confirm these MOFs are isostructural. Luminescent measurements suggest that the ligand can provide efficient sensitization for the lanthanide ion Tb(III) and Eu(III) in the mixed lanthanide MOFs. Additionally, the luminescence color of the mixed MOFs can be easily tuned from green to green-yellow, yellow, orange, red-orange and red by varying the molar ratio of Eu(III)/Tb(III).

  5. Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand

    Highlights: ► A new N-heterocycle muticarboxylate ligand 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid (H4dpda) was developed. ► Several lanthanide metal–organic frameworks (Ln = Eu, Gd, Tb, Dy) and Eu/Tb mixed MOFs were synthesized. ► The ligand H4dpda can provide efficient sensitization for the lanthanide ion Tb(III) and Eu(III). ► Luminescence color of the mixed MOFs can be easily tuned by varying the molar ratios of Eu(III)/Tb(III). - Abstract: A novel N-heterocycle multicarboxylate ligand 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid (H4dpda) was synthesized, and then reacted with lanthanide salts to yield a series of lanthanide metal–organic frameworks, [Ln(Hdpda)(H2O)4]·0.5(H2O) (Ln = Eu(1), Gd(2), Tb(3), Dy(4)) and [Tb1−xEux(Hdpda)(H2O)4]·0.5(H2O) (x = 0.1–10 mol%). Single crystal X-ray diffraction and powder XRD patterns confirm these MOFs are isostructural. Luminescent measurements suggest that the ligand can provide efficient sensitization for the lanthanide ion Tb(III) and Eu(III) in the mixed lanthanide MOFs. Additionally, the luminescence color of the mixed MOFs can be easily tuned from green to green–yellow, yellow, orange, red–orange and red by varying the molar ratio of Eu(III)/Tb(III).

  6. Unusual solvation through both p-orbital lobes of a carbene carbon

    Hadad, C. Z., E-mail: cacier.hadad@udea.edu.co [Grupo de Química-Física Teórica, Instituto de Química, Universidad de Antioquia, A. A. 1226 Medellín (Colombia); Jenkins, Samantha [College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Flórez, Elizabeth [Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín (Colombia)

    2015-03-07

    As a result of a configurational space search done to explain the experimental evidence of transient specific solvation of singlet fluorocarbene amide with tetrahydrofuran, we found that the most stable structures consist in a group in which each oxygen of two tetrahydrofuran molecules act as electron donor to its respective empty p-orbital lobe of the carbene carbon atom, located at each side of the carbene molecular plane. This kind of species, which to our knowledge has not been reported before, explains very well the particular experimental characteristics observed for the transient solvation of this system. We postulate that the simultaneous interaction to both p-orbital lobes seems to confer a special stability to the solvation complexes, because this situation moves away the systems from the proximity of the corresponding transition states for the ylide products. Additionally, we present an analysis of other solvation complexes and a study of the nature of the involved interactions.

  7. Thiazolium carbene catalysts for the fixation of CO2 onto amines.

    Das, Shoubhik; Bobbink, Felix D; Bulut, Safak; Soudani, Mylne; Dyson, Paul J

    2016-02-11

    The catalytic N-formylation and N-methylation of amines using CO2 as the carbon source represents a facile and sustainable approach for the synthesis of pharmaceuticals and natural products. Herein, we describe highly effective and inexpensive thiazolium carbene-based catalysts derived from vitamin B1 for the N-formylation and N-methylation of amines, using polymethylhydrosiloxane (PMHS) as a reducing agent, which operate under ambient conditions. PMID:26739571

  8. Role of quantum mechanical tunneling on the ?-effect of silicon on carbenes in 3-trimethylsilylcyclobutylidene.

    Karmakar, Sharmistha; Datta, Ayan

    2014-03-01

    Quantum mechanical tunneling (QMT) is increasingly being realized as an important phenomenon that can enhance the rate of reactions even at room temperature. Recently, the ability of a trimethylsilane (TMS) group to activate 1,3-H shift to a carbene from a ?-position has been demonstrated. Direct dynamical calculations (using canonical varitational transition state theory) inclusive of small curvature tunneling (CVT-SCT) show that QMT plays a decisive role in such 1,3-hydrogen migration in both the presence and absence of TMS. The presence of a TMS group reduces the activation energy of 1,3-H shift reaction via 1,3-equatorial interaction of the TMS group with the carbene. Tunneling across the smaller barrier enhances the overall forward rate of the reaction. The Arrhenius plot for the reaction shows substantial curvature in comparison to the CVT mechanism at room temperature. Arrhenius plots for the kinetic isotope effects (KIEs) for the ?-deuterated and per deuterated 3-trimethylsilylcyclobutylidene also show strong deviations from the classical over the barrier mechanism. The magnitude of the KIE is suggestive of QMT from the vibrational excited states of the carbenes. PMID:24467461

  9. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    Mejuto, Carmen; Royo, Beatriz

    2015-01-01

    Summary The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD)] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene) complex with three [IrCl(CO)2] fragments, allowed the estimation of the Tolman electronic parameter (TEP) for the ligand, which was compared with the TEP value for a related 1,3,5-triphenylbenzene-tris-NHC ligand. The electronic properties of the tris-MIC ligand were studied by cyclic voltammetry measurements. In all cases, the tris-MIC ligand showed a stronger electron-donating character than the corresponding NHC-based ligands. The catalytic activity of the tri-rhodium complex was tested in the addition reaction of arylboronic acids to α,β-unsaturated ketones. PMID:26734104

  10. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  11. Preparing Gold(I) for Interactions with Proton Donors: The Elusive [Au]???HO Hydrogen Bond.

    Groenewald, Ferdinand; Dillen, Jan; Raubenheimer, Helgard G; Esterhuysen, Catharine

    2016-01-01

    MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10?kcal?mol(-1) ) Au???H hydrogen bonds with single H2 O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong ?-donor N-heterocyclic carbene (NHC) complexes (ca. 5?kcal?mol(-1) ). The overall association (>11?kcal?mol(-1) ), however, is strengthened by co-operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible. PMID:26695099

  12. Phosphine modified cobalt hydroformylation

    Rensburg, H. van; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St. Andrews (United Kingdom); Janse van Rensburg, W. [Sasol Technology, Sasolburg (South Africa)

    2006-07-01

    An ongoing challenge in phosphine modified cobalt hydroformylation is the fundamental understanding of the electronic and steric properties of phosphine ligands that influence the selectivity and activity of the catalytic reaction. A series of acyclic and cyclic phosphines have been prepared and tested in phosphine modified cobalt hydroformylation of 1-octene. Molecular modelling on a series of phospholanes showed some interesting theoretical and experimental correlations. We also evaluated the use of N-heterocyclic carbenes as an alternative for phosphines in modified cobalt hydroformylation. (orig.)

  13. Iron-catalyzed coupling of aryl sulfamates and aryl/vinyl tosylates with aryl Grignards.

    Agrawal, Toolika; Cook, Silas P

    2014-10-01

    The iron-catalyzed coupling of aryl sulfamates and tosylates with aryl Grignard reagents is reported for the first time. The methodology employs air-stable, low-cost FeF3·3H2O and the N-heterocyclic carbene ligand IPr·HCl as the preligand to form a long-lived catalyst upon treatment with aryl Grignards. The reaction provides a range of cross-coupled products in good-to-excellent yields. In contrast to previous reports with aryl chlorides, these reactions proceed with low levels of Grignard homocoupling regardless of the iron source. PMID:25230097

  14. Highvalent and organometallic technetium and rhenium compounds

    Diagnostic methods in nuclear medicine allow a detailed description of morphological organ structures and their function. The beta emitting isotope Tc-99 has optimal physical properties (140 keV gamma rays, half-life 6 h) and is therefore used for radiopharmaceuticals. The thesis is concerned with the search for new technetium complexes and their reproducible production. The (TcO3) core is of main interest. The second part of the thesis deals with organometallic technetium and rhenium complexes with carbonyl ligands and N-heterocyclic carbenes that show stability in aerobic aqueous solutions.

  15. Comparing Ru and Fe-catalyzed olefin metathesis

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  16. The cycloadditions of various substituted carbenes, silylenes, and germylenes onto the diamond (100) surface: a theoretical exploration.

    Xu, Yi-Jun; Zhang, Yong-Fan; Li, Jun-Qian

    2006-07-20

    The cycloadditions of 21 singlet substituted carbenes, silylenes, and germylenes onto the diamond (100) surface have been theoretically studied by means of density functional theory coupled with effective cluster models. The calculated reaction energies and reaction pathways have disclosed that the substituents play an important effect on the reaction profiles for the additions of carbenes, silylenes, and germylenes onto the diamond (100) surface. Our theoretical investigations illustrate that, irrespective of carbenes, silylenes, and germylenes, the cycloadditions of those with electropositive substituents (such as H and CH(3)) onto diamond (100) are much more favorable than those with electronegative and pi-donating substituents (such as F and NH(2)) both thermodynamically and kinetically. In broad perspective, we believe that a similar reactivity trend can also be extended to that of Si (100), Ge (100), fullerene, single-walled carbon nanotube, disilenes, digermenes, silenes, and germenes because all of these materials feature an analogous bonding motif. PMID:16836344

  17. Theoretical description of metal-ligand bonding within f-element complexes: A successful and necessary interplay between theory and experiment

    Maldivi, P.; Petit, L.; Vetere, V. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, Laboratoire de reconnaissance ionique, DRFMC/SCIB (LCIB, UMR E 3 CEA-UJF), 38 (France); Petit, L.; Adamo, C. [Ecole Nationale Superieure de Chimie de Paris, Laboratoire d' electrochimie et de chimie analytique, CNRS UMR-7575, 75 - Paris (France)

    2007-10-15

    The quantum chemical study presented here shows various aspects of the bonding of lanthanide (La{sup 3+}, Gd{sup 3+}) and actinide (U{sup 3+}, Am{sup 3+}, Cm{sup 3+}) ions with N-heterocyclic ligands (poly-azines, BTP: bis(1,2,4-triazinyl)-2,6-pyridine). Several families of complexes, differing by their coordination sphere, have been examined. Clearly, the lanthanide complexes always show a purely ionic bonding. The behaviour of U(III) is also well defined with a more or less strong back bonding interaction whatever the complex is. In contrast, the heavy actinides (Am{sup 3+} and Cm{sup 3+}) are changeable, with a weak covalent character, going from donation to back donation, depending on the coordination sphere of the complex. (authors)

  18. What have we learnt about heavy carbenes through laser flash photolysis studies?

    Becerra, Rosa; Walsh, Robin

    2007-06-14

    Time resolved gas-phase kinetic studies have contributed a great deal of fundamental information about the reactions and reactivity of heavy carbenes (silylenes, germylenes and stannylenes) during the past two decades. In this article we trace the development of our understanding through the mechanistic themes of intermediate complexes, third body assisted associations, catalysed reactions, non-observed reactions and substituent effects. Ab initio (quantum chemical) calculations have substantially assisted mechanistic interpretation and are discussed where appropriate. Trends in reactivity are identified and some signposts to future studies are indicated. This review, although detailed, is not comprehensive. PMID:17538727

  19. A Serine-Substituted P450 Catalyzes Highly Efficient Carbene Transfer to Olefins In Vivo

    Coelho, Pedro S; Wang, Z. Jane.; Ener, Maraia E.; Baril, Stefanie A.; Kannan, Arvind A.; Arnold, Frances H; Brustad, Eric M

    2013-01-01

    Genetically encoded catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a unique serine-heme ligated cytochrome “P411” that catalyzes efficient and selective carbene transfers from diazoesters to olefins in intact Escherichia coli cells. The mutation C400S in cytochrome P450BM3 gives a signature ferrous-CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting state FeIII/II reduction potential, and signif...

  20. A two-color fluorogenic carbene complex for tagging olefins via metathesis reaction

    Wirtz, Marcel; Grüter, Andreas; Heib, Florian; Huch, Volker; Zapp, Josef; Herten, Dirk-Peter; Schmitt, Michael; Jung, Gregor

    2015-12-01

    We describe a fluorogenic ruthenium (II) carbene complex in which the chromophore is directly connected to the metal center. The compound introduces a boron dipyrromethene (BODIPY) moiety into target double bonds by metathesis. Tagging of terminal double bonds is demonstrated on immobilized styrene units on a glass surface. We also show that two compounds with distinguishable fluorescence properties are formed in the model reaction with styrene. The outcome of the metathesis reaction is characterized by 19F-NMR, optical spectroscopy, and, finally, single-molecule trajectories. This labeling scheme, in our perception, is of particular interest in the fields of interfacial science and biorthogonal ligation in combination with super-resolution imaging.

  1. Synthesis of phenanthrene derivatives through the net [5+5]-cycloaddition of prenylated carbene complexes with 2-alkynylbenzaldehyde derivatives

    Menon, Suneetha; Sinha-Mahapatra, Dilip; Herndon, James W.

    2007-01-01

    The reaction of prenylated carbene complexes and 2-alkynylbenzoyl derivatives has been investigated. Phenanthrene derivatives are produced if iodine is added prior to product isolation. Under these conditions alkyl migration reactions occur to form the observed products. The product yields are considerably higher using bis(prenylated) species owing to an increase in the effective molarity of dienophilic entities.

  2. Synthesis of hydronaphthalenes through coupling of enyne carbonyl compounds that contain pendant alkene groups with Fischer carbene complexes

    Kumar-Patti, Rajesh; Duan, Shaofeng; Camacho-Davila, Alejandro; Waynant, Kris; Dunn, Kenneth A.; Herndon, James W.

    2010-01-01

    The coupling of enyne carbonyl compounds that contain pendant alkene groups with Fischer carbene complexes to afford furans that contain pendant alkene groups is described. Subsequent intramolecular Diels-Alder reactions are effective in select cases, resulting in hydronaphthalene systems after dehydration. Although the Diels-Alder event is thermodynamically unfavorable, the overall transformation of alkene-furans to dihydronaphthalenes is a favorable process.

  3. Toward fluorine-free blue-emitting cationic iridium complexes: to generate emission from the cyclometalating ligands with enhanced triplet energy.

    He, Lei; Wang, Zhen; Duan, Lian; Yang, Chunpeng; Tang, Ruiren; Song, Xiangzhi; Pan, Chunyue

    2016-04-01

    A route toward fluorine-free blue-emitting cationic iridium complexes, to generate emission from the cyclometalating ligands with enhanced triplet energy, has been proposed and demonstrated. Attaching electron-donating groups to the pyridine moieties of the ppy-type cyclometalating ligands (Hppy is 2-phenylpyridine) enhances the triplet ((3)π-π*) energy of the ligand, and the use of electron-rich or non-conjugated ancillary ligands ensures that the emission is generated from the (3)π-π* states of cyclometalating ligands. By this molecular design, [Ir(buoppy)2(pzpy)]PF6 (1) and [Ir(buoppy)2(bim-cb)]PF6 (2) have been developed, with 4-butoxy-2-phenylpyridine (buoppy) as the cyclometalating ligand and electron-rich 2-(1H-pyrazol-1-yl)pyridine (pzpy) or non-conjugated N-heterocyclic dicarbene (bim-cb) as the ancillary ligands. Complexes 1 and 2 give emission with major emission peaks around 465 nm, which is among the bluest reported for fluorine-free cationic iridium complexes. For both complexes, the emission is generated from the (3)π-π* states centered on buoppy. For complex 1, the charge-transfer (Ir/buoppy → pzpy) state is dominated by non-radiative deactivation and it behaves as a non-radiative deactivation channel for the emissive buoppy-centered (3)π-π* states which lies close to the charge-transfer state in energy. Such a non-radiative deactivation channel is largely suppressed in the rigid matrix, and is eliminated in complex 2 with a non-conjugated dicarbene ancillary ligand. PMID:26918443

  4. Low-spin hexacoordinate Mn(III): synthesis and spectroscopic investigation of homoleptic tris(pyrazolyl)borate and tris(carbene)borate complexes.

    Forshaw, Adam P; Smith, Jeremy M; Ozarowski, Andrew; Krzystek, J; Smirnov, Dmitry; Zvyagin, S A; Harris, T David; Karunadasa, Hemamala I; Zadrozny, Joseph M; Schnegg, Alexander; Holldack, Karsten; Jackson, Timothy A; Alamiri, Ahmad; Barnes, Diane M; Telser, Joshua

    2013-01-01

    Three complexes of Mn(III) with "scorpionate" type ligands have been investigated by a variety of physical techniques. The complexes are [Tp(2)Mn]SbF(6) (1), [Tp(2)*Mn]SbF(6) (2), and [{PhB(MeIm)(3)}(2)Mn](CF(3)SO(3)) (3a), where Tp(-) = hydrotris(pyrazolyl)borate anion, Tp*(-) = hydrotris(3,5-dimethylpyrazolyl)borate anion, and PhB(MeIm)(3)(-) = phenyltris(3-methylimidazol-2-yl)borate anion. The crystal structure of 3a is reported; the structures of 1 and 2 have been previously reported, but were reconfirmed in this work. The synthesis and characterization of [{PhB(MeIm)(3)}(2)Mn]Cl (3b) are also described. These complexes are of interest in that, in contrast to many hexacoordinate (pseudo-octahedral) complexes of Mn(III), they exhibit a low-spin (triplet) ground state, rather than the high-spin (quintet) ground state. Solid-state electronic absorption spectroscopy, SQUID magnetometry, and high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy were applied. HFEPR, in particular, was useful in characterizing the S = 1 spin Hamiltonian parameters for complex 1, D = +19.97(1), E = 0.42(2) cm(-1), and for 2, D = +15.89(2), E = 0.04(1) cm(-1). In addition, frequency domain Fourier-transform THz-EPR spectroscopy, using coherent synchrotron radiation, was applied to 1 only and gave results in good agreement with HFEPR. Variable-temperature dc magnetic susceptibility measurements of 1 and 2 were also in good agreement with the HFEPR results. This magnitude of zero-field splitting (zfs) is over 4 times larger than that in comparable hexacoordinate Mn(III) systems with S = 2 ground states. Complexes 3a and 3b (i.e., regardless of counteranion) have a yet much larger magnitude zfs, which may be the result of unquenched orbital angular momentum so that the spin Hamiltonian model is not appropriate. The triplet ground state is rationalized in each complex by ligand-field theory (LFT) and by quantum chemistry theory, both density functional theory and unrestricted Hartree-Fock methods. This analysis also shows that spin-crossover behavior is not thermally accessible for these complexes as solids. The donor properties of the three different scorpionate ligands were further characterized using the LFT model that suggests that the tris(carbene)borate is a strong ?-donor with little or no ?-bonding. PMID:23259486

  5. Effect of CO substitution on the redox properties of Fischer Mo(0) carbene complexes Mo(CO)5=C(Y)(2-Furyl), Y = OEt, NHCy or NH2

    Highlights: • Oxidation potential (CO)5Mo-carbene > (CO)4(PPh3)Mo-carbene > (CO)3(dppe)Mo-carbene • Different oxidation potential for fac and mer isomers • Different oxidation potential for cis and trans isomers • Lower oxidation potential for amino- than ethoxy carbenes - Abstract: An electrochemical study, complimented by a density functional theory study, on nine Mo(0) Fischer carbene complexes of the formula [(CO)3(L,L′)Mo=C(Y)(2-furyl)] with Y = OEt, NH2 or NHCy; L,L′ = CO,CO; PPh3,CO or dppe (diphenyl phosphinoethane), showed that the Mo-based oxidation process can be systematically tuned by the substitution of the CO groups: (most difficult to oxidize, largest oxidation potential Epa) [(CO)5Mo-carbene complex] > [(CO)4(PPh3)Mo-carbene complex] > [(CO)3(dppe)Mo-carbene complex]. The one-electron reduction of the complexes that is mainly localized on the carbene carbon, followed the same trend

  6. A stable dimer of SiS2 arranged between two carbene molecules.

    Mohapatra, Chandrajeet; Mondal, Kartik Chandra; Samuel, Prinson P; Keil, Helena; Nieptter, Benedikt; Herbst-Irmer, Regine; Stalke, Dietmar; Dutta, Sayan; Koley, Debasis; Roesky, Herbert W

    2015-09-01

    The Me-cAAC:-stabilized dimer of silicon disulfide (SiS2 ) has been isolated in the molecular form as (Me-cAAC:)2 Si2 S4 (2) at room temperature [Me-cAAC:=cyclic alkyl(amino) carbene]. Compound 2 has been synthesized from the reaction of (Me-cAAC:)2 Si2 with elemental sulfur in a 1:4 molar ratio under oxidative addition. This is the smallest molecular unit of silicon disulfide characterized by X-ray crystallography, electron ionization mass spectrometry, and NMR spectroscopy. Structures with three sulfur atoms arranged around a silicon atom are known; however, 2 is the first structurally characterized silicon-sulfur compound containing one terminal and two bridging sulfur atoms at each silicon atom. Compound 2 shows no decomposition after storing for three months in an inert atmosphere at ambient temperature. The bonding of 2 has been further studied by theoretical calculations. PMID:26179976

  7. Highly stereoselective synthesis of cyclopentanes bearing four stereocentres by a rhodium carbene-initiated domino sequence.

