Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
Míguez González, M; López Peña, F.; Díaz Casás, V.; Galeazzi, Roberto; Blanke, Mogens
acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network is...
Optical proximity correction using a multilayer perceptron neural network
Optical proximity correction (OPC) is one of the resolution enhancement techniques (RETs) in optical lithography, where the mask pattern is modified to improve the output pattern fidelity. Algorithms are needed to generate the modified mask pattern automatically and efficiently. In this paper, a multilayer perceptron (MLP) neural network (NN) is used to synthesize the mask pattern. We employ the pixel-based approach in this work. The MLP takes the pixel values of the desired output wafer pattern as input, and outputs the optimal mask pixel values. The MLP is trained with the backpropagation algorithm, with a training set retrieved from the desired output pattern, and the optimal mask pattern obtained by the model-based method. After training, the MLP is able to generate the optimal mask pattern non-iteratively with good pattern fidelity. (paper)
Optical proximity correction using a multilayer perceptron neural network
Luo, Rui
2013-07-01
Optical proximity correction (OPC) is one of the resolution enhancement techniques (RETs) in optical lithography, where the mask pattern is modified to improve the output pattern fidelity. Algorithms are needed to generate the modified mask pattern automatically and efficiently. In this paper, a multilayer perceptron (MLP) neural network (NN) is used to synthesize the mask pattern. We employ the pixel-based approach in this work. The MLP takes the pixel values of the desired output wafer pattern as input, and outputs the optimal mask pixel values. The MLP is trained with the backpropagation algorithm, with a training set retrieved from the desired output pattern, and the optimal mask pattern obtained by the model-based method. After training, the MLP is able to generate the optimal mask pattern non-iteratively with good pattern fidelity.
Alireza Taravat; Simon Proud; Simone Peronaci; Fabio Del Frate; Natascha Oppelt
2014-01-01
A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm) with 10 hidden nodes. The multiple-layer perceptrons l...
Classification of fused face images using multilayer perceptron neural network
Bhattacharjee, Debotosh; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas
2010-01-01
This paper presents a concept of image pixel fusion of visual and thermal faces, which can significantly improve the overall performance of a face recognition system. Several factors affect face recognition performance including pose variations, facial expression changes, occlusions, and most importantly illumination changes. So, image pixel fusion of thermal and visual images is a solution to overcome the drawbacks present in the individual thermal and visual face images. Fused images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 95.07%. The main objective of employing fusion is to produce a fused image that provides the most detailed and reliable information. Fusion of multip...
Vanzella, E.; Cristiani, S.; Fontana, A.; M. Nonino(INAF/OAT); Arnouts, S.; Giallongo, E.; Grazian, A.; Fasano, G.; Popesso, P.; Saracco, P.; Zaggia, S.
2003-01-01
We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral ene...
Proud, Simon Richard
2015-01-01
A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden...... and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery....
Prediction of mortality in stroke patients using multilayer perceptron neural networks
Süt, Necdet; ÇELİK, Yahya
2012-01-01
We aim ed to predict mortality in stroke patients by using multilayer perceptron (MLP) neural networks. Materials and methods: A data set consisting of 584 stroke patients was analyzed using MLP neural networks. The effect of prognostic factors (age, hospitalization time, sex, hypertension, atrial fibrillation, embolism, stroke type, infection, diabetes mellitus, and ischemic heart disease) on mortality in stroke were trained with 6 different MLP algorithms [quick propagation (QP), Levenberg...
Flávio Clésio Silva de Souza
2014-06-01
Full Text Available The purpose of the present research is to apply a Multilayer Perceptron (MLP neural network technique to create classification models from a portfolio of Non-Performing Loans (NPLs to classify this type of credit derivative. These credit derivatives are characterized as the amount of loans that were not paid and are already overdue more than 90 days. Since these titles are, because of legislative motives, moved by losses, Credit Rights Investment Funds (FDIC performs the purchase of these debts and the recovery of the credits. Using the Multilayer Perceptron (MLP architecture of Artificial Neural Network (ANN, classification models regarding the posterior recovery of these debts were created. To evaluate the performance of the models, evaluation metrics of classification relating to the neural networks with different architectures were presented. The results of the classifications were satisfactory, given the classification models were successful in the presented economics costs structure.
Multilayer perceptron for nonlinear programming
A new method for solving nonlinear programming problems within the framework of a multilayer neural network perceptron is proposed. The method employs the Penalty Function method to transform a constrained optimization problem into a sequence of unconstrained optimization problems and then solves the sequence of unconstrained optimizations of the transformed problem by training a series of multilayer perceptrons. The neural network formulation is represented in such a way that the multilayer perceptron prediction error to be minimized mimics the objective function of the unconstrained problem, and therefore, the minimization of the objective function for each unconstrained optimization is attained by training a single perceptron. The multilayer perceptron allows for the transformation of problems with two-sided bounding constraints on the decision variables x, e.g., a≤xn≤b, into equivalent optimization problems in which these constraints do not explicitly appear. Hence, when these are the only constraints in the problem, the transformed problem is constraint free (i.e., the transformed objective function contains no penalty terms) and is solved by training a multilayer perceptron only once. In addition, we present a new Penalty Function method for solving nonlinear programming problems that is parameter free and guarantees that feasible solutions are obtained when the optimal solution is on the boundary of the feasible region. Simulation results, including an example from operations research, illustrate the proposed methods.
This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.
Highly Accurate Multi-layer Perceptron Neural Network for Air Data System
H. S. Krishna
2009-01-01
The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05) accuracy, hith...
Evolutionary Learning of Multi-Layer Perceptron Neural Networks
Neruda, Roman; Slušný, Stanislav
Košice : Prírodovedecká fakulta, Univerzita P. J. Šafárika, 2006 - (Vojtáš, P.), s. 125-130 ISBN 80-969184-4-3. [ITAT 2006. Workshop on Theory and Practice of Information Theory. Bystrá dolina (SK), 26.09.2006-01.10.2006] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : perceptron networks * learning * evolutionary algorithms Subject RIV: IN - Informatics, Computer Science
Apply Multi-Layer Perceptrons Neural Network for Off-Line Signature Verification and Recognition
Suhail Odeh
2011-11-01
Full Text Available This paper discusses the applying of Multi-layer perceptrons for signature verification and recognition using a new approach enables the user to recognize whether a signature is original or a fraud. The approach starts by scanning images into the computer, then modifying their quality through image enhancement and noise reduction, followed by feature extraction and neural network training, and finally verifies the authenticity of the signature. The paper discusses the different stages of the process including: image pre-processing, feature extraction and pattern recognition through neural networks.
Classification of fuels using multilayer perceptron neural networks
Electrical impedance data obtained with an array of conducting polymer chemical sensors was used by a neural network (ANN) to classify fuel adulteration. Real samples were classified with accuracy greater than 90% in two groups: approved and adulterated.
Alireza Taravat
2015-02-01
Full Text Available A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.
Zhang, Haowei; Gao, Yanni; Yuan, Chengmei; Liu, Ying; Ding, Yuqing
2015-06-01
Multi-layer perceptron (MLP) neural network belongs to multi-layer feedforward neural network, and has the ability and characteristics of high intelligence. It can realize the complex nonlinear mapping by its own learning through the network. Bipolar disorder is a serious mental illness with high recurrence rate, high self-harm rate and high suicide rate. Most of the onset of the bipolar disorder starts with depressive episode, which can be easily misdiagnosed as unipolar depression and lead to a delayed treatment so as to influence the prognosis. The early identifica- tion of bipolar disorder is of great importance for patients with bipolar disorder. Due to the fact that the process of early identification of bipolar disorder is nonlinear, we in this paper discuss the MLP neural network application in early identification of bipolar disorder. This study covered 250 cases, including 143 cases with recurrent depression and 107 cases with bipolar disorder, and clinical features were statistically analyzed between the two groups. A total of 42 variables with significant differences were screened as the input variables of the neural network. Part of the samples were randomly selected as the learning sample, and the other as the test sample. By choosing different neu- ral network structures, all results of the identification of bipolar disorder were relatively good, which showed that MLP neural network could be used in the early identification of bipolar disorder. PMID:26485974
Analysis of 7Be behaviour in the air by using a multilayer perceptron neural network
A multilayer perceptron artificial neural network (ANN) model for the prediction of the 7Be behaviour in the air as the function of meteorological parameters was developed. The model was optimized and tested using 7Be activity concentrations obtained by standard gamma-ray spectrometric analysis of air samples collected in Belgrade (Serbia) during 2009–2011 and meteorological data for the same period. Good correlation (r = 0.91) between experimental values of 7Be activity concentrations and those predicted by ANN was obtained. The good performance of the model in prediction of 7Be activity concentrations could provide basis for construction of models which would forecast behaviour of other airborne radionuclides. - Highlights: • Neural network analysis was used to predict airborne 7Be activity using meteorological parameters as inputs. • Strong correlation between calculated and measured activities was found. • Obtained results can help in construction of a general model of 7Be activity variation in air
Mohammad Fathian
2012-04-01
Full Text Available In this paper, the problem of predicting the exchange rate time series in the foreign exchange rate market is going to be solved using a time-delayed multilayer perceptron neural network with gold price as external factor. The input for the learning phase of the artificial neural network are the exchange rate data of the last five days plus the gold price in two different currencies of the exchange rate as the external factor for helping the artificial neural network improving its forecast accuracy. The five-day delay has been chosen because of the weekly cyclic behavior of the exchange rate time series with the consideration of two holidays in a week. The result of forecasts are then compared with using the multilayer peceptron neural network without gold price external factor by two most important evaluation techniques in the literature of exchange rate prediction. For the experimental analysis phase, the data of three important exchange rates of EUR/USD, GBP/USD, and USD/JPY are used.
Umar Draz
2016-01-01
Full Text Available SMEs (Small and Medium Sized Enterprises sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that ?firm registered with OEM (Original Equipment Manufacturer and ?size of firm? are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies
SMEs (Small and Medium Sized Enterprises) sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network) has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that firm registered with OEM (Original Equipment Manufacturer) and size of firm are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies. (author)
An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose
Chih-Heng Pan
2012-12-01
Full Text Available This study examines an analog circuit comprising a multilayer perceptron neural network (MLPNN. This study proposes a low-power and small-area analog MLP circuit to implement in an E-nose as a classifier, such that the E-nose would be relatively small, power-efficient, and portable. The analog MLP circuit had only four input neurons, four hidden neurons, and one output neuron. The circuit was designed and fabricated using a 0.18 μm standard CMOS process with a 1.8 V supply. The power consumption was 0.553 mW, and the area was approximately 1.36 × 1.36 mm2. The chip measurements showed that this MLPNN successfully identified the fruit odors of bananas, lemons, and lychees with 91.7% accuracy.
Highly Accurate Multi-layer Perceptron Neural Network for Air Data System
H. S. Krishna
2009-11-01
Full Text Available The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05 accuracy, hitherto unreported in literature.Defence Science Journal, 2009, 59(6, pp.670-674, DOI:http://dx.doi.org/10.14429/dsj.59.1574
Vanzella, E; Fontana, A; Nonino, M; Arnouts, S; Giallongo, E; Grazian, A; Fasano, G; Popesso, P; Saracco, P; Zaggia, S R
2003-01-01
We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, $0.1
Geomagnetic Dst index forecast using a multilayer perceptrons artificial neural network
Complete text of publication follows. The best known manifestations of the impact of solar wind on the magnetosphere are the geomagnetic storms. The prediction of geomagnetic field behavior allows the alert of geomagnetic storms occurrence, as those phenomena can cause many damages in the planet. The Artificial Intelligence tools have been applied in many multidisciplinary studies, covering several areas of knowledge, as a choice of approach to the solution of problems with characteristics like non-linearity, imprecision, and other features that can not be easily solved with conventional computational models. Techniques such as Artificial Neural Networks, Expert Systems and Decision Trees have been used in the Space Weather studies to perform tasks such as forecasting geomagnetic storms and the investigation of rules and parameters related on its occurrence. The main focus of this work is on forecasting the geomagnetic field behavior, represented this time by the Dst index, using for that task, mainly, the interplanetary magnetic field components and solar wind data. The tool chosen here to solve the non-linear problem was a Multi-layer Perceptrons Artificial Neural Network, trained with the backpropagation algorithm. Unlike what was done in other studies, we chose to predict calm and disturbed periods like, for example, a full month of data, for application in a real time forecasting system. It was possible to predict the geomagnetic Dst index one or two hours before with great percentage efficiency.
Kucuk, Nil; Manohara, S.R.; Hanagodimath, S.M.; Gerward, L.
2013-01-01
In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15MeV, and...
无
2007-01-01
Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.
Kamal Ahmed; Shamsuddin Shahid; Sobri Bin Haroon; Wang Xiao-Jun
2015-08-01
Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as one of the most vulnerable areas of Pakistan to climate change. The National Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the study area were used to select the predictors using principal component analysis. Monthly rainfall data for the time periods 1961–1990 and 1991–2001 were used for the calibration and validation of the MLP model, respectively. The performance of the model was assessed using various statistics including mean, variance, quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled rainfall showed good agreement during both calibration and validation periods, while the downscaling model was found to underpredict rainfall variance in both periods. Other statistical parameters also revealed good agreement between observed and downscaled rainfall during both calibration and validation periods in most of the stations.
Ahmed, Kamal; Shahid, Shamsuddin; Haroon, Sobri Bin; Xiao-jun, Wang
2015-08-01
Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as one of the most vulnerable areas of Pakistan to climate change. The National Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the study area were used to select the predictors using principal component analysis. Monthly rainfall data for the time periods 1961-1990 and 1991-2001 were used for the calibration and validation of the MLP model, respectively. The performance of the model was assessed using various statistics including mean, variance, quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled rainfall showed good agreement during both calibration and validation periods, while the downscaling model was found to underpredict rainfall variance in both periods. Other statistical parameters also revealed good agreement between observed and downscaled rainfall during both calibration and validation periods in most of the stations.
Experiments with Evolutionary and Hybrid Learning of Multi-layer Perceptron Neural Networks
Neruda, Roman; Slušný, Stanislav
Ostrava : VŠB Technická univerzita, 2007 - (Mikulecký, P.; Dvorský, J.; Krátký, M.), s. 75-84 ISBN 978-80-248-1279-3. [Znalosti 2007. Ostrava (CZ), 21.02.2007-23.02.2007] R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : multilayer perceptron * evolutionary learning * hybrid algorithms Subject RIV: IN - Informatics, Computer Science
Cross Validation Evaluation for Breast Cancer Prediction Using Multilayer Perceptron Neural Networks
Shirin A. Mojarad
2011-01-01
Full Text Available Problem statement: The presence of metastasis in the regional lymph nodes is the most important factor in predicting prognosis in breast cancer. Many biomarkers have been identified that appear to relate to the aggressive behaviour of cancer. However, the nonlinear relation of these markers to nodal status and also the existence of complex interaction between markers have prohibited an accurate prognosis. Approach: The aim of this study is to investigate the effectiveness of a Multilayer Perceptron (MLP for predicting breast cancer progression using a set of four biomarkers of breast tumors. The biomarkers include DNA ploidy, cell cycle distribution (G0G1/G2M, steroid receptors (ER/PR and S-Phase Fraction (SPF. A further objective of the study is to explore the predictive potential of these markers in defining the state of nodal involvement in breast cancer. Two methods of outcome evaluation viz. stratified and simple k-fold Cross Validation (CV are studied in order to assess their accuracy and reliability for neural network validation. Criteria such as output accuracy, sensitivity and specificity are used for selecting the best validation technique besides evaluating the network outcome for different combinations of markers. Results: The results show that stratified 2-fold CV is more accurate and reliable compared to simple k-fold CV as it obtains a higher accuracy and specificity and also provides a more stable network validation in terms of sensitivity. Best prediction results are obtained by using an individual marker-SPF which obtains an accuracy of 65%. Conclusion/Recommendations: Our findings suggest that MLP-based analysis provides an accurate and reliable platform for breast cancer prediction given that an appropriate design and validation method is employed.
