WorldWideScience

Sample records for multilayer perceptron neural

  1. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    Míguez González, M; López Peña, F.; Díaz Casás, V.; Galeazzi, Roberto; Blanke, Mogens

    acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network is...

  2. Optical proximity correction using a multilayer perceptron neural network

    Optical proximity correction (OPC) is one of the resolution enhancement techniques (RETs) in optical lithography, where the mask pattern is modified to improve the output pattern fidelity. Algorithms are needed to generate the modified mask pattern automatically and efficiently. In this paper, a multilayer perceptron (MLP) neural network (NN) is used to synthesize the mask pattern. We employ the pixel-based approach in this work. The MLP takes the pixel values of the desired output wafer pattern as input, and outputs the optimal mask pixel values. The MLP is trained with the backpropagation algorithm, with a training set retrieved from the desired output pattern, and the optimal mask pattern obtained by the model-based method. After training, the MLP is able to generate the optimal mask pattern non-iteratively with good pattern fidelity. (paper)

  3. Optical proximity correction using a multilayer perceptron neural network

    Luo, Rui

    2013-07-01

    Optical proximity correction (OPC) is one of the resolution enhancement techniques (RETs) in optical lithography, where the mask pattern is modified to improve the output pattern fidelity. Algorithms are needed to generate the modified mask pattern automatically and efficiently. In this paper, a multilayer perceptron (MLP) neural network (NN) is used to synthesize the mask pattern. We employ the pixel-based approach in this work. The MLP takes the pixel values of the desired output wafer pattern as input, and outputs the optimal mask pixel values. The MLP is trained with the backpropagation algorithm, with a training set retrieved from the desired output pattern, and the optimal mask pattern obtained by the model-based method. After training, the MLP is able to generate the optimal mask pattern non-iteratively with good pattern fidelity.

  4. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking

    Alireza Taravat; Simon Proud; Simone Peronaci; Fabio Del Frate; Natascha Oppelt

    2014-01-01

    A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm) with 10 hidden nodes. The multiple-layer perceptrons l...

  5. Classification of fused face images using multilayer perceptron neural network

    Bhattacharjee, Debotosh; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    This paper presents a concept of image pixel fusion of visual and thermal faces, which can significantly improve the overall performance of a face recognition system. Several factors affect face recognition performance including pose variations, facial expression changes, occlusions, and most importantly illumination changes. So, image pixel fusion of thermal and visual images is a solution to overcome the drawbacks present in the individual thermal and visual face images. Fused images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 95.07%. The main objective of employing fusion is to produce a fused image that provides the most detailed and reliable information. Fusion of multip...

  6. Photometric redshifts with the Multilayer Perceptron Neural Network: application to the HDF-S and SDSS

    Vanzella, E.; Cristiani, S.; Fontana, A.; M. Nonino(INAF/OAT); Arnouts, S.; Giallongo, E.; Grazian, A.; Fasano, G.; Popesso, P.; Saracco, P.; Zaggia, S.

    2003-01-01

    We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral ene...

  7. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking

    Proud, Simon Richard

    2015-01-01

    A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden...... and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery....

  8. Prediction of mortality in stroke patients using multilayer perceptron neural networks

    Süt, Necdet; ÇELİK, Yahya

    2012-01-01

    We aim ed to predict mortality in stroke patients by using multilayer perceptron (MLP) neural networks. Materials and methods: A data set consisting of 584 stroke patients was analyzed using MLP neural networks. The effect of prognostic factors (age, hospitalization time, sex, hypertension, atrial fibrillation, embolism, stroke type, infection, diabetes mellitus, and ischemic heart disease) on mortality in stroke were trained with 6 different MLP algorithms [quick propagation (QP), Levenberg...

  9. Classification of non-performing loans portfolio using Multilayer Perceptron artificial neural networks

    Flávio Clésio Silva de Souza

    2014-06-01

    Full Text Available The purpose of the present research is to apply a Multilayer Perceptron (MLP neural network technique to create classification models from a portfolio of Non-Performing Loans (NPLs to classify this type of credit derivative. These credit derivatives are characterized as the amount of loans that were not paid and are already overdue more than 90 days. Since these titles are, because of legislative motives, moved by losses, Credit Rights Investment Funds (FDIC performs the purchase of these debts and the recovery of the credits. Using the Multilayer Perceptron (MLP architecture of Artificial Neural Network (ANN, classification models regarding the posterior recovery of these debts were created. To evaluate the performance of the models, evaluation metrics of classification relating to the neural networks with different architectures were presented. The results of the classifications were satisfactory, given the classification models were successful in the presented economics costs structure.

  10. Multilayer perceptron for nonlinear programming

    A new method for solving nonlinear programming problems within the framework of a multilayer neural network perceptron is proposed. The method employs the Penalty Function method to transform a constrained optimization problem into a sequence of unconstrained optimization problems and then solves the sequence of unconstrained optimizations of the transformed problem by training a series of multilayer perceptrons. The neural network formulation is represented in such a way that the multilayer perceptron prediction error to be minimized mimics the objective function of the unconstrained problem, and therefore, the minimization of the objective function for each unconstrained optimization is attained by training a single perceptron. The multilayer perceptron allows for the transformation of problems with two-sided bounding constraints on the decision variables x, e.g., a≤xn≤b, into equivalent optimization problems in which these constraints do not explicitly appear. Hence, when these are the only constraints in the problem, the transformed problem is constraint free (i.e., the transformed objective function contains no penalty terms) and is solved by training a multilayer perceptron only once. In addition, we present a new Penalty Function method for solving nonlinear programming problems that is parameter free and guarantees that feasible solutions are obtained when the optimal solution is on the boundary of the feasible region. Simulation results, including an example from operations research, illustrate the proposed methods.

  11. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

    This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

  12. Highly Accurate Multi-layer Perceptron Neural Network for Air Data System

    H. S. Krishna

    2009-01-01

    The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05) accuracy, hith...

  13. Evolutionary Learning of Multi-Layer Perceptron Neural Networks

    Neruda, Roman; Slušný, Stanislav

    Košice : Prírodovedecká fakulta, Univerzita P. J. Šafárika, 2006 - (Vojtáš, P.), s. 125-130 ISBN 80-969184-4-3. [ITAT 2006. Workshop on Theory and Practice of Information Theory. Bystrá dolina (SK), 26.09.2006-01.10.2006] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : perceptron networks * learning * evolutionary algorithms Subject RIV: IN - Informatics, Computer Science

  14. Apply Multi-Layer Perceptrons Neural Network for Off-Line Signature Verification and Recognition

    Suhail Odeh

    2011-11-01

    Full Text Available This paper discusses the applying of Multi-layer perceptrons for signature verification and recognition using a new approach enables the user to recognize whether a signature is original or a fraud. The approach starts by scanning images into the computer, then modifying their quality through image enhancement and noise reduction, followed by feature extraction and neural network training, and finally verifies the authenticity of the signature. The paper discusses the different stages of the process including: image pre-processing, feature extraction and pattern recognition through neural networks.

  15. Classification of fuels using multilayer perceptron neural networks

    Electrical impedance data obtained with an array of conducting polymer chemical sensors was used by a neural network (ANN) to classify fuel adulteration. Real samples were classified with accuracy greater than 90% in two groups: approved and adulterated.

  16. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking

    Alireza Taravat

    2015-02-01

    Full Text Available A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.

  17. [Research on Early Identification of Bipolar Disorder Based on Multi-layer Perceptron Neural Network].

    Zhang, Haowei; Gao, Yanni; Yuan, Chengmei; Liu, Ying; Ding, Yuqing

    2015-06-01

    Multi-layer perceptron (MLP) neural network belongs to multi-layer feedforward neural network, and has the ability and characteristics of high intelligence. It can realize the complex nonlinear mapping by its own learning through the network. Bipolar disorder is a serious mental illness with high recurrence rate, high self-harm rate and high suicide rate. Most of the onset of the bipolar disorder starts with depressive episode, which can be easily misdiagnosed as unipolar depression and lead to a delayed treatment so as to influence the prognosis. The early identifica- tion of bipolar disorder is of great importance for patients with bipolar disorder. Due to the fact that the process of early identification of bipolar disorder is nonlinear, we in this paper discuss the MLP neural network application in early identification of bipolar disorder. This study covered 250 cases, including 143 cases with recurrent depression and 107 cases with bipolar disorder, and clinical features were statistically analyzed between the two groups. A total of 42 variables with significant differences were screened as the input variables of the neural network. Part of the samples were randomly selected as the learning sample, and the other as the test sample. By choosing different neu- ral network structures, all results of the identification of bipolar disorder were relatively good, which showed that MLP neural network could be used in the early identification of bipolar disorder. PMID:26485974

  18. Analysis of 7Be behaviour in the air by using a multilayer perceptron neural network

    A multilayer perceptron artificial neural network (ANN) model for the prediction of the 7Be behaviour in the air as the function of meteorological parameters was developed. The model was optimized and tested using 7Be activity concentrations obtained by standard gamma-ray spectrometric analysis of air samples collected in Belgrade (Serbia) during 2009–2011 and meteorological data for the same period. Good correlation (r = 0.91) between experimental values of 7Be activity concentrations and those predicted by ANN was obtained. The good performance of the model in prediction of 7Be activity concentrations could provide basis for construction of models which would forecast behaviour of other airborne radionuclides. - Highlights: • Neural network analysis was used to predict airborne 7Be activity using meteorological parameters as inputs. • Strong correlation between calculated and measured activities was found. • Obtained results can help in construction of a general model of 7Be activity variation in air

  19. Exchange rate prediction with multilayer perceptron neural network using gold price as external factor

    Mohammad Fathian

    2012-04-01

    Full Text Available In this paper, the problem of predicting the exchange rate time series in the foreign exchange rate market is going to be solved using a time-delayed multilayer perceptron neural network with gold price as external factor. The input for the learning phase of the artificial neural network are the exchange rate data of the last five days plus the gold price in two different currencies of the exchange rate as the external factor for helping the artificial neural network improving its forecast accuracy. The five-day delay has been chosen because of the weekly cyclic behavior of the exchange rate time series with the consideration of two holidays in a week. The result of forecasts are then compared with using the multilayer peceptron neural network without gold price external factor by two most important evaluation techniques in the literature of exchange rate prediction. For the experimental analysis phase, the data of three important exchange rates of EUR/USD, GBP/USD, and USD/JPY are used.

  20. Identification of Determinants for Globalization of SMEs using Multi-Layer Perceptron Neural Networks

    Umar Draz

    2016-01-01

    Full Text Available SMEs (Small and Medium Sized Enterprises sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that ?firm registered with OEM (Original Equipment Manufacturer and ?size of firm? are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies

  1. Identification of determinants for globalization of SMEs using multi-layer perceptron neural networks

    SMEs (Small and Medium Sized Enterprises) sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network) has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that firm registered with OEM (Original Equipment Manufacturer) and size of firm are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies. (author)

  2. An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose

    Chih-Heng Pan

    2012-12-01

    Full Text Available This study examines an analog circuit comprising a multilayer perceptron neural network (MLPNN. This study proposes a low-power and small-area analog MLP circuit to implement in an E-nose as a classifier, such that the E-nose would be relatively small, power-efficient, and portable. The analog MLP circuit had only four input neurons, four hidden neurons, and one output neuron. The circuit was designed and fabricated using a 0.18 μm standard CMOS process with a 1.8 V supply. The power consumption was 0.553 mW, and the area was approximately 1.36 × 1.36 mm2. The chip measurements showed that this MLPNN successfully identified the fruit odors of bananas, lemons, and lychees with 91.7% accuracy.

  3. Highly Accurate Multi-layer Perceptron Neural Network for Air Data System

    H. S. Krishna

    2009-11-01

    Full Text Available The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05 accuracy, hitherto unreported in literature.Defence Science Journal, 2009, 59(6, pp.670-674, DOI:http://dx.doi.org/10.14429/dsj.59.1574

  4. Photometric redshifts with the Multilayer Perceptron Neural Network: application to the HDF-S and SDSS

    Vanzella, E; Fontana, A; Nonino, M; Arnouts, S; Giallongo, E; Grazian, A; Fasano, G; Popesso, P; Saracco, P; Zaggia, S R

    2003-01-01

    We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, $0.1

  5. Geomagnetic Dst index forecast using a multilayer perceptrons artificial neural network

    Complete text of publication follows. The best known manifestations of the impact of solar wind on the magnetosphere are the geomagnetic storms. The prediction of geomagnetic field behavior allows the alert of geomagnetic storms occurrence, as those phenomena can cause many damages in the planet. The Artificial Intelligence tools have been applied in many multidisciplinary studies, covering several areas of knowledge, as a choice of approach to the solution of problems with characteristics like non-linearity, imprecision, and other features that can not be easily solved with conventional computational models. Techniques such as Artificial Neural Networks, Expert Systems and Decision Trees have been used in the Space Weather studies to perform tasks such as forecasting geomagnetic storms and the investigation of rules and parameters related on its occurrence. The main focus of this work is on forecasting the geomagnetic field behavior, represented this time by the Dst index, using for that task, mainly, the interplanetary magnetic field components and solar wind data. The tool chosen here to solve the non-linear problem was a Multi-layer Perceptrons Artificial Neural Network, trained with the backpropagation algorithm. Unlike what was done in other studies, we chose to predict calm and disturbed periods like, for example, a full month of data, for application in a real time forecasting system. It was possible to predict the geomagnetic Dst index one or two hours before with great percentage efficiency.

  6. Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network

    Kucuk, Nil; Manohara, S.R.; Hanagodimath, S.M.; Gerward, L.

    2013-01-01

    In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15MeV, and...

  7. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network

    2007-01-01

    Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.

  8. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan

    Kamal Ahmed; Shamsuddin Shahid; Sobri Bin Haroon; Wang Xiao-Jun

    2015-08-01

    Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as one of the most vulnerable areas of Pakistan to climate change. The National Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the study area were used to select the predictors using principal component analysis. Monthly rainfall data for the time periods 1961–1990 and 1991–2001 were used for the calibration and validation of the MLP model, respectively. The performance of the model was assessed using various statistics including mean, variance, quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled rainfall showed good agreement during both calibration and validation periods, while the downscaling model was found to underpredict rainfall variance in both periods. Other statistical parameters also revealed good agreement between observed and downscaled rainfall during both calibration and validation periods in most of the stations.

  9. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan

    Ahmed, Kamal; Shahid, Shamsuddin; Haroon, Sobri Bin; Xiao-jun, Wang

    2015-08-01

    Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as one of the most vulnerable areas of Pakistan to climate change. The National Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the study area were used to select the predictors using principal component analysis. Monthly rainfall data for the time periods 1961-1990 and 1991-2001 were used for the calibration and validation of the MLP model, respectively. The performance of the model was assessed using various statistics including mean, variance, quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled rainfall showed good agreement during both calibration and validation periods, while the downscaling model was found to underpredict rainfall variance in both periods. Other statistical parameters also revealed good agreement between observed and downscaled rainfall during both calibration and validation periods in most of the stations.

  10. Experiments with Evolutionary and Hybrid Learning of Multi-layer Perceptron Neural Networks

    Neruda, Roman; Slušný, Stanislav

    Ostrava : VŠB Technická univerzita, 2007 - (Mikulecký, P.; Dvorský, J.; Krátký, M.), s. 75-84 ISBN 978-80-248-1279-3. [Znalosti 2007. Ostrava (CZ), 21.02.2007-23.02.2007] R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : multilayer perceptron * evolutionary learning * hybrid algorithms Subject RIV: IN - Informatics, Computer Science

  11. Cross Validation Evaluation for Breast Cancer Prediction Using Multilayer Perceptron Neural Networks

    Shirin A. Mojarad

    2011-01-01

    Full Text Available Problem statement: The presence of metastasis in the regional lymph nodes is the most important factor in predicting prognosis in breast cancer. Many biomarkers have been identified that appear to relate to the aggressive behaviour of cancer. However, the nonlinear relation of these markers to nodal status and also the existence of complex interaction between markers have prohibited an accurate prognosis. Approach: The aim of this study is to investigate the effectiveness of a Multilayer Perceptron (MLP for predicting breast cancer progression using a set of four biomarkers of breast tumors. The biomarkers include DNA ploidy, cell cycle distribution (G0G1/G2M, steroid receptors (ER/PR and S-Phase Fraction (SPF. A further objective of the study is to explore the predictive potential of these markers in defining the state of nodal involvement in breast cancer. Two methods of outcome evaluation viz. stratified and simple k-fold Cross Validation (CV are studied in order to assess their accuracy and reliability for neural network validation. Criteria such as output accuracy, sensitivity and specificity are used for selecting the best validation technique besides evaluating the network outcome for different combinations of markers. Results: The results show that stratified 2-fold CV is more accurate and reliable compared to simple k-fold CV as it obtains a higher accuracy and specificity and also provides a more stable network validation in terms of sensitivity. Best prediction results are obtained by using an individual marker-SPF which obtains an accuracy of 65%. Conclusion/Recommendations: Our findings suggest that MLP-based analysis provides an accurate and reliable platform for breast cancer prediction given that an appropriate design and validation method is employed.

  12. Multilayered perceptron neural networks to compute energy losses in magnetic cores

    This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the specific energy losses of toroidal wound cores built from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge electrical steel strips. The MLP has been trained by a back-propagation and extended delta-bar-delta learning algorithm. The results obtained by using the MLP model were compared with a commonly used conventional method. The comparison has shown that the proposed model improved loss estimation with respect to the conventional method

  13. Quaternionic Multilayer Perceptron with Local Analyticity

    Nobuyuki Matsui; Haruhiko Nishimura; Teijiro Isokawa

    2012-01-01

    A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights...

  14. Channel Equalization Using Multilayer Perceptron Networks

    Saba Baloch; Javed Ali Baloch; Mukhtiar Ali Unar

    2012-01-01

    In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference) to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks). The simulated network is a multilayer feedforward Perceptron ANN,...

  15. Channel Equalization Using Multilayer Perceptron Networks

    Baloch, Saba; Baloch, Javed Ali; Unar, Mukhtiar Ali

    2016-01-01

    In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference) to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks). The simulated network is a multilayer feedforward Perceptron ANN, which has b...

  16. Quaternionic Multilayer Perceptron with Local Analyticity

    Nobuyuki Matsui

    2012-11-01

    Full Text Available A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights of the network.

  17. Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images

    de Albuquerque, Victor Hugo C.; Auzuir Ripardo de Alexandria; Paulo César Cortez; João Manuel R. S. Tavares

    2009-01-01

    Artificial neuronal networks have been used intensively in many domains to accomplish different computational tasks. One of these tasks is the segmentation of objects in images, like to segment microstructures from metallographic images, and for that goal several network topologies were proposed. This paper presents a comparative analysis between multilayer perceptron and selforganizing map topologies applied to segment microstructures from metallographic images. The multilayer perceptron neu...

  18. The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region

    Érica Signori Romagnoli

    2016-04-01

    Full Text Available Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Paraná, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and a random subdivision of samples in three groups with 70 for training, 15 for test and 15% for validation were employed. Sixty networks were trained from three different initializations. Three networks, one at each start-up, were highlighted and the one with the best performance presented 8 neurons in the hidden layer, with 95 accuracy training, 96 in the test and 96% in validation. The most important variables in classifications, identified by the network, occurred in the following order: alcohol content, density, pH and electrical conductivity. Application of MLP segmented ethanol samples and identified the commercialization regions.

  19. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study

    Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported

  20. Adaptive Weibull Multiplicative Model and Multilayer Perceptron Neural Networks for Dark-Spot Detection from SAR Imagery

    Alireza Taravat

    2014-12-01

    Full Text Available Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR, as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM and MultiLayer Perceptron (MLP neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN model generates poor accuracies.

  1. Multilayer Perceptrons to Approximate Quaternion Valued Functions.

    Xibilia, M G.; Muscato, G; Fortuna, L; Arena, P

    1997-03-01

    In this paper a new type of multilayer feedforward neural network is introduced. Such a structure, called hypercomplex multilayer perceptron (HMLP), is developed in quaternion algebra and allows quaternionic input and output signals to be dealt with, requiring a lower number of neurons than the real MLP, thus providing a reduced computational complexity. The structure introduced represents a generalization of the multilayer perceptron in the complex space (CMLP) reported in the literature. The fundamental result reported in the paper is a new density theorem which makes HMLPs universal interpolators of quaternion valued continuous functions. Moreover the proof of the density theorem can be restricted in order to formulate a density theorem in the complex space. Due to the identity between the quaternion and the four-dimensional real space, such a structure is also useful to approximate multidimensional real valued functions with a lower number of real parameters, decreasing the probability of being trapped in local minima during the learning phase. A numerical example is also reported in order to show the efficiency of the proposed structure. Copyright 1997 Elsevier Science Ltd. All Rights Reserved. PMID:12662531

  2. Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region

    Mawloud GUERMOUI

    2016-07-01

    Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.

  3. Channel Equalization Using Multilayer Perceptron Networks

    Saba Baloch

    2012-07-01

    Full Text Available In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artificial Neural Networks. The simulated network is a multilayer feedforward Perceptron ANN, which has been trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network. This paper presents a very effective method for blind channel equalization, being more efficient than the pre-existing algorithms. The obtained results show a visible reduction in the noise content.

  4. Wind speed estimation using multilayer perceptron

    Highlights: • We present a method for determining the average wind speed using neural networks. • We use data from that site in the short term and data from other nearby stations. • The inputs used in the ANN were wind speed and direction data from a station. • The method allows knowing the wind speed without topographical data. - Abstract: Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%

  5. Newton's Method Backpropagation for Complex-Valued Holomorphic Multilayer Perceptrons

    La Corte, Diana Thomson; Zou, Yi ming

    2014-01-01

    The study of Newton's method in complex-valued neural networks faces many difficulties. In this paper, we derive Newton's method backpropagation algorithms for complex-valued holomorphic multilayer perceptrons, and investigate the convergence of the one-step Newton steplength algorithm for the minimization of real-valued complex functions via Newton's method. To provide experimental support for the use of holomorphic activation functions, we perform a comparison of using sigmoidal functions v...

  6. Extreme Learning Machine for Multilayer Perceptron.

    Tang, Jiexiong; Deng, Chenwei; Huang, Guang-Bin

    2016-04-01

    Extreme learning machine (ELM) is an emerging learning algorithm for the generalized single hidden layer feedforward neural networks, of which the hidden node parameters are randomly generated and the output weights are analytically computed. However, due to its shallow architecture, feature learning using ELM may not be effective for natural signals (e.g., images/videos), even with a large number of hidden nodes. To address this issue, in this paper, a new ELM-based hierarchical learning framework is proposed for multilayer perceptron. The proposed architecture is divided into two main components: 1) self-taught feature extraction followed by supervised feature classification and 2) they are bridged by random initialized hidden weights. The novelties of this paper are as follows: 1) unsupervised multilayer encoding is conducted for feature extraction, and an ELM-based sparse autoencoder is developed via l1 constraint. By doing so, it achieves more compact and meaningful feature representations than the original ELM; 2) by exploiting the advantages of ELM random feature mapping, the hierarchically encoded outputs are randomly projected before final decision making, which leads to a better generalization with faster learning speed; and 3) unlike the greedy layerwise training of deep learning (DL), the hidden layers of the proposed framework are trained in a forward manner. Once the previous layer is established, the weights of the current layer are fixed without fine-tuning. Therefore, it has much better learning efficiency than the DL. Extensive experiments on various widely used classification data sets show that the proposed algorithm achieves better and faster convergence than the existing state-of-the-art hierarchical learning methods. Furthermore, multiple applications in computer vision further confirm the generality and capability of the proposed learning scheme. PMID:25966483

  7. KLASIFIKASI WEBSITE MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON

    Nyoman Purnama

    2014-12-01

    Full Text Available Sistem klasifikasi merupakan proses temu balik informasi yang sangat bergantung dari elemen-elemen penyusunnya.Sistem ini banyak digunakan untuk mengatasi permasalahan segmentasi data. Klasifikasi dapat digunakan pada website sebagaimetode untuk mengelompokkan website. Website merupakan salah satu data yang memiliki informasi yang beraneka-ragam,sehingga pengelompokan data ini penting untuk diteliti. Sistem klasifikasi dimulai dengan melakukan proses pengumpulaninformasi dari halaman website (parsing dan untuk setiap hasil parsing dilakukan proses penghapusan kata henti, stemming,feature selection dengan tf-idf. Hasil dari proses ini berupa fitur yang menjadi inputan algoritma Multilayer Perceptron. Dalamalgoritma ini terjadi proses pembelajaran terhadap pola input masukan dan pembuatan bobot pelatihan. Bobot ini akandigunakan pada proses klasifikasi. Hasil dari penelitian menunjukkan bahwa algoritma Multilayer Perceptron dapatmenghasilkan klasifikasi website dengan akurasi yang bagus. Hal ini dibuktikan dengan beberapa tahapan penelitian yangberbeda dan didapatkan nilai akurasi rata-rata diatas 70%.

  8. [Multi-layer perceptron neural network based algorithm for simultaneous retrieving temperature and emissivity from hyperspectral FTIR data].

    Cheng, Jie; Xiao, Qing; Li, Xiao-Wen; Liu, Qin-Huo; Du, Yong-Ming

    2008-04-01

    The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation. PMID:18619297

  9. Approximation by fully complex multilayer perceptrons.

    Kim, Taehwan; Adali, Tülay

    2003-07-01

    We investigate the approximation ability of a multilayer perceptron (MLP) network when it is extended to the complex domain. The main challenge for processing complex data with neural networks has been the lack of bounded and analytic complex nonlinear activation functions in the complex domain, as stated by Liouville's theorem. To avoid the conflict between the boundedness and the analyticity of a nonlinear complex function in the complex domain, a number of ad hoc MLPs that include using two real-valued MLPs, one processing the real part and the other processing the imaginary part, have been traditionally employed. However, since nonanalytic functions do not meet the Cauchy-Riemann conditions, they render themselves into degenerative backpropagation algorithms that compromise the efficiency of nonlinear approximation and learning in the complex vector field. A number of elementary transcendental functions (ETFs) derivable from the entire exponential function e(z) that are analytic are defined as fully complex activation functions and are shown to provide a parsimonious structure for processing data in the complex domain and address most of the shortcomings of the traditional approach. The introduction of ETFs, however, raises a new question in the approximation capability of this fully complex MLP. In this letter, three proofs of the approximation capability of the fully complex MLP are provided based on the characteristics of singularity among ETFs. First, the fully complex MLPs with continuous ETFs over a compact set in the complex vector field are shown to be the universal approximator of any continuous complex mappings. The complex universal approximation theorem extends to bounded measurable ETFs possessing a removable singularity. Finally, it is shown that the output of complex MLPs using ETFs with isolated and essential singularities uniformly converges to any nonlinear mapping in the deleted annulus of singularity nearest to the origin. PMID:12816570

  10. A Parallel Framework for Multilayer Perceptron for Human Face Recognition

    Bhowmik, M K; Nasipuri, M; Basu, D K; Kundu, M

    2010-01-01

    Artificial neural networks have already shown their success in face recognition and similar complex pattern recognition tasks. However, a major disadvantage of the technique is that it is extremely slow during training for larger classes and hence not suitable for real-time complex problems such as pattern recognition. This is an attempt to develop a parallel framework for the training algorithm of a perceptron. In this paper, two general architectures for a Multilayer Perceptron (MLP) have been demonstrated. The first architecture is All-Class-in-One-Network (ACON) where all the classes are placed in a single network and the second one is One-Class-in-One-Network (OCON) where an individual single network is responsible for each and every class. Capabilities of these two architectures were compared and verified in solving human face recognition, which is a complex pattern recognition task where several factors affect the recognition performance like pose variations, facial expression changes, occlusions, and ...

  11. Learning of Multilayer Perceptrons with Piecewise-Linear Activation Functions

    Kozub, P.; Holeňa, Martin

    Praha: Matfyzpress, 2008 - (Obdržálek, D.; Štanclová, J.; Plátek, M.), s. 27-46 ISBN 978-80-7378-076-0. [MIS 2008. Malý informatický seminář /25./. Josefův důl (CZ), 12.01.2008-19.01.2008] R&D Projects: GA ČR GA201/08/0802; GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : artificial neural networks * multilayer perceptrons * activation functions * function approximation * constrained optimization Subject RIV: IN - Informatics, Computer Science

  12. A Choice of Input Variables for a Multilayer Perceptron

    In the paper some aspects of multilayer perceptron (MLP) application to the problem of classifying the events presented by empirical samples of a finite volume are considered. The results of the MLP learning for various forms of the input data are analyzed and the reasons leading to the effect of an instantaneous learning of the MLP and rise of the neural network are investigated for the case when the input data are presented in a form of variational series. The problem of hidden layer neuron reduction without raising the recognition error is discussed. (author). 13 refs., 6 figs., 1 tab

  13. Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study

    In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15 MeV, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg–Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.4.3 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA data for TLD materials have been given with penetration depth and incident photon energy as comparative to the results of the interpolation method using the Geometrical Progression (G-P) fitting formula. - Highlights: ► Gamma-ray energy absorption buildup factors estimation in TLD materials. ► The ANN approach can be alternative to G-P fitting method for BA calculations. ► The applied model is not time-consuming and easily predicted

  14. Online learning dynamics of multilayer perceptrons with unidentifiable parameters

    In the over-realizable learning scenario of multilayer perceptrons, in which the student network has a larger number of hidden units than the true or optimal network, some of the weight parameters are unidentifiable. In this case, the teacher network consists of a union of optimal subspaces included in the parameter space. The optimal subspaces, which lead to singularities, are known to affect the estimation performance of neural networks. Using statistical mechanics, we investigate the online learning dynamics of two-layer neural networks in the over-realizable scenario with unidentifiable parameters. We show that the convergence speed strongly depends on the initial parameter conditions. We also show that there is a quasi-plateau around the optimal subspace, which differs from the well-known plateaus caused by permutation symmetry. In addition, we discuss the property of the final learning state, relating this to the singular structures

  15. Power grid higher-order harmonics estimation with multilayer perceptrons

    Nguyen, Thien Minh; Wira, Patrice

    2015-12-01

    This work proposes a new neural approach based on the structure of a Multi-Layer Perceptron (MLP) for identifying current harmonics in power systems. The learning approach is based on several MLP, adopts the Fourier decomposition of a signal and a training set generated from harmonic waveforms is used to calculate the weights. After training, each MLP is able to identify two coefficients for each harmonic term of the input signal. The effectiveness of the new approach is evaluated by experiments. Results show that the proposed MLPs of the new approach enable to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. Results are compared to other and recent MLP approaches. The new approach can be applied in harmonic compensation strategies by being implement in an active power filter to ensure the power quality in electrical power systems.

  16. A Parallel Framework for Multilayer Perceptron for Human Face Recognition

    Mita Nasipuri

    2010-01-01

    Full Text Available Artificial neural networks have already shown their success in face recognition and similar complex pattern recognition tasks. However, a major disadvantage of the technique is that it is extremely slow during training for larger classes and hence not suitable for real-time complex problems such as pattern recognition. This is an attempt to develop a parallel framework for the training algorithm of a perceptron. In this paper, two general architectures for a Multilayer Perceptron (MLP have been demonstrated. The first architecture is All-Class-in-One-Network (ACON where all the classes are placed in a single network and the second one is One-Class-in-One-Network (OCON where an individual single network is responsible for each and every class. Capabilities of these two architectures were compared and verified in solving human face recognition, which is a complex pattern recognition task where several factors affect the recognition performance like pose variations, facial expression changes, occlusions, and most importantly illumination changes. Experimental results show that the proposed OCON structure performs better than the conventional ACON in terms of network training convergence speed and which can be easily exercised in a parallel environment.

  17. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.

    Abderrahim, Hamza; Chellali, Mohammed Reda; Hamou, Ahmed

    2016-01-01

    Air quality forecasting system has acquired high importance in atmospheric pollution due to its negative impacts on the environment and human health. The artificial neural network is one of the most common soft computing methods that can be pragmatic for carving such complex problem. In this paper, we used a multilayer perceptron neural network to forecast the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 μm (PM10) in Algiers, Algeria. The data for training and testing the network are based on the data sampled from 2002 to 2006 collected by SAMASAFIA network center at El Hamma station. The meteorological data, air temperature, relative humidity, and wind speed, are used as inputs network parameters in the formation of model. The training patterns used correspond to 41 days data. The performance of the developed models was evaluated on the basis index of agreement and other statistical parameters. It was seen that the overall performance of model with 15 neurons is better than the ones with 5 and 10 neurons. The results of multilayer network with as few as one hidden layer and 15 neurons were quite reasonable than the ones with 5 and 10 neurons. Finally, an error around 9% has been reached. PMID:26381787

  18. APPLYING PRINCIPAL COMPONENT ANALYSIS, MULTILAYER PERCEPTRON AND SELF-ORGANIZING MAPS FOR OPTICAL CHARACTER RECOGNITION

    Khuat Thanh Tung

    2016-11-01

    Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.

  19. Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics

    F. Cadini

    2008-01-01

    Full Text Available Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated.

  20. Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics

    Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP) for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP) and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated

  1. Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron

    HUANGTian-min; PEIZheng

    2003-01-01

    The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed,and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be imple-ment by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.

  2. Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods

    Pham, Binh Thai; Tien Bui, Dieu; Pourghasemi, Hamid Reza; Indra, Prakash; Dholakia, M. B.

    2015-12-01

    The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning.

  3. A multilayer perceptron solution to the match phase problem in rule-based artificial intelligence systems

    Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.

    1992-01-01

    In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.

  4. A conjugate gradients/trust regions algorithms for training multilayer perceptrons for nonlinear mapping

    Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.

    1992-01-01

    This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.

  5. Efficient training of multilayer perceptrons using principal component analysis

    A training algorithm for multilayer perceptrons is discussed and studied in detail, which relates to the technique of principal component analysis. The latter is performed with respect to a correlation matrix computed from the example inputs and their target outputs. Typical properties of the training procedure are investigated by means of a statistical physics analysis in models of learning regression and classification tasks. We demonstrate that the procedure requires by far fewer examples for good generalization than traditional online training. For networks with a large number of hidden units we derive the training prescription which achieves, within our model, the optimal generalization behavior

  6. Detection and classification of undersea objects using multilayer perceptrons

    Shazeer, Dov J.; Bello, Martin G.

    1991-08-01

    A large number of underwater missions, such as obstacle avoidance, surveying, object recovery, and detection, classification, and recognition of hazards, are simply too dangerous or costly for manned vehicles. Remotely operated vehicles are subject to different limitations, such as communication bandwidth, operator fatigue, and a restricted radius of operation. These considerations make autonomous underwater vehicles (AUV) an increasingly attractive alternative. To be truly autonomous, an underwater vehicle requires scene recognition capabilities. Advances in pattern recognition and the use of increasingly high-resolution underwater sensors hold the promise that such capabilities will be developed in the near future. This paper reports the training and testing of multilayer perceptrons designed to classify specific manmade underwater objects under various environmental conditions, from arbitrary viewing aspects, and in highly cluttered environments. The trained classifiers have been tested against difficult side-scan sonar imagery and appear to work as well as a trained human analyst. Feature sets that account for the sensor response to range and that adapt to environmental variations improve performance and make the design robust. Receiver Operating Curves (ROC) show up to a 96 detection rate for a 2 false alarm rate. The set of multilayer perceptron networks have been demonstrated on special-purpose hardware and run in real time.

  7. Dynamics of learning in multilayer perceptrons near singularities.

    Cousseau, Florent; Ozeki, Tomoko; Amari, Shun-Ichi

    2008-08-01

    The dynamical behavior of learning is known to be very slow for the multilayer perceptron, being often trapped in the "plateau." It has been recently understood that this is due to the singularity in the parameter space of perceptrons, in which trajectories of learning are drawn. The space is Riemannian from the point of view of information geometry and contains singular regions where the Riemannian metric or the Fisher information matrix degenerates. This paper analyzes the dynamics of learning in a neighborhood of the singular regions when the true teacher machine lies at the singularity. We give explicit asymptotic analytical solutions (trajectories) both for the standard gradient (SGD) and natural gradient (NGD) methods. It is clearly shown, in the case of the SGD method, that the plateau phenomenon appears in a neighborhood of the critical regions, where the dynamical behavior is extremely slow. The analysis of the NGD method is much more difficult, because the inverse of the Fisher information matrix diverges. We conquer the difficulty by introducing the "blow-down" technique used in algebraic geometry. The NGD method works efficiently, and the state converges directly to the true parameters very quickly while it staggers in the case of the SGD method. The analytical results are compared with computer simulations, showing good agreement. The effects of singularities on learning are thus qualitatively clarified for both standard and NGD methods. PMID:18701364

  8. Second-Order Learning Methods for a Multilayer Perceptron

    First- and second-order learning methods for feed-forward multilayer neural networks are studied. Newton-type and quasi-Newton algorithms are considered and compared with commonly used back-propagation algorithm. It is shown that, although second-order algorithms require enhanced computer facilities, they provide better convergence and simplicity in usage. 13 refs., 2 figs., 2 tabs

  9. Asymptotic law of likelihood ratio for multilayer perceptron models

    Rynkiewicz, Joseph

    2010-01-01

    We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The data are assumed to be generated by a true MLP model and the estimation of the parameters of the MLP is done by maximizing the likelihood of the model. When the number of hidden units of the true model is known, the asymptotic distribution of the maximum likelihood estimator (MLE) and the likelihood ratio (LR) statistic is easy to compute and converge to a $\\chi^2$ law. However, if the number of hidden unit is over-estimated the Fischer information matrix of the model is singular and the asymptotic behavior of the MLE is unknown. This paper deals with this case, and gives the exact asymptotic law of the LR statistics. Namely, if the parameters of the MLP lie in a suitable compact set, we show that the LR statistics is the supremum of the square of a Gaussian process indexed by a class of limit score functions.