    Parr, Brendan T; Davies, Huw M L

    2014-01-01

    Stereoselective synthesis of a cyclopentane nucleus by convergent annulation constitutes a significant challenge for synthetic chemists. Although a number of biologically relevant cyclopentane natural products are known, more often than not, the cyclopentane core is assembled in a stepwise manner because of the lack of efficient annulation strategies. Here we report the rhodium-catalysed reactions of vinyldiazoacetates with (E)-1,3-disubstituted 2-butenols generate cyclopentanes, containing four new stereogenic centres with very high levels of stereoselectivity (99% ee, >97: 3 dr). The reaction proceeds by a carbene-initiated domino sequence consisting of five distinct steps: rhodium-bound oxonium ylide formation, [2,3]-sigmatropic rearrangement, oxy-Cope rearrangement, enol-keto tautomerization and finally an intramolecular carbonyl ene reaction. A systematic study is presented detailing how to control chirality transfer in each of the four stereo-defining steps of the cascade, consummating in the development of a highly stereoselective process. PMID:25082301

  8. Possible formation of crystalline sodium carbene carbonate Na2(CO)CO3 at high pressure

    Combined experimental and ab-initio computational studies suggest that at pressures above 20 GPa and temperatures above 1500 K sodium formate deprotonizes under formation of Na+2 [C=O| CO32-]. This new compound involves mesomeric C-O bonds with carbonate plus carbene units as limiting states and CO2 chains as intermediate. Sodium is six-fold coordinated by O-atoms. The formation of this new compound implies nucleophilic addition as reaction mechanism which is consistent with previously observed reduced stability of the H-O bond at these high pressures. The findings suggest further that the sextet state of carbon is energetically less unfavourable at high pressure than at ambient pressure.

  9. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    Haslinger, Stefan

    2014-11-03

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  10. Contrasting electronic requirements for C-H binding and C-H activation in d(6) half-sandwich complexes of rhenium and tungsten.

    Thenraj, Murugesan; Samuelson, Ashoka G

    2015-09-15

    A computational study of the interaction half-sandwich metal fragments (metal?=?Re/W, electron count?=?d(6)), containing linear nitrosyl (NO(+) ), carbon monoxide (CO), trifluorophosphine (PF3 ), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO(+). Electron-withdrawing ligands like NO(+) lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. PMID:26174521

  11. Copper(I) Complexes of Zwitterionic Imidazolium-2-Amidinates, a Promising Class of Electroneutral, Amidinate-Type Ligands.

    Mrquez, Astrid; vila, Elena; Urbaneja, Carmen; lvarez, Eleuterio; Palma, Pilar; Cmpora, Juan

    2015-11-16

    The first complexes containing imidazolium-2-amidinates as ligands (betaine-type adducts of imidazolium-based carbenes and carbodiimides, NHC-CDI) are reported. Interaction of the sterically hindered betaines ICyCDI(DiPP) and IMeCDI(DiPP) [both bearing 2,6-diisopropylphenyl (DiPP) substituents on the terminal N atoms] with Cu(I) acetate affords mononuclear, electroneutral complexes 1a and 1b, which contain NHC-CDI and acetate ligands terminally bound to linear Cu(I) centers. In contrast, the less encumbered ligand ICyCDI(p-Tol), with p-tolyl substituents on the nitrogen donor atoms, affords a dicationic trigonal paddlewheel complex, [Cu2(?-ICyCDI(p-Tol))3](2+)[OAc(-)]2 (2-OAc). The nuclear magnetic resonance (NMR) resonances of this compound are broad and indicate that in solution the acetate anion and the betaine ligands compete for binding the Cu atom. Replacing the external acetate with the less coordinating tetraphenylborate anion provides the corresponding derivative 2-BPh4 that, in contrast with 2-OAc, gives rise to sharp and well-defined NMR spectra. The short Cu-Cu distance in the binuclear dication [Cu2(?-ICyCDI(p-Tol))3](2+) observed in the X-ray structures of 2-BPh4 and 2-OAc, ca. 2.42 , points to a relatively strong "cuprophilic" interaction. Attempts to force the bridging coordination mode of IMeCDI(DiPP) displacing the acetate anion with BPh4(-) led to the isolation of the cationic mononuclear derivative [Cu(IMeCDI(DiPP))2](+)[BPh4](-) (3b) that contains two terminally bound betaine ligands. Compound 3b readily decomposes upon being heated, cleanly affording the bis-carbene complex [Cu(IMe)2](+)[BPh4(-)] (4) and releasing the corresponding carbodiimide (C(?N-DiPP)2). PMID:26517572

  12. Handling ligands with Coot

    Debreczeni, Judit É.; Emsley, Paul

    2012-01-01

    Coot is a molecular-graphics application primarily aimed to assist in model building and validation of biological macromolecules. Recently, tools have been added to work with small molecules. The newly incorporated tools for the manipulation and validation of ligands include interaction with PRODRG, subgraph isomorphism-based tools, representation of ligand chemistry, ligand fitting and analysis, and are described here.

  13. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  14. Role of gold(I) ?-oxo carbenes in the oxidation reactions of alkynes catalyzed by gold(I) complexes.

    Schulz, Ji?; Jakov, Lucie; Skrba, Anton; Roithov, Jana

    2014-08-13

    The gas phase structures of gold(I) complexes formed by intermolecular oxidation of selected terminal (phenylacetylene) and internal alkynes (2-butyne, 1-phenylpropyne, diphenylacetylene) were investigated using tandem mass spectrometry and ion spectroscopy in conjunction with quantum-chemical calculations. The experiments demonstrated that the primarily formed ?-gold(I) vinyloxypyridinium complexes readily undergo rearrangement, dependent on their substituents, to either gold(I) ?-oxo carbenenoids (a synthetic surrogate of the ?-oxo carbenes) or pyridine adducts of gold(I) enone complexes in the condensed phase and that the existence of naked ?-oxo carbenes is highly improbable. Isotopic labeling experiments performed with the reaction mixtures clearly linked the species that exist in solution to the ions transferred to the gas phase. The ions were then fully characterized by CID experiments and IRMPD spectroscopy. The conclusions based on the experimental observations perfectly correspond with the results from quantum-chemical calculations. PMID:25068382

  15. A spectroscopic study of the reaction of the carbene, tetrabromocyclopentadienylidene, with O 2 in low temperature matrices

    Dunkin, Ian R.; McCluskey, Adam

    1994-01-01

    The photolysis of tetrabromodiazocyclopentadiene ( 2) in low temperature Ar and N 2 matrices generates the carbene, tetrabromocyclopentadienylidene ( 3). In O 2-doped matrices, ( 3) reacts with oxygen yielding first tetrabromocyclopentadienone O-oxide ( 4), identification of which was aided by experiments with isotopically labelled oxygen, and then tetrabromocyclopentadienone ( 5) and tetrabromo-α-pyrone ( 6). The matrix uv-visible and infrared absorption spectra of tetrabromocyclopentadienone O-oxide ( 4) are reported.

  16. Energy Transfer in a Hybrid Ir(III) Carbene-Pt(II) Acetylide Assembly for Efficient Hydrogen Production.

    Yu, Zhen-Tao; Yuan, Yong-Jun; Chen, Xin; Cai, Jian-Guang; Zou, Zhi-Gang

    2015-07-01

    A new heterometallic supramolecular complex, consisting of an iridium carbene-based unit appended to a platinum terpyridine acetylide unit, representing a new Ir(III) -Pt(II) structural motif, was designed and developed to act as an active species for photocatalytic hydrogen production. The results also suggested that a light-harvesting process is essential to realize the solar-to-fuel conversion in an artificial system as illustrated in the natural photosynthetic system. PMID:26096270

  17. One-pot three-component synthesis of quinoxaline and phenazine ring systems using Fischer carbene complexes

    Priyabrata Roy

    2010-05-01

    Full Text Available One-pot three-component coupling of o-alkynylheteroaryl carbonyl derivatives with Fischer carbene complexes and dienophiles leading to the synthesis of quinoxaline and phenazine ring systems has been investigated. This involves the generation of furo[3,4-b]pyrazine and furo[3,4-b]quinoxaline as transient intermediates, which were trapped with Diels–Alder dienophiles. This is the first report on furo[3,4-b]pyrazine intermediates.

  18. Carbene Reactions

    Hoffmann, R. W.; Barth, W.; Carlsen, Lars; Egsgaard, Helge

    The gas-phase thermolysis of the norbornadienespirodithiolane S-oxides (5) and (7) led to benzene, ethylene, and carbon disulphide as the major products, possibly involving carbon disulphide oxides as intermediates. Thermolyses of the related sulphones (9) or (14) led to completely different...

  19. Ligands in PSI structures

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  20. Bimetallic Cu(i) complex with a pyridine-bridged bis(1,2,3-triazole-5-ylidene) ligand.

    Iwasaki, Haruka; Teshima, Yuta; Yamada, Yuji; Ishikawa, Ryuta; Koga, Yuji; Matsubara, Kouki

    2016-04-01

    A dinuclear copper(i) complex bearing a mesoionic carbene ligand has been prepared from the corresponding silver analogue and its structure determined spectroscopically. The results revealed that two Cu(i) halide salt molecules were bound to the carbon atoms of the pyridine-bridged bis(triazolylidene) moieties rather than the pyridine. Cyclic voltammogram measurements revealed that the two Cu(i) centres underwent a stepwise oxidation, suggesting that both the triazolylidene rings of the ligand could be on the same expanded π-conjugated system. The catalytic hydroboration of styrene derivatives with bis(pinacolato)diborane in the presence of this complex allowed for the β-selective formation of the corresponding alkylboronate esters. PMID:26928475

  1. Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: an ab initio, SAPT and QTAIM study.

    Esrafili, Mehdi D

    2012-05-01

    We report geometries, stabilization energies, symmetry adapted perturbation theory (SAPT) and quantum theory of atoms in molecules (QTAIM) analyses of a series of carbene-BX(3) complexes, where X = H, OH, NH(2), CH(3), CN, NC, F, Cl, and Br. The stabilization energies were calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-pVDZ levels of theory using optimized geometries of all the complexes obtained from B3LYP/aug-cc-pVTZ. Quantitatively, all the complexes indicate the presence of B-C(carbene) interaction due to the short B-C(carbene) distances. Inspection of stabilization energies reveals that the interaction energies increase in the order NH(2) > OH > CH(3) > F > H > Cl > Br > NC > CN, which is the opposite trend shown in the binding distances. Considering the SAPT results, it is found that electrostatic effects account for about 50% of the overall attraction of the studied complexes. By comparison, the induction components of these interactions represent about 40% of the total attractive forces. Despite falling in a region of charge depletion with nabla(2)ρ(BCP) >0, the B-C(carbene) bond critical points (BCPs) are characterized by a reasonably large value of the electron density (ρ(BCP)) and H(BCP) kinetic energy density at BCP and the B-C(carbene) bond is a polar covalent bond. PMID:21877151

  2. Understanding the Mechanism of the Divergent Reactivity of Non-Heteroatom-Stabilized Chromium Carbene Complexes with Furfural Imines: Formation of Benzofurans and Azetines.

    Funes-Ardoiz, Ignacio; González, Jairo; Santamaría, Javier; Sampedro, Diego

    2016-02-19

    The mechanisms of the reaction between non-heteroatom-stabilized alkynyl chromium carbene complexes prepared in situ and furfural imines to yield benzofurans and/or azetines have been explored by means of density functional theory method calculations. The reaction proceeds through a complex cascade of steps triggered by a nucleophilic addition of the imine nitrogen atom. The formation of two benzofuran regioisomers has been explained in terms of competitive nucleophilic attacks to different positions of the carbene complex. Each of these regioisomers can be obtained as the major product depending on the starting materials. The overall sequence could be controlled to yield benzofurans or azetines by adjusting the substituents present in the initial carbene complex. This mechanistic information allowed for the preparation of new benzofurans and azetinylcarbenes in good yields. PMID:26799934

  3. Thin films of molecular materials synthesized from fisher's carbene ferrocenyl: Film formation and electrical properties

    The synthesis of materials from Fisher's carbene ferrocenyl of the elements chromium, molybdenum and tungsten was carried out. The Fisher's compounds that were synthesized included the following combinations of two different metallic atoms: iron with chromium, iron with molybdenum and iron with tungsten. The molecular solids' preparation was done in electro-synthesis cells with platinum electrodes. Thin films were prepared by vacuum thermal evaporation on quartz substrates and crystalline silicon wafers. Pellets and thin films from these compounds were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy and ellipsometry. The powder and thin films synthesized from these materials show the same intra-molecular bonds shown by infrared spectroscopy results, suggesting that thermal evaporation does not alter these bonds in spite of the thin films being amorphous, in contrast with other bimetallic complexes where material decomposition occurs. The differences in the conductivity values of the prepared films are very small, so they may be attributed to the different metallic ions employed in each case. The tungsten complex exhibits a higher conductivity than the molybdenum and chromium complexes at room temperature. Electrical conductivity values found for thin films are higher than for pellets made of the same molecular materials

  4. Insero C-H de carbenides de rdio em gua e reutilizao do catalisador Rhodium (II carbene C-H insertion in water and catalyst reuse

    Nuno R. Candeias

    2007-01-01

    Full Text Available A five-session laboratory experiment is described for the synthesis of a beta-lactam via Rh(II catalysed intramolecular C-H insertion of a alpha-diazo-alpha-ethoxycarbonylacetamide. The metallo-carbene, responsible for the C-H bond activation, was generated from the diazo substrate and the catalyst Rh2(OAc4. The high stability and solubility of the catalyst and the exclusive C-H insertion of the Rh-carbene allows the synthesis of this important heterocycle in water and the catalyst reutilization.

  5. Rhodium (II) carbene C-H insertion in water and catalyst reuse; Insercao C-H de carbenoides de rodio em agua e reutilizacao do catalisador

    Candeias, Nuno R.; Gois, Pedro M.P.; Afonso, Carlos A.M. [Instituto Superior Tecnico, Lisboa (Portugal)]. E-mail: carlosafonso@ist.utl.pt

    2007-07-01

    A five-session laboratory experiment is described for the synthesis of a beta-lactam via Rh(II) catalysed intramolecular C-H insertion of a alpha-diazo-alpha-ethoxycarbonyl acetamide. The metallo-carbene, responsible for the C-H bond activation, was generated from the diazo substrate and the catalyst Rh{sub 2}(OAc){sub 4}. The high stability and solubility of the catalyst and the exclusive C-H insertion of the Rh-carbene allows the synthesis of this important heterocycle in water and the catalyst reutilization. (author)

  6. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  7. Cytotoxic potency of self-assembled Ruthenium(II-NHC complexes with pincer type 2, 6-bis(N-methylimidazolylidene/benzimidazolylidenepyrazine ligands

    Gourisannkar Roymahapatra

    2015-01-01

    Full Text Available Objective: To study the cytotoxic potency of self-assembled Ruthenium(II-NHC complexes with 2,6-di-(N-methylimidazolylidene/benzimidazolylidenepyrazine ligands. Materials and Methods: Ru(II-N-heterocyclic (Ru-NHC complexes, Bis-[2,6-di-(N-methylimidazol-2-ylidenepyrazine]ruthenium(II hexaflurophosphate (3, Bis-[2,6-di-(N-methylbenzimidazol-2-ylidenepyrazine]ruthenium(II hexaflurophosphate (4 have been synthesized from corresponding ligands 2,6-di-(N-methylimidazoliumpyrazine dichloride (1; 2,6-di-(N-methylbenzimidazoliumpyrazine dichloride (2. Complexes were studied to determine their pro-apoptotic activity against HCT15 and Hep2 cell lines, and antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans. Results: Both, complex 3 and 4, formed a nanosphere structure in aqueous growth medium. Cytotoxicity study revealed that complex 3 was more effective than complex 4. Complexes mainly target cellular DNA and bacterial cell wall. Conclusion: This is the first report on the formation of nanoball structure of Ru(II-NHC complexes. Thus, complex 3 provides a new insight to develop antitumor or antimicrobial drug.

  8. Palladium-Catalyzed Intermolecular Carbene Insertion Prior to Intramolecular Heck Cyclization: Synthesis of 2-Arylidene-3-aryl-1-indanones.

    Arunprasath, Dhanarajan; Muthupandi, Pandi; Sekar, Govindasamy

    2015-11-01

    A domino process that converges the migratory insertion of carbene with a Heck reaction has been established as a versatile tool for the synthesis of 2-arylidene-3-aryl-1-indanones from very stable and easily accessible N-tosylhydrazones and 2'-iodochalcones. The reaction selectively proceeds through 5-exo-trig cyclization and delivers the products selectively with the E configuration of the double bond in excellent yields. The one-pot synthesis of 2-arylidene-3-aryl-1-indanones involving in situ synthesis of both 2'-iodochalcones and N-tosylhydrazones has also been demonstrated. PMID:26501560

  9. Ligand modeling and design

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author's approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium

  10. Ligand modeling and design

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  11. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  12. Nearly degenerate isomers of C(BH)2: cumulene, carbene, or carbone?

    Barua, Shiblee R; Allen, Wesley D; Kraka, Elfi; Jerabek, Paul; Sure, Rebecca; Frenking, Gernot

    2013-11-18

    The ground electronic state of C(BH)2 exhibits both a linear minimum and a peculiar angle-deformation isomer with a central B-C-B angle near 90. Definitive computations on these species and the intervening transition state have been executed by means of coupled-cluster theory including single and double excitations (CCSD), perturbative triples (CCSD(T)), and full triples with perturbative quadruples (CCSDT(Q)), in concert with series of correlation-consistent basis sets (cc-pVXZ, X=D, T, Q, 5, 6; cc-pCVXZ, X=T, Q). Final energies were pinpointed by focal-point analyses (FPA) targeting the complete basis-set limit of CCSDT(Q) theory with auxiliary core correlation, relativistic, and non-Born-Oppenheimer corrections. Isomerization of the linear species to the bent form has a minuscule FPA reaction energy of 0.02 kcal mol(-1) and a corresponding barrier of only 1.89 kcal mol(-1). Quantum tunneling computations reveal interconversion of the two isomers on a timescale much less than 1 s even at 0 K. Highly accurate CCSD(T)/cc-pVTZ and composite c~CCSDT(Q)/cc-pCVQZ anharmonic vibrational frequencies confirm matrix-isolation infrared bands previously assigned to linear C(BH)2 and provide excellent predictions for the heretofore unobserved bent isomer. Chemical bonding in the C(BH)2 species was exhaustively investigated by the atoms-in-molecules (AIM) approach, molecular orbital plots, various population analyses, local mode vibrations and force constants, unified reaction valley analysis (URVA), and other methods. Linear C(BH)2 is a cumulene, whereas bent C(BH)2 is best characterized as a carbene with little carbone character. Weak B-B attraction is clearly present in the unusual bent isomer, but its strength is insufficient to form a CB2 ring with a genuine boron-boron bond and attendant AIM bond path. PMID:24123325

  13. Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Kehler, Jan

    2010-01-01

    Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles are synthesized using a six-step protocol. Notably, the synthesis route make use of a new and improved ring-closing methodology for the assembly of the hexahydro-pyrazino[1,2-a]indole scaffold, which is based on intramolecular C......-H insertion of a carbene. The compounds act as dual serotonin 5-HT2C- and 5-HT6-ligands....