Multilayered perceptron neural networks to compute energy losses in magnetic cores
This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the specific energy losses of toroidal wound cores built from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge electrical steel strips. The MLP has been trained by a back-propagation and extended delta-bar-delta learning algorithm. The results obtained by using the MLP model were compared with a commonly used conventional method. The comparison has shown that the proposed model improved loss estimation with respect to the conventional method
Quaternionic Multilayer Perceptron with Local Analyticity
Nobuyuki Matsui; Haruhiko Nishimura; Teijiro Isokawa
2012-01-01
A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights...
Channel Equalization Using Multilayer Perceptron Networks
Saba Baloch; Javed Ali Baloch; Mukhtiar Ali Unar
2012-01-01
In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference) to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks). The simulated network is a multilayer feedforward Perceptron ANN,...
Channel Equalization Using Multilayer Perceptron Networks
Baloch, Saba; Baloch, Javed Ali; Unar, Mukhtiar Ali
2016-01-01
In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference) to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks). The simulated network is a multilayer feedforward Perceptron ANN, which has b...
Quaternionic Multilayer Perceptron with Local Analyticity
Nobuyuki Matsui
2012-11-01
Full Text Available A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights of the network.
de Albuquerque, Victor Hugo C.; Auzuir Ripardo de Alexandria; Paulo César Cortez; João Manuel R. S. Tavares
2009-01-01
Artificial neuronal networks have been used intensively in many domains to accomplish different computational tasks. One of these tasks is the segmentation of objects in images, like to segment microstructures from metallographic images, and for that goal several network topologies were proposed. This paper presents a comparative analysis between multilayer perceptron and selforganizing map topologies applied to segment microstructures from metallographic images. The multilayer perceptron neu...
Érica Signori Romagnoli
2016-04-01
Full Text Available Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Paraná, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and a random subdivision of samples in three groups with 70 for training, 15 for test and 15% for validation were employed. Sixty networks were trained from three different initializations. Three networks, one at each start-up, were highlighted and the one with the best performance presented 8 neurons in the hidden layer, with 95 accuracy training, 96 in the test and 96% in validation. The most important variables in classifications, identified by the network, occurred in the following order: alcohol content, density, pH and electrical conductivity. Application of MLP segmented ethanol samples and identified the commercialization regions.
Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported
Alireza Taravat
2014-12-01
Full Text Available Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR, as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM and MultiLayer Perceptron (MLP neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN model generates poor accuracies.
Multilayer Perceptrons to Approximate Quaternion Valued Functions.
Xibilia, M G.; Muscato, G; Fortuna, L; Arena, P
1997-03-01
In this paper a new type of multilayer feedforward neural network is introduced. Such a structure, called hypercomplex multilayer perceptron (HMLP), is developed in quaternion algebra and allows quaternionic input and output signals to be dealt with, requiring a lower number of neurons than the real MLP, thus providing a reduced computational complexity. The structure introduced represents a generalization of the multilayer perceptron in the complex space (CMLP) reported in the literature. The fundamental result reported in the paper is a new density theorem which makes HMLPs universal interpolators of quaternion valued continuous functions. Moreover the proof of the density theorem can be restricted in order to formulate a density theorem in the complex space. Due to the identity between the quaternion and the four-dimensional real space, such a structure is also useful to approximate multidimensional real valued functions with a lower number of real parameters, decreasing the probability of being trapped in local minima during the learning phase. A numerical example is also reported in order to show the efficiency of the proposed structure. Copyright 1997 Elsevier Science Ltd. All Rights Reserved. PMID:12662531
Mawloud GUERMOUI
2016-07-01
Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.
Channel Equalization Using Multilayer Perceptron Networks
Saba Baloch
2012-07-01
Full Text Available In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks. The simulated network is a multilayer feedforward Perceptron ANN, which has been trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network. This paper presents a very effective method for blind channel equalization, being more efficient than the pre-existing algorithms. The obtained results show a visible reduction in the noise content.
Wind speed estimation using multilayer perceptron
Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%
Newton's Method Backpropagation for Complex-Valued Holomorphic Multilayer Perceptrons
La Corte, Diana Thomson; Zou, Yi ming
2014-01-01
The study of Newton's method in complex-valued neural networks faces many difficulties. In this paper, we derive Newton's method backpropagation algorithms for complex-valued holomorphic multilayer perceptrons, and investigate the convergence of the one-step Newton steplength algorithm for the minimization of real-valued complex functions via Newton's method. To provide experimental support for the use of holomorphic activation functions, we perform a comparison of using sigmoidal functions v...
Extreme Learning Machine for Multilayer Perceptron.
Tang, Jiexiong; Deng, Chenwei; Huang, Guang-Bin
2016-04-01
Extreme learning machine (ELM) is an emerging learning algorithm for the generalized single hidden layer feedforward neural networks, of which the hidden node parameters are randomly generated and the output weights are analytically computed. However, due to its shallow architecture, feature learning using ELM may not be effective for natural signals (e.g., images/videos), even with a large number of hidden nodes. To address this issue, in this paper, a new ELM-based hierarchical learning framework is proposed for multilayer perceptron. The proposed architecture is divided into two main components: 1) self-taught feature extraction followed by supervised feature classification and 2) they are bridged by random initialized hidden weights. The novelties of this paper are as follows: 1) unsupervised multilayer encoding is conducted for feature extraction, and an ELM-based sparse autoencoder is developed via l1 constraint. By doing so, it achieves more compact and meaningful feature representations than the original ELM; 2) by exploiting the advantages of ELM random feature mapping, the hierarchically encoded outputs are randomly projected before final decision making, which leads to a better generalization with faster learning speed; and 3) unlike the greedy layerwise training of deep learning (DL), the hidden layers of the proposed framework are trained in a forward manner. Once the previous layer is established, the weights of the current layer are fixed without fine-tuning. Therefore, it has much better learning efficiency than the DL. Extensive experiments on various widely used classification data sets show that the proposed algorithm achieves better and faster convergence than the existing state-of-the-art hierarchical learning methods. Furthermore, multiple applications in computer vision further confirm the generality and capability of the proposed learning scheme. PMID:25966483
KLASIFIKASI WEBSITE MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON
Nyoman Purnama
2014-12-01
Full Text Available Sistem klasifikasi merupakan proses temu balik informasi yang sangat bergantung dari elemen-elemen penyusunnya.Sistem ini banyak digunakan untuk mengatasi permasalahan segmentasi data. Klasifikasi dapat digunakan pada website sebagaimetode untuk mengelompokkan website. Website merupakan salah satu data yang memiliki informasi yang beraneka-ragam,sehingga pengelompokan data ini penting untuk diteliti. Sistem klasifikasi dimulai dengan melakukan proses pengumpulaninformasi dari halaman website (parsing dan untuk setiap hasil parsing dilakukan proses penghapusan kata henti, stemming,feature selection dengan tf-idf. Hasil dari proses ini berupa fitur yang menjadi inputan algoritma Multilayer Perceptron. Dalamalgoritma ini terjadi proses pembelajaran terhadap pola input masukan dan pembuatan bobot pelatihan. Bobot ini akandigunakan pada proses klasifikasi. Hasil dari penelitian menunjukkan bahwa algoritma Multilayer Perceptron dapatmenghasilkan klasifikasi website dengan akurasi yang bagus. Hal ini dibuktikan dengan beberapa tahapan penelitian yangberbeda dan didapatkan nilai akurasi rata-rata diatas 70%.
Cheng, Jie; Xiao, Qing; Li, Xiao-Wen; Liu, Qin-Huo; Du, Yong-Ming
2008-04-01
The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation. PMID:18619297
Approximation by fully complex multilayer perceptrons.
Kim, Taehwan; Adali, Tülay
2003-07-01
We investigate the approximation ability of a multilayer perceptron (MLP) network when it is extended to the complex domain. The main challenge for processing complex data with neural networks has been the lack of bounded and analytic complex nonlinear activation functions in the complex domain, as stated by Liouville's theorem. To avoid the conflict between the boundedness and the analyticity of a nonlinear complex function in the complex domain, a number of ad hoc MLPs that include using two real-valued MLPs, one processing the real part and the other processing the imaginary part, have been traditionally employed. However, since nonanalytic functions do not meet the Cauchy-Riemann conditions, they render themselves into degenerative backpropagation algorithms that compromise the efficiency of nonlinear approximation and learning in the complex vector field. A number of elementary transcendental functions (ETFs) derivable from the entire exponential function e(z) that are analytic are defined as fully complex activation functions and are shown to provide a parsimonious structure for processing data in the complex domain and address most of the shortcomings of the traditional approach. The introduction of ETFs, however, raises a new question in the approximation capability of this fully complex MLP. In this letter, three proofs of the approximation capability of the fully complex MLP are provided based on the characteristics of singularity among ETFs. First, the fully complex MLPs with continuous ETFs over a compact set in the complex vector field are shown to be the universal approximator of any continuous complex mappings. The complex universal approximation theorem extends to bounded measurable ETFs possessing a removable singularity. Finally, it is shown that the output of complex MLPs using ETFs with isolated and essential singularities uniformly converges to any nonlinear mapping in the deleted annulus of singularity nearest to the origin. PMID:12816570
A Parallel Framework for Multilayer Perceptron for Human Face Recognition
Bhowmik, M K; Nasipuri, M; Basu, D K; Kundu, M
2010-01-01
Artificial neural networks have already shown their success in face recognition and similar complex pattern recognition tasks. However, a major disadvantage of the technique is that it is extremely slow during training for larger classes and hence not suitable for real-time complex problems such as pattern recognition. This is an attempt to develop a parallel framework for the training algorithm of a perceptron. In this paper, two general architectures for a Multilayer Perceptron (MLP) have been demonstrated. The first architecture is All-Class-in-One-Network (ACON) where all the classes are placed in a single network and the second one is One-Class-in-One-Network (OCON) where an individual single network is responsible for each and every class. Capabilities of these two architectures were compared and verified in solving human face recognition, which is a complex pattern recognition task where several factors affect the recognition performance like pose variations, facial expression changes, occlusions, and ...
Learning of Multilayer Perceptrons with Piecewise-Linear Activation Functions
Kozub, P.; Holeňa, Martin
Praha: Matfyzpress, 2008 - (Obdržálek, D.; Štanclová, J.; Plátek, M.), s. 27-46 ISBN 978-80-7378-076-0. [MIS 2008. Malý informatický seminář /25./. Josefův důl (CZ), 12.01.2008-19.01.2008] R&D Projects: GA ČR GA201/08/0802; GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : artificial neural networks * multilayer perceptrons * activation functions * function approximation * constrained optimization Subject RIV: IN - Informatics, Computer Science
A Choice of Input Variables for a Multilayer Perceptron
In the paper some aspects of multilayer perceptron (MLP) application to the problem of classifying the events presented by empirical samples of a finite volume are considered. The results of the MLP learning for various forms of the input data are analyzed and the reasons leading to the effect of an instantaneous learning of the MLP and rise of the neural network are investigated for the case when the input data are presented in a form of variational series. The problem of hidden layer neuron reduction without raising the recognition error is discussed. (author). 13 refs., 6 figs., 1 tab
In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15 MeV, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg–Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.4.3 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA data for TLD materials have been given with penetration depth and incident photon energy as comparative to the results of the interpolation method using the Geometrical Progression (G-P) fitting formula. - Highlights: ► Gamma-ray energy absorption buildup factors estimation in TLD materials. ► The ANN approach can be alternative to G-P fitting method for BA calculations. ► The applied model is not time-consuming and easily predicted
Online learning dynamics of multilayer perceptrons with unidentifiable parameters
In the over-realizable learning scenario of multilayer perceptrons, in which the student network has a larger number of hidden units than the true or optimal network, some of the weight parameters are unidentifiable. In this case, the teacher network consists of a union of optimal subspaces included in the parameter space. The optimal subspaces, which lead to singularities, are known to affect the estimation performance of neural networks. Using statistical mechanics, we investigate the online learning dynamics of two-layer neural networks in the over-realizable scenario with unidentifiable parameters. We show that the convergence speed strongly depends on the initial parameter conditions. We also show that there is a quasi-plateau around the optimal subspace, which differs from the well-known plateaus caused by permutation symmetry. In addition, we discuss the property of the final learning state, relating this to the singular structures
Power grid higher-order harmonics estimation with multilayer perceptrons
Nguyen, Thien Minh; Wira, Patrice
2015-12-01
This work proposes a new neural approach based on the structure of a Multi-Layer Perceptron (MLP) for identifying current harmonics in power systems. The learning approach is based on several MLP, adopts the Fourier decomposition of a signal and a training set generated from harmonic waveforms is used to calculate the weights. After training, each MLP is able to identify two coefficients for each harmonic term of the input signal. The effectiveness of the new approach is evaluated by experiments. Results show that the proposed MLPs of the new approach enable to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. Results are compared to other and recent MLP approaches. The new approach can be applied in harmonic compensation strategies by being implement in an active power filter to ensure the power quality in electrical power systems.
A Parallel Framework for Multilayer Perceptron for Human Face Recognition
Mita Nasipuri
2010-01-01
Full Text Available Artificial neural networks have already shown their success in face recognition and similar complex pattern recognition tasks. However, a major disadvantage of the technique is that it is extremely slow during training for larger classes and hence not suitable for real-time complex problems such as pattern recognition. This is an attempt to develop a parallel framework for the training algorithm of a perceptron. In this paper, two general architectures for a Multilayer Perceptron (MLP have been demonstrated. The first architecture is All-Class-in-One-Network (ACON where all the classes are placed in a single network and the second one is One-Class-in-One-Network (OCON where an individual single network is responsible for each and every class. Capabilities of these two architectures were compared and verified in solving human face recognition, which is a complex pattern recognition task where several factors affect the recognition performance like pose variations, facial expression changes, occlusions, and most importantly illumination changes. Experimental results show that the proposed OCON structure performs better than the conventional ACON in terms of network training convergence speed and which can be easily exercised in a parallel environment.
Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.
Abderrahim, Hamza; Chellali, Mohammed Reda; Hamou, Ahmed
2016-01-01
Air quality forecasting system has acquired high importance in atmospheric pollution due to its negative impacts on the environment and human health. The artificial neural network is one of the most common soft computing methods that can be pragmatic for carving such complex problem. In this paper, we used a multilayer perceptron neural network to forecast the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 μm (PM10) in Algiers, Algeria. The data for training and testing the network are based on the data sampled from 2002 to 2006 collected by SAMASAFIA network center at El Hamma station. The meteorological data, air temperature, relative humidity, and wind speed, are used as inputs network parameters in the formation of model. The training patterns used correspond to 41 days data. The performance of the developed models was evaluated on the basis index of agreement and other statistical parameters. It was seen that the overall performance of model with 15 neurons is better than the ones with 5 and 10 neurons. The results of multilayer network with as few as one hidden layer and 15 neurons were quite reasonable than the ones with 5 and 10 neurons. Finally, an error around 9% has been reached. PMID:26381787
Khuat Thanh Tung
2016-11-01
Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.
Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics
F. Cadini
2008-01-01
Full Text Available Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated.
Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics
Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP) for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP) and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated
Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron
HUANGTian-min; PEIZheng
2003-01-01
The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed,and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be imple-ment by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.
Pham, Binh Thai; Tien Bui, Dieu; Pourghasemi, Hamid Reza; Indra, Prakash; Dholakia, M. B.
2015-12-01
The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning.
Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.
1992-01-01
In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.
Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.
1992-01-01
This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.
Efficient training of multilayer perceptrons using principal component analysis
A training algorithm for multilayer perceptrons is discussed and studied in detail, which relates to the technique of principal component analysis. The latter is performed with respect to a correlation matrix computed from the example inputs and their target outputs. Typical properties of the training procedure are investigated by means of a statistical physics analysis in models of learning regression and classification tasks. We demonstrate that the procedure requires by far fewer examples for good generalization than traditional online training. For networks with a large number of hidden units we derive the training prescription which achieves, within our model, the optimal generalization behavior
Detection and classification of undersea objects using multilayer perceptrons
Shazeer, Dov J.; Bello, Martin G.