  10. Digital modulation classification using multi-layer perceptron and time-frequency features

    Yuan Ye; Mei Wenbo

    2007-01-01

    Considering that real communication signals corrupted by noise are generally nonstationary, and time-frequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals.The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation.According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed.Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.

  11. Recognition of Epileptiform Patterns in the Human Electroencephalogram Using Multi-Layer Perceptron

    V. Mokran

    1995-06-01

    Full Text Available Automatic detection of epileptiform patterns is highly desirable during continuous monitoring of patients with epilepsy. This paper describes an unconvential system for automatic off-line recognition of epileptic sharp transients in the human electroencephalogram (EEG, based on a standard neural network architecture - multi-layer perceptron (MLP, and implemented on a Silicon Graphics Indigo workstation. The system makes comprehensive use of wide spatial contextual information available on 12 channels of EEG and takes advantage of discrete dyadic wavelet transform (DDWT for efficient parameterisation of EEG data. The EEG database consists of 12 patients, 7 of which are used in the process of training of MLP. The resulting MLP is presented with the testing data set consisting of all data vectors from all 12 patients, and is shown to be capable to recognise a wide variety of epileptic signals.

  12. An application of the multilayer perceptron: Solar radiation maps in Spain

    Hontoria, L.; Aguilera, J. [Grupo Investigacion y Desarrollo en Energia Solar y Automatica, Dpto. de Ingenieria Electronica, de Telecomunicaciones y Automatica, Escuela Politecnica Superior de Jaen, Campus de las Lagunillas, Universidad de Jaen, 23071 Jaen (Spain); Zufiria, P. [Grupo de Redes Neuronales, Dpto. de Matematica Aplicada a las Tecnologias de la Informacion, ETSI Telecomunicaciones, UPM Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2005-11-01

    In this work an application of a methodology to obtain solar radiation maps is presented. This methodology is based on a neural network system [Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4-22] called Multi-Layer Perceptron (MLP) [Haykin, S., 1994. Neural Networks. A Comprehensive Foundation. Macmillan Publishing Company; Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366]. To obtain a solar radiation map it is necessary to know the solar radiation of many points spread wide across the zone of the map where it is going to be drawn. For most of the locations all over the world the records of these data (solar radiation in whatever scale, daily or hourly values) are non-existent. Only very few locations have the privilege of having good meteorological stations where records of solar radiation have being registered. But even in those locations with historical records of solar data, the quality of these solar series is not as good as it should be for most purposes. In addition, to draw solar radiation maps the number of points on the maps (real sites) that it is necessary to work with makes this problem difficult to solve. Nevertheless, with the application of the methodology proposed in this paper, this problem has been solved and solar radiation maps have been obtained for a small region of Spain: Jaen province, a southern province of Spain between parallels 38{sup o}25' N and 37{sup o}25' N, and meridians 4{sup o}10' W and 2{sup o}10' W, and for a larger region: Andalucia, the most southern region of Spain situated between parallels 38{sup o}40' N and 36{sup o}00' N, and meridians 7{sup o}30' W and 1{sup o}40' W. (author)

  13. Analysis and test of efficient methods for building recursive deterministic perceptron neural networks.

    Elizondo, David A; Birkenhead, Ralph; Góngora, Mario; Taillard, Eric; Luyima, Patrick

    2007-12-01

    The Recursive Deterministic Perceptron (RDP) feed-forward multilayer neural network is a generalisation of the single layer perceptron topology. This model is capable of solving any two-class classification problem as opposed to the single layer perceptron which can only solve classification problems dealing with linearly separable sets. For all classification problems, the construction of an RDP is done automatically and convergence is always guaranteed. Three methods for constructing RDP neural networks exist: Batch, Incremental, and Modular. The Batch method has been extensively tested and it has been shown to produce results comparable with those obtained with other neural network methods such as Back Propagation, Cascade Correlation, Rulex, and Ruleneg. However, no testing has been done before on the Incremental and Modular methods. Contrary to the Batch method, the complexity of these two methods is not NP-Complete. For the first time, a study on the three methods is presented. This study will allow the highlighting of the main advantages and disadvantages of each of these methods by comparing the results obtained while building RDP neural networks with the three methods in terms of the convergence time, the level of generalisation, and the topology size. The networks were trained and tested using the following standard benchmark classification datasets: IRIS, SOYBEAN, and Wisconsin Breast Cancer. The results obtained show the effectiveness of the Incremental and the Modular methods which are as good as that of the NP-Complete Batch method but with a much lower complexity level. The results obtained with the RDP are comparable to those obtained with the backpropagation and the Cascade Correlation algorithms. PMID:17904333

  14. Lithofacies prediction from well log data using a multilayer perceptron (MLP) and Kohonen's self-organizing map (SOM) - a case study from the Algerian Sahara

    Ouadfeul, S.-A.; Aliouane, L.

    2013-06-01

    In this paper, a combination of supervised and unsupervised leanings is used for lithofacies classification from well log data. The main idea consists of enhancing the multilayer perceptron (MLP) learning by the output of the self-organizing map (SOM) neural network. Application to real data of two wells located the Algerian Sahara clearly shows that the lithofacies model built by the neural combination is able to give better results than a self-organizing map.

  15. A multilayer extension of the similarity neural network

    Buchaca Prats, David

    2014-01-01

    Aquest projecte ajunta idees de les radial basis functions, i el multilayer perceptron per a desenvolupar una altra arquitectura de xarxa neuronal artificial i un mètode per a poder-la entrenar. És una extensió de la similarity neural network de Lluís Belanche.

  16. Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron

    Mohammad Subhi Al-batah

    2015-01-01

    Full Text Available Landslides are one of the dangerous natural phenomena that hinder the development in Penang Island, Malaysia. Therefore, finding the reliable method to predict the occurrence of landslides is still the research of interest. In this paper, two models of artificial neural network, namely, Multilayer Perceptron (MLP and Cascade Forward Neural Network (CFNN, are introduced to predict the landslide hazard map of Penang Island. These two models were tested and compared using eleven machine learning algorithms, that is, Levenberg Marquardt, Broyden Fletcher Goldfarb, Resilient Back Propagation, Scaled Conjugate Gradient, Conjugate Gradient with Beale, Conjugate Gradient with Fletcher Reeves updates, Conjugate Gradient with Polakribiere updates, One Step Secant, Gradient Descent, Gradient Descent with Momentum and Adaptive Learning Rate, and Gradient Descent with Momentum algorithm. Often, the performance of the landslide prediction depends on the input factors beside the prediction method. In this research work, 14 input factors were used. The prediction accuracies of networks were verified using the Area under the Curve method for the Receiver Operating Characteristics. The results indicated that the best prediction accuracy of 82.89% was achieved using the CFNN network with the Levenberg Marquardt learning algorithm for the training data set and 81.62% for the testing data set.

  17. Using multilayer perceptron and a satellite image for the estimation of soil salinity

    Applying the model of the Perceptron multilayer with momentum of an artificial neural network particularly and a multispectral image of high resolution spatial and radiometric, for the first time estimated the salinity of the soil cultivated with sugar cane. The study area is the UBPC 'Lazaro Romero' of the sugar company 'Hector Molina' of the locality San Nicolas de Bari, Havana province, located at 22° 44' North latitude and 81 ° 56' longitude West. The experiments were made in the framework of the El-479 project funded by the Inter universities Council of Flanders, Belgium. 36 samples geo referenced of soils were taken at 3 depths in each of the 4 sugar cane selected blocks, which determined the electrical conductivity of the saturation extract; half of that amount of data was used for the training of the network and the other half for control in a computer program of the artificial neural network created to that effect, together with the reflectance of vegetation indexes for the image, which were maps of electrical conductivity of each block and bands. They were compared with those obtained by simple linear regression between the normalized difference vegetation index and electrical conductivity, Ndv with the approach of the neuronal network, the correlation coefficient was 0.78 to 0.83, while the linear regression was between 0.65 to 0.75

  18. Application of multilayer perceptron for prediction of radionuclide migration from catchment area to watercourse

    In the thesis the results of verification of multilayer perceptron (MLP) {20–41–1} application with sigmoid activation function for prediction of lateral radionuclide migration are presented. The calculated values of Cs 137 and Sr 90 volumetric activity are close to experimental measurement limits, indicating the possibility of MLP application for the solving problem. (authors)

  19. Multilayer Perceptron Model for Nowcasting Visibility from Surface Observations: Results and Sensitivity to Dissimilar Station Altitudes

    Chaudhuri, Sutapa; Das, Debanjana; Sarkar, Ishita; Goswami, Sayantika

    2015-10-01

    The reduction in the visibility during fog significantly influences surface as well as air transport operations. The prediction of fog remains difficult despite improvements in numerical weather prediction models. The present study aims at identifying a suitable neural network model with proper architecture to provide precise nowcast of the horizontal visibility during fog over the airports of three significantly affected metropolises of India, namely: Kolkata (22°32'N; 88°20'E), Delhi (28°38'N; 77°12'E) and Bengaluru (12°95'N; 77°72'E). The investigation shows that the multilayer perceptron (MLP) model provides considerably less error in nowcasting the visibility during fog over the said metropolises than radial basis function network, generalized regression neural network or linear neural network. The MLP models of different architectures are trained with the data and records from 2000 to 2010. The model results are validated with observations from 2011 to 2014. Our results reveal that MLP models with different configurations (1) four input layers, three hidden layers with three hidden nodes in each layer and a single output; (2) four input layers with two hidden layers having one hidden node in the first hidden layer and two hidden nodes in the second hidden layer, and a single output layer; and (3) four input layers with two hidden layers having two hidden nodes in each hidden layer and a single output layer] provide minimum error in nowcasting the visibility during fog over the airports of Kolkata, Delhi and Bengaluru, respectively. The results show that the MLP model is well suited for nowcasting visibility during fog with 6 h lead time, however, the study reveals that the MLP model sensitive to dissimilar station altitudes in nowcasting visibility, as the minimum prediction error for the three metropolises having dissimilar mean sea level altitudes is observed through different configurations of the model.

  20. Fault Classification in Cylinders Using Multilayer Perceptrons, Support Vector Machines and Guassian Mixture Models

    Marwala, Tshilidzi; Chakraverty, Snehashish

    2007-01-01

    Gaussian mixture models (GMM) and support vector machines (SVM) are introduced to classify faults in a population of cylindrical shells. The proposed procedures are tested on a population of 20 cylindrical shells and their performance is compared to the procedure, which uses multi-layer perceptrons (MLP). The modal properties extracted from vibration data are used to train the GMM, SVM and MLP. It is observed that the GMM produces 98%, SVM produces 94% classification accuracy while the MLP produces 88% classification rates.

  1. Siamese Multi-layer Perceptrons for Dimensionality Reduction and Face Identification

    Zheng, Lilei; Duffner, Stefan; Idrissi, Khalid; Garcia, Christophe; Baskurt, Atilla

    2015-01-01

    This paper presents a framework using siamese Multi-layer Percep-trons (MLP) for supervised dimensionality reduction and face identification. Compared with the classical MLP that trains on fully labeled data, the siamese MLP learns on side information only, i.e., how similar of data examples are to each other. In this study, we compare it with the classical MLP on the problem of face identification. Experimental results on the Extended Yale B database demonstrate that the siamese MLP training...

  2. Belief Propagation for Error Correcting Codes and Lossy Compression Using Multilayer Perceptrons

    Mimura, Kazushi; Cousseau, Florent; Okada, Masato

    2011-01-01

    The belief propagation (BP) based algorithm is investigated as a potential decoder for both of error correcting codes and lossy compression, which are based on non-monotonic tree-like multilayer perceptron encoders. We discuss that whether the BP can give practical algorithms or not in these schemes. The BP implementations in those kind of fully connected networks unfortunately shows strong limitation, while the theoretical results seems a bit promising. Instead, it reveals it might have a ri...

  3. On Clifford neurons and Clifford multi-layer perceptrons.

    Buchholz, Sven; Sommer, Gerald

    2008-09-01

    We study the framework of Clifford algebra for the design of neural architectures capable of processing different geometric entities. The benefits of this model-based computation over standard real-valued networks are demonstrated. One particular example thereof is the new class of so-called Spinor Clifford neurons. The paper provides a sound theoretical basis to Clifford neural computation. For that purpose the new concepts of isomorphic neurons and isomorphic representations are introduced. A unified training rule for Clifford MLPs is also provided. The topic of activation functions for Clifford MLPs is discussed in detail for all two-dimensional Clifford algebras for the first time. PMID:18514482

  4. Classification of Parking Spots Using Multilayer Perceptron Networks

    FALCAO, H. S.

    2013-12-01

    Full Text Available This project intends to develop a prototype for the identification of free spots in open air parking area where there is a good aerial view without obstacles, allowing for the identification of occupied and free spots. We used image processing techniques and pattern recognition using Artificial Neural Networks (ANN. In order to help implement the prototype, we used Matlab. In order to simulate the parking area, we created a model so that we could acquire the images using a webcam, process them, train the neural network, classify the spots and finally, show the results. The results show that it is viable to apply pattern recognition through image capture to classify parking spots

  5. Hybrid Evolutionary Algorithm for Multilayer Perceptron Networks with Competetive Performance

    Neruda, Roman

    Los Alamitos : IEEE, 2007, s. 1620-1627. ISBN 978-1-4244-1339-3. [CEC 2007. Congress on Evolution ary Computation. Singapore (SG), 25.09.2007-28.09.2007] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : hybrid algorithms * evolution ary learning * neural networks Subject RIV: IN - Informatics, Computer Science

  6. FPGA Implementation of Multilayer Perceptron for Modeling of Photovoltaic panel

    The Number of electronic applications using artificial neural network-based solutions has increased considerably in the last few years. However, their applications in photovoltaic systems are very limited. This paper introduces the preliminary result of the modeling and simulation of photovoltaic panel based on neural network and VHDL-language. In fact, an experimental database of meteorological data (irradiation, temperature) and output electrical generation signals of the PV-panel (current and voltage) has been used in this study. The inputs of the ANN-PV-panel are the daily total irradiation and mean average temperature while the outputs are the current and voltage generated from the panel. Firstly, a dataset of 4x364 have been used for training the network. Subsequently, the neural network (MLP) corresponding to PV-panel is simulated using VHDL language based on the saved weights and bias of the network. Simulation results of the trained MLP-PV panel based on Matlab and VHDL are presented. The proposed PV-panel model based ANN and VHDL permit to evaluate the performance PV-panel using only the environmental factors and involves less computational efforts, and it can be used for predicting the output electrical energy from the PV-panel

  7. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. PMID:26878722

  8. Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis

    Rossi, Fabrice

    2005-01-01

    In this paper, we study a natural extension of Multi-Layer Perceptrons (MLP) to functional inputs. We show that fundamental results for classical MLP can be extended to functional MLP. We obtain universal approximation results that show the expressive power of functional MLP is comparable to that of numerical MLP. We obtain consistency results which imply that the estimation of optimal parameters for functional MLP is statistically well defined. We finally show on simulated and real world data that the proposed model performs in a very satisfactory way.

  9. Experts Fusion and Multilayer Perceptron Based on Belief Learning for Sonar Image Classification

    Martin, Arnaud

    2008-01-01

    The sonar images provide a rapid view of the seabed in order to characterize it. However, in such as uncertain environment, real seabed is unknown and the only information we can obtain, is the interpretation of different human experts, sometimes in conflict. In this paper, we propose to manage this conflict in order to provide a robust reality for the learning step of classification algorithms. The classification is conducted by a multilayer perceptron, taking into account the uncertainty of the reality in the learning stage. The results of this seabed characterization are presented on real sonar images.

  10. Belief Propagation for Error Correcting Codes and Lossy Compression Using Multilayer Perceptrons

    Mimura, Kazushi; Cousseau, Florent; Okada, Masato

    2011-03-01

    The belief propagation (BP) based algorithm is investigated as a potential decoder for both of error correcting codes and lossy compression, which are based on non-monotonic tree-like multilayer perceptron encoders. We discuss that whether the BP can give practical algorithms or not in these schemes. The BP implementations in those kind of fully connected networks unfortunately shows strong limitation, while the theoretical results seems a bit promising. Instead, it reveals it might have a rich and complex structure of the solution space via the BP-based algorithms.

  11. Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules

    Highlights: • Multilayer perceptrons are used to simulate the I–V curve of thin-film PV modules. • APE from the spectral irradiance was added as an input variable to the network. • A self-organised map is used to select the curves used for training the network. • Curve error and maximum power error decrease when using this technique. • This method could provide accurate estimation of the output of a PV plant. - Abstract: In this paper, we propose the use of a methodology to characterise the electrical parameters of several thin-film photovoltaic module technologies. This methodology allows us to use not only solar irradiance and module temperature as classical models do, but also spectral distribution of solar radiation. The methodology is based on the use of neural network models. From all measured I–V curves of a module, a previous selection of them has been used in order to train the neural network model. This selection is performed using a Kohonen self-organising map fed with spectral data. This spectral information has been added as an input to the neural network itself. The results show that the incorporation of spectral measurements to simulate thin-film modules improves significantly both the fitting of the predicted I–V curve to the measured one and the peak power point estimation

  12. Multilayer Perceptron applied to Data Assimilation for the Global FSU Atmospheric Model

    Cocke, S.; Cintra, R. S.; Campos Velho, H. F.

    2015-12-01

    The better quality of forecasts is given the more accurate of the initial conditions. Data assimilation (DA) is the process by which short-forecast and observations are combined to obtain an accurate representation of the state of the modeled system, e.g. is a technique to generate an initial condition to a weather forecasts. This paper shows the results of a DA technique using artificial neural networks (NN) to obtain the analysis to the atmospheric model for the Florida State University. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel spectral primitive equation model with vertical sigma coordinates, at resolution T63L27. The data assimilation experiments are based in simulated observations data and FSUGSM 6-hours forecasts. For the NN data assimilation, we use Multilayer Perceptron (MLP) with supervised training algorithm where NN receives input vectors with their corresponding response from LETKF data assimilation. The surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity results are presented. A self-configuration method finds the optimal NN and configures a set of 52 MLPs to DA experiment, referred as MLP-DA. A methodology developed with self-configuration using a meta-heuristic called the Multiple Particle Collision Algorithm to compute the optimal topology for NN. The MLP presents four input nodes, two nodes coordinates vector, one for the 6-hours forecast vector and one node for observation vector; one output node for the analysis vector results. The vector represents the values for one grid model point. The ANNs were trained with data from each month of 2001, 2002, and 2003. The

  13. Classification of Polar-Thermal Eigenfaces using Multilayer Perceptron for Human Face Recognition

    Bhowmik, Mrinal Kanti; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    This paper presents a novel approach to handle the challenges of face recognition. In this work thermal face images are considered, which minimizes the affect of illumination changes and occlusion due to moustache, beards, adornments etc. The proposed approach registers the training and testing thermal face images in polar coordinate, which is capable to handle complicacies introduced by scaling and rotation. Polar images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 97.05%.

  14. An equalized error backpropagation algorithm for the on-line training of multilayer perceptrons.

    Martens, J P; Weymaere, N

    2002-01-01

    The error backpropagation (EBP) training of a multilayer perceptron (MLP) may require a very large number of training epochs. Although the training time can usually be reduced considerably by adopting an on-line training paradigm, it can still be excessive when large networks have to be trained on lots of data. In this paper, a new on-line training algorithm is presented. It is called equalized EBP (EEBP), and it offers improved accuracy, speed, and robustness against badly scaled inputs. A major characteristic of EEBP is its utilization of weight specific learning rates whose relative magnitudes are derived from a priori computable properties of the network and the training data. PMID:18244454

  15. A Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier Entropy.

    Zhang, Yudong; Sun, Yi; Phillips, Preetha; Liu, Ge; Zhou, Xingxing; Wang, Shuihua

    2016-07-01

    This work aims at developing a novel pathological brain detection system (PBDS) to assist neuroradiologists to interpret magnetic resonance (MR) brain images. We simplify this problem as recognizing pathological brains from healthy brains. First, 12 fractional Fourier entropy (FRFE) features were extracted from each brain image. Next, we submit those features to a multi-layer perceptron (MLP) classifier. Two improvements were proposed for MLP. One improvement is the pruning technique that determines the optimal hidden neuron number. We compared three pruning techniques: dynamic pruning (DP), Bayesian detection boundaries (BDB), and Kappa coefficient (KC). The other improvement is to use the adaptive real-coded biogeography-based optimization (ARCBBO) to train the biases and weights of MLP. The experiments showed that the proposed FRFE + KC-MLP + ARCBBO achieved an average accuracy of 99.53 % based on 10 repetitions of K-fold cross validation, which was better than 11 recent PBDS methods. PMID:27250502

  16. A New Approach to Predicting Bankruptcy: Combining DEA and Multi-Layer Perceptron

    Ayan Mukhopadhyay

    2012-07-01

    Full Text Available The question of financial health and sustenance of a firm is so intriguing that it has spanned numerous studies. For investors,stakeholders and lenders, assessing the risk associated with an enterprise is vital. Several tools have been formulated to deal with predicting the solvency of a firm. This paper attempts to combine Data Envelopment Analysis and Multi-Layer Perceptron (MLP to suggest a new method for prediction of bankruptcy that not only focusses on historical financial data of firms that filed for bankruptcy like other past studies but also takes into account the data of those firms that were likely to do so. This method thus identifies firms that have a high chance of facing bankruptcy along with those that have filed for bankruptcy. The performance of this procedure is compared with MLP. The suggested method outperforms MLP in prediction of bankruptcy.

  17. Time series modeling with pruned multi-layer perceptron and 2-stage damped least-squares method

    A Multi-Layer Perceptron (MLP) defines a family of artificial neural networks often used in TS modeling and forecasting. Because of its ''black box'' aspect, many researchers refuse to use it. Moreover, the optimization (often based on the exhaustive approach where ''all'' configurations are tested) and learning phases of this artificial intelligence tool (often based on the Levenberg-Marquardt algorithm; LMA) are weaknesses of this approach (exhaustively and local minima). These two tasks must be repeated depending on the knowledge of each new problem studied, making the process, long, laborious and not systematically robust. In this paper a pruning process is proposed. This method allows, during the training phase, to carry out an inputs selecting method activating (or not) inter-nodes connections in order to verify if forecasting is improved. We propose to use iteratively the popular damped least-squares method to activate inputs and neurons. A first pass is applied to 10% of the learning sample to determine weights significantly different from 0 and delete other. Then a classical batch process based on LMA is used with the new MLP. The validation is done using 25 measured meteorological TS and cross-comparing the prediction results of the classical LMA and the 2-stage LMA

  18. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier

    H. Hashemi

    2008-11-01

    Full Text Available Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA. In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP and support vector classifier (SVC are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.

  19. 在一种扩展多层感知器模型中实现命题知识的语义推演%Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron

    黄天民; 裴峥

    2003-01-01

    The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be implement by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.

  20. Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise

    Iterative gradient methods such as Levenberg-Marquardt (LM) are in widespread use for source localization from electroencephalographic (EEG) and magnetoencephalographic (MEG) signals. Unfortunately, LM depends sensitively on the initial guess, necessitating repeated runs. This, combined with LM's high per-step cost, makes its computational burden quite high. To reduce this burden, we trained a multilayer perceptron (MLP) as a real-time localizer. We used an analytical model of quasistatic electromagnetic propagation through a spherical head to map randomly chosen dipoles to sensor activities according to the sensor geometry of a 4D Neuroimaging Neuromag-122 MEG system, and trained a MLP to invert this mapping in the absence of noise or in the presence of various sorts of noise such as white Gaussian noise, correlated noise, or real brain noise. A MLP structure was chosen to trade off computation and accuracy. This MLP was trained four times, with each type of noise. We measured the effects of initial guesses on LM performance, which motivated a hybrid MLP-start-LM method, in which the trained MLP initializes LM. We also compared the localization performance of LM, MLPs, and hybrid MLP-start-LMs for realistic brain signals. Trained MLPs are much faster than other methods, while the hybrid MLP-start-LMs are faster and more accurate than fixed-4-start-LM. In particular, the hybrid MLP-start-LM initialized by a MLP trained with the real brain noise dataset is 60 times faster and is comparable in accuracy to random-20-start-LM, and this hybrid system (localization error: 0.28 cm, computation time: 36 ms) shows almost as good performance as optimal-1-start-LM (localization error: 0.23 cm, computation time: 22 ms), which initializes LM with the correct dipole location. MLPs trained with noise perform better than the MLP trained without noise, and the MLP trained with real brain noise is almost as good an initial guesser for LM as the correct dipole location. (author) )

  1. The development of a knowledge base in an expert system based on the four-layer perceptron neural network

    2007-01-01

    Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge base in a fault diagnosis expert system that was based on machine learning by the four-layer perceptron neural network. An example was presented. By combining differential function with not differentia function and back propagation of error with back propagation of expectation, the four-layer perceptron neural network was established. And it was good for solving such a bottleneck problem in knowledge acquisition in expert system and enhancing real-time on-line diagnosis. A method of synthetic back propagation was designed, which broke the limit to non-differentiable function in BP neural network.

  2. The effect of imposing 'fractional abundance constraints' onto the multilayer perceptron for sub-pixel land cover classification

    Heremans, Stien; Suykens, Johan A. K.; Van Orshoven, Jos

    2016-02-01

    To be physically interpretable, sub-pixel land cover fractions or abundances should fulfill two constraints, the Abundance Non-negativity Constraint (ANC) and the Abundance Sum-to-one Constraint (ASC). This paper focuses on the effect of imposing these constraints onto the MultiLayer Perceptron (MLP) for a multi-class sub-pixel land cover classification of a time series of low resolution MODIS-images covering the northern part of Belgium. Two constraining modes were compared, (i) an in-training approach that uses 'softmax' as the transfer function in the MLP's output layer and (ii) a post-training approach that linearly rescales the outputs of the unconstrained MLP. Our results demonstrate that the pixel-level prediction accuracy is markedly increased by the explicit enforcement, both in-training and post-training, of the ANC and the ASC. For aggregations of pixels (municipalities), the constrained perceptrons perform at least as well as their unconstrained counterparts. Although the difference in performance between the in-training and post-training approach is small, we recommend the former for integrating the fractional abundance constraints into MLPs meant for sub-pixel land cover estimation, regardless of the targeted level of spatial aggregation.

  3. Exploiting Heavy Tails in Training Times of Multilayer Perceptrons. A Case Study with the UCI Thyroid Disease Database

    Cebrian, Manuel

    2007-01-01

    The random initialization of weights of a multilayer perceptron makes it possible to model its training process as a Las Vegas algorithm, i.e. a randomized algorithm which stops when some required training error is obtained, and whose execution time is a random variable. This modelling is used to perform a case study on a well-known pattern recognition benchmark: the UCI Thyroid Disease Database. Empirical evidence is presented of the training time probability distribution exhibiting a heavy tail behavior, meaning a big probability mass of long executions. This fact is exploited to reduce the training time cost by applying two simple restart strategies. The first assumes full knowledge of the distribution yielding a 40% cut down in expected time with respect to the training without restarts. The second, assumes null knowledge, yielding a reduction ranging from 9% to 23%.

  4. Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus

    LI Chang-ping; ZHI Xin-yue; MA Jun; CUI Zhuang; ZHU Zi-long; ZHANG Cui; HU Liang-ping

    2012-01-01

    Background Various methods can be applied to build predictive models for the clinical data with binary outcome variable.This research aims to explore the process of constructing common predictive models,Logistic regression (LR),decision tree (DT) and multilayer perceptron (MLP),as well as focus on specific details when applying the methods mentioned above:what preconditions should be satisfied,how to set parameters of the model,how to screen variables and build accuracy models quickly and efficiently,and how to assess the generalization ability (that is,prediction performance) reliably by Monte Carlo method in the case of small sample size.Methods All the 274 patients (include 137 type 2 diabetes mellitus with diabetic peripheral neuropathy and 137 type 2 diabetes mellitus without diabetic peripheral neuropathy) from the Metabolic Disease Hospital in Tianjin participated in the study.There were 30 variables such as sex,age,glycosylated hemoglobin,etc.On account of small sample size,the classification and regression tree (CART) with the chi-squared automatic interaction detector tree (CHAID) were combined by means of the 100 times 5-7 fold stratified cross-validation to build DT.The MLP was constructed by Schwarz Bayes Criterion to choose the number of hidden layers and hidden layer units,alone with levenberg-marquardt (L-M) optimization algorithm,weight decay and preliminary training method.Subsequently,LR was applied by the best subset method with the Akaike Information Criterion (AIC) to make the best used of information and avoid overfitting.Eventually,a 10 to 100 times 3-10 fold stratified cross-validation method was used to compare the generalization ability of DT,MLP and LR in view of the areas under the receiver operating characteristic (ROC) curves (AUC).Results The AUC of DT,MLP and LR were 0.8863,0.8536 and 0.8802,respectively.As the larger the AUC of a specific prediction model is,the higher diagnostic ability presents,MLP performed optimally,and then

  5. A multi-layer feed-forward perceptron for microwave signals processing

    Rouveure, R.; Faure, P.; Monod, M.O.

    2003-01-01

    This paper investigates the processing of radar signals using artificial neural networks. Today, the use of FMCW radar is considered to control the agricultural implements working depth, in order to overcome the limitations of sensors based on optical or ultrasound devices towards agricultural environment (dust, rain, etc.). The objective is to determine the radar-target distance R with a direct identification of the discrete-time radar signal Sb[n]. The neural network structure in a multi-la...

  6. Multi-Layer and Recursive Neural Networks for Metagenomic Classification.

    Ditzler, Gregory; Polikar, Robi; Rosen, Gail

    2015-09-01

    Recent advances in machine learning, specifically in deep learning with neural networks, has made a profound impact on fields such as natural language processing, image classification, and language modeling; however, feasibility and potential benefits of the approaches to metagenomic data analysis has been largely under-explored. Deep learning exploits many layers of learning nonlinear feature representations, typically in an unsupervised fashion, and recent results have shown outstanding generalization performance on previously unseen data. Furthermore, some deep learning methods can also represent the structure in a data set. Consequently, deep learning and neural networks may prove to be an appropriate approach for metagenomic data. To determine whether such approaches are indeed appropriate for metagenomics, we experiment with two deep learning methods: i) a deep belief network, and ii) a recursive neural network, the latter of which provides a tree representing the structure of the data. We compare these approaches to the standard multi-layer perceptron, which has been well-established in the machine learning community as a powerful prediction algorithm, though its presence is largely missing in metagenomics literature. We find that traditional neural networks can be quite powerful classifiers on metagenomic data compared to baseline methods, such as random forests. On the other hand, while the deep learning approaches did not result in improvements to the classification accuracy, they do provide the ability to learn hierarchical representations of a data set that standard classification methods do not allow. Our goal in this effort is not to determine the best algorithm in terms accuracy-as that depends on the specific application-but rather to highlight the benefits and drawbacks of each of the approach we discuss and provide insight on how they can be improved for predictive metagenomic analysis. PMID:26316190

  7. Visualization of learning in multilayer perceptron networks using principal component analysis.

    Gallagher, M; Downs, T

    2003-01-01

    This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as backpropagation and can also be used to provide insight into the learning process and the nature of the error surface. PMID:18238154

  8. Hybrid Optimized Back propagation Learning Algorithm For Multi-layer Perceptron

    Chakraborty, Mriganka; Ghosh, Arka

    2012-01-01

    Standard neural network based on general back propagation learning using delta method or gradient descent method has some great faults like poor optimization of error-weight objective function, low learning rate, instability .This paper introduces a hybrid supervised back propagation learning algorithm which uses trust-region method of unconstrained optimization of the error objective function by using quasi-newton method .This optimization leads to more accurate weight update system for mini...

  9. Electron/pion identification in the CBM TRD using a multilayer perceptron

    The problem of electron/pion identification in the CBM experiment based on the measurements of energy losses and transition radiation in the TRD detector is discussed. A possibility to solve such a problem by applying an artificial neural network (ANN) is considered. As input information for the network we used both the samples of energy losses of pions or electrons in the TRD absorbers and the 'clever' variable obtained on the basis of the original data. We show that usage of this new variable permits one to reach a reliable level of particle recognition no longer than after 10-20 training epochs; there are practically no fluctuations against the trend, and the needed level of pions suppression is obtained under the condition of a minimal loss of electrons

  10. Gas sensors characterization and multilayer perceptron (MLP) hardware implementation for gas identification using a Field Programmable Gate Array (FPGA).

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  11. Supervised Learning in Multilayer Spiking Neural Networks

    Sporea, Ioana

    2012-01-01

    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.

  12. Membership generation using multilayer neural network

    Kim, Jaeseok

    1992-01-01

    There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.

  13. Self-Organizing Multilayered Neural Networks of Optimal Complexity

    Schetinin, V.

    2005-01-01

    The principles of self-organizing the neural networks of optimal complexity is considered under the unrepresentative learning set. The method of self-organizing the multi-layered neural networks is offered and used to train the logical neural networks which were applied to the medical diagnostics.

  14. The Application of Imperialist Competitive Algorithm based on Chaos Theory in Perceptron Neural Network

    Zhang, Xiuping

    In this paper, the weights of a Neural Network using Chaotic Imperialist Competitive Algorithm are updated. A three-layered Perseptron Neural Network applied for prediction of the maximum worth of the stocks changed in TEHRAN's bourse market. We trained this neural network with CICA, ICA, PSO and GA algorithms and compared the results with each other. The consideration of the results showed that the training and test error of the network trained by the CICA algorithm has been reduced in comparison to the other three methods.

  15. Data assimilation: Particle filter and artificial neural networks

    The goal of this work is to present the performance of the Neural Network Multilayer Perceptrons trained to emulate a Particle Filter in the context of data assimilation. Techniques for data assimilation are applied for the Lorenz system, which presents a strong nonlinearity and chaotic nature. The cross validation method was used for training the network. Good results were obtained applying the multilayer perceptrons neural network.

  16. Advances in Artificial Neural Networks – Methodological Development and Application

    Yanbo Huang

    2009-01-01

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a back...

  17. Speech Recognition Method Based on Multilayer Chaotic Neural Network

    REN Xiaolin; HU Guangrui

    2001-01-01

    In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.

  18. Preference of echo features for classification of seafloor sediments using neural networks

    De, C.; Chakraborty, B.

    Selection of a set of dominant echo features to classify seafloor sediments using a multilayer perceptron neural network is investigated at two acoustic frequencies (33 and 210 kHz). Several sets of inputs with different combinations of two, three...

  19. Application of artificial neural networks (multilayer perceptron) in reactor safety research

    One of the key areas of reactor safety research are studies of reliable and safe heat removal from the reactor core and the containment, respectively, of light water reactors. Leakage accidents could carry insulating material into the containment or the building sump of the containment and the associated post-decay heat removal systems. This could obstruct systems functions. In the study titled ''Knowledge-based Modeling of Transport Processes in BWR Coolant Flows Carrying Particle Loads after Loss-of-Coolant Accidents,'' a tool is being created for engineering application which allows the deposition and retention of insulating material in the sump of the reactor containment to be estimated. Potential plant conditions in accidents can be assessed in this way. The study serves the purpose of modeling by means of data-based and knowledge-based methods. In this way, the results of experimental investigations (such as differential pressure tests of retention systems) can be used for modeling purposes. (orig.)

  20. Modeling Urban Expansion in Bangkok Metropolitan Region Using Demographic–Economic Data through Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models

    Chudech Losiri

    2016-07-01

    Full Text Available Urban expansion is considered as one of the most important problems in several developing countries. Bangkok Metropolitan Region (BMR is the urbanized and agglomerated area of Bangkok Metropolis (BM and its vicinity, which confronts the expansion problem from the center of the city. Landsat images of 1988, 1993, 1998, 2003, 2008, and 2011 were used to detect the land use and land cover (LULC changes. The demographic and economic data together with corresponding maps were used to determine the driving factors for land conversions. This study applied Cellular Automata-Markov Chain (CA-MC and Multi-Layer Perceptron-Markov Chain (MLP-MC to model LULC and urban expansions. The performance of the CA-MC and MLP-MC yielded more than 90% overall accuracy to predict the LULC, especially the MLP-MC method. Further, the annual population and economic growth rates were considered to produce the land demand for the LULC in 2014 and 2035 using the statistical extrapolation and system dynamics (SD. It was evident that the simulated map in 2014 resulting from the SD yielded the highest accuracy. Therefore, this study applied the SD method to generate the land demand for simulating LULC in 2035. The outcome showed that urban occupied the land around a half of the BMR.