  14. Lewis Acid Binding and Transfer as a Versatile Experimental Gauge of the Lewis Basicity of Fe(0) , Ru(0) , and Pt(0) Complexes.

    Braunschweig, Holger; Brunecker, Carina; Dewhurst, Rian D; Schneider, Christoph; Wennemann, Benedikt

    2015-12-21

    A number of zerovalent ruthenium tri- and tetracarbonyl complexes of the form [Ru(CO)5-n Ln ] (n=1, 2) with neutral phosphine or N-heterocyclic carbene donor ligands have been treated with the Lewis acids GaCl3 and Ag(+) to form a range of metal-only Lewis pairs (MOLPs). The spectroscopic and structural parameters of the adducts are compared to each other and to related iron carbonyl based MOLPs. The Lewis basicity of the original Ru(0) complexes is gauged by transfer experiments, as well as through the degree of pyramidization of the bound GaCl3 units and the RuM bond lengths. The work shows the benefits of the MOLP concept as one of the few direct experimental gauges of metal basicity, and one that can allow comparisons between metal complexes with different metal centers and ligand sets. PMID:26555043

  15. Structures, Electronics, and Reactivity of Strained Phosphazane Cages: A Combined Experimental and Computational Study.

    Roth, Torsten; Vasilenko, Vladislav; Wadepohl, Hubert; Wright, Dominic S; Gade, Lutz H

    2015-08-01

    A series of formamidine-bridged P2N2 cages have been prepared. Upon deprotonation, these compounds serve as valuable precursors to hybrid N-heterocyclic carbene ligands, whereas direct metalation gives rearranged dimetallic complexes as a result of cleavage of the formamidine bridge. The latter metal complexes contain an intact cyclophosphazane moiety that coordinates two distinct metal centers in a monodentate and a chelating fashion. A computational study has been carried out to elucidate the bonding within the P2N2 framework as well as the reactivity patterns. Natural bond orbital analysis indicates that the cage motif is poorly described by localized Lewis structures and that negative hyperconjugation effects govern the stability of the bicyclic framework. The donor capacity of the cyclophosphazane unit was assessed by inspection of the frontier molecular orbitals, highlighting the fact that ?-back-donation from the metal fragments is crucial for effective metal-ligand binding. PMID:26181231

  16. Ligand modeling and design

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  17. Singlet-triplet energy gap in halogen-substituted carbenes and silylenes: a difference-dedicated configuration interaction calculation

    García, V. M.; Castell, O.; Reguero, M.; Caballol, R.

    Ab initio calculations including correlation energy are reported on a series of halogen-substituted carbenes and silylenes: CH2, CHF, CF2, CHCl, CCl2, CHBr, CBr2, SiH2, SiHF, SiF2, using the difference-dedicated configuration interaction method. All these compounds with the exception of CH2 have singlet ground states. The singlet-triplet energy differences are in very good agreement with experiment when available, as well as with other high level calculations. The singlet-triplet separation is also determined in trifluoromethyl carbenes, CHCF3, CFCF3, CClCF3 and CBrCF3. The CF3 substituent has little influence on the energy gap since CHCF3 like CH2 has a triplet ground state, with a gap of 11·1 kcal mol-1, and CFCF3, CClCF3 and CBrCF3 have singlet ground states, like CHF, CHCl and CHBr, with gaps of -17·6, -5·4, and -3·5 kcal mol-1.

  18. Carbene complexes of zirconium. Synthesis, structure, and reactivity with carbon monoxide to affort coordinated ketene

    Treatment of Cp2Zr(L)(CO) (Cp = C5H5; L = PMe3, CO) with Cp*2ZrH2 (Cp* = C5Me5) affords zirconium oxycarbene complexes, Cp2(L)Zr double bond CHO single bond Zr(X)Cp*2 (L = PMe3, X = H, I; L = CO, X = H), that represent some of the first examples of group 4 metal-to-carbon multiple bonding. The first X-ray diffraction structure determination of a zirconium carbene complex, that of Cp(PMe3)Zr double bond CHO single bond Zr(H)Cp*2.C6H6, is reported (C2/c, a = 27.318 (4) A, b = 19.895 (3) A, c = 19.932 (5) A β = 132.188 (10)0, Z = 8) and shows a very short Zr-C bond length of 2.117 (7) A. Treatment of Cp2(CO)Zr double bond CHO single bond Zr(H)Cp*2 with CH3 I or Cp2(PMe3)Zr double bond CHO single bond Zr(I)Cp*2 with CO affords the zirconium substituted enediolate zirconacycle, Cp*2ZrOCH double bond C(Zr(I)Cp2)O, which has been characterized by an X-ray diffraction study (P21/c, a = 15.866 (4) A, b = 10.673 (3) A, c = 20.561 (4) A, β = 105.5 (2)0, Z = 4). This complex most likely forms by coupling of the zirconoxycarbene and a carbonyl to give a metal-coordinated ketene intermediate that subsequently rearranges to the isolated product. An isotopic crossover experiment has demonstrated that the new carbon-carbon bond is formed in an intramolecular coupling step. The ketene intermediate can be trapped by dissolving Cp2(CO)Zr double bond CHO single bond Zr(H)Cp*2 in pyridine, giving Cp2(py)Zr(O double bond C double bond CHOZr(I)Cp*2). Treatment of the isolated ketene complex with CH3I in benzene gives the enediolate zirconocycle; in pyridine Cp2(py)Zr(O double bond C double bond CHOZr(I)Cp*2) can be observed spectroscopically. 38 references, 4 figures, 5 tables

  19. Glutamate receptor ligands

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea; Bräuner-Osborne, Hans; Stensbøl, Tine B; Nielsen, Birgitte; Karla, Rolf; Santi, Flavio; Krogsgaard-Larsen, Povl; Madsen, Ulf

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  20. Electroinduced Carbene Formation in the Cathodic Reduction of 1,2-Dicarbonyl Compounds via Electron-Transfer to the Solvent

    Graphical abstract: Display Omitted -- Highlights: •Electron-transfer reaction in solution from the substrate dianion to the solvent. •To our knowledge, it is the first time that a carbene is generated by an electron-transfer in solution process. •1,1-Dichloroethyl radical and methyl-chlorocarbene as involved intermediates. •The stereochemistry of the radical anion intermediate governs the reaction pathway. •Electroinduced effect of reversible electroactive systems is presented. -- Abstract: Electrochemical reduction of 9,10-phenanthrenequinone, benzil and acenaphthenequinone in 1,1,1-trichloroethane (TCE)/TBAP under constant potential conditions provides an interesting entry to new coupling products through an electron-transfer reaction in solution to the chlorinated solvent. This electroinduced reaction points out the differences in the reaction pathway followed by these 1,2-dicarbonyl compounds depending on their geometry. The intermediates nature and their behavior, both in solution and at the electrode surface, are discussed

  1. LigandRNA: computational predictor of RNA-ligand interactions.

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824

  2. Ligand-Receptor Interactions

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  3. The activation mechanism of Fe-based olefin metathesis catalysts

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  4. Molecular electrocatalysts for the hydrogen production from iron based hydrogenases; Electrocatalyseurs moleculaires pour la production d'hydrogene inspires des hydrogenases a fer

    Gloaguen, F.; Capon, J.F.; Schollhammer, Ph.; Talarmin, J. [Laboratoire de Chimie, Electrochimie Moleculaires et Chimie Analytique, UMR CNRS 6521 UBO, 29 - Brest (France)

    2005-07-01

    The complex type [Fe{sub 2}(CO){sub 6}({mu}-SRS)] are structural analogue of the active site of iron hydrogenases constituted of a dinuclear entity and diatomic ligands CO and CN. The today knowledge on the electrocatalytic activity of some of these organometallic complexes towards the proton reduction in hydrogen{sup 1,2,3}, makes possible the elaboration of bio inspired electrocatalysts. Studies must now be realized to better understand the reduction processes of the iron dinuclear complexes with and without acids. In this framework the authors synthesized series of complexes type [Fe{sub 2}(CO){sub 6-n} L{sub n}({mu}-E-CH{sub 2}-X-CH{sub 2}-E)] (n=0,1 or 2; L=carbene N-heterocyclic; E=S or P(Ph); X= CH{sub 2}, C{sub 6}H{sub 4} or NR). (A.L.B.)

  5. Molecular electrocatalysts for the hydrogen production from iron based hydrogenases

    The complex type [Fe2(CO)6(μ-SRS)] are structural analogue of the active site of iron hydrogenases constituted of a dinuclear entity and diatomic ligands CO and CN. The today knowledge on the electrocatalytic activity of some of these organometallic complexes towards the proton reduction in hydrogen1,2,3, makes possible the elaboration of bio inspired electrocatalysts. Studies must now be realized to better understand the reduction processes of the iron dinuclear complexes with and without acids. In this framework the authors synthesized series of complexes type [Fe2(CO)6-n Ln(μ-E-CH2-X-CH2-E)] (n=0,1 or 2; L=carbene N-heterocyclic; E=S or P(Ph); X= CH2, C6H4 or NR). (A.L.B.)

  6. Radiobiology with DNA ligands

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76Br-, 123I-, and 221At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  7. LIGAND-RECEPTOR INTERACTIONS

    Bongrand, Pierre

    1999-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differi...

  8. Radioprotection by DNA ligands.

    Martin, R. F.; Broadhurst, S.; D'Abrew, S.; Budd, R.; Sephton, R.; Reum, M.; Kelly, D. P.

    1996-01-01

    Molecular studies on the mechanism of radioprotection by Hoechst 33342 have suggested that radioprotective activity might be improved by addition of electron-donating substituents to the ligand. This paper reports the results of experiments with proamine, in which the ethoxy group of Hoechst 33342 has been replaced with a dimethylamino group. Clonogenic survival studies with V79 cells confirmed the expectation of increased radioprotective activity of proamine. Also, proamine is less cytotoxic...

  9. Imidazoline receptors ligands

    Agbaba Danica

    2012-01-01

    Full Text Available Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I1-imidazoline receptors (I1-IR involved in central inhibition of sympathicus that produce hypotensive effect; I2-imidazoline receptors (I2-IR modulate monoamine oxidase B activity (MAO-B; I3-imidazoline receptors (I3-IR regulate insulin secretion from pancreatic β-cells. Therefore, the I1/I2/I3 imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective I1/I2/I3 agonists and antagonists have been recently developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I1-IR and I2-IR imidazoline receptor ligands. Theoretical studies of I3-IR ligands are not yet performed because of insufficient number of synthesized I3-IR ligands.

  10. 3,3′-Di-n-butyl-1,1′-(p-phenylenedimethylenediimidazolium bis(hexafluorophosphate

    Rosenani A. Haque

    2010-04-01

    Full Text Available The asymmetric unit of the title N-heterocyclic carbene compound, C22H32N42+·2PF6−, consists of one half of the N-heterocyclic carbene dication and one hexafluorophosphate anion. The dication lies across a crystallographic inversion center. The imidazole ring is twisted away from the central benzene ring, making a dihedral angle of 76.23 (6°. The hexafluorophosphate anions link the cations into a three-dimensional network via intermolecular C—H...F hydrogen bonds. A weak C—H...π interaction further stabilizes the crystal structure.

  11. 1. Medicinal chemistry of a small molecule drug lead: Tamoxilog 2. Electronic communication through ruthenium nanoparticles: Synthesis of custom ligands and nanoparticles

    Zuckerman, Nathaniel Benjamin

    1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.

  12. Thin films of molecular materials synthesized from fisher's carbene ferrocenyl: Film formation and electrical properties

    Sanchez-Vergara, M.E. [Coordinacion de Ingenieria Mecatronica. Escuela de Ingenieria, Universidad Anahuac del Norte. Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)], E-mail: elena.sanchez@anahuac.mx; Ortiz, A. [Instituto de Investigaciones en Materiales. Universidad Nacional Autonoma de Mexico. A. P. 70-360, 04510, Mexico, DF (Mexico); Alvarez-Toledano, C.; Moreno, A. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, DF (Mexico); Alvarez, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico. Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico, DF (Mexico)

    2008-07-31

    The synthesis of materials from Fisher's carbene ferrocenyl of the elements chromium, molybdenum and tungsten was carried out. The Fisher's compounds that were synthesized included the following combinations of two different metallic atoms: iron with chromium, iron with molybdenum and iron with tungsten. The molecular solids' preparation was done in electro-synthesis cells with platinum electrodes. Thin films were prepared by vacuum thermal evaporation on quartz substrates and crystalline silicon wafers. Pellets and thin films from these compounds were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy and ellipsometry. The powder and thin films synthesized from these materials show the same intra-molecular bonds shown by infrared spectroscopy results, suggesting that thermal evaporation does not alter these bonds in spite of the thin films being amorphous, in contrast with other bimetallic complexes where material decomposition occurs. The differences in the conductivity values of the prepared films are very small, so they may be attributed to the different metallic ions employed in each case. The tungsten complex exhibits a higher conductivity than the molybdenum and chromium complexes at room temperature. Electrical conductivity values found for thin films are higher than for pellets made of the same molecular materials.

  13. Stoichiometric sensitivity and structural diversity in click-active copper(I) N,S-heterocyclic carbene complexes.

    Han, Xiaoyan; Weng, Zhiqiang; Young, David James; Jin, Guo-Xin; Hor, T S Andy

    2014-01-21

    A series of novel Cu(I) N,S-heterocyclic carbene (NSHC) complexes [Cu(μ-Br)(NSHC)]2, [Cu(μ-X)(NSHC)]4 (X = Br or I), [(NSHC)2Cu(μ-Br)2Cu(NSHC)], and [(NSHC)2CuBr] have been isolated from in situ generated CuO(t)Bu and N-substituted benzothiazolium halides and characterized by X-ray crystallography. Five structural motifs were observed, viz. M(x)L(y) where x : y = 2 : 2, 4 : 4, 2 : 3, 1 : 2 and 2 : 4, with Cu···Cu separation traversing over a wide range of 2.5626(7) to 3.4725(7) Å distances. A preliminary investigation of the catalytic activity of these compounds indicated that the unusual mononuclear complex 6 [(NSHC)2CuBr] is an active catalyst for the Huisgen 1,3-dipolar cycloaddition of azide and alkynes while complexes 1-5 and 7 were marginally less active. PMID:24192930

  14. Macrocyclic G-quadruplex ligands

    Nielsen, M C; Ulven, Trond

    2010-01-01

    macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  15. Synthesis and reactivity of indium(I) 1-carba-closo-undecachlorododecaborate.

    Osman, Khalid M; Powell, Douglas R; Wehmschulte, Rudolf J

    2015-09-21

    The arene-solvated indium(I) species [In(C7H8)3][CHB11Cl11] (1) and [In(C6H5Br)1.5][CHB11Cl11] (2) were obtained by a redox reaction involving the silver salt Ag[CHB11Cl11] and indium powder at 80 C in a toluene or bromobenzene solution. These thermally stable compounds react with triphenylphosphine and the N-heterocyclic carbene 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene under reduction of indium(I) to indium metal and oxidation of the ligands to phosphonium and imidazolium cations contrary to the more commonly observed disproportionation reactions. The presence of 2 equiv of carbene led to deprotonation of the anion to give the dianion [CB11Cl11](2-). Interactions of In(+) with soft donor ligands such as phosphines, olefins, alkynes, and aromatics are weak, and a crystalline solid was only obtained with the nonvolatile phosphinoacetylene Mes2PC?CPh (Mes = 2,4,6-Me3C6H2). The structure of this compound displays InC interactions involving the triple bond and the ? system of one mesityl group but no InP contact. Solutions of 2 in fluorobenzene also showed moderate activity as the catalyst for intramolecular hydroamination of primary and secondary aminopentenes. The new compounds were characterized by multinuclear NMR spectroscopy and X-ray diffraction for compounds 1, 2, and 4-6. PMID:26352345

  16. Synthesis of novel synthetic intermediates from the reaction of benzimidazole and triazole carbenes with ketenimines and their application in the construction of spiro-pyrroles.

    Mo, Jun-Ming; Ma, Yang-Guang; Cheng, Ying

    2009-12-01

    2-(2-Alkoxycarbonyl-1-arylamino-1-propenyl)benzimidazolium and 5-(2-alkoxycarbonyl-1-arylamino-1-propenyl)triazolium salts were synthesized in good yields from the reaction of benzimidazole and triazole carbenes with ketenimines. Upon treatment with a base, both salts were converted into novel 1,3-dipoles which underwent [3+2] cycloaddition reactions with electron-deficient alkynes and allenes to produce benzimidazole-spiro-pyrroles or triazole-spiro-pyrroles. This work provides novel synthons for the construction of multifunctional spiro-pyrrole derivatives that are not easy accessible by other synthetic methods and are potentially amenable to further transformations. PMID:19907793

  17. Highly Unsaturated Platinum and Palladium Carbenes PtC3 and PdC3 Isolated and Characterized in the Gas Phase

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.

    2016-01-01

    Abstract Carbenes of platinum and palladium, PtC3 and PdC3, were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty‐six isotopologues. The results are consistent with the proposal of an autogenic isolobal relationship between O, Au+, and Pt atoms. PMID:26879473

  18. Catalyst Design and Optimization within a Framework of Green Chemistry

    Tosh, Evangeline

    2009-01-01

    This thesis is divided into two main parts. The first, being the evaluation of existing catalytic reactions under the modern aspects of “Green Chemistry”. Energy conservation, atom economy, minimization of waste, side product recycling and use of renewable feedstocks were optimized in systems evaluated, and comparisons to previously know systems made. The second part is focused on carbocyclic carbene synthesis and application of carbocyclic and remote N-heterocyclic carbene complexes in C-N...

  19. Released ligand fluoroimmunoassay

    Radioimmunoassay (RIA) is one of the most sensitive and specific methods for analysis of proteins, drugs and other substances commonly found in biological fluids. Because of the limited stability and problems in handling radioisotopes (particularly 125I), there has been a continuous effort in recent years to develop non-isotopic immunoassays. Fluoroimmunoassay is one of the more promising alternatives to RIA, but has relatively low sensitivity due to background fluorescence from other substances in biological fluids. The authors have proposed an alternative type of fluoroimmunoassay, released ligand fluoroimmunoassay (RLFIA), wherein the fluorophore is released from the analyte and analyzed separately, thus reducing the problems of background fluorescence. 1-(4-(3-(2,3-dihydroxy-1-carboxyethyl))-phenyl)-3-(3-(7-diethylamino-4-methylcoumarinyl)) thiourea (IX), a fluorescent coumarin derivative with a periodate cleavable vic-glycol linkage, was synthesized and employed to demonstrate the principle of RLFIA. The principle of the RLFIA was tested by comparison with a commercially available kit Immuno-Fluor IgG Assay. Because of the lower quantum yield of the fluorophore used, the sensitivity of the resulting RLFIA was only one tenth that of the commercial kit. As an outgrowth of this project, a series of analogs of compound IX, having electron donating and withdrawing groups at the phenyl ring, were synthesized in order to study the effect of substituent on fluorescence yield. An interactive computer graphics system, Chemical Structure Drawing 2-Dimensional (CSD2D), developed by the author mainly for the generation of publication quality structure drawings is also described

  20. Partition affinity ligand assay (PALA)

    A new approach to radioimmunoassay is described. Using an aqueous two-phase system for separation of bound and free ligand, a convenient procedure has been developed where soluble antibodies may be used and separate washing steps are unnecessary. Assay of digoxin in serum using the Partition Affinity Ligand Assay (PALA), gave results which correlated closely (r=0.979) with those obtained with conventional RIA-procedures. (Auth.)

  1. Nutraceuticals as Ligands of PPAR

    Meera Penumetcha; Nalini Santanam

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that respond to several exogenous and endogenous ligands by modulating genes related to lipid, glucose, and insulin homeostasis. PPARγ, expressed in adipose tissue and liver, regulates lipid storage and glucose metabolism and is the target of type 2 diabetes drugs, thiazolidinediones (TZDs). Due to high levels of toxicity associated with the first generation TZDs, troglitazone (Rezulin), rosiglitazone (...