1991-08-01
A large number of underwater missions, such as obstacle avoidance, surveying, object recovery, and detection, classification, and recognition of hazards, are simply too dangerous or costly for manned vehicles. Remotely operated vehicles are subject to different limitations, such as communication bandwidth, operator fatigue, and a restricted radius of operation. These considerations make autonomous underwater vehicles (AUV) an increasingly attractive alternative. To be truly autonomous, an underwater vehicle requires scene recognition capabilities. Advances in pattern recognition and the use of increasingly high-resolution underwater sensors hold the promise that such capabilities will be developed in the near future. This paper reports the training and testing of multilayer perceptrons designed to classify specific manmade underwater objects under various environmental conditions, from arbitrary viewing aspects, and in highly cluttered environments. The trained classifiers have been tested against difficult side-scan sonar imagery and appear to work as well as a trained human analyst. Feature sets that account for the sensor response to range and that adapt to environmental variations improve performance and make the design robust. Receiver Operating Curves (ROC) show up to a 96 detection rate for a 2 false alarm rate. The set of multilayer perceptron networks have been demonstrated on special-purpose hardware and run in real time.
Dynamics of learning in multilayer perceptrons near singularities.
Cousseau, Florent; Ozeki, Tomoko; Amari, Shun-Ichi
2008-08-01
The dynamical behavior of learning is known to be very slow for the multilayer perceptron, being often trapped in the "plateau." It has been recently understood that this is due to the singularity in the parameter space of perceptrons, in which trajectories of learning are drawn. The space is Riemannian from the point of view of information geometry and contains singular regions where the Riemannian metric or the Fisher information matrix degenerates. This paper analyzes the dynamics of learning in a neighborhood of the singular regions when the true teacher machine lies at the singularity. We give explicit asymptotic analytical solutions (trajectories) both for the standard gradient (SGD) and natural gradient (NGD) methods. It is clearly shown, in the case of the SGD method, that the plateau phenomenon appears in a neighborhood of the critical regions, where the dynamical behavior is extremely slow. The analysis of the NGD method is much more difficult, because the inverse of the Fisher information matrix diverges. We conquer the difficulty by introducing the "blow-down" technique used in algebraic geometry. The NGD method works efficiently, and the state converges directly to the true parameters very quickly while it staggers in the case of the SGD method. The analytical results are compared with computer simulations, showing good agreement. The effects of singularities on learning are thus qualitatively clarified for both standard and NGD methods. PMID:18701364
Second-Order Learning Methods for a Multilayer Perceptron
First- and second-order learning methods for feed-forward multilayer neural networks are studied. Newton-type and quasi-Newton algorithms are considered and compared with commonly used back-propagation algorithm. It is shown that, although second-order algorithms require enhanced computer facilities, they provide better convergence and simplicity in usage. 13 refs., 2 figs., 2 tabs
Asymptotic law of likelihood ratio for multilayer perceptron models
Rynkiewicz, Joseph
2010-01-01
We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The data are assumed to be generated by a true MLP model and the estimation of the parameters of the MLP is done by maximizing the likelihood of the model. When the number of hidden units of the true model is known, the asymptotic distribution of the maximum likelihood estimator (MLE) and the likelihood ratio (LR) statistic is easy to compute and converge to a $\\chi^2$ law. However, if the number of hidden unit is over-estimated the Fischer information matrix of the model is singular and the asymptotic behavior of the MLE is unknown. This paper deals with this case, and gives the exact asymptotic law of the LR statistics. Namely, if the parameters of the MLP lie in a suitable compact set, we show that the LR statistics is the supremum of the square of a Gaussian process indexed by a class of limit score functions.
Digital modulation classification using multi-layer perceptron and time-frequency features
Yuan Ye; Mei Wenbo
2007-01-01
Considering that real communication signals corrupted by noise are generally nonstationary, and time-frequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals.The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation.According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed.Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.
Recognition of Epileptiform Patterns in the Human Electroencephalogram Using Multi-Layer Perceptron
V. Mokran
1995-06-01
Full Text Available Automatic detection of epileptiform patterns is highly desirable during continuous monitoring of patients with epilepsy. This paper describes an unconvential system for automatic off-line recognition of epileptic sharp transients in the human electroencephalogram (EEG, based on a standard neural network architecture - multi-layer perceptron (MLP, and implemented on a Silicon Graphics Indigo workstation. The system makes comprehensive use of wide spatial contextual information available on 12 channels of EEG and takes advantage of discrete dyadic wavelet transform (DDWT for efficient parameterisation of EEG data. The EEG database consists of 12 patients, 7 of which are used in the process of training of MLP. The resulting MLP is presented with the testing data set consisting of all data vectors from all 12 patients, and is shown to be capable to recognise a wide variety of epileptic signals.
An application of the multilayer perceptron: Solar radiation maps in Spain
Hontoria, L.; Aguilera, J. [Grupo Investigacion y Desarrollo en Energia Solar y Automatica, Dpto. de Ingenieria Electronica, de Telecomunicaciones y Automatica, Escuela Politecnica Superior de Jaen, Campus de las Lagunillas, Universidad de Jaen, 23071 Jaen (Spain); Zufiria, P. [Grupo de Redes Neuronales, Dpto. de Matematica Aplicada a las Tecnologias de la Informacion, ETSI Telecomunicaciones, UPM Ciudad Universitaria s/n, 28040 Madrid (Spain)
2005-11-01
In this work an application of a methodology to obtain solar radiation maps is presented. This methodology is based on a neural network system [Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4-22] called Multi-Layer Perceptron (MLP) [Haykin, S., 1994. Neural Networks. A Comprehensive Foundation. Macmillan Publishing Company; Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366]. To obtain a solar radiation map it is necessary to know the solar radiation of many points spread wide across the zone of the map where it is going to be drawn. For most of the locations all over the world the records of these data (solar radiation in whatever scale, daily or hourly values) are non-existent. Only very few locations have the privilege of having good meteorological stations where records of solar radiation have being registered. But even in those locations with historical records of solar data, the quality of these solar series is not as good as it should be for most purposes. In addition, to draw solar radiation maps the number of points on the maps (real sites) that it is necessary to work with makes this problem difficult to solve. Nevertheless, with the application of the methodology proposed in this paper, this problem has been solved and solar radiation maps have been obtained for a small region of Spain: Jaen province, a southern province of Spain between parallels 38{sup o}25' N and 37{sup o}25' N, and meridians 4{sup o}10' W and 2{sup o}10' W, and for a larger region: Andalucia, the most southern region of Spain situated between parallels 38{sup o}40' N and 36{sup o}00' N, and meridians 7{sup o}30' W and 1{sup o}40' W. (author)
Elizondo, David A; Birkenhead, Ralph; Góngora, Mario; Taillard, Eric; Luyima, Patrick
2007-12-01
The Recursive Deterministic Perceptron (RDP) feed-forward multilayer neural network is a generalisation of the single layer perceptron topology. This model is capable of solving any two-class classification problem as opposed to the single layer perceptron which can only solve classification problems dealing with linearly separable sets. For all classification problems, the construction of an RDP is done automatically and convergence is always guaranteed. Three methods for constructing RDP neural networks exist: Batch, Incremental, and Modular. The Batch method has been extensively tested and it has been shown to produce results comparable with those obtained with other neural network methods such as Back Propagation, Cascade Correlation, Rulex, and Ruleneg. However, no testing has been done before on the Incremental and Modular methods. Contrary to the Batch method, the complexity of these two methods is not NP-Complete. For the first time, a study on the three methods is presented. This study will allow the highlighting of the main advantages and disadvantages of each of these methods by comparing the results obtained while building RDP neural networks with the three methods in terms of the convergence time, the level of generalisation, and the topology size. The networks were trained and tested using the following standard benchmark classification datasets: IRIS, SOYBEAN, and Wisconsin Breast Cancer. The results obtained show the effectiveness of the Incremental and the Modular methods which are as good as that of the NP-Complete Batch method but with a much lower complexity level. The results obtained with the RDP are comparable to those obtained with the backpropagation and the Cascade Correlation algorithms. PMID:17904333
Ouadfeul, S.-A.; Aliouane, L.
2013-06-01
In this paper, a combination of supervised and unsupervised leanings is used for lithofacies classification from well log data. The main idea consists of enhancing the multilayer perceptron (MLP) learning by the output of the self-organizing map (SOM) neural network. Application to real data of two wells located the Algerian Sahara clearly shows that the lithofacies model built by the neural combination is able to give better results than a self-organizing map.
A multilayer extension of the similarity neural network
Buchaca Prats, David
2014-01-01
Aquest projecte ajunta idees de les radial basis functions, i el multilayer perceptron per a desenvolupar una altra arquitectura de xarxa neuronal artificial i un mètode per a poder-la entrenar. És una extensió de la similarity neural network de Lluís Belanche.
Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron
Mohammad Subhi Al-batah
2015-01-01
Full Text Available Landslides are one of the dangerous natural phenomena that hinder the development in Penang Island, Malaysia. Therefore, finding the reliable method to predict the occurrence of landslides is still the research of interest. In this paper, two models of artificial neural network, namely, Multilayer Perceptron (MLP and Cascade Forward Neural Network (CFNN, are introduced to predict the landslide hazard map of Penang Island. These two models were tested and compared using eleven machine learning algorithms, that is, Levenberg Marquardt, Broyden Fletcher Goldfarb, Resilient Back Propagation, Scaled Conjugate Gradient, Conjugate Gradient with Beale, Conjugate Gradient with Fletcher Reeves updates, Conjugate Gradient with Polakribiere updates, One Step Secant, Gradient Descent, Gradient Descent with Momentum and Adaptive Learning Rate, and Gradient Descent with Momentum algorithm. Often, the performance of the landslide prediction depends on the input factors beside the prediction method. In this research work, 14 input factors were used. The prediction accuracies of networks were verified using the Area under the Curve method for the Receiver Operating Characteristics. The results indicated that the best prediction accuracy of 82.89% was achieved using the CFNN network with the Levenberg Marquardt learning algorithm for the training data set and 81.62% for the testing data set.
Using multilayer perceptron and a satellite image for the estimation of soil salinity
Applying the model of the Perceptron multilayer with momentum of an artificial neural network particularly and a multispectral image of high resolution spatial and radiometric, for the first time estimated the salinity of the soil cultivated with sugar cane. The study area is the UBPC 'Lazaro Romero' of the sugar company 'Hector Molina' of the locality San Nicolas de Bari, Havana province, located at 22° 44' North latitude and 81 ° 56' longitude West. The experiments were made in the framework of the El-479 project funded by the Inter universities Council of Flanders, Belgium. 36 samples geo referenced of soils were taken at 3 depths in each of the 4 sugar cane selected blocks, which determined the electrical conductivity of the saturation extract; half of that amount of data was used for the training of the network and the other half for control in a computer program of the artificial neural network created to that effect, together with the reflectance of vegetation indexes for the image, which were maps of electrical conductivity of each block and bands. They were compared with those obtained by simple linear regression between the normalized difference vegetation index and electrical conductivity, Ndv with the approach of the neuronal network, the correlation coefficient was 0.78 to 0.83, while the linear regression was between 0.65 to 0.75
In the thesis the results of verification of multilayer perceptron (MLP) {20–41–1} application with sigmoid activation function for prediction of lateral radionuclide migration are presented. The calculated values of Cs 137 and Sr 90 volumetric activity are close to experimental measurement limits, indicating the possibility of MLP application for the solving problem. (authors)
Chaudhuri, Sutapa; Das, Debanjana; Sarkar, Ishita; Goswami, Sayantika
2015-10-01
The reduction in the visibility during fog significantly influences surface as well as air transport operations. The prediction of fog remains difficult despite improvements in numerical weather prediction models. The present study aims at identifying a suitable neural network model with proper architecture to provide precise nowcast of the horizontal visibility during fog over the airports of three significantly affected metropolises of India, namely: Kolkata (22°32'N; 88°20'E), Delhi (28°38'N; 77°12'E) and Bengaluru (12°95'N; 77°72'E). The investigation shows that the multilayer perceptron (MLP) model provides considerably less error in nowcasting the visibility during fog over the said metropolises than radial basis function network, generalized regression neural network or linear neural network. The MLP models of different architectures are trained with the data and records from 2000 to 2010. The model results are validated with observations from 2011 to 2014. Our results reveal that MLP models with different configurations (1) four input layers, three hidden layers with three hidden nodes in each layer and a single output; (2) four input layers with two hidden layers having one hidden node in the first hidden layer and two hidden nodes in the second hidden layer, and a single output layer; and (3) four input layers with two hidden layers having two hidden nodes in each hidden layer and a single output layer] provide minimum error in nowcasting the visibility during fog over the airports of Kolkata, Delhi and Bengaluru, respectively. The results show that the MLP model is well suited for nowcasting visibility during fog with 6 h lead time, however, the study reveals that the MLP model sensitive to dissimilar station altitudes in nowcasting visibility, as the minimum prediction error for the three metropolises having dissimilar mean sea level altitudes is observed through different configurations of the model.
Marwala, Tshilidzi; Chakraverty, Snehashish
2007-01-01
Gaussian mixture models (GMM) and support vector machines (SVM) are introduced to classify faults in a population of cylindrical shells. The proposed procedures are tested on a population of 20 cylindrical shells and their performance is compared to the procedure, which uses multi-layer perceptrons (MLP). The modal properties extracted from vibration data are used to train the GMM, SVM and MLP. It is observed that the GMM produces 98%, SVM produces 94% classification accuracy while the MLP produces 88% classification rates.
Siamese Multi-layer Perceptrons for Dimensionality Reduction and Face Identification
Zheng, Lilei; Duffner, Stefan; Idrissi, Khalid; Garcia, Christophe; Baskurt, Atilla
2015-01-01
This paper presents a framework using siamese Multi-layer Percep-trons (MLP) for supervised dimensionality reduction and face identification. Compared with the classical MLP that trains on fully labeled data, the siamese MLP learns on side information only, i.e., how similar of data examples are to each other. In this study, we compare it with the classical MLP on the problem of face identification. Experimental results on the Extended Yale B database demonstrate that the siamese MLP training...
Belief Propagation for Error Correcting Codes and Lossy Compression Using Multilayer Perceptrons
Mimura, Kazushi; Cousseau, Florent; Okada, Masato
2011-01-01
The belief propagation (BP) based algorithm is investigated as a potential decoder for both of error correcting codes and lossy compression, which are based on non-monotonic tree-like multilayer perceptron encoders. We discuss that whether the BP can give practical algorithms or not in these schemes. The BP implementations in those kind of fully connected networks unfortunately shows strong limitation, while the theoretical results seems a bit promising. Instead, it reveals it might have a ri...
On Clifford neurons and Clifford multi-layer perceptrons.
Buchholz, Sven; Sommer, Gerald
2008-09-01
We study the framework of Clifford algebra for the design of neural architectures capable of processing different geometric entities. The benefits of this model-based computation over standard real-valued networks are demonstrated. One particular example thereof is the new class of so-called Spinor Clifford neurons. The paper provides a sound theoretical basis to Clifford neural computation. For that purpose the new concepts of isomorphic neurons and isomorphic representations are introduced. A unified training rule for Clifford MLPs is also provided. The topic of activation functions for Clifford MLPs is discussed in detail for all two-dimensional Clifford algebras for the first time. PMID:18514482
Classification of Parking Spots Using Multilayer Perceptron Networks
FALCAO, H. S.