  1. Mosaic Face Image Recognition on Multi-Layer Neural Network

    Yamamori, Kuhihito; Nogawa, Reo; Yoshihara, Ikuo

    2003-01-01

    Face image recognition is an impotant technology for security,communication area,etc.. In this reserch,###we try to show the optimal parameters in multi-layer neural network for mosaic face image recognition.###By using of mosaic face images,the amount of image dara can be reduced,and it can also avoid###the affect of noise.Through our experiments,a multi-layer neural network showed 98.7% of recognition###on 8 x 8 mosaic images.

  2. A Global Algorithm for Training Multilayer Neural Networks

    ZHAO, HONG; Jin, Tao

    2006-01-01

    We present a global algorithm for training multilayer neural networks in this Letter. The algorithm is focused on controlling the local fields of neurons induced by the input of samples by random adaptations of the synaptic weights. Unlike the backpropagation algorithm, the networks may have discrete-state weights, and may apply either differentiable or nondifferentiable neural transfer functions. A two-layer network is trained as an example to separate a linearly inseparable set of samples i...

  3. Kinetic Study of anti-HIV drugs by Thermal Decomposition Analysis: A Multilayer Artificial Neural Network Propose

    Ferreira, B D L; Sebastião, R C O; Yoshida, M I; Mussel, W N; Fialho, S L; Barbosa, J

    2016-01-01

    Kinetic study by thermal decomposition of antiretroviral drugs, Efavirenz (EFV) and Lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network (MLP), with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of Kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determines the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In the investigated data, the kinetic thermal decomposition process was best described by R1 and D4 model for all temperatures to EF...

  4. Extrapolation limitations of multilayer feedforward neural networks

    Haley, Pamela J.; Soloway, Donald

    1992-01-01

    The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.

  5. Forecasting Daily and Sessional Returns of the ISE-100 Index with Neural Network Models = Yapay Sinir Ağları Modelleri ile İMKB-100 Endeksinin Günlük ve Seanslık Getirilerinin Tahmin Edilmesi

    Emin AVCI

    2007-06-01

    Full Text Available Especially for the last decade, the neural network models have been applied to solve financial problems like portfolio construction and stock market forecasting. Among the alternative neural network models, the multilayer perceptron models are expected to be effective and widely applied in financial forecasting. This study examines the forecasting power multilayer perceptron models for daily and sessional returns of ISE-100 index. The findings imply that the multilayer perceptron models presented promising performance in forecasting the ISE-100 index returns. However, further emphasis should be placed on different input variables and model architectures in order to improve the forecasting performances.

  6. A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks.

    Cavalieri, Salvatore; Mirabella, Orazio

    1999-01-01

    The paper deals with the problem of fault tolerance in a multilayer perceptron network. Although it already possesses a reasonable fault tolerance capability, it may be insufficient in particularly critical applications. Studies carried out by the authors have shown that the traditional backpropagation learning algorithm may entail the presence of a certain number of weights with a much higher absolute value than the others. Further studies have shown that faults in these weights is the main cause of deterioration in the performance of the neural network. In other words, the main cause of incorrect network functioning on the occurrence of a fault is the non-uniform distribution of absolute values of weights in each layer. The paper proposes a learning algorithm which updates the weights, distributing their absolute values as uniformly as possible in each layer. Tests performed on benchmark test sets have shown the considerable increase in fault tolerance obtainable with the proposed approach as compared with the traditional backpropagation algorithm and with some of the most efficient fault tolerance approaches to be found in literature. PMID:12662719

  7. A Global Algorithm for Training Multilayer Neural Networks

    Zhao, H; Zhao, Hong; Jin, Tao

    2006-01-01

    We present a global algorithm for training multilayer neural networks in this Letter. The algorithm is focused on controlling the local fields of neurons induced by the input of samples by random adaptations of the synaptic weights. Unlike the backpropagation algorithm, the networks may have discrete-state weights, and may apply either differentiable or nondifferentiable neural transfer functions. A two-layer network is trained as an example to separate a linearly inseparable set of samples into two categories, and its powerful generalization capacity is emphasized. The extension to more general cases is straightforward.

  8. Failure behavior identification for a space antenna via neural networks

    Sartori, Michael A.; Antsaklis, Panos J.

    1992-01-01

    By using neural networks, a method for the failure behavior identification of a space antenna model is investigated. The proposed method uses three stages. If a fault is suspected by the first stage of fault detection, a diagnostic test is performed on the antenna. The diagnostic test results are used by the second and third stages to identify which fault occurred and to diagnose the extent of the fault, respectively. The first stage uses a multilayer perceptron, the second stage uses a multilayer perceptron and neural networks trained with the quadratic optimization algorithm, a novel training procedure, and the third stage uses backpropagation trained neural networks.

  9. Blur identification by multilayer neural network based on multivalued neurons.

    Aizenberg, Igor; Paliy, Dmitriy V; Zurada, Jacek M; Astola, Jaakko T

    2008-05-01

    A multilayer neural network based on multivalued neurons (MLMVN) is a neural network with a traditional feedforward architecture. At the same time, this network has a number of specific different features. Its backpropagation learning algorithm is derivative-free. The functionality of MLMVN is superior to that of the traditional feedforward neural networks and of a variety kernel-based networks. Its higher flexibility and faster adaptation to the target mapping enables to model complex problems using simpler networks. In this paper, the MLMVN is used to identify both type and parameters of the point spread function, whose precise identification is of crucial importance for the image deblurring. The simulation results show the high efficiency of the proposed approach. It is confirmed that the MLMVN is a powerful tool for solving classification problems, especially multiclass ones. PMID:18467216

  10. Memristive Perceptron for Combinational Logic Classification

    Lidan Wang

    2013-01-01

    Full Text Available The resistance of the memristor depends upon the past history of the input current or voltage; so it can function as synapse in neural networks. In this paper, a novel perceptron combined with the memristor is proposed to implement the combinational logic classification. The relationship between the memristive conductance change and the synapse weight update is deduced, and the memristive perceptron model and its synaptic weight update rule are explored. The feasibility of the novel memristive perceptron for implementing the combinational logic classification (NAND, NOR, XOR, and NXOR is confirmed by MATLAB simulation.

  11. Building a Chaotic Proved Neural Network

    Bahi, Jacques M; Salomon, Michel

    2011-01-01

    Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.

  12. Phase Transitions of Neural Networks

    Kinzel, Wolfgang

    1997-01-01

    The cooperative behaviour of interacting neurons and synapses is studied using models and methods from statistical physics. The competition between training error and entropy may lead to discontinuous properties of the neural network. This is demonstrated for a few examples: Perceptron, associative memory, learning from examples, generalization, multilayer networks, structure recognition, Bayesian estimate, on-line training, noise estimation and time series generation.

  13. Aphasia Classification Using Neural Networks

    Axer, H.; Jantzen, Jan; Berks, G.;

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests of the...

  14. Incremental communication for multilayer neural networks: error analysis.

    Ghorbani, A A; Bhavsar, V C

    1998-01-01

    Artificial neural networks (ANNs) involve a large amount of internode communications. To reduce the communication cost as well as the time of learning process in ANNs, we earlier proposed (1995) an incremental internode communication method. In the incremental communication method, instead of communicating the full magnitude of the output value of a node, only the increment or decrement to its previous value is sent to a communication link. In this paper, the effects of the limited precision incremental communication method on the convergence behavior and performance of multilayer neural networks are investigated. The nonlinear aspects of representing the incremental values with reduced (limited) precision for the commonly used error backpropagation training algorithm are analyzed. It is shown that the nonlinear effect of small perturbations in the input(s)/output of a node does not cause instability. The analysis is supported by simulation studies of two problems. The simulation results demonstrate that the limited precision errors are bounded and do not seriously affect the convergence of multilayer neural networks. PMID:18252431

  15. Multilayer neural networks with extensively many hidden units.

    Rosen-Zvi, M; Engel, A; Kanter, I

    2001-08-13

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones. PMID:11497920

  16. Multilayer Neural Networks with Extensively Many Hidden Units

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones

  17. Artificial neural networks in predicting current in electric arc furnaces

    The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania

  18. Advances in Artificial Neural Networks - Methodological Development and Application

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  19. Does EFL Readers' Lexical and Grammatical Knowledge Predict Their Reading Ability? Insights from a Perceptron Artificial Neural Network Study

    Aryadoust, Vahid; Baghaei, Purya

    2016-01-01

    This study aims to examine the relationship between reading comprehension and lexical and grammatical knowledge among English as a foreign language students by using an Artificial Neural Network (ANN). There were 825 test takers administered both a second-language reading test and a set of psychometrically validated grammar and vocabulary tests.…

  20. Training Binary Multilayer Neural Networks for Image Classification using Expectation Backpropagation

    Cheng, Zhiyong; Soudry, Daniel; Mao, Zexi; Lan, Zhenzhong

    2015-01-01

    Compared to Multilayer Neural Networks with real weights, Binary Multilayer Neural Networks (BMNNs) can be implemented more efficiently on dedicated hardware. BMNNs have been demonstrated to be effective on binary classification tasks with Expectation BackPropagation (EBP) algorithm on high dimensional text datasets. In this paper, we investigate the capability of BMNNs using the EBP algorithm on multiclass image classification tasks. The performances of binary neural networks with multiple h...

  1. Unsupervised classification of neural spikes with a hybrid multilayer artificial neural network.

    García, P; Suárez, C P; Rodríguez, J; Rodríguez, M

    1998-07-01

    The understanding of the brain structure and function and its computational style is one of the biggest challenges both in Neuroscience and Neural Computation. In order to reach this and to test the predictions of neural network modeling, it is necessary to observe the activity of neural populations. In this paper we propose a hybrid modular computational system for the spike classification of multiunits recordings. It works with no knowledge about the waveform, and it consists of two moduli: a Preprocessing (Segmentation) module, which performs the detection and centering of spike vectors using programmed computation; and a Processing (Classification) module, which implements the general approach of neural classification: feature extraction, clustering and discrimination, by means of a hybrid unsupervised multilayer artificial neural network (HUMANN). The operations of this artificial neural network on the spike vectors are: (i) compression with a Sanger Layer from 70 points vector to five principal component vector; (ii) their waveform is analyzed by a Kohonen layer; (iii) the electrical noise and overlapping spikes are rejected by a previously unreported artificial neural network named Tolerance layer; and (iv) finally the spikes are labeled into spike classes by a Labeling layer. Each layer of the system has a specific unsupervised learning rule that progressively modifies itself until the performance of the layer has been automatically optimized. The procedure showed a high sensitivity and specificity also when working with signals containing four spike types. PMID:10223516

  2. Fast neural electron/pion discrimination with a fiber calorimeter

    A very fast neural electron/pion discriminator is introduced. It is based on a new training procedure that efficiently saturates each neuron output when applied on a multilayer network initially having hyperbolic tangent neurons. Thus, the network acts as a multilayer perceptron in the production phase. The neural discriminator can be implemented using fast comparators and resistor networks, which makes processing times of a few nanoseconds feasible. (author)

  3. Multi-Layered Neural Networks Infer Fundamental Stellar Parameters

    Verma, Kuldeep; Bhattacharya, Jishnu; Antia, H M; Krishnamurthy, Ganapathy

    2016-01-01

    The advent of space-based observatories such as CoRoT and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial Helium abundance, initial metallicity, mixing-length (assumed to be constant over time) and the age to which the star must be evolved. These parameters are also very useful in characterizing the associated planets and in studying galactic archaeology. How to obtain the parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using multi-layered neural networks, is successful in determining the evolutionary parameters based on spect...

  4. Robust local stability of multilayer recurrent neural networks.

    Suykens, J K; De Moor, B; Vandewalle, J

    2000-01-01

    In this paper we derive a condition for robust local stability of multilayer recurrent neural networks with two hidden layers. The stability condition follows from linking theory about linearization, robustness analysis of linear systems under nonlinear perturbation and matrix inequalities. A characterization of the basin of attraction of the origin is given in terms of the level set of a quadratic Lyapunov function. In a similar way like for NL theory, local stability is imposed around the origin and the apparent basin of attraction is made large by applying the criterion, while the proven basin of attraction is relatively small due to conservatism of the criterion. Modifying dynamic backpropagation by the new stability condition is discussed and illustrated by simulation examples. PMID:18249754

  5. Neural-estimator for the surface emission rate of atmospheric gases

    Paes, F. F.; Velho, H. F. Campos

    2009-01-01

    The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster...

  6. Noise-robust realization of Turing-complete cellular automata by using neural networks with pattern representation

    Oku, Makito; Aihara, Kazuyuki

    2010-11-01

    A modularly-structured neural network model is considered. Each module, which we call a ‘cell’, consists of two parts: a Hopfield neural network model and a multilayered perceptron. An array of such cells is used to simulate the Rule 110 cellular automaton with high accuracy even when all the units of neural networks are replaced by stochastic binary ones. We also find that noise not only degrades but also facilitates computation if the outputs of multilayered perceptrons are below the threshold required to update the states of the cells, which is a stochastic resonance in computation.

  7. Standard Cell-Based Implementation of a Digital Optoelectronic Neural-Network Hardware

    Maier, Klaus D.; Beckstein, Clemens; Blickhan, Reinhard; Erhard, Werner

    2001-03-01

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  8. Sistema de análise de ativos através de redes neurais de múltiplas camadas. Asset analysis system using multilayer neural networks

    Vânia Medianeira Flores Costa

    2012-04-01

    Full Text Available When investors decide to “adventure” through stock markets they search for a method to provide safety on making decision. In fact, there is no precise way to know which stocks will became a profitable investiment. Technical analysis is a discipline that support the investors on making decisions. Such a discipline uses a set of tools and statistical methods to forecast the market’s movement. Such a paper presents the develpment of a robotical Trade System, using a heuristic method. The system has a Neural Network multilayer perceptron, trained with an algorithm for back propagation error. Thus, approaching to the technical analysis without emotional aspects, using the Neural Network forecast on supporting the decisions of a investor on stock market. In analyzing the results of the neural network can be seen that the neural network got a result of 42.6% higher than the diagnostic of the technical analysis.Quando investidores decidem se “aventurar” pelo mercado de renda variável, como pelo mercado de ações, buscam um método de ter mais segurança na tomada de decisão. Na prática, não há como saber quais ativos tornar-se-ão um investimento lucrativo. No mercado acionário, a Análise Técnica procura auxiliar o investidor na tomada de decisão. Para isso, utiliza-se de ferramentas e de métodos estatísticos para tentar predizer os movimentos do mercado. Este artigo apresenta o desenvolvimento de um Trade System robótico, utilizando um método heurístico. O sistema conta com uma rede neural multilayer perceptron, treinada com o algoritmo de retro propagação de erro, aproximando-se da análise técnica sem o fator emoção. Ao avaliar os resultados da rede neural, pode ser visto que a mesma obteve um resultado de 42,6% maior do que o diagnóstico da análise técnica.

  9. Self-Organizing Map and Multi-Layer Perceptron Neural Network Based Data Mining To Envisage Agriculture Cultivation

    E. T. Venkatesh

    2008-01-01

    Full Text Available Study on characteristics of soil, to determine the types of crops suitable for cultivation in a particular region can increase the yield to greater extent, which minimizes the expenditures involved in irrigation and application of fertilizers. With the tested techniques available for calibrating the quality of soil and the crops suitable for cultivation in it, it is possible to determine the exact crop, irrigation patterns and even the cycle and quantity of fertilizer application. This paper dealt with the application of SOM based clustering and Artificial Intelligence techniques, to analyze the patterns of soils distributed across huge geographical area and identify the suitable types of crops for the particular soil. Estimation of exact crop(s suitable for a particular region can help stave off redundant maintenance and the inherent expenditures that would occur due to over irrigation and over usage of fertilizers, to fulfill the natural deficiencies. Our Focus is to improve the optimal utilization of innate characteristics in a soil through cultivation of appropriate crops, which will increase the volume and quality of yield, in particular for a developing country like India, where the huge majority of the population depends primarily on agriculture for livelihood.

  10. Multi-modular neural networks for the classification of e+e- hadronic events

    Some multi-modular neural network methods of classifying e+e- hadronic events are presented. We compare the performances of the following neural networks: MLP (multilayer perceptron), MLP and LVQ (learning vector quantization) trained sequentially, and MLP and RBF (radial basis function) trained sequentially. We introduce a MLP-RBF cooperative neural network. Our last study is a multi-MLP neural network. (orig.)

  11. A Neural Network Based Collision Detection Engine for Multi-Arm Robotic Systems

    Rana, A. S.; Zalzala, A.M.S.

    1996-01-01

    A neural ntwork is proposed for collision detection among multiple robotic arms sharing a common workspace. The structure of the neural network is a hybrid between Guassian Radial Basis Function (RBF) neural networks and Multi-layer perceptron back-propagation (BP) neural networks. This network is used to generate potential fields in the configuration space of the robotic arms. A path planning algorithm based on heuristics is presented. It is shown that this algorithm works better than the c...

  12. Performance Comparison of Neural Networks for HRTFs Approximation

    2000-01-01

    In order to approach to head-related transfer functions (HRTFs), this paper employs and compares three kinds of one-input neural network models, namely, multi-layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.

  13. Neural Networks Applied to Thermal Damage Classification in Grinding Process

    Spadotto, Marcelo M.; Aguiar, Paulo Roberto de; Sousa, Carlos C. P.; Bianchi, Eduardo C.

    2008-01-01

    The utilization of neural network of type multi-layer perceptron using the back-propagation algorithm guaranteed very good results. Tests carried out in order to optimize the learning capacity of neural networks were of utmost importance in the training phase, where the optimum values for the number of neurons of the hidden layer, learning rate and momentum for each structure were determined. Once the architecture of the neural network was established with those optimum values, the mean squar...

  14. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

    J. Polec

    1999-09-01

    Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

  15. Artificial neural networks applied to forecasting time series

    Montaño Moreno, Juan José; Palmer Pol, Alfonso; Muñoz Gracia, María del Pilar

    2011-01-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparativ...

  16. Methods of Forecasting Based on Artificial Neural Networks

    Stepčenko, A; Borisovs, A

    2014-01-01

    This article presents an overview of artificial neural network (ANN) applications in forecasting and possible forecasting accuracy improvements. Artificial neural networks are computational models and universal approximators, which can be applied to the time series forecasting with a high accuracy. A great rise in research activities was observed in using artificial neural networks for forecasting. This paper examines multi-layer perceptrons (MLPs) – back-propagation neur...

  17. Artificial Neural Networks in Catalyst Development. Chapter 10

    Holeňa, Martin; Baerns, M.

    New Jersey: John Wiley and Sons, 2003 - (Cawse, J.), s. 163-202 ISBN 0-471-20343-2 Source of funding: V - iné verejné zdroje Keywords : artificial neural networks * multilayer perceptrons * nonlinear dependency * approximation * network training * knowledge extraction Subject RIV: IN - Informatics, Computer Science

  18. A neural network based seafloor classification using acoustic backscatter

    Chakraborty, B.

    This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...

  19. Neural Boundary Conditions in Optic Guides

    Özkan-Bakbak, Pınar

    2015-01-01

    In this study, the boundary coefficients of Transverse Electric (TE) and Transverse Magnetic (TM) modes at a planar slab optic guides are modeled by Neural Networks (NN). After modal analysis, train and test files are prepared for NN. Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks are performed and compared with each other. NNs are expected to be capable of modeling optical fiber technology in industry based on the same approaches as a result of this study.

  20. Empirical model development and validation with dynamic learning in the recurrent multilayer perception

    A nonlinear multivariable empirical model is developed for a U-tube steam generator using the recurrent multilayer perceptron network as the underlying model structure. The recurrent multilayer perceptron is a dynamic neural network, very effective in the input-output modeling of complex process systems. A dynamic gradient descent learning algorithm is used to train the recurrent multilayer perceptron, resulting in an order of magnitude improvement in convergence speed over static learning algorithms. In developing the U-tube steam generator empirical model, the effects of actuator, process,and sensor noise on the training and testing sets are investigated. Learning and prediction both appear very effective, despite the presence of training and testing set noise, respectively. The recurrent multilayer perceptron appears to learn the deterministic part of a stochastic training set, and it predicts approximately a moving average response. Extensive model validation studies indicate that the empirical model can substantially generalize (extrapolate), though online learning becomes necessary for tracking transients significantly different than the ones included in the training set and slowly varying U-tube steam generator dynamics. In view of the satisfactory modeling accuracy and the associated short development time, neural networks based empirical models in some cases appear to provide a serious alternative to first principles models. Caution, however, must be exercised because extensive on-line validation of these models is still warranted

  1. Neural Network Modelling and Predictive Control of a Milk Pasteurisation Plant

    Khadir, M.T.; RINGWOOD, John

    2001-01-01

    This paper investigates the possible use of artificial neural networks (ANN), more precisely multi-layer perceptrons (MLPs), for the nonlinear modelling and predictive control of a milk pasteurisation plant. Model predictive control (MPC) schemes require the development of a predictive model. Using data gathered from an industrial milk plant, a nonlinear multi-step ahead neural network predictor model (NNM) was established. A neural predictive controller (NPC) was then designed on the same...

  2. ESTIMATION OF INPUT IMPEDANCE OF MICROSTRIP PATCH ANTENNA USING FUZZY NEURAL NETWORK

    VANDANA VIKAS THAKARE

    2010-10-01

    Full Text Available The paper presents the use of fuzzy neural network (FNN as a fast and better technique for the determination of input impedance of coaxial feed rectangular microstrip antenna. The fuzzy parameter ensures better performance as compared to three layer multilayered perceptron feed forward back propagation artificial neural network (MLPFFBP ANN and radial basis function artificial neural network (RBF ANN in the determination of input impedance of the coaxial feed microstrip antenna.

  3. An application of multilayer neural network on hepatitis disease diagnosis using approximations of sigmoid activation function

    Onursal Çetin; Feyzullah Temurtaş; Şenol Gülgönül

    2015-01-01

    Objective: Implementation of multilayer neural network (MLNN) with sigmoid activation function for the diagnosis of hepatitis disease.Methods: Artificial neural networks (ANNs) are efficient tools currently in common use for medical diagnosis. In hardware based architectures activation functions play an important role in ANN behavior. Sigmoid function is the most frequently used activation function because of its smooth response. Thus, sigmoid function and its close approximations were implem...

  4. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving to be...

  5. Comparative Analisys of Different Approaches Towards Multilayer Percentron Training

    Vališevskis, A

    2001-01-01

    A comparative analysis of four multilayer perceptron learning algorithms is exposed in this work: the error backpropagation algorithm and three other algorithms with fundamentally different approaches towards the improvement of convergence time. Stock exchange share price prediction is at the basis of the comparison of the algorithms. The optimal neural network topology for the solution of the above-mentioned task is determined in this work. Furthermore the forecasts concerning fo...

  6. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neu...

  7. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  8. Using Artificial Neural Networks for ECG Signals Denoising

    Zoltán Germán-Salló; Katalin György

    2010-01-01

    The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG) signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1)th sample from n previous samples To train and adjust the network weights, the backpropagation (BP) algorithm was used. In this paper, prediction of ECG signals (as...

  9. Neural network design on the SRC-6 reconfigurable computer

    Bailey, Scott P.

    2006-01-01

    This thesis presents an approach to image classification via a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) on the SRC-6 reconfigurable computer for use in classifying Low Probability of Intercept (LPI) radar emitters. The rationale behind the previously unexplored use of new reconfigurable computers combined with neural networks for this application is the potential for near real-time classification. Current potential near-peer competitors have access to LPI technology, s...

  10. Methodological Issues in Building, Training, and Testing Artificial Neural Networks

    Ozesmi, Stacy L.; Ozesmi, Uygar; Tan, Can Ozan

    2005-01-01

    We review the use of artificial neural networks, particularly the feedforward multilayer perceptron with back-propagation for training (MLP), in ecological modelling. Overtraining on data or giving vague references to how it was avoided is the major problem. Various methods can be used to determine when to stop training in artificial neural networks: 1) early stopping based on cross-validation, 2) stopping after a analyst defined error is reached or after the error levels off, 3) use of a tes...

  11. Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network

    CHAI Yu-hua; PAN Wei; NING Hai-long

    2005-01-01

    In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.

  12. Partial discharge pattern classification using multilayer neural networks

    Satish, L.; Gururaj, BI

    1993-01-01

    Partial discharge measurement is an important means of assessing the condition and integrity of insulation systems in high voltage power apparatus. Commercially available partial discharge detectors display them as patterns by an elliptic time base. Over the years, experts have been interpreting and recognising the nature and cause of partial discharges by studying these patterns. A way to automate this process is reported by using the partial discharge patterns as input to a multilayer neura...

  13. Forecasting Runoff with Artificial Neural Networks

    Neruda, M.; Neruda, Roman; Kudová, Petra

    Paris : UNESCO, 2005 - (Maraga, F.), s. 65-69 [ERB 2004. Euromediterranean Network of Experimental and Representative Basins /10./. Turin (IT), 13.10.2004-17.10.2004] R&D Projects: GA ČR(CZ) GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : artificial neural network s * rainfall-runoff modelling * multilayer perceptron * Radial Basis Functions (RBF) Subject RIV: BA - General Mathematics

  14. Network Firewall using Artificial Neural Networks

    Kristián Valentín; Michal Malý

    2014-01-01

    Today's most common firewalls are mostly rule-based. Their knowledge consists of a set of rules upon which they process received packets. They cannot do anything they have not been explicitly configured to do. This makes the system more straightforward to set up, but less flexible and less adaptive to changing circumstances. We will investigate a network firewall whose rule-base we will try to model using an artificial neural network, more specifically using a multi-layer perceptron (MLP) tra...

  15. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875

  16. Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks.

    Moerland, P D; Fiesler, E; Saxena, I

    1996-09-10

    Sigmoidlike activation functions, as available in analog hardware, differ in various ways from the standard sigmoidal function because they are usually asymmetric, truncated, and have a nonstandard gain. We present an adaptation of the backpropagation learning rule to compensate for these nonstandard sigmoids. This method is applied to multilayer neural networks with all-optical forward propagation and liquid-crystal light valves (LCLV) as optical thresholding devices. The results of simulations of a backpropagation neural network with five different LCLV response curves as activation functions are presented. Although LCLV's perform poorly with the standard backpropagation algorithm, it is shown that our adapted learning rule performs well with these LCLV curves. PMID:21127522

  17. HALF OF THRESHOLD ALGORITHM: AN ENHANCED LINEAR ADAPTIVE SKIPPING TRAINING ALGORITHM OR MULTILAYER FEEDFORWARD NEURAL NETWORKS

    Manjula Devi Ramasamy; Kuppuswami Subbaraya Gounder

    2014-01-01

    Multilayer Feed Forward Neural Network (MFNN) has been successfully administered architectures for solving a wide range of supervised pattern recognition tasks. The most problematic task of MFNN is training phase which consumes very long training time on very huge training datasets. An enhanced linear adaptive skipping training algorithm for MFNN called Half of Threshold (HOT) is proposed in this research paper. The core idea of this study is to reduce the training time through random present...

  18. Incorporation of Liquid-Crystal Light Valve Non-Linearities in Optical Multilayer Neural Networks

    Moerland, Perry,; Fiesler, Emile; Saxena, Indu

    1996-01-01

    Sigmoidlike activation functions, as available in analog hardware, differ in various ways from the standard sigmoidal function because they are usually asymmetric, truncated, and have a non-standard gain. We present an adaptation of the backpropagation learning rule to compensate for these nonstandard sigmoids. This method is applied to multilayer neural networks with all-optical forward propagation and liquid-crystal light valves (LCLV) as optical thresholding devices. In this paper, the res...

  19. A selective learning method to improve the generalization of multilayer feedforward neural networks.

    Inés M. Galván; Isasi, Pedro; Aler, Ricardo; José M. Valls

    2001-01-01

    Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to b...

  20. Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA)

    FANG Jun-long; ZHANG Chang-li; WANG Shu-wen

    2004-01-01

    We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was upto 94%.

  1. Weight-decay induced phase transitions in multilayer neural networks

    Ahr, M.; Biehl, M.; Schlösser, E.

    1999-01-01

    We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes a first-order phase transition between states with very long student vectors and states where the lengths are comparab...

  2. On the capacity of multilayer neural networks trained with backpropagation.

    Miranda, E N

    2000-08-01

    The capacity of a layered neural network for learning hetero-associations is studied numerically as a function of the number M of hidden neurons. We find that there is a sharp change in the learning ability of the network as the number of hetero-associations increases. This fact allows us to define a maximum capacity C for a given architecture. It is found that C grows logarithmically with M. PMID:11052415

  3. Artificial Neural Network Technology: for the Classification and Cartography of Scientific and Technical Information

    Polanco, Xavier; François, Claire; Keim, Jean-Pierre

    1998-01-01

    This paper describes the implementation of multivariate data analysis: NEURODOC applies the axial k-means method for automatic, non-hierarchical cluster analysis and a Principal Component Analysis (PCA) for representing the clusters on a map. We next introduce Artificial Neural Networks (ANNs) to extend NEURODOC into a neural platform for the cluster analysis and cartography of bibliographic data. The ANNs tested are: the Adaptive Resonance Theory (ART 1), a Multilayer Perceptron (MLP), and a...

  4. Artificial Neural Network Analysis for Prediction of Headache Prognosis in Elderly Patients

    Taşdelen, Bahar; HELVACI, Sema; KALEAĞASI, Hakan; Özge, Aynur

    2009-01-01

    Aim: To investigate the ability of neural networks to detect and classify the complete improvement of headache in elderly patients during the follow- up period. Materials and Methods: The multilayer perceptron (MLP), which is the most common neural network, was used to predict prognosis of headache in elderly patients. The data set was divided into training and test sets, and back-propagation algorithm was used as the learning algorithm. The accuracies of the models to predict completely imp...

  5. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving to be an effective tool for pattern recognition, the basic idea is to train a neural network with simulated values of modal parameters in order to recognize the behaviour of the damaged as well as the un...

  6. Indirect model for roughness in rough honing processes based on artificial neural networks

    Sivatte Adroer, Mauricio; Llanas Parra, Francesc Xavier; Buj Corral, Irene; Vivancos Calvet, Joan

    2016-01-01

    In the present paper an indirect model based on neural networks is presented for modelling the rough honing process. It allows obtaining values to be set for different process variables (linear speed, tangential speed, pressure of abrasive stones, grain size of abrasive and density of abrasive) as a function of required average roughness Ra. A multilayer perceptron (feedforward) with a backpropagation (BP) training system was used for defining neural networks. Several configurations were test...

  7. Weight-decay induced phase transitions in multilayer neural networks

    Ahr, M.; Biehl, M.; Schlösser, E.

    1999-07-01

    We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes a first-order phase transition between states with very long student vectors and states where the lengths are comparable to those of the teacher vectors. Additionally, in both configurations there is a phase transition between a specialized and an unspecialized phase. An anti-specialized phase with long student vectors exists in networks with a small number of hidden units.

  8. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

    OMER MAHMOUD

    2007-08-01

    Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

  9. Pengenalan Pola Pin Barcode Menggunakan Metode Backpropagation dan Metode Perceptron

    Hasiholan, Ardi

    2015-01-01

    Pattern recognition is one of the functions of the neural networks, where objects maybe identified by their patterns. This may assist in recognition of objects which patterns are damaged. Pattern recognition in neural networkcan make by using backpropagation and perceptron methods. In Backpropagation method, the network is trained with the pattern through three phases, namely forward propagation, backward propagation, and weights adjustment phases, repeated until the termination condition is ...

  10. On the Adaptability of Neural Network Image Super-Resolution

    Chua, Kah Keong; Tay, Yong Haur

    2012-01-01

    In this paper, we described and developed a framework for Multilayer Perceptron (MLP) to work on low level image processing, where MLP will be used to perform image super-resolution. Meanwhile, MLP are trained with different types of images from various categories, hence analyse the behaviour and performance of the neural network. The tests are carried out using qualitative test, in which Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The r...

  11. High Performance Convolutional Neural Networks for Document Processing

    Chellapilla, Kumar; Puri, Sidd; Simard, Patrice

    2006-01-01

    Convolutional neural networks (CNNs) are well known for producing state-of-the-art recognizers for document processing [1]. However, they can be difficult to implement and are usually slower than traditional multi-layer perceptrons (MLPs). We present three novel approaches to speeding up CNNs: a) unrolling convolution, b) using BLAS (basic linear algebra subroutines), and c) using GPUs (graphic processing units). Unrolled convolution converts the processing in each convolutional layer (both f...

  12. Handwritten Farsi Character Recognition using Artificial Neural Network

    Reza Gharoie Ahangar; Mohammad Farajpoor Ahangar

    2009-01-01

    Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropagation algorithm has been used to train the MLP network. In addition, an analysis has been carried out...

  13. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  14. Artificial Neural Network to predict mean monthly total ozone in Arosa, Switzerland

    Chattopadhyay, Surajit; Bandyopadhyay, Goutami

    2006-01-01

    Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak t...

  15. NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER

    2006-01-01

    Feed forward neural net works such as multi-layer perceptron,radial basis function neural net-works,have been widely applied to classification,function approxi mation and data mining.Evolu-tionary computation has been explored to train neu-ral net works as a very promising and competitive al-ternative learning method,because it has potentialto produce global mini mum in the weight space.Recently,an emerging evolutionary computationtechnique,Particle Swar m Opti mization(PSO)be-comes a hot topic because of i...

  16. Neural networks for gamma-hadron separation in MAGIC

    Boinee, P; De Angelis, A; Saggion, A; Zacchello, M

    2005-01-01

    Neural networks have proved to be versatile and robust for particle separation in many experiments related to particle astrophysics. We apply these techniques to separate gamma rays from hadrons for the MAGIC Cerenkov Telescope. Two types of neural network architectures have been used for the classi cation task: one is the MultiLayer Perceptron (MLP) based on supervised learning, and the other is the Self-Organising Tree Algorithm (SOTA), which is based on unsupervised learning. We propose a new architecture by combining these two neural networks types to yield better and faster classi cation results for our classi cation problem.

  17. El uso de perceptrones multicapa para la modelización estadística de series de tiempo no lineales de so2, en Salta Capital, Argentina The use of multilayer perceptrons for statistical modeling so2 non linear time series in Salta Capital, Argentina

    Haydeé Elena Musso

    2013-01-01

    Full Text Available En este trabajo se realizó un estudio estadístico de variables físico químicas asociadas al fenómeno de contaminación ambiental, en particular concentración media mensual de SO2 , medidas en la ciudad Salta Capital, Argentina, simultáneamente a concentraciones de NO2 y O3 . Las series bajo estudio presentaban comportamientos dinámicos no lineales, datos atípicos y cambios estructurales, lo que hizo imposible modelarlas con tipologías econométricas tradiciones (AR, MA, ARMA, ARIMA, entre otras. Una solución eficiente que se encontró, hace uso de la teoría de los perceptrones multicapa. Mediante el modelo estructural de series de tiempo, esta solución se presenta como un proceso matemático iterativo que permite obtener un modelado final el cual tiene una muy alta confiabilidad (95%, para realizar pronoósticos a futuro sobre el comportamiento de la variable estudiada.In this paper a statistical study of phisical-chemistry variables connected with enviroment pollution, specifically SO2 monthly average concentration, measured in Salta Capital city, Argentina, together with NO2 and O3 concentrations, was made. Time series under study shown non linear dinamic behaviour, outliers and structural changes. Due to these it was impossible to use typical econometric typologies (AR, MA, ARMA, ARIMA, among others. An effective solution which uses multistep perceptrons theory was found. By using structural time series modelling, this solution is presented by an iterative mathematical process that allows us to obtain a final model with a high confidence level (95% in order to do the forecasting step on the studied variable.

  18. Papain entrapment in alginate beads for stability improvement and site-specific delivery: Physicochemical characterization and factorial optimization using neural network modeling

    Sankalia, Mayur G.; Mashru, Rajshree C.; Sankalia, Jolly M.; Sutariya, Vijay B.

    2005-01-01

    This work examines the influence of various process parameters (like sodium alginate concentration, calcium chloride concentration, and hardening time) on papain entrapped in ionotropically cross-linked alginate beads for stability improvement and site-specific delivery to the small intestine using neural network modeling. A 33 full-factorial design and feed-forward neural network with multilayer perceptron was used to investigate the effect of process variables on percentage of entrapment, t...

  19. LEARNING OF ROBOT NAVIGATION TASKS BY PROBABILISTIC NEURAL NETWORK

    Mücella ÖZBAY KARAKUŞ

    2013-11-01

    Full Text Available This paper reports results of artificial neural network for robot navigation tasks. Machine learning methods have proven usability in many complex problems concerning mobile robots control. In particular we deal with the well-known strategy of navigating by “wall-following”. In this study, probabilistic neural network (PNN structure was used for robot navigation tasks. The PNN result was compared with the results of the Logistic Perceptron, Multilayer Perceptron, Mixture of Experts and Elman neural networks and the results of the previous studies reported focusing on robot navigation tasks and using same dataset. It was observed the PNN is the best classification accuracy with 99,635% accuracy using same dataset.