  2. Catalytic α-arylation of imines leading to N-unprotected indoles and azaindoles

    Marelli, Enrico

    2016-03-30

    A Palladium-N-heterocyclic carbene-catalyzed methodology for the synthesis of substituted, N-unprotected indoles and azaindoles is reported. The protocol permits access to various, highly substituted members of these classes of compounds. Although two possible reactions pathways (deprotonative and Heck-like) can be proposed, control experiments, supported by computational studies, point towards a deprotonative mechanism being operative.

  3. NHC-catalysed highly selective aerobic oxidation of nonactivated aldehydes

    Lennart Möhlmann; Stefan Ludwig; Siegfried Blechert

    2013-01-01

    This publication describes a highly selective oxidation of aldehydes to the corresponding acids or esters. The reaction proceeds under metal-free conditions by using N-heterocyclic carbenes as organocatalysts in combination with environmentally friendly oxygen as the terminal oxidation agent.

  4. Synthesis of Heavy Fluorous Ruthenium Metathesis Catalysts Using the Stereoselective Addition of Polyfluoroalkyllithium to Sterically Hindered Diimines

    Hošek, J.; Rybáčková, M.; Čejka, J.; Cvačka, Josef; Kvíčala, J.

    2015-01-01

    Roč. 34, č. 13 (2015), s. 3327-3334. ISSN 0276-7333 Institutional support: RVO:61388963 Keywords : ring-closing metathesis * form tetrasubstituted olefins * N-heterocyclic carbene Subject RIV: CC - Organic Chemistry Impact factor: 4.126, year: 2014

  5. Efficient Domino Hydroformylation/Benzoin Condensation: Highly Selective Synthesis of ?-Hydroxy Ketones.

    Dong, Kaiwu; Sang, Rui; Soule, Jean-Francois; Bruneau, Christian; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-12-01

    An improved domino hydroformylation/benzoin condensation to give ?-hydroxy ketones has been developed. Easily available olefins are smoothly converted into the corresponding ?-hydroxy ketones in high yields with excellent regioselectivities. Key to success is the use of a specific catalytic system consisting of a rhodium/phosphine complex and the CO2 adduct of an N-heterocyclic carbene. PMID:26503672

  6. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory.

    Sparta, Manuel; Børve, Knut J; Jensen, Vidar R

    2007-07-11

    We have performed a density functional theory investigation of hydroformylation of ethylene for monosubstituted rhodium-carbonyl catalysts, HRh(CO)3L, where the modifying ligand, L, is a phosphite (L = P(OMe)3, P(OPh)3, or P(OCH2CF3)3), a phosphine (L = PMe3, PEt3, PiPr3, or PPh3), or a N-heterocyclic carbene (NHC) based on the tetrahydropyrimidine, imidazol, or tetrazol ring, respectively. The study follows the Heck and Breslow mechanism. Excellent correspondence between our calculations and existing experimental information is found, and the present results constitute the first example of a realistic quantum chemical description of the catalytic cycle of hydroformylation using ligand-modified rhodium carbonyl catalysts. This description explains the mechanistic and kinetic basis of the contemporary understanding of this class of reaction and offers unprecedented insight into the electronic and steric factors governing catalytic activity. The insight has been turned into structure-activity relationships and used as guidelines when also subjecting to calculation phosphite and NHC complexes that have yet to be reported experimentally. The latter calculations illustrate that it is possible to increase the electron-withdrawing capacity of both phosphite and NHC ligands compared to contemporary ligands through directed substitution. Rhodium complexes of such very electron-withdrawing ligands are predicted to be more active than contemporary catalysts for hydroformylation. PMID:17555314

  7. Studies on functionalised macrocyclic ligands

    Tei, Lorenzo

    2001-01-01

    The work presented in this thesis hinges on three main topics: a) the coordination chemistry of symmetric and asymmetric derivatives of [9]aneN3 towards lanthanide ions; b) the transition metal co-ordination chemistry of nitrile and amino derivatives of [9]aneN3 and [15]aneN3O2; c) the use of macrocyclic ligands for the synthesis of polymeric Ag' complexes. Chapter 3 describes the Ln"' complexes of the ligand obtained by Schiffbase condensation of 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclo...

  8. Versatile deprotonated NHC: C,N-bridged dinuclear iridium and rhodium complexes

    2016-01-01

    Summary Bearing the versatility of N-heterocyclic carbene (NHC) ligands, here density functional theory (DFT) calculations unravel the capacity of coordination of a deprotonated NHC ligand (pNHC) to generate a doubly C2,N3-bridged dinuclear complex. Here, in particular the discussion is based on the combination of the deprotonated 1-arylimidazol (aryl = mesityl (Mes)) with [M(cod)(μ-Cl)] (M = Ir, Rh) generated two geometrical isomers of complex [M(cod){µ-C3H2N2(Mes)-κC2,κN3}]2). The latter two isomers display conformations head-to-head (H-H) and head-to-tail (H-T) of C S and C 2 symmetry, respectively. The isomerization from the H-H to the H-T conformation is feasible, whereas next substitutions of the cod ligand by CO first, and PMe3 later confirm the H-T coordination as the thermodynamically preferred. It is envisaged the exchange of the metal, from iridium to rhodium, confirming here the innocence of the nature of the metal for such arrangements of the bridging ligands. PMID:26877814

  9. Crystallization of protein–ligand complexes

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  10. Activation of Si-H bonds across the nickel carbene bond in electron rich nickel PCcarbeneP pincer complexes.

    LaPierre, Etienne A; Piers, Warren E; Spasyuk, Denis M; Bi, David W

    2016-01-14

    Silicon-hydrogen bonds are shown to add to a nickel carbon double bond to yield nickel ?-silylalkyl hydrido complexes. Kinetic and isotope labeling studies suggest that a concerted 4-centred addition across the Ni[double bond, length as m-dash]C bond is operative rather than a mechanism involving Si-H oxidative addition. This constitutes an example of Si-H bond activation via ligand cooperativity. PMID:26650257

  11. Presentation of Ligands on Hydroxylapatite

    Chu, Barbara C. F.; Orgel, Leslie E.

    1997-01-01

    Conjugates of biotin with the decamer of glutamic acid (glu(sub 10)) and the trimer of D,L-2-amino-5-phosphonovaleric acid (I) have been synthesized, and it has been shown that they mediate the binding of avidin to hydroxylapatite. In a similar way a conjugate of methotrexate with glu(sub 10) mediates the binding of dihydrofolate reductase to the mineral. The presentation of ligands on the hydroxylapatite component of bone may find applications in clinical medicine.

  12. Privileged chiral ligands and catalysts

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  13. Tumor targeting via integrin ligands

    HorstKessler

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  14. Bifunctional crosslinking ligands for transthyretin

    Mangione, P. Patrizia; Deroo, Stphanie; Ellmerich, Stephan; Bellotti, Vittorio; Kolstoe, Simon; Wood, Stephen P.; Robinson, Carol V.; Smith, Martin D.; Tennent, Glenys A.; Broadbridge, Robert J.; Council, Claire E.; Thurston, Joanne R.; Steadman, Victoria A.; Vong, Antonio K.; Swain, Christopher J.; Pepys, Mark B.; Taylor, Graham W.

    2015-01-01

    Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTRligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms. PMID:26400472

  15. Radioiodinated ligands for dopamine receptors

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [123I]TISCH for D1 dopamine receptors; [123I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [123I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  16. Equilibrium between a cyclotrisilene and an isolable base adduct of a disilenyl silylene

    Cowley, Michael J.; Huch, Volker; Rzepa, Henry S.; Scheschkewitz, David

    2013-10-01

    In organic chemistry, compounds with adjacent alkene and carbene functionalities (vinyl carbenes) are studied widely as fleeting intermediates and in the coordination sphere of transition metals. Stable derivatives of vinyl carbenes remain elusive, including the corresponding heavier group 14 homologues. Here we report the isolation and full characterization of a base-stabilized silicon version of a vinyl carbene that features a silicon-silicon double bond as well as a silylene functionality, coordinated by an N-heterocyclic carbene (NHC). In solution, the intensely green disilenyl silylene adduct exists in equilibrium with the corresponding silicon analogue of a cyclopropene and free NHC, which was quantified by nuclear magnetic resonance spectroscopy and ultraviolet-visible spectroscopy. The reversibility of this process raises exciting possibilities for the preparation of extended conjugated ? systems of silicon.

  17. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency

    Lee, Jaesang; Chen, Hsiao-Fan; Batagoda, Thilini; Coburn, Caleb; Djurovich, Peter I.; Thompson, Mark E.; Forrest, Stephen R.

    2016-01-01

    The combination of both very high brightness and deep blue emission from phosphorescent organic light-emitting diodes (PHOLED) is required for both display and lighting applications, yet so far has not been reported. A source of this difficulty is the absence of electron/exciton blocking layers (EBL) that are compatible with the high triplet energy of the deep blue dopant and the high frontier orbital energies of hosts needed to transport charge. Here, we show that N-heterocyclic carbene (NHC) Ir(III) complexes can serve as both deep blue emitters and efficient hole-conducting EBLs. The NHC EBLs enable very high brightness (>7,800 cd m-2) operation, while achieving deep blue emission with colour coordinates of [0.16, 0.09], suitable for most demanding display applications. We find that both the facial and the meridional isomers of the dopant have high efficiencies that arise from the unusual properties of the NHC ligand--that is, the complexes possess a strong metal-ligand bond that destabilizes the non-radiative metal-centred ligand-field states. Our results represent an advance in blue-emitting PHOLED architectures and materials combinations that meet the requirements of many critical illumination applications.

  18. Phenotypic spandrel: absolute discrimination and ligand antagonism

    François, Paul; Johnson, Kyle A.; Saunders, Laura N.

    2015-01-01

    We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...

  19. Synthesis of tricyclic silicon-, germanium- and tin-containing tungsten carbene complexes [ButO)2(Cl)2W=CH]2EPh2 (E=Si, Ge, Sn). Crystal structure of [ButO)2(Cl)2W=CH]2SiPh2 complex

    Tungsten carbene complexes [ButO)2(Cl)2W=CH]2EPh2 (E=Si, Ge, Sn) were synthesized by the reaction of tricyclic carbin complexes Ph2E[C≡W(OBu1)3]2 with HCl. Tin-containing carbene complex is not thermally stable and identified in solution by 1H and 13C NMR spectroscopy. Silicon- and germanium-containing carbene complexes of tungsten were separated with high yields in the individual crystal state were identified by element analysis, IR- and 1H, 13C NMR-spectroscopy. Structure of silicon-containing complex [ButO)2(Cl)2W=CH]2SiPh2 were determined by X-ray diffraction. Silicon and tungsten atoms are deformed according to tetrahedral and tetragonal-pyramidal coordinations correspondingly

  20. Ligand sphere conversions in terminal carbide complexes

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  1. Electrochemistry of complex combinations with organic ligands

    The electrochemical behaviour of Cd(2), Ni(2), Fe(2), Fe(3), In(3), Pb(2) complexes with organic bi-and polydentate ligands have been studied by methods of classical and alternating current polarography. Cadmium and indium complexing depending on pH value and the nature of the ligands (bipyridyl isomers, phosphoric acid esters) is discussed

  2. Ligand-receptor Interactions by NMR Spectroscopy

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  3. Molecular docking with ligand attached water molecules.

    Lie, Mette A; Thomsen, Ren; Pedersen, Christian N S; Schitt, Birgit; Christensen, Mikael H

    2011-04-25

    A novel approach to incorporate water molecules in protein-ligand docking is proposed. In this method, the water molecules display the same flexibility during the docking simulation as the ligand. The method solvates the ligand with the maximum number of water molecules, and these are then retained or displaced depending on energy contributions during the docking simulation. Instead of being a static part of the receptor, each water molecule is a flexible on/off part of the ligand and is treated with the same flexibility as the ligand itself. To favor exclusion of the water molecules, a constant entropy penalty is added for each included water molecule. The method was evaluated using 12 structurally diverse protein-ligand complexes from the PDB, where several water molecules bridge the ligand and the protein. A considerable improvement in successful docking simulations was found when including flexible water molecules solvating hydrogen bonding groups of the ligand. The method has been implemented in the docking program Molegro Virtual Docker (MVD). PMID:21452852

  4. Dual Genetically Encoded Phage-Displayed Ligands

    Mohan, Kritika; Weiss, Gregory A.

    2014-01-01

    M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different, genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display.

  5. Correcting ligands, metabolites, and pathways

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and visualization. It is freely available at http://www.cmbi.ru.nl/biometa/ provided that the copyright notice of all original data is cited. The database will be useful for querying and browsing biochemical pathways, and to obtain reference information for identifying compounds. However, these applications require that the underlying data be correct, and that is the focus of BioMeta.

  6. Autocrine signal transmission with extracellular ligand degradation

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  7. Ligand-Independent Mechanisms of Notch Activity.

    Palmer, William Hunt; Deng, Wu-Min

    2015-11-01

    Interaction between the Notch receptor and Delta-Serrate-Lag2 (DSL) ligands is generally deemed to be the starting point of the Notch signaling cascade, after which, Notch is cleaved and the intracellular domain acts as a transcriptional coactivator. By contrast, Notch protein can become activated independent of ligand stimulus through recently identified endosomal trafficking routes as well as through aberrant regulation of Notch components during Notch trafficking, ubiquitination, and degradation. In this review, we summarize genes implicated in ligand-independent Notch activity and remark on the mechanisms by which this process could occur. PMID:26437585

  8. Visualizing ligand molecules in twilight electron density

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2013-01-01

    A software script is presented for facilitating the analysis and visual inspection of ligand molecules in the context of the electron-density maps calculated from experimental data associated with protein structures determined by X-ray crystallography.

  9. A screening cascade to identify ER? ligands

    Filgueira, Carly S.; Benod, Cindy; Lou, Xiaohua; Gunamalai, Prem S.; Villagomez, Rosa A.; Strom, Anders; GUSTAFSSON, JAN-KE; Berkenstam, Anders L.; Webb, Paul

    2014-01-01

    The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen...

  10. Ligand Exchange Processes on Solvated Lithium Cations

    Pasgreta, Ewa Maria

    2007-01-01

    In this work the solvation process of Li+ ion, as well as solvent and ligand exchange reactions on Li+ ion were studied. Li+ ions possess interesting properties and like other alkali metal ions are known to form complexes with macrocyclic ligands called cryptands. In this summary, an overview over the insights gained in the factors that control the reactivity of Li+ complexes with respect to the solvent and cryptand properties is presented. Three main questions were addressed: • How does the ...

  11. Chemistry of Marine Ligands and Siderophores

    Vraspir, Julia M.; Butler, Alison

    2009-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cad...

  12. Dual genetically encoded phage-displayed ligands

    Mohan, K.; Weiss, GA

    2014-01-01

    M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display. © 2014 Elsevier Inc. All rights reserved.

  13. Visualizing ligand molecules in twilight electron density

    A software script is presented for facilitating the analysis and visual inspection of ligand molecules in the context of the electron-density maps calculated from experimental data associated with protein structures determined by X-ray crystallography. Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight//

  14. Mechanical matching between a ligand and receptor.

    Peaherrera, Ana

    2015-12-12

    Interactions between ligands and receptors and subsequent "locking" must involve some resistance to unbinding, manifesting itself as an interaction force. At body temperature, spontaneous unbinding will occur, however, external forces are required to accelerate this process. Bearing in mind the potential forces that the receptor-ligand complex is likely to be subjected to in a biological environment, it might be hypothesised that there is some mechanical matching between the receptor and ligand. To test this hypothesis, various receptor and ligand pairs were unfolded in their entirety in order to determine their total unfolding force. In this way, the total force to unfold the protein could be determined, allowing a comparison between ligand and receptor pairs. The interest of this work is to examine the interaction between five proteins and a mica surface by AFM without any modification to preserve the natural elastic properties of the protein molecules during the force measurements. The results showed a mechanical matching between GP120 (ligand) and CD4 (receptor) when analysing the total force required to unfold the same number of domains or events shown by the force distance curves of these proteins. PMID:26399429

  15. Construction of dinuclear complexes using multidentate ligands

    This work details the synthesis of novel copper(I), copper(II), nickel(II) and zinc(II) dinuclear complexes. Attempts have been made to control the co-ordination architectures of the metal centres by using bis-bidentate and tridentate chelating N,S- and N-donor ligands to generate dinuclear systems. The ligands were both symmetrically and asymmetrically disubstituted pyridazine-based and pyridine-based ligands consisting of a mixture of N-only and mixed N,S-donors. The study using the pyridazine-based ligands continues previous research in our group using 3,6-bis disubstituted pyridazine-based ligands to form complexes with copper(l) and copper(II). The pyridazine-based ligands have been seen to be bis-bidentate upon co-ordination of copper. The pyridazine-based ligands could be envisaged to generate dinuclear complexes by directly bridging between two metal ions. This study involved the formation of copper(l), nickel(II) and zinc(II) complexes with these ligands. The structural properties of two particular complexes have been explored using X-ray crystallography and spectroscopic techniques. Pyridine-based ligands have also been used previously in our group as tridentate chelating ligands. They have been seen to form dinuclear complexes with copper(I) and copper(II) when reacted with an additional bridging ligand e.g. 4,4'-bipyridine. This provides an alternative method for generating dinuclear complexes. Chapter 1 presents an introduction to the area of supramolecular chemistry from which we can learn the principles of polymer formation and them 'in reverse' to generate discrete dinuclear systems. Chapter 2 details the synthesis of the pyridazine and pyridine-based ligands including a detailed nmr study of the ligands. Since the ligands were synthesised using cyclic thioamides as terminal groups it has been found that thiol-thione tautomerisation occurred during synthesis giving rise to two possible ligand conformations. The nmr study has been used to try and predict the conformation of the ligands. Chapter 3 details the formation of dinuclear complexes using the pyridazine-based ligands including [{Cu(NCMe)}2(μ-bmmip)2][BF4]2 which contains copper(l) ions in a biologically relevant N2S2 environment. The ligand 3,6-bis(pyrazol-1-yl)pyridazine (bpp) has also been used to generate dinuclear complexes with nickel(II) and zinc(II) without the need for a hydroxide bridge. Several dinuclear complexes were structurally characterised and nmr spectroscopy was used to analyse the zinc(II) structures. Chapter 4 details the substitution work carried out on two pyridazine-based complexes [{Cu(NCMe)}2(μ-bmmip)2][BF4]2 and [{Cu(pmmip)}2(μ-pmmip)2][BF4]2. The complex [{Cu(NCMe)}2(μ-bmmip)2][BF4]2 was shown to contain a potentially labile acetonitrile ligand and research was undertaken to substitute this with a different N-donor. A low temperature nmr study was carried out to study the solution behaviour of the complex. Reaction of the complex with imidazole produced a copper(II) species. This was studied using low temperature UV spectroscopy to gain information about the reaction. The complex [{Cu(pmmip)}2(μ-pmmip)2][BF4]2 was shown to contain an unused N2-donor site, attempts were made to utilise this site by reaction with different metal ions including palladium(II). Chapter 5 details work carried out using two pyridazine-based ligands which have mereaptopyridine terminal groups with the nitrogen donor in the four position. This provided the possibility for forming hydrogen-bonded structures through protonation of the pyridine N-donor. Chapter 6 details the complexation study with the pyridine-based ligands and includes the work done to generate dinuclear complexes with the tridentate chelating ligands and an additional bridging ligand. The bridging ligands included 4,4'-bipyridine and 3,6-bis(pyridin-4-yl)-1,2,4,5-tetrazine which were used to provide a range of bridge lengths from 6.5-12.5A. (author)

  16. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  17. Modulating NHC catalysis with fluorine

    Yannick P. Rey

    2013-12-01

    Full Text Available Fluorination often confers a range of advantages in modulating the conformation and reactivity of small molecule organocatalysts. By strategically introducing fluorine substituents, as part of a β-fluoroamine motif, in a triazolium pre-catalyst, it was possible to modulate the behaviour of the corresponding N-heterocyclic carbene (NHC with minimal steric alterations to the catalyst core. In this study, the effect of hydrogen to fluorine substitution was evaluated as part of a molecular editing study. X-ray crystallographic analyses of a number of derivatives are presented and the conformations are discussed. Upon deprotonation, the fluorinated triazolium salts generate catalytically active N-heterocyclic carbenes, which can then participate in the enantioselective Steglich rearrangement of oxazolyl carbonates to C-carboxyazlactones (e.r. up to 87.0:13.0.