2013-12-01
Full Text Available This project intends to develop a prototype for the identification of free spots in open air parking area where there is a good aerial view without obstacles, allowing for the identification of occupied and free spots. We used image processing techniques and pattern recognition using Artificial Neural Networks (ANN. In order to help implement the prototype, we used Matlab. In order to simulate the parking area, we created a model so that we could acquire the images using a webcam, process them, train the neural network, classify the spots and finally, show the results. The results show that it is viable to apply pattern recognition through image capture to classify parking spots
Hybrid Evolutionary Algorithm for Multilayer Perceptron Networks with Competetive Performance
Neruda, Roman
Los Alamitos : IEEE, 2007, s. 1620-1627. ISBN 978-1-4244-1339-3. [CEC 2007. Congress on Evolution ary Computation. Singapore (SG), 25.09.2007-28.09.2007] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : hybrid algorithms * evolution ary learning * neural networks Subject RIV: IN - Informatics, Computer Science
FPGA Implementation of Multilayer Perceptron for Modeling of Photovoltaic panel
The Number of electronic applications using artificial neural network-based solutions has increased considerably in the last few years. However, their applications in photovoltaic systems are very limited. This paper introduces the preliminary result of the modeling and simulation of photovoltaic panel based on neural network and VHDL-language. In fact, an experimental database of meteorological data (irradiation, temperature) and output electrical generation signals of the PV-panel (current and voltage) has been used in this study. The inputs of the ANN-PV-panel are the daily total irradiation and mean average temperature while the outputs are the current and voltage generated from the panel. Firstly, a dataset of 4x364 have been used for training the network. Subsequently, the neural network (MLP) corresponding to PV-panel is simulated using VHDL language based on the saved weights and bias of the network. Simulation results of the trained MLP-PV panel based on Matlab and VHDL are presented. The proposed PV-panel model based ANN and VHDL permit to evaluate the performance PV-panel using only the environmental factors and involves less computational efforts, and it can be used for predicting the output electrical energy from the PV-panel
Quantum perceptron over a field and neural network architecture selection in a quantum computer.
da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa
2016-04-01
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. PMID:26878722
Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis
Rossi, Fabrice
2005-01-01
In this paper, we study a natural extension of Multi-Layer Perceptrons (MLP) to functional inputs. We show that fundamental results for classical MLP can be extended to functional MLP. We obtain universal approximation results that show the expressive power of functional MLP is comparable to that of numerical MLP. We obtain consistency results which imply that the estimation of optimal parameters for functional MLP is statistically well defined. We finally show on simulated and real world data that the proposed model performs in a very satisfactory way.
Experts Fusion and Multilayer Perceptron Based on Belief Learning for Sonar Image Classification
Martin, Arnaud
2008-01-01
The sonar images provide a rapid view of the seabed in order to characterize it. However, in such as uncertain environment, real seabed is unknown and the only information we can obtain, is the interpretation of different human experts, sometimes in conflict. In this paper, we propose to manage this conflict in order to provide a robust reality for the learning step of classification algorithms. The classification is conducted by a multilayer perceptron, taking into account the uncertainty of the reality in the learning stage. The results of this seabed characterization are presented on real sonar images.
Belief Propagation for Error Correcting Codes and Lossy Compression Using Multilayer Perceptrons
Mimura, Kazushi; Cousseau, Florent; Okada, Masato
2011-03-01
The belief propagation (BP) based algorithm is investigated as a potential decoder for both of error correcting codes and lossy compression, which are based on non-monotonic tree-like multilayer perceptron encoders. We discuss that whether the BP can give practical algorithms or not in these schemes. The BP implementations in those kind of fully connected networks unfortunately shows strong limitation, while the theoretical results seems a bit promising. Instead, it reveals it might have a rich and complex structure of the solution space via the BP-based algorithms.
Highlights: • Multilayer perceptrons are used to simulate the I–V curve of thin-film PV modules. • APE from the spectral irradiance was added as an input variable to the network. • A self-organised map is used to select the curves used for training the network. • Curve error and maximum power error decrease when using this technique. • This method could provide accurate estimation of the output of a PV plant. - Abstract: In this paper, we propose the use of a methodology to characterise the electrical parameters of several thin-film photovoltaic module technologies. This methodology allows us to use not only solar irradiance and module temperature as classical models do, but also spectral distribution of solar radiation. The methodology is based on the use of neural network models. From all measured I–V curves of a module, a previous selection of them has been used in order to train the neural network model. This selection is performed using a Kohonen self-organising map fed with spectral data. This spectral information has been added as an input to the neural network itself. The results show that the incorporation of spectral measurements to simulate thin-film modules improves significantly both the fitting of the predicted I–V curve to the measured one and the peak power point estimation
Multilayer Perceptron applied to Data Assimilation for the Global FSU Atmospheric Model
Cocke, S.; Cintra, R. S.; Campos Velho, H. F.
2015-12-01
The better quality of forecasts is given the more accurate of the initial conditions. Data assimilation (DA) is the process by which short-forecast and observations are combined to obtain an accurate representation of the state of the modeled system, e.g. is a technique to generate an initial condition to a weather forecasts. This paper shows the results of a DA technique using artificial neural networks (NN) to obtain the analysis to the atmospheric model for the Florida State University. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel spectral primitive equation model with vertical sigma coordinates, at resolution T63L27. The data assimilation experiments are based in simulated observations data and FSUGSM 6-hours forecasts. For the NN data assimilation, we use Multilayer Perceptron (MLP) with supervised training algorithm where NN receives input vectors with their corresponding response from LETKF data assimilation. The surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity results are presented. A self-configuration method finds the optimal NN and configures a set of 52 MLPs to DA experiment, referred as MLP-DA. A methodology developed with self-configuration using a meta-heuristic called the Multiple Particle Collision Algorithm to compute the optimal topology for NN. The MLP presents four input nodes, two nodes coordinates vector, one for the 6-hours forecast vector and one node for observation vector; one output node for the analysis vector results. The vector represents the values for one grid model point. The ANNs were trained with data from each month of 2001, 2002, and 2003. The
Classification of Polar-Thermal Eigenfaces using Multilayer Perceptron for Human Face Recognition
Bhowmik, Mrinal Kanti; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas
2010-01-01
This paper presents a novel approach to handle the challenges of face recognition. In this work thermal face images are considered, which minimizes the affect of illumination changes and occlusion due to moustache, beards, adornments etc. The proposed approach registers the training and testing thermal face images in polar coordinate, which is capable to handle complicacies introduced by scaling and rotation. Polar images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 97.05%.
An equalized error backpropagation algorithm for the on-line training of multilayer perceptrons.
Martens, J P; Weymaere, N
2002-01-01
The error backpropagation (EBP) training of a multilayer perceptron (MLP) may require a very large number of training epochs. Although the training time can usually be reduced considerably by adopting an on-line training paradigm, it can still be excessive when large networks have to be trained on lots of data. In this paper, a new on-line training algorithm is presented. It is called equalized EBP (EEBP), and it offers improved accuracy, speed, and robustness against badly scaled inputs. A major characteristic of EEBP is its utilization of weight specific learning rates whose relative magnitudes are derived from a priori computable properties of the network and the training data. PMID:18244454
Zhang, Yudong; Sun, Yi; Phillips, Preetha; Liu, Ge; Zhou, Xingxing; Wang, Shuihua
2016-07-01
This work aims at developing a novel pathological brain detection system (PBDS) to assist neuroradiologists to interpret magnetic resonance (MR) brain images. We simplify this problem as recognizing pathological brains from healthy brains. First, 12 fractional Fourier entropy (FRFE) features were extracted from each brain image. Next, we submit those features to a multi-layer perceptron (MLP) classifier. Two improvements were proposed for MLP. One improvement is the pruning technique that determines the optimal hidden neuron number. We compared three pruning techniques: dynamic pruning (DP), Bayesian detection boundaries (BDB), and Kappa coefficient (KC). The other improvement is to use the adaptive real-coded biogeography-based optimization (ARCBBO) to train the biases and weights of MLP. The experiments showed that the proposed FRFE + KC-MLP + ARCBBO achieved an average accuracy of 99.53 % based on 10 repetitions of K-fold cross validation, which was better than 11 recent PBDS methods. PMID:27250502
A New Approach to Predicting Bankruptcy: Combining DEA and Multi-Layer Perceptron
Ayan Mukhopadhyay
2012-07-01
Full Text Available The question of financial health and sustenance of a firm is so intriguing that it has spanned numerous studies. For investors,stakeholders and lenders, assessing the risk associated with an enterprise is vital. Several tools have been formulated to deal with predicting the solvency of a firm. This paper attempts to combine Data Envelopment Analysis and Multi-Layer Perceptron (MLP to suggest a new method for prediction of bankruptcy that not only focusses on historical financial data of firms that filed for bankruptcy like other past studies but also takes into account the data of those firms that were likely to do so. This method thus identifies firms that have a high chance of facing bankruptcy along with those that have filed for bankruptcy. The performance of this procedure is compared with MLP. The suggested method outperforms MLP in prediction of bankruptcy.
Time series modeling with pruned multi-layer perceptron and 2-stage damped least-squares method
A Multi-Layer Perceptron (MLP) defines a family of artificial neural networks often used in TS modeling and forecasting. Because of its ''black box'' aspect, many researchers refuse to use it. Moreover, the optimization (often based on the exhaustive approach where ''all'' configurations are tested) and learning phases of this artificial intelligence tool (often based on the Levenberg-Marquardt algorithm; LMA) are weaknesses of this approach (exhaustively and local minima). These two tasks must be repeated depending on the knowledge of each new problem studied, making the process, long, laborious and not systematically robust. In this paper a pruning process is proposed. This method allows, during the training phase, to carry out an inputs selecting method activating (or not) inter-nodes connections in order to verify if forecasting is improved. We propose to use iteratively the popular damped least-squares method to activate inputs and neurons. A first pass is applied to 10% of the learning sample to determine weights significantly different from 0 and delete other. Then a classical batch process based on LMA is used with the new MLP. The validation is done using 25 measured meteorological TS and cross-comparing the prediction results of the classical LMA and the 2-stage LMA
H. Hashemi
2008-11-01
Full Text Available Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA. In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP and support vector classifier (SVC are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.
黄天民; 裴峥
2003-01-01
The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be implement by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.
Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise
Iterative gradient methods such as Levenberg-Marquardt (LM) are in widespread use for source localization from electroencephalographic (EEG) and magnetoencephalographic (MEG) signals. Unfortunately, LM depends sensitively on the initial guess, necessitating repeated runs. This, combined with LM's high per-step cost, makes its computational burden quite high. To reduce this burden, we trained a multilayer perceptron (MLP) as a real-time localizer. We used an analytical model of quasistatic electromagnetic propagation through a spherical head to map randomly chosen dipoles to sensor activities according to the sensor geometry of a 4D Neuroimaging Neuromag-122 MEG system, and trained a MLP to invert this mapping in the absence of noise or in the presence of various sorts of noise such as white Gaussian noise, correlated noise, or real brain noise. A MLP structure was chosen to trade off computation and accuracy. This MLP was trained four times, with each type of noise. We measured the effects of initial guesses on LM performance, which motivated a hybrid MLP-start-LM method, in which the trained MLP initializes LM. We also compared the localization performance of LM, MLPs, and hybrid MLP-start-LMs for realistic brain signals. Trained MLPs are much faster than other methods, while the hybrid MLP-start-LMs are faster and more accurate than fixed-4-start-LM. In particular, the hybrid MLP-start-LM initialized by a MLP trained with the real brain noise dataset is 60 times faster and is comparable in accuracy to random-20-start-LM, and this hybrid system (localization error: 0.28 cm, computation time: 36 ms) shows almost as good performance as optimal-1-start-LM (localization error: 0.23 cm, computation time: 22 ms), which initializes LM with the correct dipole location. MLPs trained with noise perform better than the MLP trained without noise, and the MLP trained with real brain noise is almost as good an initial guesser for LM as the correct dipole location. (author) )
无
2007-01-01
Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge base in a fault diagnosis expert system that was based on machine learning by the four-layer perceptron neural network. An example was presented. By combining differential function with not differentia function and back propagation of error with back propagation of expectation, the four-layer perceptron neural network was established. And it was good for solving such a bottleneck problem in knowledge acquisition in expert system and enhancing real-time on-line diagnosis. A method of synthetic back propagation was designed, which broke the limit to non-differentiable function in BP neural network.
Heremans, Stien; Suykens, Johan A. K.; Van Orshoven, Jos
2016-02-01
To be physically interpretable, sub-pixel land cover fractions or abundances should fulfill two constraints, the Abundance Non-negativity Constraint (ANC) and the Abundance Sum-to-one Constraint (ASC). This paper focuses on the effect of imposing these constraints onto the MultiLayer Perceptron (MLP) for a multi-class sub-pixel land cover classification of a time series of low resolution MODIS-images covering the northern part of Belgium. Two constraining modes were compared, (i) an in-training approach that uses 'softmax' as the transfer function in the MLP's output layer and (ii) a post-training approach that linearly rescales the outputs of the unconstrained MLP. Our results demonstrate that the pixel-level prediction accuracy is markedly increased by the explicit enforcement, both in-training and post-training, of the ANC and the ASC. For aggregations of pixels (municipalities), the constrained perceptrons perform at least as well as their unconstrained counterparts. Although the difference in performance between the in-training and post-training approach is small, we recommend the former for integrating the fractional abundance constraints into MLPs meant for sub-pixel land cover estimation, regardless of the targeted level of spatial aggregation.
Cebrian, Manuel
2007-01-01
The random initialization of weights of a multilayer perceptron makes it possible to model its training process as a Las Vegas algorithm, i.e. a randomized algorithm which stops when some required training error is obtained, and whose execution time is a random variable. This modelling is used to perform a case study on a well-known pattern recognition benchmark: the UCI Thyroid Disease Database. Empirical evidence is presented of the training time probability distribution exhibiting a heavy tail behavior, meaning a big probability mass of long executions. This fact is exploited to reduce the training time cost by applying two simple restart strategies. The first assumes full knowledge of the distribution yielding a 40% cut down in expected time with respect to the training without restarts. The second, assumes null knowledge, yielding a reduction ranging from 9% to 23%.
LI Chang-ping; ZHI Xin-yue; MA Jun; CUI Zhuang; ZHU Zi-long; ZHANG Cui; HU Liang-ping
2012-01-01
Background Various methods can be applied to build predictive models for the clinical data with binary outcome variable.This research aims to explore the process of constructing common predictive models,Logistic regression (LR),decision tree (DT) and multilayer perceptron (MLP),as well as focus on specific details when applying the methods mentioned above:what preconditions should be satisfied,how to set parameters of the model,how to screen variables and build accuracy models quickly and efficiently,and how to assess the generalization ability (that is,prediction performance) reliably by Monte Carlo method in the case of small sample size.Methods All the 274 patients (include 137 type 2 diabetes mellitus with diabetic peripheral neuropathy and 137 type 2 diabetes mellitus without diabetic peripheral neuropathy) from the Metabolic Disease Hospital in Tianjin participated in the study.There were 30 variables such as sex,age,glycosylated hemoglobin,etc.On account of small sample size,the classification and regression tree (CART) with the chi-squared automatic interaction detector tree (CHAID) were combined by means of the 100 times 5-7 fold stratified cross-validation to build DT.The MLP was constructed by Schwarz Bayes Criterion to choose the number of hidden layers and hidden layer units,alone with levenberg-marquardt (L-M) optimization algorithm,weight decay and preliminary training method.Subsequently,LR was applied by the best subset method with the Akaike Information Criterion (AIC) to make the best used of information and avoid overfitting.Eventually,a 10 to 100 times 3-10 fold stratified cross-validation method was used to compare the generalization ability of DT,MLP and LR in view of the areas under the receiver operating characteristic (ROC) curves (AUC).Results The AUC of DT,MLP and LR were 0.8863,0.8536 and 0.8802,respectively.As the larger the AUC of a specific prediction model is,the higher diagnostic ability presents,MLP performed optimally,and then
A multi-layer feed-forward perceptron for microwave signals processing
Rouveure, R.; Faure, P.; Monod, M.O.
2003-01-01
This paper investigates the processing of radar signals using artificial neural networks. Today, the use of FMCW radar is considered to control the agricultural implements working depth, in order to overcome the limitations of sensors based on optical or ultrasound devices towards agricultural environment (dust, rain, etc.). The objective is to determine the radar-target distance R with a direct identification of the discrete-time radar signal Sb[n]. The neural network structure in a multi-la...
Multi-Layer and Recursive Neural Networks for Metagenomic Classification.
Ditzler, Gregory; Polikar, Robi; Rosen, Gail
2015-09-01
Recent advances in machine learning, specifically in deep learning with neural networks, has made a profound impact on fields such as natural language processing, image classification, and language modeling; however, feasibility and potential benefits of the approaches to metagenomic data analysis has been largely under-explored. Deep learning exploits many layers of learning nonlinear feature representations, typically in an unsupervised fashion, and recent results have shown outstanding generalization performance on previously unseen data. Furthermore, some deep learning methods can also represent the structure in a data set. Consequently, deep learning and neural networks may prove to be an appropriate approach for metagenomic data. To determine whether such approaches are indeed appropriate for metagenomics, we experiment with two deep learning methods: i) a deep belief network, and ii) a recursive neural network, the latter of which provides a tree representing the structure of the data. We compare these approaches to the standard multi-layer perceptron, which has been well-established in the machine learning community as a powerful prediction algorithm, though its presence is largely missing in metagenomics literature. We find that traditional neural networks can be quite powerful classifiers on metagenomic data compared to baseline methods, such as random forests. On the other hand, while the deep learning approaches did not result in improvements to the classification accuracy, they do provide the ability to learn hierarchical representations of a data set that standard classification methods do not allow. Our goal in this effort is not to determine the best algorithm in terms accuracy-as that depends on the specific application-but rather to highlight the benefits and drawbacks of each of the approach we discuss and provide insight on how they can be improved for predictive metagenomic analysis. PMID:26316190
Visualization of learning in multilayer perceptron networks using principal component analysis.
Gallagher, M; Downs, T
2003-01-01
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as backpropagation and can also be used to provide insight into the learning process and the nature of the error surface. PMID:18238154
Hybrid Optimized Back propagation Learning Algorithm For Multi-layer Perceptron
Chakraborty, Mriganka; Ghosh, Arka
2012-01-01
Standard neural network based on general back propagation learning using delta method or gradient descent method has some great faults like poor optimization of error-weight objective function, low learning rate, instability .This paper introduces a hybrid supervised back propagation learning algorithm which uses trust-region method of unconstrained optimization of the error objective function by using quasi-newton method .This optimization leads to more accurate weight update system for mini...
Electron/pion identification in the CBM TRD using a multilayer perceptron
The problem of electron/pion identification in the CBM experiment based on the measurements of energy losses and transition radiation in the TRD detector is discussed. A possibility to solve such a problem by applying an artificial neural network (ANN) is considered. As input information for the network we used both the samples of energy losses of pions or electrons in the TRD absorbers and the 'clever' variable obtained on the basis of the original data. We show that usage of this new variable permits one to reach a reliable level of particle recognition no longer than after 10-20 training epochs; there are practically no fluctuations against the trend, and the needed level of pions suppression is obtained under the condition of a minimal loss of electrons
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Supervised Learning in Multilayer Spiking Neural Networks
Sporea, Ioana
2012-01-01
The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.
Membership generation using multilayer neural network
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Self-Organizing Multilayered Neural Networks of Optimal Complexity
Schetinin, V.
2005-01-01
The principles of self-organizing the neural networks of optimal complexity is considered under the unrepresentative learning set. The method of self-organizing the multi-layered neural networks is offered and used to train the logical neural networks which were applied to the medical diagnostics.
Zhang, Xiuping
In this paper, the weights of a Neural Network using Chaotic Imperialist Competitive Algorithm are updated. A three-layered Perseptron Neural Network applied for prediction of the maximum worth of the stocks changed in TEHRAN's bourse market. We trained this neural network with CICA, ICA, PSO and GA algorithms and compared the results with each other. The consideration of the results showed that the training and test error of the network trained by the CICA algorithm has been reduced in comparison to the other three methods.
Data assimilation: Particle filter and artificial neural networks
The goal of this work is to present the performance of the Neural Network Multilayer Perceptrons trained to emulate a Particle Filter in the context of data assimilation. Techniques for data assimilation are applied for the Lorenz system, which presents a strong nonlinearity and chaotic nature. The cross validation method was used for training the network. Good results were obtained applying the multilayer perceptrons neural network.
Advances in Artificial Neural Networks – Methodological Development and Application
Yanbo Huang
2009-01-01
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a back...
Speech Recognition Method Based on Multilayer Chaotic Neural Network
REN Xiaolin; HU Guangrui
2001-01-01
In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.
Preference of echo features for classification of seafloor sediments using neural networks
De, C.; Chakraborty, B.
Selection of a set of dominant echo features to classify seafloor sediments using a multilayer perceptron neural network is investigated at two acoustic frequencies (33 and 210 kHz). Several sets of inputs with different combinations of two, three...
Application of artificial neural networks (multilayer perceptron) in reactor safety research
One of the key areas of reactor safety research are studies of reliable and safe heat removal from the reactor core and the containment, respectively, of light water reactors. Leakage accidents could carry insulating material into the containment or the building sump of the containment and the associated post-decay heat removal systems. This could obstruct systems functions. In the study titled ''Knowledge-based Modeling of Transport Processes in BWR Coolant Flows Carrying Particle Loads after Loss-of-Coolant Accidents,'' a tool is being created for engineering application which allows the deposition and retention of insulating material in the sump of the reactor containment to be estimated. Potential plant conditions in accidents can be assessed in this way. The study serves the purpose of modeling by means of data-based and knowledge-based methods. In this way, the results of experimental investigations (such as differential pressure tests of retention systems) can be used for modeling purposes. (orig.)
Chudech Losiri
2016-07-01
Full Text Available Urban expansion is considered as one of the most important problems in several developing countries. Bangkok Metropolitan Region (BMR is the urbanized and agglomerated area of Bangkok Metropolis (BM and its vicinity, which confronts the expansion problem from the center of the city. Landsat images of 1988, 1993, 1998, 2003, 2008, and 2011 were used to detect the land use and land cover (LULC changes. The demographic and economic data together with corresponding maps were used to determine the driving factors for land conversions. This study applied Cellular Automata-Markov Chain (CA-MC and Multi-Layer Perceptron-Markov Chain (MLP-MC to model LULC and urban expansions. The performance of the CA-MC and MLP-MC yielded more than 90% overall accuracy to predict the LULC, especially the MLP-MC method. Further, the annual population and economic growth rates were considered to produce the land demand for the LULC in 2014 and 2035 using the statistical extrapolation and system dynamics (SD. It was evident that the simulated map in 2014 resulting from the SD yielded the highest accuracy. Therefore, this study applied the SD method to generate the land demand for simulating LULC in 2035. The outcome showed that urban occupied the land around a half of the BMR.
Mosaic Face Image Recognition on Multi-Layer Neural Network
Yamamori, Kuhihito; Nogawa, Reo; Yoshihara, Ikuo
2003-01-01
Face image recognition is an impotant technology for security,communication area,etc.. In this reserch,###we try to show the optimal parameters in multi-layer neural network for mosaic face image recognition.###By using of mosaic face images,the amount of image dara can be reduced,and it can also avoid###the affect of noise.Through our experiments,a multi-layer neural network showed 98.7% of recognition###on 8 x 8 mosaic images.
A Global Algorithm for Training Multilayer Neural Networks
ZHAO, HONG; Jin, Tao
2006-01-01
We present a global algorithm for training multilayer neural networks in this Letter. The algorithm is focused on controlling the local fields of neurons induced by the input of samples by random adaptations of the synaptic weights. Unlike the backpropagation algorithm, the networks may have discrete-state weights, and may apply either differentiable or nondifferentiable neural transfer functions. A two-layer network is trained as an example to separate a linearly inseparable set of samples i...
Ferreira, B D L; Sebastião, R C O; Yoshida, M I; Mussel, W N; Fialho, S L; Barbosa, J
2016-01-01
Kinetic study by thermal decomposition of antiretroviral drugs, Efavirenz (EFV) and Lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network (MLP), with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of Kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determines the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In the investigated data, the kinetic thermal decomposition process was best described by R1 and D4 model for all temperatures to EF...
Extrapolation limitations of multilayer feedforward neural networks
Haley, Pamela J.; Soloway, Donald
1992-01-01
The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.
Emin AVCI
2007-06-01
Full Text Available Especially for the last decade, the neural network models have been applied to solve financial problems like portfolio construction and stock market forecasting. Among the alternative neural network models, the multilayer perceptron models are expected to be effective and widely applied in financial forecasting. This study examines the forecasting power multilayer perceptron models for daily and sessional returns of ISE-100 index. The findings imply that the multilayer perceptron models presented promising performance in forecasting the ISE-100 index returns. However, further emphasis should be placed on different input variables and model architectures in order to improve the forecasting performances.
A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks.
Cavalieri, Salvatore; Mirabella, Orazio
1999-01-01
The paper deals with the problem of fault tolerance in a multilayer perceptron network. Although it already possesses a reasonable fault tolerance capability, it may be insufficient in particularly critical applications. Studies carried out by the authors have shown that the traditional backpropagation learning algorithm may entail the presence of a certain number of weights with a much higher absolute value than the others. Further studies have shown that faults in these weights is the main cause of deterioration in the performance of the neural network. In other words, the main cause of incorrect network functioning on the occurrence of a fault is the non-uniform distribution of absolute values of weights in each layer. The paper proposes a learning algorithm which updates the weights, distributing their absolute values as uniformly as possible in each layer. Tests performed on benchmark test sets have shown the considerable increase in fault tolerance obtainable with the proposed approach as compared with the traditional backpropagation algorithm and with some of the most efficient fault tolerance approaches to be found in literature. PMID:12662719
A Global Algorithm for Training Multilayer Neural Networks
Zhao, H; Zhao, Hong; Jin, Tao
2006-01-01
We present a global algorithm for training multilayer neural networks in this Letter. The algorithm is focused on controlling the local fields of neurons induced by the input of samples by random adaptations of the synaptic weights. Unlike the backpropagation algorithm, the networks may have discrete-state weights, and may apply either differentiable or nondifferentiable neural transfer functions. A two-layer network is trained as an example to separate a linearly inseparable set of samples into two categories, and its powerful generalization capacity is emphasized. The extension to more general cases is straightforward.
Failure behavior identification for a space antenna via neural networks
Sartori, Michael A.; Antsaklis, Panos J.
1992-01-01
By using neural networks, a method for the failure behavior identification of a space antenna model is investigated. The proposed method uses three stages. If a fault is suspected by the first stage of fault detection, a diagnostic test is performed on the antenna. The diagnostic test results are used by the second and third stages to identify which fault occurred and to diagnose the extent of the fault, respectively. The first stage uses a multilayer perceptron, the second stage uses a multilayer perceptron and neural networks trained with the quadratic optimization algorithm, a novel training procedure, and the third stage uses backpropagation trained neural networks.
Blur identification by multilayer neural network based on multivalued neurons.
Aizenberg, Igor; Paliy, Dmitriy V; Zurada, Jacek M; Astola, Jaakko T
2008-05-01
A multilayer neural network based on multivalued neurons (MLMVN) is a neural network with a traditional feedforward architecture. At the same time, this network has a number of specific different features. Its backpropagation learning algorithm is derivative-free. The functionality of MLMVN is superior to that of the traditional feedforward neural networks and of a variety kernel-based networks. Its higher flexibility and faster adaptation to the target mapping enables to model complex problems using simpler networks. In this paper, the MLMVN is used to identify both type and parameters of the point spread function, whose precise identification is of crucial importance for the image deblurring. The simulation results show the high efficiency of the proposed approach. It is confirmed that the MLMVN is a powerful tool for solving classification problems, especially multiclass ones. PMID:18467216
Memristive Perceptron for Combinational Logic Classification
Lidan Wang
2013-01-01
Full Text Available The resistance of the memristor depends upon the past history of the input current or voltage; so it can function as synapse in neural networks. In this paper, a novel perceptron combined with the memristor is proposed to implement the combinational logic classification. The relationship between the memristive conductance change and the synapse weight update is deduced, and the memristive perceptron model and its synaptic weight update rule are explored. The feasibility of the novel memristive perceptron for implementing the combinational logic classification (NAND, NOR, XOR, and NXOR is confirmed by MATLAB simulation.
Building a Chaotic Proved Neural Network
Bahi, Jacques M; Salomon, Michel
2011-01-01
Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.
Phase Transitions of Neural Networks
Kinzel, Wolfgang
1997-01-01
The cooperative behaviour of interacting neurons and synapses is studied using models and methods from statistical physics. The competition between training error and entropy may lead to discontinuous properties of the neural network. This is demonstrated for a few examples: Perceptron, associative memory, learning from examples, generalization, multilayer networks, structure recognition, Bayesian estimate, on-line training, noise estimation and time series generation.
Aphasia Classification Using Neural Networks
Axer, H.; Jantzen, Jan; Berks, G.;
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests of the...
Incremental communication for multilayer neural networks: error analysis.
Ghorbani, A A; Bhavsar, V C
1998-01-01
Artificial neural networks (ANNs) involve a large amount of internode communications. To reduce the communication cost as well as the time of learning process in ANNs, we earlier proposed (1995) an incremental internode communication method. In the incremental communication method, instead of communicating the full magnitude of the output value of a node, only the increment or decrement to its previous value is sent to a communication link. In this paper, the effects of the limited precision incremental communication method on the convergence behavior and performance of multilayer neural networks are investigated. The nonlinear aspects of representing the incremental values with reduced (limited) precision for the commonly used error backpropagation training algorithm are analyzed. It is shown that the nonlinear effect of small perturbations in the input(s)/output of a node does not cause instability. The analysis is supported by simulation studies of two problems. The simulation results demonstrate that the limited precision errors are bounded and do not seriously affect the convergence of multilayer neural networks. PMID:18252431
Multilayer neural networks with extensively many hidden units.
Rosen-Zvi, M; Engel, A; Kanter, I
2001-08-13
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones. PMID:11497920
Multilayer Neural Networks with Extensively Many Hidden Units
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones
Artificial neural networks in predicting current in electric arc furnaces
The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Aryadoust, Vahid; Baghaei, Purya
2016-01-01
This study aims to examine the relationship between reading comprehension and lexical and grammatical knowledge among English as a foreign language students by using an Artificial Neural Network (ANN). There were 825 test takers administered both a second-language reading test and a set of psychometrically validated grammar and vocabulary tests.…
Cheng, Zhiyong; Soudry, Daniel; Mao, Zexi; Lan, Zhenzhong
2015-01-01
Compared to Multilayer Neural Networks with real weights, Binary Multilayer Neural Networks (BMNNs) can be implemented more efficiently on dedicated hardware. BMNNs have been demonstrated to be effective on binary classification tasks with Expectation BackPropagation (EBP) algorithm on high dimensional text datasets. In this paper, we investigate the capability of BMNNs using the EBP algorithm on multiclass image classification tasks. The performances of binary neural networks with multiple h...
Unsupervised classification of neural spikes with a hybrid multilayer artificial neural network.
García, P; Suárez, C P; Rodríguez, J; Rodríguez, M
1998-07-01
The understanding of the brain structure and function and its computational style is one of the biggest challenges both in Neuroscience and Neural Computation. In order to reach this and to test the predictions of neural network modeling, it is necessary to observe the activity of neural populations. In this paper we propose a hybrid modular computational system for the spike classification of multiunits recordings. It works with no knowledge about the waveform, and it consists of two moduli: a Preprocessing (Segmentation) module, which performs the detection and centering of spike vectors using programmed computation; and a Processing (Classification) module, which implements the general approach of neural classification: feature extraction, clustering and discrimination, by means of a hybrid unsupervised multilayer artificial neural network (HUMANN). The operations of this artificial neural network on the spike vectors are: (i) compression with a Sanger Layer from 70 points vector to five principal component vector; (ii) their waveform is analyzed by a Kohonen layer; (iii) the electrical noise and overlapping spikes are rejected by a previously unreported artificial neural network named Tolerance layer; and (iv) finally the spikes are labeled into spike classes by a Labeling layer. Each layer of the system has a specific unsupervised learning rule that progressively modifies itself until the performance of the layer has been automatically optimized. The procedure showed a high sensitivity and specificity also when working with signals containing four spike types. PMID:10223516
Fast neural electron/pion discrimination with a fiber calorimeter
A very fast neural electron/pion discriminator is introduced. It is based on a new training procedure that efficiently saturates each neuron output when applied on a multilayer network initially having hyperbolic tangent neurons. Thus, the network acts as a multilayer perceptron in the production phase. The neural discriminator can be implemented using fast comparators and resistor networks, which makes processing times of a few nanoseconds feasible. (author)
Multi-Layered Neural Networks Infer Fundamental Stellar Parameters
Verma, Kuldeep; Bhattacharya, Jishnu; Antia, H M; Krishnamurthy, Ganapathy
2016-01-01
The advent of space-based observatories such as CoRoT and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial Helium abundance, initial metallicity, mixing-length (assumed to be constant over time) and the age to which the star must be evolved. These parameters are also very useful in characterizing the associated planets and in studying galactic archaeology. How to obtain the parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using multi-layered neural networks, is successful in determining the evolutionary parameters based on spect...
Robust local stability of multilayer recurrent neural networks.
Suykens, J K; De Moor, B; Vandewalle, J
2000-01-01
In this paper we derive a condition for robust local stability of multilayer recurrent neural networks with two hidden layers. The stability condition follows from linking theory about linearization, robustness analysis of linear systems under nonlinear perturbation and matrix inequalities. A characterization of the basin of attraction of the origin is given in terms of the level set of a quadratic Lyapunov function. In a similar way like for NL theory, local stability is imposed around the origin and the apparent basin of attraction is made large by applying the criterion, while the proven basin of attraction is relatively small due to conservatism of the criterion. Modifying dynamic backpropagation by the new stability condition is discussed and illustrated by simulation examples. PMID:18249754
Neural-estimator for the surface emission rate of atmospheric gases
Paes, F. F.; Velho, H. F. Campos
2009-01-01
The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster...
Oku, Makito; Aihara, Kazuyuki
2010-11-01
A modularly-structured neural network model is considered. Each module, which we call a ‘cell’, consists of two parts: a Hopfield neural network model and a multilayered perceptron. An array of such cells is used to simulate the Rule 110 cellular automaton with high accuracy even when all the units of neural networks are replaced by stochastic binary ones. We also find that noise not only degrades but also facilitates computation if the outputs of multilayered perceptrons are below the threshold required to update the states of the cells, which is a stochastic resonance in computation.
Standard Cell-Based Implementation of a Digital Optoelectronic Neural-Network Hardware
Maier, Klaus D.; Beckstein, Clemens; Blickhan, Reinhard; Erhard, Werner
2001-03-01
A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.
Vânia Medianeira Flores Costa
2012-04-01
Full Text Available When investors decide to “adventure” through stock markets they search for a method to provide safety on making decision. In fact, there is no precise way to know which stocks will became a profitable investiment. Technical analysis is a discipline that support the investors on making decisions. Such a discipline uses a set of tools and statistical methods to forecast the market’s movement. Such a paper presents the develpment of a robotical Trade System, using a heuristic method. The system has a Neural Network multilayer perceptron, trained with an algorithm for back propagation error. Thus, approaching to the technical analysis without emotional aspects, using the Neural Network forecast on supporting the decisions of a investor on stock market. In analyzing the results of the neural network can be seen that the neural network got a result of 42.6% higher than the diagnostic of the technical analysis.Quando investidores decidem se “aventurar” pelo mercado de renda variável, como pelo mercado de ações, buscam um método de ter mais segurança na tomada de decisão. Na prática, não há como saber quais ativos tornar-se-ão um investimento lucrativo. No mercado acionário, a Análise Técnica procura auxiliar o investidor na tomada de decisão. Para isso, utiliza-se de ferramentas e de métodos estatísticos para tentar predizer os movimentos do mercado. Este artigo apresenta o desenvolvimento de um Trade System robótico, utilizando um método heurístico. O sistema conta com uma rede neural multilayer perceptron, treinada com o algoritmo de retro propagação de erro, aproximando-se da análise técnica sem o fator emoção. Ao avaliar os resultados da rede neural, pode ser visto que a mesma obteve um resultado de 42,6% maior do que o diagnóstico da análise técnica.
E. T. Venkatesh
2008-01-01
Full Text Available Study on characteristics of soil, to determine the types of crops suitable for cultivation in a particular region can increase the yield to greater extent, which minimizes the expenditures involved in irrigation and application of fertilizers. With the tested techniques available for calibrating the quality of soil and the crops suitable for cultivation in it, it is possible to determine the exact crop, irrigation patterns and even the cycle and quantity of fertilizer application. This paper dealt with the application of SOM based clustering and Artificial Intelligence techniques, to analyze the patterns of soils distributed across huge geographical area and identify the suitable types of crops for the particular soil. Estimation of exact crop(s suitable for a particular region can help stave off redundant maintenance and the inherent expenditures that would occur due to over irrigation and over usage of fertilizers, to fulfill the natural deficiencies. Our Focus is to improve the optimal utilization of innate characteristics in a soil through cultivation of appropriate crops, which will increase the volume and quality of yield, in particular for a developing country like India, where the huge majority of the population depends primarily on agriculture for livelihood.
Multi-modular neural networks for the classification of e+e- hadronic events
Some multi-modular neural network methods of classifying e+e- hadronic events are presented. We compare the performances of the following neural networks: MLP (multilayer perceptron), MLP and LVQ (learning vector quantization) trained sequentially, and MLP and RBF (radial basis function) trained sequentially. We introduce a MLP-RBF cooperative neural network. Our last study is a multi-MLP neural network. (orig.)
A Neural Network Based Collision Detection Engine for Multi-Arm Robotic Systems
Rana, A. S.; Zalzala, A.M.S.
1996-01-01
A neural ntwork is proposed for collision detection among multiple robotic arms sharing a common workspace. The structure of the neural network is a hybrid between Guassian Radial Basis Function (RBF) neural networks and Multi-layer perceptron back-propagation (BP) neural networks. This network is used to generate potential fields in the configuration space of the robotic arms. A path planning algorithm based on heuristics is presented. It is shown that this algorithm works better than the c...
Performance Comparison of Neural Networks for HRTFs Approximation
无
2000-01-01
In order to approach to head-related transfer functions (HRTFs), this paper employs and compares three kinds of one-input neural network models, namely, multi-layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.
Neural Networks Applied to Thermal Damage Classification in Grinding Process
Spadotto, Marcelo M.; Aguiar, Paulo Roberto de; Sousa, Carlos C. P.; Bianchi, Eduardo C.
2008-01-01
The utilization of neural network of type multi-layer perceptron using the back-propagation algorithm guaranteed very good results. Tests carried out in order to optimize the learning capacity of neural networks were of utmost importance in the training phase, where the optimum values for the number of neurons of the hidden layer, learning rate and momentum for each structure were determined. Once the architecture of the neural network was established with those optimum values, the mean squar...
Discrete Orthogonal Transforms and Neural Networks for Image Interpolation
J. Polec
1999-09-01
Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.
Artificial neural networks applied to forecasting time series
Montaño Moreno, Juan José; Palmer Pol, Alfonso; Muñoz Gracia, María del Pilar
2011-01-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparativ...
Methods of Forecasting Based on Artificial Neural Networks
Stepčenko, A; Borisovs, A
2014-01-01
This article presents an overview of artificial neural network (ANN) applications in forecasting and possible forecasting accuracy improvements. Artificial neural networks are computational models and universal approximators, which can be applied to the time series forecasting with a high accuracy. A great rise in research activities was observed in using artificial neural networks for forecasting. This paper examines multi-layer perceptrons (MLPs) – back-propagation neur...
Artificial Neural Networks in Catalyst Development. Chapter 10
Holeňa, Martin; Baerns, M.
New Jersey: John Wiley and Sons, 2003 - (Cawse, J.), s. 163-202 ISBN 0-471-20343-2 Source of funding: V - iné verejné zdroje Keywords : artificial neural networks * multilayer perceptrons * nonlinear dependency * approximation * network training * knowledge extraction Subject RIV: IN - Informatics, Computer Science
A neural network based seafloor classification using acoustic backscatter
Chakraborty, B.
This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...
Neural Boundary Conditions in Optic Guides
Özkan-Bakbak, Pınar
2015-01-01
In this study, the boundary coefficients of Transverse Electric (TE) and Transverse Magnetic (TM) modes at a planar slab optic guides are modeled by Neural Networks (NN). After modal analysis, train and test files are prepared for NN. Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks are performed and compared with each other. NNs are expected to be capable of modeling optical fiber technology in industry based on the same approaches as a result of this study.
A nonlinear multivariable empirical model is developed for a U-tube steam generator using the recurrent multilayer perceptron network as the underlying model structure. The recurrent multilayer perceptron is a dynamic neural network, very effective in the input-output modeling of complex process systems. A dynamic gradient descent learning algorithm is used to train the recurrent multilayer perceptron, resulting in an order of magnitude improvement in convergence speed over static learning algorithms. In developing the U-tube steam generator empirical model, the effects of actuator, process,and sensor noise on the training and testing sets are investigated. Learning and prediction both appear very effective, despite the presence of training and testing set noise, respectively. The recurrent multilayer perceptron appears to learn the deterministic part of a stochastic training set, and it predicts approximately a moving average response. Extensive model validation studies indicate that the empirical model can substantially generalize (extrapolate), though online learning becomes necessary for tracking transients significantly different than the ones included in the training set and slowly varying U-tube steam generator dynamics. In view of the satisfactory modeling accuracy and the associated short development time, neural networks based empirical models in some cases appear to provide a serious alternative to first principles models. Caution, however, must be exercised because extensive on-line validation of these models is still warranted
Neural Network Modelling and Predictive Control of a Milk Pasteurisation Plant
Khadir, M.T.; RINGWOOD, John
2001-01-01
This paper investigates the possible use of artificial neural networks (ANN), more precisely multi-layer perceptrons (MLPs), for the nonlinear modelling and predictive control of a milk pasteurisation plant. Model predictive control (MPC) schemes require the development of a predictive model. Using data gathered from an industrial milk plant, a nonlinear multi-step ahead neural network predictor model (NNM) was established. A neural predictive controller (NPC) was then designed on the same...
ESTIMATION OF INPUT IMPEDANCE OF MICROSTRIP PATCH ANTENNA USING FUZZY NEURAL NETWORK
VANDANA VIKAS THAKARE
2010-10-01
Full Text Available The paper presents the use of fuzzy neural network (FNN as a fast and better technique for the determination of input impedance of coaxial feed rectangular microstrip antenna. The fuzzy parameter ensures better performance as compared to three layer multilayered perceptron feed forward back propagation artificial neural network (MLPFFBP ANN and radial basis function artificial neural network (RBF ANN in the determination of input impedance of the coaxial feed microstrip antenna.
Onursal Çetin; Feyzullah Temurtaş; Şenol Gülgönül
2015-01-01
Objective: Implementation of multilayer neural network (MLNN) with sigmoid activation function for the diagnosis of hepatitis disease.Methods: Artificial neural networks (ANNs) are efficient tools currently in common use for medical diagnosis. In hardware based architectures activation functions play an important role in ANN behavior. Sigmoid function is the most frequently used activation function because of its smooth response. Thus, sigmoid function and its close approximations were implem...
Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks
Kirkegaard, Poul Henning; Rytter, A.
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving to be...
Comparative Analisys of Different Approaches Towards Multilayer Percentron Training
Vališevskis, A
2001-01-01
A comparative analysis of four multilayer perceptron learning algorithms is exposed in this work: the error backpropagation algorithm and three other algorithms with fundamentally different approaches towards the improvement of convergence time. Stock exchange share price prediction is at the basis of the comparison of the algorithms. The optimal neural network topology for the solution of the above-mentioned task is determined in this work. Furthermore the forecasts concerning fo...
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen
2016-01-01
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neu...
Stacked Heterogeneous Neural Networks for Time Series Forecasting
Florin Leon
2010-01-01
Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.
Using Artificial Neural Networks for ECG Signals Denoising
Zoltán Germán-Salló; Katalin György
2010-01-01
The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG) signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1)th sample from n previous samples To train and adjust the network weights, the backpropagation (BP) algorithm was used. In this paper, prediction of ECG signals (as...
Neural network design on the SRC-6 reconfigurable computer
Bailey, Scott P.
2006-01-01
This thesis presents an approach to image classification via a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) on the SRC-6 reconfigurable computer for use in classifying Low Probability of Intercept (LPI) radar emitters. The rationale behind the previously unexplored use of new reconfigurable computers combined with neural networks for this application is the potential for near real-time classification. Current potential near-peer competitors have access to LPI technology, s...
Methodological Issues in Building, Training, and Testing Artificial Neural Networks
Ozesmi, Stacy L.; Ozesmi, Uygar; Tan, Can Ozan
2005-01-01
We review the use of artificial neural networks, particularly the feedforward multilayer perceptron with back-propagation for training (MLP), in ecological modelling. Overtraining on data or giving vague references to how it was avoided is the major problem. Various methods can be used to determine when to stop training in artificial neural networks: 1) early stopping based on cross-validation, 2) stopping after a analyst defined error is reached or after the error levels off, 3) use of a tes...
CHAI Yu-hua; PAN Wei; NING Hai-long
2005-01-01
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.
Partial discharge pattern classification using multilayer neural networks
Satish, L.; Gururaj, BI
1993-01-01
Partial discharge measurement is an important means of assessing the condition and integrity of insulation systems in high voltage power apparatus. Commercially available partial discharge detectors display them as patterns by an elliptic time base. Over the years, experts have been interpreting and recognising the nature and cause of partial discharges by studying these patterns. A way to automate this process is reported by using the partial discharge patterns as input to a multilayer neura...
Forecasting Runoff with Artificial Neural Networks
Neruda, M.; Neruda, Roman; Kudová, Petra
Paris : UNESCO, 2005 - (Maraga, F.), s. 65-69 [ERB 2004. Euromediterranean Network of Experimental and Representative Basins /10./. Turin (IT), 13.10.2004-17.10.2004] R&D Projects: GA ČR(CZ) GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : artificial neural network s * rainfall-runoff modelling * multilayer perceptron * Radial Basis Functions (RBF) Subject RIV: BA - General Mathematics
Network Firewall using Artificial Neural Networks
Kristián Valentín; Michal Malý
2014-01-01
Today's most common firewalls are mostly rule-based. Their knowledge consists of a set of rules upon which they process received packets. They cannot do anything they have not been explicitly configured to do. This makes the system more straightforward to set up, but less flexible and less adaptive to changing circumstances. We will investigate a network firewall whose rule-base we will try to model using an artificial neural network, more specifically using a multi-layer perceptron (MLP) tra...
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875
Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks.
Moerland, P D; Fiesler, E; Saxena, I
1996-09-10
Sigmoidlike activation functions, as available in analog hardware, differ in various ways from the standard sigmoidal function because they are usually asymmetric, truncated, and have a nonstandard gain. We present an adaptation of the backpropagation learning rule to compensate for these nonstandard sigmoids. This method is applied to multilayer neural networks with all-optical forward propagation and liquid-crystal light valves (LCLV) as optical thresholding devices. The results of simulations of a backpropagation neural network with five different LCLV response curves as activation functions are presented. Although LCLV's perform poorly with the standard backpropagation algorithm, it is shown that our adapted learning rule performs well with these LCLV curves. PMID:21127522
Manjula Devi Ramasamy; Kuppuswami Subbaraya Gounder
2014-01-01
Multilayer Feed Forward Neural Network (MFNN) has been successfully administered architectures for solving a wide range of supervised pattern recognition tasks. The most problematic task of MFNN is training phase which consumes very long training time on very huge training datasets. An enhanced linear adaptive skipping training algorithm for MFNN called Half of Threshold (HOT) is proposed in this research paper. The core idea of this study is to reduce the training time through random present...
Incorporation of Liquid-Crystal Light Valve Non-Linearities in Optical Multilayer Neural Networks
Moerland, Perry,; Fiesler, Emile; Saxena, Indu
1996-01-01
Sigmoidlike activation functions, as available in analog hardware, differ in various ways from the standard sigmoidal function because they are usually asymmetric, truncated, and have a non-standard gain. We present an adaptation of the backpropagation learning rule to compensate for these nonstandard sigmoids. This method is applied to multilayer neural networks with all-optical forward propagation and liquid-crystal light valves (LCLV) as optical thresholding devices. In this paper, the res...
A selective learning method to improve the generalization of multilayer feedforward neural networks.
Inés M. Galván; Isasi, Pedro; Aler, Ricardo; José M. Valls
2001-01-01
Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to b...
FANG Jun-long; ZHANG Chang-li; WANG Shu-wen
2004-01-01
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was upto 94%.
Weight-decay induced phase transitions in multilayer neural networks
Ahr, M.; Biehl, M.; Schlösser, E.
1999-01-01
We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes a first-order phase transition between states with very long student vectors and states where the lengths are comparab...
On the capacity of multilayer neural networks trained with backpropagation.
Miranda, E N
2000-08-01
The capacity of a layered neural network for learning hetero-associations is studied numerically as a function of the number M of hidden neurons. We find that there is a sharp change in the learning ability of the network as the number of hetero-associations increases. This fact allows us to define a maximum capacity C for a given architecture. It is found that C grows logarithmically with M. PMID:11052415
Polanco, Xavier; François, Claire; Keim, Jean-Pierre
1998-01-01
This paper describes the implementation of multivariate data analysis: NEURODOC applies the axial k-means method for automatic, non-hierarchical cluster analysis and a Principal Component Analysis (PCA) for representing the clusters on a map. We next introduce Artificial Neural Networks (ANNs) to extend NEURODOC into a neural platform for the cluster analysis and cartography of bibliographic data. The ANNs tested are: the Adaptive Resonance Theory (ART 1), a Multilayer Perceptron (MLP), and a...
Artificial Neural Network Analysis for Prediction of Headache Prognosis in Elderly Patients
Taşdelen, Bahar; HELVACI, Sema; KALEAĞASI, Hakan; Özge, Aynur
2009-01-01
Aim: To investigate the ability of neural networks to detect and classify the complete improvement of headache in elderly patients during the follow- up period. Materials and Methods: The multilayer perceptron (MLP), which is the most common neural network, was used to predict prognosis of headache in elderly patients. The data set was divided into training and test sets, and back-propagation algorithm was used as the learning algorithm. The accuracies of the models to predict completely imp...
Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks
Kirkegaard, Poul Henning; Rytter, A.
1994-01-01
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving to be an effective tool for pattern recognition, the basic idea is to train a neural network with simulated values of modal parameters in order to recognize the behaviour of the damaged as well as the un...
Indirect model for roughness in rough honing processes based on artificial neural networks
Sivatte Adroer, Mauricio; Llanas Parra, Francesc Xavier; Buj Corral, Irene; Vivancos Calvet, Joan
2016-01-01
In the present paper an indirect model based on neural networks is presented for modelling the rough honing process. It allows obtaining values to be set for different process variables (linear speed, tangential speed, pressure of abrasive stones, grain size of abrasive and density of abrasive) as a function of required average roughness Ra. A multilayer perceptron (feedforward) with a backpropagation (BP) training system was used for defining neural networks. Several configurations were test...
Weight-decay induced phase transitions in multilayer neural networks
Ahr, M.; Biehl, M.; Schlösser, E.
1999-07-01
We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes a first-order phase transition between states with very long student vectors and states where the lengths are comparable to those of the teacher vectors. Additionally, in both configurations there is a phase transition between a specialized and an unspecialized phase. An anti-specialized phase with long student vectors exists in networks with a small number of hidden units.
OMER MAHMOUD
2007-08-01
Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.
Pengenalan Pola Pin Barcode Menggunakan Metode Backpropagation dan Metode Perceptron
Hasiholan, Ardi
2015-01-01
Pattern recognition is one of the functions of the neural networks, where objects maybe identified by their patterns. This may assist in recognition of objects which patterns are damaged. Pattern recognition in neural networkcan make by using backpropagation and perceptron methods. In Backpropagation method, the network is trained with the pattern through three phases, namely forward propagation, backward propagation, and weights adjustment phases, repeated until the termination condition is ...
On the Adaptability of Neural Network Image Super-Resolution
Chua, Kah Keong; Tay, Yong Haur
2012-01-01
In this paper, we described and developed a framework for Multilayer Perceptron (MLP) to work on low level image processing, where MLP will be used to perform image super-resolution. Meanwhile, MLP are trained with different types of images from various categories, hence analyse the behaviour and performance of the neural network. The tests are carried out using qualitative test, in which Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The r...
High Performance Convolutional Neural Networks for Document Processing
Chellapilla, Kumar; Puri, Sidd; Simard, Patrice
2006-01-01
Convolutional neural networks (CNNs) are well known for producing state-of-the-art recognizers for document processing [1]. However, they can be difficult to implement and are usually slower than traditional multi-layer perceptrons (MLPs). We present three novel approaches to speeding up CNNs: a) unrolling convolution, b) using BLAS (basic linear algebra subroutines), and c) using GPUs (graphic processing units). Unrolled convolution converts the processing in each convolutional layer (both f...
Handwritten Farsi Character Recognition using Artificial Neural Network
Reza Gharoie Ahangar; Mohammad Farajpoor Ahangar
2009-01-01
Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropagation algorithm has been used to train the MLP network. In addition, an analysis has been carried out...
Md. Abdullah-al-mamun
2015-08-01
Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.
Artificial Neural Network to predict mean monthly total ozone in Arosa, Switzerland
Chattopadhyay, Surajit; Bandyopadhyay, Goutami
2006-01-01
Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak t...
NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER
无
2006-01-01
Feed forward neural net works such as multi-layer perceptron,radial basis function neural net-works,have been widely applied to classification,function approxi mation and data mining.Evolu-tionary computation has been explored to train neu-ral net works as a very promising and competitive al-ternative learning method,because it has potentialto produce global mini mum in the weight space.Recently,an emerging evolutionary computationtechnique,Particle Swar m Opti mization(PSO)be-comes a hot topic because of i...
Neural networks for gamma-hadron separation in MAGIC
Boinee, P; De Angelis, A; Saggion, A; Zacchello, M
2005-01-01
Neural networks have proved to be versatile and robust for particle separation in many experiments related to particle astrophysics. We apply these techniques to separate gamma rays from hadrons for the MAGIC Cerenkov Telescope. Two types of neural network architectures have been used for the classi cation task: one is the MultiLayer Perceptron (MLP) based on supervised learning, and the other is the Self-Organising Tree Algorithm (SOTA), which is based on unsupervised learning. We propose a new architecture by combining these two neural networks types to yield better and faster classi cation results for our classi cation problem.
Haydeé Elena Musso
2013-01-01
Full Text Available En este trabajo se realizó un estudio estadístico de variables físico químicas asociadas al fenómeno de contaminación ambiental, en particular concentración media mensual de SO2 , medidas en la ciudad Salta Capital, Argentina, simultáneamente a concentraciones de NO2 y O3 . Las series bajo estudio presentaban comportamientos dinámicos no lineales, datos atípicos y cambios estructurales, lo que hizo imposible modelarlas con tipologías econométricas tradiciones (AR, MA, ARMA, ARIMA, entre otras. Una solución eficiente que se encontró, hace uso de la teoría de los perceptrones multicapa. Mediante el modelo estructural de series de tiempo, esta solución se presenta como un proceso matemático iterativo que permite obtener un modelado final el cual tiene una muy alta confiabilidad (95%, para realizar pronoósticos a futuro sobre el comportamiento de la variable estudiada.In this paper a statistical study of phisical-chemistry variables connected with enviroment pollution, specifically SO2 monthly average concentration, measured in Salta Capital city, Argentina, together with NO2 and O3 concentrations, was made. Time series under study shown non linear dinamic behaviour, outliers and structural changes. Due to these it was impossible to use typical econometric typologies (AR, MA, ARMA, ARIMA, among others. An effective solution which uses multistep perceptrons theory was found. By using structural time series modelling, this solution is presented by an iterative mathematical process that allows us to obtain a final model with a high confidence level (95% in order to do the forecasting step on the studied variable.
Sankalia, Mayur G.; Mashru, Rajshree C.; Sankalia, Jolly M.; Sutariya, Vijay B.
2005-01-01
This work examines the influence of various process parameters (like sodium alginate concentration, calcium chloride concentration, and hardening time) on papain entrapped in ionotropically cross-linked alginate beads for stability improvement and site-specific delivery to the small intestine using neural network modeling. A 33 full-factorial design and feed-forward neural network with multilayer perceptron was used to investigate the effect of process variables on percentage of entrapment, t...
LEARNING OF ROBOT NAVIGATION TASKS BY PROBABILISTIC NEURAL NETWORK
Mücella ÖZBAY KARAKUŞ
2013-11-01
Full Text Available This paper reports results of artificial neural network for robot navigation tasks. Machine learning methods have proven usability in many complex problems concerning mobile robots control. In particular we deal with the well-known strategy of navigating by “wall-following”. In this study, probabilistic neural network (PNN structure was used for robot navigation tasks. The PNN result was compared with the results of the Logistic Perceptron, Multilayer Perceptron, Mixture of Experts and Elman neural networks and the results of the previous studies reported focusing on robot navigation tasks and using same dataset. It was observed the PNN is the best classification accuracy with 99,635% accuracy using same dataset.
Higher-order probabilistic perceptrons as Bayesian inference engines
This letter makes explicit a structural connection between the Bayes optimal classifier operating on K binary input variables and corresponding two-layer perceptron having normalized output activities and couplings from input to output units of all orders up to K. Given a large and unbiased training set and an effective learning algorithm, such a neural network should be able to learn the statistics of the classification problem and match the a posteriori probabilities given by the Bayes optimal classifier. (author). 18 refs
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
Olyaee, Saeed; Hamedi, Samaneh, E-mail: s_olyaee@srttu.edu [Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan, 16788, Tehran (Iran, Islamic Republic of)
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)
Baghirli, Orkhan
2015-01-01
Wind speed forecasting is critical for wind energy conversion systems since it greatly influences the issues such as scheduling of the power systems, and dynamic control of the wind turbines. Also, it plays an essential role for siting, sizing and improving the efficiency of wind power generation systems. Due to volatile and non-stationary nature of wind speed time series, wind speed forecasting has been proven to be a challenging task that requires adamant care and caution. There are several...
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
Kaluza, Pablo; Urdapilleta, Eugenio
2014-10-01
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
Hossein Naderi; Mojtaba Moradpour; Mehdi Zangeneh; Farzad Khani
2012-01-01
Stock market prediction is one of the most important interesting areas of research in business. Stock markets prediction is normally assumed as tedious task since there are many factors influencing the market. The primary objective of this paper is to forecast trend closing price movement of Tehran Stock Exchange (TSE) using financial accounting ratios from year 2003 to year 2008. The proposed study of this paper uses two approaches namely Artificial Neural Networks and multi-layer perceptron...
Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models
Sungwon Kim; Singh, Vijay P.
2015-01-01
The objective of this study is to develop artificial neural network (ANN) models, including multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP) representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive...
Artificial neural networks (ANN): prediction of sensory measurements from instrumental data
Naiara Barbosa Carvalho; Valéria Paula Rodrigues Minim; Rita de Cássia dos Santos Navarro Silva; Suzana Maria Della Lucia; Luis Aantonio Minim
2013-01-01
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combination...
In this paper, a locally recurrent neural network (LRNN) is employed for approximating the temporal evolution of a nonlinear dynamic system model of a simplified nuclear reactor. To this aim, an infinite impulse response multi-layer perceptron (IIR-MLP) is trained according to a recursive back-propagation (RBP) algorithm. The network nodes contain internal feedback paths and their connections are realized by means of IIR synaptic filters, which provide the LRNN with the necessary system state memory
Neural network modeling and correcting for delay-line data sets
Because of the effects of the capacitance and inductance parasitized on the readout PCB in GEM detector, the output time of the delay-line PCB puts up a non-linear relationship with the position of its input signal. Based on Back Propagation algorithm, the multi-layer perceptrons neural network approximated the non-linear function and gave out accurate analyses, which is a better method for data correcting in Delay-Line readout. (authors)
J.Maria Mont Lorenzo
2001-01-01
The aim of this research is the use of the artificial neural networks models, specifically Multilayer Perceptrons trained by the algorithm known as Backpropagation to estimate the free housing prices. This methodology allows, through the training of the backpropagated nets, to estimate the houses prices on the basis of some variables, related to the houses, which are considered relevant (location, age, surface, quality, ...), overcoming the linear restrictions characteristic of the traditiona...
Extraction of Rules from Data using Piecewise-Linear Neural Networks
Holeňa, Martin
Istanbul : ITU Management Science Fakulty, 2002, s. 1-8. ISBN 975-97963-0-9. [FSSCTIMIE'02. Istanbul (TR), 29.05.2002-31.05.2002] R&D Projects: GA AV ČR IAB2030007 Institutional research plan: AV0Z1030915 Keywords : knowledge extraction with artificial neural networks * Boolean rules * fuzzy rules * multilayer perceptron * piecewise-linear activation function * polyhedra and pseudopolyhedra * Lukasiewicz predicate calculus * rational McNaughton function Subject RIV: BA - General Mathematics
A Novel Training Algorithm of Genetic Neural Networks and Its Application to Classification
无
2001-01-01
First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example.
Zhekang Dong
2014-01-01
Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
A selective learning method to improve the generalization of multilayer feedforward neural networks.
Galván, I M; Isasi, P; Aler, R; Valls, J M
2001-04-01
Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains: two artificial approximation problems and a real time series prediction problem. Results have been compared to standard backpropagation using the complete training data set and the new method shows better generalization abilities. PMID:14632169
Video Traffic Prediction Using Neural Networks
Miloš Oravec
2008-10-01
Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].
Lin, Z; Maris, J; Hermans, L; Vandewalle, J; Chen, J D
1997-05-01
A neural network approach is proposed for the automated classification of the normal and abnormal EGG. Two learning algorithms, the quasi-Newton and the scaled conjugate gradient method for the multilayer feedforward neural networks (MFNN), are introduced and compared with the error backpropagation algorithm. The configurations of the MFNN are determined by experiment. The raw EGG data, its power spectral data, and its autoregressive moving average (ARMA) modelling parameters are used as the input to the MFNN and compared with each other. Three indexes (the percent correct, sum-squared error and complexity per iteration) are used to evaluate the performance of each learning algorithm. The results show that the scaled conjugate gradient algorithm performs best, in that it is robust and provides a super-linear convergence rate. The power spectral representation and the ARMA modelling parameters of the EGG are found to be better types of the input to the network for this specific application, both yielding a percent correctness of 95% on the test set. Although the results are focused on the classification of the EGG, this paper should provide useful information for the classification of other biomedical signals. PMID:9246852
Jha, Ratneshwar; Rower, Jacob
2002-02-01
The use of neural networks for identification and control of smart structures is investigated experimentally. Piezoelectric actuators are employed to suppress the vibrations of a cantilevered plate subject to impulse, sine wave and band-limited white noise disturbances. The neural networks used are multilayer perceptrons trained with error backpropagation. Validation studies show that the identifier predicts the system dynamics accurately. The controller is trained adaptively with the help of the neural identifier. Experimental results demonstrate excellent closed-loop performance and robustness of the neurocontroller.
A design philosophy for multi-layer neural networks with applications to robot control
Vadiee, Nader; Jamshidi, MO
1989-01-01
A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.
Design and FPGA-implementation of multilayer neural networks with on-chip learning
Artificial Neural Networks (ANN) is used in many applications in the industry because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. For example identifying the orange and apple in the sorting machine with neural network is easier than using image processing techniques to do the same thing. There are different software for designing, training, and testing the ANN, but in order to use the ANN in the industry, it should be implemented on hardware outside the computer. Neural networks are artificial systems inspired on the brain's cognitive behavior, which can learn tasks with some degree of complexity, such as signal processing, diagnosis, robotics, image processing, and pattern recognition. Many applications demand a high computing power and the traditional software implementation are not sufficient.This thesis presents design and FPGA implementation of Multilayer Neural Networks with On-chip learning in re-configurable hardware. Hardware implementation of neural network algorithm is very interesting due their high performance and they can easily be made parallel. The architecture proposed herein takes advantage of distinct data paths for the forward and backward propagation stages and a pipelined adaptation of the on- line backpropagation algorithm to significantly improve the performance of the learning phase. The architecture is easily scalable and able to cope with arbitrary network sizes with the same hardware. The implementation is targeted diagnosis of the Research Reactor accidents to avoid the risk of occurrence of a nuclear accident. The proposed designed circuits are implemented using Xilinx FPGA Chip XC40150xv and occupied 73% of Chip CLBs. It achieved 10.8 μs to take decision in the forward propagation compared with current software implemented of RPS which take 24 ms. The results show that the proposed architecture leads to significant speed up comparing to high end software solutions. On
Neural network tomography: network replication from output surface geometry.
Minnett, Rupert C J; Smith, Andrew T; Lennon, William C; Hecht-Nielsen, Robert
2011-06-01
Multilayer perceptron networks whose outputs consist of affine combinations of hidden units using the tanh activation function are universal function approximators and are used for regression, typically by reducing the MSE with backpropagation. We present a neural network weight learning algorithm that directly positions the hidden units within input space by numerically analyzing the curvature of the output surface. Our results show that under some sampling requirements, this method can reliably recover the parameters of a neural network used to generate a data set. PMID:21377326
Practical Application of Neural Networks in State Space Control
Bendtsen, Jan Dimon
applied to a realistic process. The thesis therefore strives to provide a thorough treatment of two classes of neural network-based controllers, and to make a rigorous comparison between them and a classical linear controller. Thus, the thesis starts out with a short review of some relevant system...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train the...
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
ÃƒÂ–. Galip Saracoglu
2008-03-01
Full Text Available This paper describes artificial neural network (ANN based prediction of theresponse of a fiber optic sensor using evanescent field absorption (EFA. The sensingprobe of the sensor is made up a bundle of five PCS fibers to maximize the interaction ofevanescent field with the absorbing medium. Different backpropagation algorithms areused to train the multilayer perceptron ANN. The Levenberg-Marquardt algorithm, aswell as the other algorithms used in this work successfully predicts the sensor responses.
JunJun Yang; ZhiBin He; WeiJun Zhao; Jun Du; LongFei Chen; Xi Zhu
2016-01-01
Soil moisture simulation and prediction in semi-arid regions are important for agricultural production, soil conservation and climate change. However, considerable heterogeneity in the spatial distribution of soil moisture, and poor ability of distributed hydrological models to estimate it, severely impact the use of soil moisture models in research and practical applications. In this study, a newly-developed technique of coupled (WA-ANN) wavelet analysis (WA) and artificial neural network (ANN) was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains, Gansu Province, China. Datasets included seven meteorological factors: air and land surface temperatures, relative humidity, global radiation, atmospheric pressure, wind speed, precipitation, and soil water content at 20, 40, 60, 80, 120 and 160 cm. To investigate the effectiveness of WA-ANN, ANN was applied by itself to conduct a comparison. Three main findings of this study were: (1) ANN and WA-ANN provided a statistically reliable and robust prediction of soil moisture in both the root zone and deepest soil layer studied (NSE >0.85, NSE means Nash-Sutcliffe Efficiency coefficient); (2) when input meteorological factors were transformed using maximum signal to noise ratio (SNR) and one-dimensional auto de-noising algorithm (heursure) in WA, the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth; (3) the results of multi-layer soil moisture prediction indicated that there may be different sources of water at different soil layers, and this can be used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site. We conclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimum distortion of the raw-time series; the new method used here is applicable to soil sciences and management applications.
Perancangan Pengenal QR (Quick Response) Code Dengan Jaringan Syaraf Tiruan Metode Perceptron
Novalia
2013-01-01
Quick Response (QR) Code is used to store important information of an item or product. QR Code has a very random pattern and can not be distinguished. QR Code can also be dirty and damaged. Research conducted on the pattern of QR Code in order to find out the information stored in the QR Code. The method used to identify patterns of QR Code is to use Artificial Neural Networks Perceptron method. Perceptron is a neural network method is often used for pattern recognition. The input to the syst...
Eduardo O. de Cerqueira
2001-12-01
Full Text Available Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytical applications based on near infrared spectroscopy are presented, the first one for determination of nitrogen content in wheat leaves using multi-layer perceptrons networks and second one for determination of BRIX in sugar cane juices using radial basis functions networks.
A Novel Technique to Image Annotation using Neural Network
Pankaj Savita
2013-03-01
Full Text Available : Automatic annotation of digital pictures is a key technology for managing and retrieving images from large image collection. Traditional image semantics extraction and representation schemes were commonly divided into two categories, namely visual features and text annotations. However, visual feature scheme are difficult to extract and are often semantically inconsistent. On the other hand, the image semantics can be well represented by text annotations. It is also easier to retrieve images according to their annotations. Traditional image annotation techniques are time-consuming and requiring lots of human effort. In this paper we propose Neural Network based a novel approach to the problem of image annotation. These approaches are applied to the Image data set. Our main work is focused on the image annotation by using multilayer perceptron, which exhibits a clear-cut idea on application of multilayer perceptron with special features. MLP Algorithm helps us to discover the concealed relations between image data and annotation data, and annotate image according to such relations. By using this algorithm we can save more memory space, and in case of web applications, transferring of images and download should be fast. This paper reviews 50 image annotation systems using supervised machine learning Techniques to annotate images for image retrieval. Results obtained show that the multi layer perceptron Neural Network classifier outperforms conventional DST Technique.
Memristor-based multilayer neural networks with online gradient descent training.
Soudry, Daniel; Di Castro, Dotan; Gal, Asaf; Kolodny, Avinoam; Kvatinsky, Shahar
2015-10-01
Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS. In this paper, a method for performing these update operations simultaneously (incremental outer products) using memristor-based arrays is proposed. The method is based on the fact that, approximately, given a voltage pulse, the conductivity of a memristor will increment proportionally to the pulse duration multiplied by the pulse magnitude if the increment is sufficiently small. The proposed method uses a synaptic circuit composed of a small number of components per synapse: one memristor and two CMOS transistors. This circuit is expected to consume between 2% and 8% of the area and static power of previous CMOS-only hardware alternatives. Such a circuit can compactly implement hardware MNNs trainable by scalable algorithms based on online gradient descent (e.g., backpropagation). The utility and robustness of the proposed memristor-based circuit are demonstrated on standard supervised learning tasks. PMID:25594981
Manjula Devi Ramasamy
2014-01-01
Full Text Available Multilayer Feed Forward Neural Network (MFNN has been successfully administered architectures for solving a wide range of supervised pattern recognition tasks. The most problematic task of MFNN is training phase which consumes very long training time on very huge training datasets. An enhanced linear adaptive skipping training algorithm for MFNN called Half of Threshold (HOT is proposed in this research paper. The core idea of this study is to reduce the training time through random presentation of training input samples without affecting the network’s accuracy. The random presentation is done by partitioning the training dataset into two distinct classes, classified and misclassified class, based on the comparison result of the calculated error measure with half of threshold value. Only the input samples in the misclassified class are presented to the next epoch for training, whereas the correctly classified class is skipped linearly which dynamically reducing the number of input samples exhibited at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training dataset linearly can reduce the total training time, thereby speeding up the training process. This HOT algorithm can be implemented with any training algorithm used for supervised pattern classification and its implementation is very simple and easy. Simulation study results proved that HOT training algorithm achieves faster training than the other standard training algorithm.
The Use of Artificial Neural Network for Prediction of Dissolution Kinetics
H. Elçiçek
2014-01-01
Full Text Available Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals.
Using Artificial Neural Networks for ECG Signals Denoising
Zoltán Germán-Salló
2010-12-01
Full Text Available The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1th sample from n previous samples To train and adjust the network weights, the backpropagation (BP algorithm was used. In this paper, prediction of ECG signals (as time series using multi-layer feedforward neural networks will be described. The results are evaluated through approximation error which is defined as the difference between the predicted and the original signal.The prediction procedure is carried out (simulated in MATLAB environment, using signals from MIT-BIH arrhythmia database. Preliminary results are encouraging enough to extend the proposed method for other types of data signals.
Holeňa, Martin; Baerns, M.
2003-01-01
Roč. 81, - (2003), s. 485-494. ISSN 0920-5861 Grant ostatní: BMBF(DE) FKZ 03C3013 Institutional research plan: CEZ:AV0Z1030915 Keywords : artificial neural network s * multilayer perceptron * dependency * approximation * network training * overtraining * knowledge extraction * logical rules * oxidative dehydrogenation of propane Subject RIV: BA - General Mathematics Impact factor: 2.627, year: 2003
Limitations of One-Hidden-Layer Perceptron Networks
Kůrková, Věra
Aachen & Charleston: Technical University & CreateSpace Independent Publishing Platform, 2015 - (Yaghob, J.), s. 167-171. (CEUR Workshop Proceedings. V-1422). ISBN 978-1-5151-2065-0. ISSN 1613-0073. [ITAT 2015. Conference on Theory and Practice of Information Technologies /15./. Slovenský Raj (SK), 17.09.2015-21.09.2015] R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : perceptron networks * model complexity * representations of finite mappings by neural networks Subject RIV: IN - Informatics, Computer Science
A Neural Auto-depth Controller for an Unmanned Underwater Vehicle
Sutton, R.; Johnson, C.; Roberts, G. N.
Artificial neural networks offer an alternative strategy for the nonlinear control of unmanned underwater vehicles (UUVS). This paper investigates the use of a multi-layered perceptron (MLP) network in controlling an UUV over a sea-bed profile and compares the use of applying chemotaxis learning to that of the more commonly employed back propagation algorithm. The results show that, for differing sized MLPs, the chemotaxis algorithm produces a successful controller over the sea-bed profile in an improved training time. Also it will be shown that, in the presence of noise and change in vehicle mass, the neural controller out-performed a classical proportional-integral-derivative controller.
Foreground removal from Planck Sky Model temperature maps using a MLP neural network
Nørgaard-Nielsen, Hans Ulrik; Hebert, K.
2009-01-01
with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before...... including them in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80% of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors....
THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE
António José Silva
2007-03-01
Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports
Empirical modeling of nuclear power plants using neural networks
A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios
Using neural networks for prediction of nuclear parameters
Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear
2013-07-01
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
Using neural networks for prediction of nuclear parameters
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
A Deterministic and Polynomial Modified Perceptron Algorithm
Olof Barr
2006-01-01
Full Text Available We construct a modified perceptron algorithm that is deterministic, polynomial and also as fast as previous known algorithms. The algorithm runs in time O(mn3lognlog(1/ρ, where m is the number of examples, n the number of dimensions and ρ is approximately the size of the margin. We also construct a non-deterministic modified perceptron algorithm running in timeO(mn2lognlog(1/ρ.
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.
Option Pricing Using Bayesian Neural Networks
Pires, Michael Maio
2007-01-01
Options have provided a field of much study because of the complexity involved in pricing them. The Black-Scholes equations were developed to price options but they are only valid for European styled options. There is added complexity when trying to price American styled options and this is why the use of neural networks has been proposed. Neural Networks are able to predict outcomes based on past data. The inputs to the networks here are stock volatility, strike price and time to maturity with the output of the network being the call option price. There are two techniques for Bayesian neural networks used. One is Automatic Relevance Determination (for Gaussian Approximation) and one is a Hybrid Monte Carlo method, both used with Multi-Layer Perceptrons.
Web traffic prediction with artificial neural networks
Gluszek, Adam; Kekez, Michal; Rudzinski, Filip
2005-02-01
The main aim of the paper is to present application of the artificial neural network in the web traffic prediction. First, the general problem of time series modelling and forecasting is shortly described. Next, the details of building of dynamic processes models with the neural networks are discussed. At this point determination of the model structure in terms of its inputs and outputs is the most important question because this structure is a rough approximation of the dynamics of the modelled process. The following section of the paper presents the results obtained applying artificial neural network (classical multilayer perceptron trained with backpropagation algorithm) to the real-world web traffic prediction. Finally, we discuss the results, describe weak points of presented method and propose some alternative approaches.
Fernández-Delgado, Manuel; Cernadas, Eva; Barro, Senén; Ribeiro, Jorge; Neves, José
2014-02-01
The Direct Kernel Perceptron (DKP) (Fernández-Delgado et al., 2010) is a very simple and fast kernel-based classifier, related to the Support Vector Machine (SVM) and to the Extreme Learning Machine (ELM) (Huang, Wang, & Lan, 2011), whose α-coefficients are calculated directly, without any iterative training, using an analytical closed-form expression which involves only the training patterns. The DKP, which is inspired by the Direct Parallel Perceptron, (Auer et al., 2008), uses a Gaussian kernel and a linear classifier (perceptron). The weight vector of this classifier in the feature space minimizes an error measure which combines the training error and the hyperplane margin, without any tunable regularization parameter. This weight vector can be translated, using a variable change, to the α-coefficients, and both are determined without iterative calculations. We calculate solutions using several error functions, achieving the best trade-off between accuracy and efficiency with the linear function. These solutions for the α coefficients can be considered alternatives to the ELM with a new physical meaning in terms of error and margin: in fact, the linear and quadratic DKP are special cases of the two-class ELM when the regularization parameter C takes the values C=0 and C=∞. The linear DKP is extremely efficient and much faster (over a vast collection of 42 benchmark and real-life data sets) than 12 very popular and accurate classifiers including SVM, Multi-Layer Perceptron, Adaboost, Random Forest and Bagging of RPART decision trees, Linear Discriminant Analysis, K-Nearest Neighbors, ELM, Probabilistic Neural Networks, Radial Basis Function neural networks and Generalized ART. Besides, despite its simplicity and extreme efficiency, DKP achieves higher accuracies than 7 out of 12 classifiers, exhibiting small differences with respect to the best ones (SVM, ELM, Adaboost and Random Forest), which are much slower. Thus, the DKP provides an easy and fast way
Exponential synchronization of general chaotic delayed neural networks via hybrid feedback
无
2008-01-01
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Advances in Artificial Neural Networks – Methodological Development and Application
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Prediction of total resistance coefficients using neural networks
Ortigosa Barragán, Inma; Revilla López, Guillermo; García Espinosa, Julio
2009-01-01
The Holtrop & Mennen method is widely used at the initial design stage of ships for estimating the resistance of the ship (Holtrop and Mennen, 1982). The Holtrop & Mennen method provide a prediction of the total resistance’s components. In this work we present a neural network model which performs the same task as the Holtrop & Mennem’s method, for two of the total resistance’s components. A multilayer perceptron has been therefore trained to learn the relationship between the input (length-d...
Intelligent Handwritten Digit Recognition using Artificial Neural Network
Saeed AL-Mansoori
2015-05-01
Full Text Available The aim of this paper is to implement a Multilayer Perceptron (MLP Neural Network to recognize and predict handwritten digits from 0 to 9. A dataset of 5000 samples were obtained from MNIST. The dataset was trained using gradient descent back-propagation algorithm and further tested using the feed-forward algorithm. The system performance is observed by varying the number of hidden units and the number of iterations. The performance was thereafter compared to obtain the network with the optimal parameters. The proposed system predicts the handwritten digits with an overall accuracy of 99.32%.
Inflow forecasting using Artificial Neural Networks for reservoir operation
Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan
2016-01-01
In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the ...