  20. Higher-order probabilistic perceptrons as Bayesian inference engines

    This letter makes explicit a structural connection between the Bayes optimal classifier operating on K binary input variables and corresponding two-layer perceptron having normalized output activities and couplings from input to output units of all orders up to K. Given a large and unbiased training set and an effective learning algorithm, such a neural network should be able to learn the statistics of the classification problem and match the a posteriori probabilities given by the Bayes optimal classifier. (author). 18 refs

  1. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    Olyaee, Saeed; Hamedi, Samaneh, E-mail: s_olyaee@srttu.edu [Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan, 16788, Tehran (Iran, Islamic Republic of)

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  2. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  3. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  4. Comparison of Lavenberg-Marquardt, Scaled Conjugate Gradient and Bayesian Regularization Backpropagation Algorithms for Multistep Ahead Wind Speed Forecasting Using Multilayer Perceptron Feedforward Neural Network

    Baghirli, Orkhan

    2015-01-01

    Wind speed forecasting is critical for wind energy conversion systems since it greatly influences the issues such as scheduling of the power systems, and dynamic control of the wind turbines. Also, it plays an essential role for siting, sizing and improving the efficiency of wind power generation systems. Due to volatile and non-stationary nature of wind speed time series, wind speed forecasting has been proven to be a challenging task that requires adamant care and caution. There are several...

  5. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

    Kaluza, Pablo; Urdapilleta, Eugenio

    2014-10-01

    Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

  6. Neural networks and forecasting stock price movements-accounting approach: Empirical evidence from Iran

    Hossein Naderi; Mojtaba Moradpour; Mehdi Zangeneh; Farzad Khani

    2012-01-01

    Stock market prediction is one of the most important interesting areas of research in business. Stock markets prediction is normally assumed as tedious task since there are many factors influencing the market. The primary objective of this paper is to forecast trend closing price movement of Tehran Stock Exchange (TSE) using financial accounting ratios from year 2003 to year 2008. The proposed study of this paper uses two approaches namely Artificial Neural Networks and multi-layer perceptron...

  7. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models

    Sungwon Kim; Singh, Vijay P.

    2015-01-01

    The objective of this study is to develop artificial neural network (ANN) models, including multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP) representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive...

  8. Artificial neural networks (ANN): prediction of sensory measurements from instrumental data

    Naiara Barbosa Carvalho; Valéria Paula Rodrigues Minim; Rita de Cássia dos Santos Navarro Silva; Suzana Maria Della Lucia; Luis Aantonio Minim

    2013-01-01

    The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combination...

  9. Simulating the dynamics of the neutron flux in a nuclear reactor by locally recurrent neural networks

    In this paper, a locally recurrent neural network (LRNN) is employed for approximating the temporal evolution of a nonlinear dynamic system model of a simplified nuclear reactor. To this aim, an infinite impulse response multi-layer perceptron (IIR-MLP) is trained according to a recursive back-propagation (RBP) algorithm. The network nodes contain internal feedback paths and their connections are realized by means of IIR synaptic filters, which provide the LRNN with the necessary system state memory

  10. Neural network modeling and correcting for delay-line data sets

    Because of the effects of the capacitance and inductance parasitized on the readout PCB in GEM detector, the output time of the delay-line PCB puts up a non-linear relationship with the position of its input signal. Based on Back Propagation algorithm, the multi-layer perceptrons neural network approximated the non-linear function and gave out accurate analyses, which is a better method for data correcting in Delay-Line readout. (authors)

  11. New Statistical Technologies applied to the estimation of the free Housing Prices: Artificial Neural Networks

    J.Maria Mont Lorenzo

    2001-01-01

    The aim of this research is the use of the artificial neural networks models, specifically Multilayer Perceptrons trained by the algorithm known as Backpropagation to estimate the free housing prices. This methodology allows, through the training of the backpropagated nets, to estimate the houses prices on the basis of some variables, related to the houses, which are considered relevant (location, age, surface, quality, ...), overcoming the linear restrictions characteristic of the traditiona...

  12. Extraction of Rules from Data using Piecewise-Linear Neural Networks

    Holeňa, Martin

    Istanbul : ITU Management Science Fakulty, 2002, s. 1-8. ISBN 975-97963-0-9. [FSSCTIMIE'02. Istanbul (TR), 29.05.2002-31.05.2002] R&D Projects: GA AV ČR IAB2030007 Institutional research plan: AV0Z1030915 Keywords : knowledge extraction with artificial neural networks * Boolean rules * fuzzy rules * multilayer perceptron * piecewise-linear activation function * polyhedra and pseudopolyhedra * Lukasiewicz predicate calculus * rational McNaughton function Subject RIV: BA - General Mathematics

  13. A Novel Training Algorithm of Genetic Neural Networks and Its Application to Classification

    2001-01-01

    First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example.

  14. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Zhekang Dong

    2014-01-01

    Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  15. A selective learning method to improve the generalization of multilayer feedforward neural networks.

    Galván, I M; Isasi, P; Aler, R; Valls, J M

    2001-04-01

    Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains: two artificial approximation problems and a real time series prediction problem. Results have been compared to standard backpropagation using the complete training data set and the new method shows better generalization abilities. PMID:14632169

  16. Video Traffic Prediction Using Neural Networks

    Miloš Oravec

    2008-10-01

    Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].

  17. Classification of normal and abnormal electrogastrograms using multilayer feedforward neural networks.

    Lin, Z; Maris, J; Hermans, L; Vandewalle, J; Chen, J D

    1997-05-01

    A neural network approach is proposed for the automated classification of the normal and abnormal EGG. Two learning algorithms, the quasi-Newton and the scaled conjugate gradient method for the multilayer feedforward neural networks (MFNN), are introduced and compared with the error backpropagation algorithm. The configurations of the MFNN are determined by experiment. The raw EGG data, its power spectral data, and its autoregressive moving average (ARMA) modelling parameters are used as the input to the MFNN and compared with each other. Three indexes (the percent correct, sum-squared error and complexity per iteration) are used to evaluate the performance of each learning algorithm. The results show that the scaled conjugate gradient algorithm performs best, in that it is robust and provides a super-linear convergence rate. The power spectral representation and the ARMA modelling parameters of the EGG are found to be better types of the input to the network for this specific application, both yielding a percent correctness of 95% on the test set. Although the results are focused on the classification of the EGG, this paper should provide useful information for the classification of other biomedical signals. PMID:9246852

  18. Experimental investigation of active vibration control using neural networks and piezoelectric actuators

    Jha, Ratneshwar; Rower, Jacob

    2002-02-01

    The use of neural networks for identification and control of smart structures is investigated experimentally. Piezoelectric actuators are employed to suppress the vibrations of a cantilevered plate subject to impulse, sine wave and band-limited white noise disturbances. The neural networks used are multilayer perceptrons trained with error backpropagation. Validation studies show that the identifier predicts the system dynamics accurately. The controller is trained adaptively with the help of the neural identifier. Experimental results demonstrate excellent closed-loop performance and robustness of the neurocontroller.

  19. A design philosophy for multi-layer neural networks with applications to robot control

    Vadiee, Nader; Jamshidi, MO

    1989-01-01

    A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.

  20. Design and FPGA-implementation of multilayer neural networks with on-chip learning

    Artificial Neural Networks (ANN) is used in many applications in the industry because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. For example identifying the orange and apple in the sorting machine with neural network is easier than using image processing techniques to do the same thing. There are different software for designing, training, and testing the ANN, but in order to use the ANN in the industry, it should be implemented on hardware outside the computer. Neural networks are artificial systems inspired on the brain's cognitive behavior, which can learn tasks with some degree of complexity, such as signal processing, diagnosis, robotics, image processing, and pattern recognition. Many applications demand a high computing power and the traditional software implementation are not sufficient.This thesis presents design and FPGA implementation of Multilayer Neural Networks with On-chip learning in re-configurable hardware. Hardware implementation of neural network algorithm is very interesting due their high performance and they can easily be made parallel. The architecture proposed herein takes advantage of distinct data paths for the forward and backward propagation stages and a pipelined adaptation of the on- line backpropagation algorithm to significantly improve the performance of the learning phase. The architecture is easily scalable and able to cope with arbitrary network sizes with the same hardware. The implementation is targeted diagnosis of the Research Reactor accidents to avoid the risk of occurrence of a nuclear accident. The proposed designed circuits are implemented using Xilinx FPGA Chip XC40150xv and occupied 73% of Chip CLBs. It achieved 10.8 μs to take decision in the forward propagation compared with current software implemented of RPS which take 24 ms. The results show that the proposed architecture leads to significant speed up comparing to high end software solutions. On

  1. Neural network tomography: network replication from output surface geometry.

    Minnett, Rupert C J; Smith, Andrew T; Lennon, William C; Hecht-Nielsen, Robert

    2011-06-01

    Multilayer perceptron networks whose outputs consist of affine combinations of hidden units using the tanh activation function are universal function approximators and are used for regression, typically by reducing the MSE with backpropagation. We present a neural network weight learning algorithm that directly positions the hidden units within input space by numerically analyzing the curvature of the output surface. Our results show that under some sampling requirements, this method can reliably recover the parameters of a neural network used to generate a data set. PMID:21377326

  2. Practical Application of Neural Networks in State Space Control

    Bendtsen, Jan Dimon

    applied to a realistic process. The thesis therefore strives to provide a thorough treatment of two classes of neural network-based controllers, and to make a rigorous comparison between them and a classical linear controller. Thus, the thesis starts out with a short review of some relevant system...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train the...

  3. Neural networks and statistical learning

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  4. An Artificial Neural Network Approach for the Prediction of Absorption Measurements of an Evanescent Field Fiber Sensor

    Ö. Galip Saracoglu

    2008-03-01

    Full Text Available This paper describes artificial neural network (ANN based prediction of theresponse of a fiber optic sensor using evanescent field absorption (EFA. The sensingprobe of the sensor is made up a bundle of five PCS fibers to maximize the interaction ofevanescent field with the absorbing medium. Different backpropagation algorithms areused to train the multilayer perceptron ANN. The Levenberg-Marquardt algorithm, aswell as the other algorithms used in this work successfully predicts the sensor responses.

  5. Assessing artificial neural networks coupled with wavelet analysis for multi-layer soil moisture dynamics prediction

    JunJun Yang; ZhiBin He; WeiJun Zhao; Jun Du; LongFei Chen; Xi Zhu

    2016-01-01

    Soil moisture simulation and prediction in semi-arid regions are important for agricultural production, soil conservation and climate change. However, considerable heterogeneity in the spatial distribution of soil moisture, and poor ability of distributed hydrological models to estimate it, severely impact the use of soil moisture models in research and practical applications. In this study, a newly-developed technique of coupled (WA-ANN) wavelet analysis (WA) and artificial neural network (ANN) was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains, Gansu Province, China. Datasets included seven meteorological factors: air and land surface temperatures, relative humidity, global radiation, atmospheric pressure, wind speed, precipitation, and soil water content at 20, 40, 60, 80, 120 and 160 cm. To investigate the effectiveness of WA-ANN, ANN was applied by itself to conduct a comparison. Three main findings of this study were: (1) ANN and WA-ANN provided a statistically reliable and robust prediction of soil moisture in both the root zone and deepest soil layer studied (NSE >0.85, NSE means Nash-Sutcliffe Efficiency coefficient); (2) when input meteorological factors were transformed using maximum signal to noise ratio (SNR) and one-dimensional auto de-noising algorithm (heursure) in WA, the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth; (3) the results of multi-layer soil moisture prediction indicated that there may be different sources of water at different soil layers, and this can be used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site. We conclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimum distortion of the raw-time series; the new method used here is applicable to soil sciences and management applications.

  6. Perancangan Pengenal QR (Quick Response) Code Dengan Jaringan Syaraf Tiruan Metode Perceptron

    Novalia

    2013-01-01

    Quick Response (QR) Code is used to store important information of an item or product. QR Code has a very random pattern and can not be distinguished. QR Code can also be dirty and damaged. Research conducted on the pattern of QR Code in order to find out the information stored in the QR Code. The method used to identify patterns of QR Code is to use Artificial Neural Networks Perceptron method. Perceptron is a neural network method is often used for pattern recognition. The input to the syst...

  7. Redes neurais e suas aplicações em calibração multivariada Neural networks and its applications in multivariate calibration

    Eduardo O. de Cerqueira

    2001-12-01

    Full Text Available Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytical applications based on near infrared spectroscopy are presented, the first one for determination of nitrogen content in wheat leaves using multi-layer perceptrons networks and second one for determination of BRIX in sugar cane juices using radial basis functions networks.

  8. A Novel Technique to Image Annotation using Neural Network

    Pankaj Savita

    2013-03-01

    Full Text Available : Automatic annotation of digital pictures is a key technology for managing and retrieving images from large image collection. Traditional image semantics extraction and representation schemes were commonly divided into two categories, namely visual features and text annotations. However, visual feature scheme are difficult to extract and are often semantically inconsistent. On the other hand, the image semantics can be well represented by text annotations. It is also easier to retrieve images according to their annotations. Traditional image annotation techniques are time-consuming and requiring lots of human effort. In this paper we propose Neural Network based a novel approach to the problem of image annotation. These approaches are applied to the Image data set. Our main work is focused on the image annotation by using multilayer perceptron, which exhibits a clear-cut idea on application of multilayer perceptron with special features. MLP Algorithm helps us to discover the concealed relations between image data and annotation data, and annotate image according to such relations. By using this algorithm we can save more memory space, and in case of web applications, transferring of images and download should be fast. This paper reviews 50 image annotation systems using supervised machine learning Techniques to annotate images for image retrieval. Results obtained show that the multi layer perceptron Neural Network classifier outperforms conventional DST Technique.

  9. Memristor-based multilayer neural networks with online gradient descent training.

    Soudry, Daniel; Di Castro, Dotan; Gal, Asaf; Kolodny, Avinoam; Kvatinsky, Shahar

    2015-10-01

    Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS. In this paper, a method for performing these update operations simultaneously (incremental outer products) using memristor-based arrays is proposed. The method is based on the fact that, approximately, given a voltage pulse, the conductivity of a memristor will increment proportionally to the pulse duration multiplied by the pulse magnitude if the increment is sufficiently small. The proposed method uses a synaptic circuit composed of a small number of components per synapse: one memristor and two CMOS transistors. This circuit is expected to consume between 2% and 8% of the area and static power of previous CMOS-only hardware alternatives. Such a circuit can compactly implement hardware MNNs trainable by scalable algorithms based on online gradient descent (e.g., backpropagation). The utility and robustness of the proposed memristor-based circuit are demonstrated on standard supervised learning tasks. PMID:25594981

  10. HALF OF THRESHOLD ALGORITHM: AN ENHANCED LINEAR ADAPTIVE SKIPPING TRAINING ALGORITHM OR MULTILAYER FEEDFORWARD NEURAL NETWORKS

    Manjula Devi Ramasamy

    2014-01-01

    Full Text Available Multilayer Feed Forward Neural Network (MFNN has been successfully administered architectures for solving a wide range of supervised pattern recognition tasks. The most problematic task of MFNN is training phase which consumes very long training time on very huge training datasets. An enhanced linear adaptive skipping training algorithm for MFNN called Half of Threshold (HOT is proposed in this research paper. The core idea of this study is to reduce the training time through random presentation of training input samples without affecting the network’s accuracy. The random presentation is done by partitioning the training dataset into two distinct classes, classified and misclassified class, based on the comparison result of the calculated error measure with half of threshold value. Only the input samples in the misclassified class are presented to the next epoch for training, whereas the correctly classified class is skipped linearly which dynamically reducing the number of input samples exhibited at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training dataset linearly can reduce the total training time, thereby speeding up the training process. This HOT algorithm can be implemented with any training algorithm used for supervised pattern classification and its implementation is very simple and easy. Simulation study results proved that HOT training algorithm achieves faster training than the other standard training algorithm.

  11. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    H. Elçiçek

    2014-01-01

    Full Text Available Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals.

  12. Using Artificial Neural Networks for ECG Signals Denoising

    Zoltán Germán-Salló

    2010-12-01

    Full Text Available The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1th sample from n previous samples To train and adjust the network weights, the backpropagation (BP algorithm was used. In this paper, prediction of ECG signals (as time series using multi-layer feedforward neural networks will be described. The results are evaluated through approximation error which is defined as the difference between the predicted and the original signal.The prediction procedure is carried out (simulated in MATLAB environment, using signals from MIT-BIH arrhythmia database. Preliminary results are encouraging enough to extend the proposed method for other types of data signals.

  13. Feedforward Neural Networks in Catalysis: A Tool for the Approximation of the Dependency of Yield on Catalyst Composition, and for Knowledge Extraction

    Holeňa, Martin; Baerns, M.

    2003-01-01

    Roč. 81, - (2003), s. 485-494. ISSN 0920-5861 Grant ostatní: BMBF(DE) FKZ 03C3013 Institutional research plan: CEZ:AV0Z1030915 Keywords : artificial neural network s * multilayer perceptron * dependency * approximation * network training * overtraining * knowledge extraction * logical rules * oxidative dehydrogenation of propane Subject RIV: BA - General Mathematics Impact factor: 2.627, year: 2003

  14. Limitations of One-Hidden-Layer Perceptron Networks

    Kůrková, Věra

    Aachen & Charleston: Technical University & CreateSpace Independent Publishing Platform, 2015 - (Yaghob, J.), s. 167-171. (CEUR Workshop Proceedings. V-1422). ISBN 978-1-5151-2065-0. ISSN 1613-0073. [ITAT 2015. Conference on Theory and Practice of Information Technologies /15./. Slovenský Raj (SK), 17.09.2015-21.09.2015] R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : perceptron networks * model complexity * representations of finite mappings by neural networks Subject RIV: IN - Informatics, Computer Science

  15. A Neural Auto-depth Controller for an Unmanned Underwater Vehicle

    Sutton, R.; Johnson, C.; Roberts, G. N.

    Artificial neural networks offer an alternative strategy for the nonlinear control of unmanned underwater vehicles (UUVS). This paper investigates the use of a multi-layered perceptron (MLP) network in controlling an UUV over a sea-bed profile and compares the use of applying chemotaxis learning to that of the more commonly employed back propagation algorithm. The results show that, for differing sized MLPs, the chemotaxis algorithm produces a successful controller over the sea-bed profile in an improved training time. Also it will be shown that, in the presence of noise and change in vehicle mass, the neural controller out-performed a classical proportional-integral-derivative controller.

  16. Foreground removal from Planck Sky Model temperature maps using a MLP neural network

    Nørgaard-Nielsen, Hans Ulrik; Hebert, K.

    2009-01-01

    with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before...... including them in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80% of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors....

  17. THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE

    António José Silva

    2007-03-01

    Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports

  18. Empirical modeling of nuclear power plants using neural networks

    A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios

  19. Using neural networks for prediction of nuclear parameters

    Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear

    2013-07-01

    Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)

  20. Using neural networks for prediction of nuclear parameters

    Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)

  1. A Deterministic and Polynomial Modified Perceptron Algorithm

    Olof Barr

    2006-01-01

    Full Text Available We construct a modified perceptron algorithm that is deterministic, polynomial and also as fast as previous known algorithms. The algorithm runs in time O(mn3lognlog(1/ρ, where m is the number of examples, n the number of dimensions and ρ is approximately the size of the margin. We also construct a non-deterministic modified perceptron algorithm running in timeO(mn2lognlog(1/ρ.

  2. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an “activation layer,” is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  3. Option Pricing Using Bayesian Neural Networks

    Pires, Michael Maio

    2007-01-01

    Options have provided a field of much study because of the complexity involved in pricing them. The Black-Scholes equations were developed to price options but they are only valid for European styled options. There is added complexity when trying to price American styled options and this is why the use of neural networks has been proposed. Neural Networks are able to predict outcomes based on past data. The inputs to the networks here are stock volatility, strike price and time to maturity with the output of the network being the call option price. There are two techniques for Bayesian neural networks used. One is Automatic Relevance Determination (for Gaussian Approximation) and one is a Hybrid Monte Carlo method, both used with Multi-Layer Perceptrons.

  4. Web traffic prediction with artificial neural networks

    Gluszek, Adam; Kekez, Michal; Rudzinski, Filip

    2005-02-01

    The main aim of the paper is to present application of the artificial neural network in the web traffic prediction. First, the general problem of time series modelling and forecasting is shortly described. Next, the details of building of dynamic processes models with the neural networks are discussed. At this point determination of the model structure in terms of its inputs and outputs is the most important question because this structure is a rough approximation of the dynamics of the modelled process. The following section of the paper presents the results obtained applying artificial neural network (classical multilayer perceptron trained with backpropagation algorithm) to the real-world web traffic prediction. Finally, we discuss the results, describe weak points of presented method and propose some alternative approaches.

  5. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation.

    Fernández-Delgado, Manuel; Cernadas, Eva; Barro, Senén; Ribeiro, Jorge; Neves, José

    2014-02-01

    The Direct Kernel Perceptron (DKP) (Fernández-Delgado et al., 2010) is a very simple and fast kernel-based classifier, related to the Support Vector Machine (SVM) and to the Extreme Learning Machine (ELM) (Huang, Wang, & Lan, 2011), whose α-coefficients are calculated directly, without any iterative training, using an analytical closed-form expression which involves only the training patterns. The DKP, which is inspired by the Direct Parallel Perceptron, (Auer et al., 2008), uses a Gaussian kernel and a linear classifier (perceptron). The weight vector of this classifier in the feature space minimizes an error measure which combines the training error and the hyperplane margin, without any tunable regularization parameter. This weight vector can be translated, using a variable change, to the α-coefficients, and both are determined without iterative calculations. We calculate solutions using several error functions, achieving the best trade-off between accuracy and efficiency with the linear function. These solutions for the α coefficients can be considered alternatives to the ELM with a new physical meaning in terms of error and margin: in fact, the linear and quadratic DKP are special cases of the two-class ELM when the regularization parameter C takes the values C=0 and C=∞. The linear DKP is extremely efficient and much faster (over a vast collection of 42 benchmark and real-life data sets) than 12 very popular and accurate classifiers including SVM, Multi-Layer Perceptron, Adaboost, Random Forest and Bagging of RPART decision trees, Linear Discriminant Analysis, K-Nearest Neighbors, ELM, Probabilistic Neural Networks, Radial Basis Function neural networks and Generalized ART. Besides, despite its simplicity and extreme efficiency, DKP achieves higher accuracies than 7 out of 12 classifiers, exhibiting small differences with respect to the best ones (SVM, ELM, Adaboost and Random Forest), which are much slower. Thus, the DKP provides an easy and fast way

  6. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback

    2008-01-01

    This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  7. Advances in Artificial Neural Networks – Methodological Development and Application

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  8. Prediction of total resistance coefficients using neural networks

    Ortigosa Barragán, Inma; Revilla López, Guillermo; García Espinosa, Julio

    2009-01-01

    The Holtrop & Mennen method is widely used at the initial design stage of ships for estimating the resistance of the ship (Holtrop and Mennen, 1982). The Holtrop & Mennen method provide a prediction of the total resistance’s components. In this work we present a neural network model which performs the same task as the Holtrop & Mennem’s method, for two of the total resistance’s components. A multilayer perceptron has been therefore trained to learn the relationship between the input (length-d...

  9. Intelligent Handwritten Digit Recognition using Artificial Neural Network

    Saeed AL-Mansoori

    2015-05-01

    Full Text Available The aim of this paper is to implement a Multilayer Perceptron (MLP Neural Network to recognize and predict handwritten digits from 0 to 9. A dataset of 5000 samples were obtained from MNIST. The dataset was trained using gradient descent back-propagation algorithm and further tested using the feed-forward algorithm. The system performance is observed by varying the number of hidden units and the number of iterations. The performance was thereafter compared to obtain the network with the optimal parameters. The proposed system predicts the handwritten digits with an overall accuracy of 99.32%.

  10. Inflow forecasting using Artificial Neural Networks for reservoir operation

    Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan

    2016-01-01

    In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the ...

  11. An optimization methodology for neural network weights and architectures.

    Ludermir, Teresa B; Yamazaki, Akio; Zanchettin, Cleber

    2006-11-01

    This paper introduces a methodology for neural network global optimization. The aim is the simultaneous optimization of multilayer perceptron (MLP) network weights and architectures, in order to generate topologies with few connections and high classification performance for any data sets. The approach combines the advantages of simulated annealing, tabu search and the backpropagation training algorithm in order to generate an automatic process for producing networks with high classification performance and low complexity. Experimental results obtained with four classification problems and one prediction problem has shown to be better than those obtained by the most commonly used optimization techniques. PMID:17131660

  12. Adjusting neural additional stabilizers for damping interarea oscillations; Ajuste de estabilizadores suplementares neurais para amortecimento de oscilacoes interareas

    Furini, M.A.; Araujo, P.B. de; Pereira, A.L.S. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. Engenharia Eletrica], Emails: mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br, andspa@gmail.com

    2009-07-01

    This paper aims at analyzing the main operation and design of operationally robust controllers in order to damp the electromechanics oscillations type inter area. For this we used an intelligent control technique based on artificial neural networks, where a multilayer perceptron it was implemented. We used a symmetrical test system of four generators, ten bars and nine transmission lines to verify the performance of the power system stabilizers and power oscillation damping (POD) for the FACTS devices, unified power flow controller (UPFC), designed for neural networks. The results show the superiority in the operation and control of oscillations in power systems using UPFC equipped with the POD.

  13. Nonlinear identification of process dynamics using neural networks

    In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios

  14. Improvement of the detection response time of gas sensors using the association of artificial neural networks with pattern recognition technique; Amelioration de la reponse temporelle de capteurs de gaz par reconnaissance de forme a l'aide de reseaux de neurones

    Bordieu, Ch.; Rebiere, D. [Bordeaux-1 Univ., Lab. IXL, UMR CNRS 5818, 33 (France); Pistre, J.; Planata, R. [Centre d' Etudes du Bouchet, 91 - Vert-le-Petit (France)

    1999-07-01

    The association of artificial neural networks (multilayer perceptrons) with a real time pattern recognition technique (shifting windows) allowed the development of systems for the detection and the quantification of gases. Shifting window technique is presented and offers an interesting way to improve the detection response time. The partial detector characterization with regard to its parameters was realized. Applications dealing with the detection of gas compounds using surface acoustic sensors permit to show the shifting window technique feasibility. (author)

  15. A Hybrid Applied Optimization Algorithm for Training Multi-Layer Neural Networks in the Data Classification

    ÖRKÇÜ, H. Hasan; Mustafa İsa DOĞAN; Örkçü, Mediha

    2015-01-01

    Backpropagation algorithm is classical technique used in the training of the artificial neural networks. Since this algorithm has many disadvantages, the training of the neural networks has been implemented with various optimization methods. In this paper, a hybrid intelligent model, i.e., hybridGSA, is developed to training artificial neural networks (ANN) and undertaking data classification problems. The hybrid intelligent system aims to exploit the advantages of genetic and simulated annea...

  16. Radial basis function neural network for power system load-flow

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  17. Parallel strategy for optimal learning in perceptrons

    We developed a parallel strategy for learning optimally specific realizable rules by perceptrons, in an online learning scenario. Our result is a generalization of the Caticha-Kinouchi (CK) algorithm developed for learning a perceptron with a synaptic vector drawn from a uniform distribution over the N-dimensional sphere, so called the typical case. Our method outperforms the CK algorithm in almost all possible situations, failing only in a denumerable set of cases. The algorithm is optimal in the sense that it saturates Bayesian bounds when it succeeds.

  18. Neural Networks for Non-linear Control

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  19. Generalization and capacity of extensively large two-layered perceptrons.

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2002-09-01

    The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different. PMID:12366215

  20. File access prediction using neural networks.

    Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar

    2010-06-01

    One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors. PMID:20421183

  1. Learning Dynamic Classes of Events using Stacked Multilayer Perceptron Networks

    Kanhabua, Nattiya; Ren, Huamin; Moeslund, Thomas B

    2016-01-01

    People often use a web search engine to find information about events of interest, for example, sport competitions, political elections, festivals and entertainment news. In this paper, we study a problem of detecting event-related queries, which is the first step before selecting a suitable time-aware retrieval model. In general, event-related information needs can be observed in query streams through various temporal patterns of user search behavior, e.g., spiky peaks for popular events, an...

  2. Hierarchical Neural Network Structures for Phoneme Recognition

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  3. A Reinforcement Learning Algorithm Using Multi-Layer Artificial Neural Networks for Semi-Markov Decision Problems

    Mustafa Ahmet Beyazıt Ocaktan

    2013-06-01

    Full Text Available Real life problems are generally large-scale and difficult to model. Therefore, these problems can't be mostly solved by classical optimisation methods. This paper presents a reinforcement learning algorithm using a multi-layer artificial neural network to find an approximate solution for large-scale semi Markov decision problems. Performance of the developed algorithm is measured and compared to the classical reinforcement algorithm on a small-scale numerical example. According to results of numerical examples, a number of hidden layer are the key success factors, and average cost of the solution generated by the developed algorithm is approximately equal to that generated by the classical reinforcement algorithm.

  4. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  5. A Neural Network Approach for Inverse Kinematic of a SCARA Manipulator

    Panchanand Jha

    2014-07-01

    Full Text Available Inverse kinematic is one of the most interesting problems of industrial robot. The inverse kinematics problem in robotics is about the determination of joint angles for a desired Cartesian position of the end effector. It comprises of the computation need to find the joint angles for a given Cartesian position and orientation of the end effectors to control a robot arm. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network is one such technique which can be gainfully used to yield the acceptable results. This paper proposes a structured artificial neural network (ANN model to find the inverse kinematics solution of a 4-dof SCARA manipulator. The ANN model used is a multi-layered perceptron neural network (MLPNN, wherein gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that multi-layered perceptron neural network gives minimum mean square error.

  6. Fast lossless color image compression method using perceptron

    贾克斌; 张延华; 庄新月

    2004-01-01

    The technique of lossless image compression plays an important role in image transmission and storage for high quality. At present, both the compression ratio and processing speed should be considered in a real-time multimedia system. A novel lossless compression algorithm is researched. A low complexity predictive model is proposed using the correlation of pixels and color components. In the meantime, perceptron in neural network is used to rectify the prediction values adaptively. It makes the prediction residuals smaller and in a small dynamic scope. Also a color space transform is used and good decorrelation is obtained in our algorithm. The compared experimental results have shown that our algorithm has a noticeably better performance than traditional algorithms. Compared to the new standard JPEG-LS, this predictive model reduces its computational complexity. And its speed is faster than the JPEG-LS with negligible performance sacrifice.

  7. Neural networks: a biased overview

    An overview of recent activity in the field of neural networks is presented. The long-range aim of this research is to understand how the brain works. First some of the problems are stated and terminology defined; then an attempt is made to explain why physicists are drawn to the field, and their main potential contribution. In particular, in recent years some interesting models have been introduced by physicists. A small subset of these models is described, with particular emphasis on those that are analytically soluble. Finally a brief review of the history and recent developments of single- and multilayer perceptrons is given, bringing the situation up to date regarding the central immediate problem of the field: search for a learning algorithm that has an associated convergence theorem

  8. Sea ice classification using fast learning neural networks

    Dawson, M. S.; Fung, A. K.; Manry, M. T.

    1992-01-01

    A first learning neural network approach to the classification of sea ice is presented. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) were tested on simulated data sets based on the known dominant scattering characteristics of the target class. Four classes were used in the data simulation: open water, thick lossy saline ice, thin saline ice, and multiyear ice. The BP network was unable to consistently converge to less than 25 percent error while the FL method yielded an average error of approximately 1 percent on the first iteration of training. The fast learning method presented can significantly reduce the CPU time necessary to train a neural network as well as consistently yield higher classification accuracy than BP networks.

  9. Inversion of surface parameters using fast learning neural networks

    Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.

    1992-01-01

    A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.

  10. Determination of osteoporosis risk using by neural networks method

    Veysi Akpolat

    2009-06-01

    Full Text Available Artificial neural networks (ANNs have become modeling tools that have found extensive acceptance and they have frequently used in applications in many disciplines for solving complex problems. Different ANN structures are valuable models, which are used in the medical field for the development of decision support systems. In this paper, the learning and classification processes are used for determining the level of bone-density (safe / risk of osteoporosis in woman. In this study, three different structured neural networks were used for classifying of osteoporosis and the most efficient structure was determined. The training network structures were Multilayer perceptron neural network (MLP, Linear Vector Quantization (LVQ and Self Organizing Map (SOM. Performance indicators and statistical measures were used for evaluating the structures and the results demonstrated that the MLP was the most efficient structure for classifying of osteoporosis.

  11. Training a multilayer neural network for the Euro-dollar (EUR/ USD) exchange rate

    Jaime Alberto Villamil Torres; Jesús Alberto Delgado Rivera

    2010-01-01

    A mathematical tool or model for predicting how an economic variable like the exchange rate (relative price between two currencies) will respond is a very important need for investors and policy-makers. Most current techniques are based on statistics, particularly linear time series theory. Artificial neural networks (ANNs) are mathematical models which try to emulate biological neural networks’ parallelism and nonlinearity; these models have been successfully applied in Economics and Enginee...

  12. Application of Levenberg-Marquardt Optimization Algorithm Based Multilayer Neural Networks for Hydrological Time Series Modeling

    Umut Okkan

    2011-01-01

    Recently, Artificial Neural Networks (ANN), which is mathematical modelingtools inspired by the properties of the biological neural system, has been typically used inthe studies of hydrological time series modeling. These modeling studies generally includethe standart feed forward backpropagation (FFBP) algorithms such as gradient-descent,gradient-descent with momentum rate and, conjugate gradient etc. As the standart FFBPalgorithms have some disadvantages relating to the time requirement and...

  13. Interacting neural networks.

    Metzler, R; Kinzel, W; Kanter, I

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random. PMID:11088736

  14. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

    A. El-Shafie

    2012-04-01

    Full Text Available Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN. In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series.

    Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN, radial basis function neural network (RBFNN and input delay neural network (IDNN, respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008 on a weekly basis and 22 yr (1987–2008 on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.

  15. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  16. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  17. Neural networks in front-end processing and control

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper the authors illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. The authors also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. The authors outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. The authors also present some of the difficulties encountered in applying these networks

  18. Neural networks in front-end processing and control

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper we illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. We also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. We outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. We also present some of the difficulties encountered in applying these networks. (author) 13 figs., 9 refs

  19. Combinatorial evolution of regression nodes in feedforward neural networks.

    Schmitz, Gregor P.J.; Aldrich, Chris

    1999-01-01

    A number of techniques exist with which neural network architectures such as multilayer perceptrons and radial basis function networks can be trained. These include backpropagation, k-means clustering and evolutionary algorithms. The latter method is particularly useful as it is able to avoid local optima in the search space and can optimise parameters for which no gradient information exists. Unfortunately, only moderately sized networks can be trained by this method, owing to the fact that evolutionary optimisation is very computationally intensive. In this paper a novel algorithm (CERN) is therefore proposed which uses a special form of combinatorial search to optimise groups of neural nodes. Oriented, ellipsoidal basis nodes optimised with CERN achieved significantly better accuracy with fewer nodes than spherical basis nodes optimised by k-means clustering. Multilayer perceptrons optimised by CERN were found to be as accurate as those trained by advanced gradient descent techniques. CERN was also found to be significantly more efficient than a conventional evolutionary algorithm that does not use a combinatorial search. PMID:12662726

  20. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs

  1. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    Ahmed M. Wefky

    2010-04-01

    Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  2. Pattern recognition in high energy physics with artificial neural networks - JETNET 2.0

    A F77 package of adaptive artificial neural network algorithms, JETNET 2.0, is presented. Its primary target is the high energy physics community, but it is general enough to be used in any pattern-recognition application area. The basic ingredients are the multilayer perceptron back-propagation algorithm and the topological self-organizing map. The package consists of a set of subroutines, which can either be used with standard options or be easily modified to host alternative architectures and procedures. (orig.)

  3. Noise reduction technique for images using radial basis function neural networks

    This paper presents a NN (Neural Network) based model for reducing the noise from images. This is a RBF (Radial Basis Function) network which is used to reduce the effect of noise and blurring from the captured images. The proposed network calculates the mean MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio) of the noisy images. The proposed network has also been successfully applied to medical images. The performance of the trained RBF network has been compared with the MLP (Multilayer Perceptron) Network and it has been demonstrated that the performance of the RBF network is better than the MLP network. (author)

  4. Use of artificial neural networks in drug and explosive detection through tomographic images with thermal neutrons

    The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)

  5. Application of Artificial Neural Network For Path Loss Prediction In Urban Macrocellular Environment

    Joseph M. Mom

    2016-07-01

    Full Text Available An artificial neural network model for the prediction of path loss in urban macrocellular environment is presented. The model consists of a multilayer perceptron trained with measured data using Scaled Conjugate Gradient algorithm. Comparison between the proposed model on one hand, and the free space, Hata and Egli models on the other hand shows a better prediction result. With the proposed ANN model a good generalization is achieved, and it is accurate in environments different from the one used in training the network.

  6. How to Improve the Generalization Ability of Multi-layer Neural Networks

    Šebesta, Václav

    Vol. 6. Orlando: IIIS, 2002 - (Callaos, N.; Pisarchik, A.; Ueda, M.), s. 108-113 ISBN 980-07-8150-1. [ISAS SCI 2002. World Multiconference on Systemics, Cybernetics and Informatics /6./. Orlando (US), 14.07.2002-18.07.2002] R&D Projects: GA AV ČR IAA2030801; GA ČR GA102/02/0124 Institutional research plan: AV0Z1030915 Keywords : neural networks topology * neural networks learning * generalization ability * prediction * classification * data mining Subject RIV: BA - General Mathematics

  7. Foreground removal from WMAP 5yr temperature maps using an MLP neural network

    Nielsen, H U Nørgaard -

    2010-01-01

    One of the main obstacles for extracting the cosmic microwave background (CMB) signal from observations in the mm/sub-mm range is the foreground contamination by emission from Galactic component: mainly synchrotron, free-free, and thermal dust emission. The statistical nature of the intrinsic CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5yr temperature data without using any auxiliary data. A simple \\emph{multilayer perceptron} neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also, the systematic errors, i.e.\\ errors correlated with the Galactic foregrounds, are very small. With these results the neural network method is well prep...

  8. Neural networks and forecasting stock price movements-accounting approach: Empirical evidence from Iran

    Hossein Naderi

    2012-08-01

    Full Text Available Stock market prediction is one of the most important interesting areas of research in business. Stock markets prediction is normally assumed as tedious task since there are many factors influencing the market. The primary objective of this paper is to forecast trend closing price movement of Tehran Stock Exchange (TSE using financial accounting ratios from year 2003 to year 2008. The proposed study of this paper uses two approaches namely Artificial Neural Networks and multi-layer perceptron. Independent variables are accounting ratios and dependent variable of stock price , so the latter was gathered for the industry of Motor Vehicles and Auto Parts. The results of this study show that neural networks models are useful tools in forecasting stock price movements in emerging markets but multi-layer perception provides better results in term of lowering error terms.

  9. The backpropagation algorithm in J, a fast prototyping tool for researching neural networks.

    Brouwer, R K

    1999-08-01

    This paper illustrates the use of a powerful language, called J, that is ideal for simulating neural networks. The use of J is demonstrated by its application to a gradient descent method for training a multilayer perceptron. It is also shown how the back-propagation algorithm can be easily generalized to multilayer networks without any increase in complexity and that the algorithm can be completely expressed in an array notation which is directly executable through J. J is a general purpose language, which means that its user is given a flexibility not available in neural network simulators or in software packages such as MATLAB. Yet, because of its numerous operators, J allows a very succinct code to be used, leading to a tremendous decrease in development time. PMID:10586987

  10. A study on the forecasting of daily stream flow using the multilayer neural networks model

    Kim, Sung-Won [Colorado State University, Fort Collins, CO(United States)

    2000-10-31

    In this study, Neural Networks models were used to forecast daily stream flow at Jindong station of the Nakdong River basin. Neural Networks models consist of CASE 1(5-5-1) and CASE 2(5-5-5-1). The criteria which separates two models is the number of hidden layers. Each model has Fletcher-Reeves Conjugate Gradient BackPropagation(FR-CGBP) and Scaled Conjugate Gradient BackPropagation(SCGBP) algorithms, which are better than original BackPropagation(BP) in convergence of global error and training tolerance. The data which are available for model training and validation were composed of wet, average, dry, wet+average, wet+dry, average+dry and wet+average+dry year respectively. During model training, the optimal connection weights and biases were determined using each data set and the daily stream flow was calculated at the same time. Except for wet+dry year, the results of training were good conditions by statistical analysis of forecast errors. And, model validation was carried out using the connection weights and biases which were calculated from model training. The results of validation were satisfactory like those of training. Daily stream flow forecasting using Neural Networks models were compared with those forecasted by Multiple Regression Analysis Model(MRAM). Neural Networks models were displayed slightly better results than MRAM in this study. Thus, Neural Networks models have much advantage to provide a more systematic approach, reduce model parameters, and shorten the time spent in the model development. (author). 22 refs., 9 tabs., 7 figs.

  11. DESIGN OF A TWO-BIT POSITIVE CLOCKEDGE TRIGGERED COUNTER UTILIZING THRESHOLD LOGIC UNIT BASED ON PERCEPTRON LEARNING ALGORITHM

    Ratnadip Dey

    2013-02-01

    Full Text Available A Threshold Logic Unit (TLU is a mathematical function conceived as a crude model, or abstraction of biological neurons. Threshold logic units are the constitutive units in an artificial neural network. In this paper a positive clock-edge triggered T flip-flop is designed using Perceptron Learning Algorithm, which is a basic design algorithm of threshold logic units. Then this T flip-flop is used to design a two-bit up-counter that goes through the states 0, 1, 2, 3, 0, 1… Ultimately, the goal is to show how to design simple logic units based on threshold logic based perceptron concepts.

  12. Multilayer cellular neural network and fuzzy C-mean classifiers: comparison and performance analysis

    Trujillo San-Martin, Maite; Hlebarov, Vejen; Sadki, Mustapha

    2004-11-01

    Neural Networks and Fuzzy systems are considered two of the most important artificial intelligent algorithms which provide classification capabilities obtained through different learning schemas which capture knowledge and process it according to particular rule-based algorithms. These methods are especially suited to exploit the tolerance for uncertainty and vagueness in cognitive reasoning. By applying these methods with some relevant knowledge-based rules extracted using different data analysis tools, it is possible to obtain a robust classification performance for a wide range of applications. This paper will focus on non-destructive testing quality control systems, in particular, the study of metallic structures classification according to the corrosion time using a novel cellular neural network architecture, which will be explained in detail. Additionally, we will compare these results with the ones obtained using the Fuzzy C-means clustering algorithm and analyse both classifiers according to its classification capabilities.

  13. Training a multilayer neural network for the Euro-dollar (EUR/ USD exchange rate

    Jaime Alberto Villamil Torres

    2010-04-01

    Full Text Available A mathematical tool or model for predicting how an economic variable like the exchange rate (relative price between two currencies will respond is a very important need for investors and policy-makers. Most current techniques are based on statistics, particularly linear time series theory. Artificial neural networks (ANNs are mathematical models which try to emulate biological neural networks’ parallelism and nonlinearity; these models have been successfully applied in Economics and Engineering since the 1980s. ANNs appear to be an alternative for modelling the behaviour of financial variables which resemble (as first approximation a random walk. This paper reports the results of using ANNs for Euro/USD exchange rate trading and the usefulness of the algorithm for chemotaxis leading to training networks thereby maximising an objective function re predicting a trader’s profits. JEL: F310, C450.

  14. Spice Simulation of Neural Networks Multi-Layer Perception Four-Quadrant CMOS Analog Multiplier OTANNO

    In this paper, the OTTANNO version of four -quadrant CMOS analog multiplier circuit for artificial neural networks multi layer perception operation will be proposed. The proposed multiplier can be divided into two or three parts, which will be in the input, synapse and neuron. The percentage of silicon area saving is 95% with respect to that multiplier presented in (Chible,1997). A comparison between OTANNO and OTANPS is also presented. (author)

  15. Mean Field Bayes Backpropagation: scalable training of multilayer neural networks with binary weights

    Soudry, Daniel; Meir, Ron

    2013-01-01

    Significant success has been reported recently using deep neural networks for classification. Such large networks can be computationally intensive, even after training is over. Implementing these trained networks in hardware chips with a limited precision of synaptic weights may improve their speed and energy efficiency by several orders of magnitude, thus enabling their integration into small and low-power electronic devices. With this motivation, we develop a computationally efficient learn...

  16. Identification of Non-Linear Structures using Recurrent Neural Networks

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2016-08-01

    Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.

  19. Application of Levenberg-Marquardt Optimization Algorithm Based Multilayer Neural Networks for Hydrological Time Series Modeling

    Umut Okkan

    2011-07-01

    Full Text Available Recently, Artificial Neural Networks (ANN, which is mathematical modelingtools inspired by the properties of the biological neural system, has been typically used inthe studies of hydrological time series modeling. These modeling studies generally includethe standart feed forward backpropagation (FFBP algorithms such as gradient-descent,gradient-descent with momentum rate and, conjugate gradient etc. As the standart FFBPalgorithms have some disadvantages relating to the time requirement and slowconvergency in training, Newton and Levenberg-Marquardt algorithms, which arealternative approaches to standart FFBP algorithms, were improved and also used in theapplications. In this study, an application of Levenberg-Marquardt algorithm based ANN(LM-ANN for the modeling of monthly inflows of Demirkopru Dam, which is located inthe Gediz basin, was presented. The LM-ANN results were also compared with gradientdescentwith momentum rate algorithm based FFBP model (GDM-ANN. When thestatistics of the long-term and also seasonal-term outputs are compared, it can be seen thatthe LM-ANN model that has been developed, is more sensitive for prediction of theinflows. In addition, LM-ANN approach can be used for modeling of other hydrologicalcomponents in terms of a rapid assessment and its robustness.

  20. Implementation of multi-layer feed forward neural network on PIC16F877 microcontroller

    Artificial Neural Network (ANN) is an electronic model based on the neural structure of the brain. Similar to human brain, ANN consists of interconnected simple processing units or neurons that process input to generate output signals. ANN operation is divided into 2 categories; training mode and service mode. This project aims to implement ANN on PIC micro-controller that enable on-chip or stand alone training and service mode. The input can varies from sensors or switches, while the output can be used to control valves, motors, light source and a lot more. As partial development of the project, this paper reports the current status and results of the implemented ANN. The hardware fraction of this project incorporates Microchip PIC16F877A microcontrollers along with uM-FPU math co-processor. uM-FPU is a 32-bit floating point co-processor utilized to execute complex calculation requires by the sigmoid activation function for neuron. ANN algorithm is converted to software program written in assembly language. The implemented ANN structure is three layer with one hidden layer, and five neurons with two hidden neurons. To prove the operability and functionality, the network is trained to solve three common logic gate operations; AND, OR, and XOR. This paper concludes that the ANN had been successfully implemented on PIC16F877a and uM-FPU math co-processor hardware that works accordingly on both training and service mode. (Author)

  1. Patterned hydrogel microfibers prepared using multilayered microfluidic devices for guiding network formation of neural cells

    Multilayered microfluidic devices with a micronozzle array structure have been developed to prepare unique hydrogel microfibers with highly complex cross-sectional morphologies. Hydrogel precursor solutions with different compositions are introduced through vertical micronozzles, united and focused, and continuously gelled to form hydrogel fibers with multiple regions of different physicochemical composition. We prepared alginate hydrogel microfibers with diameters of 60 ∼ 130 μm and 4/8 parallel regions in the periphery. Neuron-like PC12 cells encapsulated in the parallel region, which was made of a soft hydrogel matrix, proliferated and formed linear intercellular networks along the fiber length because of the physical restrictions imposed by the relatively rigid regions. After cultivation for 14 days, one-millimeter-long intercellular networks that structurally mimic complex nerve bundles found in vivo were formed. The proposed fibers should be useful for producing various in vivo linear tissues and should be applicable to regenerative medicine and physiological studies of cells. (papers)

  2. Representations of Boolean Functions by Perceptron Networks

    Kůrková, Věra

    Prague : Institute of Computer Science AS CR, 2014 - (Kůrková, V.; Bajer, L.; Peška, L.; Vojtáš, R.; Holeňa, M.; Nehéz, M.), s. 68-70 ISBN 978-80-87136-19-5. [ITAT 2014. European Conference on Information Technologies - Applications and Theory /14./. Demänovská dolina (SK), 25.09.2014-29.09.2014] R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : perceptron networks * model complexity * Boolean functions Subject RIV: IN - Informatics, Computer Science

  3. A spiking neural network architecture for nonlinear function approximation.

    Iannella, N; Back, A D

    2001-01-01

    Multilayer perceptrons have received much attention in recent years due to their universal approximation capabilities. Normally, such models use real valued continuous signals, although they are loosely based on biological neuronal networks that encode signals using spike trains. Spiking neural networks are of interest both from a biological point of view and in terms of a method of robust signaling in particularly noisy or difficult environments. It is important to consider networks based on spike trains. A basic question that needs to be considered however, is what type of architecture can be used to provide universal function approximation capabilities in spiking networks? In this paper, we propose a spiking neural network architecture using both integrate-and-fire units as well as delays, that is capable of approximating a real valued function mapping to within a specified degree of accuracy. PMID:11665783

  4. Metaplasticity Artificial Neural Networks Model Application to Radar Detection

    Diego Andina

    2007-12-01

    Full Text Available Many Artificial Neural Networks design algorithms or learning methods imply the minimization of an error objective function. During learning, weight values are updated following a strategy that tends to minimize the final mean error in the Network performance. Weight values are classically seen as a representation of the synaptic weights in biological neurons and their ability to change its value could be interpreted as artificial plasticity inspired by this biological property of neurons. In such a way, metaplasticity is interpreted in this paper as the ability to change the efficiency of artificial plasticity giving more relevance to weight updating of less frequent activations and resting relevance to frequent ones. Modeling this interpretation in the training phase, the hypothesis of an improved training is tested in the Multilayer Perceptron with Backpropagation case. The results show a much more efficient training maintaining the Artificial Neural Network performance.

  5. Neural optimal control of flexible spacecraft slew maneuver

    Nayeri, M. Reza Dehghan; Alasty, Aria; Daneshjou, Kamran

    2004-11-01

    This paper deals with the problem of optimal large-angle single-axis maneuvers of a flexible spacecraft with simultaneous vibration suppression of elastic modes. A spacecraft model with a cylindrical hub and one flexible appendage and tip mass is considered. Gravity gradient torque is considered as a disturbance torque. Multilayer perceptron neural networks are used to design a Neural Optimal Controller (NOC) for this multivariable non-linear maneuver. For NOC training, an off-line training procedure based on backpropagation through time algorithm is developed to minimize the general quadratic cost function in forward and backward pass stages. The proposed controller is also applicable to simultaneous multi-axis reorientation of a flexible spacecraft. Simulation results are presented to show that very fast reference pitch angle trajectory tracking and vibration suppression are accomplished.

  6. Multilayer neural networks for solving a class of partial differential equations.

    He, S; Reif, K; Unbehauen, R

    2000-04-01

    In this paper, training the derivative of a feedforward neural network with the extended backpropagation algorithm is presented. The method is used to solve a class of first-order partial differential equations for input-to-state linearizable or approximate linearizable systems. The solution of the differential equation, together with the Lie derivatives, yields a change of coordinates. A feedback control law is then designed to keep the system in a desired behavior. The examination of the proposed method, through simulations, exhibits the advantages of it. They include easily and quickly finding approximate solutions for complicated first-order partial differential equations. Therefore, the work presented here can benefit the design of the class of nonlinear control systems, where the nontrivial solutions of the partial differential equations are difficult to find. PMID:10937971

  7. The viability of neural network for modeling the impact of individual job satisfiers on work commitment in Indian manufacturing unit

    Therasa Chandrasekar

    2015-10-01

    Full Text Available This paper provides an exposition about application of neural networks in the context of research to find out the contribution of individual job satisfiers towards work commitment. The purpose of the current study is to build a predictive model to estimate the normalized importance of individual job satisfiers towards work commitment of employees working in TVS Group, an Indian automobile company. The study is based on the tool developed by Spector (1985 and Sue Hayday (2003.The input variable of the study consists of nine independent individual job satisfiers which includes Pay, Promotion, Supervision, Benefits, Rewards, Operating procedures, Co-workers, Work-itself and Communication of Spector (1985 and dependent variable as work commitment of Sue Hayday (2003.The primary data has been collected using a closed-ended questionnaire based on simple random sampling approach. This study employed the multilayer Perceptron neural network model to envisage the level of job satisfiers towards work commitment. The result from the multilayer Perceptron neural network model displayed with four hidden layer with correct classification rate of 70% and 30% for training and testing data set. The normalized importance shows high value for coworkers, superior satisfaction and communication and which acts as most significant attributes of job satisfiers that predicts the overall work commitment of employees.

  8. Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts

    N. Lauzon

    2006-01-01

    Full Text Available This work addresses the issue of better considering the heterogeneity of precipitation fields within lumped rainfall-runoff models where only areal mean precipitation is usually used as an input. A method using a Kohonen neural network is proposed for the clustering of precipitation fields. The evaluation and improvement of the performance of a lumped rainfall-runoff model for one-day ahead predictions is then established based on this clustering. Multilayer perceptron neural networks are employed as lumped rainfall-runoff models. The Bas-en-Basset watershed in France, which is equipped with 23 rain gauges with data for a 21-year period, is employed as the application case. The results demonstrate the relevance of the proposed clustering method, which produces groups of precipitation fields that are in agreement with the global climatological features affecting the region, as well as with the topographic constraints of the watershed (i.e., orography. The strengths and weaknesses of the rainfall-runoff models are highlighted by the analysis of their performance vis-à-vis the clustering of precipitation fields. The results also show the capability of multilayer perceptron neural networks to account for the heterogeneity of precipitation, even when built as lumped rainfall-runoff models.

  9. Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts

    Lauzon, N.; Anctil, F.; Baxter, C. W.

    2006-07-01

    This work addresses the issue of better considering the heterogeneity of precipitation fields within lumped rainfall-runoff models where only areal mean precipitation is usually used as an input. A method using a Kohonen neural network is proposed for the clustering of precipitation fields. The evaluation and improvement of the performance of a lumped rainfall-runoff model for one-day ahead predictions is then established based on this clustering. Multilayer perceptron neural networks are employed as lumped rainfall-runoff models. The Bas-en-Basset watershed in France, which is equipped with 23 rain gauges with data for a 21-year period, is employed as the application case. The results demonstrate the relevance of the proposed clustering method, which produces groups of precipitation fields that are in agreement with the global climatological features affecting the region, as well as with the topographic constraints of the watershed (i.e., orography). The strengths and weaknesses of the rainfall-runoff models are highlighted by the analysis of their performance vis-à-vis the clustering of precipitation fields. The results also show the capability of multilayer perceptron neural networks to account for the heterogeneity of precipitation, even when built as lumped rainfall-runoff models.

  10. Evaluation of the efficiency of artificial neural networks for genetic value prediction.

    Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M

    2016-01-01

    Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency. PMID:27051007

  11. Accurate and rapid optical characterization of an anisotropic guided structure based on a neural method.

    Robert, Stéphane; Battie, Yann; Jamon, Damien; Royer, Francois

    2007-04-10

    Optimal performances of integrated optical devices are obtained by the use of an accurate and reliable characterization method. The parameters of interest, i.e., optical indices and thickness of the waveguide structure, are calculated from effective indices by means of an inversion procedure. We demonstrate how an artificial neural network can achieve such a process. The artificial neural network used is a multilayer perceptron. The first result concerns a simulated anisotropic waveguide. The accuracy in the determination of optical indices and waveguide thickness is 5 x 10(-5) and 4 nm, respectively. Then an experimental application on a silica-titania thin film is performed. In addition, effective indices are measured by m-lines spectroscopy. Finally, a comparison with a classical optimization algorithm demonstrates the robustness of the neural method. PMID:17384718

  12. Feature extraction and pattern classification of remote sensing data by a modular neural system

    Blonda, Palma; la Forgia, Vincenza; Pasquariello, Guido; Satalino, Giuseppe

    1996-02-01

    A modular neural network architecture has been used for the classification of remote sensed data in two experiments carried out to study two different but rather usual situations in real remote sensing applications. Such situations concern the availability of high-dimensional data in the first setting and an imperfect data set with a limited number of features in the second. The learning task of the supervised multilayer perceptron classifier has been made more efficient by preprocessing the input with unsupervised neural modules for feature discovery. The linear propagation network is introduced in the first experiment to evaluate the effectiveness of the neural data compression stage before classification, whereas in the second experiment data clustering before labeling is evaluated by the Kohonen self-organizing feature map network. The results of the two experiments confirm that modular learning performs better than nonmodular learning with respect to both learning quality and speed.

  13. Application of Neural Networks for unfolding neutron spectra measured by means of Bonner Spheres

    A Neural Network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set. The present work used the 'Stuttgart Neural Network Simulator' as the interface for designing, training and validation of a MultiLayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 10 MeV. Two types of neutron spectra were numerically investigated: monoenergetic and continuous. Good results were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron spectrum unfolding methodologies

  14. The Effect of Network Parameters on Pi-Sigma Neural Network for Temperature Forecasting

    Husaini, Noor Aida; Ghazali, Rozaida; Nawi, Nazri Mohd; Ismail, Lokman Hakim

    In this paper, we present the effect of network parameters to forecast temperature of a suburban area in Batu Pahat, Johor. The common ways of predicting the temperature using Neural Network has been applied for most meteorological parameters. However, researchers frequently neglected the network parameters which might affect the Neural Network's performance. Therefore, this study tends to explore the effect of network parameters by using Pi Sigma Neural Network (PSNN) with backpropagation algorithm. The network's performance is evaluated using the historical dataset of temperature in Batu Pahat for one step-ahead and benchmarked against Multilayer Perceptron (MLP) for comparison. We found out that, network parameters have significantly affected the performance of PSNN for temperature forecasting. Towards the end of this paper, we concluded the best forecasting model to predict the temperature based on the comparison of our study.

  15. Use of Neural Networks for Damage Assessment in a Steel Mast

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorithm for detecting location and size of a damage in a civil engineering structure is investigated. The structure considered is a 20 m high steel lattice mast subjected to wind...... excitation. The basic idea is to train a neural network with simulated patterns of the relative changes in natural frequencies and corresponding sizes and locations of damages in order to recognize the behaviour of the damaged as well as the undamaged structure. Subjecting this trained neural network to...... bolted joint consists of 4 slice plates giving the possibilities of simulating a 1/4, 1/2, 3/4 and full reduction of the area of a diagonal. A damage is simulated by removing one or more splice plates in these bolted joints. The utility of the neural network approach is demonstrated by a simulation study...

  16. Aitken-based acceleration methods for assessing convergence of multilayer neural networks.

    Pilla, R S; Kamarthi, S V; Lindsay, B G

    2001-01-01

    This paper first develops the ideas of Aitken delta(2) method to accelerate the rate of convergence of an error sequence (value of the objective function at each step) obtained by training a neural network with a sigmoidal activation function via the backpropagation algorithm. The Aitken method is exact when the error sequence is exactly geometric. However, theoretical and empirical evidence suggests that the best possible rate of convergence obtainable for such an error sequence is log-geometric. This paper develops a new invariant extended-Aitken acceleration method for accelerating log-geometric sequences. The resulting accelerated sequence enables one to predict the final value of the error function. These predictions can in turn be used to assess the distance between the current and final solution and thereby provides a stopping criterion for a desired accuracy. Each of the techniques described is applicable to a wide range of problems. The invariant extended-Aitken acceleration approach shows improved acceleration as well as outstanding prediction of the final error in the practical problems considered. PMID:18249928

  17. PREDICTION OF BOD AND COD OF A REFINERY WASTEWATER USING MULTILAYER ARTIFICIAL NEURAL NETWORKS

    Eldon Raj Rene

    2008-06-01

    Full Text Available In the recent past, artificial neural networks (ANNs have shown the ability to learn and capture non-linear static or dynamic behaviour among variables based on the given set of data. Since the knowledge of internal procedure is not necessary, the modelling can take place with minimum previous knowledge about the process through proper training of the network. In the present study, 12 ANN based models were proposed to predict the Biochemical Oxygen Demand (BOD5 and Chemical Oxygen Demand (COD concentrations of wastewater generated from the effluent treatment plant of a petrochemical industry. By employing the standard back error propagation (BEP algorithm, the network was trained with 103 data points for water quality indices such as Total Suspended Solids (TSS, Total Dissolved Solids (TDS, Phenol concentration, Ammoniacal Nitrogen (AMN, Total Organic Carbon (TOC and Kjeldahl’s Nitrogen (KJN to predict BOD and COD. After appropriate training, the network was tested with a separate test data and the best model was chosen based on the sum square error (training and percentage average relative error (% ARE for testing. The results from this study reveal that ANNs can be accurate and efficacious in predicting unknown concentrations of water quality parameters through its versatile training process.

  18. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  19. Artificial neural network analysis of RBS data with roughness: Application to Ti0.4Al0.6N/Mo multilayers

    In multilayered Ti0.4Al0.6N/Mo coatings, a strengthening effect can be obtained by using alternate layers of materials with high and low elastic constants. This behaviour requires a multilayer periodicity below a certain value in order to reduce dislocation motion across layer interface. Below this critical period, in most cases the hardness decreases as the period decreases. The multiple interfaces have an important role on this behaviour, working as stress relaxation areas and preventing crack propagation, influencing the mechanical properties of the system. Understanding the origin of these effects requires knowledge of the interface structure, where the interfacial roughness is of prime importance. We used Rutherford backscattering to study roughness in a quantitative way, and developed an artificial neural network algorithm dedicated to the analysis of the data. The results compare very well with previous TEM and AFM data

  20. Classification of Atrial Septal Defect and Ventricular Septal Defect with Documented Hemodynamic Parameters via Cardiac Catheterization by Genetic Algorithms and Multi-Layered Artificial Neural Network

    Mustafa Yıldız

    2012-08-01

    Full Text Available Introduction: We aimed to develop a classification method to discriminate ventricular septal defect and atrial septal defect by using severalhemodynamic parameters.Patients and Methods: Forty three patients (30 atrial septal defect, 13 ventricular septal defect; 26 female, 17 male with documentedhemodynamic parameters via cardiac catheterization are included to study. Such parameters as blood pressure values of different areas,gender, age and Qp/Qs ratios are used for classification. Parameters, we used in classification are determined by divergence analysismethod. Those parameters are; i pulmonary artery diastolic pressure, ii Qp/Qs ratio, iii right atrium pressure, iv age, v pulmonary arterysystolic pressure, vi left ventricular sistolic pressure, vii aorta mean pressure, viii left ventricular diastolic pressure, ix aorta diastolicpressure, x aorta systolic pressure. Those parameters detected from our study population, are uploaded to multi-layered artificial neuralnetwork and the network was trained by genetic algorithm.Results: Trained cluster consists of 14 factors (7 atrial septal defect and 7 ventricular septal defect. Overall success ratio is 79.2%, andwith a proper instruction of artificial neural network this ratio increases up to 89%.Conclusion: Parameters, belonging to artificial neural network, which are needed to be detected by the investigator in classical methods,can easily be detected with the help of genetic algorithms. During the instruction of artificial neural network by genetic algorithms, boththe topology of network and factors of network can be determined. During the test stage, elements, not included in instruction cluster, areassumed as in test cluster, and as a result of this study, we observed that multi-layered artificial neural network can be instructed properly,and neural network is a successful method for aimed classification.

  1. MIMO transmit scheme based on morphological perceptron with competitive learning.

    Valente, Raul Ambrozio; Abrão, Taufik

    2016-08-01

    This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. PMID:27135805

  2. Learning from correlated patterns by simple perceptrons

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance

  3. Perceptrons with Hebbian Learning Based on Wave Ensembles in Spatially Patterned Potentials

    Espinosa-Ortega, T.; Liew, T. C. H.

    2015-03-01

    A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions.

  4. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds.

    Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-30

    Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks. PMID:17186488

  5. Offline analysis of HEP events by ''dynamic perceptron'' neural network

    In this paper we start from a critical analysis of the fundamental problems of the parallel calculus in linear structures and of their extension to the partial solutions obtained with non-linear architectures. Then, we present shortly a new dynamic architecture able to solve the limitations of the previous architectures through an automatic re-definition of the topology. This architecture is applied to real-time recognition of particle tracks in high-energy accelerators. (orig.)

  6. Neural network classifier of attacks in IP telephony

    Safarik, Jakub; Voznak, Miroslav; Mehic, Miralem; Partila, Pavol; Mikulec, Martin

    2014-05-01

    Various types of monitoring mechanism allow us to detect and monitor behavior of attackers in VoIP networks. Analysis of detected malicious traffic is crucial for further investigation and hardening the network. This analysis is typically based on statistical methods and the article brings a solution based on neural network. The proposed algorithm is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. Information about attacks on these honeypots is collected on a centralized server and then classified. This classification is based on different mechanisms. One of them is based on the multilayer perceptron neural network. The article describes inner structure of used neural network and also information about implementation of this network. The learning set for this neural network is based on real attack data collected from IP telephony honeypot called Dionaea. We prepare the learning set from real attack data after collecting, cleaning and aggregation of this information. After proper learning is the neural network capable to classify 6 types of most commonly used VoIP attacks. Using neural network classifier brings more accurate attack classification in a distributed system of honeypots. With this approach is possible to detect malicious behavior in a different part of networks, which are logically or geographically divided and use the information from one network to harden security in other networks. Centralized server for distributed set of nodes serves not only as a collector and classifier of attack data, but also as a mechanism for generating a precaution steps against attacks.

  7. Nonlinear control structures based on embedded neural system models.

    Lightbody, G; Irwin, G W

    1997-01-01

    This paper investigates in detail the possible application of neural networks to the modeling and adaptive control of nonlinear systems. Nonlinear neural-network-based plant modeling is first discussed, based on the approximation capabilities of the multilayer perceptron. A structure is then proposed to utilize feedforward networks within a direct model reference adaptive control strategy. The difficulties involved in training this network, embedded within the closed-loop are discussed and a novel neural-network-based sensitivity modeling approach proposed to allow for the backpropagation of errors through the plant to the neural controller. Finally, a novel nonlinear internal model control (IMC) strategy is suggested, that utilizes a nonlinear neural model of the plant to generate parameter estimates over the nonlinear operating region for an adaptive linear internal model, without the problems associated with recursive parameter identification algorithms. Unlike other neural IMC approaches the linear control law can then be readily designed. A continuous stirred tank reactor was chosen as a realistic nonlinear case study for the techniques discussed in the paper. PMID:18255659

  8. Neural network models for a resource allocation problem.

    Walczak, S

    1998-01-01

    University admissions and business personnel offices use a limited number of resources to process an ever-increasing quantity of student and employment applications. Application systems are further constrained to identify and acquire, in a limited time period, those candidates who are most likely to accept an offer of enrolment or employment. Neural networks are a new methodology to this particular domain. Various neural network architectures and learning algorithms are analyzed comparatively to determine the applicability of supervised learning neural networks to the domain problem of personnel resource allocation and to identify optimal learning strategies in this domain. This paper focuses on multilayer perceptron backpropagation, radial basis function, counterpropagation, general regression, fuzzy ARTMAP, and linear vector quantization neural networks. Each neural network predicts the probability of enrolment and nonenrolment for individual student applicants. Backpropagation networks produced the best overall performance. Network performance results are measured by the reduction in counsellors student case load and corresponding increases in student enrolment. The backpropagation neural networks achieve a 56% reduction in counsellor case load. PMID:18255946

  9. Financial time series prediction using spiking neural networks.

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618

  10. An Efficient Rescaled Perceptron Algorithm for Conic Systems

    Vempala, Santosh; Belloni, Alexandre; Freund, Robert Michael.

    2009-01-01

    The classical perceptron algorithm is an elementary row-action/relaxation algorithm for solving a homogeneous linear inequality system Ax > 0. A natural condition measure associated with this algorithm is the Euclidean width {tau} of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by 1/{tau}2 [see Rosenblatt, F. 1962. Principles of Neurodynamics. Spartan Books, Washington, DC]. Dunagan and Vempala [Dunagan, J., S. Vempala. 2007. A simple pol...

  11. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China

    C. W. Dawson

    2002-01-01

    Full Text Available While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP, and the radial basis function network (RBF. Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach. Keywords: Artificial neural network, multilayer perception, radial basis function, flood forecasting

  12. Cutting force signal pattern recognition using hybrid neural network in end milling

    Song-Tae SEONG; Ko-Tae JO; Young-Moon LEE

    2009-01-01

    Under certain cutting conditions in end milling, the signs of cutting forces change from positive to negative during a revolution of the tool. The change of force direction causes the cutting dynamics to be unstable which results in chatter vibration. Therefore, cutting force signal monitoring and classification are needed to determine the optimal cutting conditions and to improve the efficiency of cut. Artificial neural networks are powerful tools for solving highly complex and nonlinear problems. It can be divided into supervised and unsupervised learning machines based on the availability of a teacher. Hybrid neural network was introduced with both of functions of multilayer perceptron (MLP) trained with the back-propagation algorithm for monitoring and detecting abnormal state, and self organizing feature map (SOFM) for treating huge datum such as image processing and pattern recognition, for predicting and classifying cutting force signal patterns simultaneously. The validity of the results is verified with cutting experiments and simulation tests.

  13. Neural Network on Photodegradation of Octylphenol using Natural and Artificial UV Radiation

    Lorentz JÄNTSCHI

    2011-09-01

    Full Text Available The present paper comes up with an experimental design meant to point out the factors interferingin octylphenol’s degradation in surface waters under solar radiation, underlining each factor’sinfluence on the process observable (concentration of p-octylphenol. Multiple linear regressionanalysis and artificial neural network (Multi-Layer Perceptron type were applied in order to obtaina mathematical model capable to explain the action of UV-light upon synthetic solutions of OP inultra-pure water (MilliQ type. Neural network proves to be the most efficient method in predictingthe evolution of OP concentration during photodegradation process. Thus, determination in neuralnetwork’s case has almost double value versus the regression analysis.

  14. Foreground removal from CMB temperature maps using an MLP neural network

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...... the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...

  15. Foreground removal from CMB temperature maps using an MLP neural network

    Norgaard-Nielsen, H U

    2008-01-01

    One of the main obstacles in extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the galactic foregrounds simple, power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined CMB and foreground signals has been investigated. As a specific example, we have analysed simulated data, like that expected from the ESA Planck Surveyor mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates, over more than 80 percent of the sky, that are to a high degree uncorrelated with the foreground signals. A single...

  16. A Comparison between Neural Networks and Wavelet Networks in Nonlinear System Identification

    S. Ehsan Razavi

    2012-01-01

    Full Text Available In this study, identification of a nonlinear function will be presented by neural network and wavelet network methods. Behavior of a nonlinear system can be identified by intelligent methods. Two groups of the most common and at the same time the most effective of neural networks methods are multilayer perceptron and radial basis function that will be used for nonlinear system identification. The selected structure is series - parallel method that after network training by a series of training random data, the output is estimated and the nonlinear function is compared to a sinusoidal input. Then, wavelet network is used for identification and we will use Orthogonal Least Squares (OLS method for wavelet selection to reduce the volume of calculations and increase the convergence speed.

  17. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)

    Investigations of failures of soil masses are subjects touching both geology and engineering. These investigations call the joint efforts of engineering geologists and geotechnical engineers. Geotechnical engineers have to pay particular attention to geology, ground water, and shear strength of soils in assessing slope stability. Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of modeling extremely complex functions. In particular, neural networks are nonlinear. In this research, with respect to the above advantages, ANN systems consisting of multilayer perceptron networks are developed to predict slope stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. Several important parameters, including total stress, effective stress, angle of slope, coefficient of cohesion, internal friction angle, and horizontal coefficient of earthquake, were used as the input parameters, while the slope stability was the output parameter. The results are compared with the classical methods of limit equilibrium to check the ANN model's validity. (author)

  18. A Pareto evolutionary artificial neural network approach for remote sensing image classification

    Liu, Fujiang; Wu, Xincai; Guo, Yan; Sun, Huashan; Zhou, Feng; Mei, Linlu

    2006-10-01

    This paper presents a Pareto evolutionary artificial neural network (Pareto-EANN) approach based on the evolutionary algorithms for multiobjective optimization augmented with local search for the classification of remote sensing image. Its novelty lies in the use of a multiobjective genetic algorithm where single hidden layers Multilayer Perceptrons (MLP) are employed to indicate the accuracy/complexity trade-off. Some advantages of this approach include the ability to accommodate multiple criteria such as accuracy of the classifier and number of hidden units. We compared Pareto-EANN classifiers results of the classification of remote sensing image against standard backpropagation neural network classifiers and EANN classifiers; we show experimentally the efficiency of the proposed methodology.

  19. Neural network model for a reactor subsystem using real time data

    Modern nuclear power plant is a very complex arrangement of machinery consisting of huge number of control and support systems. In real time it is possible to implement intelligent systems in the form of neural network, data mining, expert system etc. for modeling the power plant. This paper describes the development of an artificial neural network model for intermediate heat exchanger subsystem of fast breeder test reactor. Multilayer perceptron network using back propagation algorithm is implemented for training the safety critical, safety related real time data. It takes in to account the weight correction method. The results indicate a very good convergence of the algorithm. The model can be used as an operator support system for predictive measures of various parameters of the reactor subsystems. (author)

  20. Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks.

    Patra, J C; Kot, A C

    2002-01-01

    A computationally efficient artificial neural network (ANN) for the purpose of dynamic nonlinear system identification is proposed. The major drawback of feedforward neural networks, such as multilayer perceptrons (MLPs) trained with the backpropagation (BP) algorithm, is that they require a large amount of computation for learning. We propose a single-layer functional-link ANN (FLANN) in which the need for a hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials. The novelty of this network is that it requires much less computation than that of a MLP. We have shown its effectiveness in the problem of nonlinear dynamic system identification. In the presence of additive Gaussian noise, the performance of the proposed network is found to be similar or superior to that of a MLP. A performance comparison in terms of computational complexity has also been carried out. PMID:18238146

  1. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

    A. El-Shafie

    2011-07-01

    Full Text Available Rainfall is considered as one of the major component of the hydrological process, it takes significant part of evaluating drought and flooding events. Therefore, it is important to have accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting task such as Multi-Layer Perceptron Neural Networks (MLP-NN. In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series.

    Two different static neural networks and one dynamic neural network namely; Multi-Layer Peceptron Neural network (MLP-NN, Radial Basis Function Neural Network (RBFNN and Input Delay Neural Network (IDNN, respectively, have been examined in this study. Those models had been developed for two time horizon in monthly and weekly rainfall basis forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008 on weekly basis and 22 yr (1987–2008 for monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural network. Results showed that MLP-NN neural network model able to follow the similar trend of the actual rainfall, yet it still relatively poor. RBFNN model achieved better accuracy over the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model outperformed during training and testing stage which prove a consistent level of accuracy with seen and unseen data. Furthermore, the IDNN significantly enhance the forecasting accuracy if compared with the other static neural network model as they could memorize the

  2. Practical application of artificial neural networks in the neurosciences

    Pinti, Antonio

    1995-04-01

    This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.

  3. Neural Network Aided Glitch-Burst Discrimination and Glitch Classification

    Rampone, Salvatore; Troiano, Luigi; Pinto, Innocenzo M

    2014-01-01

    We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored.In order to provide a proof of concept,we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-tonoise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation ...

  4. Inflow forecasting using Artificial Neural Networks for reservoir operation

    Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan

    2016-05-01

    In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the forecast (Type F); (3) inflow known and assumed to be the historic mean for month (Type M); and (4) inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N). Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  5. Handwritten Farsi Character Recognition using Artificial Neural Network

    Ahangar, Reza Gharoie

    2009-01-01

    Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropagation algorithm has been used to train the MLP network. In addition, an analysis has been carried out to determine the number of hidden nodes to achieve high performance of backpropagation network in the recognition of handwritten Farsi characters. The system has been trained using several different forms of handwriting provided by both male and female participants of different age groups. Finally, this rigorous training results an automatic HCR system using MLP network. In this work, the experiments were carried out on two hundred fifty samples of five writers. The results showed that the MLP networks trained by the err...

  6. Artificial neural network application for predicting soil distribution coefficient of nickel

    The distribution (or partition) coefficient (Kd) is an applicable parameter for modeling contaminant and radionuclide transport as well as risk analysis. Selection of this parameter may cause significant error in predicting the impacts of contaminant migration or site-remediation options. In this regards, various models were presented to predict Kd values for different contaminants specially heavy metals and radionuclides. In this study, artificial neural network (ANN) is used to present simplified model for predicting Kd of nickel. The main objective is to develop a more accurate model with a minimal number of parameters, which can be determined experimentally or select by review of different studies. In addition, the effects of training as well as the type of the network are considered. The Kd values of Ni is strongly dependent on pH of the soil and mathematical relationships were presented between pH and Kd of nickel recently. In this study, the same database of these presented models was used to verify that neural network may be more useful tools for predicting of Kd. Two different types of ANN, multilayer perceptron and redial basis function, were used to investigate the effect of the network geometry on the results. In addition, each network was trained by 80 and 90% of the data and tested for 20 and 10% of the rest data. Then the results of the networks compared with the results of the mathematical models. Although the networks trained by 80 and 90% of the data the results show that all the networks predict with higher accuracy relative to mathematical models which were derived by 100% of data. More training of a network increases the accuracy of the network. Multilayer perceptron network used in this study predicts better than redial basis function network. - Highlights: ► Simplified models for predicting Kd of nickel presented using artificial neural networks. ► Multilayer perceptron and redial basis function used to predict Kd of nickel in soil.

  7. Shale Gas reservoirs characterization using neural network

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2014-05-01

    In this paper, a tentative of shale gas reservoirs characterization enhancement from well-logs data using neural network is established. The goal is to predict the Total Organic carbon (TOC) in boreholes where the TOC core rock or TOC well-log measurement does not exist. The Multilayer perceptron (MLP) neural network with three layers is established. The MLP input layer is constituted with five neurons corresponding to the Bulk density, Neutron porosity, sonic P wave slowness and photoelectric absorption coefficient. The hidden layer is forms with nine neurons and the output layer is formed with one neuron corresponding to the TOC log. Application to two boreholes located in Barnett shale formation where a well A is used as a pilot and a well B is used for propagation shows clearly the efficiency of the neural network method to improve the shale gas reservoirs characterization. The established formalism plays a high important role in the shale gas plays economy and long term gas energy production.

  8. Updating model for land use database based on multi-layer perceptron network and its application%基于多层感知器神经网络的土地利用数据库更新模型及应用

    纪亚洲; 顾和和; 李保杰

    2015-01-01

    针对土地利用数据库更新规则复杂、不同更新类型与更新规则自动匹配困难等问题,该文提出并构建了一种基于多层感知器神经网络的土地利用要素自适应更新模型。该模型将土地利用要素的每个变更类型判断及更新行为判断过程均设计成一个神经元,同类神经元组织成一个网络层,所有网络层采用全连接方式构成一个多层感知更新策略判断模型。该模型可以自动完成变更类型与更新规则的正确快速匹配,且可根据更新规则的变化,灵活改变知识库并产生新的推理机。试验表明:该模型明显减少了人工交互环节,综合更新效率较各基地软件可以提高30%左右,一次性更新正确率可以提高5个百分点以上,研究成果可为土地利用数据库的高效自动更新提供一整套新的解决方案。%Land use database is the basis for the government departments at all levels to regulate land use, and the currency and quality of land use database directly determine the level and effect of land supervision. However, at present, the land use database updating technology and means are not advanced enough yet. The currency of the land use database significantly lags our economic development level. In light of the automatic matching complexity of change type and update strategy, artificial neural network is introduced into update strategy judgment field. According to the structure and main updating content, from the horizontal, land use database adaptive updating model is divided into land class polygon, linear feature and isolated feature. Then, in accordance with annual update implementation program of land use database and current updating progress, methods and habits, from the vertical, the above-mentioned updating model is divided into spatial analysis layer, input layer, change type judgment layer, spatial update strategy judgment layer and attribute update strategy judgment

  9. Vibration Based Damage Assessment of a Cantilever using a Neural Network

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated.......In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated....

  10. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Naghsh-Nilchi, Ahmad R.; Kadkhodamohammadi, A. Rahim

    2009-12-01

    An electrocardiogram (ECG) beat classification scheme based on multiple signal classification (MUSIC) algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP) neural network and a probabilistic neural network (PNN), are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  11. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    2009-03-01

    Full Text Available An electrocardiogram (ECG beat classification scheme based on multiple signal classification (MUSIC algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP neural network and a probabilistic neural network (PNN, are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  12. A Kind of Second-Order Learning Algorithm Based on Generalized Cost Criteria in Multi-Layer Feed-Forward Neural Networks

    张长江; 付梦印; 金梅

    2003-01-01

    A kind of second-order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi-layer feed-forward neural networks, the second-order back-propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second-order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second-order learning algorithm that was given by Karayiannis.

  13. Parameter Genetic Learning of Perceptron Networks

    Neruda, Roman; Slušný, Stanislav

    2006-01-01

    Roč. 5, č. 10 (2006), s. 2285-2290. ISSN 1109-2777 R&D Projects: GA ČR GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural networks * genetic algorithms * learning * hybrid methods Subject RIV: IN - Informatics, Computer Science

  14. Multi nodal load forecasting in electric power systems using a radial basis neural network; Previsao de carga multinodal em sistemas eletricos de potencia usando uma rede neural de base radial

    Altran, A.B.; Lotufo, A.D.P.; Minussi, C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: lealtran@yahoo.com.br, annadiva@dee.feis.unesp.br, minussi@dee.feis.unesp.br; Lopes, M.L.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Matematica], E-mail: mara@mat.feis.unesp.br

    2009-07-01

    This paper presents a methodology for electrical load forecasting, using radial base functions as activation function in artificial neural networks with the training by backpropagation algorithm. This methodology is applied to short term electrical load forecasting (24 h ahead). Therefore, results are presented analyzing the use of radial base functions substituting the sigmoid function as activation function in multilayer perceptron neural networks. However, the main contribution of this paper is the proposal of a new formulation of load forecasting dedicated to the forecasting in several points of the electrical network, as well as considering several types of users (residential, commercial, industrial). It deals with the MLF (Multimodal Load Forecasting), with the same processing time as the GLF (Global Load Forecasting). (author)

  15. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  16. Designing an artificial neural network for prediction of pregnancy outcomes in women with systemic lupus erythematosus in Iran

    Mahmoud Akbarian

    2015-07-01

    Results: Twelve features with P<0.05 and four features with P<0.1 were identified by using binary logistic regression as effective features. These sixteen features were used as input variables in artificial neural networks. The accuracy, sensitivity and specificity of the test data for the MLP network were 90.9%, 80.0%, and 94.1% respectively and for the total data were 97.3%, 93.5%, and 99.0% respectively. Conclusion: According to the results, we concluded that feed-forward Multi-Layer Perceptron (MLP neural network with scaled conjugate gradient (trainscg back propagation learning algorithm can help physicians to predict the pregnancy outcomes (spontaneous abortion and live birth among pregnant women with lupus by using identified effective variables.

  17. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots

    Jun-Young Jung

    2015-10-01

    Full Text Available An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  18. Stability of the replica symmetric solution in diluted perceptron learning

    We study the role played by dilution in the average behavior of a perceptron model with continuous coupling with the replica method. We analyze the stability of the replica symmetric solution as a function of the dilution field for the generalization and memorization problems. Thanks to a Gardner-like stability analysis we show that at any fixed ratio α between the number of patterns M and the dimension N of the perceptron (α = M/N), there exists a critical dilution field hc above which the replica symmetric ansatz becomes unstable. (letter)

  19. Fuzzy neural networks for classification and detection of anomalies.

    Meneganti, M; Saviello, F S; Tagliaferri, R

    1998-01-01

    In this paper, a new learning algorithm for the Simpson's fuzzy min-max neural network is presented. It overcomes some undesired properties of the Simpson's model: specifically, in it there are neither thresholds that bound the dimension of the hyperboxes nor sensitivity parameters. Our new algorithm improves the network performance: in fact, the classification result does not depend on the presentation order of the patterns in the training set, and at each step, the classification error in the training set cannot increase. The new neural model is particularly useful in classification problems as it is shown by comparison with some fuzzy neural nets cited in literature (Simpson's min-max model, fuzzy ARTMAP proposed by Carpenter, Grossberg et al. in 1992, adaptive fuzzy systems as introduced by Wang in his book) and the classical multilayer perceptron neural network with backpropagation learning algorithm. The tests were executed on three different classification problems: the first one with two-dimensional synthetic data, the second one with realistic data generated by a simulator to find anomalies in the cooling system of a blast furnace, and the third one with real data for industrial diagnosis. The experiments were made following some recent evaluation criteria known in literature and by using Microsoft Visual C++ development environment on personal computers. PMID:18255771

  20. A neural network device for on-line particle identification in cosmic ray experiments

    On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification

  1. Gradient liquid chromatographic retention time prediction for suspect screening applications: A critical assessment of a generalised artificial neural network-based approach across 10 multi-residue reversed-phase analytical methods.

    Barron, Leon P; McEneff, Gillian L

    2016-01-15

    For the first time, the performance of a generalised artificial neural network (ANN) approach for the prediction of 2492 chromatographic retention times (tR) is presented for a total of 1117 chemically diverse compounds present in a range of complex matrices and across 10 gradient reversed-phase liquid chromatography-(high resolution) mass spectrometry methods. Probabilistic, generalised regression, radial basis function as well as 2- and 3-layer multilayer perceptron-type neural networks were investigated to determine the most robust and accurate model for this purpose. Multi-layer perceptrons most frequently yielded the best correlations in 8 out of 10 methods. Averaged correlations of predicted versus measured tR across all methods were R(2)=0.918, 0.924 and 0.898 for the training, verification and test sets respectively. Predictions of blind test compounds (n=8-84 cases) resulted in an average absolute accuracy of 1.02±0.54min for all methods. Within this variation, absolute accuracy was observed to marginally improve for shorter runtimes, but was found to be relatively consistent with respect to analyte retention ranges (~5%). Finally, optimised and replicated network dependency on molecular descriptor data is presented and critically discussed across all methods. Overall, ANNs were considered especially suitable for suspects screening applications and could potentially be utilised in bracketed-type analyses in combination with high resolution mass spectrometry. PMID:26592605

  2. Modeling of stage-discharge relationship for Gharraf River, southern Iraq using backpropagation artificial neural networks, M5 decision trees, and Takagi-Sugeno inference system technique: a comparative study

    Al-Abadi, Alaa M.

    2014-12-01

    The potential of using three different data-driven techniques namely, multilayer perceptron with backpropagation artificial neural network (MLP), M5 decision tree model, and Takagi-Sugeno (TS) inference system for mimic stage-discharge relationship at Gharraf River system, southern Iraq has been investigated and discussed in this study. The study used the available stage and discharge data for predicting discharge using different combinations of stage, antecedent stages, and antecedent discharge values. The models' results were compared using root mean squared error (RMSE) and coefficient of determination (R 2) error statistics. The results of the comparison in testing stage reveal that M5 and Takagi-Sugeno techniques have certain advantages for setting up stage-discharge than multilayer perceptron artificial neural network. Although the performance of TS inference system was very close to that for M5 model in terms of R 2, the M5 method has the lowest RMSE (8.10 m3/s). The study implies that both M5 and TS inference systems are promising tool for identifying stage-discharge relationship in the study area.

  3. Parameter incremental learning algorithm for neural networks.

    Wan, Sheng; Banta, Larry E

    2006-11-01

    In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658

  4. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  5. Object reconstruction in multilayer neural network based profilometry using grating structure comprising two regions with different spatial periods

    Ganotra, Dinesh; Joseph, Joby; Singh, Kehar

    2004-08-01

    Feed-forward backpropagation neural network has been used in fringe projection profilometry for reconstruction of a three-dimensional (3D) object. A grating structure comprising two regions of different spatial periods is projected on the reference surface over which the object is placed. The shorter spatial period part of the grating is projected over the object, whereas the longer spatial period part is projected on the reference surface only. 3D object shape is reconstructed with the help of neural networks using images of the projected grating. During training phase of the network, the shorter spatial period grating along with the longer spatial period grating is used. Experimental results are presented for a diffuse object, showing that the 3D shape of the object is recovered using the above-mentioned method. However, the phases wrapping takes place in Fourier transform profilometry by using only one grating of shorter spatial period.

  6. The principles of artificial neural network information processing

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)

  7. Static sign language recognition using 1D descriptors and neural networks

    Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César

    2012-10-01

    A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.

  8. Neural networks for emulation variational method for data assimilation in nonlinear dynamics

    Description of a physical phenomenon through differential equations has errors involved, since the mathematical model is always an approximation of reality. For an operational prediction system, one strategy to improve the prediction is to add some information from the real dynamics into mathematical model. This additional information consists of observations on the phenomenon. However, the observational data insertion should be done carefully, for avoiding a worse performance of the prediction. Technical data assimilation are tools to combine data from physical-mathematics model with observational data to obtain a better forecast. The goal of this work is to present the performance of the Neural Network Multilayer Perceptrons trained to emulate a Variational method in context of data assimilation. Techniques for data assimilation are applied for the Lorenz systems; which presents a strong nonlinearity and chaotic nature.

  9. Artificial neural networks (ANN: prediction of sensory measurements from instrumental data

    Naiara Barbosa Carvalho

    2013-12-01

    Full Text Available The objective of this study was to predict by means of Artificial Neural Network (ANN, multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters. Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.

  10. A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?

    Elsy Gómez-Ramos

    2013-12-01

    Full Text Available At the beginning of the 90’s, Artificial Neural Networks (ANNs started their applications in finance. The ANNs are data-drive, self-adaptive and non-linear methods that do not require specific assumptions about the underlying model. In general, there are five groups of networks used as forecasting tools: 1 Feedforward Networks, like the Multilayer Perceptron (MLP, 2 Recurrent Networks, 3 Polynomial Networks, 4 Modular Networks, and 5 Support Vector Machine. This paper carries out a review of the specialized literature on ANNs and makes a comparative analysis according to their performance in forecasting stock indices and exchange rates. The objective is to assess the performance when applying different types of networks in relation to MLP. It is shown that the MLP is the best network in forecasting time series. However, it is shown that the MLP has important delimitations in several respects: network architecture, basic functions and initialization weights.

  11. Characterization of interstitial lung disease in chest radiographs using SOM artificial neural network

    This paper presents an automated approach to apply a self-organizing map (SOM) artificial neural network (ANN) as a tool for feature extraction and dimensionality reduction to recognize and characterize radiologic patterns of interstitial lung diseases in chest radiography. After feature extraction and dimensionality reduction a multilayer perceptron (MLP) ANN is applied for radiologic patterns classification in normal, linear, nodular or mixed. A leave-one-out methodology was applied for training and test over a database containing 17 samples of linear pattern, 9 samples of nodular pattern, 9 samples of mixed pattern and 18 samples of normal pattern. The MLP network provided an average result of 88.7% of right classification, with 100% of right classification for linear pattern, 55.5% for nodular pattern, 77.7% for mixed pattern and 100% for normal pattern. (orig.)

  12. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  13. Prediction of Atmospheric Pressure at Ground Level using Artificial Neural Network

    Angshuman Ray

    2013-01-01

    Full Text Available Prediction of Atmospheric Pressure is one important and challenging task that needs lot of attention and study for analyzing atmospheric conditions. Advent of digital computers and development of data driven artificial intelligence approaches like Artificial Neural Networks (ANN have helped in numerical prediction of pressure. However, very few works have been done till now in this area. The present study developed an ANN model based on the past observations of several meteorological parameters like temperature, humidity, air pressure and vapour pressure as an input for training the model. The novel architecture of the proposed model contains several multilayer perceptron network (MLP to realize better performance. The model is enriched by analysis of alternative hybrid model of k-means clustering and MLP. The improvement of the performance in the prediction accuracy has been demonstrated by the automatic selection of the appropriate cluster

  14. Early detection of incipient faults in power plants using accelerated neural network learning

    An important aspect of power plant automation is the development of computer systems able to detect and isolate incipient (slowly developing) faults at the earliest possible stages of their occurrence. In this paper, the development and testing of such a fault detection scheme is presented based on recognition of sensor signatures during various failure modes. An accelerated learning algorithm, namely adaptive backpropagation (ABP), has been developed that allows the training of a multilayer perceptron (MLP) network to a high degree of accuracy, with an order of magnitude improvement in convergence speed. An artificial neural network (ANN) has been successfully trained using the ABP algorithm, and it has been extensively tested with simulated data to detect and classify incipient faults of various types and severity and in the presence of varying sensor noise levels

  15. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  16. A new source difference artificial neural network for enhanced positioning accuracy

    Integrated inertial navigation system (INS) and global positioning system (GPS) units provide reliable navigation solution compared to standalone INS or GPS. Traditional Kalman filter-based INS/GPS integration schemes have several inadequacies related to sensor error model and immunity to noise. Alternatively, multi-layer perceptron (MLP) neural networks with three layers have been implemented to improve the position accuracy of the integrated system. However, MLP neural networks show poor accuracy for low-cost INS because of the large inherent sensor errors. For the first time the paper demonstrates the use of knowledge-based source difference artificial neural network (SDANN) to improve navigation performance of low-cost sensor, with or without external aiding sources. Unlike the conventional MLP or artificial neural networks (ANN), the structure of SDANN consists of two MLP neural networks called the coarse model and the difference model. The coarse model learns the input–output data relationship whereas the difference model adds knowledge to the system and fine-tunes the coarse model output by learning the associated training or estimation error. Our proposed SDANN model illustrated a significant improvement in navigation accuracy of up to 81% over conventional MLP. The results demonstrate that the proposed SDANN method is effective for GPS/INS integration schemes using low-cost inertial sensors, with and without GPS

  17. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws. PMID:19443178

  18. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both 241Am-Be and 252Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  19. Digital Hardware Implementation of a Neural System Used for Nonlinear Adaptive Prediction

    Hassène Faiedh

    2006-01-01

    Full Text Available Neural networks have been widely used for many applications in digital communications. They are able to give solutions to complex problems due to their nonlinear processing and their learning and generalization. Neural networks are one of the key technologies for the communication domain and accordingly a special effort may be expected to be paid to real time hardware implementation issues. In this study, it is proposed a digital hardware implementation of a neural system based on a multilayer perceptron (MLP. The neural system is used for the nonlinear adaptive prediction of nonstationary signals such as speech signals. The implemented architecture of the MLP is generated using a generic elementary neuron (EN. The polynomial approximation method is used to implement the sigmoidal activation function. The back-propagation algorithm is used to implant the prediction task. The circuit implementation architecture is detailed, for achieving real-time prediction for speech signals. The designed ASIC circuit includes a neural network block, an on-chip learning block and a memory used for storing the synaptic weights for updating.

  20. Detection of systolic ejection click using time growing neural network.

    Gharehbaghi, Arash; Dutoit, Thierry; Ask, Per; Sörnmo, Leif

    2014-04-01

    In this paper, we present a novel neural network for classification of short-duration heart sounds: the time growing neural network (TGNN). The input to the network is the spectral power in adjacent frequency bands as computed in time windows of growing length. Children with heart systolic ejection click (SEC) and normal children are the two groups subjected to analysis. The performance of the TGNN is compared to that of a time delay neural network (TDNN) and a multi-layer perceptron (MLP), using training and test datasets of similar sizes with a total of 614 normal and abnormal cardiac cycles. From the test dataset, the classification rate/sensitivity is found to be 97.0%/98.1% for the TGNN, 85.1%/76.4% for the TDNN, and 92.7%/85.7% for the MLP. The results show that the TGNN performs better than do TDNN and MLP when frequency band power is used as classifier input. The performance of TGNN is also found to exhibit better immunity to noise. PMID:24613501

  1. LOCALIZATION FOR WIRELESS SENSOR NETWORKS: A NEURAL NETWORK APPROACH

    Shiu Kumar

    2016-01-01

    Full Text Available As Wireless Sensor Networks are penetrating into the industrial domain, many research opportunities are emerging. One such essential and challenging application is that of node localization. A feed-forward neural network based methodology is adopted in this paper. The Received Signal Strength Indicator (RSSI values of the anchor node beacons are used. The number of anchor nodes and their configurations has an impact on the accuracy of the localization system, which is also addressed in this paper. Five different training algorithms are evaluated to find the training algorithm that gives the best result. The multi-layer Perceptron (MLP neural network model was trained using Matlab. In order to evaluate the performance of the proposed method in real time, the model obtained was then implemented on the Arduino microcontroller. With four anchor nodes, an average 2D localization error of 0.2953 m has been achieved with a 12-12-2 neural network structure. The proposed method can also be implemented on any other embedded microcontroller system.

  2. Neural Network Based Lna Design for Mobile Satellite Receiver

    Abhijeet Upadhya

    2014-08-01

    Full Text Available Paper presents a Neural Network Modelling approach to microwave LNA design. To acknowledge the specifications of the amplifier, Mobile Satellite Systems are analyzed. Scattering parameters of the LNA in the frequency range 0.5 to 18 GHz are calculated using a Multilayer Perceptron Artificial Neural Network model and corresponding smith charts and polar charts are plotted as output to the model. From these plots, the microwave scattering parameter description of the LNA are obtained. Model is efficiently trained using Agilent ATF 331M4 InGaAs/InP Low Noise pHEMT amplifier datasheet and the neural model’s output seem to follow the various device characteristic curves with high regression. Next, Maximum Allowable Gain and Noise figure of the device are modelled and plotted for the same frequency range. Finally, the optimized model is utilized as an interpolator and the resolution of the amplifying capability with noise characteristics are obtained for the L Band of MSS operation.

  3. Evaluation of convolutional neural networks for visual recognition.

    Nebauer, C

    1998-01-01

    Convolutional neural networks provide an efficient method to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. This network topology has been applied in particular to image classification when sophisticated preprocessing is to be avoided and raw images are to be classified directly. In this paper two variations of convolutional networks--neocognitron and a modification of neocognitron--are compared with classifiers based on fully connected feedforward layers (i.e., multilayer perceptron, nearest neighbor classifier, auto-encoding network) with respect to their visual recognition performance. Beside the original neocognitron a modification of the neocognitron is proposed which combines neurons from perceptron with the localized network structure of neocognitron. Instead of training convolutional networks by time-consuming error backpropagation, in this work a modular procedure is applied whereby layers are trained sequentially from the input to the output layer in order to recognize features of increasing complexity. For a quantitative experimental comparison with standard classifiers two very different recognition tasks have been chosen: handwritten digit recognition and face recognition. In the first example on handwritten digit recognition the generalization of convolutional networks is compared to fully connected networks. In several experiments the influence of variations of position, size, and orientation of digits is determined and the relation between training sample size and validation error is observed. In the second example recognition of human faces is investigated under constrained and variable conditions with respect to face orientation and illumination and the limitations of convolutional networks are discussed. PMID:18252491

  4. A coherent perceptron for all-optical learning

    We present nonlinear photonic circuit models for constructing programmable linear transformations and use these to realize a coherent perceptron, i.e., an all-optical linear classifier capable of learning the classification boundary iteratively from training data through a coherent feedback rule. Through extensive semi-classical stochastic simulations we demonstrate that the device nearly attains the theoretical error bound for a model classification problem. (orig.)

  5. A coherent perceptron for all-optical learning

    Tezak, Nikolas; Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)

    2015-12-15

    We present nonlinear photonic circuit models for constructing programmable linear transformations and use these to realize a coherent perceptron, i.e., an all-optical linear classifier capable of learning the classification boundary iteratively from training data through a coherent feedback rule. Through extensive semi-classical stochastic simulations we demonstrate that the device nearly attains the theoretical error bound for a model classification problem. (orig.)

  6. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U235, some of these bars also contain a concentration of Gd2O3 and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  7. Neural Networks and Photometric Redshifts

    Tagliaferri, Roberto; Longo, Giuseppe; Andreon, Stefano; Capozziello, Salvatore; Donalek, Ciro; Giordano, Gerardo

    2002-01-01

    We present a neural network based approach to the determination of photometric redshift. The method was tested on the Sloan Digital Sky Survey Early Data Release (SDSS-EDR) reaching an accuracy comparable and, in some cases, better than SED template fitting techniques. Different neural networks architecture have been tested and the combination of a Multi Layer Perceptron with 1 hidden layer (22 neurons) operated in a Bayesian framework, with a Self Organizing Map used to estimate the accuracy...

  8. Comments on ‘Temporal significant wave height estimation from wind speed by perceptron Kalman filtering’ by A. Altunkaynak and M. Ozger, Ocean Engineering, Vol. 31(10); 2004,1245-1255

    Mandal, S.

    significant wave height estimation from wind speed by perceptron Kalman filtering? by A Altunkaynak and M Ozger, Ocean Engineering, 2004, 31, 1245-1255 Discussion by S Mandal* Ocean Engineering Division, National Institute of Oceanography, Dona Paula... of neural network in the study of wave transformation. REFERENCES Deo, M.C. and Naidu, C.S., 1999. Real time wave forecasting using neural networks. Ocean Engineering, 26, 191-203. Mandal, S and Prabaharan, N, 2003. An overview of the numerical...

  9. Chaotic diagonal recurrent neural network

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  10. Chaotic diagonal recurrent neural network

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  11. Technical Note: Application of artificial neural networks in groundwater table forecasting - a case study in Singapore swamp forest

    Sun, Y.; Wendi, D.; Kim, D. E.; Liong, S.-Y.

    2015-09-01

    Accurate prediction of groundwater table is important for the efficient management of groundwater resources. Despite being the most widely used tools for depicting the hydrological regime, numerical models suffer from formidable constraints, such as extensive data demanding, high computational cost and inevitable parameter uncertainty. Artificial neural networks (ANNs), in contrast, can make predictions on the basis of more easily accessible variables, rather than requiring explicit characterization of the physical systems and prior knowledge of the physical parameters. This study applies ANN to predict the groundwater table in a swamp forest of Singapore. A standard multilayer perceptron (MLP) is selected, trained with the Levenberg-Marquardt (LM) algorithm. The inputs to the network are solely the surrounding reservoir levels and rainfall. The results reveal that ANN is able to produce accurate forecast with a leading time up to 7 days, whereas the performance slightly decreases when leading time increases.

  12. Face Recognition Using MLP and RBF Neural Network with Gabor and Discrete Wavelet Transform Characterization: A Comparative Study

    Fatma Zohra Chelali

    2015-01-01

    Full Text Available Face recognition has received a great attention from a lot of researchers in computer vision, pattern recognition, and human machine computer interfaces in recent years. Designing a face recognition system is a complex task due to the wide variety of illumination, pose, and facial expression. A lot of approaches have been developed to find the optimal space in which face feature descriptors are well distinguished and separated. Face representation using Gabor features and discrete wavelet has attracted considerable attention in computer vision and image processing. We describe in this paper a face recognition system using artificial neural networks like multilayer perceptron (MLP and radial basis function (RBF where Gabor and discrete wavelet based feature extraction methods are proposed for the extraction of features from facial images using two facial databases: the ORL and computer vision. Good recognition rate was obtained using Gabor and DWT parameterization with MLP classifier applied for computer vision dataset.

  13. Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks.

    Martín, M L; Turias, I J; González, F J; Galindo, P L; Trujillo, F J; Puntonet, C G; Gorriz, J M

    2008-01-01

    The region of the Bay of Algeciras is a very industrialized area where very few air pollution studies have been carried out. The main objective of this work has been the use of artificial neural networks (ANNs) as a predictive tool of high levels of ambient carbon monoxide (CO). Two approaches have been used: multilayer perceptron models (MLPs) with backpropagation learning rule and k-Nearest Neighbours (k-nn) classifiers, in order to predict future peaks of carbon monoxide. A resampling strategy with twofold cross-validation allowed the statistical comparison of the different topologies and models considered in the study. The procedure of random resampling permits an adequate and robust multiple comparisons of the tested models and allow us to select a group of best models. PMID:17920656

  14. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  15. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach.

    Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat

    2009-01-01

    Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels. PMID:19955628

  16. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  17. Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation

    M. Agatonović

    2012-12-01

    Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.

  18. Integrated on-line plant monitoring system for HTTR with neural networks

    The neural networks have been utilized in on-line monitoring-system of High Temperature Engineering Tested Reactor (HTTR) with thermal power of 30 MW. In this system, several neural networks can independently model the plant dynamics with different architecture, input and output signals and learning algorithm. Monitoring task of each neural network is also different, respectively. Those parallel method applications require distributed architecture of computer network for performing real-time tasks. One of main task is real-time plant monitoring by Multi-Layer Perceptron (MLP) in auto-associative mode, which can model and estimate the whole plant dynamics by training normal operational data only. The basic principle of the anomaly detection is to monitor the difference between process signals measured from the actual plant and the corresponding values estimated by MLP. Other tasks are on-line reactivity prediction, reactivity and helium leak monitoring, respectively. From the on-line monitoring results at the safety demonstration tests, each neural network shows good prediction and reliable detection performances. (author)

  19. Integrated on-line plant monitoring system for HTTR using neural networks

    The neural networks have been utilized in on-line monitoring-system of High Temperature Engineering Tested Reactor (HTTR) with thermal power of 30 MW. In this system, several neural networks can independently model the plant dynamics with different architecture, input and output signals and learning algorithm. Monitoring task of each neural network is also different, respectively. Those parallel method applications require distributed architecture of computer network for performing real-time tasks. One of main task is real-time monitoring by Multi-Layer Perceptron (MLP) in auto-associative mode, which can model and estimate the whole plant dynamics by training normal operational data only. The basic principle of the anomaly detection is to monitor the difference between process signals measured from the actual plant and the corresponding values estimated by MLP. Other tasks are on-line reactivity prediction, reactivity and helium leak monitoring, respectively. From the on-line test results, each neural network shows good prediction and reliable detection performances. (author)

  20. Combining neural network and genetic algorithm for prediction of lung sounds.

    Güler, Inan; Polat, Hüseyin; Ergün, Uçman

    2005-06-01

    Recognition of lung sounds is an important goal in pulmonary medicine. In this work, we present a study for neural networks-genetic algorithm approach intended to aid in lung sound classification. Lung sound was captured from the chest wall of The subjects with different pulmonary diseases and also from the healthy subjects. Sound intervals with duration of 15-20 s were sampled from subjects. From each interval, full breath cycles were selected. Of each selected breath cycle, a 256-point Fourier Power Spectrum Density (PSD) was calculated. Total of 129 data values calculated by the spectral analysis are selected by genetic algorithm and applied to neural network. Multilayer perceptron (MLP) neural network employing backpropagation training algorithm was used to predict the presence or absence of adventitious sounds (wheeze and crackle). We used genetic algorithms to search for optimal structure and training parameters of neural network for a better predicting of lung sounds. This application resulted in designing of optimum network structure and, hence reducing the processing load and time. PMID:16050077

  1. Improved training of neural networks for the nonlinear active control of sound and vibration.

    Bouchard, M; Paillard, B; Le Dinh, C T

    1999-01-01

    Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. PMID:18252535

  2. Neural networks type MLP in the process of identification chosen varieties of maize

    Boniecki, P.; Nowakowski, K.; Tomczak, R.

    2011-06-01

    During the adaptation process of the weights vector that occurs in the iterative presentation of the teaching vector, the the MLP type artificial neural network (MultiLayer Perceptron) attempts to learn the structure of the data. Such a network can learn to recognise aggregates of input data occurring in the input data set regardless of the assumed criteria of similarity and the quantity of the data explored. The MLP type neural network can be also used to detect regularities occurring in the obtained graphic empirical data. The neuronal image analysis is then a new field of digital processing of signals. It is possible to use it to identify chosen objects given in the form of bitmap. If at the network input, a new unknown case appears which the network is unable to recognise, it means that it is different from all the classes known previously. The MLP type artificial neural network taught in this way can serve as a detector signalling the appearance of a widely understood novelty. Such a network can also look for similarities between the known data and the noisy data. In this way, it is able to identify fragments of images presented in photographs of e.g. maze's grain. The purpose of the research was to use the MLP neural networks in the process of identification of chosen varieties of maize with the use of image analysis method. The neuronal classification shapes of grains was performed with the use of the Johan Gielis super formula.

  3. Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells

    Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J. [Chemical Engineering Department, University of Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real (Spain); Piuleac, Ciprian-George; Curteanu, Silvia [Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, ' ' Gh. Asachi' ' Technical University Iasi Bd. D. Mangeron, No. 71A, 700050 IASI (Romania)

    2010-08-15

    This article shows the application of a very useful mathematical tool, artificial neural networks, to predict the fuel cells results (the value of the tortuosity and the cell voltage, at a given current density, and therefore, the power) on the basis of several properties that define a Gas Diffusion Layer: Teflon content, air permeability, porosity, mean pore size, hydrophobia level. Four neural networks types (multilayer perceptron, generalized feedforward network, modular neural network, and Jordan-Elman neural network) have been applied, with a good fitting between the predicted and the experimental values in the polarization curves. A simple feedforward neural network with one hidden layer proved to be an accurate model with good generalization capability (error about 1% in the validation phase). A procedure based on inverse neural network modelling was able to determine, with small errors, the initial conditions leading to imposed values for characteristics of the fuel cell. In addition, the use of this tool has been proved to be very attractive in order to predict the cell performance, and more interestingly, the influence of the properties of the gas diffusion layer on the cell performance, allowing possible enhancements of this material by changing some of its properties. (author)

  4. Margins, Kernels and Non-linear Smoothed Perceptrons

    Ramdas, Aaditya; Peña, Javier

    2015-01-01

    We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin ($\\rho$) in an RK...

  5. Representations of highly-varying functions by perceptron networks

    Kůrková, Věra

    North Charleston: CreateSpace Independent Publishing Platform, 2013 - (Vinař, T.; Holeňa, M.; Lexa, M.; Peška, L.; Vojtáš, P.), s. 73-76 ISBN 978-1-4909-5208-6. [ITAT 2013. Conference on Theory and Practice of Information Technologies. Donovaly (SK), 11.09.2013-15.09.2013] R&D Projects: GA ČR GAP202/11/1368 Institutional support: RVO:67985807 Keywords : one-hidden-layer networks * perceptrons * Boolean functions * network complexity Subject RIV: IN - Informatics, Computer Science

  6. Computational capabilities of recurrent NARX neural networks.

    Siegelmann, H T; Horne, B G; Giles, C L

    1997-01-01

    Recently, fully connected recurrent neural networks have been proven to be computationally rich-at least as powerful as Turing machines. This work focuses on another network which is popular in control applications and has been found to be very effective at learning a variety of problems. These networks are based upon Nonlinear AutoRegressive models with eXogenous Inputs (NARX models), and are therefore called NARX networks. As opposed to other recurrent networks, NARX networks have a limited feedback which comes only from the output neuron rather than from hidden states. They are formalized by y(t)=Psi(u(t-n(u)), ..., u(t-1), u(t), y(t-n(y)), ..., y(t-1)) where u(t) and y(t) represent input and output of the network at time t, n(u) and n(y) are the input and output order, and the function Psi is the mapping performed by a Multilayer Perceptron. We constructively prove that the NARX networks with a finite number of parameters are computationally as strong as fully connected recurrent networks and thus Turing machines. We conclude that in theory one can use the NARX models, rather than conventional recurrent networks without any computational loss even though their feedback is limited. Furthermore, these results raise the issue of what amount of feedback or recurrence is necessary for any network to be Turing equivalent and what restrictions on feedback limit computational power. PMID:18255858

  7. Fast cosmological parameter estimation using neural networks

    Auld, T; Hobson, M P; Gull, S F

    2006-01-01

    We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called CosmoNet, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released Pico algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities of CosmoNet by computing CMB power spectra over a box in the parameter space of flat \\Lambda CDM models containing the 3\\sigma WMAP1 confidence region. We also use CosmoNet to compute the WMAP3 likelihood for flat \\Lambda CDM models and show that marginalised posteriors on parameters derived are very similar to those obtained using CAMB and the WMAP3 code. We find that the average error in the power spectra is typically 2-3% of cosmic variance, and that CosmoNet is \\sim 7 \\times 10^4 faster than CAMB (for flat ...

  8. Neural network based daily precipitation generator (NNGEN-P)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Paris (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Penalba, Olga [University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Daily weather generators are used in many applications and risk analyses. The present paper explores the potential of neural network architectures to design daily weather generator models. Focusing this first paper on precipitation, we design a collection of neural networks (multi-layer perceptrons in the present case), which are trained so as to approximate the empirical cumulative distribution (CDF) function for the occurrence of wet and dry spells and for the precipitation amounts. This approach contributes to correct some of the biases of the usual two-step weather generator models. As compared to a rainfall occurrence Markov model, NNGEN-P represents fairly well the mean and standard deviation of the number of wet days per month, and it significantly improves the simulation of the longest dry and wet periods. Then, we compared NNGEN-P to three parametric distribution functions usually applied to fit rainfall cumulative distribution functions (Gamma, Weibull and double-exponential). A data set of 19 Argentine stations was used. Also, data corresponding to stations in the United States, in Europe and in the Tropics were included to confirm the results. One of the advantages of NNGEN-P is that it is non-parametric. Unlike other parametric function, which adapt to certain types of climate regimes, NNGEN-P is fully adaptive to the observed cumulative distribution functions, which, on some occasions, may present complex shapes. On-going works will soon produce an extended version of NNGEN to temperature and radiation. (orig.)

  9. Analysis of JET charge exchange spectra using neural networks

    Active charge exchange spectra representing the local interaction of injected neutral beams and fully stripped impurity ions are hard to analyse due to strong blending with passive emission from the plasma edge. As a result, the deduced plasma parameters (e.g. ion temperature, rotation velocity, impurity density) cannot always be determined unambiguously. Also, the speed of the analysis is limited by the time consuming nonlinear least-squares minimization procedure. In practice, semi-manual analysis is necessary and fast, automatic analysis, based on currently used techniques, does not seem feasible. In this paper the development of a robust and accurate analysis procedure based on multi-layer perceptron (MLP) neural networks is described. This procedure is fully automatic and fast, thus enabling a real-time analysis of charge exchange spectra. Accuracy has been increased in several ways as compared to earlier straightforward neural network implementations and is comparable to a standard least-squares based analysis. Robustness is achieved by using a combination of different confidence measures. A novel technique for the creation of training data, suitable for high-dimensional inverse problems has been developed and used extensively. A new method for fast calculation of error bars directly from the hidden neurons in a MLP network is also described, and used as part of the confidence calculations. For demonstration purposes, a real-time ion temperature profile diagnostic based on this work has been implemented. (author)

  10. Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm

    B. Samanta

    2004-03-01

    Full Text Available A study is presented to compare the performance of bearing fault detection using three types of artificial neural networks (ANNs, namely, multilayer perceptron (MLP, radial basis function (RBF network, and probabilistic neural network (PNN. The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to all three ANN classifiers: MLP, RBF, and PNN for two-class (normal or fault recognition. The characteristic parameters like number of nodes in the hidden layer of MLP and the width of RBF, in case of RBF and PNN along with the selection of input features, are optimized using genetic algorithms (GA. For each trial, the ANNs are trained with a subset of the experimental data for known machine conditions. The ANNs are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine with and without bearing faults. The results show the relative effectiveness of three classifiers in detection of the bearing condition.

  11. Automatic localization of vertebrae based on convolutional neural networks

    Shen, Wei; Yang, Feng; Mu, Wei; Yang, Caiyun; Yang, Xin; Tian, Jie

    2015-03-01

    Localization of the vertebrae is of importance in many medical applications. For example, the vertebrae can serve as the landmarks in image registration. They can also provide a reference coordinate system to facilitate the localization of other organs in the chest. In this paper, we propose a new vertebrae localization method using convolutional neural networks (CNN). The main advantage of the proposed method is the removal of hand-crafted features. We construct two training sets to train two CNNs that share the same architecture. One is used to distinguish the vertebrae from other tissues in the chest, and the other is aimed at detecting the centers of the vertebrae. The architecture contains two convolutional layers, both of which are followed by a max-pooling layer. Then the output feature vector from the maxpooling layer is fed into a multilayer perceptron (MLP) classifier which has one hidden layer. Experiments were performed on ten chest CT images. We used leave-one-out strategy to train and test the proposed method. Quantitative comparison between the predict centers and ground truth shows that our convolutional neural networks can achieve promising localization accuracy without hand-crafted features.

  12. Red Neuronal Creciente Usando Perturbación Simultánea Growing Cell Neural Network using Simultaneous Perturbation

    G. Sánchez

    2004-01-01

    Full Text Available Este artículo propone una red neuronal de tipo perceptron multicapas (MLP que optimiza tanto su matriz de pesos como el número de neuronas ocultas. Inicialmente el sistema propuesto usa un número reducido de neuronas ocultas, optimizándose la matriz de pesos mediante un algoritmo de perturbación simultánea. Una vez que la red converge se analiza su funcionamiento y si este no es el esperado se agrega una neurona oculta. Este proceso se repite hasta obtener el funcionamiento deseado. Los resultados obtenidos muestran que el sistema propuesto presenta un funcionamiento muy similar al de un MLP convencional, cuando éste tiene un número óptimo de nodos en la capa oculta y disminuye la complejidad computacional durante la etapa de entrenamiento.This paper proposes a multilayer perceptron neural network (MLP which optimizes both the matrix weights and the numbers of hidden neurons. Initially, the proposed system uses a reduced number of hidden neurons, optimizing the matrix weights by using a simultaneous perturbation algorithm. Once the network converges, its function is analyzed and if this is not as expected, a hidden neuron is added. This process is repeated until achieving the desired functioning. The results obtained show that the proposed system functions similarly to that of a conventional MLP when this has an optimal number of nodes in the hidden layer, decreasing the computational complexity during the training step.

  13. Entropy landscape of solutions in the binary perceptron problem

    The statistical picture of the solution space for a binary perceptron is studied. The binary perceptron learns a random classification of input random patterns by a set of binary synaptic weights. The learning of this network is difficult especially when the pattern (constraint) density is close to the capacity, which is supposed to be intimately related to the structure of the solution space. The geometrical organization is elucidated by the entropy landscape from a reference configuration and of solution-pairs separated by a given Hamming distance in the solution space. We evaluate the entropy at the annealed level as well as replica symmetric level and the mean field result is confirmed by the numerical simulations on single instances using the proposed message passing algorithms. From the first landscape (a random configuration as a reference), we see clearly how the solution space shrinks as more constraints are added. From the second landscape of solution-pairs, we deduce the coexistence of clustering and freezing in the solution space. (paper)

  14. Multilayer optical learning networks

    Wagner, Kelvin; Psaltis, Demetri

    1987-01-01

    A new approach to learning in a multilayer optical neural network based on holographically interconnected nonlinear devices is presented. The proposed network can learn the interconnections that form a distributed representation of a desired pattern transformation operation. The interconnections are formed in an adaptive and self-aligning fashioias volume holographic gratings in photorefractive crystals. Parallel arrays of globally space-integrated inner products diffracted by the interconnec...

  15. Remote Sensing Image Segmentation with Probabilistic Neural Networks

    LIU Gang

    2005-01-01

    This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results.

  16. Tagging b quark events in ALEPH with neural networks

    Comparison of different methods to tag b quark events are presented: multilayered perceptron (MLP), Learning Vector Quantization (LVQ), discriminant analysis, combination of any two of the above methods. The sample events come from the ALEPH Monte Carlo and data, from the 1990 ALEPH runs. (authors) 12 refs., 16 figs., 5 tabs

  17. Machine and component residual life estimation through the application of neural networks

    This paper concerns the use of neural networks for predicting the residual life of machines and components. In addition, the advantage of using condition-monitoring data to enhance the predictive capability of these neural networks was also investigated. A number of neural network variations were trained and tested with the data of two different reliability-related datasets. The first dataset represents the renewal case where the failed unit is repaired and restored to a good-as-new condition. Data were collected in the laboratory by subjecting a series of similar test pieces to fatigue loading with a hydraulic actuator. The average prediction error of the various neural networks being compared varied from 431 to 841 s on this dataset, where test pieces had a characteristic life of 8971 s. The second dataset were collected from a group of pumps used to circulate a water and magnetite solution within a plant. The data therefore originated from a repaired system affected by reliability degradation. When optimized, the multi-layer perceptron neural networks trained with the Levenberg-Marquardt algorithm and the general regression neural network produced a sum-of-squares error within 11.1% of each other for the renewal dataset. The small number of inputs and poorly mapped input space on the second dataset meant that much larger errors were recorded on some of the test data. The potential for using neural networks for residual life prediction and the advantage of incorporating condition-based data into the model was nevertheless proven for both examples

  18. The reactor safety study with help of artificial neuron networks (multilayer perceptrons)

    One deals with deposition of insulation large amounts on settling tank components that may result in malfunction of residual heat removal systems. Paper describes briefly simulation of pressure drops in confinement systems by means of an artificial neuron nets and compares the simulation data with the experiment ones

  19. Comparison of Artificial Neural Network with Logistic Regression as Classification Models for Variable Selection for Prediction of Breast Cancer Patient Outcomes

    Valérie Bourdès

    2010-01-01

    Full Text Available The aim of this study was to compare multilayer perceptron neural networks (NNs with standard logistic regression (LR to identify key covariates impacting on mortality from cancer causes, disease-free survival (DFS, and disease recurrence using Area Under Receiver-Operating Characteristics (AUROC in breast cancer patients. From 1996 to 2004, 2,535 patients diagnosed with primary breast cancer entered into the study at a single French centre, where they received standard treatment. For specific mortality as well as DFS analysis, the ROC curves were greater with the NN models compared to LR model with better sensitivity and specificity. Four predictive factors were retained by both approaches for mortality: clinical size stage, Scarff Bloom Richardson grade, number of invaded nodes, and progesterone receptor. The results enhanced the relevance of the use of NN models in predictive analysis in oncology, which appeared to be more accurate in prediction in this French breast cancer cohort.

  20. New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series.

    Yeh, Wei-Chang

    2013-04-01

    A new soft computing method called the parameter-free simplified swarm optimization (SSO)-based artificial neural network (ANN), or improved SSO for short, is proposed to adjust the weights in ANNs. The method is a modification of the SSO, and seeks to overcome some of the drawbacks of SSO. In the experiments, the iSSO is compared with five other famous soft computing methods, including the backpropagation algorithm, the genetic algorithm, the particle swarm optimization (PSO) algorithm, cooperative random learning PSO, and the SSO, and its performance is tested on five famous time-series benchmark data to adjust the weights of two ANN models (multilayer perceptron and single multiplicative neuron model). The experimental results demonstrate that iSSO is robust and more efficient than the other five algorithms. PMID:24808385

  1. Simulative and experimental investigation on stator winding turn and unbalanced supply voltage fault diagnosis in induction motors using Artificial Neural Networks.

    Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri

    2015-11-01

    The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method. PMID:26412499

  2. Implementation of Artificial Neural Network applied for the solution of inverse kinematics of 2-link serial chain manipulator.

    Satish Kumar

    2012-09-01

    Full Text Available In this study, a method of artificial neural network applied for the solution of inverse kinematics of 2-link serial chain manipulator. The method is multilayer perceptrons neural network has applied. This unsupervised method learns the functional relationship between input (Cartesian space and output (joint space based on a localized adaptation of the mapping, by using the manipulator itself under joint control and adapting the solution based on a comparison between the resulting locations of the manipulator's end effectors in Cartesian space with the desired location. Even when a manipulator is not available; the approach is still valid if the forward kinematic equations are used as a model of the manipulator. The forward kinematic equations always have a unique solution, and the resulting Neural net can be used as a starting point for further refinement when the manipulator does become available. Artificial neural network especially MLP are used to learn the forward and the inverse kinematic equations of two degrees freedom robot arm. A set of some data sets were first generated as per the formula equation for this the input parameter X and Y coordinates in inches. Using these data sets was basis for the training and evaluation or testing the MLP model. Out of the sets data points, maximum were used as training data and some were used for testing for MLP. Backpropagation algorithm was used for training the network and for updating the desired weights. In this work epoch based training method was applied.

  3. Implementation of a spike-based Perceptron learning rule using TiO2-x memristors

    Hesham eMostafa

    2015-10-01

    Full Text Available Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic 'cognitive' capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO$_{2-x}$ memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.

  4. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.

    Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis

    2015-01-01

    Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode. PMID:26483629

  5. Selection of input parameters to model direct solar irradiance by using artificial neural networks

    A very important factor in the assessment of solar energy resources is the availability of direct irradiance data of high quality. However, this component of solar radiation is seldom measured and thus must be estimated from data of global solar irradiance, which is registered in most radiometric stations. In recent years, artificial neural networks (ANN) have shown to be a powerful tool for mapping complex and non-linear relationships. In this work, the Bayesian framework for ANN, named as automatic relevance determination method (ARD), was employed to obtain the relative relevance of a large set of atmospheric and radiometric variables used for estimating hourly direct solar irradiance. In addition, we analysed the viability of this novel technique applied to select the optimum input parameters to the neural network. For that, a multi-layer feedforward perceptron is trained on these data. The results reflect the relative importance of the inputs selected. Clearness index and relative air mass were found to be the more relevant input variables to the neural network, as it was expected, proving the reliability of the ARD method. Moreover, we show that this novel methodology can be used in unfavourable conditions, in terms of limited amount of available data, performing successful results

  6. A research about breast cancer detection using different neural networks and K-MICA algorithm

    A A Kalteh

    2013-01-01

    Full Text Available Breast cancer is the second leading cause of death for women all over the world. The correct diagnosis of breast cancer is one of the major problems in the medical field. From the literature it has been found that different pattern recognition techniques can help them to improve in this domain. This paper presents a novel hybrid intelligent method for detection of breast cancer. The proposed method includes two main modules: Clustering module and the classifier module. In the clustering module, first the input data will be clustered by a new technique. This technique is a suitable combination of the modified imperialist competitive algorithm (MICA and K-means algorithm. Then the Euclidean distance of each pattern is computed from the determined clusters. The classifier module determines the membership of the patterns using the computed distance. In this module, several neural networks, such as the multilayer perceptron, probabilistic neural networks and the radial basis function neural networks are investigated. Using the experimental study, we choose the best classifier in order to recognize the breast cancer. The proposed system is tested on Wisconsin Breast Cancer (WBC database and the simulation results show that the recommended system has high accuracy.

  7. A new approach to self-organizing fuzzy polynomial neural networks guided by genetic optimization

    In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks (FPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology. The underlying methodology involves mechanisms of genetic optimization, especially genetic algorithms (GAs). Let us recall that the design of the 'conventional' FPNNs uses an extended Group Method of Data Handling (GMDH) and exploits a fixed fuzzy inference type located at each FPN of the FPNN as well as considers a fixed number of input nodes at FPNs (or nodes) located in each layer. The proposed FPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. The structural optimization is realized via GAs whereas in the case of the parametric optimization we proceed with a standard least square method based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. The performance of the proposed gFPNN is quantified through experimentation that exploits standard data already being used in fuzzy modeling. The results reveal superiority of the proposed networks over the existing fuzzy and neural models

  8. Identification and control of plasma vertical position using neural network in Damavand tokamak

    Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  9. Modeling soil temperatures at different depths by using three different neural computing techniques

    Kisi, Ozgur; Tombul, Mustafa; Kermani, Mohammad Zounemat

    2015-07-01

    This study compares the accuracy of three different neural computing techniques, multi-layer perceptron (MLP), radial basis neural networks (RBNN), and generalized regression neural networks (GRNN), in modeling soil temperatures (ST) at different depths. Climatic data of air temperature, wind speed, solar radiation, and relative humidity from Mersin Station, Turkey, were used as inputs to the models to estimate monthly ST values. In the first part of the study, the effect of each climatic variable on ST was investigated by using GRNN models. Air temperature was found to be the most effective variable in modeling monthly ST. In the second part of the study, the accuracy of GRNN models was compared with MLP, RBNN, and multiple linear regression (MLR) models. RBNN models were found to be better than the GRNN, MLP, and MLR models in estimating monthly ST at the depths of 5 and 10 cm while the MLR and GRNN models gave the best accuracy in the case of 50- and 100-cm depths, respectively. In the third part of the study, the effect of periodicity on the training, validation, and test accuracy of the applied models was investigated. The results indicated that the adding periodicity component significantly increase models' accuracies in estimating monthly ST at different depths. Root mean square errors of the GRNN, MLP, RBNN, and MLR models were decreased by 19, 15, 19, and 15 % using periodicity in estimating monthly ST at 5-cm depth.

  10. Identification and control of plasma vertical position using neural network in Damavand tokamak

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg–Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  11. Adaptive Wavelet Neural Networks for Signal Detection in DS-CDMA System

    WANGLing; JIAOLichengt; TAOHaihong; LIUFang

    2004-01-01

    The Multiple access interference (MAI) is the major factor that limits the performance and capacity of a nonorthogonal Direct sequence Code division multiple access (DS-CDMA) system. By using the adaptability of highly parallel structure neural networks and the excellent approximation ability of wavelets, two kinds of Adaptive wavelets neural networks (AWNN) signal detectors are proposed in the paper, in which the inputs of detectors are the received signal vector corresponding to a single interesting user sampled at the chip rate, named by AWNN single-user detector, respectively, and to all or partial active users sampled at the bit rate after passing through a matched filter, named by AWNN multiuser detector and partial users AWNN multiuser detector. The complexity of the multiuser detectors only depends on that of wavelet networks. The performance analysis of the proposed detectors compared with the matched filters under single-user and multiuser systems and the multiuser detector based on multilayer perceptrons are carried out by Monte Carlo simulations. Results show that the adaptive wavelet neural networks multiuser detectors are superior to other detectors mentioned above.

  12. Handwritten Arabic Numeral Recognition using a Multi Layer Perceptron

    Das, Nibaran; Saha, Sudip; Haque, Syed Sahidul

    2010-01-01

    Handwritten numeral recognition is in general a benchmark problem of Pattern Recognition and Artificial Intelligence. Compared to the problem of printed numeral recognition, the problem of handwritten numeral recognition is compounded due to variations in shapes and sizes of handwritten characters. Considering all these, the problem of handwritten numeral recognition is addressed under the present work in respect to handwritten Arabic numerals. Arabic is spoken throughout the Arab World and the fifth most popular language in the world slightly before Portuguese and Bengali. For the present work, we have developed a feature set of 88 features is designed to represent samples of handwritten Arabic numerals for this work. It includes 72 shadow and 16 octant features. A Multi Layer Perceptron (MLP) based classifier is used here for recognition handwritten Arabic digits represented with the said feature set. On experimentation with a database of 3000 samples, the technique yields an average recognition rate of 94....

  13. Synapse:neural network for predict power consumption: users guide

    Muller, C.; Mangeas, M.; Perrot, N.

    1994-08-01

    SYNAPSE is forecasting tool designed to predict power consumption in metropolitan France on the half hour time scale. Some characteristics distinguish this forecasting model from those which already exist. In particular, it is composed of numerous neural networks. The idea for using many neural networks arises from past tests. These tests showed us that a single neural network is not able to solve the problem correctly. From this result, we decided to perform unsupervised classification of the 24 consumption curves. From this classification, six classes appeared, linked with the weekdays: Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays, holidays and bridge days. For each class and for each half hour, two multilayer perceptrons are built. The two of them forecast the power for one particular half hour, and for a day including one of the determined class. The input of these two network are different: the first one (short time forecasting) includes the powers for the most recent half hour and relative power of the previous day; the second (medium time forecasting) includes only the relative power of the previous day. A process connects the results of every networks and allows one to forecast more than one half-hour in advance. In this process, short time forecasting networks and medium time forecasting networks are used differently. The first kind of neural networks gives good results on the scale of one day. The second one gives good forecasts for the next predicted powers. In this note, the organization of the SYNAPSE program is detailed, and the user`s menu is described. This first version of synapse works and should allow the APC group to evaluate its utility. (authors). 6 refs., 2 appends.

  14. Data acquisition in modeling using neural networks and decision trees

    R. Sika

    2011-04-01

    Full Text Available The paper presents a comparison of selected models from area of artificial neural networks and decision trees in relation with actualconditions of foundry processes. The work contains short descriptions of used algorithms, their destination and method of data preparation,which is a domain of work of Data Mining systems. First part concerns data acquisition realized in selected iron foundry, indicating problems to solve in aspect of casting process modeling. Second part is a comparison of selected algorithms: a decision tree and artificial neural network, that is CART (Classification And Regression Trees and BP (Backpropagation in MLP (Multilayer Perceptron networks algorithms.Aim of the paper is to show an aspect of selecting data for modeling, cleaning it and reducing, for example due to too strong correlationbetween some of recorded process parameters. Also, it has been shown what results can be obtained using two different approaches:first when modeling using available commercial software, for example Statistica, second when modeling step by step using Excel spreadsheetbasing on the same algorithm, like BP-MLP. Discrepancy of results obtained from these two approaches originates from a priorimade assumptions. Mentioned earlier Statistica universal software package, when used without awareness of relations of technologicalparameters, i.e. without user having experience in foundry and without scheduling ranks of particular parameters basing on acquisition, can not give credible basis to predict the quality of the castings. Also, a decisive influence of data acquisition method has been clearly indicated, the acquisition should be conducted according to repetitive measurement and control procedures. This paper is based on about 250 records of actual data, for one assortment for 6 month period, where only 12 data sets were complete (including two that were used for validation of neural network and useful for creating a model. It is definitely too

  15. Neural network based method for conversion of solar radiation data

    Highlights: ► Generalized regression neural network is used to predict the solar radiation on tilted surfaces. ► The above network, amongst many such as multilayer perceptron, is the most successful one. ► The present neural network returns a relative mean absolute error value of 9.1%. ► The present model leads to a mean absolute error value of estimate of 14.9 Wh/m2. - Abstract: The receiving ends of the solar energy conversion systems that generate heat or electricity from radiation is usually tilted at an optimum angle to increase the solar incident on the surface. Solar irradiation data measured on horizontal surfaces is readily available for many locations where such solar energy conversion systems are installed. Various equations have been developed to convert solar irradiation data measured on horizontal surface to that on tilted one. These equations constitute the conventional approach. In this article, an alternative approach, generalized regression type of neural network, is used to predict the solar irradiation on tilted surfaces, using the minimum number of variables involved in the physical process, namely the global solar irradiation on horizontal surface, declination and hour angles. Artificial neural networks have been successfully used in recent years for optimization, prediction and modeling in energy systems as alternative to conventional modeling approaches. To show the merit of the presently developed neural network, the solar irradiation data predicted from the novel model was compared to that from the conventional approach (isotropic and anisotropic models), with strict reference to the irradiation data measured in the same location. The present neural network model was found to provide closer solar irradiation values to the measured than the conventional approach, with a mean absolute error value of 14.9 Wh/m2. The other statistical values of coefficient of determination and relative mean absolute error also indicate the advantage of

  16. APLICACIÓN DE LA PERCEPTRÓN EN EL GRÁFICO DE CONTROL DE MEDICIONES INDIVIDUALES // IMPLEMENTATION OF THE PERCEPTRON IN THE CONTROL CHART FOR INDIVIDUAL

    José Antonio Vázquez-López

    2012-06-01

    Full Text Available In this article the Perceptron artificial neural network is applied as a classifier system of out of control points, in the field of contrlol chart for individual measurements. The use of geometric properties of the Perceptron as a training method is introduced, replacing in consequence to the known training methods. Some experiments with numerical databases contaminated with altered data in global average was performed, and the ability of the detection of \\out of control points" of the control chart with the implementation of the Perceptron trained by geometry was compared. The results reveal greater capacity in the Perceptron. This approach can be generalized to other types of control charts and patterns of natural and special variation, not considered in this research. // RESUMEN: En este artículo se aplica la red neuronal artificial Perceptrón como sistema clasificador de puntos fuera de control en el ámbito de la carta de control de mediciones individuales. Se introduce el uso de las propiedades geométricas de la Perceptrón como método de entrenamiento para sustituir, en consecuencia, a los métodos de entrenamiento conocidos. Se experimentó con bases de datos numéricas contaminadas con datos alterados en su media global y se comparó la capacidad de la detección de puntos fuera de control de la carta de control con la aplicación de la Perceptrón entrenada por geometría. Los resultados revelan mayor capacidad en la Perceptrón en diferentes porcentajes de contaminación. Esta propuesta puede ser generalizada a otros tipos de gráficos de control y a patrones de variación especial y natural no considerados en esta investigación.

  17. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

    Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS

  18. Video Traffic Prediction Using Neural Networks

    Miloš Oravec; Miroslav Petráš; Filip Pilka

    2008-01-01

    In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP), radial basis function n...

  19. Improvement of speed profile in induction motor drive using a new idea of PWM pulses generation base on artificial neural networks

    hojat moayedi rad

    2012-02-01

    Full Text Available Due to simplicity and low cost, induction motors are more useful than direct current motors. Hence the control of these motors is important. The pervious methods are fitted normally for a limited speed range and could not be used for high, low and very low speeds. The voltage model is suitable for high speed because the voltage drop of stator resistance is not small in low speed. The current model is suitable for low speed because of the problems of flux saturation at high speed. This research presents a new method of PWM pulse generating in induction motors based on artificial neural networks in which, the switching pulses are generated by a multilayer feed-forward neural network that is trained by the voltage and current references. Also, for the estimation of required torque and flux information a multilayer perceptron is used. By application of this new method, there is no problem of stability at low and high speeds. The simulation results by matlab-simulink verify the proposed method in transient and steady-state operating modes.

  20. How to keep the HG weights non-negative: the truncated Perceptron reweighing rule

    Giorgio Magri

    2015-12-01

    Full Text Available The literature on error-driven learning in Harmonic Grammar (HG has adopted the Perceptron reweighing rule. Yet, this rule is not suited to HG, as it fails at ensuring non-negative weights. A variant is thus considered which truncates the updates at zero, keeping the weights non-negative. Convergence guarantees and error bounds for the original Perceptron are shown to extend to its truncated variant. 

  1. STEADY STATE PERFORMANCES ANALYSIS OF MODERN MARINE TWO-STROKE LOW SPEED DIESEL ENGINE USING MLP NEURAL NETWORK MODEL

    Ozren Bukovac

    2016-01-01

    Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.

  2. A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies

    Akhoondzadeh, M.

    2013-06-01

    Anomaly detection is extremely important for earthquake parameters estimation. In this paper, an application of Artificial Neural Networks (ANNs) in the earthquake precursor's domain has been developed. This study is concerned with investigating the Total Electron Content (TEC) time series by using a Multi-Layer Perceptron (MLP) neural network to detect seismo-ionospheric anomalous variations induced by the powerful Tohoku earthquake of March 11, 2011.The duration of TEC time series dataset is 120 days at time resolution of 2 h. The results show that the MLP presents anomalies better than referenced and conventional methods such as Auto-Regressive Integrated Moving Average (ARIMA) technique. In this study, also the detected TEC anomalies using the proposed method, are compared to the previous results (Akhoondzadeh, 2012) dealing with the observed TEC anomalies by applying the mean, median, wavelet and Kalman filter methods. The MLP detected anomalies are similar to those detected using the previous methods applied on the same case study. The results indicate that a MLP feed-forward neural network can be a suitable non-parametric method to detect changes of a non linear time series such as variations of earthquake precursors.

  3. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  4. Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments

    In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer ‘occurred’ and transfer ‘not occurred’. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. (condensed matter: structural, mechanical, and thermal properties)

  5. Application of neural networks for unfolding neutron spectra measured by means of Bonner spheres and activation foils

    A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron spectrum unfolding methodologies. (author)

  6. Multilayer Networks

    Kivelä, Mikko; Barthelemy, Marc; Gleeson, James P; Moreno, Yamir; Porter, Mason A

    2013-01-01

    Most real and engineered systems include multiple subsystems and layers of connectivity, and it is important to take such features into account to try to obtain a complete understanding of these systems. It is thus necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts occurred several decades ago, but now the study of multilayer networks has become one of the major directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and then review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multila...

  7. VoIP attacks detection engine based on neural network

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  8. QSO Selection and Photometric Redshifts with Neural Networks

    Yeche, Ch; Rich, J; Aubourg, E; Busca, N; Hamilton, J -Ch; Goff, J -M Le; Paris, I; Peirani, S; Pichon, Ch; Rollinde, E; Vargas-Magana, M

    2009-01-01

    Baryonic Acoustic Oscillations (BAO) and their effects on the matter power spectrum can be studied by using the Lyman-alpha absorption signature of the matter density field along quasar (QSO) lines of sight. A measurement sufficiently accurate to provide useful cosmological constraints requires the observation of ~100000 quasars in the redshift range 2.2Neural Networks (NN) with a multilayer perceptron architecture. The input variables are photometric measurements, i.e. the object magnitudes and their errors in the five bands (ugriz) of the SDSS photometry. For target selection, we ac...

  9. Energy demand estimation of South Korea using artificial neural network

    Because South Korea's industries depend heavily on imported energy sources (fifth largest importer of oil and second largest importer of liquefied natural gas in the world), the accurate estimating of its energy demand is critical in energy policy-making. This research proposes an artificial neural network model (a structure with feed-forward multilayer perceptron, error back-propagation algorithm, momentum process, and scaled data) to efficiently estimate the energy demand for South Korea. The model has four independent variables, such as gross domestic product (GDP), population, import, and export amounts. The data are obtained from diverse local and international sources. The proposed model better estimated energy demand than a linear regression model (a structure with multiple linear variables and least square method) or an exponential model (a structure with mixed integer variables, branch and bound method, and Broyden-Fletcher-Goldfarb-Shanno (BFGS) method) in terms of root mean squared error (RMSE). The model also forecasted better than the other two models in terms of RMSE without any over-fitting problem. Further testing with four scenarios based upon reliable source data showed unanticipated results. Instead of growing permanently, the energy demands peaked at certain points, and then decreased gradually. This trend is quite different from the results by regression or exponential model.

  10. Target discrimination in synthetic aperture radar using artificial neural networks.

    Principe, J C; Kim, M; Fisher, M

    1998-01-01

    This paper addresses target discrimination in synthetic aperture radar (SAR) imagery using linear and nonlinear adaptive networks. Neural networks are extensively used for pattern classification but here the goal is discrimination. We show that the two applications require different cost functions. We start by analyzing with a pattern recognition perspective the two-parameter constant false alarm rate (CFAR) detector which is widely utilized as a target detector in SAR. Then we generalize its principle to construct the quadratic gamma discriminator (QGD), a nonparametrically trained classifier based on local image intensity. The linear processing element of the QCD is further extended with nonlinearities yielding a multilayer perceptron (MLP) which we call the NL-QGD (nonlinear QGD). MLPs are normally trained based on the L(2) norm. We experimentally show that the L(2) norm is not recommended to train MLPs for discriminating targets in SAR. Inspired by the Neyman-Pearson criterion, we create a cost function based on a mixed norm to weight the false alarms and the missed detections differently. Mixed norms can easily be incorporated into the backpropagation algorithm, and lead to better performance. Several other norms (L(8), cross-entropy) are applied to train the NL-QGD and all outperformed the L(2) norm when validated by receiver operating characteristics (ROC) curves. The data sets are constructed from TABILS 24 ISAR targets embedded in 7 km(2) of SAR imagery (MIT/LL mission 90). PMID:18276330

  11. Prediction of Inelastic Response Spectra Using Artificial Neural Networks

    Edén Bojórquez

    2012-01-01

    Full Text Available Several studies have been oriented to develop methodologies for estimating inelastic response of structures; however, the estimation of inelastic seismic response spectra requires complex analyses, in such a way that traditional methods can hardly get an acceptable error. In this paper, an Artificial Neural Network (ANN model is presented as an alternative to estimate inelastic response spectra for earthquake ground motion records. The moment magnitude (MW, fault mechanism (FM, Joyner-Boore distance (dJB, shear-wave velocity (Vs30, fundamental period of the structure (T1, and the maximum ductility (μu were selected as inputs of the ANN model. Fifty earthquake ground motions taken from the NGA database and recorded at sites with different types of soils are used during the training phase of the Feedforward Multilayer Perceptron model. The Backpropagation algorithm was selected to train the network. The ANN results present an acceptable concordance with the real seismic response spectra preserving the spectral shape between the actual and the estimated spectra.

  12. AN APPLICATION OF SPEAKER RECOGNITION USING ARTIFICIAL NEURAL NETWORKS

    Murat CANER

    2006-02-01

    Full Text Available In this study an artificial neural network (ANN is implemented, which has been used frequently as an implementation model in recent years, to recognize speaker identification. Generally, recognition is consist of three stages that, processing of signal, obtaining attributes and comparing them. Speech samples are transformed into digital data according to voice card of PC. In the analysis of voice stage, recurrent periods and white noise of voice data are trimmed by hamming window method and voice attribute part of the digital data is obtained. For obtaining attribute of voice data LPC (linear predictive coding and DFT (discrete fourier transform methods are used. Of those 28 coefficents, that is used for speaker recognition, 16 were obtained by the analysis of DFT and 12 were obtained by the analysis of LPC. The parameters that represent speaker voice, is used for training and test of ANN. Multilayer perceptron model is used as an architecture of ANN and backpropagation algorithm is used for training method. Voices of "a" is taken from 7 different person and their attributes are found. ANN is trained with these features to find the speaker who is the owner of the sample voice. And then using the test data that is not used for training part, recognition achievement of ANN is tested. As a result, good results were obtained with low failure rate.

  13. AN EFFICIENT NEURAL NETWORK FOR RECOGNIZING GESTURAL HINDI DIGITS

    Nidal Fawzi Shilbayeh

    2013-01-01

    Full Text Available Handwritten Hindi digit recognition plays an important role in eastern Arab countries especially in the courtesy amounts of Arab bank checks, recognizing numbers in car plates, or in postal code for mail sorting. In our study, we proposed an efficient Hindi Digit Recognition System drawn by the mouse and developed using Multilayer Perceptron Neural Network (MLP with backpropagation. The system has been designed, implemented and tested successfully. Analysis has been carried out to determine the number of hidden nodes that achieves high performance. The proposed system has been trained on samples of 800 images and tested on samples of 300 images written by different users selected from different ages. An experimental result shows high accuracy of about 91% on the testing samples and very close to 100% on the training samples. Experiments showed that our result is high in comparison with other Hindi digit recognition systems especially if we consider the way of writing (mouse and children in our trained and tested results.

  14. Optimized approximation algorithm in neural networks without overfitting.

    Liu, Yinyin; Starzyk, Janusz A; Zhu, Zhen

    2008-06-01

    In this paper, an optimized approximation algorithm (OAA) is proposed to address the overfitting problem in function approximation using neural networks (NNs). The optimized approximation algorithm avoids overfitting by means of a novel and effective stopping criterion based on the estimation of the signal-to-noise-ratio figure (SNRF). Using SNRF, which checks the goodness-of-fit in the approximation, overfitting can be automatically detected from the training error only without use of a separate validation set. The algorithm has been applied to problems of optimizing the number of hidden neurons in a multilayer perceptron (MLP) and optimizing the number of learning epochs in MLP's backpropagation training using both synthetic and benchmark data sets. The OAA algorithm can also be utilized in the optimization of other parameters of NNs. In addition, it can be applied to the problem of function approximation using any kind of basis functions, or to the problem of learning model selection when overfitting needs to be considered. PMID:18541499

  15. Hidden Conditional Neural Fields for Continuous Phoneme Speech Recognition

    Fujii, Yasuhisa; Yamamoto, Kazumasa; Nakagawa, Seiichi

    In this paper, we propose Hidden Conditional Neural Fields (HCNF) for continuous phoneme speech recognition, which are a combination of Hidden Conditional Random Fields (HCRF) and a Multi-Layer Perceptron (MLP), and inherit their merits, namely, the discriminative property for sequences from HCRF and the ability to extract non-linear features from an MLP. HCNF can incorporate many types of features from which non-linear features can be extracted, and is trained by sequential criteria. We first present the formulation of HCNF and then examine three methods to further improve automatic speech recognition using HCNF, which is an objective function that explicitly considers training errors, provides a hierarchical tandem-style feature and includes a deep non-linear feature extractor for the observation function. We show that HCNF can be trained realistically without any initial model and outperforms HCRF and the triphone hidden Markov model trained by the minimum phone error (MPE) manner using experimental results for continuous English phoneme recognition on the TIMIT core test set and Japanese phoneme recognition on the IPA 100 test set.

  16. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks.

    Acir, Nurettin; Oztura, Ibrahim; Kuntalp, Mehmet; Baklan, Bariş; Güzeliş, Cüneyt

    2005-01-01

    This paper introduces a three-stage procedure based on artificial neural networks for the automatic detection of epileptiform events (EVs) in a multichannel electroencephalogram (EEG) signal. In the first stage, two discrete perceptrons fed by six features are used to classify EEG peaks into three subgroups: 1) definite epileptiform transients (ETs); 2) definite non-ETs; and 3) possible ETs and possible non-ETs. The pre-classification done in the first stage not only reduces the computation time but also increases the overall detection performance of the procedure. In the second stage, the peaks falling into the third group are aimed to be separated from each other by a nonlinear artificial neural network that would function as a postclassifier whose input is a vector of 41 consecutive sample values obtained from each peak. Different networks, i.e., a backpropagation multilayer perceptron and two radial basis function networks trained by a hybrid method and a support vector method, respectively, are constructed as the postclassifier and then compared in terms of their classification performances. In the third stage, multichannel information is integrated into the system for contributing to the process of identifying an EV by the electroencephalographers (EEGers). After the integration of multichannel information, the overall performance of the system is determined with respect to EVs. Visual evaluation, by two EEGers, of 19 channel EEG records of 10 epileptic patients showed that the best performance is obtained with a radial basis support vector machine providing an average sensitivity of 89.1%, an average selectivity of 85.9%, and a false detection rate (per hour) of 7.5. PMID:15651562

  17. APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD REGULAR FUZZY NEURAL NETWORKS%多层前向正则模糊神经网络的逼近能力

    刘普寅

    2001-01-01

    Four-layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F0(R)n by the four-layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of Rn. Secondly,by introducing cut-preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions.

  18. A Comparison Of Artificial Neural Networks And Multiple Linear Regression Models As Predictors Of Discard Rates In Plastic Injection Molding

    Arikan Kargi , Vesile Sinem

    2015-01-01

    In today’s global competitive environment, it is important to be able to evaluate the efficient use of a firms’ resources. The aim of this study is to predict the discard rate for headlight frames before the project of an automotive sub-industry firm in Bursa. For this prediction, the multilayer perceptron model, the radial basis function network model and multiple linear regression models were used. Matlab R2010b software was used for the multilayer perceptron model and radial basis function...

  19. Nuclear power plant transient diagnostics using artificial neural networks that allow ''don't-know'' classifications

    A nuclear power plant's (NPP's) status is usually monitored by a human operator. Any classifier system used to enhance the operator's capability to diagnose a safety-critical system like an NPP should classify a novel transient as ''don't-know'' if it is not contained within its accumulated knowledge base. In particular, the classifier needs some kind of proximity measure between the new data and its training set. Artificial neural networks have been proposed as NPP classifiers, the most popular ones being the multilayered perceptron (MLP) type. However, MLPs do not have a proximity measure, while learning vector quantization, probabilistic neural networks (PNNs), and some others do. This proximity measure may also serve as an explanation to the classifier's decision in the way that case-based-reasoning expert systems do. The capability of a PNN network as a classifier is demonstrated using simulator data for the three-loop 436-MW(electric) Westinghouse San Onofre unit 1 pressurized water reactor. A transient's classification history is used in an ''evidence accumulation'' technique to enhance a classifier's accuracy as well as its consistency

  20. Quality-on-Demand Compression of EEG Signals for Telemedicine Applications Using Neural Network Predictors

    N. Sriraam

    2011-01-01

    Full Text Available A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predictors for telemedicine applications. The objective is to obtain a greater compression gains at a low bit rate while preserving the clinical information content. A two-stage compression scheme with a predictor and an entropy encoder is used. The residue signals obtained after prediction is first thresholded using various levels of thresholds and are further quantized and then encoded using an arithmetic encoder. Three neural network models, single-layer and multi-layer perceptrons and Elman network are used and the results are compared with linear predictors such as FIR filters and AR modeling. The fidelity of the reconstructed EEG signal is assessed quantitatively using parameters such as PRD, SNR, cross correlation and power spectral density. It is found from the results that the quality of the reconstructed signal is preserved at a low PRD thereby yielding better compression results compared to results obtained using lossless scheme.

  1. Artificial Neural Networks to Predict the Power Output of a PV Panel

    Valerio Lo Brano

    2014-01-01

    Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

  2. On-line control of the COMPASS-D tokamak using a neural network

    Multi-layer perceptron (MLP) networks are particularly appropriate for performing rapid non-linear mapping. In the application discussed in this Paper the position and shape of the plasma within the experimental fusion research tokamak COMPASS-D at UKAEA's Culham Laboratory is determined from a series of magnetic sensors placed around the vacuum vessel, close to the plasma boundary. By using a real-time analogue neural network it is possible to achieve control within a sub-millisecond time-scale. In this application the neural network is needed to solve an inverse problem. Numerical codes exist that are able to calculate the signals expected on the magnetic sensors for a given plasma position and profile. The problem is well defined from the solution of the Grad-Shafranov equation. However, no easy analytical formalism exists to reverse the problem - to calculate the plasma parameters given the magnetic signals. It is this mapping, from the set of magnetic diagnostic input signals to the parameters of the plasma, that an MLP network can be trained to solve. The training data are some 2000 example plasma equilibria, covering the likely possible configurations of the plasma, solved by numerical methods. The desired aim, to control the plasma boundary position to within a few millimetres, has now been achieved. (author)

  3. The analysis of seasonal air pollution pattern with application of neural networks

    Wesolowski, Marek; Suchacz, Bogdan [Medical University of Gdansk, Department of Analytical Chemistry, Gdansk (Poland); Halkiewicz, Jan [Medical University of Gdansk, Department of Physical Chemistry, Gdansk (Poland)

    2006-01-01

    Air pollution monitoring includes measuring the concentrations of air contaminants such as nitrogen dioxide, sulfur dioxide, some polycyclic aromatic hydrocarbons(PAHs), suspended particulate matter (PM) and tar substances. The purpose of this study was to determine the possibility of using artificial neural networks for identification of any patterns occurring during heating and nonheating seasons. The samples included in the study were collected over a period of 5 years (1997-2001) in the area of the city of Gdansk and the levels of pollutants measured in the samples collected were used as inputs to two different types of neural networks: multilayer perceptron (MLP) and self-organizing map (SOM). The MLP was used as a tool to predict in what heating season a certain sample was collected, and the SOM was applied for mapping all samples to recognize any similarities between them. This study also presents the comparison between two projection methods - linear (principal component analysis, PCA) and nonlinear (SOM) - in extracting valuable information from multidimensional environmental data. In the research the MLP model with 13-12-1 topology was developed and successfully trained for classification of air samples from different seasons. The sensitivity analysis on the inputs to the MLP indicated benz[{alpha}]anthracene, benzo[{alpha}]pyrene, PM{sub 1}, SO{sub 2}, tar substances and PM{sub 10} as the most distinctive variables, while PCA pointed to PAHs and PM{sub 1}. (orig.)

  4. Audio Classification in Speech and Music: A Comparison between a Statistical and a Neural Approach

    Alessandro Bugatti

    2002-04-01

    Full Text Available We focus the attention on the problem of audio classification in speech and music for multimedia applications. In particular, we present a comparison between two different techniques for speech/music discrimination. The first method is based on Zero crossing rate and Bayesian classification. It is very simple from a computational point of view, and gives good results in case of pure music or speech. The simulation results show that some performance degradation arises when the music segment contains also some speech superimposed on music, or strong rhythmic components. To overcome these problems, we propose a second method, that uses more features, and is based on neural networks (specifically a multi-layer Perceptron. In this case we obtain better performance, at the expense of a limited growth in the computational complexity. In practice, the proposed neural network is simple to be implemented if a suitable polynomial is used as the activation function, and a real-time implementation is possible even if low-cost embedded systems are used.

  5. Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier

    Delogu, P; Kasae, P; Retico, A

    2008-01-01

    The computer-aided diagnosis system we developed for the mass characterization is mainly based on a segmentation algorithm and on the neural classification of several features computed on the segmented mass. Mass segmentation plays a key role in most computerized systems. Our technique is a gradient-based one, showing the main characteristic that no free parameters have been evaluated on the dataset used in this analysis, thus it can directly be applied to datasets acquired in different conditions without any ad-hoc modification. A dataset of 226 masses (109 malignant and 117 benign) has been used in this study. The segmentation algorithm works with a comparable efficiency both on malignant and benign masses. Sixteen features based on shape, size and intensity of the segmented masses are analyzed by a multi-layered perceptron neural network. A feature selection procedure has been carried out on the basis of the feature discriminating power and of the linear correlations interplaying among them. The comparison...

  6. Application of artificial neural networks in indirect selection: a case study on the breeding of lettuce

    Alcinei Mistico Azevedo

    2015-12-01

    Full Text Available The efficiency of artificial neural networks (ANN to model complex problems may enable the prediction of characteristics that are hard to measure, providing better results than the traditional indirect selection. Thus, this study aimed to investigate the potential of using artificial neural networks (ANN for indirect selection against early flowering in lettuce, identify the influence of genotype by environment interaction in this strategy and compare your results with the traditional indirect selection. The number of days to anthesis were used as the desired output and the information of six characteristics (fresh weight of shoots, mass of marketable fresh matter of shoots, commercial dry matter of shoots, average diameter of the head, head circumference and leaf number as input file for the training of the ANN-MLP (Perceptron Multi-Layer. The use of ANN has great potential adjustment for indirect selection for genetic improvement of lettuce against early flowering. The selection based on the predicted values by network provided estimates of gain selection largest that traditional indirect selection. The ANN trained with data from an experiment have low power extrapolation to another experiment, due to effect of interaction genotype by environment. The ANNs trained simultaneously with data from different experiments presented greater predictive power and extrapolation.

  7. Artificial neural networks for simulating wind effects on sprinkler distribution patterns

    Sayyadi, H.; Sadraddini, A. A.; Farsadi Zadeh, D.; Montero, J.

    2012-07-01

    A new approach based on Artificial Neural Networks (ANNs) is presented to simulate the effects of wind on the distribution pattern of a single sprinkler under a center pivot or block irrigation system. Field experiments were performed under various wind conditions (speed and direction). An experimental data from different distribution patterns using a Nelson R3000 Rotator sprinkler have been split into three and used for model training, validation and testing. Parameters affecting the distribution pattern were defined. To find an optimal structure, various networks with different architectures have been trained using an Early Stopping method. The selected structure produced R2 0.929 and RMSE = 6.69 mL for the test subset, consisting of a Multi-Layer Perceptron (MLP) neural network with a backpropagation training algorithm; two hidden layers (twenty neurons in the first hidden layer and six neurons in the second hidden layer) and a tangent-sigmoid transfer function. This optimal network was implemented in MATLAB to develop a model termed ISSP (Intelligent Simulator of Sprinkler Pattern). ISSP uses wind speed and direction as input variables and is able to simulate the distorted distribution pattern from a R3000 Rotator sprinkler with reasonable accuracy (R{sup 2} > 0.935). Results of model evaluation confirm the accuracy and robustness of ANNs for simulation of a single sprinkler distribution pattern under real field conditions. (Author) 41 refs.

  8. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    Tahavvor, Ali Reza

    2016-06-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  9. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor

    Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within ±5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization

  10. Rainfall-runoff modelling using artificial neural networks: comparison of network types

    Senthil Kumar, A. R.; Sudheer, K. P.; Jain, S. K.; Agarwal, P. K.

    2005-04-01

    Growing interest in the use of artificial neural networks (ANNs) in rainfall-runoff modelling has suggested certain issues that are still not addressed properly. One such concern is the use of network type, as theoretical studies on a multi-layer perceptron (MLP) with a sigmoid transfer function enlightens certain limitations for its use. Alternatively, there is a strong belief in the general ANN user community that a radial basis function (RBF) network performs better than an MLP, as the former bases its nonlinearities on the training data set. This argument is not yet substantiated by applications in hydrology. This paper presents a comprehensive evaluation of the performance of MLP- and RBF-type neural network models developed for rainfall-runoff modelling of two Indian river basins. The performance of both the MLP and RBF network models were comprehensively evaluated in terms of their generalization properties, predicted hydrograph characteristics, and predictive uncertainty. The results of the study indicate that the choice of the network type certainly has an impact on the model prediction accuracy. The study suggests that both the networks have merits and limitations. For instance, the MLP requires a long trial-and-error procedure to fix the optimal number of hidden nodes, whereas for an RBF the structure of the network can be fixed using an appropriate training algorithm. However, a judgment on which is superior is not clearly possible from this study.

  11. Neural and fuzzy computation techniques for playout delay adaptation in VoIP networks.

    Ranganathan, Mohan Krishna; Kilmartin, Liam

    2005-09-01

    Playout delay adaptation algorithms are often used in real time voice communication over packet-switched networks to counteract the effects of network jitter at the receiver. Whilst the conventional algorithms developed for silence-suppressed speech transmission focused on preserving the relative temporal structure of speech frames/packets within a talkspurt (intertalkspurt adaptation), more recently developed algorithms strive to achieve better quality by allowing for playout delay adaptation within a talkspurt (intratalkspurt adaptation). The adaptation algorithms, both intertalkspurt and intratalkspurt based, rely on short term estimations of the characteristics of network delay that would be experienced by up-coming voice packets. The use of novel neural networks and fuzzy systems as estimators of network delay characteristics are presented in this paper. Their performance is analyzed in comparison with a number of traditional techniques for both inter and intratalkspurt adaptation paradigms. The design of a novel fuzzy trend analyzer system (FTAS) for network delay trend analysis and its usage in intratalkspurt playout delay adaptation are presented in greater detail. The performance of the proposed mechanism is analyzed based on measured Internet delays. Index Terms-Fuzzy delay trend analysis, intertalkspurt, intratalkspurt, multilayer perceptrons (MLPs), network delay estimation, playout buffering, playout delay adaptation, time delay neural networks (TDNNs), voice over Internet protocol (VoIP). PMID:16252825

  12. Evaluation of oil thickness by neural network analysis of IR imagery

    The feasibility of using neural network analysis of conventional thermal infra-red data gathered from surveillance aircraft to determine the thickness of oil at sea, was examined. Sea trial data was examined using Multi-Layer Perceptron neural network architecture, based on indications that it was the most appropriate configuration for determining oil thickness. Core input variables included oil brightness, time of day, sea brightness, wind speed, oil type, and sea temperature. Other variables, such as altitude, wave height, air temperature, camera gain, and others, did not appear to produce any significant difference in the prediction performance. By using only a restricted sea trial data set in training the network, it was found that it was possible to correctly classify about 80 per cent of the data into one of four thickness classes. Since there was no additional data available to validate the network, these results were considered encouraging, but not definitive. Additional data will be collected in planned future sea trials to further evaluate the accuracy of the trained network. 4 refs., 6 tabs., 4 figs

  13. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-01-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  14. Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders

    An artificial neural network model was developed for modeling of the effects of mechanical alloying parameters including milling time, milling speed and ball to powder weight ratio on the characteristics of Al-8 vol%SiC nanocomposite powders. The crystallite size and lattice strain of the aluminum matrix were considered for modeling. This nanostructured nanocomposite powder was synthesized by utilizing planetary high energy ball mill and the required data for training were collected from the experimental results. The characteristics of the particles were determined by X-ray diffraction, scanning and transmission electron microscopy. Two types of neural network architecture, i.e. multi-layer perceptron (MLP) and radial basis function (RBF), were used. The steepest descent along with variable learning rate back-propagation algorithm known as a heuristic technique was utilized for training the MLP network. It was found that MLP network yields better results compared to RBF network, giving an acceptable mapping between the network responses and the target data with a high correlation coefficients. The response surfaces between the response variables, i.e. crystallite size, lattice strain of the aluminum matrix and the processing parameters are presented. The procedure modeling can be used for optimization of the MA process for synthesizing of nanostructured metal matrix nanocomposites

  15. Creep Crack Growth Modeling of Low Alloy Steel using Artificial Neural Network

    F. Djavanroodi

    2013-07-01

    Full Text Available Prediction of crack growth under creep condition is prime requirement in order to avoid costly and time-consuming creep crack growth tests. To predict, in a reliable way, the growth of a major crack in a structural components operating at high temperatures, requires a fracture mechanics based approach. In this Study a novel technique, which uses Finite Element Method (FEM together with Artificial Neural Networks (ANN has been developed to predict the fracture mechanics parameter (C* in a 1%Cr1%MoV low alloy rotor steel under wide range of loading and temperatures. After confirming the validity of the FEM model with experimental data, a collection of numerical and experimental data has been used for training the various neural networks models. Three networks have been used to simulate the process, the perceptron multilayer network with tangent transfer function that uses 9 neurons in the hidden layer, gives the best results. Finally, for validation three case studies at 538°C, 550°C and 594°C temperatures are employed. The proposed model has proved that a combinations of ANN and FEM simulation performs well in estimation of C* and it is a powerful designing tool for creep crack growth characterization.

  16. Presenting an Appropriate Neural Network for Optimal Mix Design of Roller Compacted Concrete Dams

    Taha Mehmannavaz

    2014-03-01

    Full Text Available In general, one of the main targets to achieve the optimal mix design of concrete dams is to reduce the amount of cement, heat of hydration, increasing the size of aggregate (coarse and reduced the permeability. Thus, one of the methods which is used in construction of concrete and soil dams as a suitable replacement is construction of dams in roller compacted concrete method. Spending fewer budgets, using road building machinery, short time of construction and continuation of construction all are the specifications of this construction method, which have caused priority of these two methods and finally this method has been known as a suitable replacement for constructing dams in different parts of the world. On the other hand, expansion of the materials used in this type of concrete, complexity of its mix design, effect of different parameters on its mix design and also finding relations between different parameters of its mix design have necessitated the presentation of a model for roller compacted concretemix design. Artificial neural networks are one of the modeling methods which have shown very high power for adjustment to engineering problems. A kind of these networks, called Multi-Layer Perceptron (MLP neural networks, was used as the main core of modeling in this study along with error-back propagation training algorithm, which is mostly applied in modeling mapping behaviors.

  17. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel. PMID:25559176

  18. On improvements of neural network accuracy with fixed number of active neurons

    Sokolova, Natalia; Nikolaev, Dmitry P.; Polevoy, Dmitry

    2015-02-01

    In this paper an improvement possibility of multilayer perceptron based classifiers with using composite classifier scheme with predictor function was exploited. Recognition of embossed number characters on plastic cards in the image taken by mobile camera was used as a model problem.

  19. Use of a Neural Network for Damage Detection and Location in a Steel Member

    Kirkegaard, Poul Henning; Rytter, A.

    The paper explores the potential of using a Multilayer Perceptron (MLP) network trained with the Backpropagation algorithm for damage assessment of free-free cracked straight steel beam based on vibration measurements. The problem of damage assessment, i.e. detecting, locating and quantifying a...

  20. ScaleNet--multiscale neural-network architecture for time series prediction.

    Geva, A B

    1998-01-01

    The effectiveness of a multiscale neural-network (NN) architecture for the time series prediction of nonlinear dynamic systems has been investigated. The prediction task is simplified by decomposing different scales of past windows into different scales of wavelets (local frequencies), and predicting the coefficients of each scale of wavelets by means of a separate multilayer perceptron NN. The short-term history (short past windows) is decomposed into the lower scales of wavelet coefficients (high frequencies) which are utilized for "detailed" analysis and prediction, while the long-term history (long past window) is decomposed into higher scales of wavelet coefficients (low frequencies) that are used for the analysis and prediction of slow trends in the time series. These coordinated scales of time and frequency provides an interpretation of the series structures, and more information about the history of the series, using fewer coefficients than other methods. The prediction's results concerning all the different scales of time and frequencies are combined by another "expert" perceptron NN which learns the weight of each scale in the goal-prediction of the original time series. Each network is trained by the backpropagation algorithm using the Levenberg-Marquadt method. The weights and biases are initialized by a new clustering algorithm of the temporal patterns of the time series, which improves the prediction results as compared to random initialization. Three main sets of data were analyzed: the sunspots' benchmark, fluctuations in a farinfrared laser and a nonlinear numerically generated series. Taking the ultimate goal to be the accuracy of the prediction, we found that the suggested multiscale architecture outperforms the corresponding single-scale architectures. The employment of improved learning methods for each of the ScaleNet networks can further improve the prediction results. PMID:18255824

  1. On-line learning algorithms for locally recurrent neural networks.

    Campolucci, P; Uncini, A; Piazza, F; Rao, B D

    1999-01-01

    This paper focuses on on-line learning procedures for locally recurrent neural networks with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN's). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose on-line version, causal recursive backpropagation (CRBP), presents some advantages with respect to the other on-line training methods. The new CRBP algorithm includes as particular cases backpropagation (BP), temporal backpropagation (TBP), backpropagation for sequences (BPS), Back-Tsoi algorithm among others, thereby providing a unifying view on gradient calculation techniques for recurrent networks with local feedback. The only learning method that has been proposed for locally recurrent networks with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and higher speed of convergence with respect to the Back-Tsoi algorithm, which is supported by the theoretical development and confirmed by simulations. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with the new CRBP method. The simulations show that CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space. PMID:18252525

  2. Neural network sensor fusion: Creation of a virtual sensor for cloud-base height estimation

    Pasika, Hugh Joseph Christopher

    2000-10-01

    Sensor fusion has become a significant area of signal processing research that draws on a variety of tools. Its goals are many, however in this thesis, the creation of a virtual sensor is paramount. In particular, neural networks are used to simulate the output of a LIDAR (LASER. RADAR) that measures cloud-base height. Eye-safe LIDAR is more accurate than the standard tool that would be used for such measurement; the ceilometer. The desire is to make cloud-base height information available at a network of ground-based meteorological stations without actually installing LIDAR sensors. To accomplish this, fifty-seven sensors ranging from multispectral satellite information to standard atmospheric measurements such as temperature and humidity, are fused in what can only be termed as a very complex, nonlinear environment. The result is an accurate prediction of cloud-base height. Thus, a virtual sensor is created. A total of four different learning algorithms were studied; two global and two local. In each case, the very best state-of-the-art learning algorithms have been selected. Local methods investigated are the regularized radial basis function network, and the support vector machine. Global methods include the standard backpropagation with momentum trained multilayer perceptron (used as a benchmark) and the multilayer perceptron trained via the Kalman filter algorithm. While accuracy is the primary concern, computational considerations potentially limit the application of several of the above techniques. Thus, in all cases care was taken to minimize computational cost. For example in the case of the support vector machine, a method of partitioning the problem in order to reduce memory requirements and make the optimization over a large data set feasible was employed and in the Kalman algorithm case, node-decoupling was used to dramatically reduce the number of operations required. Overall, the methods produced somewhat equivalent mean squared errors indicating

  3. Statistical Mechanics of On-line Ensemble Teacher Learning through a Novel Perceptron Learning Rule

    Hara, Kazuyuki; Miyoshi, Seiji

    2012-06-01

    In ensemble teacher learning, ensemble teachers have only uncertain information about the true teacher, and this information is given by an ensemble consisting of an infinite number of ensemble teachers whose variety is sufficiently rich. In this learning, a student learns from an ensemble teacher that is iteratively selected randomly from a pool of many ensemble teachers. An interesting point of ensemble teacher learning is the asymptotic behavior of the student to approach the true teacher by learning from ensemble teachers. The student performance is improved by using the Hebbian learning rule in the learning. However, the perceptron learning rule cannot improve the student performance. On the other hand, we proposed a perceptron learning rule with a margin. This learning rule is identical to the perceptron learning rule when the margin is zero and identical to the Hebbian learning rule when the margin is infinity. Thus, this rule connects the perceptron learning rule and the Hebbian learning rule continuously through the size of the margin. Using this rule, we study changes in the learning behavior from the perceptron learning rule to the Hebbian learning rule by considering several margin sizes. From the results, we show that by setting a margin of κ>0, the effect of an ensemble appears and becomes significant when a larger margin κ is used.

  4. An Artificial Neural Network Controller for Three-level Shunt Active Filter to Eliminate the Current Harmonics and Compensate Reactive Power

    Chennai Salim

    2011-09-01

    Full Text Available The increased use of nonlinear devices in the industry has resulted in the direct increase of harmonic distortion in power systems during these last years. Active filter systems are proposed to mitigate current harmonics generated by nonlinear loads. The conventional scheme based on a two-level voltage source inverter controlled by a hysteresis controller has several disadvantages and cannot be used for medium or high-power applications. To overcome these drawbacks and improve the APF performance, there’s a great tendency to use multilevel inverters controlled by intelligent controllers. Three level (NPC inverter is one of the most widely used topologies in various industrial applications such as machine drives and power factor compensators. On the other hand, artificial neural networks are under study and investigation in other power electronics applications. In order to gain the advantages of the three-level inverter and artificial neural networks and to reduce the complexity of classical control schemes, a new active power filter configuration controlled by two MLPNN (Multi-Layer Perceptron Neural Network is proposed in this paper. The first ANN is used to replace the PWM current controller, and the second one to maintain a constant dc link voltage across the capacitors and compensate the inverter power losses. The performance of the global system, including power and control circuits is evaluated by Matlab-Simulink and SimPowerSystem Toolbox simulation. The obtained results confirm the effectiveness of the proposed control scheme.

  5. Neural Networks in Control Applications

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all in a...... recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  6. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect. PMID:26904814

  7. Stratigraphic correlation of well log through a multilayer direct neural network; Correlacao estratigrafica de perfis de poco atraves de uma rede neuronal direta multicamadas

    Andrade, Andre J.N. [Para Univ., Belem, PA (Brazil); Luthi, Stefan M. [Schlumberger Wireline Service, Montrouge (France)

    1997-07-01

    The analysis of openhole wireline logs is of great importance for the subsurface mapping of geological layers and the identification and quantification of hydrocarbon and mineral deposits. An important aspects to construct a geological model of the reservoir is the well-to-well log correlation, which can be a tedious and time-consuming task for the geologist. Automating this procedure is complicated but potentially rewarding because it may save the production geologist and log analyst substantial amount of time. Artificial neural networks have been shown to handle this task efficiently including in cases where sequential algorithms have problems. We show in this paper that a neural networks can be used to perform the well-to-well log correlation to provide first approximation od the geological model of the reservoir. This procedure is shown on actual field data. (author)

  8. Nighttime cloud properties retrieval using MODIS and artificial neural networks

    Pérez, J. C.; Cerdeña, A.; González, A.

    The aim of this work is to develop a methodology for inferring water cloud macro and microphysical properties from nighttime MODIS imagery This method is based on the inversion of a theoretical radiative transfer model that simulates the radiances detected in each of the sensor infrared bands In this case LibRadtran package Mayer and Kylling 2005 was used which allows us the calculation of the radiation field in the Earth s atmosphere given a specified set of atmospheric and cloud parameters However due to the complexity of this forward model its inversion cannot be performed in an analytical way To accomplish this task we propose an operational technique based on artificial neural networks ANNs whose main characteristic is the ability to retrieve cloud properties much faster than conventional methods Platnick et al 2003 Gonzalez et al 2002 Thus the procedure is as follows Using the theoretical radiative model a Look Up Table LUT is generated for a great variety of surface cloud and atmospheric conditions This dataset is divided randomly into a training set two-thirds of the items and a test set one third of the items which are used to train the neural network in order to fit the inversion problem In this study multilayer perceptrons MLPs with two hidden layers are used and the backpropagation with momentum method is used in the training process Furthermore to accelerate the convergence of ANN s evolutionary techniques are used to search the ANN configuration that provides the best fit Furthermore in order to check the

  9. Committee neural network model for rock permeability prediction

    Bagheripour, Parisa

    2014-05-01

    Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.

  10. Variants of Memetic and Hybrid Learning of Perceptron Networks

    Neruda, Roman; Slušný, Stanislav

    Los Alamitos : IEEE, 2007 - (Tjoa, A.; Wagner, R.), s. 158-162 ISBN 978-0-7695-2932-5. [ETID '07. International Workshop on Evolution ary Techniques /1./, DEXA 2007 International Conference /18./. Regensburg (DE), 03.09.2007-07.09.2007] R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : memetic learning * evolution ary learning * neural networks Subject RIV: IN - Informatics, Computer Science

  11. R-Peak Detection using Daubechies Wavelet and ECG Signal Classification using Radial Basis Function Neural Network

    Rai, H. M.; Trivedi, A.; Chatterjee, K.; Shukla, S.

    2014-01-01

    This paper employed the Daubechies wavelet transform (WT) for R-peak detection and radial basis function neural network (RBFNN) to classify the electrocardiogram (ECG) signals. Five types of ECG beats: normal beat, paced beat, left bundle branch block (LBBB) beat, right bundle branch block (RBBB) beat and premature ventricular contraction (PVC) were classified. 500 QRS complexes were arbitrarily extracted from 26 records in Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, which are available on Physionet website. Each and every QRS complex was represented by 21 points from p1 to p21 and these QRS complexes of each record were categorized according to types of beats. The system performance was computed using four types of parameter evaluation metrics: sensitivity, positive predictivity, specificity and classification error rate. The experimental result shows that the average values of sensitivity, positive predictivity, specificity and classification error rate are 99.8%, 99.60%, 99.90% and 0.12%, respectively with RBFNN classifier. The overall accuracy achieved for back propagation neural network (BPNN), multilayered perceptron (MLP), support vector machine (SVM) and RBFNN classifiers are 97.2%, 98.8%, 99% and 99.6%, respectively. The accuracy levels and processing time of RBFNN is higher than or comparable with BPNN, MLP and SVM classifiers.

  12. MULTI-TEMPORAL LAND USE ANALYSIS OF AN EPHEMERAL RIVER AREA USING AN ARTIFICIAL NEURAL NETWORK APPROACH ON LANDSAT IMAGERY

    M. Aquilino

    2014-01-01

    The historical archive of LANDSAT imagery dating back to the launch of ERTS in 1972 provides a comprehensive and permanent data source for tracking change on the planet‟s land surface. In this study case the imagery acquisition dates of 1987, 2002 and 2011 were selected to cover a time trend of 24 years. Land cover categories were based on classes outlined by the Curve Number method with the aim of characterizing land use according to the level of surface imperviousness. After comparing two land use classification methods, i.e. Maximum Likelihood Classifier (MLC and Multi-Layer Perceptron (MLP neural network, the Artificial Neural Networks (ANN approach was found the best reliable and efficient method in the absence of ground reference data. The ANN approach has a distinct advantage over statistical classification methods in that it is non-parametric and requires little or no a priori knowledge on the distribution model of input data. The results quantify land cover change patterns in the river basin area under study and demonstrate the potential of multitemporal LANDSAT data to provide an accurate and cost-effective means to map and analyse land cover changes over time that can be used as input in land management and policy decision-making.

  13. Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools

    Namık KılıÇ

    2015-06-01

    Full Text Available Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods (FEM in this research field. The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort, therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time. This study aims to apply a hybrid method using FEM simulation and artificial neural network (ANN analysis to approximate ballistic limit thickness for armor steels. To achieve this objective, a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. In this methodology, the FEM simulations are used to create training cases for Multilayer Perceptron (MLP three layer networks. In order to validate FE simulation methodology, ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569. Afterwards, the successfully trained ANN(s is used to predict the ballistic limit thickness of 500 HB high hardness steel armor. Results show that even with limited number of data, FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.

  14. Application of neural networks for unfolding neutron spectra measured by means of Bonner spheres and activation foils

    Braga, C C

    2001-01-01

    A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results wer...

  15. pH prediction by artificial neural networks for the drinking water of the distribution system of Hyderabad city

    In this research, feed forward ANN (Artificial Neural Network) model is developed and validated for predicting the pH at 10 different locations of the distribution system of drinking water of Hyderabad city. The developed model is MLP (Multilayer Perceptron) with back propagation algorithm. The data for the training and testing of the model are collected through an experimental analysis on weekly basis in a routine examination for maintaining the quality of drinking water in the city. 17 parameters are taken into consideration including pH. These all parameters are taken as input variables for the model and then pH is predicted for 03 phases;raw water of river Indus,treated water in the treatment plants and then treated water in the distribution system of drinking water. The training and testing results of this model reveal that MLP neural networks are exceedingly extrapolative for predicting the pH of river water, untreated and treated water at all locations of the distribution system of drinking water of Hyderabad city. The optimum input and output weights are generated with minimum MSE (Mean Square Error) < 5%. Experimental, predicted and tested values of pH are plotted and the effectiveness of the model is determined by calculating the coefficient of correlation (R2=0.999) of trained and tested results. (author)

  16. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    Edia E.O.

    2010-10-01

    Full Text Available Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM, an unsupervised Artificial Neural Networks (ANN method. This method was applied to pattern the samples based on the richness of five major orders of aquatic insects (Diptera, Ephemeroptera, Coleoptera, Trichoptera and Odonata. This permitted to identify three clusters that were mainly related to the local environmental status of sampling sites. Then, we used the environmental characteristics of the sites to predict, using a multilayer perceptron neural network (MLP, trained by BackPropagation algorithm (BP, a supervised ANN, the richness of the five insect orders. The BP showed high predictability (0.90 for both Diptera and Trichoptera, 0.84 for both Coleoptera and Odonata, 0.69 for Ephemeroptera. The most contributing variables in predicting the five insect order richness were pH, conductivity, total dissolved solids, water temperature, percentage of rock and the canopy. This underlines the crucial influence of both instream characteristics and riparian context.

  17. Artificial Neural Networks for Pollution Forecast

    Pasero, Eros; Mesin, Luca

    2010-01-01

    This chapter provides an introduction to non-linear methods for the prediction of the concentration of air pollutants. We focused on the selection of features and the modelling and processing techniques based on the theory of Artificial Neural Networks, using Multi Layer Perceptrons and Support Vector Machines. Joint measurements of meteorological data and pollutants concentrations is useful in order to increase the number of parameters to be studied for the construction of mathematical air q...

  18. Temporal Difference Learning for the Game Tic-Tac-Toe 3D: Applying Structure to Neural Networks

    van de Steeg, Michiel; Drugan, Madalina; Wiering, Marco

    2015-01-01

    When reinforcement learning is applied to large state spaces, such as those occurring in playing board games, the use of a good function approximator to learn to approximate the value function is very important. In previous research, multilayer perceptrons have often been quite successfully used as

  19. Robustness of a Neural Network Model for Power Peak Factor Estimation in Protection Systems

    This work presents results of robustness verification of artificial neural network correlations that improve the real time prediction of the power peak factor for reactor protection systems. The input variables considered in the correlation are those available in the reactor protection systems, namely, the axial power differences obtained from measured ex-core detectors, and the position of control rods. The correlations, based on radial basis function (RBF) and multilayer perceptron (MLP) neural networks, estimate the power peak factor, without faulty signals, with average errors between 0.13%, 0.19% and 0.15%, and maximum relative error of 2.35%. The robustness verification was performed for three different neural network correlations. The results show that they are robust against signal degradation, producing results with faulty signals with a maximum error of 6.90%. The average error associated to faulty signals for the MLP network is about half of that of the RBF network, and the maximum error is about 1% smaller. These results demonstrate that MLP neural network correlation is more robust than the RBF neural network correlation. The results also show that the input variables present redundant information. The axial power difference signals compensate the faulty signal for the position of a given control rod, and improves the results by about 10%. The results show that the errors in the power peak factor estimation by these neural network correlations, even in faulty conditions, are smaller than the current PWR schemes which may have uncertainties as high as 8%. Considering the maximum relative error of 2.35%, these neural network correlations would allow decreasing the power peak factor safety margin by about 5%. Such a reduction could be used for operating the reactor with a higher power level or with more flexibility. The neural network correlation has to meet requirements of high integrity software that performs safety grade actions. It is shown that the

  20. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells.

    Wakeman, Dustin R; Hofmann, Martin R; Redmond, D Eugene; Teng, Yang D; Snyder, Evan Y

    2009-05-01

    Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors. PMID:19455542