  18. New cadmium(II) halides modified by N-heterocyclic molecules

    Wang, Tie-Gang; Li, Su; Yu, Jie-Hui; Xu, Ji-Qing

    2015-03-01

    Under the solvothermal condition, the reaction of CdI2, bpp and KI at pH = 8 afforded compound [CdI2(bpp)] (bpp = 1,2-bis(4-pyridyl)propane) 1, while at the ambient conditions, the reactions of CdX2, dabco and KX at pH = 4-5 produced compounds [H2(dabco)][CdBr4]H2O (dabco = 1,4-diazabicyclo[2,2,2]octane) 2 and [(Hdabco)CdI3] 3. X-ray single-crystal diffraction analysis reveals that (i) compound 1 possesses a one-dimensional (1-D) zigzag chain structure. The large volume bpp molecule controls the Cd2+ ion to adopt a tetrahedral geometric configuration; (ii) both compounds 2 and 3 are mononuclear. Interestingly, in the same pH environments, dabco was in situ diprotonated in compound 2, while dabco was in situ monoprotonated in compound 3. The templating effect as well as the X- ion maybe plays a key role in the protonated degree for dabco in an acidic environment. The photoluminescence analysis indicates that compound 1 emits the strong green light, which should be attributed to a combination of two types of charge transfers: the charge transfer between Cd2+ and I-; the charge transfer between Cd2+ and bpp.

  19. New iodocuprates(I) with N-heterocyclic molecules as the cations

    Zhao, Jin-Jing; Zhang, Xiao; Wang, Yan-Ning; Jia, Hong-Li; Yu, Jie-Hui; Xu, Ji-Qing

    2013-11-01

    Under the hydrothermal conditions, the reactions between CuI, KI and bp/bpp (bp=4,4?-bipiperidine, bpp=1,3-bis(4-piperidyl)propane) in an acidic alcohol solution produced three new organically templated iodocuprates(I) as [H2bp]2[Cu2I6] 1, [tmbp][Cu2I4] 2 and [tmbpp] 2 [Cu4I8]2H2O 3 (tmbp2+=N,N,N?,N?-tetramethyl-4,4?-bipiperidinium; tmbpp2+=N,N,N?,N?-tetramethyl-1,3-bis(4-piperidyl)propane dication). X-ray analysis revealed that (i) tmbp2+ and tmbpp2+ in compounds 2 and 3 originated from the complete N-alklation of bp/bpp with CH3OH; (ii) templated by H2bp2+, the inorganic anion [Cu2I6]2- of 1 possesses a dinuclear structure, whereas templated by tmbp2+, the inorganic anion [Cu2I4]2- of 2 exhibits a one-dimensional (1D) chain structure; (iii) templated by tmbpp2+, the inorganic anion [Cu4I8]4- of 3 shows a cubane-like structure modified by four terminal I- ions. The photoluminescence analysis indicates that compounds 1 and 2 emit blue light, while compound 3 emits green light.

  20. [Design, synthesis and antiproliferative activities of artemisinin derivatives substituted by N-heterocycles].

    Zuo, Zhi-zhong; Zhong, Hang; Cai, Ting; Bao, Yu; Liu, Zhi-qiang; Liu, Dan; Zhao, Lin-xiang

    2015-07-01

    Increasing attention has been focused on the antitumor activity of artemisinin derivatives in recent years, for artemisinin had been reported to have cytotoxic effects against HL-60, P388 and MCF-7 tumor cells. We report here the synthesis and evaluation for antitumor activity of a series of artemisinin-ether derivatives bearing tetrahydropyrrole, morpholine, piperidine, substituted piperidines and azoles with various linkers. Sixteen 10-O-substituted dihydroartemisinin derivatives were designed and synthesized, all of which have never been reported in literatures and whose antiproliferative effects on human breast cancer MCF-7, MCF-7/Adr and HL-60 cells were determined by MTT assay or direct cell counting. Each of these artemisinin derivatives possessed better effects than dihydroartemisinin evidently against HL-60 and MCF-7 cells growth, while less potent than doxorubicin. All target compounds exhibited significantly improved potency compared to DHA and doxorubicin on the doxorubicin-resistant MCF-7/Adr cells, so did they in their sensitive counterparts MCF-7 cells. Among them, compounds GF02, GH04 and ZH04 showed strong activity against these three cell lines growth. Further research is undergoing. PMID:26552149

  1. Synthesis and in Vitro Antimicrobial Evaluation of New N-Heterocyclic Diquaternary Pyridinium Compounds

    Bianca Furdui; Georgiana Parfene; Ioana Otilia Ghinea; Rodica Mihaela Dinica; Gabriela Bahrim; Martine Demeunynck

    2014-01-01

    A series of bis-pyridinium quaternary ammonium salts (bis-PyQAs) with different aryl and heteroaryl moieties were synthesized and their antimicrobial activity investigated. The inhibition effect of the compounds was evaluated against bacteria, molds and yeasts; the activities were expressed as the minimum inhibitory concentrations (MIC). The relationships between the structure descriptors (logP, polarizability, polar surface area (2D), van der Waals area (3D)) and the biological activity of t...

  2. New iodocuprates(I) with N-heterocyclic molecules as the cations

    Under the hydrothermal conditions, the reactions between CuI, KI and bp/bpp (bp=4,4?-bipiperidine, bpp=1,3-bis(4-piperidyl)propane) in an acidic alcohol solution produced three new organically templated iodocuprates(I) as [H2bp]2[Cu2I6] 1, [tmbp][Cu2I4] 2 and [tmbpp] 2 [Cu4I8]2H2O 3 (tmbp2+=N,N,N?,N?-tetramethyl-4,4?-bipiperidinium; tmbpp2+=N,N,N?,N?-tetramethyl-1,3-bis(4-piperidyl)propane dication). X-ray analysis revealed that (i) tmbp2+ and tmbpp2+ in compounds 2 and 3 originated from the complete N-alklation of bp/bpp with CH3OH; (ii) templated by H2bp2+, the inorganic anion [Cu2I6]2? of 1 possesses a dinuclear structure, whereas templated by tmbp2+, the inorganic anion [Cu2I4]2? of 2 exhibits a one-dimensional (1D) chain structure; (iii) templated by tmbpp2+, the inorganic anion [Cu4I8]4? of 3 shows a cubane-like structure modified by four terminal I? ions. The photoluminescence analysis indicates that compounds 1 and 2 emit blue light, while compound 3 emits green light. - Graphical abstract: By employing hydrothermal in situ N-alkylation of bp/bpp with CH3OH, three new organically templated iodocuprates(I) were obtained. Display Omitted - Highlights: Three new organically templated iodocuprates(I) were reported. Cations tmbp2+ and tmbpp2+ originated from in situ alkylation of bp/bpp with CH3OH. H+ and I? play a key role in alkylation of bp/bpp with CH3OH. Photoluminescence emission for iodocuprates(I) is related to CuCu interaction

  3. N-Heterocyclic compounds as radioprotectors II. Derivatives of pyridine and pyrimidine containing thiol precursors

    Pyridine and 4-substitued pyrimidine derivatives incorporating a sulphur functional side-group were evaluated as potential radioprotective agents by screening tests in mice. 2-(2-Pyridyl)ethanethiol and its derivatives showed some radioprotective action when administered intraperitoneally, but all were inferior to 2-pyridinemethanethiol. They showed no protection when administered orally. Substitution of the pyridine ring by chlorine gave compounds which also showed inferior radioprotective properties to those demonstrated by 2-pyridinemethanethiol. Corresponding phosphorothioates also exhibited little activity. The pyrimidine derivatives showed protection of a low order

  4. Transient negative ions in benzene. Some N-heterocyclic and mono-substituted derivatives

    Electron transmission spectroscopy is used to study transient negative ions or shape resonances in various benzene derivatives. Because of the long lifetime of these ions (τ > 10-14 S) the vibrational structure of their first two electronic states is observed superposed on the total electron cross section curves in the energy range 0-6 eV and the corresponding adiabatic electron affinities are determined. The comparison of the first electron affinity with the first ionization potential and the energy on the first excited state of each of the derivatives is used to characterize the 'donor' substituents on the benzene ring. As a complementary study, these derivatives are studied in the liquid phase using polarography (cyclic voltametry). The linear correlation established between polarographic potentials measured in dimethyl formamide and the electron affinities was used to deduce electron affinities for several molecules which are difficult to measure in the gas phase. (author)

  5. Structures and Chemical Equilibria of Some N-Heterocycles Containing Amide Linkages

    N. H. Abd El Moneim

    2003-05-01

    Full Text Available Structures and chemical equilibria of 5-carboxy-2-thiouracil (1, 5,6-diphenyl-3-hydroxy-1,2,4-triazine (2, 1-phenyl-3-methyl-5-pyrazolone (3 and 2-mercapto-4,6-dimethylpyrimidine hydrochloride (4 are reported. Their electronic transitions are assigned and pK values are evaluated and discussed.

  6. A novel stereoselective synthesis of N-heterocycles by intramolecular hydrovinylation

    Bothe, Ulrich; Rudbeck, H. C.; Tanner, David Ackland; Johannsen, Mogens

    2001-01-01

    A novel method for the synthesis of bicyclic amines has been developed. Cyclisation of 1,6-dienes by intramolecular hydrovinylation in the presence of catalytic amounts of allylpalladium chloride dimer afforded bicyclic amines in one step. Added phosphines, silver salts, as well as the nature of ...

  7. New iodocuprates(I) with N-heterocyclic molecules as the cations

    Zhao, Jin-Jing [College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130023 (China); Zhang, Xiao [State Key Lab of Urban Water Resource and Environment (SKLUWRE) and Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, Heilongjiang 150080 (China); Wang, Yan-Ning; Jia, Hong-Li [College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130023 (China); Yu, Jie-Hui, E-mail: jhyu@jlu.edu.cn [College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130023 (China); Xu, Ji-Qing, E-mail: xjq@mail.jlu.edu.cn [College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130023 (China)

    2013-11-15

    Under the hydrothermal conditions, the reactions between CuI, KI and bp/bpp (bp=4,4′-bipiperidine, bpp=1,3-bis(4-piperidyl)propane) in an acidic alcohol solution produced three new organically templated iodocuprates(I) as [H{sub 2}bp]{sub 2}[Cu{sub 2}I{sub 6}] 1, [tmbp][Cu{sub 2}I{sub 4}] 2 and [tmbpp] 2 [Cu{sub 4}I{sub 8}]·2H{sub 2}O 3 (tmbp{sup 2+}=N,N,N′,N′-tetramethyl-4,4′-bipiperidinium; tmbpp{sup 2+}=N,N,N′,N′-tetramethyl-1,3-bis(4-piperidyl)propane dication). X-ray analysis revealed that (i) tmbp{sup 2+} and tmbpp{sup 2+} in compounds 2 and 3 originated from the complete N-alklation of bp/bpp with CH{sub 3}OH; (ii) templated by H{sub 2}bp{sup 2+}, the inorganic anion [Cu{sub 2}I{sub 6}]{sup 2−} of 1 possesses a dinuclear structure, whereas templated by tmbp{sup 2+}, the inorganic anion [Cu{sub 2}I{sub 4}]{sup 2−} of 2 exhibits a one-dimensional (1D) chain structure; (iii) templated by tmbpp{sup 2+}, the inorganic anion [Cu{sub 4}I{sub 8}]{sup 4−} of 3 shows a cubane-like structure modified by four terminal I{sup −} ions. The photoluminescence analysis indicates that compounds 1 and 2 emit blue light, while compound 3 emits green light. - Graphical abstract: By employing hydrothermal in situ N-alkylation of bp/bpp with CH{sub 3}OH, three new organically templated iodocuprates(I) were obtained. Display Omitted - Highlights: • Three new organically templated iodocuprates(I) were reported. • Cations tmbp{sup 2+} and tmbpp{sup 2+} originated from in situ alkylation of bp/bpp with CH{sub 3}OH. • H{sup +} and I{sup −} play a key role in alkylation of bp/bpp with CH{sub 3}OH. • Photoluminescence emission for iodocuprates(I) is related to Cu···Cu interaction.

  8. Dichlorosilylene: a high temperature transient species to an indispensable building block.

    Ghadwal, Rajendra S; Azhakar, Ramachandran; Roesky, Herbert W

    2013-02-19

    Isolating stable compounds with low-valent main group elements have long been an attractive research topic, because several of these compounds can mimic transition metals in activating small molecules. In addition, compounds with heavier low-valent main group elements have fundamentally different electronic properties when compared with their lighter congeners. Among group 14 elements, the heavier analogues of carbenes (R(2)C:) such as silylenes (R(2)Si:), germylenes (R(2)Ge:), stannylenes (R(2)Sn:), and plumbylenes (R(2)Pb:) are the most studied species with low-valent elements. The first stable carbene and silylene species were isolated as N-heterocycles. Among the dichlorides of group 14 elements, CCl(2) and SiCl(2) are highly reactive intermediates and play an important role in many chemical transformations. GeCl(2) can be stabilized as a dioxane adduct, whereas SnCl(2) and PbCl(2) are available as stable compounds. In the Siemens process, which produces electronic grade silicon by thermal decomposition of HSiCl(3) at 1150 °C, chemists proposed dichlorosilylene (SiCl(2)) as an intermediate, which further dissociates to Si and SiCl(4). Similarly, base induced disproportionation of HSiCl(3) or Si(2)Cl(6) to SiCl(2) is a known reaction. Trapping these products in situ with organic substrates suggested the mechanism for this reaction. In addition, West and co-workers reported a polymeric trans-chain like perchloropolysilane (SiCl(2))(n). However, the isolation of a stable free monomeric dichlorosilylene remained a challenge. The first successful attempt of taming SiCl(2) was the isolation of monochlorosilylene PhC(NtBu)(2)SiCl supported by an amidinate ligand in 2006. In 2009, we succeeded in isolating N-heterocyclic carbene (NHC) stabilized dichlorosilylene (NHC)SiCl(2) with a three coordinate silicon atom. (The NHC is 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes).) Notably, this method allows for the almost quantitative synthesis of (NHC)SiCl(2) without using any hazardous reducing agents. Dehydrochlorination of HSiCl(3) with NHC under mild reaction conditions produces (NHC)SiCl(2). We can separate the insoluble side product (NHC)HCl readily and recycle it to form NHC. The high yield and facile access to dichlorosilylene allow us to explore its chemistry to a greater extent. In this Account, we describe the results using (NHC)SiCl(2) primarily from our laboratory, including findings by other researchers. We emphasize the novel silicon compounds, which supposedly existed only as short-lived species. We also discuss silaoxirane, silaimine with tricoordinate silicon atom, silaisonitrile, and silaformyl chloride. In analogy with N-heterocyclic silylenes (NHSis), oxidative addition reactions of organic substrates with (NHC)SiCl(2) produce Si(IV) compounds. The presence of the chloro-substituents both on (NHC)SiCl(2) and its products allows metathesis reactions to produce novel silicon compounds with new functionality. These substituents also offer the possibility to synthesize interesting compounds with low-valent silicon by further reduction. Coordination of NHC to the silicon increases the acidity of the backbone protons on the imidazole ring, and therefore (NHC)SiCl(2) can functionalize NHC at the C-4 or C-5 position. PMID:23181482

  9. Posttranslational regulation of Fas ligand function

    Paulsen Maren

    2008-12-01

    Full Text Available Abstract The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95 expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies.

  10. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  11. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    The work presented in this thesis was performed at the Department of Chemistry of the Technical University of Denmark during a three year Ph.D. program. The thesis involves two distinct Projects related to organometallic and carbohydrate chemistry. Project 1: Dehydrogenative synthesis of imines from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcoho...

  12. Towards electrically conductive, self-healing materials

    Williams, Kyle A.; Boydston, Andrew J.; Bielawski, Christopher W.

    2007-01-01

    A novel class of organometallic polymers comprising N-heterocyclic carbenes and transition metals was shown to have potential as an electrically conductive, self-healing material. These polymers were found to exhibit conductivities of the order of 10−3 S cm−1 and showed structurally dynamic characteristics in the solid-state. Thin films of these materials were cast onto silicon wafers, then scored and imaged using a scanning electron microscopy (SEM). The scored films were subsequently healed...

  13. 1,3-Bis(2,4,6-trimethylphenyl-3H-imidazol-1-ium tetraoxidorhenate(VII

    Maril Landman

    2011-12-01

    Full Text Available The title compound, (C21H25N2[ReO4], was formed as the unexpected product in an attempted synthesis of a rhenium(IN-heterocyclic carbene (NHC complex. The compound has crystallographic mirror symmetry with both the cation and the tetrahedral anion located across a mirror plane. The cation and anion are linked by a CH...O hydrogen bond.

  14. Modulating NHC catalysis with fluorine

    Rey, Yannick P; Ryan Gilmour

    2013-01-01

    Fluorination often confers a range of advantages in modulating the conformation and reactivity of small molecule organocatalysts. By strategically introducing fluorine substituents, as part of a β-fluoroamine motif, in a triazolium pre-catalyst, it was possible to modulate the behaviour of the corresponding N-heterocyclic carbene (NHC) with minimal steric alterations to the catalyst core. In this study, the effect of hydrogen to fluorine substitution was evaluated as part of a molecular editi...

  15. N-(2,4,6-Trimethylphenylformamide

    David C. Liles

    2011-01-01

    Full Text Available The title compound, C10H13NO, was obtained as the unexpected, almost exclusive, product in the attempted synthesis of a manganese(I–N-heterocyclic carbene (NHC complex. The dihedral angle between the planes of the formamide moiety and the aryl ring is 68.06 (10°. In the crystal, molecules are linked by N—H...O hydrogen bonds, forming infinite chains along the c axis.

  16. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  17. Organotellurium ligands - designing and complexation reactions

    Ajai K Singh

    2002-08-01

    A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe- and polytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino) methane], has been synthesized in good yield (∼80 %) by reacting CHCl3 with RTe- (generated in situ by borohydride reduction of R2Te2). Iodine reacts with 1 to give tetra-iodo derivative, which has intermolecular Te$\\cdots$I interactions resulting in a macro structure containing rectangular Te-I$\\cdots$Te bridges. 1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in 125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of 1 has been shown in [Ru(-cymene)Cl2](-1)[Ru(-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Te, S), (Te, N) and (Te, O). The tellurium donor site has strong trans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Te, N) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3.H2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in 125Te NMR spectra of metal complexes of Te-ligands have a close parallel to those of 31P NMR. For the formation of fivemembered rings, the value is positive and of the order of 130 ppm whereas for sixmembered rings it is negative and ∼30 ppm only.

  18. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  19. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  20. Impact of receptor clustering on ligand binding

    Caré Bertrand R

    2011-03-01

    Full Text Available Abstract Background Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding. Results We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant. Conclusions Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.

  1. Visualizing ligand molecules in Twilight electron density.

    Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard

    2013-02-01

    Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767

  2. A screening cascade to identify ER? ligands.

    Filgueira, Carly S; Benod, Cindy; Lou, Xiaohua; Gunamalai, Prem S; Villagomez, Rosa A; Strom, Anders; Gustafsson, Jan-ke; Berkenstam, Anders L; Webb, Paul

    2014-01-01

    The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor ? (ER?) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ER?, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ER? and ER?, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ER?. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ER? binders that were examined for their selectivity for ER? versus ER?, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing. PMID:25422593

  3. Flexible Ligand Docking Using Evolutionary Algorithms

    Thomsen, Rene

    The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...... search spaces effectively and is one of the commonly used methods for flexible ligand docking. During the last decade, several EAs using different variation operators have been introduced, such as the ones provided with the AutoDock program. In this paper we evaluate the performance of different EA...... settings such as choice of variation operators, population size, and usage of local search. The comparison is performed on a suite of six docking problems previously used to evaluate the performance of search algorithms provided with the AutoDock program package. The results from our investigation confirm...

  4. The first scorpionate ligand based on diazaphosphole.

    Mlateček, Martin; Dostál, Libor; Růžičková, Zdeňka; Honzíček, Jan; Holubová, Jana; Erben, Milan

    2015-12-14

    The reaction of PhBCl2 with 1H-1,2,4-λ(3)-diazaphosphole in the presence of NEt3 gives a new scorpionate ligand, phenyl-tris(1,2,4-diazaphospholyl)borate (PhTdap). The coordination behaviour of this ligand toward transition and non-transition metals has been comprehensively studied. In the thallium(I) complex, Tl(PhTdap), κ(2)-N,N bonding supported with intramolecular η(3)-phenyl coordination has been observed in the solid state. Tl(PhTdap) also shows unusual intermolecular π-interactions between five-membered diazaphosphole rings and the thallium atom giving infinite molecular chains in the crystal. In the square planar complex [Pd(C,N-C6H4CH2NMe2)(PhTdap)], κ(2)-bonded scorpionate has been detected in both solution and in the solid state. For other studied compounds with the central metal ion Ti(IV), Mo(II), Mn(I), Fe(II), Ru(II), Co(II), Co(III), Ni(II) and Cd(II), the κ(3)-N,N,N coordination pattern was observed. Electronic properties of PhTdap and its ligand-field strength were elucidated from UV-Vis spectra of transition-metal species. The CH/P replacement on going from tris(pyrazolyl)borate to the ligand PhTdap causes a slight increase in electronic density rendered to the central metal atom. The following order of ligand-field strength has been established: HB(3,5-Me2pz)3 PhB(pz)3 PhB(1,2,4-triazolyl) < PhTdap. The crystal structures of ten metal complexes bearing the new ligand are reported. The possibility of PhTdap coordination through the phosphorus atom is also briefly discussed. PMID:26537349

  5. Flexible Ligand Docking Using Differential Evolution

    Thomsen, René

    most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochastic search methods, such as evolutionary algorithms (EAs), can be used to sample large search spaces effectively and is one of the preferred methods for flexible ligand docking. The differential...... evolution algorithm (DE) is applied to the docking problem using the AutoDock program. The introduced DockDE algorithm is compared with the Lamarckian GA (LGA) provided with AutoDock, and the DockEA previously found to outperform the LGA. The comparison is performed on a suite of six commonly used docking...

  6. Study of the factors supporting the selective complexation of the trivalent lanthanide and actinide ions

    In order to obtain clear-cut information on the factors which favour the discrimination between trivalent actinides and lanthanides, we investigated the complexation of the tris(cyclopentadienyl) Ce(III) and U(III) compounds, (RCp)3M (R = tBu, SiMe3), with a series of monocyclic azines with distinct Lewis basicity and reduction potential. Coordination of pyrazine and 4,4' and 2,2'-bipyridines on the (RCp)3M complexes has also been studied. Of major interest is the reversible oxidation of the (RCp)3U species into the uranium(IV) [(RCp)3U]2(pyz) complexes by pyrazine. The presence of cooperativity in the binding of the cyclopentadienyl groups by U(III), due to late appearance of back-bonding, leads to a greater stabilization of the uranium(III) complexes. Complexation of the species Cp*2MI (M = Ce, U) by 2,2'-bipyridine, phenanthroline and ter-pyridine affords the adducts [Cp*2M(L)]I. For L = bipy and terpy, these compounds are reduced into Cp*2M(L). The magnetic data for [Cp*2M(terpy)]I and Cp*2M(terpy) are consistent with Ce(III) and U(III) species, with the formulation Cp*2MIII(terpy). An electron transfer reaction between these species was observed in NMR. Reactions of the [Cp*2M(terpy)]I and Cp*2M(terpy) complexes with H and H+ donor reagents lead to a clear differentiation of these trivalent ions. We studied the coordination of the stable N-heterocyclic carbene and isonitrile molecules on (RCp)3M and Cp*2MI; competition reactions and comparison of the crystal structures of the carbene compounds reveal the much better affinity of the NHC and tBuNC ligands for the 5f rather than for the 4f ion. (authors)

  7. Study of the factors supporting the selective complexation of the trivalent lanthanide and actinide ions; Etude des facteurs favorisant la complexation selective des ions lanthanides et actinides trivalents

    Mehdoui, T

    2005-09-15

    In order to obtain clear-cut information on the factors which favour the discrimination between trivalent actinides and lanthanides, we investigated the complexation of the tris(cyclopentadienyl) Ce(III) and U(III) compounds, (RCp)3M (R = tBu, SiMe3), with a series of monocyclic azines with distinct Lewis basicity and reduction potential. Coordination of pyrazine and 4,4' and 2,2'-bipyridines on the (RCp)3M complexes has also been studied. Of major interest is the reversible oxidation of the (RCp)3U species into the uranium(IV) [(RCp)3U]2(pyz) complexes by pyrazine. The presence of cooperativity in the binding of the cyclopentadienyl groups by U(III), due to late appearance of back-bonding, leads to a greater stabilization of the uranium(III) complexes. Complexation of the species Cp*2MI (M = Ce, U) by 2,2'-bipyridine, phenanthroline and ter-pyridine affords the adducts [Cp*2M(L)]I. For L = bipy and terpy, these compounds are reduced into Cp*2M(L). The magnetic data for [Cp*2M(terpy)]I and Cp*2M(terpy) are consistent with Ce(III) and U(III) species, with the formulation Cp*2MIII(terpy). An electron transfer reaction between these species was observed in NMR. Reactions of the [Cp*2M(terpy)]I and Cp*2M(terpy) complexes with H and H{sup +} donor reagents lead to a clear differentiation of these trivalent ions. We studied the coordination of the stable N-heterocyclic carbene and isonitrile molecules on (RCp)3M and Cp*2MI; competition reactions and comparison of the crystal structures of the carbene compounds reveal the much better affinity of the NHC and tBuNC ligands for the 5f rather than for the 4f ion. (authors)

  8. Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes.

    Xi, Zhenxing; Liu, Bin; Chen, Wanzhi

    2008-05-16

    The Kumada cross-coupling reaction of a variety of unactivated aryl chlorides, vinyl chlorides, and heteroaryl chlorides catalyzed by nickel(II) complexes containing pyridine-functionalized NHC ligands is described. The catalysts are so active that the reactions proceed at room temperature in excellent yields. PMID:18412386

  9. Physical limit to concentration sensing amid spurious ligands

    Mora, Thierry

    2015-01-01

    To adapt their behaviour in changing environments, cells sense concentrations by binding external ligands to their receptors. However, incorrect ligands may bind nonspecifically to receptors, and when their concentration is large, this binding activity may interfere with the sensing of the ligand of interest. Here, I derive analytically the physical limit to the accuracy of concentration sensing amid a large number of interfering ligands. A scaling transition is found when the mean bound time of correct ligands is twice that of incorrect ligands. I discuss how the physical bound can be approached by a cascade of receptor states generalizing kinetic proof-reading schemes.

  10. Unveiling the Importance of π-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags.

    Ruiz-Botella, Sheila; Peris, Eduardo

    2015-10-19

    This work describes the preparation of a series of pyrene-tagged N-heterocyclic carbene complexes of iridium, and their use in two benchmark borrowing hydrogen reactions: the reduction of ketones by transfer hydrogenation and the β-alkylation of secondary alcohols with primary alcohols. The detailed study of these homogeneously catalysed reactions reveals several important implications regarding the strong influence of the pyrene tags in the catalysts. First, the catalytic activity is partially inhibited by addition of an external amount of pyrene, but only when pyrene-tagged catalysts and aromatic substrates are used. Second, the rate order of the reaction is highly dependent on the nature of the substrates and the ligand. When pyrene-tagged catalysts and aromatic substrates are used, the reaction follows a zero-order dependence on the concentration of the substrate. All other combinations afford a second-order rate in the substrates. And third, the presence or absence of the pyrene functionality in the catalyst also influences the reaction order with respect to the concentration of the catalyst. Pyrene-containing catalysts display a fractional rate order of below 1. Finally, two pyrene-tagged catalysts were supported onto reduced-graphene oxide (rGO), and used as heterogeneous catalysts. While the dimetallic catalyst was effectively recycled 12 times, the monometallic catalyst maintained its activity for only three runs. PMID:26471441

  11. Cations and dications of heavier group 14 elements in low oxidation states.

    Swamy, V S V S N; Pal, Shiv; Khan, Shabana; Sen, Sakya S

    2015-08-01

    Cations and dications of heavier group 14 elements in their low oxidation state have received widespread attention in recent years. The journey started with the isolation of a series of cations of the composition [(C5Me5)E:](+) [E = Si-Pb], followed by the more recent isolation of a Ge(ii) dication encapsulated within a cryptand, a carbodiphosphorane stabilized [GeCl](+) monocation with a two coordinate Ge atom, Si(ii) cations and dications stabilized by N-heterocyclic carbenes (NHCs), which highlights the ongoing growth and interest in the chemistry of tetrel(ii) cations. This is presumably because the central atom (E) in these compounds contains two or three unoccupied valence orbitals as well as holds a lone pair of electrons. Such an electronic description represents ambiphilicity, which is of great interest for catalysis. The successful synthesis of divalent group 14 cations requires new synthetic strategies based on the sterically demanding neutral or monoanionic ligands, utilization of counter anions, and solvents with low nucleophilicity in order to minimize the degree of interactions with the cations. An alternative approach for the realization of divalent cations of group 14 elements is their coordination to the transition metals. This synthetic approach was successfully applied for the isolation of a range of transition metal coordinated divalent cations of group 14 elements. Apart from arousing academic interest some of these cations have found application as activators in the Ziegler-Natta polymerization of alkenes. PMID:26084389

  12. Coordinatively unsaturated ruthenium complexes as efficient alkyneazide cycloaddition catalysts

    Lamberti, Marina

    2012-01-23

    The performance of 16-electron ruthenium complexes with the general formula Cp*Ru(L)X (in which L = phosphine or N-heterocyclic carbene ligand; X = Cl or OCH2CF3) was explored in azidealkyne cycloaddition reactions that afford the 1,2,3- triazole products. The scope of the Cp*Ru(PiPr 3)Cl precatalyst was investigated for terminal alkynes leading to new 1,5-disubstituted 1,2,3-triazoles in high yields. Mechanistic studies were conducted and revealed a number of proposed intermediates. Cp*Ru- (PiPr3)(2-HCCPh)Cl was observed and characterized by 1H, 13C, and 31P NMR at temperatures between 273 and 213 K. A rare example of N,N-κ2-phosphazide complex, Cp*Ru(κ2- iPr3PN3Bn)Cl, was fully characterized, and a single-crystal X-ray diffraction structure was obtained. DFT calculations describe a complete map of the catalytic reactivity with phenylacetylene and/or benzylazide. © 2012 American Chemical Society.

  13. Re(I) NHC Complexes for Electrocatalytic Conversion of CO2.

    Stanton, Charles J; Machan, Charles W; Vandezande, Jonathon E; Jin, Tong; Majetich, George F; Schaefer, Henry F; Kubiak, Clifford P; Li, Gonghu; Agarwal, Jay

    2016-03-21

    The modular construction of ligands around an N-heterocyclic carbene building block represents a flexible synthetic strategy for tuning the electronic properties of metal complexes. Herein, methylbenzimidazolium-pyridine and methylbenzimidazolium-pyrimidine proligands are constructed in high yield using recently established transition-metal-free techniques. Subsequent chelation to ReCl(CO)5 furnishes ReCl(N-methyl-N'-2-pyridylbenzimidazol-2-ylidine)(CO)3 and ReCl(N-methyl-N'-2-pyrimidylbenzimidazol-2-ylidine)(CO)3. These Re(I) NHC complexes are shown to be capable of mediating the two-electron conversion of CO2 following one-electron reduction; the Faradaic efficiency for CO formation is observed to be >60% with minor H2 and HCO2H production. Data from cyclic voltammetry is presented and compared to well-studied ReCl(2,2'-bipyridine)(CO)3 and MnBr(2,2'-bipyridine)(CO)3 systems. Results from density functional theory computations, infrared spectroelectrochemistry, and chemical reductions are also discussed. PMID:26950549

  14. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine, and by...... the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops...

  15. Ligand iron catalysts for selective hydrogenation

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  16. A versatile dinucleating ligand containing sulfonamide groups

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa; Haìškansson, Mikael; Bendix, Jesper; McKenzie, Christine

    2014-01-01

    Copper, iron, and gallium coordination chemistries of the new pentadentate bis-sulfonamide ligand 2,6-bis(N-2-pyridylmethylsulfonamido)-4-methylphenol (psmpH3) were investigated. PsmpH3 is capable of varying degrees of deprotonation, and notably, complexes containing the fully trideprotonated...

  17. Identification of ligands for bacterial sensor proteins.

    Fernndez, Matilde; Morel, Bertrand; Corral-Lugo, Andrs; Rico-Jimnez, Miriam; Martn-Mora, David; Lpez-Farfn, Diana; Reyes-Darias, Jos Antonio; Matilla, Miguel A; Ortega, lvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria. PMID:26511375

  18. Supramolecular architectures constructed using angular bipyridyl ligands

    Barnett, S A

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  19. Oxidative degradation of the organometallic iron(II) complex [Fe{bis[3-(pyridin-2-yl)-1H-imidazol-1-yl]methane}(MeCN)(PMe3)](PF6)2: structure of the ligand decomposition product trapped via coordination to iron(II).

    Haslinger, Stefan; Pthig, Alexander; Cokoja, Mirza; Khn, Fritz E

    2015-12-01

    Iron is of interest as a catalyst because of its established use in the Haber-Bosch process and because of its high abundance and low toxicity. Nitrogen-heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron-NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1'-bis(pyridin-2-yl)-2,2-bi(1H-imidazole)-?N(3)][3,3'-bis(pyridin-2-yl-?N)-1,1'-methanediylbi(1H-imidazol-2-yl-?C(2))](trimethylphosphane-?P)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C-C-coupled biimidazole, is trapped by coordination to still-intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions. PMID:26632838

  20. Synthesis and spectra of mixed-ligand monophthalocyanine complexes of rare earth elements with bidentate oxygen-containing ligands

    Methods of electron, Raman and infrared spectroscopy were used to study mixed-ligand monophthalocyanine complexes of rare earth elements with axial oxygen-containing ligands. It is shown that effective symmetry of phthalocyanine ligand in this compounds is D4h. Complexes, containing beta-diketone as axial ligand, have similar spectral characteristics and differ from complexes with acetate axial ligands. This is connected with higher degree of covalence of metal-axial ligand bond in complexes of the first type. Refs. 23, figs. 3, tabl. 3

  1. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with ?-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  2. Substrate coated with receptor and labelled ligand for assays

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine (125I) and the receptor is digoxin antibody. (U.K.)

  3. Fluorescent GPCR ligands as new tools in pharmacology.

    Kuder, Kamil; Kie?-Kononowicz, Katarzyna

    2008-01-01

    The expansion of fluorescent techniques for studying the ligand-receptor interaction resulted in a burst of the novel fluorescent ligands development. The discovery of the ligand, that is of high affinity to the receptor and whose localization could be easily visualized, even on the single cell level, gave the researchers a strong impulse to investigate that field of GPCR ligands. Moreover, paying attention to the "non pharmacological" advantages of these ligands, as well as the techniques to be used, fluorescent ligands are becoming treated more seriously, as the ligands themselves, and as novel, useful tools for studying GPCRs. Herein, we review results described in the literature, starting from the year 2000, in the field of the fluorescent GPCR small, non-peptide ligands according to the affinity to the selected receptors (histamine, adenosine, adrenergic, cannabinoid, muscarinie, neuropeptide Y and serotonine) as well as the fluorophores that have been used to tag the molecules. PMID:18781940

  4. Cloud Computing for Protein-Ligand Binding Site Comparison

    Che-Lun Hung; Guan-Jie Hua

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We hav...

  5. Therapeutic targeting of pancreatic cancer utilizing sigma-2 ligands

    Hornick, John R; Spitzer, Dirk; Goedegebuure, Peter; Mach, Robert H.; Hawkins, William G.

    2012-01-01

    One major barrier in the development of pancreas cancer therapeutics is the selective delivery of the drugs to their cellular targets. We have developed previously several sigma-2 ligands and reported the discovery of a component of the receptor for these ligands. Several sigma-2 ligands have been shown to trigger apoptosis in pancreas cancer cells. More importantly sigma-2 ligands are internalized rapidly by the cancer cells, and are capable of delivering other small molecule therapeutics. H...

  6. Dispersion forces and counterintuitive steric effects in main group molecules: heavier group 14 (Si-Pb) dichalcogenolate carbene analogues with sub-90° interligand bond angles.

    Rekken, Brian D; Brown, Thomas M; Fettinger, James C; Lips, Felicitas; Tuononen, Heikki M; Herber, Rolfe H; Power, Philip P

    2013-07-10

    The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features-the most notable of which is their strong tendency to display acute interligand, Ch-M-Ch, bond angles that are often well below 90°. Furthermore, and contrary to normal steric expectations, the interligand angles were found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, including corrections for dispersion effects, led to the conclusion that dispersion forces play an important role in stabilizing their acute interligand angles. PMID:23725368

  7. Mixed ligands complexes of cadmium(II) involving nitrilotriacetic acid

    Formation and equilibria of mixed ligand cadmium(II) complexes involving nitrilotriacetic acid (NTA) and other ligands (L) have been investigated. Result s of pH-titration measurements have shown the formation of 1:1:1 mixed ligand comp lexes. Equilibrium constants of the complexes formed have been calculated. The mode of chelation has been deduced. (author). 27 refs

  8. Gas-phase ligand loss and ligand substitution reactions of platinum(II) complexes of tridentate nitrogen donor ligands.

    Wee, Sheena; O'Hair, Richard A J; McFadyen, W David

    2004-01-01

    The source of protons associated with the ligand loss channel of HX((n - 1)+) from [Pt(II)(dien)X](n+) (X = Cl, Br and I for n = 1 and X = NC(5)H(5) for n = 2) in the gas phase was investigated by deuterium-labelling studies. The results of these studies indicate that these protons originate from both the amino groups and the carbon backbone of the dien ligand. In some instances (e.g. X = Br and I), the protons lost from the carbon backbone can be even more abundant than the protons lost from the amino groups. The gas-phase substitution reactions of coordinatively saturated [Pt(II)(L(3))L(a)](2+) complexes (L(3) = tpy or dien) were also examined using ion-molecule reactions. The outcome of the ion-molecule reactions depends on both the ancillary ligand (L(3)) as well as the leaving group (L(a)). [Pt(II)(tpy)L(a)](2+) complexes undergo substitution reactions, with a faster rate when L(a) is a good leaving group, while the [Pt(II)(dien)L(a)](2+) complex undergoes a proton transfer reaction. PMID:15164352

  9. CHEMOMETRIC ANALYSIS OF LIGAND RECEPTOR COMPLEMENTARITY: IDENTIFYING COMPLEMENTARY LIGANDS BASED ON RECEPTOR INFORMATION (CoLiBRI)

    Oloff, Scott; Zhang, Shuxing; Sukumar, Nagamani; Breneman, Curt; Tropsha, Alexander

    2006-01-01

    We have developed a novel structure-based approach to search for Complimentary Ligands Based on Receptor Information (CoLiBRI). CoLiBRI is based on the representation of both receptor binding sites and their respective ligands in a space of universal chemical descriptors. The binding site atoms involved in the interaction with ligands are identified by the means of computational geometry technique known as Delaunay tessellation as applied to x-ray characterized ligand-receptor complexes. TAE/...

  10. LIGAND database for enzymes, compounds and reactions.

    Goto, S; Nishioka, T.; Kanehisa, M.

    1999-01-01

    LIGAND is a composite database consisting of three sections and containing the information of chemical substances, chemical reactions and enzymes that catalyze reactions. The COMPOUND section is a collection of metabolic compounds, as well as macromolecules, chemical elements and other chemical substances in a living cell. The ENZYME section is a collection of all known enzymatic reactions, together with the information of enzyme molecules, classified according to the EC (Enzyme Commission) n...

  11. Polyfluoroalkylated tripyrazolylmethane ligands: Synthesis and complexes

    Skalická, V.; Rybáčková, M.; Skalický, M.; Kvíčalová, Magdalena; Cvačka, Josef; Březinová, Anna; Čejka, J.; Kvíčala, J.

    2011-01-01

    Roč. 132, č. 7 (2011), s. 434-440. ISSN 0022-1139 R&D Projects: GA MŠk ME 857; GA MŠk ME09114 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40550506 Keywords : tripyrazolylmethane * Tpm * tripyrazolylethanol * fluorinated * perfluoroalkylation * ligand Subject RIV: CC - Organic Chemistry Impact factor: 2.033, year: 2011

  12. Novel fenofibrate derivatives as cannabinoid receptor ligands

    Spencer, Sarah Jane

    2011-01-01

    Fenofibrate is a PPARα agonist, used to treat dyslipidemia. Unpublished work that has been previously carried out in our group has identified that fenofibrate also displays affinity for the cannabinoid receptors, CB1 and CB2. A dual receptor ligand, with the PPARα agonist activity of fenofibrate, combined with antagonist activity at the CB1 receptor, or agonist activity at the CB2 receptor, could reduce appetite, decrease plasma triglyceride levels, increase high density lipoprotein (HDL)...

  13. Applications of surface ligand design to flotation

    Rio Echevarria, Iria M.

    2007-01-01

    This thesis involves the design, synthesis and testing of organic hydrophobic ligands. They would act as co-collectors in froth flotation processes to enhance the recovery of sulfidic minerals which have undergone some oxidation on processing and are not efficiently collected by the commercial reagents used in froth flotation. Strong and selective binding to iron(III) oxide/hydroxide surfaces, e.g. goethite, over unwanted silicaceous material was considered essential criteria f...

  14. The ligands of CXCR4 in vascularization

    Tuchscheerer, Nancy

    2012-01-01

    The formation of a functional and integrated vascular network is a basic process in the growth and maintenance of tissues and can be established by two forms of blood vessel growth in adults: angiogenesis and arteriogenesis. In this study, the ligands of the chemokine receptor CXCR4 and its role in angiogenesis (represented by the experimental myocardial infarction) and arteriogenesis (represented by the murine hind limb ischemia model) was investigated. The first approach identified the CXCL...

  15. Selective oxoanion separation using a tripodal ligand

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  16. Imidazole Schiff base ligands: Synthesis, coordination complexes and biological activities

    McGinley, John; McCann, Malachy; Ni, Kaijie; Tallon, Theresa M.; Kavanagh, Kevin; Devereux, Michael; Ma, Xiaomei; McKee, Vickie

    2013-01-01

    1-(3-Aminopropyl)imidazole (Apim) reacts with salicylaldeh yde and a selection of imidazole aldehydes and the resulting Schiff base ligands readily coordinate to Zn(II), Cu(II) and Ag(I) centres. X-ray crystal structures were obtained for two of the free ligands and also the Ag(I) complex of the Apim-salicylaldehyde ligand. Encouragingly, all of free ligands and most of their metal complexes are relatively non-toxic, in vivo , towards Galleria mellonella . Although the free ligand...

  17. The Recognition of Identical Ligands by Unrelated Proteins.

    Barelier, Sarah; Sterling, Teague; O'Meara, Matthew J; Shoichet, Brian K

    2015-12-18

    The binding of drugs and reagents to off-targets is well-known. Whereas many off-targets are related to the primary target by sequence and fold, many ligands bind to unrelated pairs of proteins, and these are harder to anticipate. If the binding site in the off-target can be related to that of the primary target, this challenge resolves into aligning the two pockets. However, other cases are possible: the ligand might interact with entirely different residues and environments in the off-target, or wholly different ligand atoms may be implicated in the two complexes. To investigate these scenarios at atomic resolution, the structures of 59 ligands in 116 complexes (62 pairs in total), where the protein pairs were unrelated by fold but bound an identical ligand, were examined. In almost half of the pairs, the ligand interacted with unrelated residues in the two proteins (29 pairs), and in 14 of the pairs wholly different ligand moieties were implicated in each complex. Even in those 19 pairs of complexes that presented similar environments to the ligand, ligand superposition rarely resulted in the overlap of related residues. There appears to be no single pattern-matching "code" for identifying binding sites in unrelated proteins that bind identical ligands, though modeling suggests that there might be a limited number of different patterns that suffice to recognize different ligand functional groups. PMID:26421501

  18. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  19. Dispersion Forces and Counterintuitive Steric Effects in Main Group Molecules: Heavier Group 14 (Si-Pb) Dichalcogenolate Carbene Analogues with Sub-90° Interligand Bond Angles

    Rekken, Brian; Brown, Thomas; Fettinger, James; Lips, Felicitas; TUONONEN, Heikki; Herber, Rolfe; Power, Philip

    2013-01-01

    The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features—the most notable of which is their strong tendency to display acute interligand, Ch–M–Ch, bond angles that are often well below 90°. Furthermore, and contrary to norm...

  20. M(0) - Aminocarbene complexes (M = Cr, W, Fe): Redox Behavior Tuned by Metal and/or ligand modification

    Hoskovcová, I.; Roháčová, J.; Dvořák, D.; Ludvík, Jiří

    2006-01-01

    Roč. 2, č. 23 (2006), s. 87-95. ISSN 1938-5862 R&D Projects: GA ČR GA203/04/0487 Institutional research plan: CEZ:AV0Z40400503 Keywords : carbene complexes * electrochemistry Subject RIV: CG - Electrochemistry

  1. Tungsten acetonitrile complexes, containing nitrosyl ligand

    Synthesized are tungsten acetonitrile derivatives, containing nitrosyl ligand. In a course of boiling W(CO)4(NO)I-(1) at the excess of acetonitrile there is formed bis-(acetonitrile)-dicarbonilenitrosyltungsteniod-(2): W(CO)4(NO)I+2CH3CN ? 2CO+(CH3CN)2W(CO)2(NO)I-(2). Investigation in reactionary ability of compound (2) is carried out. It is shown that at the reaction of acetonitrile complex (2) with two equivalents of triphenylphosphine depending on reaction conditions formed is a number of products

  2. Metal mediated template synthesis of ligands

    Costisor, Otilia

    2004-01-01

    This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role

  3. New ligands for the asymmetric dihydroxylation

    Becker, H.; King, S.B.; Richardson, P. [Scripps Research Institute, La Jolla, CA (United States)] [and others

    1995-12-31

    The asymmetric dibydroxylation of olefins in the presence of cinchona alkaloid derivatives (the AD reaction) has proven to be a reliable method in organic syntheses. For most olefins, the enantioselectivities using the {open_quotes}standard{close_quotes} phathalazine ligands are excellent; however, facial selectivity is still moderate for some olefins. 2,3-Diphenyl pyrazinopyridazine (DPP) and anthraquinone (AQN) as spacers for the {open_quotes}pseudo enantiomeric{close_quotes} alkaloids dihydroquinidine (DHQD) or dihydroquinine (DHQ) give superior enantioselectivities for almost all olefins.

  4. Transmutable nanoparticles with reconfigurable surface ligands

    Kim, Youngeun; Macfarlane, Robert J.; Jones, Matthew R.; Mirkin, Chad A.

    2016-02-01

    Unlike conventional inorganic materials, biological systems are exquisitely adapted to respond to their surroundings. Proteins and other biological molecules can process a complex set of chemical binding events as informational inputs and respond accordingly via a change in structure and function. We applied this principle to the design and synthesis of inorganic materials by preparing nanoparticles with reconfigurable surface ligands, where interparticle bonding can be programmed in response to specific chemical cues in a dynamic manner. As a result, a nascent set of “transmutable nanoparticles” can be driven to crystallize along multiple thermodynamic trajectories, resulting in rational control over the phase and time evolution of nanoparticle-based matter.

  5. Scorpionates the coordination chemistry of polypyrazolylborate ligands

    Trofimenko, Swiatoslaw

    1999-01-01

    This book deals with polypyrazolylborates (scorpionates), a class of ligands known since 1966, but becoming rapidly popular with inorganic, organometallic and coordination chemists since 1986, because of their versatility and user-friendliness. They can be readily modified sterically and electronically through appropriate substitution on the pyrazole ring and on boron, and have led to a number of firsts in coordination chemistry (first stable CuCO complex, first monomeric MgR complex, and many other such firsts). Their denticity can range from two to four, their "Bite" can be adjusted, and add

  6. Mixed ligand oxovanadium(IV) complexes with salicylic acid and N,N-bidentate ligands

    Two mixed-ligand oxovanadium(IV) complexes VO(A)(B) [where H2A=salicylic acid and B=2,2'-bipyridine or 1,10-phenanthroline (hereafter, bipy and phen respectively)] have been synthesized and characterized by magnetic moment and spectral (IR, UV/VIS and EPR) data. The A2- ion acts as a bidentate dinegative ligand while B ligands acts as a neutral bidentate. The magnetic susceptibility values indicate the existence of a small amount of antiferromagnetic interaction. The vanadium atoms in the complexes are hexacoordinated and the coordination sphere is of the type [VO(OO)(NN)], where O atoms are of oxo, carboxylic and phenolic type and N atoms are of pyridine type. The sixth coordination site is occupied by phenolic oxygen of the neighbouring molecule forming a bridge. The vv=o confirms the hexacoordination. All the complexes have dxy1 type axial EPR spectra and they exhibit two ligand field transitions at 740 and 440 nm. (author)

  7. Mixed ligand chelates of rare earths in aqueous solution

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC104. The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  8. Acetate binding induces fluorescence enhancement in tryptophan ligands

    The anion coordination properties of bis-tryptophan dicarboxamide ligands 13 were investigated using fluorescence and 1H NMR spectroscopy. It was observed that the coordination of acetate anions to these ligands produced emissions at 381 nm with gradual enhancement of fluorescence. In comparison, fluoride produced minor enhancement, the addition of chloride, bromide and nitrate anions caused quenching of ligand fluorescence. 1H NMR studies revealed that the ligands coordinated to the acetate anions through the indole and amide NH groups. -- Highlights: We have synthesized and characterized three tryptophan-based diamide ligands 13. We have reported new polymorph of ligand 1 (Crystal structure) in this article. The role of intramolecular hydrogen bonding (1 vs. 2) in anion binding was investigated. We were able to identify the role amide/indole NH in anion binding using 1H NMR. On the basis of 1H NMR, we have established role of aromatic CHanion interactions during anion complexation

  9. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  10. Do organic ligands affect calcite dissolution rates?

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bnzeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  11. Is cyanide really a strong-field ligand?

    Nakamura, Mikio

    2009-01-01

    Iron man or weakling? Ligand-field strengths are conveniently expressed by the empirical spectrochemical series. Although cyanide has been deeply entrenched as a strong-field ligand, a couple of recent examples cast doubt toward the position of this ligand, namely the high-spin (S = 2) states of [Cr(II)(CN)(5)](3-) and [Fe(II)(tpp)(CN)](-). tpp = meso-tetraphenylporphinate. PMID:19222066

  12. Including Ligand Induced Protein Flexibility into Protein Tunnel Prediction

    Kingsley, Laura J.; Lill, Markus A

    2014-01-01

    In proteins with buried active sites, understanding how ligands migrate through the tunnels that connect the exterior of the protein to the active site can shed light on substrate specificity and enzyme function. A growing body of evidence highlights the importance of protein flexibility in the binding site upon ligand binding; however, the influence of protein flexibility throughout the body of the protein during ligand entry and egress is much less characterized. We have developed a novel t...

  13. Superior serum half life of albumin tagged TNF ligands

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  14. Riboswitch Structure: an Internal Residue Mimicking the Purine Ligand

    Delfosse, V.; Bouchard, P; Bonneau, E; Dagenais, P; Lemay, J; Lafontaine, D; Legault, P

    2009-01-01

    The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson-Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39-C65 and A39-U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.

  15. Single-incubation immunoassay for a multivalent ligand

    In a two-site immunoassay method for a multivalent ligand using a single incubation, the ligand, labelled receptor for the ligand and unlabelled receptor for the ligand covalently bound to a solid-phase support are incubated as a stable suspension to produce a solid and liquid phase. The solid and liquid phases are separated from each other and the labelled receptor in either phase is quantified. The method has particular application as an assay for human thyroid stimulating hormone using purified, radioactively labelled antibodies and unlabelled antibodies covalently bound to hydrolyzed polyacrylamide particles. (author)

  16. Spectra of fluorinated rare earth. beta. -diketonates with added ligands

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I. (AN Belorusskoj SSR, Minsk. Inst. Fiziki; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated ..beta..-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes.

  17. Superior serum half life of albumin tagged TNF ligands

    Mueller, Nicole [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany); Schneider, Britta; Pfizenmaier, Klaus [Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart (Germany); Wajant, Harald, E-mail: harald.wajant@mail.uni-wuerzburg.de [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany)

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  18. Ultrafast heme-ligand recombination in truncated hemoglobin HbO from Mycobacterium tuberculosis: A ligand cage

    Jasaitis, Audrius; Ouellet, Hugues; Lambry, Jean-Christophe; Martin, Jean-Louis; Friedman, Joel M.; Guertin, Michel; Vos, Marten H.

    2012-03-01

    Truncated hemoglobin HbO from Mycobacterium tuberculosis displays very slow exchange of diatomic ligands with its environment. Using femtosecond spectroscopy, we show that upon photoexcitation, ligands rebind with unusual speed and efficiency. Only ˜1% O2 can escape from the heme pocket and less than 1% NO. Most remarkably, CO rebinding occurs for 95%, predominantly in 1.2 ns. The general CO rebinding properties are unexpectedly robust against changes in the interactions with close by aromatic residues Trp88 (G8) and Tyr36 (CD1). Molecular dynamics simulations of the CO complex suggest that interactions of the ligand with structural water molecules as well as its rotational freedom play a role in the high reactivity of the ligand and the heme. The slow exchange of ligands between heme and environment may result from a combination of hindered ligand access to the heme pocket by the network of distal aromatic residues, and low escape probability from the pocket.

  19. Application of phage display for ligand peptidomics to identify peptide ligands binding to AQP2-expressing membrane fractions.

    Lee, Byung-Heon; Kwon, Tae-Hwan

    2013-01-01

    In vitro phage display represents an emerging and innovative technology for the rapid isolation of high-affinity peptide ligands. Phage display technologies using phages comprising a vast library of peptides have become fundamental to the isolation of high-affinity binding ligands for diagnostic and therapeutic applications, e.g., ligand proteomics, discovery of novel protein-protein interactions, antibody engineering, targeted delivery of therapeutic agents, and development of imaging probes. This chapter describes the procedures for phage display selection of peptide ligands that selectively bind to aquaporin-2-expressing membrane fractions of rat kidney. PMID:23765627

  20. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright 2015 John Wiley & Sons, Ltd. PMID:26639792

  1. Constitutive and ligand-induced TCR degradation

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert; Rasmussen, Anette Bødker; Lauritsen, Jens Peter H; Nielsen, Bodil L; Geisler, Carsten

    2004-01-01

    Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several...... divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down-regulation and...... degradation. We found that the TCR subunits in nonstimulated Jurkat cells were degraded with rate constants of approximately 0.0011 min(-1), resulting in a half-life of approximately 10.5 h. Triggering of the TCR by anti-TCR Abs resulted in a 3-fold increase in the degradation rate constants to approximately...

  2. Technetium radiodiagnostic fatty acids derived from bisamide bisthiol ligands

    Jones, Alun G. (Newton Centre, MA); Lister-James, John (Wellesley, MA); Davison, Alan (Needham, MA)

    1988-05-24

    A bisamide-bisthiol ligand containing fatty acid substituted thiol useful for producing Tc-labelled radiodiagnostic imaging agents is described. The ligand forms a complex with the radionuclide .sup.99m Tc suitable for administration as a radiopharmaceutical to obtain images of the heart for diagnosis of myocardial disfunction.

  3. Thorium coordination compounds with nitrogen-containing ligands

    Thorium coordination compounds with nitrogen-containing ligands such as aliphatic mono- and diamines, ethanolamine, nicotinic acid and isoamyl ester of nicotinic acid are considered. The data of infrared and roentgenoelectron spectroscopy have been used to discuss the character of ligand coordination with thorium

  4. Designing Ligand-Enhanced Optical Absorption of Thiolated Gold Nanoclusters

    Sementa, Luca; Barcaro, Giovanni; Dass, Amala; Stener, Mauro; Fortunelli, Alessandro

    2015-05-07

    The optical spectra of thiolated Au25(SR)18/Au23(SR)16 clusters with different R residues are investigated via TDDFT simulations. Significant enhancements in the optical region and effective electron delocalization are simultaneously achieved by tuning the ligands' steric hindrance and electronic conjugating features, producing a resonance phenomenon between the Au–S core motif and the ligand fragments.

  5. Structural requirements for ligands of the δ-opioid receptor

    VUK I. MIĆOVIĆ

    2009-11-01

    Full Text Available The δ-opioid receptor is sensitive to ligand geometry. In order to assist the synthesis of new δ-selective opioid ligands, the structure elements of δ-selective opioid ligands necessary for their effective binding were investigated. The automated docking procedure with a flexible ligand was used to simulate the binding of 17 δ-selective ligands to the δ-receptor. It was found that voluminous N-alkyl groups reduce the binding potency of naltrindole derivatives by preventing the ligands from adopting the preferred conformation in the receptor. This was confirmed by enantiospecific binding of chiral compounds where only one enantiomer adopts the naltrindole-like preferred conformation in the binding pocket. Voluminous groups replacing the hydroxyl group in the 3-hydroxybenzyl fragment of naltrindole analogs reduce the binding potency due to unfavorable steric interactions with the receptor. The two diastereoisomers of the potent δ-opioid ligand SNC80 confirmed the preferred binding conformation and the major receptor–ligand interactions.

  6. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    Kristensen, Thomas Greve; Pedersen, Christian Storm

    When designing novel drugs, the need arise to screen large databases of drug candidates (small synthesizable chemical structures) for structures that resemble active ligands, i.e. small chemical structures that are known to react with the target protein. If several active ligands are known one mi...

  7. Polymerization catalysts containing electron-withdrawing amide ligands

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  8. Immobilisation of ligands by radio-derivatized polymers

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  9. Ligand exchange study of bis(diethyldithiocarbamate) cadmium (II) complex

    The exchange behaviour of ligand in bis(diethyldithio carbamate) cadmium (II) complex has been studied at 25degC and 35degC varying the concentration of both ligand and the complex. The results show that the complex is kinetically labile. Temperature has increased the rate of reaction. Concentration has significant effect on the reaction rate. (author). 8 refs., 4 tabs

  10. Labeling of amine ligands with sup(99m)Tc in aqueous solutions by ligand exchange

    Volkert, W.A.; Troutner, D.E.; Holmes, R.A. (Missouri Univ., Columbia (USA). Dept. of Radiology; Missouri Univ., Columbia (USA). Dept. of Chemistry; Harry S. Truman Memorial Veterans Hospital, Columbia, MO (USA). Nuclear Medicine Service)

    1982-10-01

    Cyclam, ethylenediamine (EN) and a linear tetraamine (TA) form structurally similar complexes in high yields when pertechnetate is reduced with Sn(II) in aqueous solutions. Efficient labeling of these amine ligands is also accomplished by transfer of sup(99m)Tc from its complexes with diethylenetriaminepentaacetate (DTPA) and citrate. The labeling yields of cyclam, TA and EN using (sup(99m)Tc)DTPA are greater than 95% after standing for 30 min at room temperature in 0.03 M solutions of the amine ligands at pH above 11, but less than 10% at pH below 9. Yields of greater than 90% are obtained using (sup(99m)Tc)citrate under similar conditions at pH 7 or greater. Ethylenediamine-N,N'-diacetic acid (ENDA) also forms a complex with sup(99m)Tc that exhibits pH dependent stability characteristics that are the same as those of (sup(99m)Tc)EN. The labeling efficiency of ENDA with sup(99m)Tc as a function of pH is nearly identical to that of the other amine ligands.

  11. Impact of receptor-ligand distance on adhesion cluster stability

    Erdmann, T

    2006-01-01

    Cells in multicellular organisms adhere to the extracellular matrix through two-dimensional clusters spanning a size range from very few to thousands of adhesion bonds. For many common receptor-ligand systems, the ligands are tethered to a surface via polymeric spacers with finite binding range, thus adhesion cluster stability crucially depends on receptor-ligand distance. We introduce a one-step master equation which incorporates the effect of cooperative binding through a finite number of polymeric ligand tethers. We also derive Fokker-Planck and mean field equations as continuum limits of the master equation. Polymers are modeled either as harmonic springs or as worm-like chains. In both cases, we find bistability between bound and unbound states for intermediate values of receptor-ligand distance and calculate the corresponding switching times. For small cluster sizes, stochastic effects destabilize the clusters at large separation, as shown by a detailed analysis of the stochastic potential resulting fro...

  12. Identification of Leukocyte E-selectin Ligands, P-selectin Glycoprotein Ligand-1 and E-selectin Ligand-1, on Human Metastatic Prostate Tumor Cells

    Dimitroff, Charles J; Descheny, Leyla; Trujillo, Natalia; Kim, Robert; Nguyen, Van Vuong; Huang, Wei; Pienta, Kenneth J.; Kutok, Jeffery L.; Rubin, Mark A

    2005-01-01

    Prostate tumor cells, which characteristically metastasize to bone, initiate binding interactions with bone marrow endothelium under blood flow conditions through binding interactions with E-selectin. We hypothesized that E-selectin ligands on prostate tumor cells are directly associated with bone-metastatic potential. In this report, we elucidate the identity of E-selectin ligands on human metastatic prostate tumor cells and examine their association with prostate tumor progression and metas...

  13. Dinuclear iridium and rhodium complexes with bridging arylimidazolide-N(3),C(2) ligands: synthetic, structural, reactivity, electrochemical and spectroscopic studies.

    He, Fan; Ruhlmann, Laurent; Gisselbrecht, Jean-Paul; Choua, Sylvie; Orio, Maylis; Wesolek, Marcel; Danopoulos, Andreas A; Braunstein, Pierre

    2015-10-21

    Deprotonation of 1-arylimidazoles (aryl = mesityl (Mes), 2,6-diisopropylphenyl (Dipp)), with n-butyl lithium afforded the corresponding derivatives (1-aryl-1H-imidazol-2-yl)lithium (1a, Ar = Mes; 1b, Ar = Dipp) in good yield. Reaction of 1a with 0.5 equiv. of [Ir(cod)(?-Cl)]2 yielded two geometrical isomers of a doubly C2,N3-bridged dinuclear complex [Ir(cod){?-C3H2N2(Mes)-?C2,?N3}]2 (3), 3H-H, a head-to-head (H-H) isomer of CS symmetry, and 3H-T, the thermodynamically preferred head-to-tail (H-T) isomer of C2 symmetry. The metallated carbon of the 4 electron donor anionic bridging ligands has some carbene character, reminiscent of the situation in N-metallated protic NHC complexes. Displacement of cod ligands from 3H-H and 3H-T afforded the tetracarbonyl complexes [Ir(CO)2{?-C3H2N2(Mes)-?C2,?N3}]24H-H and 4H-T, respectively. The reaction with PMe3, which gave only one complex, [Ir(CO)(PMe3){?-C3H2N2(Mes)-?C2,?N3}]2 (5), demonstrates that the isomerization of the central core Ir[?-C3H2N2(Mes)-?C2,?N3]2Ir from H-H to H-T on going from 4H-H to 5 is readily triggered by phosphine substitution under mild conditions. Oxidative-addition of MeI to 5 afforded the formally metal-metal bonded d(7)-d(7) complex [Ir2(CO)2(PMe3)2(Me)I{?-C3H2N2(Mes)-?C2,?N3}2] (6). The blue [Ir(C2H4)2{?-C3H2N2(Mes)-?C2,?N3}]2 (7) and purple [Rh(C2H4)2{?-C3H2N2(Dipp)-?C2,?N3}]2 (9) tetraethylene complexes were also obtained with only a H-T arrangement of the bridging ligands. Although only modestly efficient in alkane dehydrogenation, complex 7 was found to be a more active pre-catalyst than 3H-T, 4H-T and 5, probably because of the favorable lability of the ethylene ligands. From cyclic voltammetry, exhaustive coulometry and spectroelectrochemistry studies, it was concluded that 3H-T undergoes a metal-based one electron oxidation to generate the mixed-valent Ir(i)/Ir(ii) system. The energy of the intervalence band for the orange dirhodium complex [Rh(cod){?-C3H2N2(Mes)-?C2,?N3}]2 (8) is shifted toward lower energies in comparison with 3H-T, reflecting the decrease of the energy with the intermetallic distance. It was concluded from the EPR study that the Ir and Rh centres contribute substantially to the experimental magnetic anisotropy and thus to the singly occupied molecular orbital (SOMO) in the mixed-valent Ir(i)/Ir(ii) and Rh(i)/Rh(ii) systems. The molecular structures of 3H-H, 3H-T, 8 and 9 have been determined by X-ray diffraction. PMID:26226202

  14. Regulation mechanisms of the FLT3-ligand after irradiation

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis, especially during induced bone marrow aplasia. (author)

  15. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  16. HARNESSING THE CHEMISTRY OF CO2

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  17. Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization

    Structures of the Grb2 SH2 domain complexed with a series of flexible and constrained replacements of the phosphotyrosine residue in tripeptides derived from Ac-pYXN (where X = V, I, E and Q) were compared to determine what, if any, structural differences arise as a result of ligand preorganization. Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH2 (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of proteinligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of each flexible/constrained ligand pair were generally similar to those observed upon comparing such contacts in coexisting complexes. The average adjusted B factors of the backbone atoms of the domain and loop regions are significantly greater in the complexes of constrained ligands than in the complexes of the corresponding flexible ligands, suggesting greater thermal motion in the crystalline state in the former complexes. There was no apparent correlation between variations in crystal packing and observed structural differences or similarities in the complexes of flexible and constrained ligands, but the possibility that crystal packing might result in structural variations cannot be rigorously excluded. Overall, it appears that there are more variations in the three-dimensional structure of the protein and the ligand in complexes of the constrained ligands than in those of their more flexible counterparts

  18. Effective modulation of lanthanide luminescence functions via stereo-controlled ligand synthesis: Effects of ligand chirality on lanthanide anion sensing

    A new synthetic approach to specific ligands for lanthanide coordination and luminescence sensing is reviewed: stereo-controlled synthesis of tripodal ligands; their lanthanide complexation; and chirality tuning of anion-responsive luminescence functions. A series of tris(2-pyridylmethyl)amine ligands was synthesized in a stereo-controlled fashion. They formed stable complexes with several lanthanide cations via cooperative action of three pyridine donors and tertiary nitrogen atom. Their Eu3+ and Tb3+ complexes gave intense luminescence signals, the intensity of which was specifically amplified by the addition of external guest anions. The use of stereo-controlled ligands effectively enhanced the anion sensitivity in lanthanide luminescence sensory process. Since this type of chiral lanthanide complexes offered visual sensing of Cl- or NO3- anion, further combinations of stereo-controlled ligands and functional lanthanide centers have broad applications in the generation of novel lanthanide functions

  19. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  20. Unusual carbon monoxide activation, reduction, and homologation reactions of 5f-element organometallics: the chemistry of carbene-like dihaptoacyls

    This article reviews recent results on the chemical, spectral and structural properties of bis(pentamethylcyclopentadienyl) thorium and uranium dihaptoacyl complexes produced by migratory insertion of carbon monoxide into actinide-carbon sigma bonds. The high coordinative unsaturation and oxygen affinity of the ligation environment produces a marked perturbation of the bonding and reactivity toward that of a coordinated oxycarbene: M(eta2-OCR). Reactivity patterns observed include hydrogen atom and trimethylsilyl migration to the acyl carbon, as well as coupling with additional carbon monoxide to produce a dimeric complex of the enedionediolate ligand, OC(R)(anti O)C=C(anti O)(R)CO. The dihaptoacyls insert into the Th-H bond of ]Th[(CH3)5C5]2H2]2. For Th[(CH3)5C5]2[eta2-COCH2C(CH3)3]Cl, this results, via β-hydride elimination, in catalytic isomerization to Th[(CH3)5C5]2-[trans-OC(H)=C(H)C(CH3)3]. In the presence of hydrogen gas, the hydride catalytically hydrogenates the dihaptoacyls to alkoxides (M(eta2-COR)→M-OCH2R). Mechanistic studies include kinetic measurements as well as isotopic labelling and stereochemical analysis. 102 references

  1. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  2. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis, especially during induced bone marrow aplasia. (author)

  3. Exchange Kinetics of a Hydrophobic Ligand Binding Protein

    Vaughn, Jeff; Stone, Martin

    2002-03-01

    Conformational fluctuations of proteins are thought to be important for determining the functional roles in biological activity. In some cases, the rates of these conformational changes may be directly correlated to, for example, the rates of catalysis or ligand binding. We are studying the role of conformational fluctuations in the binding of small volatile hydrophobic pheromones by the mouse major urinary proteins (MUPs). Communication among mice occurs, in part, with the MUP-1 protein. This urinary protein binds pheromones as a way to increase the longevity of the pheromone in an extracellular environment. Of interest is that the crystal structure of MUP-1 with a pheromone ligand shows the ligand to be completely occluded from the solvent with no obvious pathway to enter or exit. This suggests that conformational exchange of the protein may be required for ligand binding and release to occur. We hypothesize that the rate of conformational exchange may be a limiting factor determining the rate of ligand association and dissociation. By careful measurement of the on- and off-rates of ligand binding and the rates of conformational changes of the protein, a more defined picture of the interplay between protein structure and function can be obtained. To this end, heteronuclear saturation transfer, ^15N-exchange and ^15N dynamics experiments have been employed to probe the kinetics of ligand binding to MUP-1.

  4. Investigational selective melatoninergic ligands for receptor subtype MT2.

    Wan, Ning; Zhang, Fang-Fang; Ju, Jia; Liu, Dao-Zhou; Zhou, Si-Yuan; Zhang, Bang-Le

    2013-08-01

    Melatonin, an endogenous ligand for melatonin receptor, plays an important role in modulating various physiological activities through acting on different subtypes MT1, MT2 or the binding site MT3. The distinct roles of the receptor subtypes provide great potential for receptor-specific pharmacological agents. Melatonin has no subtypeselectivity, so it is very important to develop different subtype-selective ligand for receptor subtype research and drug development. In order to provide guidance for developing high selective ligand, this paper focused on the MT2-selective ligands, which developed well in the past years. The MT2-selective ligands, mainly focusing on binding data on MT1 and MT2 receptor, are reviewed in detail according to their structural classes, and the relative pharmacophore, receptor binding models and the relationship between the structure of ligand and the affinity along with selectivity for receptor subtype were discussed, which may facilitate the exploration of more potent and effective MT2-selective ligands. PMID:23815579

  5. Triazacyclononane Phosphinic Acids (TRAP) as ligands for 68Ga radiopharmaceuticals

    Gallium-68 radiopharmaceuticals are the most interesting alternatives to those based on 18-F. 68-Ga is produced in commercial 68-Ge/68-Ga generator for fraction of the 18-F price. As metal isotope, 68-Ga must be tightly complexed by a suitable ligand. Macrocyclic ligands are the most suitable ones as their Ga3+ complexes are thermodynamically stable and kinetically inert. Till now, 68-Ga radiopharmaceuticals have been based on DOTA and NOTA skeletons but these ligands exhibit non-optimal labelling properties (high excess of the ligand, long heating, narrow pH range etc.). 1,4,9-TRiAzacyclononane Phosphinic acids (TRAP ligands) have been suggested as ligands for the fast and efficient 68-Ga incorporation. Due to low basicity of the phosphinic acid moieties as well as the ring nitrogen atoms, full complexation is possible even in highly acidic solutions (down to pH 1, i.e. pH of the neat generator eluate). Presence of weakly complexing atoms outside the ligand cage (oxygen atoms e.g. in TRAP-Pr or TRAP-OH) facilitates metal isotope incorporation in highly diluted solutions (non-carrier-added conditions) due to increasing effective metal ion concentration close to the macrocyclic cage. As very low excess of the ligands/conjugates is necessary for complexation, very high specific activity can be obtained. Unusual out-of-cage complexes were observed in the Ga-TRAP-OH system where deprotonated P-CH2O- groups participate in the Ga3+ coordination. The efficiency of 68-Ga labelling is also govern by selectivity of the TRAP ligands for Ga3+ over the most common impurities, e.g. Zn2+ and Fe3+ ions. The article is illustrated by the molecular schemes of NOTA, DOTA, TRAP-Pr and TRAP-OH

  6. Database of ligand-induced domain movements in enzymes

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  7. ZINC 15 - Ligand Discovery for Everyone.

    Sterling, Teague; Irwin, John J

    2015-11-23

    Many questions about the biological activity and availability of small molecules remain inaccessible to investigators who could most benefit from their answers. To narrow the gap between chemoinformatics and biology, we have developed a suite of ligand annotation, purchasability, target, and biology association tools, incorporated into ZINC and meant for investigators who are not computer specialists. The new version contains over 120 million purchasable "drug-like" compounds - effectively all organic molecules that are for sale - a quarter of which are available for immediate delivery. ZINC connects purchasable compounds to high-value ones such as metabolites, drugs, natural products, and annotated compounds from the literature. Compounds may be accessed by the genes for which they are annotated as well as the major and minor target classes to which those genes belong. It offers new analysis tools that are easy for nonspecialists yet with few limitations for experts. ZINC retains its original 3D roots - all molecules are available in biologically relevant, ready-to-dock formats. ZINC is freely available at http://zinc15.docking.org . PMID:26479676

  8. Reactivity of halide and pseudohalide ligands in transition metal complexes

    The review generalizes experimental material on reactions of coordinated halide ligands, as well as cyanide, azide, thiocyanate and cyanate ligands in transition metal (Mo, W, Ru, etc.) complexes. It is shown that transformation of the intrasphere pseudohalide ligands is a very important method of directed synthesis of coordination compounds. The tendency of halide and pseudohalide ions to the formation of low-soluble salts or strong complexes can be widely used in preparation coordination chemistry for the ''forced'' introduction of solvent molecules into the complexes

  9. Plasmon resonance enhanced mechanical detection of ligand binding

    Ariyaratne, Amila; Zocchi, Giovanni, E-mail: zocchi@physics.ucla.edu [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-01-05

    Small molecule binding to the active site of enzymes typically modifies the mechanical stiffness of the enzyme. We exploit this effect, in a setup which combines nano-mechanics and surface plasmon resonance (SPR) enhanced optics, for the label free detection of ligand binding to an enzyme. The large dynamic range of the signal allows to easily obtain binding curves for small ligands, in contrast to traditional SPR methods which rely on small changes in index of refraction. Enzyme mechanics, assessed by nano-rheology, thus emerges as an alternative to electronic and spin resonances, assessed by traditional spectroscopies, for detecting ligand binding.

  10. Synthesis and study of new oxazoline-based ligands

    Tilliet, Mélanie

    2008-01-01

    This thesis deals with the study of oxazoline-based ligands in metal-catalyzed asymmetric reactions. The first part describes the synthesis of six new bifunctinal pyridine-bis(oxazoline) ligands and their applications in asymmetric metal-catalysis. These ligands, in addition to a Lewis acid coordination site, are equipped with a Lewis basic part in the 4-position of the oxazoline rings. Dual activation by means of this system was probed in cyanide addition to aldehydes. The second part is con...

  11. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands

    The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN3 and ZnCl2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4'-bipy).3H2O (1), [Zn(pdtz)(bpp)]2.3H2O (2) and Zn(pdtz)0.5(N3)(2,2'-bipy) (3) (4,4'-bipy=4,4'-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2'-bipy=2,2'-bipyridine; H2pdtz=5,5'-1,4-phenylene-ditetrazole). The formation of pdtz2- ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN3 in the presence of Zn2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated. - Graphical abstract: Three new entangled frameworks were prepared by an in situ ditetrazolate-ligand synthesis system assisted with various auxiliary N-donor ligands. The entangled structures can be modulated by different secondary ligands.

  12. Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction

    Guo, Chang; Fleige, Mirco; Janssen-Mller, Daniel; Daniliuc, Constantin G.; Glorius, Frank

    2015-10-01

    The development of general catalytic methods for the regio- and stereoselective construction of chiral N-heterocycles in a diversity-oriented fashion remains a formidable challenge in organic synthesis. N-heterocyclic carbene (NHC) catalysis has been shown to produce a variety of outcomes, but control of the reactivity has rarely been demonstrated. Here we report a switchable catalytic activation of enals with aromatic azomethine imines that provides high selectivity using NHC organocatalysts. The original selectivity corresponds to the acidity of the base used in the reaction. The catalytically generated chiral homoenolate or enol intermediate undergoes enantioselective annulation with electrophiles such as N-iminoquinolinium ylides, N-iminoisoquinolinium ylides and ?-N-iminocarboline ylides. The good-to-high overall yields, high regioselectivities and excellent enantioselectivities observed are controlled by the catalyst and reaction conditions.

  13. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation

    A new software system for automated ligand coordinate and restraint generation is presented. The electronic Ligand Builder and Optimization Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It is designed to be a flexible procedure that uses simple and fast quantum-chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow the attainment of a number of diverse goals including geometry optimization and generation of restraints

  14. Membrane adhesion via competing receptor/ligand bonds

    Asfaw, M; Lipowsky, R; Weikl, T R; Asfaw, Mesfin; Rozycki, Bartosz; Lipowsky, Reinhard; Weikl, Thomas R.

    2006-01-01

    The adhesion of biological membranes is controlled by various types of receptor and ligand molecules. In this letter, we present a statistical-mechanical model for membranes that interact via receptor/ligand bonds of two different lengths. We show that the equilibrium phase behavior of the membranes is governed by an effective double-well potential. The depths of the two potential wells depend on the concentrations and binding energies of the receptors and ligands. The membranes are unbound for small, and bound for larger potential depths. In the bound state, the length mismatch of the receptor/ligand bonds can lead to lateral phase separation. We derive explicit scaling laws for the critical points of unbinding and phase separation, and determine the prefactors by comparison with Monte Carlo results.

  15. Unique advantages of organometallic supporting ligands for uranium complexes

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  16. Unique advantages of organometallic supporting ligands for uranium complexes

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  17. Ligand engineering in hybrid polymer:nanocrystal solar cells

    Matthew J. Greaney

    2015-01-01

    Full Text Available Blends of semiconducting polymers and inorganic semiconductor nanocrystals are receiving renewed interest as a type of inexpensive, solution-processed third generation solar cell. In these hybrid bulk heterojunctions (BHJs, the interface between the disparate organic and inorganic phases is a dominating factor in the overall performance of the resulting devices. Paramount to this interface is the ligand landscape on the nanocrystal surface, which as a result of the inherently large surface area to volume ratio of the nanocrystals, has a significant spatial and electronic influence on the boundary between the donor polymer and acceptor nanocrystal. We have investigated the importance of this three-part polymer/ligand/nanocrystal interface by studying the ligand effects in hybrid BHJ solar cells. In this article, we highlight the major research advances and the state-of-the-art in hybrid BHJ solar cells with respect to ligand engineering, as well as outline future research avenues deemed necessary for continued technological advancement.

  18. Epibatidine-derivatives: ligands for the neuronal nicotinic acetylcholine receptor

    Epibatidine, isolated from the Ecuadorian frog Epipedobates tricolar, has been synthesized. 11C-N-methyl derivate is investigated as useful nicotinergic receptor ligand by electrophysiological methods and in vivo mice experiments. (author) 2 figs., 7 refs

  19. Cytotoxicity of an 125I-labelled DNA ligand

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [125I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  20. Cytotoxicity of an {sup 125}I-labelled DNA ligand

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F. [Peter MacCallum Cancer Inst., Melbourne (Australia). Trescowthick Research Laboratories

    2000-11-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [{sup 125}I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the {sup 125}I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to {sup 125}I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging.