WorldWideScience

Sample records for molecular level processes

  1. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    Science.gov (United States)

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule

    2015-05-01

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  2. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule [South Kazakhstan State University, 5, Tauke Khan Avenue, 160012 Shymkent (Kazakhstan)

    2015-05-15

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  3. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    International Nuclear Information System (INIS)

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested

  4. Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Shuai, Zhigang, E-mail: zgshuai@tsinghua.edu.cn [MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing (China); Peng, Qian, E-mail: qpeng@iccas.ac.cn [Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing (China)

    2014-04-01

    Photo- or electro-excited states in polyatomic molecules, aggregates, and conjugated polymers are at the center of organic light-emitting diodes (OLEDs). These can decay radiatively or non-radiatively, determining the luminescence quantum efficiency of molecular materials. According to Kasha’s rule, light-emission is dictated by the lowest-lying excited state. For conjugated polymers, the electron correlation effect can lead the lowest-lying excited state to the even-parity 2A{sub g} state which is non-emissive. To understand the nature of the low-lying excited state structure, we developed the density matrix renormalization group (DMRG) theory and its symmetrization scheme for quantum chemistry applied to calculate the excited states structure. We found there are three types of 1B{sub u}/2A{sub g} crossover behaviors: with electron correlation strength U, with bond length alternation, and with conjugation length. These directly influence the light-emitting property. For the electro-excitation, carriers (electron and hole) are injected independently, forming both singlet and triplet excited bound states with statistically 25% and 75% portions, respectively. We found that the exciton formation rate can depend on spin manifold, and for conjugated polymers, the singlet exciton can have larger formation rate leading to the internal electroluminescence quantum efficiency larger than the 25% spin statistical limit. It is originated from the interchain electron correlation as well as intrachain lattice relaxation. For the dipole allowed emissive state, the radiative decay process via either spontaneous emission or stimulated emission can be computed from electronic structure plus vibronic couplings. The challenging issue lies in the non-radiative decay via non-adiabatic coupling and/or spin–orbit coupling. We developed a unified correlation function formalism for the excited state radiative and non-radiative decay rates. We emphasized the low-frequency mode mixing (Duschinsky rotation) effect on the non-radiative decay. We further combined the non-adiabatic coupling and spin–orbit coupling for the triplet state decay (phosphorescence) quantum efficiency. All the formalisms have been developed analytically, which have been applied to optical spectroscopy, aggregation-induced emission phenomena, and polymer photovoltaic property.

  5. Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level

    International Nuclear Information System (INIS)

    Photo- or electro-excited states in polyatomic molecules, aggregates, and conjugated polymers are at the center of organic light-emitting diodes (OLEDs). These can decay radiatively or non-radiatively, determining the luminescence quantum efficiency of molecular materials. According to Kasha’s rule, light-emission is dictated by the lowest-lying excited state. For conjugated polymers, the electron correlation effect can lead the lowest-lying excited state to the even-parity 2Ag state which is non-emissive. To understand the nature of the low-lying excited state structure, we developed the density matrix renormalization group (DMRG) theory and its symmetrization scheme for quantum chemistry applied to calculate the excited states structure. We found there are three types of 1Bu/2Ag crossover behaviors: with electron correlation strength U, with bond length alternation, and with conjugation length. These directly influence the light-emitting property. For the electro-excitation, carriers (electron and hole) are injected independently, forming both singlet and triplet excited bound states with statistically 25% and 75% portions, respectively. We found that the exciton formation rate can depend on spin manifold, and for conjugated polymers, the singlet exciton can have larger formation rate leading to the internal electroluminescence quantum efficiency larger than the 25% spin statistical limit. It is originated from the interchain electron correlation as well as intrachain lattice relaxation. For the dipole allowed emissive state, the radiative decay process via either spontaneous emission or stimulated emission can be computed from electronic structure plus vibronic couplings. The challenging issue lies in the non-radiative decay via non-adiabatic coupling and/or spin–orbit coupling. We developed a unified correlation function formalism for the excited state radiative and non-radiative decay rates. We emphasized the low-frequency mode mixing (Duschinsky rotation) effect on the non-radiative decay. We further combined the non-adiabatic coupling and spin–orbit coupling for the triplet state decay (phosphorescence) quantum efficiency. All the formalisms have been developed analytically, which have been applied to optical spectroscopy, aggregation-induced emission phenomena, and polymer photovoltaic property

  6. Identification of light absorbing oligomers from glyoxal and methylglyoxal aqueous processing: a comparative study at the molecular level

    Science.gov (United States)

    Finessi, Emanuela; Hamilton, Jacqueline; Rickard, Andrew; Baeza-Romero, Maria; Healy, Robert; Peppe, Salvatore; Adams, Tom; Daniels, Mark; Ball, Stephen; Goodall, Iain; Monks, Paul; Borras, Esther; Munoz, Amalia

    2014-05-01

    Numerous studies point to the reactive uptake of gaseous low molecular weight carbonyls onto atmospheric waters (clouds/fog droplets and wet aerosols) as an important SOA formation route not yet included in current models. However, the evaluation of these processes is challenging because water provides a medium for a complex array of reactions to take place such as self-oligomerization, aldol condensation and Maillard-type browning reactions in the presence of ammonium salts. In addition to adding to SOA mass, aqueous chemistry products have been shown to include light absorbing, surface-active and high molecular weight oligomeric species, and can therefore affect climatically relevant aerosol properties such as light absorption and hygroscopicity. Glyoxal (GLY) and methylglyoxal (MGLY) are the gaseous carbonyls that have perhaps received the most attention to date owing to their ubiquity, abundance and reactivity in water, with the majority of studies focussing on bulk physical properties. However, very little is known at the molecular level, in particular for MGLY, and the relative potential of these species as aqueous SOA precursors in ambient air is still unclear. We have conducted experiments with both laboratory solutions and chamber-generated particles to simulate the aqueous processing of GLY and MGLY with ammonium sulphate (AS) under typical atmospheric conditions and investigated their respective aging products. Both high performance liquid chromatography coupled with UV-Vis detection and ion trap mass spectrometry (HPLC-DAD-MSn) and high resolution mass spectrometry (FTICRMS) have been used for molecular identification purposes. Comprehensive gas chromatography with nitrogen chemiluminescence detection (GCxGC-NCD) has been applied for the first time to these systems, revealing a surprisingly high number of nitrogen-containing organics (ONs), with a large extent of polarities. GCxGC-NCD proved to be a valuable tool to determine overall amount and rates of formation of the light absorbing species. Data obtained from laboratory solutions were merged with those from SOA generated in chamber experiments conducted at the European PhotoReactor (EUPHORE) from the uptake of gas-phase GLY and MGLY onto AS seeds. While in general the results confirm previous studies in ranking MGLY as more effective than GLY in brown carbon formation, the link between overall optical properties and the identified molecular species is reported here for the first time for both systems.

  7. Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2015-05-01

    Full Text Available We present and characterize a novel setup to apply Second Harmonic Generation (SHG spectroscopy in total internal reflection geometry (TIR to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by Molecular Dynamics simulations on a similar system.

  8. Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    Science.gov (United States)

    Abdelmonem, A.; Lützenkirchen, J.; Leisner, T.

    2015-08-01

    We present and characterize a novel setup to apply second harmonic generation (SHG) spectroscopy in total internal reflection geometry (TIR) to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by molecular dynamics simulations on a similar system.

  9. Design of structure of zeolitic catalysts on a molecular level as a key to highly effective industrial processes.

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Wichterlová, Blanka; D?de?ek, Ji?í; Tvar?žková, Zdenka; Sathu, Naveen Kumar; Kreibich, Viktor; Sobalík, Zden?k

    Prague : J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i, 2011 - (Horá?ek, M.). P5 ISBN 978-80-87351-14-7. [Czech-Italian-Spanish Symposium on Molecular Sieves and Catalysis /4./. 15.06.2011-18.06.2011, Liblice] Institutional research plan: CEZ:AV0Z40400503 Keywords : zeolites * ZSM-5 Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Photodissociation processes in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, L.R.

    1979-05-01

    A description is presented of a study of the photodissociation dynamics of molecules in a molecular beam. Photo-fragmentation translational spectroscopy has been utilized to observe the photodissociation dynamics of ozone. Using a supersonic molecular beam and a 10 nanosecond pulsed laser at lambda = 266 nm, the velocities of the fragment products are measured by the method of time of flight. The resolution of the time of flight spectrum of ozone is sufficiently high that the electronic and vibrational states are clearly resolved and identified. Above the threshold (lambda < 310 nm), the quantum yield for the production of O(/sup 1/D) has been estimated in the past to be unity for the process O/sub 3/ (/sup 1/A/sub 1/) + h..nu..)lambda < 300 nm) ..-->.. O/sub 3/(/sup 1/B/sub 2/) ..-->.. O/sub 2/(/sup 1/..delta../sub g/) + O(/sup 1/D). However a small production of O/sub 2/ (/sup 3/..sigma../sub g//sup -/) + O(/sup 3/P) has been observed in this study. The O/sub 2/(/sup 1/..delta../sub g/) product yields four vibrational states (v = 0, 1, 2, 3) which yields a vibrational temperature of 2700/sup 0/K along with narrow energy distributions of rotational levels. These energy distributions are compared with photodissociation models along with the polarization dependence of the dissociative process which was also measured. 143 references.

  11. Discrete Atomic Layers at the Molecular Level

    Science.gov (United States)

    Yorimitsu, Hideki; Bhanuchandra, M.

    2015-12-01

    In this review, we deal with the syntheses of large discrete atomic layers at the molecular level. Spectroscopic measurements as well as X-ray crystallographic analyses lead to unambiguous characterizations of these layers. The molecular atomic layers can be considered to be parts of graphenes and related atomic layers, thereby helping to understand such indefinitely huge atomic layers or serving as seeds for the controlled synthesis of nanocarbons.

  12. Quantum Control of Molecular Processes

    CERN Document Server

    Shapiro, Moshe

    2012-01-01

    Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry.This fully updated second edition is enhanced by 80% and covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described.Indispensable for atomic, molecular and chemical

  13. Occupation number dependence of molecular energy levels

    International Nuclear Information System (INIS)

    The Roothaan expression for the energy of a closed-shell molecular system is generalized in order to apply to open shells. A continuous variation from 0 to 2 is supposed for each level's occupation number, extending to this range tbe correction due to the spurious repulsion appearing in the half-electron method. The characteristic equations of the X? method are applied to the energy expressions. The one level case is discussed in detail. Ionic and excited states of the 1,3 transbutadiene ? system are analyzed

  14. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  15. Designing an university-level module on molecular imaging chemistry

    International Nuclear Information System (INIS)

    Full text: Why do we need radiopharmacy, radiopharmacy, radiopharmacy training? In this post-genomic era, molecular imaging has gain tremendous interest not only amongst physicians but also from biologists, chemists, physicists, engineers, statisticians, pharmaceutical companies and even from governments. There is no doubt that nuclear medicine has been engaged in molecular medicine more than one decade ago. Positron emission tomography (PET) has reawaken interest in long forgotten radiopharmacy. Only major hospitals in the developed countries have invested in the development of dedicated radiopharmacy laboratory and training or recruitment of radiopharmacist. But PET has forced nuclear medicine to create a radiopharmacy unit and adopt radiopharmacy guidelines such as good radiopharmaceutical practice (GRPP) and good manufacturing practice (GMP). It is compounded by the fact that SPECT radiopharmaceutical chemistry has advanced significantly for both diagnostics and therapeutics, which calls for a high level of understanding on radiopharmaceutical chemistry and technical know-how. These factors eventually lead to introduction of tran ing program, courses and degree program. The most striking examples will be European Association of Nuclear Medicine (EANM) radiopharmacy courses and a series of IAEA activities on GRPP, GMP and technologist training programs. Various forms of training or education program can be formulated for various levels, starting from basic radiopharmacy course to PhD program, depending on the following factors; (1) National interest and policies on bio/medical sector; (2) Size of the nuclear medicine community in the respective country; (3) Institution interest and policies; and (4) Existing infrastructure and programs. Current Radiopharmacy Education in Singapore: In Singapore, all of the major nuclear medicine centers are supervised by radiopharmacists with PhD degree. All of the nuclear medicine technologists in the major centers have got training in radiopharmacy both in theory and hands-on practice. Final-year radiology students in Polytechnic have to go through a series of lectures on radiopharmacy and also practicals in hospital radiopharmacy laboratory. But due to the Government's initiatives on biomedical industries and also due to a global trend, interest in bio/medical imaging is rising among scientists and students. There is a need to fulfil this demand by introducing new course or modules at the University level. Designing an university-level module on molecular imaging chemistry: In National University of Singapore, a graduate student (MSc and PhD) level 5 module on ''Medical Imaging'' has already been introduced and a new module on ''Molecular Imaging Chemistry'' will be introduced soon. A module of this kind should serve as a link between chemistry, molecular imaging and clinical application with emphasis on chemical probe design. And should introduce contemporary topics and emerging concepts in chemistry related to molecular imaging. A brief introduction on different modalities of molecular imaging and principles of biomedical imaging should be introduced including principles of medical imaging equipment. How this knowledge will direct the chemical synthesis should be highlighted (lead directed synthesis). There should be a coverage on pharmacology and drug discovery process as imaging probes could be considered as drugs. Here is an example of an outline for such module: - Introduction: - What is molecular imaging? - Why molecular imaging? - What is biomedical imaging? - Different modalities of molecular imaging; - Different types of molecular imaging; - In vitro, ex vivo, in vivo imaging; Drug discovery process; - Pharmacological basis. Molecular Imaging Chemistry: - general construct of imaging probe (molecular reporter system); - Bioimaging factors influencing chemical probe synthesis; Optical imaging probes; - Radioimaging probes; - MR contrast agents; - Probes for other modalities, X ray, ultrasound, etc. Examples of practical applications. (author)

  16. Understanding diseases at a molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Rosev, Tatjana K [Los Alamos National Laboratory

    2008-01-01

    A group of scientists at Los Alamos National Laboratory in 2008 successfully pioneered a microscope able to track protein-sized, hard to see particles in three dimensions. The 3D Tracking Microscope, designed and developed by James H. Werner, Guillaume A. Lessard, Nathan Wells and Peter M. Goodwin of LANL's Center for Integrated Nanotechnologies, won a 2008 R&D 100 award. The team's invention is a unique confocal 3D tracking microscope capable of following the motion of nanometer-sized objects, such as individual molecules, quantum dots, organic fluorophores and single green fluorescent proteins as they zoom through three-dimensional space at rates faster than many intracellular transport processes. The 3D tracking microscope can follow the transport of nanometer-sized particles at micrometer per second rates. This enables researchers to follow individual protein, ribonucleic acid (RNA), or deoxyribonucleic acid (DNA) motion throughout the full three-dimensional volume of a cell to discover the path a particular biomolecule takes, the method it employs to get there and the specific proteins it may be interacting with along the way. In addition to applications in molecular spectroscopy and materials research, the 3D tracking microscope is a powerful tool primarily in the fields of cellular biology and biomedical research, Werner said. 'The 3D tracking microscope will advance our understanding of the molecular basis and kinetics of many diseases, such as cancer, diabetes, or muscular dystrophy,' he said. 'We anticipate the microscope will become a valuable weapon in the arsenal of biomedical researchers who are fighting to find cures for cancer, heart disease and other protein or DNA-based diseases.'

  17. Molecular-level dynamics of refractory dissolved organic matter

    Science.gov (United States)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  18. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  19. Molecular level assessments of radiation bio-damage

    International Nuclear Information System (INIS)

    We briefly review and summarize the areas of investigation allowing a modern molecular-level approach to radiation bio-damage assessment. We focus on the complementary processes initiated by ions and electrons, whose interactions with biological compounds are undoubtedly attracting and inspired cutting-edge research in the field. The implementation of these and other aspects within theoretical or simulation approaches is also reported. The effects related to the environment complicated by the biological features that constitute the physiological target of radiation are also discussed. We also report the advanced applications and developments for radiotherapy and radiation protection

  20. Levels of Processing in Mild Disabilities.

    Science.gov (United States)

    Al-Hilawani, Yasser A.; And Others

    This study examined the effects of the second level (intermediate acoustical processing of rhyming words) and the third level (deep-semantic processing of words in sentences) of the "levels of processing" framework on memory performance of four types of intermediate-grade students (52 "normal" students, 50 students with learning disabilities, 25…

  1. 1985 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  2. 1978 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  3. 1985 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  4. Bibliography of atomic and molecular processes, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  5. 1979 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  6. Bibliography of atomic and molecular processes, 1983

    International Nuclear Information System (INIS)

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  7. 1982 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  8. 1982 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  9. 1980 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    This annotated bibliography lists 2866 works on atomic and molecular processes reported in publications dated 1980. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  10. 1984 Bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  11. 1984 Bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  12. Systemic structural modular generalization of the crystallography of bound water applied to study the mechanisms of processes in biosystems at the atomic and molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Bulienkov, N. A., E-mail: lmm@phyche.ac.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2011-07-15

    The main reasons of the modern scientific revolution, one of the consequences of which are nanotechnologies and the development of interdisciplinary overall natural science (which can build potentially possible atomic structures and study the mechanisms of the processes occurring in them), are considered. The unifying role of crystallography in the accumulation of interdisciplinary knowledge is demonstrated. This generalization of crystallography requires the introduction of a new concept: a module which reflects the universal condition for stability of all real and potential and equilibrium and nonequilibrium structures of matter (their connectivity). A modular generalization of crystallography covers all forms of solids, including the structure of bound water (a system-forming matrix for the self-organization and morphogenesis of hierarchical biosystems which determines the metric selection of all other structural components of these systems). A dynamic model of the water surface layer, which serves as a matrix in the formation of Langmuir monolayers and plays a key role in the occurrence of life on the Earth, is developed.

  13. Quantum mechanics of molecular rate processes

    CERN Document Server

    Levine, Raphael D

    1999-01-01

    This survey of applications of the theory of collisions and rate processes to molecular problems explores collisions of molecules with internal structure, generalized Ehrenfest theorem, theory of reactive collisions, and role of symmetry. It also reviews partitioning technique, equivalent potentials and quasibound states, theory of direct reactions, more. 1969 edition.

  14. High levels of molecular chlorine in the Arctic atmosphere

    Science.gov (United States)

    Liao, Jin; Huey, L. Gregory; Liu, Zhen; Tanner, David J.; Cantrell, Chris A.; Orlando, John J.; Flocke, Frank M.; Shepson, Paul B.; Weinheimer, Andrew J.; Hall, Samuel R.; Ullmann, Kirk; Beine, Harry J.; Wang, Yuhang; Ingall, Ellery D.; Stephens, Chelsea R.; Hornbrook, Rebecca S.; Apel, Eric C.; Riemer, Daniel; Fried, Alan; Mauldin, Roy L.; Smith, James N.; Staebler, Ralf M.; Neuman, J. Andrew; Nowak, John B.

    2014-02-01

    Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We report high levels of molecular chlorine, of up to 400 pptv. Concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimate that the chlorine radicals produced from the photolysis of molecular chlorine oxidized more methane than hydroxyl radicals, on average, and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyses mercury oxidation and the breakdown of tropospheric ozone. We therefore suggest that molecular chlorine exerts a significant effect on the atmospheric chemistry of the Arctic.

  15. Molecular dynamics simulations using graphics processing units

    OpenAIRE

    Baker, J. A.; Hirst, J.D.

    2011-01-01

    It is increasingly easy to develop software that exploits Graphics Processing Units (GPUs). The molecular dynamics simulation community has embraced this recent opportunity. Herein, we outline the current approaches that exploit this technology. In the context of biomolecular simulations, we discuss some of the algorithms that have been implemented and some of the aspects that distinguish the GPU from previous parallel environments. The ubiquity of GPUs and the ingenuity of the simulation com...

  16. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    Science.gov (United States)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  17. Catalysis and kinetics molecular level considerations

    CERN Document Server

    Marin, Guy B

    2013-01-01

    Advances in Chemical Engineering was established in 1960 and is the definitive serial in the area. It is one of great importance to organic chemists, polymer chemists, and many biological scientists. Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties. This volume covers the topic of catalysis and kinetics and aspects in chemical engineering.Control and optimization of process systemsPolyelectrolytesPropane dehydrogenation and selective oxidation of

  18. Processing AIRS Scientific Data Through Level 2

    Science.gov (United States)

    Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee

    2007-01-01

    The Atmospheric Infrared Spectrometer (AIRS) Science Processing System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. AIRS SPS at an earlier stage of development was described in "Initial Processing of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. The cited prior article described processing through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The process of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the process are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.

  19. Levels of Noise Processing and Attentional Control

    Science.gov (United States)

    Keren, Gideon; And Others

    1977-01-01

    Research by Posner and Mitchell (1967) was used to investigate levels of noise processing in testing subjects' ability to "gate out" the processing of irrelevant and unwanted material. Three experiments are reported in which subjects had to judge whether two letters were the "same" or "different". Noise elements were included to test attention…

  20. Process for the production of a molecular sieve material:

    OpenAIRE

    Melian, C.I.; Kapteijn, F (Freek); Moulijn, J. A.

    2006-01-01

    The invention concerns a process for the production of a molecular sieve material by growing the molecular sieve material structure in the presence of a template for the pore structure, followed by removal of the template from the molecular sieve material, in which process the template is removed by oxidation of the template material using an oxidising agent.

  1. A System-level, molecular evolutionary analysis of mammalian phototransduction

    OpenAIRE

    Invergo, Brandon M.

    2013-01-01

    Phototransduction is the biochemical process by which a light stimulus is converted to a neuronal signal. The process functions through complex interactions between many proteins, which work in concert to tightly control the dynamics of the photoresponse. The primary aim of this thesis is to describe how the topology and kinetics of these interactions have given rise to detectable patterns of molecular evolution. To this end, a secondary aim is to develop a comprehensive ...

  2. Features, Events, and Processes: system Level

    Energy Technology Data Exchange (ETDEWEB)

    D. McGregor

    2004-10-15

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760).

  3. Features, Events, and Processes: system Level

    International Nuclear Information System (INIS)

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760)

  4. A Multi-step and Multi-level approach for Computer Aided Molecular Design

    DEFF Research Database (Denmark)

    A general multi-step approach for setting up, solving and solution analysis of computer aided molecular design (CAMD) problems is presented. The approach differs from previous work within the field of CAMD since it also addresses the need for a computer aided problem formulation and result analysis. The problem formulation step incorporates a knowledge base for the identification and setup of the design criteria. Candidate compounds are identified using a multi-level generate and test CAMD solution algorithm capable of designing molecules having a high level of molecular detail. A post solution step using an Integrated Computer Aided System (ICAS) for result analysis and verification is included in the methodology. Keywords: CAMD, separation processes, knowledge base, molecular design, solvent selection, substitution, group contribution, property prediction, ICAS Introduction The use of Computer Aided Molecular Design (CAMD) for the identification of compounds having specific physic...

  5. Actinides and environmental interfaces: striving for molecular-level understanding

    International Nuclear Information System (INIS)

    Actinides can undergo a variety of complex chemical reactions in the environment. In addition to the formation of solid precipitates, colloids and dissolved solution species common to aqueous systems, actinide ions can interact with the surrounding geo and biomedia to change oxidation states or sorb on surfaces and colloids. The rate of migration is determined by aqueous solubility, and interactions with solid surfaces such as minerals, soils, natural organic matter, and soil microorganisms Sorption of aqueous actinide species on biological and geological matrices can be quantitatively described by a surface complexation or site-binding model. The disadvantage of this model is the difficulty in the experimental determination of the model parameters and surface reaction constants. Usually, a set of surface reactions and species are proposed based on knowledge of the solution speciation of the solute, and the reaction constants are usually derived by fitting computer-calculated absorption curves to experimental data. Because this process typically involves a large number of potentially adjustable parameters, it is likely to lead to non-unique parameter fitting and does not always result in a consistent set of parameters for the same systems. A fundamental molecular-level understanding of sorption processes of actinides on environmental surfaces is required to better understand and predict their transport behavior in nature. Several different surface spectroscopic techniques have been applied to the characterization of the adsorbed species and surface reactions and a direct determination of the sorbed species and surface reactions has become possible. The non-linear optical techniques of second harmonic and sum frequency generation (SHG and SFG) are ideally suited to study surfaces and interfaces of mineral oxides, biosurfactants and biopolymers, organic adlayers adsorbed on solid/mineral surfaces and soil organic matter, including humic and fulvic acids. Resonant enhanced second harmonic generation can probe the electronic (UV-vis region) structure of metal species adsorbed at a surface or interface. Infrared-visible sum frequency generation spectroscopy probes the infrared vibrational spectrum of molecules adsorbed at the interface. SHG/SFG studies will greatly assist with understanding reactivity at interfaces of oxides and soil organic matter with heavy metals and radionuclides/actinides. Time-resolved Laser-fluorescence spectroscopy (TRLFS) is a highly sensitive tool for actinides that absorb light and de-excite by fluorescence emission, e.g., U(VI) and Cm(III), to probe changes in actinide speciation and coordination environment in solution. This method can also be used to differentiate whether adsorbed species form surface complexes or surface precipitates. Recently, it was shown that the intense synchrotron radiation can change the oxidation states of redox-sensitive actinide samples which may cause erroneous results, and low temperature measurements are now used to alleviate this shortcoming. X-ray Absorption Fine Structure (XAFS) Spectroscopy is composed of two component spectroscopies, X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) which provide element specific oxidation state and local structure information, respectively. EXAFS (Extended X-ray Absorption Fine Structure Spectroscopy) provides information on the chemical environment of particular actinide, in particular bond lengths and the number of neighboring atoms. Combining both methods, detailed knowledge of the different processes resulting from the interaction of the selected actinides with environmental interfaces can be gained. XANES and EXAFS measurements and TRLFS studies to obtain molecular-level mechanistic details of actinide interaction with common environmental solutions and interfaces will be presented together with first SHG/SFG characterization results of model systems for environmental interfaces. Areas will be outlined where integrated interdisciplinary research is needed to provide a more c

  6. Nanoparticles of Copper Stimulate Angiogenesis at Systemic and Molecular Level

    Directory of Open Access Journals (Sweden)

    Natalia Mroczek-Sosnowska

    2015-03-01

    Full Text Available Copper is a key element affecting blood vessel growth and muscle development. However, the ions released from Cu salts are toxic. Given their specific physicochemical properties, nanoparticles of Cu (NanoCu may have different bioactivity and affect the development of blood vessel and muscles in a different manner than Cu salts. The objective of the study was to evaluate the influence of NanoCu on embryo development and angiogenesis at the systemic and molecular level, in experiments using a chick embryo model. Fertilized chicken eggs were divided into a control group, and groups injected with a placebo, CuSO4 or NanoCu. Embryo development at the whole body level and molecular indices using an embryo chorioallantoic membrane model were measured during embryogenesis. The present study indicated for the first time that NanoCu have pro-angiogenic properties at the systemic level, to a greater degree than CuSO4 salt. The properties of NanoCu were confirmed at the molecular level, demonstrating significant effects on mRNA concentration and on mRNA gene expression of all pro-angiogenic and pro-proliferative genes measured herein.

  7. How Effective Are Simulated Molecular-level Experiments for Teaching Diffusion and Osmosis?

    OpenAIRE

    Meir, Eli; Perry, Judith; Stal, Derek; Maruca, Susan; Klopfer, Eric

    2005-01-01

    Diffusion and osmosis are central concepts in biology, both at the cellular and organ levels. They are presented several times throughout most introductory biology textbooks (e.g., Freeman, 2002), yet both processes are often difficult for students to understand (Odom, 1995; Zuckerman, 1994; Sanger et al., 2001; and results herein). Students have deep-rooted misconceptions about how diffusion and osmosis work, especially at the molecular level. We hypothesized that this might be in part due t...

  8. Molecular Simulation of Fundamental Processes in Nanoparticle - Polymer - Nanoparticle Systems Under Tensile Load

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    2013-08-01

    Full Text Available We demonstrate molecular modeling of polymer (polyacrylate association to ZnO nanoparticles by means of a recently developed molecule-by-molecule association approach. Upon multiple acrylate association steps, potential sites for connecting ZnO particles are elaborated and explored under tensile loading from molecular dynamics simulation. This offers molecular level insights into processes that account for elastic and plastic deformation, creep and self-healing in ZnO-polymer composite materials

  9. Molecular Simulation of Fundamental Processes in Nanoparticle - Polymer - Nanoparticle Systems Under Tensile Load

    OpenAIRE

    Dirk Zahn

    2013-01-01

    We demonstrate molecular modeling of polymer (polyacrylate) association to ZnO nanoparticles by means of a recently developed molecule-by-molecule association approach. Upon multiple acrylate association steps, potential sites for connecting ZnO particles are elaborated and explored under tensile loading from molecular dynamics simulation. This offers molecular level insights into processes that account for elastic and plastic deformation, creep and self-healing in ZnO-polymer composite mater...

  10. Renormalized molecular levels in a Sc3N@C-80 molecular electronic device

    DEFF Research Database (Denmark)

    Larade, Brian; Taylor, Jeremy Philip

    2001-01-01

    We address several general questions about quantum transport through molecular systems by an ab initio analysis of a scandium-nitrogen doped C-80 metallofullerene device. Charge transfer from the Sc3N is found to drastically change the current-voltage characteristics: the current through the Sc3N @ C-80 device is double that through a bare C-80 device. We provide strong evidence that transport in such molecular devices is mediated by molecular electronic states which have been renormalized by the device environment, such as the electrodes and external bias V-b. The renormalized molecular levels and main transmission features shift in energy corresponding to half the applied bias voltage. This is also consistent with our finding that the voltage drops by V-b/2 at each molecule/electrode contact.

  11. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  12. Renewal processes and fluctuation analysis of molecular motor stepping

    CERN Document Server

    Santos, J E; Parmeggiani, A; Frey, E; Santos, Jaime E.; Franosch, Thomas; Parmeggiani, Andrea; Frey, Erwin

    2005-01-01

    We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase.

  13. Capillary leveling of stepped films with inhomogeneous molecular mobility

    CERN Document Server

    McGraw, Joshua D; Bäumchen, Oliver; Raphaël, Elie; Dalnoki-Veress, Kari

    2013-01-01

    A homogeneous thin polymer film with a stepped height profile levels due to the presence of Laplace pressure gradients. Here we report on studies of polymeric samples with precisely controlled, spatially inhomogeneous molecular weight distributions. The viscosity of a polymer melt strongly depends on the chain length distribution; thus, we learn about thin-film hydrodynamics with viscosity gradients. These gradients are achieved by stacking two films with different molecular weights atop one another. After a sufficient time these samples can be well described as having one dimensional viscosity gradients in the plane of the film, with a uniform viscosity normal to the film. We develop a hydrodynamic model that accurately predicts the shape of the experimentally observed self-similar profiles. The model allows for the extraction of a capillary velocity, the ratio of the surface tension and the viscosity, in the system. The results are in excellent agreement with capillary velocity measurements of uniform mono-...

  14. A Process Calculus for Molecular Interaction Maps

    OpenAIRE

    Roberto Barbuti; Andrea Maggiolo-Schettini; Paolo Milazzo; Giovanni Pardini; Aureliano Rama

    2009-01-01

    We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus...

  15. Molecular processes and turbulent magnetic fields in the solar atmosphere

    Science.gov (United States)

    Shapiro, A. I.

    2008-08-01

    Coherent scattering in the solar atmosphere leads to the formation of the linearly polarized solar spectrum, just like Rayleigh scattering leads to the polarization of the blue sky. One of the most prominent features of the linearly polarized solar spectrum is the CN violet system as it is also in the unpolarized spectrum. This thesis is devoted to the modeling and interpretation of this system in both spectra and developing it into a very sensitive tool for studying the magnetic fields and the temperature structure of the solar atmosphere. The understanding of the solar magnetic field structure is very important as it is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allows to measure strong directed magnetic fields which only cover about 1% of the solar atmosphere. The remaining part is occupied by weak entangled magnetic fields with mixed polarity, which might significantly contribute to the overall solar magnetic energy. These fields are invisible to the Zeeman effect due to signal cancellation. Therefore the discovery of the linearly polarized solar spectrum opened a new epoch in solar physics. The polarization due to the scattering processes is modified by weak entangled magnetic fields via the Hanle effect and thus, provides us with a unique possibility to access and study such "hidden" magnetic fields. Molecular lines are very useful for probing magnetic fields as, due to their strong temperature sensitivity, different molecules sample different, narrow layers of the solar atmosphere. Therefore the extension of the atomic Hanle effect to molecular lines can provide the 3D structure of the solar turbulent magnetic field. Moreover, due to the broad range of magnetic sensitivities within narrow spectral regions molecular lines can be used for employing the differential Hanle effect technique, which allows dramatically reduced model dependence of the obtained magnetic field. This thesis consists of two main parts which reflect the two consecutive steps in the modeling of the polarized solar spectrum. First, the physical properties of the molecular scattering process have to be understood. For the CN violet system, it implies taking into account the Paschen-Back effect on the fine structure (which results in a change of intensities and line positions) and interference effects between the fine structure components itself. Both effects influence the Hanle effect and lead to the consequences which are analyzed in detail in the first part of this thesis. Then, to connect the coherent scattering and physical properties of the solar plasma with the emerged solar radiation, which is measured by our detectors, radiative transfer theory has to be applied. The presence of the scattering processes implies the non-equilibrium nature of the problem. Its self-consistent solution is especially complicated for molecular bands as they usually consist of a huge number of transitions which couple the numerous vibrational-rotational molecular levels. This, for example, makes the two-level approximation, often used in atomic calculations unsuitable. Moreover, there is a strong lack of information about the molecular collision rates so they basically enter the calculations as additional free parameter. In the second part of the thesis we present two radiative transfer models with different degrees of complexity and applicability. These models allow us to successfully fit the observations of the CN violet system in both polarized and unpolarized spectra and provide us with a magnetic field estimation. We discuss in detail the model-dependence of our results and general problems of the 1D solar spectrum modeling. The enormous potential of the linearly polarized solar spectrum makes it one of the main tools for studying solar magnetic fields, which becomes very urgent nowadays, as they can affect the Earth's climate and, hence, our life.

  16. VUV diagnostic of electron impact processes in low temperature molecular hydrogen plasma

    CERN Document Server

    Komppula, J

    2015-01-01

    Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman-band ($B^1\\Sigma^+_u \\rightarrow X^1\\Sigma^+_g$) and molecular continuum ($a^3\\Sigma^+_g \\rightarrow b^3\\Sigma^+_u$), of the hydrogen molecule in VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-forbidden excitations reduces the uncertainty caused by the non-equilibrium distributions of electron energy and molecular vibrational level, which are typically known poorly in plasma sources. The described methods are applied to estimate the rates of various plasma processes in a filament arc discharge.

  17. VUV diagnostics of electron impact processes in low temperature molecular hydrogen plasma

    Science.gov (United States)

    Komppula, J.; Tarvainen, O.

    2015-08-01

    Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman band ({{B}1}?\\text{u}+\\to {{X}1}?\\text{g}+ ) and molecular continuum ({{a}3}?\\text{g}+\\to {{b}3}?\\text{u}+ ), of the hydrogen molecule in the VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-forbidden excitations reduces the uncertainty caused by the non-equilibrium distributions of electron energy and molecular vibrational level, which are typically known poorly in plasma sources. The described methods are applied to estimate the rates of various plasma processes in a filament arc discharge.

  18. A Process Calculus for Molecular Interaction Maps

    CERN Document Server

    Barbuti, Roberto; Milazzo, Paolo; Pardini, Giovanni; Rama, Aureliano; 10.4204/EPTCS.11.3

    2009-01-01

    We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus obtained. We give a formal definition of the syntax and semantics of the MIM calculus, and we study properties of the formalism. A case study is also presented to show the use of the calculus for modeling biomolecular networks.

  19. Binaural processing of modulated interaural level differences

    DEFF Research Database (Denmark)

    Thompson, Eric Robert; Dau, Torsten

    2008-01-01

    Two experiments are presented that measure the acuity of binaural processing of modulated interaural level differences ILDs using psychoacoustic methods. In both experiments, dynamic ILDs were created by imposing an interaurally antiphasic sinusoidal amplitude modulation AM signal on high-frequency carriers, which were presented over headphones. In the first experiment, the sensitivity to dynamic ILDs was measured as a function of the modulation frequency using puretone, and interaurally correlated and uncorrelated narrow-band noise carriers. The intrinsic interaural level fluctuations of the uncorrelated noise carriers raised the ILD modulation detection thresholds with respect to the pure-tone carriers. The diotic fluctuations of the correlated noise carriers also caused a small increase in the thresholds over the pure-tone carriers, particularly with low ILD modulation frequencies. The second experiment investigated the modulation frequency selectivity in dynamic ILD processing by imposing an interaurallyuncorrelated bandpass noise AM masker in series with the interaurally antiphasic AM signal on a pure-tone carrier. By varying the masker center frequencies relative to the signal modulation frequency, broadly tuned, bandpass-shaped patterns were obtained. Simulations with an existing binaural model show that a low-pass filter to limit the binaural temporal resolution is not sufficient to predict the results of the experiments.

  20. Ab Initio Interactive Molecular Dynamics on Graphical Processing Units (GPUs).

    Science.gov (United States)

    Luehr, Nathan; Jin, Alex G B; Martínez, Todd J

    2015-10-13

    A virtual molecular modeling kit is developed based on GPU-enabled interactive ab initio molecular dynamics (MD). The code uses the TeraChem and VMD programs with a modified IMD interface. Optimization of the GPU accelerated TeraChem program specifically for small molecular systems is discussed, and a robust multiple time step integrator is employed to accurately integrate strong user-supplied pulling forces. Smooth and responsive visualization techniques are developed to allow interactive manipulation at minimum simulation rates below five MD steps per second. Representative calculations at the Hartree-Fock level of theory are demonstrated for molecular systems containing up to a few dozen atoms. PMID:26574246

  1. Optically and thermally induced molecular switching processes at metal surfaces

    International Nuclear Information System (INIS)

    Using light to control the switching of functional properties of surface-bound species is an attractive strategy for the development of new technologies with possible applications in molecular electronics and functional surfaces and interfaces. Molecular switches are promising systems for such a route, since they possess the ability to undergo reversible changes between different molecular states and accordingly molecular properties by excitation with light or other external stimuli. In this review, recent experiments on photo- and thermally induced molecular switching processes at noble metal surfaces utilizing two-photon photoemission and surface vibrational spectroscopies are reported. The investigated molecular switches can either undergo a trans-cis isomerization or a ring opening-closure reaction. Two approaches concerning the connection of the switches to the surface are applied: physisorbed switches, i.e. molecules in direct contact with the substrate, and surface-decoupled switches incorporated in self-assembled monolayers. Elementary processes in molecular switches at surfaces, such as excitation mechanisms in photoisomerization and kinetic parameters for thermally driven reactions, which are essential for a microscopic understanding of molecular switching at surfaces, are presented. This in turn is needed for designing an appropriate adsorbate-substrate system with the desired switchable functionality controlled by external stimuli.

  2. Process Development Strategies in Plant Molecular Farming.

    Science.gov (United States)

    Buyel, Johannes F

    2015-01-01

    Protein-based biopharmaceuticals are often produced in mammalian cell cultures, which are more expensive than microbial systems but capable of authentic post-translational modifications. The costs are lower if plants are used as an alternative platform to produce complex proteins such as monoclonal antibodies, vaccines and enzymes. This review highlights recent advances that have been achieved in plant-based biopharmaceutical production platforms in terms of expression strategies, product yields and process development. The first generation of plant-derived pharmaceuticals now entering the market is also discussed. Finally, the review considers the downstream processing of plant-derived pharmaceuticals which can account for up to 80% of the production costs. In this context, recent improvements in clarification and integrated process methods will have a strong impact on the economic feasibility of production, especially if supported by and combined with process analytical technology as part of the quality-by-design initiative. PMID:26343135

  3. Directionality and processivity of molecular motors.

    Science.gov (United States)

    Higuchi, Hideo; Endow, Sharyn A

    2002-02-01

    Analysis of a mutant with altered directionality has led to new insights into motor directionality. The prediction from current models for processivity of a two-heads-bound state has been confirmed by electron microscopy for myosin V and by unbinding experiments for kinesin. Evidence is emerging that non-processive motors bind their filament with one head, hydrolyze ATP and then release, requiring binding by a second motor to complete a step. PMID:11792544

  4. Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules.

    Science.gov (United States)

    Chowdhury, Debashish

    2013-06-01

    A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. PMID:23746505

  5. An approach of molecular orbital calculations to process plasmas

    International Nuclear Information System (INIS)

    Remarkable progresses in the development of personal computers and molecular orbital methods have made it possible the calculation of complicated properties of molecules, which has been impossible so far. On the other hand, the plasma process such as reactive ion etching has been development while many plasma phenomena being unsolved. For the further development of the process, it is essential to make basic phenomena and problems in the plasma process clear. In the present article, an introduction to molecular orbital calculations is being presented for convenience of beginners in this field. (J.P.N.)

  6. Status of Safeguards and Separations Model Development at Plant and Molecular Levels

    International Nuclear Information System (INIS)

    A primary goal of the Safeguards and Separations IPSC effort is the development of process modeling tools that allow dynamic simulations of separations plant operations under various configurations and conditions, and integration of relevant safeguards analyses. A requirement of the effort is to develop codes on modern, expandable architectures, with flexibility to explore and evaluate a wide range of process options. During FY09, efforts at ORNL have been focused on two priority tasks toward achieving the IPSC goal: (1) a top-down exploration of architecture - Subtask 1: Explore framework for code development and integration for plant-level simulation; and (2) a bottom-up fundamental modeling effort - Subtask 2: Development of molecular-level agent design code. Subtask 1 is important because definition and development of architecture is a key issue for the overall effort, as selection of an overall approach and code/data requirements is a necessary first step in the organization, design and development of separations and safeguards codes that will be incorporated. The agent design effort of Subtask 2 is a molecular-level modeling effort that has a direct impact on a near-term issue of the Separations and Waste Forms Campaign. A current focus of experimental efforts is the development of robust agents and processes for separation of Am/Cm. Development of enhanced agent-design codes will greatly accelerate discovery and experimental testing.

  7. Modulation of Energy Conversion Processes in Carbonaceous Molecular Bearings.

    Science.gov (United States)

    Hitosugi, Shunpei; Ohkubo, Kei; Kawashima, Yuki; Matsuno, Taisuke; Kamata, Sho; Nakamura, Kosuke; Kono, Hirohiko; Sato, Sota; Fukuzumi, Shunichi; Isobe, Hiroyuki

    2015-11-01

    The energetics and photodynamics of carbonaceous molecular bearings with discrete molecular structures were investigated. A series of supramolecular bearings comprising belt-persistent tubular cycloarylene and fullerene molecules accepted photonic stimuli to afford charge-separated species via a photoinduced electron transfer process. The energy conversion processes associated with the photoexcitation, however, differed depending on the molecular structure. A ?-lengthened tubular molecule allowed for the emergence of an intermediary triplet excited state at the bearing, which should lead to an energy conversion to thermal energy. On the other hand, low-lying charge-separated species induced by an endohedral lithium ion in fullerene enabled back electron transfer processes to occur without involving triplet excited species. The structure-photodynamics relationship was analyzed in terms of the Marcus theory to reveal a large electronic coupling in this dynamic supramolecular system. PMID:26195132

  8. 1979 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  9. 1978 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  10. Amino-nitro-azobenzene dimers as a prototype for a molecular-level machine

    Energy Technology Data Exchange (ETDEWEB)

    Henzl, J; Mehlhorn, M; Morgenstern, K [Leibniz Universitaet Hannover, Institut fuer Festkoerperphysik, Abteilung Oberflaechen, Appelstrasse 2, D-30167 Hannover (Germany)

    2007-12-12

    Low-temperature scanning tunnelling microscope measurements of an X-shaped dimer, consisting of two amino-nitro-azobenzene molecules, on a Au(111)-surface are presented. Electron-induced manipulation switches either the upper- or the lower-lying molecule. These reversible switching processes are based on the cis-trans isomerization of the azobenzene molecules. The switching of the upper molecule moves the lower-lying molecule in a controlled way. Thus mechanical work is performed. This proof-of-principle shows the ability of azobenzene molecules to act as a molecular-level machine.

  11. Manipulating the conduction process of a molecular resonant tunneling diode

    International Nuclear Information System (INIS)

    In this work we propose two methods to manipulate the conduction process in a molecular resonant tunneling diode. In the first proposal we make use of the fact that by twisting the molecule along the long axis, we can generate a nonlinear coupling between the conduction electrons and the phonons. In the second proposal, we allow a light of appropriate frequency to pump the electrons from the ground state to the first excited state. This mechanism generates an additional current across the molecular resonant tunneling diode. (author)

  12. Molecular-Level Design of Heterogeneous Chiral Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration, and the development of ways to imprint chiral centers on achiral solid surfaces. Chiral catalysis is not only a problem of great importance in its own right, but also the ultimate test of how to control selectivity in catalysis. The time is ripe for fundamental work in heterogeneous chiral catalysis to provide the U.S. with a leadership role in developing the next generation of catalytic processes for medicinal and agrochemical manufacturing. Our team provides the required expertise for a synergistic and comprehensive integration of physical and chemical experimentation with solid state and molecular reactivity theories to solve this problem.

  13. Molecular-Level Design of Heterogeneous Chiral Catalysis

    International Nuclear Information System (INIS)

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration, and the development of ways to imprint chiral centers on achiral solid surfaces. Chiral catalysis is not only a problem of great importance in its own right, but also the ultimate test of how to control selectivity in catalysis. The time is ripe for fundamental work in heterogeneous chiral catalysis to provide the U.S. with a leadership role in developing the next generation of catalytic processes for medicinal and agrochemical manufacturing. Our team provides the required expertise for a synergistic and comprehensive integration of physical and chemical experimentation with solid state and molecular reactivity theories to solve this problem.

  14. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  15. Angular distribution and spin polarization of molecular auger processes

    Science.gov (United States)

    Lohmann, B.; Bonhoff, S.; Bonhoff, K.; Lehmann, J.; Blum, K.

    1997-02-01

    The general theory for angular distribution and spin polarization of molecular Auger electrons emitted from freely rotating diatomic molecules is discussed within the framework of a two-step model. Assuming electron impact ionization then, in contrast to a primary photoionization process, the number of independent parameters is no longer restricted by dipole selection rules. Different spin polarization states of the primary electron beam will be considered. The physical importance of a coherent excitation process is discussed within a simple example. Numerical results for the anisotropy parameters characterizing the dynamics of the Auger emission process are discussed for HF.

  16. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  17. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems both in vacuum or air, and in aqueous solution under electrochemical potential control. Multifarious patterns of rectified electron flow from the negatively to the positively biased electrode arise. The electronic interaction between the donor and acceptor fragments, mutually and with the electrodes, can be weak, corresponding to the fully diabatic limit. The rectification process then reduces to a sequence of vibrationally relaxed single-electron transfer steps. In the limits where the interactions are strong, denoted as the partially and fully adiabatic limits, the character of the rectification process is different, and electron flow proceeds coherently, without vibrational relaxation. In still another class of mechanisms the electronic level broadening of either donor or acceptor from the adjacent electrode is so strong that it is comparable to the vibrational broadening. The process then reduces to a three-level transition similar to STM of large redox molecules. Recent data for rectification in hexadecyl-quinolinium tricyanodimethanide monolayers by Metzger and co-workers [J. Am. Chem. Soc. 119, 10455 (1997); Acc. Chem. Res. 32, 950 (1999)], are discussed in terms of the reported views and formalism.

  18. Molecular-level Design of Heterogeneous Chiral Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111) modified by a variety of chiral templates. • Demonstrated enantioselective separation of racemic PO on chemically synthesized chiral gold nanoparticles. • Discovery of zwitterionic adsorption states of amino acids on Pd(111). • First structure determinations of adsorbed amino acids and identification of tetrameric chiral template structures. • Exploration of the enantiospecific interaction of PO and R-3-MCHO adsorption on chirally modified Cu(100), Cu(110) and Cu(111). One-to-One Interactions • Determination of cinchona orientation on Pt surfaces in situ at the solid-liquid interface using FT-IRAS. • Systematic study of the influence of solution properties on the adsorption of modified cinchonas alkaloids onto Pt surfaces. • Correlation of cinchona adsorption with catalytic activity, as affected by concentration, the nature of the solvent, and dissolved gases in the liquid phase. • Measurement of enantioselective chemisorption on 1-(1-naphthyl) ethylamine (NEA) modified Pt(111) and Pd(111) surfaces. • Imaging of chiral docking complexes between NEA and methyl pyruvate on Pd(111). Chiral Catalyst Synthesis • Anchoring of cinchona alkaloid to surfaces • Synthesis of chiral Au nanoparticles and demonstration of their enantiospecific interactions with R- and S-PO. • Elucidation of the driving forces for chiral imprinting of Cu(100) by L- and D-lysine to form Cu(3,1,17)R&S facets.

  19. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    OpenAIRE

    TAMASCELLI, DARIO; Dambrosio, Francesco S.; Conte, Riccardo; Ceotto, Michele

    2013-01-01

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfect...

  20. A Study of molecular cooling via Sisyphus processes

    OpenAIRE

    Comparat, Daniel

    2014-01-01

    We present a study of Sisyphus cooling of molecules: the scattering of a single-photon remove a substantial amount of the molecular kinetic energy and an optical pumping step allow to repeat the process. A review of the produced cold molecules so far indicates that the method can be implemented for most of them, making it a promising method able to produce a large sample of molecules at sub-mK temperature. Considerations of the required experimental parameters, for instance ...

  1. Simulation analysis of molecular laser isotope separation process for safeguards design

    International Nuclear Information System (INIS)

    In this report, firstly an approach to a satisfactory safeguards concept is studied and proposed, among other things, as such that a process model should be developed only on a basis of published theories and data and that the safeguards should be designed using this process model. Secondly, as the first step of this approach, the photon-molecular reaction dynamics for a uranium-235-selective excitation process which is one of the infrared multi-photon dissociation processes for uranium enrichment was computer-simulated using a mathematical model as follows: through the investigation of a selective excitation probability in each energy level and of the transition probability to quasi-continuum levels from the top discrete level, a sensitivity analysis was carried out on the important parameters for process operations such as the optimum relative intensities between the laser for selective excitation and the laser for dissociation, the laser pulse widths to be required, and the asynchronous multi-laser irradiation. As a result, the conditions to be satisfied by such operational parameters in the design of photon-excited selective process were made clear. Although the dissociation process in the quasi-continuum and in the true continuum levels must be investigated in order to have a complete picture of the uranium-235 separation process, the optimization of the photon-excited selective process which was analyzed in this report is the most important theme for the molecular laser uranium enrichment and the detailed analysis of the characteristics of such excitation process not only gives fundamental data for the design of enrichment process but also is necessary for analyzing the diversion possibilities of producing higher enrichment than declared for safeguards design. (author)

  2. A Complex Approach for Unravelling Musaceae Phylogeny at Molecular Level.

    Czech Academy of Sciences Publication Activity Database

    N?mcová, Pavla; H?ibová, Eva; Valárik, Miroslav; Doležel, Jaroslav

    2011-01-01

    Ro?. 897, SEP 14 (2011), s. 139-142. ISSN 0567-7572. [INTERNATIONAL ISHS-PROMUSA SYMPOSIUM ON GLOBAL PERSPECTIVES ON ASIAN CHALLENGES. Guangzhou, 14.08.2009-16.08.2009] R&D Projects: GA AV ?R IAA600380703 Institutional support: RVO:61389030 Keywords : DArT * low-copy genes * molecular phylogenetics Subject RIV: EF - Botanics http://www.actahort.org/books/897/897_14.htm

  3. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  4. Renormalized molecular levels in a Sc3N@C-80 molecular electronic device

    DEFF Research Database (Denmark)

    Larade, Brian; Taylor, Jeremy Philip; Zheng, Q. R.; Mehrez, Hatem; Pomorski, Pawel; Guo, Hong

    2001-01-01

    We address several general questions about quantum transport through molecular systems by an ab initio analysis of a scandium-nitrogen doped C-80 metallofullerene device. Charge transfer from the Sc3N is found to drastically change the current-voltage characteristics: the current through the Sc3N @ C-80 device is double that through a bare C-80 device. We provide strong evidence that transport in such molecular devices is mediated by molecular electronic states which have been renormalized by th...

  5. Levels of processing: the evolution of a framework

    Scientific Electronic Library Online (English)

    Roberta, Ekuni; Leonardo José, Vaz; Orlando Francisco Amodeo, Bueno.

    2011-12-01

    Full Text Available Although the levels of processing framework have evolved over its nearly 40 years of existence, the essence of the idea has not changed from the original. The original article published in 1972 suggests that in the encoding stage of a stimulus, there is a series of processing hierarchies ranging fro [...] m the shallowest level (perceptual processing-the subject initially perceives the physical and sensory characteristics of the stimulus) to the deepest level (semantic processing-related to pattern recognition and extraction of meaning). The depth processing is associated with high levels of retention and long-term memory traces. After extensive research and criticism, the authors added several concepts that aided in a better understanding of levels of processing framework and the items that subjects can recall such as transfer-appropriate processing and robust encoding. However, there are still some gaps in this framework that call for new scientific investigations, ranging from experimental paradigms with lists of words with healthy or pathological conditions subject to neuroimaging studies to confirm, refute or improve the framework. The aim of this article is to review the publications (articles and book chapters) dating from the original article to the present day to better understand the mnemonic process in terms of levels of processing and to highlight some of its contributions.

  6. Molecular and Supramolecular Information Processing From Molecular Switches to Unconventional Computing

    CERN Document Server

    Katz, Evgeny

    2012-01-01

    Edited by a renowned and much cited chemist, this book covers the whole span of molecular computers that are based on non-biological systems. The contributions by all the major scientists in the field provide an excellent overview of the latest developments in this rapidly expanding area. A must-have for all researchers working on this very hot topic. Perfectly complements Biomolecular Information Processing, also by Prof. Katz, and available as a two-volume set.

  7. Information processing by simple molecular motifs and susceptibility to noise.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Lenive, Oleg; Filippi, Sarah; Stumpf, Michael P H

    2015-09-01

    Biological organisms rely on their ability to sense and respond appropriately to their environment. The molecular mechanisms that facilitate these essential processes are however subject to a range of random effects and stochastic processes, which jointly affect the reliability of information transmission between receptors and, for example, the physiological downstream response. Information is mathematically defined in terms of the entropy; and the extent of information flowing across an information channel or signalling system is typically measured by the 'mutual information', or the reduction in the uncertainty about the output once the input signal is known. Here, we quantify how extrinsic and intrinsic noise affects the transmission of simple signals along simple motifs of molecular interaction networks. Even for very simple systems, the effects of the different sources of variability alone and in combination can give rise to bewildering complexity. In particular, extrinsic variability is apt to generate 'apparent' information that can, in extreme cases, mask the actual information that for a single system would flow between the different molecular components making up cellular signalling pathways. We show how this artificial inflation in apparent information arises and how the effects of different types of noise alone and in combination can be understood. PMID:26333812

  8. Application of statistical process control to qualitative molecular diagnostic assays

    LENUS (Irish Health Repository)

    O'Brien, Cathal P.

    2014-11-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data.

  9. Space Based Multi-level Process Flow and Logistics Analysis

    Directory of Open Access Journals (Sweden)

    Zhou Qiu-Zhong

    2013-01-01

    Full Text Available In order to thoroughly promote the enterprise digital construction and meet the demand of production management, the space based multi-level process data organization model has been put forward. Firstly, according to the practical division situation of enterprise production space, the multi-level organization method of production space has been proposed. Then through analyzing the manufacturing process of the products in different space layers, the space based multi-level process flow idea has been presented. At the same time, the mathematical model and formalized expression of multi-level technological process have been established. Finally, the in-output material flow relationship between different levels process flow units has been analyzed and the source of input object as well as the disposition of the output object of various level process flow units has been put into detailed analysis. At the mean time, particular statistical sum and trace arithmetic are provided so as to profoundly illustrate the essence of manufacturing process in theory. As a result, the models proposed in this study are not only express the manufacturing process flow of the product in an intuitive and clear way, but also satisfy all types of demands of production management.

  10. Entendendo o Processo Molecular da Tumorigênese / Understanding the Molecular Process of Tumorigenesis

    Scientific Electronic Library Online (English)

    Laura Sterian, Ward.

    2002-08-01

    Full Text Available Nos últimos 25 anos, o reconhecimento dos mecanismos genético-moleculares implicados na gênese e na progressão do câncer tem permitido obter novos métodos de diagnóstico e de acompanhamento, redirecionando de forma drástica a terapêutica do paciente com neoplasia. Alguns marcadores moleculares já es [...] tão sendo utilizados na rotina e deverão prover testes sensíveis e específicos para o diagnóstico precoce, estadiamento e acompanhamento do paciente com câncer. As características moleculares de cada tumor deverão permitir predição do seu comportamento, ajudando a delinear estratégias terapêuticas mais efetivas. Apresentamos de forma didática os principais mecanismos controladores do ciclo celular e do crescimento, definindo a importância de oncogenes erroneamente ativados e de genes supressores tumorais perdidos ou não-funcionantes, dos genes envolvidos na programação e manutenção da vida celular e de outros genes que atuam no processo de tumorigênese. Os mecanismos de progressão tumoral, invasão e metastatização à distância são revistos enfatizando-se a aplicação prática do conhecimento a respeito de tais mecanismos. Lembramos o papel da instabilidade genética e dos fenômenos epigenéticos na definição fenotípica do câncer, sugerindo as aplicações da genética molecular na terapia gênica do câncer. Abstract in english Over the past 25 years, knowledge of the genetic-molecular mechanisms involved in the genesis and progression of cancer have helped to obtain new diagnostic and follow up methods that have drastically redirected the therapeutics used in patients with neoplasia. Some molecular markers are already bei [...] ng routinely used and should provide sensitive and specific tests for early diagnosis, staging and follow up of cancer patients. The molecular characteristics of each tumor should help in predicting its behavior and outlining more effective therapeutic strategies. We have used a didactic manner of presenting the main mechanisms that control the growth and cellular cycle, defined the importance of erroneously activated oncogenes and tumor suppressor genes that are lost or non-functioning, genes involved in programming and maintaining cell life as well as other genes that participate in the tumorigenic process. The mechanisms of tumor progression, invasion and metastasis are reviewed placing an emphasis on the practical application of the knowledge related to these mechanisms. The role of genetic instability and epigenetic changes in the definition of cancer phenotype have been underscored, suggesting the application of molecular genetics in the gene therapy of cancer.

  11. Discovering disease-disease associations by fusing systems-level molecular data

    OpenAIRE

    2013-01-01

    The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. ...

  12. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  13. Molecular dynamics simulations of cluster fission and fusion processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated...

  14. High-Level Waste System Process Interface Description

    Energy Technology Data Exchange (ETDEWEB)

    d' Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  15. Space Based Multi-level Process Flow and Logistics Analysis

    OpenAIRE

    Zhou Qiu-Zhong; Ning Guo-Liang; Xu Wan-Hong

    2013-01-01

    In order to thoroughly promote the enterprise digital construction and meet the demand of production management, the space based multi-level process data organization model has been put forward. Firstly, according to the practical division situation of enterprise production space, the multi-level organization method of production space has been proposed. Then through analyzing the manufacturing process of the products in different space layers, the space based mu...

  16. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  17. Molecular-Level Monte Carlo Simulation at Fixed Entropy.

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin

    Bratislava : Slovak Society of Chemical Engineering, 2006 - (Štefuca, V.; Markoš, J.), s. 288 ISBN 80-227-2409-2. [International Conference of Slovak Society of Chemical Engineering /33./. Tatranské Matliare (SK), 22.05.2006-26.05.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : monte-carlo method * fluid system * expansion processes Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Molecular sieve sensors for selective detection at the nanogram level

    Science.gov (United States)

    Bein, Thomas (Albuquerque, NM); Brown, Kelly D. (Albuquerque, NM); Frye, Gregory C. (Albuquerque, NM); Brinker, Charles J. (Albuquerque, NM)

    1992-01-01

    The invention relates to a selective chemical sensor for selective detection of chemical entities even at the nanogram level. The invention further relates to methods of using the sensor. The sensor comprises: (a) a piezoelectric substrate capable of detecting mass changes resulting from adsorption of material thereon; and (b) a coating applied to the substrate, which selectively sorbs chemical entities of a size smaller than a preselected magnitude.

  19. Molecular processes of transgenerational acclimation to a warming ocean

    KAUST Repository

    Veilleux, Heather D.

    2015-07-20

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change1, 2, 3, 4; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  20. Simulation of deacidification process by molecular distillation of deodorizer distillate

    Scientific Electronic Library Online (English)

    M. A., Marttinello; I., Leone; M., Pramparo.

    2008-12-01

    Full Text Available A computer program has been developed to simulate the deacidification of sunflower deodorizer distillate. The developed mathematical model is based on momentum, mass and energy balances. The Langmuir-Knudsen constitutive equation was used in order to represent the kinetics of evaporation and condens [...] ation. Physical and transport properties have been evaluated using correlations, which are functions of temperature and composition. The obtained partial differential equation system was solved by means of the Crank-Nicholson technique, and the calculation programs employed were developed and debugged using Matlab 7.1. The mathematical model was used to analyze the phenomena that take place during the molecular distillation process, and it also allowed studying the influence of operating variables on the performance of the process. In this investigation, we analyzed the influence of the operating temperature on purity and yield of the components. Trials at three evaporating temperatures (110 ºC, 130 ºC, and 140 ºC) were carried out in a KDL4 (UIC) molecular distillation apparatus to verify the model.

  1. High Level Waste (HLW) Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  2. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  3. Molecular control of electron and hole transfer processes: Theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M.D. [Brookhaven National Lab., Upton, NY (United States). Dept. of Chemistry; Cave, R.J. [Harvey Mudd Coll., Claremont, CA (United States). Dept. of Chemistry

    1996-02-01

    Recent decades have seen remarkable advances in microscopic understanding of electron transfer (ET) processes in widely ranging contexts, including solid-state, liquid solution, and complex biological assemblies. The primary goal of this chapter is to report recent advances in the modeling, calculation, and analysis of electronic coupling in complex molecular aggregates, thereby allowing an assessment of current progress toward the goal of molecular-level control and design. The control of electron transfer kinetics (i.e., enhancing desired processes, while inhibiting others) involves, of course, system energetics (especially activation and reorganization energies) as well as electronic coupling, which is most directly relevant only after the system has reached the appropriate point (or region) along the reaction coordinate. Nevertheless, to focus the discussion in this chapter, the authors will consider such energetics, and the associated molecular and solvent coordinates which control then, only to the extent that they bear on the analysis of the electronic coupling. In the following sections they first discuss the formulation of basic ET models, including the definition of initial and final states, the role of orbitals and 1-particle models in a many-electron context, the utility of various effective Hamiltonians, and the role of vibronic as well as purely electronic effects. With these theoretical tools in hand, they then examine very recent applications to complex molecular systems using the techniques of computational quantum chemistry, followed by detailed analysis of the numerical results. They then conclude with some comments regarding the current ``state of the art`` and remaining challenges.

  4. Levels of processing and Eye Movements: A Stimulus driven approach

    DEFF Research Database (Denmark)

    Mulvey, Fiona Bríd

    2014-01-01

    The aim of this research is to investigate the explication of levels of attention through eye movement parameters. Previous research from disparate fields have suggested that eye movements are related to cognitive processing, however, the exact nature of the relationship is unclear. Since eye movements can be controlled either by bottom up stimulus properties or by top down cognitive control, studies have compared eye movements in real world tasks and searched for indicators of cognitive load or level of attention when task demands increase. Extracting the effects of cognitive processing on eye movements from the effect of the changing nature of the stimulus is difficult. Characterising and confirming the parameters of levels of processing in eye movements requires measures with the explicit intention of systematically varying task demands while also taking account of individual differences. This series of studies attempts to provide explanatory information for previous findings that saccade amplitude and fixation duration are indicative of levels of processing and to isolate top down influences on eye movements with a stimulus driven approach. This approach involves developing measures suitable for studying individual differences in attention in large sample groups, using stimulus pairs which are similar in terms of bottom up properties but different in terms of higher level processing. These methods are presented in study 1, stimuli are developed and tested in Study 2. Study 3 uses these stimuli to investigate individual differences in levels of processing within the normal population using existing constructs and tests of cognitive style. Study 4 investigates these stimuli and the eye movements of a clinical group with known interruption to the dorsal stream of processing, and subsequent isolated difficulty with certain aspects of visual cognition. Results are presented in terms of the development of methods for assessing and tracking individual differences in cognition and subjectiveattentional states in real time through eye movement analysis.

  5. 0-level Vacuum Packaging RT Process for MEMS Resonators

    CERN Document Server

    Abelé, N; Hibert, C; Casset, F; Ancey, P; Ionescu, A

    2008-01-01

    A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging. It discusses mass production compatibility in terms of packaging stress during back-end plastic injection process. The packaging is done at room temperature making it fully compatible with IC-processed wafers and avoiding any subsequent degradation of the active devices.

  6. CELLmicrocosmos - Integrative cell modeling at the  molecular, mesoscopic and functional level

    OpenAIRE

    Sommer, Björn

    2012-01-01

    The modeling of cells is an important application area of Systems Biology. In the context of this work, three cytological levels are defined: the mesoscopic, the molecular and the functional level. A number of related approaches which are quite diverse will be introduced during this work which can be categorized into these disciplines. But none of these approaches covers all areas. In this work, the combination of all three aforementioned cytological levels is presented, realized by the CELLm...

  7. Effects of molecular structural variants on serum Krebs von den Lungen-6 levels in sarcoidosis

    Directory of Open Access Journals (Sweden)

    Shigemura Masahiko

    2012-07-01

    Full Text Available Abstract Background Serum Krebs von den Lungen-6 (KL-6, which is classified as human mucin-1 (MUC1, is used as a marker of sarcoidosis and other interstitial lung diseases. However, there remain some limitations due to a lack of information on the factors contributing to increased levels of serum KL-6. This study was designed to investigate the factors contributing to increased levels of serum KL-6 by molecular analysis. Methods Western blot analysis using anti-KL-6 antibody was performed simultaneously on the bronchoalveolar lavage fluid (BALF and serum obtained from 128 subjects with sarcoidosis. Results KL-6/MUC1 in BALF showed three bands and five band patterns. These band patterns were associated with the MUC1 genotype and the KL-6 levels. KL-6/MUC1 band patterns in serum were dependent on molecular size class in BALF. Significantly increased levels of serum KL-6, serum/BALF KL-6 ratio and serum soluble interleukin 2 receptor were observed in the subjects with influx of high molecular size KL-6/MUC1 from the alveoli to blood circulation. The multivariate linear regression analysis involving potentially relevant variables such as age, gender, smoking status, lung parenchymal involvement based on radiographical stage and molecular size of KL-6/MUC1 in serum showed that the molecular size of KL-6/MUC1 in serum was significant independent determinant of serum KL-6 levels. Conclusions The molecular structural variants of KL-6/MUC1 and its leakage behavior affect serum levels of KL-6 in sarcoidosis. This information may assist in the interpretation of serum KL-6 levels in sarcoidosis.

  8. Reducing process noise in superconducting helium liquid level probes

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, J.

    1995-03-01

    This memo presents methods to reduce the process noise accompanying the use of superconducting helium liquid level probes in a splashing environment. The development of these methods followed unsatisfactory operation of unmodified, commercially available, level probes used in each of the 24 valve box dewars of Tevatron refrigerators. The dewars function both as reservoirs of refrigeration and as phase separators at the inlet of the cold compressors used in subatmospheric magnet cooling operation.

  9. Molecular-Level Simulation of Reacting Systems in Bulk and Confinement.

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Smith, W. R.; Brennan, J. K.

    Praha : Process Engineering Publisher, 2004, s. 502. ISBN 80-86059-40-5. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha (CZ), 22.08.2004-26.08.2004] Institutional research plan: CEZ:AV0Z4072921 Keywords : molecular simulation * bulk and confinement * reacting systems Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Energy conversion processes based on molecular excited states

    Science.gov (United States)

    Meyer, T. J.

    1987-03-01

    The major emphasis of our DOE-supported research efforts remains the use of molecular excited states in energy conversion processes. In the past year we have made significant progress in the distinct areas of: (1) electronic structure, photophysical and photochemical properties of MLCT-based excited states, (2) design and characterization of metallopolymeric films as a basis for photoelectrodes containing MLCT-based chromophores, and (3) excited state photoelectrochemical cells based on excited state redox quenching. We have continued to develop synthetic routes to new MLCT excited states, most recently to a series of complexes. Systematic variations (from electron-donating to electron-withdrawing properties) allow control to be gained over changes in emission energies (E sub em), excited state redox potentials, ground state absorption energies, and radiative and nonradiative decay rate constants and perhaps, most importantly, open up two new families of excited states for photoredox applications.

  11. Collision processes of electrons with molecular hydrogen ions

    International Nuclear Information System (INIS)

    Collision processes of electrons with trapped ions of mass numbers 1, 2, 3, 5, 7, 10, 14 and 20 are investigated in the concentric electron-beam device. Trapping characteristics are measured and lead to the conclusion that all the ions in the trap are hydrogenic. Cross section functions for the electron impact dissociation of H2+, H3+ and H5+ are measured. the shape of the H2+ dissociation function indicates that the molecular ions are trapped for a sufficiently long time for vibrational decay to upsilon = 0 to occur. There is good agreement between the present low energy H3+ dissociation data and previous work. Dissociation cross sections for H5+ and the temperature dependence of the e-H5+ recombination rate are measured. The latter is in good agreement with previous room temperature data and facilitates the prediction of the recombination rate in the Jovian ionosphere. (author)

  12. Gray-level 3D resist process and its application

    Science.gov (United States)

    Ting, Yung-Chiang; Shy, Shyi-Long; Liu, Andy; Wu, Cheng-San; Chen, C. C.

    2012-03-01

    Gray level 3D resist process were developed by using negative e-beam resist and multiple coating multiple electron beam wafer direct write alignment, and are now going into be used to create complex 3D structures in thick resist. Gray level resist process to create 3D structure in thick resist can be used as mold for manufacturing Fly's-eye lens array, Fresnel lens, Prism, Flat prism and Light guiding plate. Such optical devices can be used for TFT LCD display, solar concentrator and LED.

  13. Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes

    Directory of Open Access Journals (Sweden)

    Deborah F. Kelly

    2013-03-01

    Full Text Available Here we present new applications for silicon nitride (SiN membranes to evaluate biological processes. We determined that 50-nanometer thin films of SiN produced from silicon wafers were sufficiently durable to bind active rotavirus assemblies. A direct comparison of SiN microchips with conventional carbon support films indicated that SiN performs equivalent to the traditional substrate to prepare samples for Electron Microscopy (EM imaging. Likewise, SiN films coated with Ni-NTA affinity layers concentrated rotavirus particles similarly to affinity-coated carbon films. However, affinity-coated SiN membranes outperformed glow-discharged conventional carbon films 5-fold as indicated by the number of viral particles quantified in EM images. In addition, we were able to recapitulate viral uncoating and transcription mechanisms directed onto the microchip surfaces. EM images of these processes revealed the production of RNA transcripts emerging from active rotavirus complexes. These results were confirmed by the functional incorporation of radiolabeled nucleotides into the nascent RNA transcripts. Collectively, we demonstrate new uses for SiN membranes to perform molecular surveillance on life processes in real-time.

  14. Free energy calculations using dual-level Born-Oppenheimer molecular dynamics

    Science.gov (United States)

    Retegan, Marius; Martins-Costa, Marilia; Ruiz-López, Manuel F.

    2010-08-01

    We describe an efficient and accurate method to compute free energy changes in complex chemical systems that cannot be described through classical molecular dynamics simulations, examples of which are chemical and photochemical reactions in solution, enzymes, interfaces, etc. It is based on the use of dual-level Born-Oppenheimer molecular dynamics simulations. A low-level quantum mechanical method is employed to calculate the potential of mean force through the umbrella sampling technique. Then, a high-level quantum mechanical method is used to estimate a free energy correction on selected points of the reaction coordinate using perturbation theory. The precision of the results is comparable to that of ab initio molecular dynamics methods such as the Car-Parrinello approach but the computational cost is much lower, roughly by two to three orders of magnitude. The method is illustrated by discussing the association free energy of simple organometallic compounds, although the field of application is very broad.

  15. Free energy calculations using dual-level Born-Oppenheimer molecular dynamics

    International Nuclear Information System (INIS)

    We describe an efficient and accurate method to compute free energy changes in complex chemical systems that cannot be described through classical molecular dynamics simulations, examples of which are chemical and photochemical reactions in solution, enzymes, interfaces, etc. It is based on the use of dual-level Born-Oppenheimer molecular dynamics simulations. A low-level quantum mechanical method is employed to calculate the potential of mean force through the umbrella sampling technique. Then, a high-level quantum mechanical method is used to estimate a free energy correction on selected points of the reaction coordinate using perturbation theory. The precision of the results is comparable to that of ab initio molecular dynamics methods such as the Car-Parrinello approach but the computational cost is much lower, roughly by two to three orders of magnitude. The method is illustrated by discussing the association free energy of simple organometallic compounds, although the field of application is very broad.

  16. Level sets and extrema of random processes and fields

    CERN Document Server

    Azais, Jean-Marc

    2009-01-01

    A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics a...

  17. 0-level Vacuum Packaging RT Process for MEMS Resonators

    OpenAIRE

    Abelé, N.; Grogg, D.; HIBERT, C; F. Casset; Ancey, P.; Ionescu, A

    2008-01-01

    A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging. It discusses mass production compatibility in terms of packaging stress during back-e...

  18. Molecular rocket and implantation reactions: shock-induced phenomena at atomic and molecular levels

    International Nuclear Information System (INIS)

    Molecular rocket reactions are unique but contain important features. This paper deals with their relation to shock-induced phenomena. Extraction of metallocene from a cavity of cyclodextrin is assisted by shock of collision and is followed by rearrangement reactions. Severeness of the rearrangement depends on energy. Collisions of implanted atoms also extract metallocene molecules from inclusion compounds to cause rearrangement reactions. This is ascribed to a shock-induced phenomenon. Collision cascade enhancement of the yield in implantation reaction is closely related to shock waves generated after the implanted atom. Forward pressure pushes the implanted atom and reactant molecules into the microcrack formed in implantation in metal ?-diketonates. In the case of metallocene implantation, however, another mechanism involving an increased number of replacement paths should be considered. (orig.)

  19. Calculation of energy levels and wavefunctions of hydrogen molecular ion using B-splines function

    International Nuclear Information System (INIS)

    Energy levels and wavefunctions of the ground state and the first excited state of hydrogen molecular ion are calculated by solving stationary Schrodinger equation with B-splines functions. By adopting nuclear positions as knots of B-splines basis, high accuracy of energy levels of the ground state and the first excited state for hydrogen molecular ion can be reached even for the larger internuclear separations, and our ? dependent radial wavefunctions of the ground state are in a good agreement with those computed from GAUSSIAN chemistry software. (authors)

  20. High-Level waste process and product data annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.

    1996-02-13

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  1. High-Level waste process and product data annotated bibliography

    International Nuclear Information System (INIS)

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references

  2. Molecular dynamics simulations of cluster fission and fusion processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual separation of the daughter fragments begins and/or forming a "neck" between the separating fragments. A novel algorithm for modeling the cluster growth process is described. This approach is based on dynamic search for the most stable cluster isomers and allows one to find the optimized cluster geometries, as well as their essential formation mechanisms. Cluster growth paths for Lennard–Jones clusters have been investigated for cluster sizes of up to 150 atoms. All known global minima structures of the Lennard–Jones clusters are found.

  3. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects

    Energy Technology Data Exchange (ETDEWEB)

    Soetaert, Anneleen [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: anneleen.soetaert@ua.ac.be; Vandenbrouck, Tine [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Ven, Karlijn van der [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Maras, Marleen [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Remortel, Piet van [Department of Mathematics and Informatics, Intelligent Systems Laboratory, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp (Belgium); Blust, Ronny [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim M. de [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2007-07-20

    DNA microarrays offer great potential in revealing insight into mechanistic toxicity of contaminants. The aim of the present study was (i) to gain insight in concentration- and time-dependent cadmium-induced molecular responses by using a customized Daphnia magna microarray, and (ii) to compare the gene expression profiles with effects at higher levels of biological organization (e.g. total energy budget and growth). Daphnids were exposed to three cadmium concentrations (nominal value of 10, 50, 100 {mu}g/l) for two time intervals (48 and 96 h). In general, dynamic expression patterns were obtained with a clear increase of gene expression changes at higher concentrations and longer exposure duration. Microarray analysis revealed cadmium affected molecular pathways associated with processes such as digestion, oxygen transport, cuticula metabolism and embryo development. These effects were compared with higher-level effects (energy budgets and growth). For instance, next to reduced energy budgets due to a decline in lipid, carbohydrate and protein content, we found an up-regulated expression of genes related to digestive processes (e.g. {alpha}-esterase, cellulase, {alpha}-amylase). Furthermore, cadmium affected the expression of genes coding for proteins involved in molecular pathways associated with immune response, stress response, cell adhesion, visual perception and signal transduction in the present study.

  4. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects

    International Nuclear Information System (INIS)

    DNA microarrays offer great potential in revealing insight into mechanistic toxicity of contaminants. The aim of the present study was (i) to gain insight in concentration- and time-dependent cadmium-induced molecular responses by using a customized Daphnia magna microarray, and (ii) to compare the gene expression profiles with effects at higher levels of biological organization (e.g. total energy budget and growth). Daphnids were exposed to three cadmium concentrations (nominal value of 10, 50, 100 ?g/l) for two time intervals (48 and 96 h). In general, dynamic expression patterns were obtained with a clear increase of gene expression changes at higher concentrations and longer exposure duration. Microarray analysis revealed cadmium affected molecular pathways associated with processes such as digestion, oxygen transport, cuticula metabolism and embryo development. These effects were compared with higher-level effects (energy budgets and growth). For instance, next to reduced energy budgets due to a decline in lipid, carbohydrate and protein content, we found an up-regulated expression of genes related to digestive processes (e.g. ?-esterase, cellulase, ?-amylase). Furthermore, cadmium affected the expression of genes coding for proteins involved in molecular pathways associated with immune response, stress response, cell adhesion, visual perception and signal transduction in the present study

  5. In situ sensing and modeling of molecular events at the cellular level

    Science.gov (United States)

    Yang, Ruiguo

    We developed the Atomic Force Microscopy (AFM) based nanorobot in combination with other nanomechanical sensors for the investigation of cell signaling pathways. The AFM nanorobotics hinge on the superior spatial resolution of AFM in imaging and extends it into the measurement of biological processes and manipulation of biological matters. A multiple input single output control system was designed and implemented to solve the issues of nanomanipulation of biological materials, feedback, response frequency and nonlinearity. The AFM nanorobotic system therefore provide the human-directed position, velocity and force control with high frequency feedback, and more importantly it can feed the operator with the real-time imaging of manipulation result from the fast-imaging based local scanning. The use of the system has taken the study of cellular process at the molecular scale into a new level. The cellular response to the physiological conditions can be significantly manifested in cellular mechanics. Dynamic mechanical property has been regarded as biomarkers, sometimes even regulators of the signaling and physiological processes, thus the name mechanobiology. We sought to characterize the relationship between the structural dynamics and the molecular dynamics and the role of them in the regulation of cell behavior. We used the AFM nanorobotics to investigate the mechanical properties in real-time of cells that are stimulated by different chemical species. These reagents could result in similar ion channel responses but distinctive mechanical behaviors. We applied these measurement results to establish a model that describes the cellular stimulation and the mechanical property change, a "two-hit" model that comprises the loss of cell adhesion and the initiation of cell apoptosis. The first hit was verified by functional experiments: depletion of Calcium and nanosurgery to disrupt the cellular adhesion. The second hit was tested by a labeling of apoptotic markers that were revealed by flow cytometry. The model would then be able to decipher qualitatively the molecular dynamics infolded in the regulation of cell behavior. To decipher the signaling pathway quantitatively, we employed a nanomechanical sensor at the bottom of the cell, quartz crystal microbalance with energy dissipation monitoring (QCM-D) to monitor the change at the basal area of the cell. This would provide the real time focal adhesion information and would be used in accordance with the AFM measurement data on the top of the cell to build a more complete mechanical profile during the antibody induced signaling process. We developed a model from a systematic control perspective that considers the signaling cascade at certain stimulation as the controller and the mechanical and structural interaction of the cell as the plant. We firstly derived the plant model based on QCM-D and AFM measurement processes. A signaling pathway model was built on a grey box approach where part of the pathway map was delineated in detail while others were condensed into a single reaction. The model parameters were obtained by extracting the mechanical response from the experiment. The model refinements were conducted by testing a series of inhibition mechanisms and comparing the simulation data with the experimental data. The model was then used to predict the existences of certain reactions that are qualitatively reported in the literature.

  6. INTEGRATING CMMI MATURITY LEVEL-3 IN TRADITIONAL SOFTWARE DEVELOPMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Reena Dadhich

    2012-02-01

    Full Text Available CMMI defines the practices that are specially implemented by software development businesses to achievesuccess. Practices includes topics that direct about eliciting and managing requirements, decision making,measuring performance, planning work, handling risks, and more. In this paper we will discuss CapabilityMaturity Model Integration (CMMI software process improvement maturity model and the process areasat various levels of CMMI in brief. The main emphasis of the paper is to discuss about the RiskManagement (RSKM which is one of process area at CMMI level-3. The purpose of Risk Management(RSKM processes is to identify potential problems before they occur so that risk-handling activities can beplanned and invoked as needed across the life of the product or project to mitigate adverse impacts onachieving objectives. The main aim of the paper is to analyse the effect of integrating the CMMI maturitylevel-3(process area -RSKM with the traditional software development process. It represents an attempt toorganize the sources of software development risk around the principal aspects of the softwaredevelopment cycle.

  7. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  8. Commercial low level waste processing in a competitive market

    International Nuclear Information System (INIS)

    In most nations with active nuclear establishments, Low Level Radioactive Waste (LLW) is treated, packaged and disposed of by a single governmental organization or corporation that operates in a monopoly situation. In the US, LLW generated from utility and industry sources is processed at various commercial enterprises throughout the country and buried in commercially owned and operated LLW disposal facilities. These centralized waste processing or 'fixed base' companies provide their services in a competitive, free market environment. This competition has led to the development and use of effective technologies for waste volume reduction. The actual techniques used are chosen based on cost impact to company's financial performance rather than budget considerations

  9. Molecular processes from the AGB to the PN stage

    CERN Document Server

    Garcia-Hernandez, D A

    2011-01-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~100-10.000 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  10. Elucidation of polymer induced DNA condensation. Visualisation at the single molecular level

    International Nuclear Information System (INIS)

    DNA condensation is a phenomenon that has stimulated interest from biologists, physicists, and polymer chemists for decades. At the cellular level, this process is key to the packing of DNA within the nuclear envelope, and the exposure of the appropriate nucleic acid sequences in order for transcription to occur, and proteins to be produced. The advent of gene therapy has led to an invigoration of this subject area. In order to successfully deliver to, and transfect target cells, many delivery vectors condense the therapeutic DNA into small compact particles. The nature of these particles have a considerable influence on the ultimate expression of the administered nucleic acid material. In addition, at its most fundamental, DNA itself is a classical polyelectrolyte polymer, the behaviour of which has applicability to other charged polymeric systems. There are two core interwound themes to this investigation; the visualisation of DNA condensate morphology at ultra-resolution, and the elucidation of the mechanisms of formation of these structures. The technique of atomic force microscopy is central to these investigations. Methodologies have been devised allowing the visualisation of the tertiary structure and conformational behaviour of individual DNA condensates in near in situ conditions. Condensation of the nucleic acid material has been induced by two classes of cation; small molecular cations, like those found within eukaryotic cells, and a range of cationic polymers. The cationic polymers investigated all have considerable potential as gene delivery vectors. The resultant DNA condensates have been assessed and contrasted in terms of their tertiary morphology, lateral dimensions, and structural volume. Assessments have also been made regarding the influence of the molecular architecture of the cationic moiety and the nature of the input nucleic acid material on the resultant DNA condensates. With regard to the elucidation of the mechanisms of DNA condensate formation, this question has been addressed in two ways. Firstly, in an attempt to form intermediates of the condensation process, DNA has been exposed to cationic moieties over a range of cationic charge to DNA nucleotide ratios. The morphologies of the resulting complexes have been analysed, and hypotheses have been constructed, regarding the mechanisms of DNA condensate formation. The second methodology adopted involved the visualisation of the formation of DNA condensates in real time. DNA-cation complexes have been visualised in a near in situ environment, allowing dynamic tertiary conformational change of individual DNA condensates to be observed. The investigations presented here are among the first to utilise atomic force microscopy, operating in an aqueous environment, to elucidate DNA condensate morphology and dynamic conformational change in real time, and to apply atomic force microscopy in the characterisation of potential gene delivery vectors. (author)

  11. Mixing Processes in High-Level Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments

  12. Mixing Processes in High-Level Waste Tanks - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  13. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  14. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    International Nuclear Information System (INIS)

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisions for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process

  15. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    Energy Technology Data Exchange (ETDEWEB)

    D.L. McGregor

    2000-12-20

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisions for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process.

  16. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces. Discussion will start with an examination of how scanning probe techniques are being used to characterize the TiO2(110) surface in ways that are relevant to photocatalysis. We will then discuss specific classes of photochemical reaction on TiO2(110) for which SPM has proven indispensible in providing unique molecular-level insights, and conclude with discussion of future areas in which SPM studies may prove valuable to photocatalysis on TiO2. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. I.L. was partially supported by a Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative project. PNNL is a multiprogram national laboratory operated for DOE by Battelle.

  17. Identification of mycobacteria in peat moss processing plants : application of molecular biology approaches

    Energy Technology Data Exchange (ETDEWEB)

    Cayer, M.P.; Veillette, M.; Pageau, P.; Cormier, Y.; Duchaine, C.; Meriaux, A. [Laval Univ., Quebec City, PQ (Canada). Inst. Universitaire de pneumologie et de cardiologie; Veillette, M.; Meriaux, A.; Cormier, Y. [Laval Univ., Quebec City, PQ (Canada). Dept. of Biology and Microbiology; Hamelin, R.; Bergeron, M.J. [Natural Resources Canada, Sainte-Foy, PQ (Canada). Canadian Forest Service

    2007-01-15

    Health concerns regarding environmental mycobacteria has led to the development of exposure assessment methods for the evaluation of certain workplaces where the presence of these agents is suspected. Hypersensitivity pneumonitis (HP) has been described in peat moss workers who are regularly exposed to significant levels of bioaerosols in peat moss processing plants. Although mycobacteria have been cultured from peat moss, plant workers exposure to mycobacterial bioaerosols has never been studied. This article presented the results of a study that evaluated the presence of mycobacteria in air samples from peat moss processing plants using molecular biology approaches (cloning-sequencing and polymerase chain reaction (PCR)) and the workers exposure using immunoglobin G (IgG) complexes to mycobacteria. It also compared species detected in air samples and in peat moss. Two peat moss processing plants were chosen among 14 previously studied and a total of 49 clones were sequenced. Real-time PCR was also performed on the same air samples to evaluate the airborne concentration of mycobacteria and estimate exposure levels. The article discussed the materials and methods used in the study, the results of the study, and subsequent discussion of the results. It was concluded that peat moss processing plants workers are exposed to mycobacteria in addition to other biological agents. It was suggested that further studies are needed to confirm the specificity of the mycobacterial IgG. 34 refs., 2 tabs., 1 fig.

  18. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels in the hydroceramic grout process (i.e., 21 m) appears to be about the same as that estimated by the Direct Cementitious Waste Process in 1998, for which a conceptual design was developed. Some of the conceptual design efforts in the 1998 study may be applicable to the stabilizer processes addressed in this EDF. (e) The gamma radiation fields near the process vessels handling HLW calcine would vary from a range of about 300-350 R/hr at a distance of 2.5 cm from the side of the vessels to a range of about 50-170 R/hr at a distance of 100 cm from the side of the vessels. The calculations were made for combined calcine, which was defined as the total HLW calcine inventory uniformly mixed. (f) The gamma radiation fields near the stabilized waste in canisters would range from about 25-170 R/hr at 2.5 cm from the side of the canister and 5-35 R/hr at 100 cm from the side of the canister, depending on the which bin set was the source of calcine.

  19. Elucidating Redox-Level Dispersion and Local Dielectric Effects within Electroactive Molecular Films

    OpenAIRE

    Buono, PR; Davis, JJ

    2014-01-01

    The electron exchange between a redox-active molecular film and its underlying electrode can be cleanly tracked, in a frequency-resolved manner, through associated capacitive charging. If acquired data is treated with a classical (non quantum) model, mathematically equivalent to a Nernst distribution for one redox energy level, redox site coverage is both underestimated and environmentally variable. This physically unrealistic model fails to account for the energetic dispersion intrinsically ...

  20. Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems

    OpenAIRE

    Analytis, JG; Blundell, SJ; Ardavan, A.

    2004-01-01

    The Hofstadter butterfly is the energy spectrum of an infinite square lattice, plotted as a function of the magnetic field. We illustrate a method of calculating similar spectra for finite lattices in a magnetic field, using methods that consider the appropriate molecular orbitals, and find that the spectra resemble the Hofstadter butterfly. We relate the bonding and antibonding orbitals used to describe small systems to the Landau levels of the infinite system. This approach provides an unus...

  1. Molecular Electronic Level Alignment at Weakly Coupled Organic Film/Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jin; Feng, Min; Dougherty, Daniel B.; Sun, Hao; Petek, Hrvoje

    2014-10-28

    Electronic level alignment at interfaces of molecular materials with inorganic semiconductors and metals controls many interfacial phenomena. How the intrinsic properties of the interacting systems define the electronic structure of their interface remains one of the most important problems in molecular electronics and nanotechnology that can be solved through a combination of surface science experimental techniques and theoretical modeling. In this article, we address this fundamental problem through experimental and computational studies of molecular electronic level alignment of thin films of C6F6 on noble metal surfaces. The unoccupied electronic structure of C6F6 is characterized with single molecule resolution using low-temperature scanning tunneling microscopy-based constant-current distance-voltage spectroscopy. The experiments are performed on several noble metal surfaces with different work functions and distinct surface-normal projected band structures. In parallel, the electronic structures of the quantum wells (QWs) formed by the lowest unoccupied molecular orbital state of the C6F6 monolayer and multilayer films and their alignment with respect to the vacuum level of the metallic substrates are calculated by solving the Schrödinger equation for a semiempirical one-dimensional (1D) potential of the combined system using input from density functional theory. Our analysis shows that the level alignment for C6F6 molecules bound through weak van der Waals interactions to noble metal surfaces is primarily defined by the image potential of metal, the electron affinity of the molecule, and the molecule surface distance. We expect the same factors to determine the interfacial electronic structure for a broad range of molecule/metal interfaces.

  2. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems both in vacuum or air, and in aqueous solution under electrochemical potential control. Multifarious patterns of rectified electron flow from the negatively to the positively biased electrode arise. The ele...

  3. Tunable high-power terahertz radiation generation in three-level atomic and molecular systems

    International Nuclear Information System (INIS)

    A scheme is presented for generation of powerful coherent terahertz radiation by multiphoton resonant excitation of three-level hydrogenlike atoms and homonuclear diatomic molecules or molecular ions with strong laser pulses. The results of analytical and numerical investigations of the problem show that with the proposed mechanism one can achieve the implementation of widely tunable powerful terahertz sources, which may open new perspectives for terahertz science and its applications.

  4. Oak Ridge Y-12 Plant Emergency Action Level (EAL) Process

    Energy Technology Data Exchange (ETDEWEB)

    Bailiff, E.G.; Bolling, J.D.

    2000-08-01

    This report establishes requirements and standard methods for the development and maintenance of the Emergency Action Level (EAL) Process used by all lead and event contractors for emergency planning and preparedness. The EAL process ensures a technically defensible approach to emergency categorization/classification in accordance with DOE Order 151.1. The instructions provided in this document include methods and requirements for the development and approval of the EAL process. EALs are developed to cover events inside and outside the Y-12 Plant and to allow the Emergency Response Organization (ERO) to classify or reclassify events promptly based on specific indicators. This report is divided into the following 11 subsections: (1) EAL Process, (2) Categorization/Classification System for Operational Emergencies, (3) Development of EALs, (4) Barrier Analysis for EALs, (5) Symptom-Based and Event-Based EALs, (6) Other Considerations, (7) Integration of EALs with Normal and Off-Normal Operations, (8) EAL Manual, (9) Testing EALs for Completeness, (10) Training and Implementation of EALs, and (11) Configuration Management.

  5. Process modeling of low-level mixed waste vitrification systems

    International Nuclear Information System (INIS)

    Chemical process simulators have the potential to combine, in a single calculation, thermodynamic modeling of glass melters with vitrification system material and energy balances. These commercially-available computer codes have been developed for process simulation in the chemical and petroleum industries, i.e., processes which occur primarily in the vapor and liquid phases. As such, they are not oriented towards solid-liquid transition phenomena. They are capable of tracking solids, however, and contain algorithms for complex phase and chemical equilibrium similar to those which underlie codes used in metallurgical thermodynamics. One such chemical process simulator, ASPEN+trademark, is being used to model melter thermodynamics for low-level mixed waste (LLMW) vitrification systems. Such systems are now under development by the Savannah River Technology Center (SRTC) in cooperation with the DOE/Industrial Center for Vitrification Research at Clemson University. This paper reports glass melter model calculations using ASPEN+trademark and compares this tool to STGSOL, a modeling tool which is widely used for high-temperature thermodynamic equilibrium calculations for smelters and glass melters

  6. An algebraic approach for simultaneous solution of process and molecular design problems

    Scientific Electronic Library Online (English)

    S., Bommareddy; N. G., Chemmangattuvalappil; C. C., Solvason; M. R., Eden.

    2010-09-01

    Full Text Available The property integration framework has allowed for simultaneous representation of processes and products from a properties perspective and thereby established a link between molecular and process design problems. The simultaneous approach involves solving two reverse problems. The first reverse prob [...] lem identifies the property targets corresponding to the desired process performance. The second reverse problem is the reverse of a property prediction problem, which identifies the molecular structures that match the targets identified in the first problem. Group Contribution Methods (GCM) are used to form molecular property operators that will be used to track properties. Earlier contributions in this area have worked to include higher order estimation of GCM for solving the molecular design problem. In this work, the accuracy of the property prediction is further enhanced by improving the techniques to enumerate higher order groups. Incorporation of these higher order enumeration techniques increases the efficiency of property prediction and thus the application range of the group contribution methods in molecular design problems. Successful tracking of properties is the key in applying the reverse problem formulation for integrated process and product design problems. An algebraic technique has been developed for solving process and molecular design problems simultaneously. Since both process and molecular property operators target the same optimum process performance, the set of inequality expressions can be solved simultaneously to identify the molecules that meet the desired process performance. Since this approach is based on an algebraic algorithm, any number of properties can be tracked simultaneously.

  7. Effects of molecular structural variants on serum Krebs von den Lungen-6 levels in sarcoidosis

    OpenAIRE

    Shigemura Masahiko; Nasuhara Yasuyuki; Konno Satoshi; Shimizu Chikara; Matsuno Kazuhiko; Yamguchi Etsuro; Nishimura Masaharu

    2012-01-01

    Abstract Background Serum Krebs von den Lungen-6 (KL-6), which is classified as human mucin-1 (MUC1), is used as a marker of sarcoidosis and other interstitial lung diseases. However, there remain some limitations due to a lack of information on the factors contributing to increased levels of serum KL-6. This study was designed to investigate the factors contributing to increased levels of serum KL-6 by molecular analysis. Methods Western blot analysis using anti-KL-6 antibody was performed s...

  8. Molecular cytogenetics in an assessment of DNA damage and repair processes

    International Nuclear Information System (INIS)

    Mutagenesis is one of the simplest and most effective methods for inducing plant variability. The mechanisms, which evoke variability, are chromosomal aberrations, arising from DNA double strand breaks (DSB). The frequency of chromosomal aberrations is correlated with the level of DNA damage and effectivity of cell repair system. Chromosomal aberrations can be detected using simple cytogenetic methods, however to assess the direct DNA damage and the effectivity of repair processes during recovery time after mutagenic treatment. in nucleus molecular methods are required. Comet assay and TUNEL test were successfully adapted and accepted for the detection of DNA fragmentation in mutagenesis. TUNEL test, based on labelling the 3'OH ends of DNA with fluorochrome - conjugated dUTP by terminal deoxynucleotidyl transferase (TdT) allows to distinguish the nuclei with DNA fragmentation. Another method - comet assay, based on the migration of damaged DNA fragments in electric field and forming an image similar to comet, is used for analysis of the level of DNA damage in single nucleus. Fluorescent in situ hybridization (FISH), provides new tools for the identification of individual chromosomes/chromosome arms participating in formation of the aberration. An advantage of FISH is possibility to understand the composition of the micronuclei thus improving an existing micronucleus test. An application of region-specific DNA probes (telomere and centromere) as well as rDNA as probes enables the analysis of the break points in the chromosomes leading to micronuclei. The application of the molecular cytogenetic methods will be presented as the analysis of the level of DNA damage and effectivity of repair processes in Hordeum vulgare cells (2n=14) after mutagenic treatment with ?-rays, MH, and MNU in different postincubation times. FISH with rDNA and centromeric/telomeric DNA as probes, to evaluate chromosome aberrations in barley cells caused by these mutagens will show the differences between action of these mutagens. (author)

  9. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation conditions, is rather small, of about 1 kGy, that makes the use of electron beam processing very economically attractive in this type of application. Thus, if all auxiliary systems are made and suitable adapted, the estimation of processing rate is 3600 kg/h. The acrylamide - acrylic acid copolymers are used in the range of 4 to 8 g per 1 m3 of wastewater. A vegetable oil plant which processes 100 000 ton/year of sunflower produces about 1 260 000 m3/year wastewater. The necessary amount of polyelectrolytes is 315-630 kg/year. This value can by ensured by our technology in a very short time, from 315 s to 630 s. (authors)

  10. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass resolution (used 400.000 at m/z 400 Da) and mass accuracy (? 1 ppm), simultaneously providing molecular level details of thousands of compounds. The characteristics and differences of the FTICR-MS spectra with as many as ten or more peaks at each nominal mass are discussed: heated samples showed considerable higher intensities of even numbered peaks. An in-house developed, automated post processing was used for further exploitation of the data with the aim of an unambiguous assignment of as many peaks as possible. Obtained mass lists were transformed for sorting and preparation/ interpretation of graphics like Kendrick and van Krevelen plots. The heat-treated solid samples show decreasing C/N ratios and the formation cyclic and N-heterocyclic compounds in good agreement among the various methods (Py-FIMS and C- and N-XANES). Detailed insight into the hot-water extracts by FTICR-MS showed clear qualitative as well as quantitative changes in the number and the intensity of nitrogen and nitrogen + sulfur containing compounds, respectively, which generally became enriched under soil heating. This demonstrates for the first time, that not only the bulk SOM is affected in structure by heat impact but also the more mobile DOM. We assume, that heat impact volatilizes and oxidizes parts of the organic substances is as expected but another part of the substances incorporates (further) nitrogen atom(s) similar to the generation of new compounds under the conditions of plasma etching in nitrogen atmosphere. This would explain to some extent, why soils are e.g. after fire clearing of vegetation are highly fertile for a short period (better plant acceptable compounds) but become more infertile in the long run, especially under tropical conditions with frequently heavy rain that would lead to an increased leaching of compounds with higher polarity.

  11. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.

    Science.gov (United States)

    Coughlin, Jessica E; Henson, Zachary B; Welch, Gregory C; Bazan, Guillermo C

    2014-01-21

    Organic semiconductors incorporated into solar cells using a bulk heterojunction (BHJ) construction show promise as a cleaner answer to increasing energy needs throughout the world. Organic solar cells based on the BHJ architecture have steadily increased in their device performance over the past two decades, with power conversion efficiencies reaching 10%. Much of this success has come with conjugated polymer/fullerene combinations, where optimized polymer design strategies, synthetic protocols, device fabrication procedures, and characterization methods have provided significant advancements in the technology. More recently, chemists have been paying particular attention to well-defined molecular donor systems due to their ease of functionalization, amenability to standard organic purification and characterization methods, and reduced batch-to-batch variability compared to polymer counterparts. There are several critical properties for efficient small molecule donors. First, broad optical absorption needs to extend towards the near-IR region to achieve spectral overlap with the solar spectrum. Second, the low lying highest occupied molecular orbital (HOMO) energy levels need to be between -5.2 and -5.5 eV to ensure acceptable device open circuit voltages. Third, the structures need to be relatively planar to ensure close intermolecular contacts and high charge carrier mobilities. And last, the small molecule donors need to be sufficiently soluble in organic solvents (?10 mg/mL) to facilitate solution deposition of thin films of appropriate uniformity and thickness. Ideally, these molecules should be constructed from cost-effective, sustainable building blocks using established, high yielding reactions in as few steps as possible. The structures should also be easy to functionalize to maximize tunability for desired properties. In this Account, we present a chronological description of our thought process and design strategies used in the development of highly efficient molecular donors that achieve power conversion efficiencies greater than 7%. The molecules are based on a modular D(1)-A-D(2)-A-D(1) architecture, where A is an asymmetric electron deficient heterocycle, which allowed us to quickly access a library of compounds and develop structure-property-performance relationships. Modifications to the D1 and D2 units enable spectral coverage throughout the entire visible region and control of HOMO energy levels, while adjustments to the pendant alkyl substituents dictate molecular solubility, thermal transition temperatures, and solid-state organizational tendencies. Additionally, we discuss regiochemical considerations that highlight how individual atom placements can significantly influence molecular and subsequently device characteristics. Our results demonstrate the utility of this architecture for generating promising materials to be integrated into organic photovoltaic devices, call attention to areas for improvement, and provide guiding principles to sustain the steady increases necessary to move this technology forward. PMID:23984626

  12. Empoderamiento: Proceso, Nivel y Contexto Empowerment: Process, Level, and Context

    Directory of Open Access Journals (Sweden)

    Carmen Silva

    2004-11-01

    Full Text Available En este artículo se discute el fenómeno del empoderamiento y se analiza la distinción teórica entre proceso y resultado de empoderamiento (Zimmerman, 2000. A partir de las formulaciones de este autor y el aporte de una perspectiva interaccional (Bronfenbrenner, 1987, se sostiene que aquella diferenciación es poco viable en términos objetivos y absolutos o de esencia, pero sí útil, en términos analíticos, desde la percepción de la propia comunidad involucrada, que debe ser comprendida por el colaborador externo. También se propone establecer una diferencia entre contexto y nivel de empoderamiento, y analizar el contexto del fenómeno en los niveles individual, organizacional y comunitario del agregado social, lo que aporta claridad a su definición. De esta manera adquiere centralidad la concepción del empoderamiento como proceso en sucesivos contextos que benefician no sólo a los individuos sino que a los colectivos socialesA critical analysis of the concept of empowerment and the theoretical distinction between empowerment process and outcome (Zimmerman, 2000 are presented. Based on Zimmerman's conceptualisation, and the interaccional perspective (Bronfenbrenner, 1987, we argue that the distinction between empowerment process and outcome, though analytically useful (if based on the perception of the community itself from their own experience, which must be understood by professional agent is not always viable in absolute or objective terms. In addition, we suggest to distinguish between context and level of analyses in empowerment theory, and to analyze the context of the empowerment phenomenon at the individual, organizational and community level, which clarifies the definition of each of them. In sum, empowerment is conceived as a process within successive contexts that benefits not only individuals, but also different social aggregate kinds of groups

  13. Effects of subchronic exposure to glyphosate in juvenile oysters (Crassostrea gigas): From molecular to individual levels.

    Science.gov (United States)

    Mottier, Antoine; Séguin, Alexis; Devos, Alexandre; Pabic, Charles Le; Voiseux, Claire; Lebel, Jean Marc; Serpentini, Antoine; Fievet, Bruno; Costil, Katherine

    2015-06-30

    Glyphosate-based herbicides are extensively used and can be measured in aquatic ecosystems, including coastal waters. The effect of glyphosate on non-target organisms is an issue of worldwide concern. The aim of this study was to investigate the effects of subchronic exposure to glyphosate in juvenile oysters, Crassostrea gigas. Yearling oysters were exposed to three concentrations of glyphosate (0.1, 1 and 100?gL(-1)) for 56days. Various endpoints were studied, from the individual level (e.g., gametogenesis and tissue alterations) to the molecular level (mRNA quantification), including biochemical endpoints such as glutathione-S-transferase (GST) and catalase activities and malondialdehyde content. No mortality and growth occurred during the experiment, and individual biomarkers revealed only slight effects. The levels of gene expression significantly increased in oysters exposed to the highest glyphosate concentration (GST and metallothioneins) or to all concentrations (multi-xenobiotic resistance). These results suggested an activation of defence mechanisms at the molecular level. PMID:25455786

  14. Atmospheric processes on ice nanoparticles in molecular beams.

    Czech Academy of Sciences Publication Activity Database

    Fárník, Michal; Poterya, Viktoriya

    2014-01-01

    Ro?. 2, ?. 2014 (2014), s. 4. ISSN 2296-2646 R&D Projects: GA ?R GA203/09/0422; GA ?R GAP208/11/0161 Institutional support: RVO:61388955 Keywords : molecular beams * photodissociation * water clusters Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Tectonic processes modelling for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    The possibility of using deep geological formations to dispose of high-level radioactive waste (HLW) is a subject raising heated debate among scientists. In Russia, the idea of constructing HLW repository in the Niznekansky granitoid massif (NKM) in Krasnoyarsk area is widely discussed. To solve this problem we are elaborating a technology associated with time – space stability prediction of the geological environment, which is subject to geodynamic processes evolutionary effects. It is based on the prediction of isolation properties stability in a structural tectonic block of the Earth’s crust for a given time. The danger is in the possibility that the selected structural block may be broken by new tectonic faults or movements on a passive fault may be activated and thus underground water may penetrate to HLW containers

  16. Impact of Altimeter Data Processing on Sea Level Studies

    Directory of Open Access Journals (Sweden)

    Clara Lázaro

    2006-03-01

    Full Text Available This study addresses the impact of satellite altimetry data processing on sea levelstudies at regional scale, with emphasis on the influence of various geophysical correctionsand satellite orbit on the structure of the derived interannual signal and sea level trend. Thework focuses on the analysis of TOPEX data for a period of over twelve years, for threeregions in the North Atlantic: Tropical (0o≤φ≤25o, Sub-Tropical (25o≤φ≤50o and Sub-Arctic (50o≤φ≤65o. For this analysis corrected sea level anomalies with respect to a meansea surface model have been derived from the GDR-Ms provided by AVISO by applyingvarious state-of-the-art models for the geophysical corrections. Results show that sea leveltrend determined from TOPEX altimetry is dependent on the adopted models for the majorgeophysical corrections. The main effects come from the sea state bias (SSB, and from theapplication or not of the inverse barometer (IB correction. After an appropriate modellingof the TOPEX A/B bias, the two analysed SSB models induce small variations in sea leveltrend, from 0.0 to 0.2 mm/yr, with a small latitude dependence. The difference in sea leveltrend determined by a non IB-corrected series and an IB-corrected one has a strong regionaldependence with large differences in the shape of the interannual signals and in the derivedlinear trends. The use of two different drift models for the TOPEX Microwave Radiometer(TMR has a small but non negligible effect on the North Atlantic sea level trend of about0.1 mm/yr. The interannual signals of sea level time series derived with the NASA and theCNES orbits respectively, show a small departure in the middle of the series, which has noimpact on the derived sea level trend. These results strike the need for a continuousimprovement in the modelling of the various effects that influence the altimetermeasurement.

  17. Levels and Atypical Evolutions of the Romanian Demographic Processes

    Directory of Open Access Journals (Sweden)

    Mirela Ionela Aceleanu

    2007-01-01

    Full Text Available Within the XXth century, especially in the second half thereof, the approach views of the relation between the population and economy (both of them regarded in dynamics have multiplied themselves, the points of view as regards this subject becoming not only much more diverse but also opposite. All these views are characterised by the population transformation in endogenous factor (in internal, intrinsic side of the economic development (of the economic growth, factor that, at its turn, is determined by the economic processes. The double position of the population in the demo-economical relations system - as main production factor and as virtual recipient of produced goods - is a strong argument in the favour of the demographic factor as endogenous factor of growth and economic development. The correlations between the two variables are diverse and very difficultly to be quantified. It is known that the effect of the demographic impact upon the economic factor is felt after many years from the date of the demo-economic phenomenon occurring. So, within the last decades, the research intended to identify certain essential, durable relations between the population evolution and the economic growth became more intensive. On this line there are presented atypical evolutions and levels of demographic processes in Romania.

  18. Coarse-grained Molecular-level Analysis of Polyurea Properties and Shock-mitigation Potential

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.; Yavari, R.; Runt, J.; Tarter, J.; Dillon, G.

    2013-07-01

    Several experimental investigations reported in the open literature clearly established that polyurea (PU), an elastic copolymer, has an unusually high ability to attenuate and disperse shock waves. This behavior of PU is normally attributed to its unique nanometer-scale two-phase microstructure consisting of (high glass-transition temperature, T g) hydrogen-bonded discrete, hard domains dispersed within a (low T g) contiguous soft matrix. However, details regarding the mechanism(s) responsible for the superior shock-wave mitigation capacity of PU are still elusive. In the present study, molecular-level computational methods and tools are used to help us identify and characterize these mechanism(s). Because the shock-wave front structure and propagation involve coordinated motion of a large number of atoms and nano-second to micro-second characteristic times, these phenomena cannot be readily analyzed using all-atom molecular-level modeling and simulation techniques. To overcome this problem, all-atom PU microstructure is coarse-grained by introducing larger particles (beads), which account for the collective degrees of freedom of the constituent atoms, the associated force-field functions determined and parameterized using all-atom computational results, and the resulting coarse-grained model analyzed using conventional molecular-level computational methods and tools. The results thus obtained revealed that a combination of different deformation mechanisms (primarily shock-induced ordering and crystallization of hard domains and coordinated shuffle-like lateral motion of the soft-matrix segments) is most likely responsible for the superior ability of PU to attenuate/disperse shock waves.

  19. Property Integration - A New Approach for Simultaneous Solution of Process and Molecular Design Problems

    DEFF Research Database (Denmark)

    The objective of this paper is to introduce the new concept of property integration. It is based on tracking and integrating properties throughout the process. This is made possible by exploiting the unique features at the interface of process and molecular design. Recently developed clustering concepts are employed to identify optimal properties without commitment to specific species. Subsequently, group contribution methods and molecular design techniques are employed to solve the reverse property prediction problem to design molecules possessing the optimal properties.

  20. Wood–water interactions : Linking molecular level mechanisms with macroscopic performance

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2011-01-01

    Predicting the performance of wood for decades ahead is important when using the material for structural purposes. The performance is closely related to the hierarchical material structure of wood and the dependent interaction with water in the structure. Accurately predicting wood performance therefore requires an understanding of material structure from molecular to macroscopic level as well as of the impact of water molecules. The objective of this work is to investigate the performance of wood in terms of mechanical response of the material and effect of water. To understand the latter, one must first know in which parts of the wood structure, water is located. If parts of the water in wood are held in capillaries in the wood structure, these water molecules interact with the material differently than those held within wood cell walls. In this study, the occurrence of capillary water in wood is investigated at high levels of relative humidity (RH), where capillary water might be present. Three different techniques are employed in overlapping RH regimes. The three techniques give similar results and show that the amount of capillary water is insignificant up to at least 99.5 % RH. Thus, for wood in equilibrium with surrounding climate in the RH range 0-99.5 %, water is only significantly present within cell walls. A structural model of a wood cell is developed in this study using Finite Element Method for predicting the mechanical performance of wood. The starting point for the model is the physical behaviour on the molecular level since water interferes with wood at this level. The elastic material properties of the wood cell wall are explained by the organisation of wood constituents and their properties. The effect of water as well as temperature is incorporated by considering the amount of hydrogen bonds between wood constituents and the stiffness of these bonds. The mechanical response of wood includes a substantial time-dependent response, which previously has been explained by sliding between wood constituents on the molecular level. In this study, this is incorporated in the model as time-dependent shearing of the material planes of the cell wall. The calculated results of the model is verified against various experimental results from literature as well as from measurements presented in this work. It is shown that the structural model is able to describe a diverse range of mechanical responses of wood cells in both elastic and time-dependent domains. Furthermore, comparison of results from experiments and model suggests that the mechanical response of wood tissue, i.e. the hierarchical level above single wood cells, is a sum of responses from both wood cells and intercellular layer, i.e. the middle lamella.

  1. Molecular-Level Transformations of Lignin During Photo-Oxidation and Biodegradation

    Science.gov (United States)

    Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo- oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in a similar concentration in the water-soluble OM from the UV-radiated and control soils, indicating little microbial contribution to the observed increase in water-soluble carbon. These observations suggest that photo-oxidation may increase the solubility of soil organic matter (SOM) through the oxidation of lignin-derived compounds. Mechanisms of lignin oxidation (demethylation or side-chain oxidation) and molecular size distribution changes of the water-soluble and NaOH-soluble OM during photo-oxidation and biodegradation will also be examined using solution-state nuclear magnetic resonance (NMR) spectroscopy. Collectively, our experiment demonstrates that while biodegradation predominates in the decomposition of lignin in plant litter, photo- oxidation may play an important part in destabilizing lignin-derived compounds in the soil.

  2. Identification and analysis of evolutionary selection pressures acting at the molecular level in five forkhead subfamilies

    Directory of Open Access Journals (Sweden)

    Rannala Bruce

    2008-09-01

    Full Text Available Abstract Background Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Results Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Conclusion Consideration of selection pressures observed in conjunction with known functional information allowed prediction of residue function and refinement of domain boundaries. Identification of residues that differentiate orthologs and paralogs provided insight into the development and functional consequences of paralogs and forkhead subfamily composition differences among species. Overall we found that after gene duplication of forkhead family members, rapid differentiation and subsequent fixation of amino acid changes through negative selection has occurred.

  3. Molecular orbital state due to halo neutrons in heavy ion nuclear reaction and its resonance level

    International Nuclear Information System (INIS)

    For the systems involving weakly bound, exotic nuclei, the distinctive features of CRC effects are expected, and the formation of nucleonic molecular orbitals may become the dominant effect. The energy level spacing of weakly bound nucleon states may be much smaller, and furthermore, the tails of wave functions extend to far outside the core nuclei. In 11Be + 10Be system, the radioactive nuclei 11Be have two weakly bound valence neutron states (halo states). The neutron wave functions in the states of 11Be extend to far outside the nuclei for the weakly bound states and for the sharp resonance state, respectively. Moreover, the energy spacing of these states is very small. The core excitation energy of 10Be is much higher than the Coulomb barrier. The CRC calculation and the molecular orbital analysis for this system by employing the channels of 11Be states were carried out. The procedure is explained. The results are shown, and the sharp rise and big enhancement of the subbarrier fusion cross section of the CRC calculation were observed. Such CRC effects reflect the formation of a covalent molecular orbital. The behavior of the fine structure depends on the choice of parameters of the bare potential. (K.I.)

  4. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  5. Atomic and molecular oxygen collision processes over some crystalline solids

    OpenAIRE

    Morón Tejero, Víctor

    2011-01-01

    [cat] S’ha realitzat un estudi teòric d’alguns dels processos químics elementals de l’oxigen atòmic i molecular sobre les superfícies sòlides del grafit i de la ?–cristobalita. La intenció ha sigut la d’ampliar el coneixement sobre quin es el comportament dels materials que s’empren com a sistemes de protecció tèrmica en vehicles espacials durant la seva reentrada a l’atmosfera terrestre. Per entendre millor com tenen lloc aquests processos químics heterogenis sobre la superfície del graf...

  6. Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer

    Science.gov (United States)

    Sun, Fu-Zhou; Shi, Ai-Li; Xu, Zai-Quan; Wei, Huai-Xin; Li, Yan-Qing; Lee, Shuit-Tong; Tang, Jian-Xin

    2013-04-01

    Efficient inverted polymer solar cell is reported upon by integrating with a small molecular 1,3,5-tri(phenyl-2-benzimi-dazolyl)-benzene (TPBi) electron extraction layer (EEL) at low processing temperature with thermal-evaporation and solution-process, resulting in the power conversion efficiencies of 3.70% and 3.47%, respectively. The potential of TPBi as an efficient EEL is associated with its suitable electronic energy level for electron extraction and hole blocking from the active layer to the indium tin oxide cathode.

  7. MOLOCH computer code for molecular-dynamics simulation of processes in condensed matter

    Directory of Open Access Journals (Sweden)

    Derbenev I.V.

    2011-01-01

    Full Text Available Theoretical and experimental investigation into properties of condensed matter is one of the mainstreams in RFNC-VNIITF scientific activity. The method of molecular dynamics (MD is an innovative method of theoretical materials science. Modern supercomputers allow the direct simulation of collective effects in multibillion atom sample, making it possible to model physical processes on the atomistic level, including material response to dynamic load, radiation damage, influence of defects and alloying additions upon material mechanical properties, or aging of actinides. During past ten years, the computer code MOLOCH has been developed at RFNC-VNIITF. It is a parallel code suitable for massive parallel computing. Modern programming techniques were used to make the code almost 100% efficient. Practically all instruments required for modelling were implemented in the code: a potential builder for different materials, simulation of physical processes in arbitrary 3D geometry, and calculated data processing. A set of tests was developed to analyse algorithms efficiency. It can be used to compare codes with different MD implementation between each other.

  8. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Paolo, E-mail: vale0142@umn.edu; Norman, Paul, E-mail: norma198@umn.edu; Zhang, Chonglin, E-mail: zhang993@umn.edu; Schwartzentruber, Thomas E., E-mail: schwart@aem.umn.edu [Department of Aerospace Engineering and Mechanics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-15

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N{sub 2}; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10?000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10?000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N{sub 2} bond determines the strength of the rovibrational coupling. Although neglecting N{sub 2} dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration/chemistry interaction at the onset of N{sub 2} dissociation.

  9. Hanford low-level waste process chemistry testing data package

    International Nuclear Information System (INIS)

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a open-quotes proof of principleclose quotes test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock ampersand Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM)

  10. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics

    CERN Document Server

    2014-01-01

    Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...

  11. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nucubstantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESCDisposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nu

  12. Understanding the role of London dispersion forces in molecular surface processes

    Science.gov (United States)

    Cooper, Valentino R.

    2012-02-01

    The interactions and dynamics of molecules at surfaces and within pores are essential to many chemical processes, ranging from molecular storage to catalysis and self-assembly. A molecular level understanding of molecule-surface interactions is crucial for tuning surface/pore selectivity and reactivity. While it is clear that strong chemisorption bonds facilitate these interactions, the role of weaker van der Waals (vdW) forces, which include London dispersion and ?-? stacking interactions, are often unknown or overlooked. Recent advances in density functional theory (DFT) have now made it possible to reliably account for London dispersion interactions. In this paper, I will discuss the use of one such technique, the Rutgers-Chalmers vdW non-local correlation functional,ootnotetextM. Dion, H. Rydberg, E. Schr"oder, B. I. Lundqvist and D. C. Langreth, Phys. Rev. Lett., 92, 246401 (2004)^,ootnotetextT. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and David C. Langreth, Phys. Rev. B, 76, 125112 (2007) to demonstrate how the inclusion of London dispersion forces is critical for a truly first principles understanding of processes sensitive to molecule-surface interactions, such as the loading of H2 within porous materials and the chemisorption of organic molecules at surfaces. These works highlight the fundamental importance of London dispersion interactions in the broader context of chemical physics. This work was supported by the Department of Energy, BES, Materials Sciences and Engineering Division.ootnotetextCollaborators: Guo Li, Isaac Tamblyn, Yungok Ihm, Jun-Hyung Cho, Shixuan Du, Jeffrey B. Neaton, Hong-Jun Gao, Zhenyu Zhang, James R. Morris

  13. Dynamical image-charge effect in molecular tunnel junctions : Beyond energy level alignment

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation. We show that Z can be expressed either in terms of the plasma frequency of the electrode or as the overlap between electrode wave functions corresponding to an empty and filled level, respectively. First-principles GW calculations for benzene-diamine connected to gold electrodes show that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels.

  14. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between occupied and unoccupied molecular levels is found to scale with the substrate density of states at the Fermi level (for metals) and substrate band gap (for semiconductors). These conclusions are further supported by self-consistent GW calculations on simple lattice models. By expressing the electron self-energy in terms of the substrate’s joint density of states we relate the level shift to the surface electronic structure, thus providing a microscopic explanation of the trends in the GW and G0W0 calculations. While image charge effects are not captured by semilocal and hybrid exchange-correlation functionals, we find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule.

  15. How Effective Are Simulated Molecular-Level Experiments for Teaching Diffusion and Osmosis?

    Science.gov (United States)

    Meir, Eli; Perry, Judith; Stal, Derek; Maruca, Susan; Klopfer, Eric

    2005-01-01

    Diffusion and osmosis are central concepts in biology, both at the cellular and organ levels. They are presented several times throughout most introductory biology textbooks (e.g., Freeman, 2002), yet both processes are often difficult for students to understand (Odom, 1995; Zuckerman, 1994; Sanger "et al.", 2001; and results herein). Students…

  16. CEA Atalante: High level process shielded line and high level analysis shielded line

    International Nuclear Information System (INIS)

    This is a PowerPoint presentation of Atalante, Atelier Alpha et Laboratoires pour Analyses, Transuraniens, the CEA's nuclear facility for scientific research of the nuclear fuel cycle in its downstream part. High level process and analysis shielded lines of Atalante are installed at CEA/Marcoule. Atalante facility presentation is given: - Short dated studies context with HA effluents; - Test demonstration; - Main equipment. The general characteristics of the process shielded cells are presented. Steps in highly active and long-lived radioactive waste processing are mentioned and identification of three R and D directions are given: (1) Research on solutions allowing the separation and transmutation of long-lived nuclides; (2) Study of the possibilities of reversible or irreversible disposal in deep geological formations; (3) Study of methods of packaging and of surface interim storage. CEA's role is underlined: - bring elements for evaluation (annual evaluation of researches); - studies on long-lived radionuclides separation for transmutation (or specific conditioning) in the frame of the 1991 French law concerning the reduction of the harmfulness of waste; performances to reach, namely, recovery yields of Am and Cm greater than 99.9% (lanthanides < 5 %). In progress are studies concerning the development of hydrometallurgical processes for the separation obtained in 2001. This step allowed to valid the choice of the extracting system. The reference processes are: DIAMEX for both extraction of trivalent actinides and lanthanides, SANEX for trivalent actinides separation from lanthanides, Am / Cm separation with Diamides as extracting molecules. Technical feasibility to be demonstrated implies tests to be performed at a representative scale. Previous tests before starting the CBP are mentioned: - Tele-demonstrability; - Unit tests; - 1. global test; - Biological shielding closing and ultimate infrastructure checking. Analysis shielded cell (CBA) are described and main techniques presented: - ICP/AES Function; - FP and actinides from solutions. Principle of fuel dissolution, extraction runs, FP concentrations, hulls and fines dissolutions are described. In excitation by plasma of the atoms contained in the liquid sample, for detection of the emitted photonic radiation during the relaxation process of both excited ions and atoms the following techniques are used: - High Pressure Chromatography in liquid phase CBA; - X hybrid (K edge); - U and Pu determinations in both aqueous and organic phases; - by absorption (for uranium) and by fluorescence (X fluorescence from K rays) for U and Pu; - U determination by absorption. In case of U and Pu determination by fluorescence the photon spectra of K rays X fluorescence is monitored by a high purity germanium detector. The fluorescence peaks areas of uranium (Ka2) and plutonium (Ka1) are compared to a calibration carried out in the same operating conditions. In case of FXL function applied for both uranium and plutonium traces determination, contained in organic and aqueous solutions from spent fuels reprocessing, the principle is presented. The sample is introduced in the measurement cell. The solution to be analysed is excited by photon produced in a X tube conducting to electrons arrangement with X photon emission which energy is characteristic of the element. Photons dues to the X fluorescence (L ray) are collected by a high purity germanium detector after a graphite Bragg reflector

  17. Post-processing interstitialcy diffusion from molecular dynamics simulations

    Science.gov (United States)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  18. Information processing in parallel through directionally resolved molecular polarization components in coherent multidimensional spectroscopy.

    Science.gov (United States)

    Yan, Tian-Min; Fresch, Barbara; Levine, R D; Remacle, F

    2015-08-14

    We propose that information processing can be implemented by measuring the directional components of the macroscopic polarization of an ensemble of molecules subject to a sequence of laser pulses. We describe the logic operation theoretically and demonstrate it by simulations. The measurement of integrated stimulated emission in different phase matching spatial directions provides a logic decomposition of a function that is the discrete analog of an integral transform. The logic operation is reversible and all the possible outputs are computed in parallel for all sets of possible multivalued inputs. The number of logic variables of the function is the number of laser pulses used in sequence. The logic function that is computed depends on the chosen chromophoric molecular complex and on its interactions with the solvent and on the two time intervals between the three pulses and the pulse strengths and polarizations. The outputs are the homodyne detected values of the polarization components that are measured in the allowed phase matching macroscopic directions, kl, kl=?iliki where ki is the propagation direction of the ith pulse and {li} is a set of integers that encodes the multivalued inputs. Parallelism is inherently implemented because all the partial polarizations that define the outputs are processed simultaneously. The outputs, which are read directly on the macroscopic level, can be multivalued because the high dynamical range of partial polarization measurements by nonlinear coherent spectroscopy allows for fine binning of the signals. The outputs are uniquely related to the inputs so that the logic is reversible. PMID:26277126

  19. Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model

    CERN Document Server

    Erdmann, Thorsten; Schwarz, Ulrich S

    2013-01-01

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of th...

  20. Mean level signal crossing rate for an arbitrary stochastic process

    DEFF Research Database (Denmark)

    Yura, Harold T.; Hanson, Steen Grüner

    2010-01-01

    The issue of the mean signal level crossing rate for various probability density functions with primary relevance for optics is discussed based on a new analytical method. This method relies on a unique transformation that transforms the probability distribution under investigation into a normal probability distribution, for which the distribution of mean level crossings is known. In general, the analytical results for the mean level crossing rate are supported and confirmed by numerical simulat...

  1. Understanding the Relative Contributions of Lower-Level Word Processes, Higher-Level Processes, and Working Memory to Reading Comprehension Performance in Proficient Adult Readers

    Science.gov (United States)

    Hannon, Brenda

    2012-01-01

    Although a considerable amount of evidence has been amassed regarding the contributions of lower-level word processes, higher-level processes, and working memory to reading comprehension, little is known about the relationships among these sources of individual differences or their relative contributions to reading comprehension performance. This…

  2. Supramolecular and heterosupramolecar chemistry in controlled release and molecular recognition processes

    OpenAIRE

    Agostini, Alessandro

    2013-01-01

    La presente tesis doctoral titulada ¿Supramolecular and heterosupramolecular chemistry in controlled release and molecular recognition processes¿ está centrada en los dos aspectos principales de la química supramolecular que han experimentado un gran auge en los últimos años: el reconocimiento molecular y los procesos de liberación controlada. En particular la primera parte de la tesis se focaliza en el diseño y síntesis de moléculas orgánicas que pueden ser empleados cómo...

  3. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    Energy Technology Data Exchange (ETDEWEB)

    Professor Francisco Zaera

    2007-08-09

    The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a ?-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the –Ni–O rows that form in this system. Carbon and nitrogen oxides, on the other hand, display no pre

  4. Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida

    International Nuclear Information System (INIS)

    Short-term changes in levels of expression of nine stress response genes and oxidative damage of proteins were examined in Eisenia fetida exposed to polyvinylpyrrolidone (PVP) coated Ag nanoparticles (Ag-NP) and AgNO3 in natural soils. The responses varied significantly among days with the highest number of significant changes occurring on day three. Similarity in gene expression patterns between Ag-NPs and AgNO3 and significant relationships of expression of CAT and HSP70 with Ag soil concentration suggest similarity in toxicity mechanisms of Ag ions and NPs. Significant increases in the levels of protein carbonyls on day three of the exposure to both ions and Ag-NPs indicate that both treatments induced oxidative stress. Our results suggest that Ag ions drive short term toxicity of Ag-NPs in E. fetida. However, given that 3 and Ag nanoparticles were similar. ? Expression of CAT and HSP70 were correlated with Ag soil concentration. ? Increase in protein carbonyls by ions and nanoparticles on day three. ? The results suggest that short-term toxicity is driven by Ag ions. - Similarity in molecular-level responses between silver nanoparticles (Ag-NPs) and ions suggests that ions are primarily responsible for short-term toxicity of Ag-NPs to Eisenia fetida.

  5. Acid-Base Interactions at the Molecular Level: Adhesion and Friction Studies with Interfacial Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burns, A.R.; Carpick, R.W.; Houston, J.E.; Michalske, T.A.

    1998-12-09

    To examine the forces of acid-base adhesive interactions at the molecular level, we utilize the scanning probe Interracial Force Microscope (IFM). Unlike cantilever-based atomic force microscopes, the EM is a non-compliant, mechanically stable probe that provides a complete adhesive profile without jump-to-contact. In this way, we are able to quantitatively measure the work of adhesion and bond energies at well-defined, nanometer-scale single asperity contacts. In particular, we will discuss the displacement-controlled adhesive forces between self-assembled monolayer of functionalized alkanethiols strongly bound to a gold substrate and a similarly functionalized tip. We also discuss a method utilizing decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and chemical bond formation. Measurements show that friction can be directly attributed to bond formation and rupture well before repulsive contact.

  6. A New Approach To Teaching Signal Processing At Undergraduate Level

    OpenAIRE

    Boashash, Boualem; Sridharan, S.; Chandran, V.

    1996-01-01

    This paper describes the design and implementation of a unique undergraduate program in signal processing at the Queensland University of Technology (QUT). The criteria that influenced the choice of the subjects and the laboratories developed to support them are presented. A recently established Signal Processing Research Centre (SPRC) has played an important role in the development of the signal processing teaching program. The SPRC also provides training opportuni...

  7. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

    Directory of Open Access Journals (Sweden)

    Mamidala Praveen

    2012-01-01

    Full Text Available Abstract Background Bed bugs (Cimex lectularius are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. Results We performed a next-generation RNA sequencing (RNA-Seq experiment to find differentially expressed genes between pesticide-resistant (PR and pesticide-susceptible (PS strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs and our previous 454 pyrosequenced database (21,088 ESTs. The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2 revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. Conclusions We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius.

  8. Molecular Studies on the Ecology of Listeria monocytogenes in the Smoked Fish Processing Industry

    OpenAIRE

    Norton, Dawn M.; McCamey, Meghan A.; Gall, Kenneth L.; Scarlett, Janet M.; Boor, Kathryn J.; Wiedmann, Martin

    2001-01-01

    We have applied molecular approaches, including PCR-based detection strategies and DNA fingerprinting methods, to study the ecology of Listeria monocytogenes in food processing environments. A total of 531 samples, including raw fish, fish during the cold-smoking process, finished product, and environmental samples, were collected from three smoked fish processing facilities during five visits to each facility. A total of 95 (17.9%) of the samples tested positive for L. monocytogenes using a ...

  9. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    International Nuclear Information System (INIS)

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

  10. Lovastatin production: From molecular basis to industrial process optimization.

    Science.gov (United States)

    Mulder, Kelly C L; Mulinari, Flávia; Franco, Octávio L; Soares, Maria S F; Magalhães, Beatriz S; Parachin, Nádia S

    2015-11-01

    Lovastatin, composed of secondary metabolites produced by filamentous fungi, is the most frequently used drug for hypercholesterolemia treatment due to the fact that lovastatin is a competitive inhibitor of HMG-CoA reductase. Moreover, recent studies have shown several important applications for lovastatin including antimicrobial agents and treatments for cancers and bone diseases. Studies regarding the lovastatin biosynthetic pathway have also demonstrated that lovastatin is synthesized from two-chain reactions using acetate and malonyl-CoA as a substrate. It is also known that there are two key enzymes involved in the biosynthetic pathway called polyketide synthases (PKS). Those are characterized as multifunctional enzymes and are encoded by specific genes organized in clusters on the fungal genome. Since it is a secondary metabolite, cultivation process optimization for lovastatin biosynthesis has included nitrogen limitation and non-fermentable carbon sources such as lactose and glycerol. Additionally, the influences of temperature, pH, agitation/aeration, and particle and inoculum size on lovastatin production have been also described. Although many reviews have been published covering different aspects of lovastatin production, this review brings, for the first time, complete information about the genetic basis for lovastatin production, detection and quantification, strain screening and cultivation process optimization. Moreover, this review covers all the information available from patent databases covering each protected aspect during lovastatin bio-production. PMID:25868803

  11. Managing and Organizing Concurrent Processes According to the CMM Levels

    OpenAIRE

    David, Michael; Idelmerfaa, Zahra; Richard, Jacques

    2005-01-01

    Abstract Research for reduced lead time and cost in concurrent process development (CPD) becomes crucial in new work organizations. Today, the concurrent processes involve more and more activities and work groups which must be efficiently coordinated. In this article, the authors propose a framework for structuring concurrent activities in order to improve the global performance (lead time, workload, risks,...

  12. Proposed methods for treating high-level pyrochemical process wastes

    International Nuclear Information System (INIS)

    This survey illustrates the large variety and number of possible techniques available for treating pyrochemical wastes; there are undoubtedly other process types and many variations. The choice of a suitable process is complicated by the uncertainty as to what will be an acceptable waste form in the future for both TRU and non-TRU wastes

  13. Memory Scanning, Introversion-Extraversion, and Levels of Processing.

    Science.gov (United States)

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    Investigated was the hypothesis that high arousal increases processing of physical characteristics and reduces processing of semantic characteristics. While introverts and extroverts had equivalent scanning rates for physical features, introverts were significantly slower in searching for semantic features of category membership, indicating…

  14. New alternatives for processing low and medium level liquid wastes

    International Nuclear Information System (INIS)

    After a brief presentation of the actual scheme for low-level and intermediate-level radioactive liquid waste treatment in the new reprocessing plant of ''La Hague'', the new trends in ResdArch and Development studies are presented. In a first step, the total amount of low-level and intermediate-level wastes could be concentrated by distillation, with disposal of condensates. Concentrates, prior to conditioning, could be treated by chemical precipitation or by mineral ion exchangers. The saline solution, then free of ? and ?? major radionuclides could be immobilized in bitumen and sent for disposal in surface storage conditions. The solid residual fraction, sludges or saturated ion exchangdRs, could be converted to oxides and sintered for deep geological disposal

  15. 77 FR 47337 - Project-Level Predecisional Administrative Review Process

    Science.gov (United States)

    2012-08-08

    ...communications technology, including email, web pages, and social media. The Department believes that within these tools is the...government and the States, or on the distribution of power and responsibilities among the various levels of...

  16. THE APPLICATION OF FEATURE TECHNOLOGY IN DEVELOPING A CAD-BASED HIGH LEVEL PROCESS PLANNING SYSTEM

    OpenAIRE

    Ade Febransyah

    2005-01-01

    High-level process planning plays an important role in determining candidate process domains at the configuration design stage. Changing the process domains later increases the product development cycle and the product development cost. Therefore, determining the most appropriate manufacturing processes at the beginning stages of the design process becomes critical. However, high-level process planning systems have traditionally lacked integration of design synthesis and design evaluation. Th...

  17. Interplay of formulation and process methodology on the extent of nifedipine molecular dispersion in polymers.

    Science.gov (United States)

    Huang, Jingjun; Li, Ying; Wigent, Rodney J; Malick, Waseem A; Sandhu, Harpreet K; Singhal, Dharmendra; Shah, Navnit H

    2011-11-25

    The aim of this study is to evaluate effects of formulation and process technology on drug molecular dispersibility in solid dispersions (SDs). Nifedipine solid dispersions with ethylcellulose (EC) and/or Eudragit RL (RL) prepared by co-precipitation, co-evaporation, and fusion methods were characterized with FTIR, DSC, and XRPD for the content of nifedipine as molecular dispersion, amorphous and/or crystalline suspensions. A method was developed based on regular solution and Flory-Huggins theories to calculate drug-polymer interaction parameter in solid dispersion systems. A synergic effect of RL and EC on nifedipine molecular dispersibility in solid dispersions was observed. Increasing RL/EC ratio resulted in a higher degree of drug-polymer interaction that thermodynamically favored molecular dispersion, which, however, was counteracted by a corresponding decrease in the matrix glass transition point that kinetically favored phase-separation. Process methodology was found to play an important role in the formation of amorphous SD. The ranking of technologies with respect to the extent of molecular dispersion from high to low is fusion>co-evaporation>co-precipitation, wherein the solidification rate of polymeric solution and non-solvent effects were linked to kinetic entrapment of drug molecules in polymeric networks. Since nifedipine molecular dispersibility in EC/RL polymer(s) is a result of interplay between thermodynamic and kinetic factors, nifedipine molecular dispersions prepared for this study are thermodynamically metastable systems. To explore those supersaturation systems for use in drug delivery of poorly water soluble drugs, it is critical to balance drug-polymer interactions and matrix glass transition point and to consider a process technology with a fast solidification rate during formulation and process development of amorphous SD. PMID:21871546

  18. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J. (comps.)

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  19. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    International Nuclear Information System (INIS)

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  20. Determination of cadmium at ultra-trace levels by CPE-molecular fluorescence combined methodology

    Energy Technology Data Exchange (ETDEWEB)

    Talio, Maria Carolina [Instituto de Quimica de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700 San Luis (Argentina); Luconi, Marta O. [Area de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Masi, Adriana N. [Area de Bromatologia- Ensayo y Valoracion de Medicamentos, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Instituto de Quimica de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700 San Luis (Argentina); Fernandez, Liliana P., E-mail: lfernand@unsl.edu.ar [Area de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Instituto de Quimica de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700 San Luis (Argentina)

    2009-10-15

    A highly sensitive micelle-mediated extraction methodology for the preconcentration and determination of trace levels of cadmium by molecular fluorescence has been developed. Metal was complexed with o-phenanthroline (o-phen) and eosin (eo) at pH 7.6 in buffer Tris medium and quantitatively extracted into a small volume of surfactant-rich phase of PONPE 7.5 after centrifugating. The chemical variables affecting cloud point extraction (CPE) were evaluated and optimized. The RSD for six replicates of cadmium determinations at 0.84 {mu}g L{sup -1} level was 1.17%. The linearity range using the preconcentration system was between 2.79 x 10{sup -3} {mu}g L{sup -1} and 2.81 {mu}g L{sup -1} with a correlation coefficient of 0.99. Under the optimal conditions, it obtained a LOD of 8.38 x 10{sup -4} {mu}g L{sup -1} and LOQ of 2.79 x 10{sup -3} {mu}g L{sup -1}. The method presented good sensitivity and selectivity and was applied to the determination of trace amounts of cadmium in commercially bottled mineral water, tap water and water well samples with satisfactory results. The proposed method is an innovative application of CPE-luminescence to metal analysis comparable in sensitivity and accuracy with atomic spectroscopies.

  1. Effects of stimulus type and level repetition on content-level binding in global/local processing

    OpenAIRE

    RonaldHübner

    2011-01-01

    The processing and representation of hierarchical objects not only involves the identification of information at the different levels, but also the binding of the identified content to its respective level. Whereas identification is well understood, little is known about content-level binding. In a recent study, however, it has been shown that attentional priming of certain spatial frequencies is advantageous for this binding. Therefore, the present study investigated effects of related facto...

  2. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  3. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    Energy Technology Data Exchange (ETDEWEB)

    Galaup, Jean-Pierre [Laboratoire Aime Cotton, CNRS UPR 3321, Ba-hat t. 505, 91405 Orsay cedex (France)]. E-mail: jean-pierre.galaup@lac.u-psud.fr

    2005-04-15

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked.

  4. Investigating Students' Ability to Transfer Ideas Learned from Molecular Animations of the Dissolution Process

    Science.gov (United States)

    Kelly, Resa M.; Jones, Loretta L.

    2008-01-01

    Animations of the particulate level of matter are widely available for use in chemistry classes and are often the primary means of representing molecular behavior. These animations may also be viewed by individual students using textbook Web sites, although without reinforcement or feedback. It is not known to what extent the material in these…

  5. Impaired Global, and Compensatory Local, Biological Motion Processing in People with High Levels of Autistic Traits

    OpenAIRE

    van Boxtel, Jeroen J. A.; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences amo...

  6. Unraveling liver complexity from molecular to organ level: challenges and perspectives.

    Science.gov (United States)

    D'Alessandro, L A; Hoehme, S; Henney, A; Drasdo, D; Klingmüller, U

    2015-01-01

    Biological responses are determined by information processing at multiple and highly interconnected scales. Within a tissue the individual cells respond to extracellular stimuli by regulating intracellular signaling pathways that in turn determine cell fate decisions and influence the behavior of neighboring cells. As a consequence the cellular responses critically impact tissue composition and architecture. Understanding the regulation of these mechanisms at different scales is key to unravel the emergent properties of biological systems. In this perspective, a multidisciplinary approach combining experimental data with mathematical modeling is introduced. We report the approach applied within the Virtual Liver Network to analyze processes that regulate liver functions from single cell responses to the organ level using a number of examples. By facilitating interdisciplinary collaborations, the Virtual Liver Network studies liver regeneration and inflammatory processes as well as liver metabolic functions at multiple scales, and thus provides a suitable example to identify challenges and point out potential future application of multi-scale systems biology. PMID:25433231

  7. Reading Processing Skills among EFL Learners in Different Proficiency Levels

    Science.gov (United States)

    Dhanapala, Kusumi Vasantha; Yamada, Jun

    2015-01-01

    This study aims to understand how EFL learners in different reading proficiency levels comprehend L2 texts, using five-component skills involving measures of (1) vocabulary knowledge, (2) drawing inferences and predictions, (3) knowledge of text structure and discourse organization, (4) identifying the main idea and summarizing skills, and (5)…

  8. Exposure to low pH induces molecular level changes in the marine worm, Platynereis dumerilii.

    Science.gov (United States)

    Wäge, Janine; Lerebours, Adelaide; Hardege, Jörg D; Rotchell, Jeanette M

    2016-02-01

    Fossil fuel emissions and changes in net land use lead to an increase in atmospheric CO2 concentration and a subsequent decrease of ocean pH. Noticeable effects on organisms' calcification rate, shell structure and energy metabolism have been reported in the literature. To date, little is known about the molecular mechanisms altered under low pH exposure, especially in non-calcifying organisms. We used a suppression subtractive hybridisation (SSH) approach to characterise differentially expressed genes isolated from Platynereis dumerilii, a non-calcifying marine polychaeta species, kept at normal and low pH conditions. Several gene sequences have been identified as differentially regulated. These are involved in processes previously considered as indicators of environment change, such as energy metabolism (NADH dehydrogenase, 2-oxoglutarate dehydrogenase, cytochrome c oxidase and ATP synthase subunit F), while others are involved in cytoskeleton function (paramyosin and calponin) and immune defence (fucolectin-1 and paneth cell-specific alpha-defensin) processes. This is the first study of differential gene expression in a non-calcifying, marine polychaete exposed to low pH seawater conditions and suggests that mechanisms of impact may include additional pathways not previously identified as impacted by low pH in other species. PMID:26476878

  9. Yakima tribal perspectives on high level selection process

    International Nuclear Information System (INIS)

    When Congress went through the arduous process of fashioning a comprehensive plan for resolution of the nation's long-standing nuclear waste problem, it explicitly recognized that past federal efforts in this area had been inadequate. Congress also recognized that the primary reasons for the failure of earlier federal efforts was failure on the part of the federal government to seriously deal with very real technical questions about the geologic adequacy of prospective repository sites, and failure to address the concerns of state, tribal, and local governments in the repository selection and development process

  10. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.

    Science.gov (United States)

    Ren, Li; Yang, Pengfei; Wang, Zhe; Zhang, Jian; Ding, Chong; Shang, Peng

    2015-10-01

    Bones with complicated hierarchical configuration and microstructures constitute the load-bearing system. Mechanical loading plays an essential role in maintaining bone health and regulating bone mechanical adaptation (modeling and remodeling). The whole-bone or sub-region (macroscopic) mechanical signals, including locomotion-induced loading and external actuator-generated vibration, ultrasound, oscillatory skeletal muscle stimulation, etc., give rise to sophisticated and distinct biomechanical and biophysical environments at the pericellular (microscopic) and collagen/mineral molecular (nanoscopic) levels, which are the direct stimulations that positively influence bone adaptation. While under microgravity, the stimulations decrease or even disappear, which exerts a negative influence on bone adaptation. A full understanding of the biomechanical and biophysical environment at different levels is necessary for exploring bone biomechanical properties and mechanical adaptation. In this review, the mechanical transferring theories from the macroscopic to the microscopic and nanoscopic levels are elucidated. First, detailed information of the hierarchical structures and biochemical composition of bone, which are the foundations for mechanical signal propagation, are presented. Second, the deformation feature of load-bearing bone during locomotion is clarified as a combination of bending and torsion rather than simplex bending. The bone matrix strains at microscopic and nanoscopic levels directly induced by bone deformation are critically discussed, and the strain concentration mechanism due to the complicated microstructures is highlighted. Third, the biomechanical and biophysical environments at microscopic and nanoscopic levels positively generated during bone matrix deformation or by dynamic mechanical loadings induced by external actuators, as well as those negatively affected under microgravity, are systematically discussed, including the interstitial fluid flow (IFF) within the lacunar-canalicular system and at the endosteum, the piezoelectricity at the deformed bone surface, and the streaming potential accompanying the IFF. Their generation mechanisms and the regulation effect on bone adaptation are presented. The IFF-induced chemotransport effect, shear stress, and fluid drag on the pericellular matrix are meaningful and noteworthy. Furthermore, we firmly believe that bone adaptation is regulated by the combination of bone biomechanical and biophysical environment, not only the commonly considered matrix strain, fluid shear stress, and hydrostatic pressure, but also the piezoelectricity and streaming potential. Especially, it is necessary to incorporate bone matrix piezoelectricity and streaming potential to explain how osteoblasts (bone formation cells) and osteoclasts (bone resorption cells) can differentiate among different types of loads. Specifically, the regulation effects and the related mechanisms of the biomechanical and biophysical environments on bone need further exploration, and the incorporation of experimental research with theoretical simulations is essential. PMID:26119589

  11. La modificación covalente de proteínas. Un nivel cualitativamente superior de la información molecular / Covalent Modifications of Proteins. A qualitative higher level of molecular information

    Scientific Electronic Library Online (English)

    Rolando A, Hernández Fernández.

    2014-02-01

    Full Text Available Introducción: La información molecular es una propiedad principal de las biomacromoléculas, especialmente proteínas y ácidos nucleicos, que permite la realización de funciones con un alto grado de especificidad. Ella deriva de la variedad en los componentes de las macromoléculas. Objetivo: Demostrar [...] que la modificación covalente de proteínas constituye un nivel nuevo y superior de información molecular. Método: Se analizaron artículos de los últimos 5 años, publicados en revistas nacionales y de circulación internacional, disponibles en las bases de datos HINARI, PubMed y Perii y localizados mediante el sitio www.infomed.sld.cu. Desarrollo: Se exponen los mecanismos y características principales del proceso y posteriormente algunos de los efectos principales de la modificación covalente sobre las funciones y propiedades de las proteínas. Conclusiones: La modificación covalente es un mecanismo que amplía el campo de acción de las proteínas permitiendo un rápido cambio en sus propiedades funcionales y, por lo tanto, constituye un nivel nuevo y cualitativamente superior de información molecular. Abstract in english Introduction: Molecular information is an essential property of biomacromolecules, especially proteins and nucleic acids. This property allows carrying out specific functions. It derives from variability of macromolecules components. Objetive: To prove that covalent modification of proteins represen [...] ts a new and higher level of molecular information. Method: Papers published during the last five years in national and international journals were analyzed. These articles are available in HINARI, PubMed, and Perii databases and were localized through www.infomed.sld.cu. Main text: First, the mechanism and features of covalent modifications of protein are presented. Next, the principal effects on protein functions and properties are analyzed. Conclusions: We conclude that covalent modification of proteins represents a new and higher level of molecular information.

  12. Health Policy Formulation on a Federal Level, Process and Substance.

    Science.gov (United States)

    Stambler, Moses

    Factors which influence the federal government's policy toward health care include cost, technology, social values, federalism, interest group politics, increased federal involvement, and the current utilitarian attitude toward research. The interaction of these factors results in a complex process of policy formation. For example, when the…

  13. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  14. The interaction of CO2 with amines as molecular control factor in catalytic processes

    OpenAIRE

    Wispelaere, Irene Martine de

    2014-01-01

    The present thesis deals with the interaction of CO2 and amines as molecular control factor to influence different kinds of selectivities in various catalytic processes. The reversibility of the Lewis acid-base reaction between CO2 and amines has been applied in numerous reaction and separation processes and chapter I gives a short overview of the different areas. Up to date this interaction has not been used to steer the selectivity of a reaction and in this context, switchable solvents are ...

  15. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  16. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S. [BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany and Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg (Germany)

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  17. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    International Nuclear Information System (INIS)

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment

  18. Technetium removal processes for soluble defense high-level waste

    International Nuclear Information System (INIS)

    Two methods for removing technetium from soluble defense high-level waste are described. In the first method, technetium is precipitated as tetraphenylphosphonium pertechnetate and separated from the decontaminated solution using sintered metal crossflow filters. In the second method, pertechnetate is removed from solution using a strong base anion exchange resin and then eluted from the resin with nitric acid. The nitric acid is recovered by sorption of the pertechnetate on a weak base ion exchange resin. The pertechnetate is eluted from the weak base resin with NaOH and recovered by precipitation as the sulfide or oxide. 7 refs., 3 figs

  19. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  20. Corrosion and failure processes in high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L. [North Carolina State Univ., Raleigh, NC (United States)

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

  1. Elucidating redox-level dispersion and local dielectric effects within electroactive molecular films.

    Science.gov (United States)

    Bueno, Paulo R; Davis, Jason J

    2014-02-18

    The electron exchange between a redox-active molecular film and its underlying electrode can be cleanly tracked, in a frequency-resolved manner, through associated capacitive charging. If acquired data is treated with a classical (non quantum) model, mathematically equivalent to a Nernst distribution for one redox energy level, redox site coverage is both underestimated and environmentally variable. This physically unrealistic model fails to account for the energetic dispersion intrinsically related to the quantized characteristics of coupled redox and electrode states. If one maps this redox capacitive charging as a function of electrode potential one not only reproduces observations made by standard electroanalytical methods but additionally and directly resolves the spread of redox state energies the electrode is communicating with. In treating a population of surface-confined redox states as constituting a density of states, these analyses further resolve the effects of electrolyte dielectric on energetic spread in accordance with the electron-transfer models proposed by Marcus and others. These observations additionally underpin a directly (spectrally) resolved dispersion in electron-transfer kinetics. PMID:24392706

  2. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubules are filled by sediment, creating a mudball structure. Because of their unusual and sometimes featureless appearance, komokiaceans were frequently ignored or overlooked until they formal description in 1977. The most recent taxonomy places the Komokiacea within the Foraminifera based on general morphological features. To examine their taxonomic position at the molecular level, we analysed the SSU rDNA sequences of two species, Normanina conferta and Septuma ocotillo, obtained either with specific foraminiferal or universal eukaryotic primers. Many different sequences resulted from this investigation but none of them could clearly be attributed to komokiaceans. Although our study failed to confirm univocally that Komokiacea are foraminiferans, it revealed a huge eukaryotic richness associated with these organisms, comparable with the richness in the overall surrounding sediment. These observations suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea.

  3. Insights into the uranium(VI) speciation with Pseudomonas fluorescens on a molecular level.

    Science.gov (United States)

    Lütke, Laura; Moll, Henry; Bernhard, Gert

    2012-11-21

    Microorganisms have great potential to bind and thus transport actinides in the environment. Thus microbes indigenous to designated nuclear waste disposal sites have to be investigated regarding their interaction mechanisms with soluble actinyl ions when assessing the safety of a planned repository. This paper presents results on the pH-dependent sorption of U(VI) onto Pseudomonas fluorescens isolated from the granitic rock aquifers at Äspö Hard Rock Laboratory, Sweden. To characterize the U(VI) interaction on a molecular level, potentiometric titration in combination with time-resolved laser-induced fluorescence spectroscopy (TRLFS) were applied. This paper as a result is one of the very few sources which provide stability constants of U(VI) complexed by cell surface functional groups. In addition the bacteria-mediated liberation of inorganic phosphate in dependence on [U(VI)] at different pHs was studied to judge the influence of phosphate release on U(VI) mobilization. The results demonstrate that in the acidic pH range U(VI) is bound by the cells mainly via protonated phosphoryl and carboxylic sites. The complexation by carboxylic groups can be observed over a wide pH range up to around pH 7. At neutral pH fully deprotonated phosphoryl groups are mainly responsible for U(VI) binding. U(VI) can be bound by P. fluorescens with relatively high thermodynamic stability. PMID:23007661

  4. Processing highly tritiated water desorbed from molecular sieve bed using PERMCAT

    International Nuclear Information System (INIS)

    Highlights: ? HTW processed with PERMCAT. ? Processing of highly tritiated water (HTW). ? Molecular sieve bed with HTW adsorbed. - Abstract: Tritium handling facilities use molecular sieve beds (MSB) to collect and recover tritiated water. After reaching the capacity limit of the MSB, the water is desorbed and decontaminated in a water detritiation system (WDS). In the case of highly tritiated water (HTW) absorbed into a MSB, an inherent safe option for processing is necessary due to the HTW specific properties. Ideally, HTW should be processed immediately in a continuous mode. With this in consideration, the water desorption process from a zeolite bed was developed and optimized in a dedicated non active facility. The results of this experiments were applied into the regeneration of a MSB previously loaded with HTW containing an activity of 1.9 × 1014 Bq kg?1. The water was desorbed, by step increasing the temperature bed and fed by helium carrier gas into the PERMCAT for detritiation and tritium recovery. The processed water was collected in a dry MSB downstream of the PERMCAT. These initial studies successfully demonstrate the viability of the process. The obtained results of the preliminary study and the subsequent tests with tritium, will provide useful information for the design of tritium processes relying on MSB, such as the water processing foreseen for the test blanket modules in ITER.

  5. Modeling Stochastic Kinetics of Molecular Machines at Multiple Levels: From Molecules to Modules

    OpenAIRE

    Chowdhury, Debashish

    2013-01-01

    A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically mod...

  6. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  7. Improvement of thermoelectric efficiency of the polyaniline molecular junction by the doping process.

    Science.gov (United States)

    Golsanamlou, Zahra; Tagani, Meysam Bagheri; Soleimani, Hamid Rahimpour

    2015-05-28

    Thermoelectric properties of a polyaniline molecular junction with face centered cubic electrodes are investigated using the Green function formalism in a linear response regime in the presence of the doping process. Doping causes the increase of thermopower and the figure of merit (ZT) and the decrease of electrical conductance as found experimentally in the work of Li et al., (Synthetic. Metals, 2010, 160, 1153-1158). We also find that the ZT increases with the molecular length in short polyanilines. [Golsanamlou et al., Phys. Chem. Chem. Phys., 2000, 35, 3523]. PMID:25929682

  8. Multi-level post-processing for Korean character recognition using morphological analysis and linguistic evaluation

    OpenAIRE

    Lee, Geunbae; Lee, Jong-Hyeok; Yoo, JinHee

    1996-01-01

    Most of the post-processing methods for character recognition rely on contextual information of character and word-fragment levels. However, due to linguistic characteristics of Korean, such low-level information alone is not sufficient for high-quality character-recognition applications, and we need much higher-level contextual information to improve the recognition results. This paper presents a domain independent post-processing technique that utilizes multi-level morphol...

  9. The evolution of plants and animals under domestication: the contribution of studies at the molecular level.

    Science.gov (United States)

    Jope, E M

    1976-07-27

    Protein molecules are essential catalysts in life processes and also form much of the substance of living material. Their three dimensional structures determine their biological function. Their biosynthesis is primarily determined by arrays of nucleic acid macromolecules (DNA and RNA), and the amino acid sequences that constitute their long spatially organized peptide-chain molecules reflect at one remove this DNA coding system, and thus record a step-by-step history of some of the viable genetic events (natural or man-controlled) that have created the organism and the breed. Amino acid sequences can be used to trace the progress of controlled breeding in two ways: by extrapolation back from living breeds, and by analysis of ancient protein material. Of the latter, bone or tendon or skin collagens and hair keratins are the most perfectly preserved as molecular structures through 20,000 years and indeed much longer. Amino acid sequences are expensive to determine (collagen has 1052 amino acid residues), and the potential of this palaeobiological information has been as yet little exploited. The first approach has, however, been more explored, in both plants and animals. Several protein systems must be studied in conjunction to reveal the phylogenetic threads in any one breed. As the three dimensional quaternary structure of protein molecules becomes more appreciated in relation to biological function, and as new techniques and procedures are developed, amino acid sequence data can become more informative in our ultimate understanding of early selective breeding. PMID:11513

  10. Multiprobe Spectroscopic Inverstigation of Molecular-level Behavior within Aqueous 1-Butyl-3-methylimidazolium Tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Abhra [Indian Institute of Technology, Delhi; Ali, Maroof [Indian Institute of Technology, Delhi; Baker, Gary A [ORNL; Tetin, Sergey Y. [Abbott Laboratories; Ruan, Qiaoqiao [Abbott Laboratories; Pandey, Siddharth [Indian Institute of Technology, Delhi

    2009-01-01

    In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogen bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere-of-action quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4].

  11. Constant current charging process of MV-level Marx generator

    International Nuclear Information System (INIS)

    A 4 MV pre-triggered Marx generator charged with series resistor has been designed. For better output property, higher charging efficiency and lower voltage difference between stages, the study conducted the analytic solution of its constant current charging (CCC) process. The results show that the voltage differences between different stages of capacitors are in direct proportion to charging resistance, capacitance and charging speed, but are independent of time; the charging efficiency improves with time, but is independent of charging speed. This solution is universally applicable. The simulation of CCC for the Marx generator was done with PSpice, and the results agree with the analytic solution. Compared to constant voltage charging (CVC) with 10 k? charging resistors, 400 nF capacitors and 10 kV/s charging speed, the charging efficiency of CCC is 90%, double that of CVC and the charging time is only one third. (authors)

  12. High levels of melatonin generated during the brewing process.

    Science.gov (United States)

    Garcia-Moreno, H; Calvo, J R; Maldonado, M D

    2013-08-01

    Beer is a beverage consumed worldwide. It is produced from cereals (barley or wheat) and contains a wide array of bioactive phytochemicals and nutraceutical compounds. Specifically, high melatonin concentrations have been found in beer. Beers with high alcohol content are those that present the greatest concentrations of melatonin and vice versa. In this study, gel filtration chromatography and ELISA were combined for melatonin determination. We brewed beer to determine, for the first time, the beer production steps in which melatonin appears. We conclude that the barley, which is malted and ground in the early process, and the yeast, during the second fermentation, are the largest contributors to the enrichment of the beer with melatonin. PMID:23607887

  13. Board-invited review: Sensitivity and responses of functional groups to feed processing methods on a molecular basis

    OpenAIRE

    Yu Peiqiang

    2012-01-01

    Abstract In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore produce unique molecular vibration spectral profile. Feed processing has been used to improve nutrient utilization for many years. However, to date, there was little study on processing-induced changes of feed intrinsic structure and functional groups on a molecular bas...

  14. A methodology to assess the maturity level of brewery business processes

    OpenAIRE

    Armendáriz, Mikel

    2010-01-01

    The purpose of this project is to develop a procedure to assess the maturity level of the brewery business processes to be able to determine the required level of process automation & IT for a brewery.This procedure is made up by several tailored questionnaires that have been based on the Process and Enterprise Maturity Model management assessment tool. This tool is described in the article called The Process Audit written by Michael Hammer and published by Harvard Business Review in 2007...

  15. Molecular Mechanisms of Processing Proteome Reorganization of Interphase Chromatin During Stress and Adaptation to Winter in Wheat

    Directory of Open Access Journals (Sweden)

    Ivanov R.S.

    2015-06-01

    Full Text Available Research of fundamental molecular and genetic processes of plant interaction with the environment, is a progressive field of understanding the fundamental problems of stress supramolecular biochemistry of developmental biology. The purpose of the work was the analysis of localization shielded to protease processing proteins of suprastructures of interphase chromatin matrix in the conditions of adaptation during vegetative phase of wheat to stressful environment factors. It is shown that in the conditions of perennial adaptation to cold shock of wheat at the level of chromatin suprastructures tightly bound to the nuclear matrix there is a total shielding of arginine-X sites to protease-processing. Perhaps these are zones that affect to the architecture organization of the cell nucleus that can help to survive in complex environmental conditions. According to the priorities in the study of agricultural plants, put forward by EPIC (The Epigenomics of Plants International Consortium in 2011 for the next decade, was included the point of necessity to understand the molecular basis of the interactions of genotype and environment that change the characteristics of plants in different conditions of the environment. These data will be useful for those who involved in the development of mathematical logic schemes of the theory and practice of biological specificity, and it could be included in the ontology of the stages plant growth and development.

  16. Process evaluation of an open architecture real-time molecular laboratory platform.

    Science.gov (United States)

    Felder, Robin A; Jackson, Keith D; Walter, Adam M

    2014-10-01

    The needs of molecular diagnostic laboratories that perform both Food and Drug Administration-cleared as well as laboratory-developed tests are usually not met on a single analytical platform. Furthermore, little information is available about the direct impact of molecular automation on labor costs and efficiency in clinical laboratories. We performed a process impact analysis from time and motion studies of a novel molecular diagnostic robotic system designed to automate sample preparation, extraction, and analysis. All 27 preanalytical tasks were quantified for the amount of time spent preparing 24 specimens for analysis. These steps were completed in 899 s (14 min, 59 s) followed by 7887 s (131 min, 27 s) of instrument operation independent of operator control (walk-away time). Postanalytical results evaluation required 1 min per specimen. The instrument automatically extracted the nucleic acid from the specimen, added the eluted DNA to the amplification reagents, and performed the analysis. Only 12% of the total instrument operations required relatively unskilled human labor. Thus, the availability of automated molecular diagnostic instruments will facilitate the expansion of molecular testing in the clinical laboratory because they reduce operator costs with respect to time and complexity of the tasks they are asked to perform. PMID:24811476

  17. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health

    International Nuclear Information System (INIS)

    Highlights: ? Toxic effects of pesticide mixtures can be independent, dose addition or interaction. ? Metabolic interactions involve inhibition or induction of detoxifying enzymes. ? Organophosphates can potentiate pyrethroid, carbaryl and triazine toxicity. ? Synergism occurs when two active pesticides elicit greater than additive toxicity. ? Endocrine disruptors have the potential for additivity rather than synergism. - Abstract: Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the promotion of organophosphate-induced delayed polyneuropathy

  18. Molecular Tools for the Selective Detection of Nine Diatom Species Biomarkers of Various Water Quality Levels

    Directory of Open Access Journals (Sweden)

    Lucia Cimarelli

    2015-05-01

    Full Text Available Our understanding of the composition of diatom communities and their response to environmental changes is currently limited by laborious taxonomic identification procedures. Advances in molecular technologies are expected to contribute more efficient, robust and sensitive tools for the detection of these ecologically relevant microorganisms. There is a need to explore and test phylogenetic markers as an alternative to the use of rRNA genes, whose limited sequence divergence does not allow the accurate discrimination of diatoms at the species level. In this work, nine diatom species belonging to eight genera, isolated from epylithic environmental samples collected in central Italy, were chosen to implement a panel of diatoms covering the full range of ecological status of freshwaters. The procedure described in this work relies on the PCR amplification of specific regions in two conserved diatom genes, elongation factor 1-a (eEF1-a and silicic acid transporter (SIT, as a first step to narrow down the complexity of the targets, followed by microarray hybridization experiments. Oligonucleotide probes with the potential to discriminate closely related species were designed taking into account the genetic polymorphisms found in target genes. These probes were tested, refined and validated on a small-scale prototype DNA chip. Overall, we obtained 17 highly specific probes targeting eEF1-a and SIT, along with 19 probes having lower discriminatory power recognizing at the same time two or three species. This basic array was validated in a laboratory setting and is ready for tests with crude environmental samples eventually to be scaled-up to include a larger panel of diatoms. Its possible use for the simultaneous detection of diatoms selected from the classes of water quality identified by the European Water Framework Directive is discussed.

  19. Deep level luminescence measurements of MBE CdTe growth quality and processing

    International Nuclear Information System (INIS)

    The authors have used photoluminescence spectroscopy to monitor CdTe in-situ during surface processing in order to optimize the surface electronic quality. Spectra of optimally-prepared (100) films grown by molecular beam epitaxy reveal low intensity emission from deep states relative to typical bulk-grown material

  20. Towards system-level understanding of baculovirus host cell interactions: from molecular fundamental studies to large-scale proteomics approaches

    Directory of Open Access Journals (Sweden)

    FranciscaMonteiro

    2012-11-01

    Full Text Available Baculoviruses are insect viruses extensively exploited as eukaryotic protein expression vectors. Molecular biology studies have provided exciting discoveries on virus-host interactions, but the application of omic high throughput techniques on the baculovirus-insect cell system has been hampered by the lack of host genome sequencing. While a broader, systems level analysis of biological responses to infection is urgently needed, recent advances on proteomic studies have yielded new insights on the impact of infection on the host cell. These works are reviewed and critically assessed in the light of current biological knowledge of the molecular biology of baculoviruses and insect cells.

  1. Antimicrobial resistance profiling and molecular subtyping of Campylobacter spp. from processed turkey

    Directory of Open Access Journals (Sweden)

    Sherwood Julie S

    2009-09-01

    Full Text Available Abstract Background Campylobacter is a major cause of human disease worldwide and poultry are identified as a significant source of this pathogen. Most disease in humans is associated with the consumption of contaminated poultry or cross-contamination with other foods. The primary drugs of choice for treatment of human campylobacteriosis include erythromycin and ciprofloxacin. In this study, we investigated the prevalence of resistance to erythromycin and ciprofloxacin in Campylobacter isolates recovered from turkey carcasses at two processing plants in the Upper Midwest US. Further analysis of a subset of isolates was carried out to assess resistance and genotype profiles. Results Campylobacter isolates from plant A (n = 439; including 196 C. coli and 217 C. jejuni and plant B (n = 362, including 281 C. coli and 62 C. jejuni were tested for susceptibility to ciprofloxacin and erythromycin using agar dilution. C. coli were more frequently resistant than C. jejuni in both plants, including resistance to ciprofloxacin (28% of C. jejuni and 63% of C. coli, plant B; and 11% of C. coli, plant A. Erythromycin resistance was low among C. jejuni (0% plant A and 0.3% plant B compared to C. coli (41%, plant A and 17%, plant B. One hundred resistant and susceptible isolates were selected for additional antimicrobial susceptibility testing, restriction fragment length polymorphism analysis of the flaA gene (fla typing, and pulsed-field gel electrophoresis (PFGE. Fla-PFGE types obtained (n = 37 were associated with a specific plant with the exception of one type that was isolated from both plants. C. coli isolates (n = 65 were grouped into 20 types, while C. jejuni isolates (n = 35 were grouped into 17 types. Most isolates with identical fla-PFGE patterns shared identical or very similar antimicrobial resistance profiles. PFGE alone and composite analysis using fla-PFGE with resistance profiles separated C. jejuni and C. coli into distinct groups. Conclusion Ciprofloxacin and erythromycin resistance in Campylobacter recovered from processed turkey occurred more frequently among C. coli than C. jejuni. Fla-PFGE types were associated with a particular species, antimicrobial resistance profiles, and a specific plant. Molecular subtyping in this study provided more information about the relationships among antimicrobial-resistant Campylobacter at the processing level.

  2. Molecular Level Insights into Heterogeneous Chlorine Activation in the Polluted Marine Boundary Layer

    Science.gov (United States)

    Raff, J. D.; Finlayson-Pitts, B. J.

    2008-12-01

    Heterogeneous reactions arising from the interaction of sea salt aerosols with polluted air at populated coastal sites generate gaseous inorganic chlorine compounds that are photochemical precursors of highly reactive chlorine atoms. These chlorine atoms initiate chain reactions that lead to elevated ozone concentrations in urban coastal regions. We used transmission and attenuated total reflection Fourier transform infrared spectroscopy to study the heterogeneous reactions of nitrogen oxides and hydrogen chloride on silica substrates and reveal previously unrecognized mechanisms for the formation of nitryl chloride and nitrosyl chloride that could impact our interpretation of chlorine activation processes on aerosols in coastal population centers. In addition to supporting recent field measurements that found relatively high levels of nitryl chloride at coastal sites in the Southeast U.S., our results suggest that additional sources of active chlorine exist in these regions.

  3. Atomic and molecular processes generated by linearly polarized few-cycle laser pulses

    Science.gov (United States)

    Busuladži?, M.; ?erki?, A.; Odžak, S.; Gazibegovi?-Busuladži?, A.; Hasovi?, E.; Habibovi?, D.; Miloševi?, D. B.

    2014-09-01

    S-matrix theory is used to analyze different atomic and molecular processes in a linearly polarized few-cycle laser field. The energy spectra of high-order above-threshold ionization (HATI) are presented. Electron-atom potential scattering assisted by a few-cycle laser pulse is also analyzed. It is shown that the plateau structures in the energy spectra of the electron-atom potential scattering are dependent on the carrier-envelope phase (CEP) of the laser pulse, so that the cutoff positions of the plateaus can be controlled by changing the CEP. Regarding our analysis of the molecular HATI process, the angle-resolved spectra, obtained by different theoretical approaches, are also presented.

  4. Ultrasmall volume molecular isothermal amplification in microfluidic chip with advanced surface processing

    International Nuclear Information System (INIS)

    In this paper, we developed a metal micro-fluidic chip with advanced surface processing for ultra-small volume molecular isothermal amplification. This method takes advantages of the nucleic acid amplification with good stability and consistency, high sensitivity about 31 genomic DNA copies and bacteria specific gene identification. Based on the advanced surface processing, the bioreaction assays of nucleic acid amplification was dropped about 392nl in volume. A high numerical aperture confocal optical detection system was advanced to sensitively monitor the DNA amplification with low noise and high power collecting fluorescence near to the optical diffraction limit. A speedy nucleic acid isothermal amplification was performed in the ultra-small volume microfluidic chip, where the time at the inflexions of second derivative to DNA exponential amplified curves was brought forward and the sensitivity was improved about 65 folds to that of in current 25?l Ep-tube amplified reaction, which indicates a promising clinic molecular diagnostics in the droplet amplification.

  5. Biologia molecular do processo de infecção por Agrobacterium spp. / Molecular biology of the infection process by Agrobacterium spp.

    Scientific Electronic Library Online (English)

    Gisele M. de, Andrade; Laudete M., Sartoretto; Ana C. M., Brasileiro.

    2003-10-01

    Full Text Available Agrobacterium tumefaciens é o agente causal da galha-da-coroa, doença que afeta a maioria das plantas dicotiledôneas e caracteriza-se pelo crescimento de tumores na junção entre o caule e a raiz (coroa). A formação desses tumores é o resultado de um processo natural de transferência de genes de Agro [...] bacterium spp. para o genoma da planta infetada. Esses genes estão contidos em um plasmídio de alto peso molecular (120 a 250 kb), denominado Ti ("tumor inducing"), presente em todas as linhagens patogênicas de Agrobacterium spp. Duas regiões do plasmídio Ti estão diretamente envolvidas na indução do tumor: a região-T, que corresponde ao segmento de DNA transferido para a célula vegetal, e a região de virulência (região vir), que contém genes envolvidos na síntese de proteínas responsáveis pelo processo de transferência da região-T. Esta região, uma vez transferida e integrada no genoma da célula vegetal, passa a ser denominada de T-DNA ("transferred DNA"). Os genes presentes no T-DNA codificam enzimas envolvidas na via de biossíntese de reguladores de crescimento, auxinas e citocininas. A síntese desses reguladores pelas células transformadas causa um desbalanço hormonal, levando à formação do tumor no local da infecção. Outro grupo de genes presentes no T-DNA codifica enzimas responsáveis pela síntese de opinas, que são catabolisadas especificamente pela bactéria colonizadora, como fonte de nutrientes. O conhecimento preliminar das bases moleculares envolvidas no processo de infecção de uma planta hospedeira por Agrobacterium spp., permitiu a utilização desta bactéria como vetor natural de transformação genética de plantas. Abstract in english Agrobacterium tumefaciens is the causal agent of crown gall disease that affects most dicotyledonous plants and is characterized by growth of tumors in the region between the plant stem and root (crown). The development of tumors is the result of a natural transfer process of Agrobacterium spp. gene [...] s to the genome of the infected plant. These genes are found on a high molecular weight plasmid denominated Ti (tumor inducing), present in all pathogenic Agrobacterium spp. strains. Two Ti plasmid regions are directly involved in tumor induction. The T-region, which corresponds to the segment of transferred DNA to the plant cells, and the virulence (vir) region, which contains genes involved in the synthesis of proteins required for T-region transfer. This region, when transferred and integrated to the plant cell genome, is called T-DNA (transferred DNA). The genes present in T-DNA encode enzymes involved in the biosynthesis of plant growth regulators, auxin and cytokinin. The synthesis of these regulators by transformed cells results in a hormonal inbalance, leading to the development of tumors where the infection took place. Another group of genes present in T-DNA encodes enzymes required for opine synthesis, which are specifically catabolised by the colonizing bacterium as the source of nutrients. Preliminary knowledge of the molecular basis involved in the infection process of the host plant by Agrobacterium spp. allowed the use of this bacterium as a natural vector for plant genetic transformation.

  6. Indistinguishability and Interference in the Coherent Control of Atomic and Molecular Processes

    OpenAIRE

    Gong, Jiangbin; Brumer, Paul

    2010-01-01

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible "which-way" information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable,...

  7. Recognition processes at a functionalized lipid surface observed with molecular resolution

    DEFF Research Database (Denmark)

    Vaknin, D.; Als-Nielsen, J.; Piepenstock, M.; Lösche, M.

    1991-01-01

    The specific binding of proteins to functionalized lipid monolayers on aqueous subphases was characterized by neutron reflectivity and fluorescence microscopy measurements. Due to the high affinity and high specificity of their noncovalent interaction, streptavidin (SA) and biotin (vitamin H) were chosen as a model system to investigate the structural characteristics of a recognition process on a molecular length scale. Changes in the neutron reflection from the surfaces of NaCl aqueous (H2O or ...

  8. General purpose molecular dynamics simulations fully implemented on graphics processing units

    Science.gov (United States)

    Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.

    2008-05-01

    Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.

  9. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    CERN Document Server

    Stimson, L M

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a s...

  10. Interdisciplinary Education to Integrate Pathology and Epidemiology: Towards Molecular and Population-Level Health Science

    OpenAIRE

    Ogino, Shuji; King, Emily E.; Beck, Andrew H; Mark E. Sherman; Milner, Danny A; Giovannucci, Edward

    2012-01-01

    In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesi...

  11. Study on the nitrite and nitrate levels changes by drying and frying processing in vegetables

    Directory of Open Access Journals (Sweden)

    E Sadeghi

    2014-07-01

    Conclusion: Reducing nitrite and nitrate levels does not occur in frying and drying processing in vegetables. Therefore, it is essential to study other methods of processing or control of nitrate and nitrite levels in the vegetables. It is crucial to monitor and control the quality of this product and studying other food processing because of the daily intake of vegetables and potential risks of nitrate and nitrite accumulation and its association with some illnesses and gastrointestinal tract cancers. .

  12. Fixation of radioactive wastes in glass by a process of molecular stuffing

    International Nuclear Information System (INIS)

    Research on a process for adding dopants to high-silica porous glass at relatively low temperatures (0C) (Molecular Stuffing Process) has led to a method suitable for the storage of radioactive waste materials. Glass produced by this method has a high concentration of waste in the interior and is free of this waste in a thick surface layer. Silica content is above 75% in the core and above 90 mole % in the surface. The glass exhibits extremely high chemical durability and low diffusion rates for the waste

  13. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  14. THE APPLICATION OF FEATURE TECHNOLOGY IN DEVELOPING A CAD-BASED HIGH LEVEL PROCESS PLANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    Ade Febransyah

    2005-01-01

    Full Text Available High-level process planning plays an important role in determining candidate process domains at the configuration design stage. Changing the process domains later increases the product development cycle and the product development cost. Therefore, determining the most appropriate manufacturing processes at the beginning stages of the design process becomes critical. However, high-level process planning systems have traditionally lacked integration of design synthesis and design evaluation. The objective of this paper is to propose a CAD-based high-level process planning system that will help designers decide whether or not the designs are worth pursuing. A hybrid approach incorporating design by feature and feature recognition approaches is proposed and implemented. Synergizing both advantages of both approaches will reduce the complexity of feature recognition algorithm without sacrificing the flexibility in creating a part model.

  15. Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions

    Directory of Open Access Journals (Sweden)

    Cusick Michael E

    2007-10-01

    Full Text Available Abstract Background Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. Results The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. Conclusion The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.

  16. Research Concerning Influence of Worm Face Gear Finishing Process upon Noise and Vibration Level

    Directory of Open Access Journals (Sweden)

    Ion Gavril??

    2011-11-01

    Full Text Available A study was performed to evaluate noise and vibration level of worm face gear finish. Vibration and noise monitoring data were gathered from 6 sets of worm plane gears run during a evaluation study. A drop o vibration level was successful recording, noise level remain almost the same as noise level record before finishing process was perform. A solution for fly cutter hobbing's particular problem was propose.

  17. Advice concerning the advantages of a reference incinerator for low-level and intermediate-level radioactive waste processing

    International Nuclear Information System (INIS)

    In this report, an inventory is presented of new incinerators and flue gas filters used in low and intermediate-level radioactive waste combustion. It is argued that a 'reference equipment' for the combustion of solid and liquid low- and intermediate-level wastes best meets existing Dutch radiation protection standards. A cost-benefit analysis of such an equipment is given including annual costs of investment, capital and exploration. A separate combustion process of organic liquids and carrions is considered finally. (G.J.P.)

  18. Effects of Freshwater Pollution on the Genetics of Zebra Mussels (Dreissena polymorpha) at the Molecular and Population Level

    OpenAIRE

    Thomas, Emilia G.; Maja Šrut; Anamaria Štambuk; Göran I. V. Klobu?ar; Alfred Seitz; Eva Maria Griebeler

    2014-01-01

    Revealing long-term effects of contaminants on the genetic structure of organisms inhabiting polluted environments should encompass analyses at the population, molecular, and cellular level. Following this concept, we studied the genetic constitution of zebra mussel populations from a polluted (Dp) and reference sites (Cl) at the river Drava, Croatia, and applied microsatellite and DNA damage analyses (Comet assay, micronucleus test (MNT)). Additionally, mussels from both populations were exp...

  19. Embedding Knowledge Processes to Maintain Service Levels and Efficiency in a Growing Software Service Firm:

    OpenAIRE

    Oostdam, M.; Verburg, R.M.; Lobbezoo, M.

    2013-01-01

    Software service firms are challenged to maintain high service levels and to innovate at the same time. Therefore, valuable human resources need often to be balanced between innovation and operations related activities. In this paper we describe how such as a firm deals with these issues by embedding their knowledge processes into their business processes. The advantage of embedding knowledge processes is that knowledge workers are more likely to adopt these processes in their daily support a...

  20. Isolation and Identification of Listeria monocytogenes in Processed Meat by a Combined Cultural-molecular Method

    Directory of Open Access Journals (Sweden)

    Angela Ingianni

    2007-01-01

    Full Text Available The isolation and identification of Listeria monocytogenes in processed meat samples by a combined cultural-molecular method is described. It allows the identification of Listeria strains by means of a hybridization technique with a specific DNA probe directed to the listerial internalin gene. The specificity of this method was found to be 100% and sensitivity was as low as 1 CFU/2.5 g of food sample. A total of 278 meat samples were tested in comparison with PCR and conventional cultural assays. A total of 42 (15.4% L. monocytogenes were detected. PCR analysis gave 3 false negative results and culture failed to detect the Listeria in 5 cases. With this cultural-molecular method the identification and quantitative detection of L. monocytogenes were achieved within 36 hours and no false positive or negative tests were obtained, thus fitting most food industry requirements.

  1. Adaptation and learning of molecular networks as a description of cancer development at the systems-level: Potential use in anti-cancer therapies

    CERN Document Server

    Gyurko, David M; Modos, Dezso; Lenti, Katalin; Korcsmaros, Tamas; Csermely, Peter

    2013-01-01

    There is a widening recognition that cancer cells are products of complex developmental processes. Carcinogenesis and metastasis formation are increasingly described as systems-level, network phenomena. Here we propose that malignant transformation is a two-phase process, where an initial increase of system plasticity is followed by a decrease of plasticity at late stages of carcinogenesis as a model of cellular learning. We describe the hallmarks of increased system plasticity of early, tumor initiating cells, such as increased noise, entropy, conformational and phenotypic plasticity, physical deformability, cell heterogeneity and network rearrangements. Finally, we argue that the large structural changes of molecular networks during cancer development necessitate a rather different targeting strategy in early and late phase of carcinogenesis. Plastic networks of early phase cancer development need a central hit, while rigid networks of late stage primary tumors or established metastases should be attacked b...

  2. Molecular-Level Simulation of Electrolyte System Solubility and Chemical Speciation.

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Škvor, J.; Smith, W.R.; Nezbeda, Ivo

    2010, s. 1. ISBN N. [International Workshop "Molecular Modeling and Simulation for Industrial Applications".. Würzburg (DE), 22.03.2010-23.03.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : electrolyte system solubility * chemical speciation Subject RIV: CF - Physical ; Theoretical Chemistry http://www.processnet.org/index.php?id=1161&suffix=pdf&nonactive=1&lang=de&site=processnet_media

  3. Low-level wastewater treatment facility process control operational test report

    International Nuclear Information System (INIS)

    This test report documents the results obtained while conducting operational testing of a new TK 102 level controller and total outflow integrator added to the NHCON software that controls the Low-Level Wastewater Treatment Facility (LLWTF). The test was performed with WHC-SD-CP-OTP 154, PFP Low-Level Wastewater Treatment Facility Process Control Operational Test. A complete test copy is included in appendix A. The new TK 102 level controller provides a signal, hereafter referred to its cascade mode, to the treatment train flow controller which enables the water treatment process to run for long periods without continuous operator monitoring. The test successfully demonstrated the functionality of the new controller under standard and abnormal conditions expected from the LLWTF operation. In addition, a flow totalizer is now displayed on the LLWTF outlet MICON screen which tallies the process output in gallons. This feature substantially improves the ability to retrieve daily process volumes for maintaining accurate material balances

  4. Molecular Chemical Engines: Pseudo-Static Processes and the Mechanism of Energy Transduction

    CERN Document Server

    Sasaki, K

    2005-01-01

    We propose a simple theoretical model for a molecular chemical engine that catalyzes a chemical reaction and converts the free energy released by the reaction into mechanical work. Binding and unbinding processes of reactant and product molecules to and from the engine are explicitly taken into account. The work delivered by the engine is calculated analytically for infinitely slow (``pseudo-static'') processes, which can be reversible (quasi-static) or irreversible, controlled by an external agent. It is shown that the work larger than the maximum value limited by the second law of thermodynamics can be obtained in a single cycle of operation by chance, although the statistical average of the work never exceeds this limit and the maximum work is delivered if the process is reversible. The mechanism of the energy transductionis also discussed.

  5. Molecular reordering processes on ice (0001) surfaces from long timescale simulations

    CERN Document Server

    Pedersen, Andreas; Karssemeijer, Leendertjan; Cuppen, Herma; Jónsson, Hannes

    2014-01-01

    We report results of long timescale adaptive kinetic Monte Carlo simulations aimed at identifying possible molecular reordering processes on both proton-disordered and ordered (Fletcher) basal plane (0001) surfaces of hexagonal ice. The simulations are based on a force field for flexible molecules and span a time interval of up to 50 {\\mu}s at a temperature of 100 K, which represents a lower bound to the temperature range of Earth's atmosphere. Additional calculations using both density functional theory and an ab initio based polarizable potential function are performed to test and refine the force field predictions. Several distinct processes are found to occur readily even at this low temperature, including concerted reorientation (flipping) of neighboring surface molecules, which changes the pattern of dangling H-atoms, and the formation of interstitial defects by the downwards motion of upper-bilayer molecules. On the proton-disordered surface, one major surface roughening process is observed that signif...

  6. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    Science.gov (United States)

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-01

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation). PMID:25215499

  7. Towards a seamless integration between process modeling descriptions at Business and Production levels - work in progress

    OpenAIRE

    Gerber, Tobias; Theorin, Alfred; Johnsson, Charlotta

    2012-01-01

    To fulfill increasing requirements in the manufacturing sector, companies are faced with several challenges. Three major challenges have been identified regarding time-to-market, vertical feedback loops and level of automation. Grafchart, a graphical language aimed for supervisory control applications, can be used from the process-planning phase, through the implementation phase and all the way to the phase for execution of the process control logics, on the lower levels of the Automation tri...

  8. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    Science.gov (United States)

    Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using ?XANES, SR-?XRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

  9. Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers

    International Nuclear Information System (INIS)

    Full text: Assessment of environmental contamination on ecology (plant) at molecular and population levels is important in risk quantification and remediation study. Random amplified polymorphic DNA (RAPD) assay and related other fingerprinting techniques have been employed to detect the genotoxin-induced DNA damage and mutations. This research compared the effects occurring at molecular and population levels in rice seedlings exposed to cadmium (Cd) concentrations of 15 - 60 mg L-1 for eight days with quartz sand culture. Inhibition of root growth and increase of total soluble protein content in root tips of rice seedlings were observed with the increase of Cd concentration. For the RAPD analyzes, 12 RAPD primers of 50 - 70 % GC content were found to produce unique polymorphic band patterns and subsequently were used to produce a total of 180 bands of 179 ? 3056 bp in molecular size in the control root tips of rice seedlings. Results produced by these RAPD primers indicate that changes in RAPD profiles of root tips after Cd treatment include modifications in band intensity and gain or loss of bands by comparison with control. The effect of changes was dose-dependent. Genomic template stability compares favourably with the traditional indices such as root growth and soluble protein content. The DNA polymorphisms detected by RAPD analysis can be applied as a suitable biomarker assay for the detection of genotoxic effects of Cd contamination on plants. (author)

  10. Selected materials of the international workshop on radiation risk and its origin at molecular and cellular level

    International Nuclear Information System (INIS)

    The workshop ''International Workshop on Radiation Risk and its Origin at Molecular and Cellular Level'' was held at The Tokai Research Establishment, Japan Atomic Energy Research Institute, on the 6th and 7th of February 2003. The Laboratory of Radiation Risk Analysis of JAERI organized it. This international workshop attracted scientists from several different scientific areas, including radiation physics, radiation biology, molecular biology, crystallography of biomolecules, modeling and bio-informatics. Several foreign and domestic keynote speakers addresses the very fundamental areas of radiation risk and tried to establish a link between the fundamental studies at the molecular and cellular level and radiation damages at the organism. The symposium consisted of 13 oral lectures, 10 poster presentations and panel discussion. The 108 participants attended the workshop. This publication comprises of proceedings of oral and poster presentations where available. For the rest of contributions the abstracts or/and selections of presentation materials are shown instead. The 5 papers are indexed individually. (J.P.N.)

  11. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  12. Anthraquinone-based demultiplexer and other multiple operations at the molecular level

    Indian Academy of Sciences (India)

    Navneet Kaur; Subodh Kumar

    2014-01-01

    Anthraquinone-based chemosensor L with pyridine units as additional functional groups has been found to show pH-dependent multiple coordinationmodes towards differentmetal ions (Co2+, Ni2+ and Cu2+). Based on these different absorption changes, this differential colorimetric chemosensor L has found promising applications as a multiple-mode molecular logic system, i.e., OR, three - input NOR, three - input INHIBIT, TRANSFER and 1:2 DEMUX.

  13. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  14. Vapor pressure dependence of spectral width of EIT in Lambda-level cesium molecular system

    OpenAIRE

    Chen, Hui; Li, Hebin; Rostovtsev, Yuri V.; Gubin, Mikhail A.; Sautenkov, Vladimir A.; Scully, Marlan O.

    2009-01-01

    We have studied electromagnetically induced transparency (EIT) in diatomic cesium molecules in a vapor cell by using tunable diode lasers. We have observed a sub-natural Lambda-resonance in an absorption molecular band at different cesium vapor pressures. The width of the EIT resonance shows a linear dependence on cesium vapor pressure. Narrow Lambda-resonances in molecules can be used as frequency references for femtosecond laser frequency combs.

  15. MOLECULAR SIEVES AS CATALYSTS FOR METHANOL DEHYDRATION IN THE LPDMEtm PROCESS; TOPICAL

    International Nuclear Information System (INIS)

    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME(trademark) (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME(trademark) system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity

  16. Dehydrogenation processes and molecular clusters in mass spectra of organometallic and coordination compounds

    Science.gov (United States)

    Goraczko; Szymura

    2000-07-01

    A method for the calculation of components from the complex molecular pattern is proposed. The modelling of molecular ion region in mass spectrum is applied to cases where for detection of the dehydrogenation processes effects such as losses of protons, hydrogen radicals or hydrogen molecules may occur. The parts of (M-H) and (M-2H) bands are determined as components of the picture observed in the molecular ion range of mass spectrum. Positive results of the modelling show, the hydrogen losses should be considered in resulted spectrum interpretation. The components contributions were computed by the least squares method, in which optimisation is based on Hooke Jeeves procedure. Such an approach resulted in model fits within 1% precision for the cluster containing five or more peaks. Applications of the method are presented for 2-methyl-selenolo[2.3-b]-pyridine C8H7NSe, ethyl-digermane C2H10Ge2 and methyl-mercuric-dicyandiamide C3H10HgN4. PMID:10890368

  17. Consolidation of slow or fast but not moderately evolving genes at the level of pathways and processes.

    Science.gov (United States)

    Vinogradov, Alexander E

    2015-04-25

    Conservatism versus innovation is probably the most important dichotomy of all evolving systems. In molecular evolution the distinction between conservative (negative) selection, innovative (positive) selection and unconstrained evolution (drift) is usually ambiguous at the gene level. Only rare cases with the ratio of nonsynonymous to synonymous nucleotide substitutions above unity (dN/dS>1) are thought to be due to positive selection, whereas the lower dN/dS ratio may indicate negative selection in combination with drift. The density of the dN/dS ratio for orthologous genes forms a unimodal distribution where no particular regions can be discerned. Here it is shown that at the level of overrepresented pathways and processes the picture is strikingly different. The distribution is strongly polarized with a wide completely depressed middle part. This three-phase distribution is very robust. It is observed with various substitution models and remains at very low significance of overrepresentation (up to ptinkering' at the gene level and 'design' at the higher levels is forming. PMID:25707747

  18. Dynamics of cooperative emissions in a cascade three-level molecular system driven by an ultrashort laser pulse

    International Nuclear Information System (INIS)

    This paper investigates the dynamics of cooperative emissions in a cascade three-level system driven by an ultrashort laser pulse by solving numerically the full-wave Maxwell–Bloch equations. The 4, 4'-bis(dimethylamino) stilbene molecule is used as the model molecule because of its strong two-photon absorption property. The two-colour cooperative emissions are studied as functions of molecular number density and dephasing rate of the dipole coherence. The propagation effects on the evolution of the cooperative radiations are also taken into account. The cooperative radiations are enhanced for large number density of the molecule, while the fast dephasing of the dipole coherence reduces the intensity of the cooperative radiations and delays the emission times or even inhibits the formation of the emissions. The delay time of the radiation decreases with the increase of the molecular number density and the propagation distance. (classical areas of phenomenology)

  19. Primary Process Thinking in the Same Children at Two Developmental Levels

    Science.gov (United States)

    Rivard, Eliane; Dudek, Stephanie Z.

    1977-01-01

    Analysis of primary process thinking of the same children at kindergarten level and at grade four revealed that amount of primary process thinking was relatively constant with development, contrary to predictions based on psychoanalytic theory. However, drive related ideation increased and formal deviations of thought decreased in quality and type…

  20. The Influence of Levels of Processing on Recall from Working Memory and Delayed Recall Tasks

    Science.gov (United States)

    Loaiza, Vanessa M.; McCabe, David P.; Youngblood, Jessie L.; Rose, Nathan S.; Myerson, Joel

    2011-01-01

    Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading…

  1. Extending pathways and processes using molecular interaction networks to analyse cancer genome data

    Directory of Open Access Journals (Sweden)

    Krasnogor Natalio

    2010-12-01

    Full Text Available Abstract Background Cellular processes and pathways, whose deregulation may contribute to the development of cancers, are often represented as cascades of proteins transmitting a signal from the cell surface to the nucleus. However, recent functional genomic experiments have identified thousands of interactions for the signalling canonical proteins, challenging the traditional view of pathways as independent functional entities. Combining information from pathway databases and interaction networks obtained from functional genomic experiments is therefore a promising strategy to obtain more robust pathway and process representations, facilitating the study of cancer-related pathways. Results We present a methodology for extending pre-defined protein sets representing cellular pathways and processes by mapping them onto a protein-protein interaction network, and extending them to include densely interconnected interaction partners. The added proteins display distinctive network topological features and molecular function annotations, and can be proposed as putative new components, and/or as regulators of the communication between the different cellular processes. Finally, these extended pathways and processes are used to analyse their enrichment in pancreatic mutated genes. Significant associations between mutated genes and certain processes are identified, enabling an analysis of the influence of previously non-annotated cancer mutated genes. Conclusions The proposed method for extending cellular pathways helps to explain the functions of cancer mutated genes by exploiting the synergies of canonical knowledge and large-scale interaction data.

  2. Board-invited review: Sensitivity and responses of functional groups to feed processing methods on a molecular basis

    Directory of Open Access Journals (Sweden)

    Yu Peiqiang

    2012-12-01

    Full Text Available Abstract In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore produce unique molecular vibration spectral profile. Feed processing has been used to improve nutrient utilization for many years. However, to date, there was little study on processing-induced changes of feed intrinsic structure and functional groups on a molecular basis within intact tissue. This is because limited research technique is available to study inherent structure on a molecular basis. Recently bioanalytical techniques: such as Synchrotron Infrared Microspectroscopy as well as Diffuse Reflectance Infrared Fourier Transform molecular spectroscopy have been developed. These techniques enable to detect molecular structure change within intact tissues. These techniques can prevent destruction or alteration of the intrinsic protein structures during processing for analysis. However, these techniques have not been used in animal feed and nutrition research. The objective of this review was show that with the advanced technique, sensitivity and responses of functional groups to feed processing on a molecular basis could be detected in my research team. These functional groups are highly associated with nutrient utilization in animals.

  3. Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE). The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current—voltage (I—V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49 ±0.03 eV and capture cross-section of 8.57 × 10?18 cm2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Study the sensitivity of molecular functional groups to bioethanol processing in lipid biopolymer of co-products using DRIFT molecular spectroscopy

    Science.gov (United States)

    Yu, Peiqiang

    2011-11-01

    To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH 3 and CH 2 (ca. 2959 and 2928 cm -1, respectively), symmetric CH 3 and CH 2 (ca. 2871 and 2954 cm -1, respectively) functional groups, carbonyl C dbnd O ester (ca. 1745 cm -1) and unsaturated groups (CH attached to C dbnd C) (ca. 3007 cm -1) spectral intensities as well as their ratios of antisymmetric CH 3 to antisymmetric CH 2, and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH 3-antisymmetric to CH 2-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl C dbnd O ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn and corn DDGS in the antisymmetric and symmetric CH 3 and CH 2 spectral region (ca. 2994-2800 cm -1) and unsaturated group band region (3025-2996 cm -1). Further study is needed to quantify molecular structural changes in relation to nutrient utilization of lipid biopolymer.

  5. SCRUB-PA: A Multi-Level Multi-Dimensional Anonymization Tool for Process Accounting

    CERN Document Server

    Luo, K; Li, Y; Slagell, A J; Yurcik, W; Ermopoulos, Charis; Li, Yifan; Luo, Katherine; Slagell, Adam; Yurcik, William

    2006-01-01

    In the UNIX/Linux environment the kernel can log every command process created by every user using process accounting. This data has many potential uses, including the investigation of security incidents. However, process accounting data is also sensitive since it contains private user information. Consequently, security system administrators have been hindered from sharing these logs. Given that many interesting security applications could use process accounting data, it would be useful to have a tool that could protect private user information in the logs. For this reason we introduce SCRUB-PA, a tool that uses multi-level multi-dimensional anonymization on process accounting log files in order to provide different levels of privacy protection. It is our goal that SCRUB-PA will promote the sharing of process accounting logs while preserving privacy.

  6. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  7. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  8. Nested Hierarchical Dirichlet Processes for Multi-Level Non-Parametric Admixture Modeling

    OpenAIRE

    Tekumalla, Lavanya Sita; Agrawal, Priyanka; Bhattacharya, Indrajit

    2015-01-01

    Dirichlet Process(DP) is a Bayesian non-parametric prior for infinite mixture modeling, where the number of mixture components grows with the number of data items. The Hierarchical Dirichlet Process (HDP), is an extension of DP for grouped data, often used for non-parametric topic modeling, where each group is a mixture over shared mixture densities. The Nested Dirichlet Process (nDP), on the other hand, is an extension of the DP for learning group level distributions from d...

  9. Tank waste remediation system phase I high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  10. A molecular dynamics study of structural transition of Ti during the rapid quenching process

    International Nuclear Information System (INIS)

    The structural transitions of Ti during two different quenching processes (Q1: 7.5×1011 K/s, Q2: 2.0×1014 K/s) were studied using molecular dynamics simulations. The calculated pair-correlation function agrees acceptably with available experimental data. This work gives the structural properties, including the variations with temperature of pair-correlation function, bond-angle distribution function, bond pairs and Voronoi indices, in both rapid quenching processes. Our results indicated that the liquid Ti transformed to hcp phase at the temperature about of 400 K under the quenching condition Q1 while the liquid Ti was frozen into a glass state at the temperature about of 800 K under the quenching condition Q2.

  11. Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices.

    Science.gov (United States)

    Ohisa, Satoru; Pu, Yong-Jin; Yamada, Norifumi L; Matsuba, Go; Kido, Junji

    2015-09-23

    In organic light emitting devices (OLEDs), interfacial structures between multilayers have large impacts on the characteristics of OLEDs. Herein, we succeeded in revealing the interdiffusion in solution processed and thermal annealed OLEDs by neutron reflectometry. We investigated interfaces between a polymer under layer and small molecules upper layer. The small molecules diffused into the swollen polymer layer during the interfacial formation by the solution process, but the polymer did not diffuse into the small molecules layer. At temperatures close to the glass transition temperatures of the materials, asymmetric molecular diffusion was observed. We elucidated the effects of the interdiffusion on the characteristics of OLEDs. Partially mixing the interface improved the current efficiencies due to suppressed triplet-polaron quenching at the interface. Controlling and understanding the interfacial structures of the miultilayers will be more important to improve the OLED characteristics. PMID:26331696

  12. Induction and reversion process of molecular and cytological alterations after highly irradiated food ingestion in mice

    International Nuclear Information System (INIS)

    The molecular and cytological alterations induced in a mammal (Mus musculus) fed ad libitum with a balanced pellet diet irradiated with 50 KGy gamma radiation from weaning, for different periods, are analyzed. The transient chromosomal changes that recall tumor-like phenomena could be the expression of the damage and repair processes induced by changed molecules present in irradiated food. The reversible alterations of DNA structure and cytoplasmatic soluble proteins observed in mice fed with irradiated pellet diet could be interpreted as a result of the enhancement of the repair processes which could also explain the significant increase of the radioresistance of DNA found at 200 days after irradiated food ingestion. Finally, our results would suggest an induction of a pseudo-neoplasia due to a prolongated and exclusive ingestion of food irradiated with sterilizing gamma dose. Moreover, the maintenance of the irradiated diet induce the reversion of the observed phenomena by an eventual activation of the repair mechanisms. (Author)

  13. Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes

    International Nuclear Information System (INIS)

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport

  14. Quantum control of a molecular ionization process by using Fourier-synthesized laser fields

    Science.gov (United States)

    Ohmura, Hideki; Saito, Naoaki

    2015-11-01

    In photoexcitation processes, if the motion of excited electrons can be precisely steered by the instantaneous electric field of an arbitrary waveform of a Fourier-synthesized laser field, the resultant matter response can be achieved within one optical cycle, usually within the attosecond (1 as =10-18s ) regime. Fourier synthesis of laser fields has been achieved in various ways. However, the general use of Fourier-synthesized laser fields for the control of matter is extremely limited. Here, we report the quantum control of a nonlinear response of a molecular ionization process by using Fourier-synthesized laser fields. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 ×1012W /c m2) Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light achieves the orientation-selective ionization; we utilized the orientation-selective ionization for measurement of the relative phase differences between the fundamental and each harmonic light. Our findings impact not only light-wave engineering but also the control of matter, possibly triggering the creation and establishment of a new methodology that uses Fourier-synthesized laser fields.

  15. Recognition processes at a functionalized lipid surface observed with molecular resolution

    DEFF Research Database (Denmark)

    Vaknin, D.; Als-Nielsen, J.

    1991-01-01

    The specific binding of proteins to functionalized lipid monolayers on aqueous subphases was characterized by neutron reflectivity and fluorescence microscopy measurements. Due to the high affinity and high specificity of their noncovalent interaction, streptavidin (SA) and biotin (vitamin H) were chosen as a model system to investigate the structural characteristics of a recognition process on a molecular length scale. Changes in the neutron reflection from the surfaces of NaCl aqueous (H2O or D2O) protein solutions (10(-8) M SA) were used to monitor the interaction of the protein with a monolayer of a biotinylated lipid in situ. Refinement of the reflectivity data and independent fluorescence microscopic observation of the interface using FITC-labeled SA showed that the protein forms macroscopically homogeneous (and presumably crystalline) domains covering a large portion of the surface. Moreover, the neutron reflection experiments clearly showed the formation of a monomolecular protein layer with an effective thickness, d(p) = 43.7 +/- 2 angstrom. The area per protein molecule occupied in the film was A0 = 2860 +/- 200 angstrom 2 and n(w) = 260 +/- 100 water molecules were associated with each protein molecule. Quantitative binding was found to occur at biotin surface concentrations as low as 1 molecule/1,250 angstrom 2 (compared with approximately 1 molecule/40 angstrom 2 for dense packing). This study demonstrates the application of a promising new tool for the systematic investigation of molecular recognition processes in protein/lipid model systems.

  16. Ultrasmall volume molecular isothermal amplification in microfluidic chip with advanced surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Huang Guoliang; Yang Xiaoyong [Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing, 100084 (China); Ma Li; Yang Xu, E-mail: tshgl@tsinghua.edu.cn [National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206 (China)

    2011-01-01

    In this paper, we developed a metal micro-fluidic chip with advanced surface processing for ultra-small volume molecular isothermal amplification. This method takes advantages of the nucleic acid amplification with good stability and consistency, high sensitivity about 31 genomic DNA copies and bacteria specific gene identification. Based on the advanced surface processing, the bioreaction assays of nucleic acid amplification was dropped about 392nl in volume. A high numerical aperture confocal optical detection system was advanced to sensitively monitor the DNA amplification with low noise and high power collecting fluorescence near to the optical diffraction limit. A speedy nucleic acid isothermal amplification was performed in the ultra-small volume microfluidic chip, where the time at the inflexions of second derivative to DNA exponential amplified curves was brought forward and the sensitivity was improved about 65 folds to that of in current 25{mu}l Ep-tube amplified reaction, which indicates a promising clinic molecular diagnostics in the droplet amplification.

  17. Field-dependent magnetic parameters in {Ni4Mo12}: Magnetostriction at the molecular level?

    CERN Document Server

    Schnack, J; Luban, M; Koegerler, P; Morosan, E; Fuchs, R; Modler, R; Nojiri, H; Rai, R C; Cao, J; Musfeldt, J L; Xing Wei; Nojiri, Hiroyuki; Rai, Ram C.; Cao, Jinbo

    2006-01-01

    We investigate the bulk magnetic, electron paramagnetic resonance, and magneto-optical properties of {Ni4Mo12}, a magnetic molecule with antiferromagnetically coupled tetrahedral {Ni4Mo12} in a diamagnetic molybdenum matrix. The low-temperature magnetization exhibits steps at irregular field intervals, a result that cannot be explained using a Heisenberg model even if it is augmented by magnetic anisotropy and biquadratic terms. Allowing the exchange and anisotropy parameters to depend on the magnetic field provides the best fit to our data, suggesting that the molecular structure (and thus the interactions between spins) may be changing with applied magnetic field.

  18. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.

    Science.gov (United States)

    Yu, Gloria Qingyu; Warkentin, Tom; Niu, Zhiyuan; Khan, Nazir A; Yu, Peiqiang

    2015-12-01

    The objectives of this study were (1) to quantify the protein inherent molecular structural features of green cotyledon (CDC Striker) and yellow cotyledon (CDC Meadow) pea (Pisum sativum L.) seeds using molecular spectroscopic technique (FT/IR-ATR); (2) measure the denaturation of protein molecular makeup in the two types of pea during dry roasting (120°C for 60 min), autoclaving (120°C for 60 min) or microwaving (for 5 min); and (3) correlate the heat-induced changes in protein molecular makeup to the corresponding changes in protein digestibility determined using modified three-step in vitro procedure. Compared with yellow-type, the green-type peas had higher (Pprotein content. Compared with yellow-type, the green-type peas had lower (Pprotein secondary structure makeup. All processing applications increased ?-helix:?-sheet ratio, with the largest (Pprotein within the green (r=-0. 86) and yellow (r=0.81) pea-types. However, across the pea types the correlation was not significant. Principal component and hierarchical cluster analyses on the entire spectral data from the amide region (ca. 1727-1480 cm(-1)) were able to visualize and discriminate the structural difference between pea varieties and processing treatments. This study shows that the molecular spectroscopy can be used as a rapid tool to screen the protein value of raw and heat-treated peas. PMID:26188704

  19. Molecular-level understanding of the WGS and reverse WGS reactions on Rh through hierarchical multiscale approach

    OpenAIRE

    Maestri, Matteo; Reuter, Karsten

    2012-01-01

    Hierarchically combining semi-empirical methods and first-principles calculations we gain a novel and noteworthy picture of the molecular-level mechanisms that govern the water-gas-shift (WGS) and reverse water-gas-shift (r-WGS) reactions on Rh catalysts. Central to this picture is that the WGS and r-WGS follow two different dominant reaction mechanisms: WGS proceeds according to a carboxyl (COOH) mechanism, whereas r-WGS proceeds according to a redox (CO2 {\\to} CO + O) mech...

  20. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog

    Science.gov (United States)

    Holinde, L.; Badewien, T. H.; Freund, J. A.; Stanev, E. V.; Zielinski, O.

    2015-04-01

    The quality of water level time series data strongly varies with periods of high and low quality sensor data. In this paper we are presenting the processing steps which were used to generate high quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25 m/10 min was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10 years dataset of water level information at the TSS was processed and the results were submitted to WDC MARE data base system PANGAEA (pangaea.de/10.1594/PANGAEA.843740" target=_blank">http://doi.pangaea.de/10.1594/PANGAEA.843740).

  1. Gene Expression Profiles of the NCI-60 Human Tumor Cell Lines Define Molecular Interaction Networks Governing Cell Migration Processes

    OpenAIRE

    Kohn, Kurt W.; Zeeberg, Barry R; Reinhold, William C; Sunshine, Margot; Luna, Augustin; POMMIER, Yves

    2012-01-01

    Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and assoc...

  2. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs

  3. Molecular studies on the ecology of Listeria monocytogenes in the smoked fish processing industry.

    Science.gov (United States)

    Norton, D M; McCamey, M A; Gall, K L; Scarlett, J M; Boor, K J; Wiedmann, M

    2001-01-01

    We have applied molecular approaches, including PCR-based detection strategies and DNA fingerprinting methods, to study the ecology of Listeria monocytogenes in food processing environments. A total of 531 samples, including raw fish, fish during the cold-smoking process, finished product, and environmental samples, were collected from three smoked fish processing facilities during five visits to each facility. A total of 95 (17.9%) of the samples tested positive for L. monocytogenes using a commercial PCR system (BAX for Screening/Listeria monocytogenes), including 57 (27.7%) environmental samples (n = 206), 8 (7.8%) raw material samples (n = 102), 23 (18.1%) samples from fish in various stages of processing(n = 127), and 7 (7.3%) finished product samples (n = 96). L. monocytogenes was isolated from 85 samples (16.0%) using culture methods. Used in conjunction with a 48-h enrichment in Listeria Enrichment Broth, the PCR system had a sensitivity of 91.8% and a specificity of 96.2%. To track the origin and spread of L. monocytogenes, isolates were fingerprinted by automated ribotyping. Fifteen different ribotypes were identified among 85 isolates tested. Ribotyping data established possible contamination patterns, implicating raw materials and the processing environment as potential sources of finished product contamination. Analysis of the distribution of ribotypes revealed that each processing facility had a unique contamination pattern and that specific ribotypes persisted in the environments of two facilities over time (P food processing environments. This information can be used to develop practical recommendations for improved control of this important food-borne pathogen in the food industry. PMID:11133446

  4. Molecular-level understanding of the WGS and reverse WGS reactions on Rh through hierarchical multiscale approach

    CERN Document Server

    Maestri, Matteo; 10.1016/j.ces.2012.02.043

    2012-01-01

    Hierarchically combining semi-empirical methods and first-principles calculations we gain a novel and noteworthy picture of the molecular-level mechanisms that govern the water-gas-shift (WGS) and reverse water-gas-shift (r-WGS) reactions on Rh catalysts. Central to this picture is that the WGS and r-WGS follow two different dominant reaction mechanisms: WGS proceeds according to a carboxyl (COOH) mechanism, whereas r-WGS proceeds according to a redox (CO2 {\\to} CO + O) mechanism. The obtained results furthermore underscore the danger of common first-principles analyses that focus on a priori selected dominant paths. Not restricted to such bias, our herein proposed hierarchical approach thus constitutes a promising avenue to properly transport and incorporate the ab initio predictive-quality to a new level of system complexity.

  5. Physical modeling of Fermi-level effects for decanano device process simulations

    International Nuclear Information System (INIS)

    We report on a physically based Fermi-level modeling approach designed to be accurate and yet amenable to be implemented in a device-size process simulator. We use an atomistic kinetic Monte Carlo method in conjunction with a continuum treatment for carrier densities. The model includes: (i) charge reactions and electric bias according to the local Fermi-level; (ii) pairing and break-up reactions involving charged particles; (iii) clustering-related dopant deactivation; and (iv) Fermi level-dependent solubility. Degenerated statistics, band-gap narrowing, and damage-induced electrical compensation are also included. The parameters used for charged particles are in agreement with ab initio calculations and experimental results. This modeling scheme has proved to be very computationally efficient for realistic device-dimension process simulations. We present an illustrative set of simulation results for two common dopants, boron and arsenic, and discuss the potential of this approach for accurate process simulation of decanano CMOS devices

  6. Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eliezer Fernando [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Lavarda, Francisco Carlos, E-mail: lavarda@fc.unesp.br [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Faculdade de Ciências, UNESP – Univ Estadual Paulista, Departamento de Física, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil)

    2014-12-15

    An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. - Highlights: • Prediction of P3HT derivatives properties for bulk-heterojunction solar cells. • Correlating substituent properties with electronic levels of P3HT derivatives. • Fluorinated P3HT improves open circuit voltage and stability.

  7. Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM

    International Nuclear Information System (INIS)

    An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. - Highlights: • Prediction of P3HT derivatives properties for bulk-heterojunction solar cells. • Correlating substituent properties with electronic levels of P3HT derivatives. • Fluorinated P3HT improves open circuit voltage and stability

  8. The evolution and origin of animal Toll-like receptor signaling pathway revealed by network-level molecular evolutionary analyses.

    Science.gov (United States)

    Song, Xiaojun; Jin, Ping; Qin, Sheng; Chen, Liming; Ma, Fei

    2012-01-01

    Genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Studies on the effect of network architecture on the evolution of individual proteins will provide valuable information for understanding the origin and evolution as well as functional conservation of signaling pathways. However, the relationship between the network architecture and the individual protein sequence evolution is yet little known. In current study, we carried out network-level molecular evolution analysis on TLR (Toll-like receptor ) signaling pathway, which plays an important role in innate immunity in insects and mammals, and we found that: 1) The selection constraint of genes was negatively correlated with its position along TLR signaling pathway; 2) all genes in TLR signaling pathway were highly conserved and underwent strong purifying selection; 3) the distribution of selective pressure along the pathway was driven by differential nonsynonymous substitution levels; 4) The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, I?B and NF-?B genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-?B genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein. PMID:23236523

  9. Regulating risk or risking regulation? Construal levels and depletion effects in the processing of health messages

    OpenAIRE

    Wan, EW; Agrawal, N

    2009-01-01

    The depletion effect occurs when individuals who exert self-control in a previous task (i.e., depleted individuals) exhibit less self-control on a subsequent task relative to individuals who did not previously exert self-control. This article presents two experiments that implicate construal levels to understand the processes underlying depletion effects in the context of consumer health. At low-level construals, individuals rely on resource accessibility cues (e.g., feelings of tiredness) to...

  10. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

    Science.gov (United States)

    Abraham, Mark James; Murtola, Teemu; Schulz, Roland; Páll, Szilárd; Smith, Jeremy C.; Hess, Berk; Lindahl, Erik

    2015-09-01

    GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. These work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU-GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. The latest best-in-class compressed trajectory storage format is supported.

  11. Advanced treatment processes for low and intermediate level radwastes in India

    International Nuclear Information System (INIS)

    Development of improved treatment processes for low and intermediate level radwastes is being pursued in India in view of the increasing environmental and regulatory concerns. Copper hexacyanoferrate loaded, macroporous anion exchange resin was developed as an effective sorbent for the removal of radiocesium from low level aqueous effluents and spent fuel storage pool water. The reverse osmosis process using cellulose acetate membranes was tested in pilot scale as an alternative treatment process for low level aqueous wastes. A treatment scheme for alkaline intermediate level aqueous wastes based on the selective uptake of radiocesium by a resorcinol-formaldehyde polycondensate resin was developed in the laboratory and found satisfactory in trials with the alkaline waste of a reprocessing plant. Synthetic zeolites are being tested for fixation of activity released in solution in wet oxidative destruction of spent ion exchange resin, arising from reactors and other nuclear facilities. All these processes are being critically evaluated for possible application in the treatment of low and intermediate level radwastes in India

  12. Correlation test to assess low-level processing of high-density oligonucleotide microarray data

    Directory of Open Access Journals (Sweden)

    Bergh Jonas

    2005-03-01

    Full Text Available Abstract Background There are currently a number of competing techniques for low-level processing of oligonucleotide array data. The choice of technique has a profound effect on subsequent statistical analyses, but there is no method to assess whether a particular technique is appropriate for a specific data set, without reference to external data. Results We analyzed coregulation between genes in order to detect insufficient normalization between arrays, where coregulation is measured in terms of statistical correlation. In a large collection of genes, a random pair of genes should have on average zero correlation, hence allowing a correlation test. For all data sets that we evaluated, and the three most commonly used low-level processing procedures including MAS5, RMA and MBEI, the housekeeping-gene normalization failed the test. For a real clinical data set, RMA and MBEI showed significant correlation for absent genes. We also found that a second round of normalization on the probe set level improved normalization significantly throughout. Conclusion Previous evaluation of low-level processing in the literature has been limited to artificial spike-in and mixture data sets. In the absence of a known gold-standard, the correlation criterion allows us to assess the appropriateness of low-level processing of a specific data set and the success of normalization for subsets of genes.

  13. False memory and level of processing effect: an event-related potential study.

    Science.gov (United States)

    Beato, Maria Soledad; Boldini, Angela; Cadavid, Sara

    2012-09-12

    Event-related potentials (ERPs) were used to determine the effects of level of processing on true and false memory, using the Deese-Roediger-McDermott (DRM) paradigm. In the DRM paradigm, lists of words highly associated to a single nonpresented word (the 'critical lure') are studied and, in a subsequent memory test, critical lures are often falsely remembered. Lists with three critical lures per list were auditorily presented here to participants who studied them with either a shallow (saying whether the word contained the letter 'o') or a deep (creating a mental image of the word) processing task. Visual presentation modality was used on a final recognition test. True recognition of studied words was significantly higher after deep encoding, whereas false recognition of nonpresented critical lures was similar in both experimental groups. At the ERP level, true and false recognition showed similar patterns: no FN400 effect was found, whereas comparable left parietal and late right frontal old/new effects were found for true and false recognition in both experimental conditions. Items studied under shallow encoding conditions elicited more positive ERP than items studied under deep encoding conditions at a 1000-1500 ms interval. These ERP results suggest that true and false recognition share some common underlying processes. Differential effects of level of processing on true and false memory were found only at the behavioral level but not at the ERP level. PMID:22811058

  14. Evaluation of high-level waste pretreatment processes with an approximate reasoning model

    International Nuclear Information System (INIS)

    The development of an approximate-reasoning (AR)-based model to analyze pretreatment options for high-level waste is presented. AR methods are used to emulate the processes used by experts in arriving at a judgment. In this paper, the authors first consider two specific issues in applying AR to the analysis of pretreatment options. They examine how to combine quantitative and qualitative evidence to infer the acceptability of a process result using the example of cesium content in low-level waste. They then demonstrate the use of simple physical models to structure expert elicitation and to produce inferences consistent with a problem involving waste particle size effects

  15. Framework for sustainability assessment of industrial processes with multi-scale technology at design level: microcapsules production process

    OpenAIRE

    Navarro Rosa, Jennifer

    2009-01-01

    In a world with limited resources and serious environmental, social and economical impacts, a more sustainable life style is everyday more important. Therefore, the general objective of this work is to develop a methodological procedure for eco-efficiency and sustainability assessment of industrial processes with multi-scale technology at design level. The methodology developed follows the ISO 14040 series for environmental LCA standard. To integrate the three pillars of sustainability the an...

  16. Molecular reordering processes on ice (0001) surfaces from long timescale simulations

    International Nuclear Information System (INIS)

    We report results of long timescale adaptive kinetic Monte Carlo simulations aimed at identifying possible molecular reordering processes on both proton-disordered and ordered (Fletcher) basal plane (0001) surfaces of hexagonal ice. The simulations are based on a force field for flexible molecules and span a time interval of up to 50 ?s at a temperature of 100 K, which represents a lower bound to the temperature range of earth's atmosphere. Additional calculations using both density functional theory and an ab initio based polarizable potential function are performed to test and refine the force field predictions. Several distinct processes are found to occur readily even at this low temperature, including concerted reorientation (flipping) of neighboring surface molecules, which changes the pattern of dangling H-atoms, and the formation of interstitial defects by the downwards motion of upper-bilayer molecules. On the proton-disordered surface, one major surface roughening process is observed that significantly disrupts the crystalline structure. Despite much longer simulation time, such roughening processes are not observed on the highly ordered Fletcher surface which is energetically more stable because of smaller repulsive interaction between neighboring dangling H-atoms. However, a more localized process takes place on the Fletcher surface involving a surface molecule transiently leaving its lattice site. The flipping process provides a facile pathway of increasing proton-order and stabilizing the surface, supporting a predominantly Fletcher-like ordering of low-temperature ice surfaces. Our simulations also show that eventual proton-disordered patches on the surface may induce significant local reconstructions. Further, a subset of the molecules on the Fletcher surface are susceptible to forming interstitial defects which might provide active sites for various chemical reactions in the atmosphere

  17. Assessment of surface contamination level in an operating uranium ore processing facility of Jaduguda, India

    International Nuclear Information System (INIS)

    Radiological concern of the occupational workers and the area is given priority over other safety issue in confirmation with the stipulated guideline of national regulatory agency (AERB/FEFCF/SG-2, 2007). The key concern from the radiological hazard evaluation point of view is air activity, external gamma level and surface contamination. Present investigations was carried out to ascertain the surface contamination level of uranium ore processing facility at Jaduguda, Jharkhand. For a low grade uranium ore processing industry surface contamination is a major concern in product precipitation and recovery section. In view of this, the ore processing plant can broadly be classified into three areas i.e. ion exchange area, precipitation and product recovery section and other areas. The monitoring results incorporate the level of surface contamination of the plant during the last five years. The geometric mean activity of surface contamination level was 31.1, 34.5 and 9.8 Bq dm-2 in ion exchange, product precipitation and recovery and other areas with GSD of 2, 2.5 and 1.9. In most of the cases the surface contamination level was well within the recommended limit of 100 Bq dm-2 for M class uranium compound. Occasional cases of surface contamination levels exceeding the recommended limit were addressed and areas were decontaminated. Based on the study, modification in the design feature of the surface of the finished product section was also suggested so that the decontamination procedure can be more effectively implemented

  18. Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Concurrent Processes

    Directory of Open Access Journals (Sweden)

    Marco Bernardo

    2012-07-01

    Full Text Available We have recently defined a weak Markovian bisimulation equivalence in an integrated-time setting, which reduces sequences of exponentially timed internal actions to individual exponentially timed internal actions having the same average duration and execution probability as the corresponding sequences. This weak Markovian bisimulation equivalence is a congruence for sequential processes with abstraction and turns out to induce an exact CTMC-level aggregation at steady state for all the considered processes. However, it is not a congruence with respect to parallel composition. In this paper, we show how to generalize the equivalence in a way that a reasonable tradeoff among abstraction, compositionality, and exactness is achieved for concurrent processes. We will see that, by enhancing the abstraction capability in the presence of concurrent computations, it is possible to retrieve the congruence property with respect to parallel composition, with the resulting CTMC-level aggregation being exact at steady state only for a certain subset of the considered processes.

  19. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  20. The molecular signature of AML mesenchymal stromal cells reveals candidate genes related to the leukemogenic process.

    Science.gov (United States)

    Binato, Renata; de Almeida Oliveira, Nathalia Correa; Du Rocher, Barbara; Abdelhay, Eliana

    2015-12-01

    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by myeloid precursor proliferation in the bone marrow, apoptosis reduction and differentiation arrest. Although there are several studies in this field, events related to disease initiation and progression remain unknown. The malignant transformation of hematopoietic stem cells (HSC) is thought to generate leukemic stem cells, and this transformation could be related to changes in mesenchymal stromal cell (hMSC) signaling. Thus, the aim of this work was to analyze the gene expression profile of hMSC from AML patients (hMSC-AML) compared to healthy donors hMSCs (hMSC-HD). The results showed a common molecular signature for all hMSC-AML. Other assays were performed with a large number of patients and the results confirmed a molecular signature that is capable of distinguishing hMSC-AML from hMSC-HD. Moreover, CCL2 and BMP4 genes encode secreted proteins that could affect HSCs. To verify whether these proteins are differentially expressed in AML patients, ELISA was performed with plasma samples. CCL2 and BMP4 proteins are differentially expressed in AML patients, indicating changes in hMSC-AML signaling. Altogether, hMSCs-AML signaling alterations could be an important factor in the leukemic transformation process. PMID:26279521

  1. Quantum computation and the physical computation level of biological information processing

    OpenAIRE

    Castagnoli, Giuseppe

    2009-01-01

    On the basis of introspective analysis, we establish a crucial requirement for the physical computation basis of consciousness: it should allow processing a significant amount of information together at the same time. Classical computation does not satisfy the requirement. At the fundamental physical level, it is a network of two body interactions, each the input-output transformation of a universal Boolean gate. Thus, it cannot process together at the same time more than th...

  2. Processes of direct democracy on the federal level in Brazil: An inventory and a research outlook

    OpenAIRE

    Rauschenbach, Rolf

    2012-01-01

    Problem addressed: Brazil is well known for its participatory budget. However, little information is available to the international academic community when it comes to the Brazilian practice of processes of direct democracy. Result of this study: This paper provides a full account of the Brazilian processes of direct democracy on the federal level, including their historical and legal context. It draws a preliminary conclusion and formulates a research outlook. Method applied: Desk-research.

  3. Emotional face processing in women with high and low levels of eating disorder related symptoms.

    OpenAIRE

    Jones, L.; Harmer, C.; Cowen, P; COOPER, M

    2008-01-01

    OBJECTIVES: Emotional processing has rarely been investigated in those "at risk" of developing an eating disorder. This study investigated the processing of six basic emotions depicted on faces in an "at risk" group, compared to a control group. DESIGN: Participants were women with high (N=29) and low (N=23) levels of eating disorder symptoms who were not taking psychotropic medication. A well characterised computerised task (Facial Expression Emotion Task) was administered to all participant...

  4. Predicting the Effects of Common Levels of Variability on Flow Processing Systems

    OpenAIRE

    David STOCKTON; Khalil, Riham; Fresco, John Anthony

    2008-01-01

    Abstract The implementation of flow processing is essential to the successful application of lean manufacturing practices since it provides the infrastructure for both pull production to take place and the focussed elimination of waste. With the adoption of lean practices into a broader range of production environments there is an increasing need for flow processing to operate under a wider range of conditions particularly with respect to the sources and levels of variability that ...

  5. Sources and processes affecting levels and composition of atmospheric particulate matter in the Western Mediterranean

    OpenAIRE

    Rodríguez González, Sergio

    2002-01-01

    This study is focused on the identification of the sources and processes affecting levels and composition of PM10 and PM2.5 from air quality monitoring networks in Eastern Spain. This is a multidisciplinary study. Time series of TSP and PM10 recorded from 1996 to 2000 are interpreted to assess the role of local, regional and distant sources in PM levels in this region. To this is end, the influence of the meteorology on PM levels recorded at nineteen rural, urban and industrial monitoring sta...

  6. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  7. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular-level

    Science.gov (United States)

    Pautler, Brent G.; Dubnick, Ashley; Sharp, Martin J.; Simpson, André J.; Simpson, Myrna J.

    2013-03-01

    Glacier surfaces are reservoirs that contain organic and inorganic debris referred to as cryoconite. Solar heating of this material results in the formation of water-filled depressions that are colonized by a variety of microbes and are hypothesized to play a role in carbon cycling in glacier ecosystems. Recent studies on cryoconite deposits have focused on their contribution to carbon fluxes to determine whether they are a net source or sink for atmospheric CO2. To better understand carbon cycling in these unique ecosystems, the molecular constituents of cryoconite organic matter (COM) require further elucidation. COM samples from four glaciers were analyzed by targeted extraction of plant- and microbial-derived biomarkers in conjunction with non-targeted NMR experiments to determine the COM composition and potential sources. Several molecular proxies were applied to assess COM degradation and microbial activity using samples from Greenland, the Canadian Arctic, and Antarctica. COM from Canadian (John Evans glacier) and Greenlandic (Leverett glacier) locations was more chemically heterogeneous than that from the Antarctic likely due to inputs from higher plants, mosses and Sphagnum as suggested by the solvent-extractable alkyl lipids and sterols and the detection of lignin- and Sphagnum-derived phenols after cupric oxide chemolysis. Solid-state 13C nuclear magnetic resonance (NMR) experiments highlighted the bulk chemical functional groups of COM allowing for a general assessment of its degradation stage from the alkyl/O-alkyl proxy whereas solution-state 1H NMR highlighted both microbial and plant contributions to base-soluble extracts from these COM samples. The dominance of 1H NMR signals from microbial protein/peptides in base-soluble extracts of COM from Antarctica (Joyce glacier and Garwood glacier), phospholipid fatty acid (PLFA) biomarker detection and the absence of plant-derived biomarkers in both the solvent and cupric oxide extracts suggests that this COM is dominated by microbial-derived material. These results indicate that COM carbon composition is dependent on the local glacier environment which may have a profound impact on carbon cycling and sequestration on glacier surfaces.

  8. Description of Cognitive and Competence Processes Involved in the Levels of Reading Comprehension in College Students

    Directory of Open Access Journals (Sweden)

    Charles Romel Yáñez Botello

    2013-12-01

    Full Text Available This is a descriptive research whose main objective was to describe the cognitive processes involved in reading and its relation to different levels of reading comprehension. For doing so, it was chosen a sample of 124 college students of Bogotá city. Participants- men and women between 16 and 30 years old- were studying first semester of psychology. The Evaluation Test for Reading Comprehension by Arenas (2007 was applied in order to describe cognitive operations. Moreover, results related to comprehension levels were analyzed through the Rasch Model. Besides, the Angof Methodology was used to specify the competence levels. It was concluded that there are five levels of reading comprehension. It must be said that most of the students were classified in the literal and inferential reading levels. Finally, the findings and limitations of the research were discussed.

  9. Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight.

    Science.gov (United States)

    Osorio-Madrazo, Anayancy; David, Laurent; Peniche-Covas, Carlos; Rochas, Cyrille; Putaux, Jean-Luc; Trombotto, Stéphane; Alcouffe, Pierre; Domard, Alain

    2015-10-20

    Crystalline chitosan nanofibril networks were prepared, preserving the native structural packing and the polymer high molecular weight. The fine microstructure of the nanomaterial, obtained by mild hydrolysis of chitosan (CHI), was characterized by using synchrotron small- and wide-angle X-ray scattering (SAXS and WAXS), transmission electron microscopy (TEM) and electron diffraction. Hydrolysis of chitosan yielded a network of crystalline nanofibrils, containing both allomorphs of chitosan: hydrated and anhydrous. The comparison of WAXS data in transmission and reflection mode revealed the preferential orientation of the CHI crystals when subjected to mechanical compression constrains. The results are in agreement with the existence of a network nanostructure containing fiber-like crystals with the principal axis parallel to the polymer chain axis. The evolution of the CHI allomorphic composition with temperature was studied to further elucidate the mechanism of structural transitions occurring during CHI nanofibril network processing. PMID:26256153

  10. A domain decomposition parallel processing algorithm for molecular dynamics simulations of polymers

    Science.gov (United States)

    Brown, David; Clarke, Julian H. R.; Okuda, Motoi; Yamazaki, Takao

    1994-10-01

    We describe in this paper a domain decomposition molecular dynamics algorithm for use on distributed memory parallel computers which is capable of handling systems containing rigid bond constraints and three- and four-body potentials as well as non-bonded potentials. The algorithm has been successfully implemented on the Fujitsu 1024 processor element AP1000 machine. The performance has been compared with and benchmarked against the alternative cloning method of parallel processing [D. Brown, J.H.R. Clarke, M. Okuda and T. Yamazaki, J. Chem. Phys., 100 (1994) 1684] and results obtained using other scalar and vector machines. Two parallel versions of the SHAKE algorithm, which solves the bond length constraints problem, have been compared with regard to optimising the performance of this procedure.

  11. Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization

    Science.gov (United States)

    Zhao, Xiongce; Rignall, Tauna R.; McCabe, Clare; Adney, William S.; Himmel, Michael E.

    2008-07-01

    We present free energy calculations for the Trichoderma reesei Cel7A (cellobiohydrolase I) linker peptide from molecular dynamics simulations directed towards understanding the linker role in cellulose hydrolysis. The calculations predict an energy storage mechanism of the linker under stretching/compression that is consistent with processive depolymerization. The linker exhibits two stable states at lengths of 2.5 nm and 5.5 nm during extension/compression, with a free energy difference of 10.5 kcal/mol between the two states separated by an energy barrier. The switching between stable states supports the hypothesis that the linker peptide has the capacity to store energy in a manner similar to a spring.

  12. Ionization of molecular hydrogen by proton impact. II. Two-electron processes

    International Nuclear Information System (INIS)

    Cross sections for double ionization and ionization plus excitation of H2 by high-energy protons are calculated as a function of the orientation of the H2 internuclear axis. Only the contributions of the double-collision process have been included. The ground state of H2 is described by Heitler-London-type wave functions, and the molecular orbitals for the excited states of H2+ are constructed from atomic functions. The results have been compared with the data of Edwards et al. [Phys. Rev. A 42, 1367 (1990); 44, 797 (1991); Nucl. Instrum. Methods Phys. Res. B 53, 472 (1991)] and Ezell et al. [Nucl. Instrum. Methods Phys. Res. B 56/57, 292 (1991)]. The theoretical and measured cross sections have the same magnitude for double ionization. For the excitation of the 2p?u, 2p?u, and 2s?g states, the calculated cross sections are much lower than the measured ones

  13. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  14. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    International Nuclear Information System (INIS)

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p54s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H2, Ar/O2, and Ar/N2). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux

  15. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators.

    Science.gov (United States)

    Pohanka, Miroslav; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik; Kassa, Jiri

    2011-02-01

    These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed. PMID:20569082

  16. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor

    Science.gov (United States)

    Napitu, B. D.; Thijssen, J. M.

    2015-07-01

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  17. Two-level hierarchical fragmentation in the Orion Molecular Cloud 1 northern filament

    CERN Document Server

    Teixeira, P S; Zapata, L A; Ho, P T P

    2015-01-01

    [Abridged] We have recently reported on the collapse and fragmentation properties of the northernmost part of this structure, located ~2.4pc north of Orion KL -- the Orion Molecular Cloud 3 (OMC 3, Takahashi et al. 2013). As part of our project to study the integral-shaped filament, we analyze the fragmentation properties of the northern OMC 1 filament. This filament is a dense structure previously identified by JCMT/SCUBA submillimeter continuum and VLA ammonia observations and shown to have fragmented into clumps. We observed OMC1 n with the Submillimeter Array (SMA) at 1.3mm and report on our analysis of the continuum data. We discovered 24 new compact sources, ranging in mass from 0.1 to 2.3, in size from 400 to 1300au, and in density from 2.6 x 10^7 to 2.8 x 10^6 cm^{-3}. The masses of these sources are similar to those of the SMA protostars in OMC3, but their typical sizes and densities are lower by a factor of ten. Only 8% of the new sources have infrared counterparts, yet there are five associated CO ...

  18. Research in actinide geochemistry: Do we need speciation information at the molecular level ?

    International Nuclear Information System (INIS)

    Radionuclide sorption to rock or sediment surfaces in the vicinity of a nuclear waste repository contributes significantly to the overall safety performance of a given disposal concept. State-of- the-art speciation techniques as laser - and X-ray spectroscopy are becoming more and more involved into the elucidation of sorption mechanisms and to the quantification of surface speciation. They are extremely valuable tools to gain fundamental understanding as a basis for the development of geochemical sorption models which in turn are needed to predict radionuclide behaviour in the environment. Within the present paper, examples are given on how molecular scale information obtained from spectroscopic techniques can assist to decrease uncertainties of geochemical model assumptions and thus to enhance the confidence in model predictions. It is also shown that the interpretation of laboratory and field scale radionuclide migration experiments requires the application of speciation methods. The combination of spectroscopic studies with wet chemical experiments on actinide interaction with mineral and colloid surfaces is discussed as an appropriate strategy to assess and to quantify radionuclide migration. (author)

  19. Shocks in dense clouds. IV. Effects of grain-grain processing on molecular line emission

    CERN Document Server

    Anderl, S; Forêts, G Pineau des; Flower, D R

    2014-01-01

    Grain-grain processing has been shown to be an indispensable ingredient of shock modelling in high density environments. For densities higher than \\sim10^5 cm-3, shattering becomes a self-enhanced process that imposes severe chemical and dynamical consequences on the shock characteristics. Shattering is accompanied by the vaporization of grains, which can directly release SiO to the gas phase. Given that SiO rotational line radiation is used as a major tracer of shocks in dense clouds, it is crucial to understand the influence of vaporization on SiO line emission. We have developed a recipe for implementing the effects of shattering and vaporization into a 2-fluid shock model, resulting in a reduction of computation time by a factor \\sim100 compared to a multi-fluid modelling approach. This implementation was combined with an LVG-based modelling of molecular line radiation transport. Using this model we calculated grids of shock models to explore the consequences of different dust-processing scenarios. Grain-...

  20. Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics

    Directory of Open Access Journals (Sweden)

    Fang Te-Hua

    2009-01-01

    Full Text Available Abstract Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature.

  1. Effects of Diacerein at the Molecular Level in the Osteoarthritis Disease Process

    OpenAIRE

    Martel-Pelletier, Johanne; Pelletier, Jean-Pierre

    2010-01-01

    In osteoarthritis (OA), the alterations in joint tissues are numerous and involve morphological, biochemical and metabolic changes and an upregulation of the inflammatory pathways. The focus of this article is a brief narrative review of the effects of diacerein, an antirheumatic drug from the anthraquinone chemical class, and its active metabolite, rhein, on the factors that participate in the complex interaction between OA tissues and cells leading to the progression of joint structural cha...

  2. Effects of diacerein at the molecular level in the osteoarthritis disease process.

    Science.gov (United States)

    Martel-Pelletier, Johanne; Pelletier, Jean-Pierre

    2010-04-01

    In osteoarthritis (OA), the alterations in joint tissues are numerous and involve morphological, biochemical and metabolic changes and an upregulation of the inflammatory pathways. The focus of this article is a brief narrative review of the effects of diacerein, an antirheumatic drug from the anthraquinone chemical class, and its active metabolite, rhein, on the factors that participate in the complex interaction between OA tissues and cells leading to the progression of joint structural changes. PMID:22870441

  3. Multi-Component Molecular-Level Body Composition Reference Methods: Evolving Concepts and Future Directions

    OpenAIRE

    Heymsfield, Steven B; Ebbeling, Cara B; Zheng, Jolene; Pietrobelli, Angelo; Strauss, Boyd J.; Silva, Analiza M.; Ludwig, David S

    2015-01-01

    Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted “reference” approach for quantifying fat mass in vivo. While the research community generally relies on the multicomponent body-volume class of “refer...

  4. Molecular epidemiology and strain-specific characteristics of Streptococcus agalactiae at the herd and cow level.

    Science.gov (United States)

    Mahmmod, Y S; Klaas, I C; Katholm, J; Lutton, M; Zadoks, R N

    2015-10-01

    Host-adaptation of Streptococcus agalactiae subpopulations has been described whereby strains that are commonly associated with asymptomatic carriage or disease in people differ phenotypically and genotypically from those causing mastitis in dairy cattle. Based on multilocus sequence typing (MLST), the most common strains in dairy herds in Denmark belong to sequence types (ST) that are also frequently found in people. The aim of this study was to describe epidemiological and diagnostic characteristics of such strains in relation to bovine mastitis. Among 1,199 cattle from 6 herds, cow-level prevalence of S. agalactiae was estimated to be 27.4% based on PCR and 7.8% based on bacteriological culture. Quarter-level prevalence was estimated at 2.8% based on bacteriological culture. Per herd, between 2 and 26 isolates were characterized by pulsed-field gel electrophoresis (PFGE) and MLST. Within each herd, a single PFGE type and ST predominated, consistent with a contagious mode of transmission or point source infection within herds. Evidence of within-herd evolution of S. agalactiae was detected with both typing methods, although ST belonged to a single clonal complex (CC) per herd. Detection of CC23 (3 herds) was associated with significantly lower approximate count (colony-forming units) at the quarter level and significantly lower cycle threshold value at the cow level than detection of CC1 (2 herds) or CC19 (1 herd), indicating a lower bacterial load in CC23 infections. Median values for the number of infected quarters and somatic cell count (SCC) were numerically but not significantly lower for cows infected with CC23 than for cows with CC1 or CC19. For all CC, an SCC threshold of 200,000 cells/mL was an unreliable indicator of infection status, and prescreening of animals based on SCC as part of S. agalactiae detection and eradication campaigns should be discouraged. PMID:26233443

  5. Molecular basis of high-level ciprofloxacin resistance in Neisseria gonorrhoeae strains from Shandong Province, China

    Scientific Electronic Library Online (English)

    L.H., Zhao; S.P., Zhao.

    Full Text Available In the study, the ciprofloxacin resistance rate was 100%. High-level ciprofloxacin resistance rate was 63.55%. Sixteen different mutation patterns involved in the formation of ciprofloxacin resistance were identified. The most prevalent were patterns P7 (25.2%), P8 (15.0%), P9 (11.2%), P1 (10.3%), a [...] nd P5 (10.3%). All of the 107 NG isolates analyzed for mutations in the study have demonstrated a change of Ser-91 ? Phe in the gyrA gene, and all except one have demonstrated a change in position 95 of the amino acid sequence. All of the 68 high-level QRNG isolates had double mutations in gyrA gene combined with a single or two mutations in parC gene. It is most important that a new mutation site of Ile-97 ? Met in gyrA and a new mutation of Leu-106 ? Ile in parC were found in the study, both leading to high-level ciprofloxacin resistance (MIC values, 8 µg/mL, 32 µg/mL, respectively). Therefore, we confim that gyrA mutations are necessary for the fluoroquinolone resistance phenotype and parC mutations are correlated intimately with high-level fluoroquinolone resistance. In China fluoroquinolone resistance in Neisseria gonorrhoeae strains is very serious and the new mutation sites in the fluoroquinolone resistance-determining regions emerge more and more quickly. Hence, in China fluoroquinolones, which are used to treat gonorrhoea presently, should be substituted by a new antibiotics.

  6. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics

    OpenAIRE

    Vandenkoornhuyse, Philippe; Dufresne, Alexis; Quaiser, Achim; Gouesbet, Gwenola; Binet, Françoise; Francez, André-Jean; Mahé, Stéphane; Bormans, Myriam; Lagadeuc, Yvan; Couée, Ivan

    2010-01-01

    Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism–environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thu...

  7. Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering

    International Nuclear Information System (INIS)

    Highlights: • The current state of some aspects of calcite–water-interface chemistry is reviewed. • The interface structure is characterized at a molecular scale. • Experimental and theoretical studies on contaminant sorption at calcite are presented. • The influence of phosphonates on calcite growth is investigated. • The effect of limestone on the workability of cement suspensions is addressed. - Abstract: Surface reactions on calcite play an important role in geochemical and environmental systems, as well as many areas of industry. In this review, we present investigations of calcite that were performed in the frame of the joint research project “RECAWA” (reactivity of calcite–water-interfaces: molecular process understanding for technical applications). As indicated by the project title, work within the project comprised a large range of length scales. The molecular scale structure of the calcite (1 0 4)–water-interface is refined based on surface diffraction data. Structural details are related to surface charging phenomena, and a simplified basic stern surface complexation model is proposed. As an example for trace metal interactions with calcite surfaces we review and present new spectroscopic and macroscopic experimental results on Selenium interactions with calcite. Results demonstrate that selenate (SeO42?) shows no significant interaction with calcite at our experimental conditions, while selenite (SeO32?) adsorbs at the calcite surface and can be incorporated into the calcite structure. Atomistic calculations are used to assess the thermodynamics of sulfate (SO42?), selenate (SeO42?), and selenite (SeO32?) partitioning in calcite and aragonite. The results show that incorporation of these oxo-anions into the calcite structure is so highly endothermic that incorporation is practically impossible at bulk equilibrium and standard conditions. This indicates that entrapment processes are involved when coprecipitation is observed experimentally. The relevance of nano-scale surface features is addressed in an investigation of calcite growth and precipitation in the presence of phosphonates, demonstrating the influence of phosphonates on the morphology of growth spirals and macroscopic growth rates. It is investigated how physical properties of limestone containing cement suspensions may influence the workability of the cement suspensions and thus the efficacy of limestone in industrial applications. The largest scale is reached in iron filtration experiments in a water-purification-pilot-plant using limestone as filter material, which appeared to be highly effective for removing iron from drinking water. Investigations presented cover a whole series of methods to study the calcite–water-interface. Many calcite related topics are addressed, demonstrating how broad the field of calcite–water-interface research is and how manifold the applications are, for which calcite–water-interface phenomena are of major relevance

  8. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori

    OpenAIRE

    TakeshiSakurai

    2014-01-01

    Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bomby...

  9. Level 2 Perspective Taking Entails Two Processes: Evidence from PRP Experiments

    Science.gov (United States)

    Janczyk, Markus

    2013-01-01

    In many situations people need to mentally adopt the (spatial) perspective of other persons, an ability that is referred to as "Level 2 perspective taking." Its underlying processes have been ascribed to mental self-rotation that can be dissociated from mental object-rotation. Recent findings suggest that perspective taking/self-rotation…

  10. Pedagogical Technology of Improving the Students' Viability Levels in the Process of Mastering Foreign Language

    Science.gov (United States)

    Dmitrienko, Nadezhda; Ershova, Svetlana; Konovalenko, Tatiana; Kutsova, Elvira; Yurina, Elena

    2015-01-01

    The article points out that the process of mastering foreign language stimulates students' personal, professional and cultural growth, improving linguistic, communicative competences and viability levels. A proposed pedagogical technology of modeling different communicative situations has a serious synergetic potential for students' self organized…

  11. Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano

    2015-01-01

    Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter when shifts in the mean, or other slowly varying trends, are present in the data. Therefore, the subsequent robust version of the KPSS test for the presence of level shifts has proper size and by far the highest power compared to other existing tests. Finally, we illustrate the usefulness of the proposed approach on financial data, such as daily bipower variation and turnover.

  12. Socio-Psychological Factors Affecting Participatory Planning Processes At Interactional Level

    Directory of Open Access Journals (Sweden)

    Neslihan KULÖZÜ

    2014-02-01

    Full Text Available Today, it is widely accepted that communities need to collaborate when making decisions on behalf of the individual, society and the environment. Hence, planners engaged in participatory initiatives need to understand how best to design and carry out a participatory planning process. In order to answer this question, all factors affecting participatory processes need to be determined, since only then can steps be taken to design and execute the best participatory process for each stakeholder in every unique context. By focusing particularly on the factors affecting participatory processes at interactional level, this study aims to determine the socio-psychological dimensions of participatory planning processes, the aim being to bring to light some hitherto unexplained factors involved and thus help to improve these processes. Based on previous discussions in participation literature, the ultimate aim of this study is to provide subsequent researchers and those involved in participatory planning practices with a framework on the socio-psychological dimensions, namely communication, power, attribution, relationships and persuasion, of participatory processes at interactional level.

  13. Fragile X and autism: Intertwined at the molecular level leading to targeted treatments

    Directory of Open Access Journals (Sweden)

    Hagerman Randi

    2010-09-01

    Full Text Available Abstract Fragile X syndrome (FXS is caused by an expanded CGG repeat (> 200 repeats in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1, leading to deficiency or absence of the FMR1 protein (FMRP. FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats may also give rise to autism spectrum disorders (ASD, including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS, in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR1/5 pathway and ? aminobutyric acid (GABAA pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.

  14. Low Striatal Glutamate Levels Underlie Cognitive Decline in the Elderly: Evidence from In Vivo Molecular Spectroscopy

    OpenAIRE

    Zahr, Natalie M.; Mayer, Dirk; Pfefferbaum, Adolf; Sullivan, Edith V.

    2008-01-01

    Glutamate (Glu), the principal excitatory neurotransmitter of prefrontal cortical efferents, potentially mediates higher order cognitive processes, and its altered availability may underlie mechanisms of age-related decline in frontally based functions. Although animal studies support a role for Glu in age-related cognitive deterioration, human studies, which require magnetic resonance spectroscopy for in vivo measurement of this neurotransmitter, have been impeded because of the similarity o...

  15. Molecular-Level Computer Simulation of a Vapor-Compression Refrigeration Cycle.

    Czech Academy of Sciences Publication Activity Database

    Figueroa-Gerstenmaier, S.; Francova, M.; Kowalski, M.; Lísal, Martin; Nezbeda, Ivo; Smith, W.R.

    2007-01-01

    Ro?. 259, ?. 2 (2007), s. 195-200. ISSN 0378-3812 R&D Projects: GA ?R(CZ) GA203/05/0725; GA AV ?R 1ET400720409; GA AV ?R 1ET400720507 Grant ostatní: NRCC(CA) OGP 1041 Institutional research plan: CEZ:AV0Z40720504 Source of funding: V - iné verejné zdroje Keywords : alternative refrigerants * joule-thomson expansion * adiabatic process Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.506, year: 2007

  16. Chemical Genetics — A Versatile Method to Combine Science and Higher Level Teaching in Molecular Genetics

    OpenAIRE

    Björn Sandrock

    2012-01-01

    Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determin...

  17. Adopted levels and derived limits for Ra-226 and the decision making processes concerning TENORM releases

    International Nuclear Information System (INIS)

    A fraction of a primary dose limit can be, in general, agreed upon as a dose related level to be adopted in decision-making processes. In the case of TENORM releases, fractions of primary dose levels for 226Ra, 228Ra, and 210Po may be of particular importance to establish adopted levels and derived limits to guide decision making processes. Thus, for example, a registration level for 226Ra could be adopted at the highest portion of the natural background variation. Above such level, intervention and remedial action levels could also be adopted. All those levels would be fractions of the primary level, but translated in terms of derived limits expressed in practical units. Derived limits would then be calculated by using environmental models. In such approach 'critical groups' would have to be carefully defined and identified. In addition, the size of a critical group would be chosen to be used in environmental modeling. Site specific environmental models and parameters are desirable, though unavailable, or very difficult to obtain, in most cases. Thus, mathematical models and parameters of more generic nature are often used. A sensitive parametric analysis can make a ranking of the parameters used in a model, allowing one to choose how important each parameter will be for the model output. The paper will point out that when using the adopted levels and derived limits, as suggested above, the uncertainties and importance of the parameters entering an environmental model can make the difference for decision makers to take the right or wrong decision, as far as radiological protection is concerned. (author)

  18. Adopted levels and derived limits for Ra-226 and the decision making processes concerning TENORM releases

    International Nuclear Information System (INIS)

    A fraction of a primary dose limit can be, in general, agreed upon as a dose related level to be adopted in decision-making processes. In the case of TENORM releases, fractions of primary dose levels for 226Ra, 228Ra, and 210Po may be of particular importance to establish adopted levels for 226Ra could be adopted at the highest portion of the natural background variation. Above such level, intervention and remedial action levels could also be adopted. All those levels would be fractions of the primary level, but translated in terms of derived limits expressed in practical units. Derived limits would then be calculated by using environmental models. In such approach 'critical groups' would have to be carefully defined and identified. In addition, the size of a critical group would be chosen to be used in environmental modeling. Site specific environmental models and parameters are desirable, though unavailable, or very difficult to obtain, in most cases. Thus, mathematical models and parameters of more generic nature are often used. A sensitive parametric analysis can make a ranking of the parameters used in a model, allowing one to choose how important each parameter will be for the model output. The paper will point out that when using the adopted levels and derived limits, as suggested above, the uncertainties and importance of the parameters entering an environmental model can make the difference for decision makers to take the right or wrong decision, as far as radiological protection is concerned. (author)

  19. Molecular basis of high-level ciprofloxacin resistance in Neisseria gonorrhoeae strains from Shandong Province, China

    OpenAIRE

    Zhao, L.H.; Zhao, S. P.

    2013-01-01

    In the study, the ciprofloxacin resistance rate was 100%. High-level ciprofloxacin resistance rate was 63.55%. Sixteen different mutation patterns involved in the formation of ciprofloxacin resistance were identified. The most prevalent were patterns P7 (25.2%), P8 (15.0%), P9 (11.2%), P1 (10.3%), and P5 (10.3%). All of the 107 NG isolates analyzed for mutations in the study have demonstrated a change of Ser-91 ? Phe in the gyrA gene, and all except one have demonstrated a change in pos...

  20. Does level of processing affect the transition from unconscious to conscious perception?

    Science.gov (United States)

    Anzulewicz, Anna; Asanowicz, Dariusz; Windey, Bert; Paulewicz, Borys?aw; Wierzcho?, Micha?; Cleeremans, Axel

    2015-11-01

    Recently, Windey, Gevers, and Cleeremans (2013) proposed a level of processing (LoP) hypothesis claiming that the transition from unconscious to conscious perception is influenced by the level of processing imposed by task requirements. Here, we carried out two experiments to test the LoP hypothesis. In both, participants were asked to classify briefly presented pairs of letters as same or different, based either on the letters' physical features (a low-level task), or on a semantic rule (a high-level task). Stimulus awareness was measured by means of the four-point Perceptual Awareness Scale (PAS). The results showed that low or moderate stimulus visibility was reported more frequently in the low-level task than in the high-level task, suggesting that the transition from unconscious to conscious perception is more gradual in the former than in the latter. Therefore, although alternative interpretations remain possible, the results of the present study fully support the LoP hypothesis. PMID:26057402

  1. Effectiveness of sensory processing strategies on activity level in inclusive preschool classrooms

    Directory of Open Access Journals (Sweden)

    Lin CL

    2012-10-01

    Full Text Available Chien-Lin Lin,1,2 Yu-Fan Min,3 Li-Wei Chou,1,2,* Chin-Kai Lin,4,* 1Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan; 2School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; 3Faith, Hope and Love, Center for Children and Adults With Disabilities, Taichung, Taiwan; 4Program of Early Intervention, Department of Early Childhood Education, National Taichung University of Education, Taichung, Taiwan*These authors contributed equally to this workBackground: The purpose of this study was to investigate the effectiveness of sensory processing strategies in improving the activity level of children with sensory integration dysfunction.Methods: The study used a matching-only pretest–posttest control group design, which requires random matching of sensory integration dysfunction to the corresponding intervention group (n = 18 and control group (n = 18. The intervention group comprised 3–6-year-old children who received an 8-week school-day intervention during implementation of the theme curriculum.Results: The 8-week treatment significantly reduced the activity level and foot-swinging episodes in children with sensory integration dysfunction, and obtained a medium-effect size. However, the level of improvement in the control group did not show any statistically significant change.Conclusion: Sensory processing strategies could improve activity levels in children with sensory integration dysfunction. However, this study was unable to exclude a developmental effect. The social validity results show that sensory processing strategies can be integrated into the theme curriculum and improve activity levels in children.Keywords: activity level, preschool inclusive classroom, sensory integration dysfunction, sensory processing strategy

  2. Molecular endpoints as indicators of ecological risks from chronic, low-level irradiation. A problem of not connecting-the-dots

    International Nuclear Information System (INIS)

    Technological advances in molecular biology have made it feasible to use various types of molecular damage as endpoints in determining if biota are at risk from chronic, low-level exposures to ionizing radiation. The tacit assumption is that a molecular endpoint is indicative of an individual's health. Unfortunately, the type and quantity of molecular damage necessary to impact an individual organism or, more importantly, a population of organisms has yet to be determined. As a result, a disparity exists between molecular damage as an ecotoxicological endpoint and concomitant effects at the individual and population levels of biological organization. We think that the gap between molecular endpoints and population health can be bridged by correlating effects across numerous levels of biological organization, and by using the concept of resource allocation-based life histories to document how variation in resource allocation among individuals causes changes to the population. We suggest that a type of chromosome aberration (reciprocal translocations) are a potentially viable molecular endpoint for ecological risk from ionizing radiation because they are caused from DNA double strand breaks, a type of damage that is specific to radiation, they can be used as a biological dosimeter, and they are also known to reduce reproductive success, and thus it should be possible to couple the frequency of reciprocal chromosome translocations to an organism's life history traits and population demography. (author)

  3. Estimating reaction constants by ab initio molecular modeling: a study on the oxidation of phenol to catechol and hydroquinone in advanced oxidation processes

    Directory of Open Access Journals (Sweden)

    B. Ramos

    2012-03-01

    Full Text Available Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

  4. Estimating reaction constants by ab initio molecular modeling: a study on the oxidation of phenol to catechol and hydroquinone in advanced oxidation processes

    Scientific Electronic Library Online (English)

    B., Ramos; J. P. S., Farah; A. C. S. C., Teixeira.

    2012-03-01

    Full Text Available Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, su [...] ch as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

  5. Excitation and deexcitation of N2 molecular levels. Induced fluorescence by electrons and laser

    International Nuclear Information System (INIS)

    The electron impact excitation followed by fluorescence induced by N2-laser absorption was used to study the lifetime of the lowest vibrational level of the B 3?g electronic state of N2. The experimental result of this work is 13 + 1 ?s. To measure the lifetime of B 3?g (v=2,3,5,6,7,8) levels the delayed coincidence method by electron impact was use. The lifetime values were compared with recent experimental and theoretical results. The relative intensi-ties of 3?g --- A 3??+ system bands, in the range (6540-10500 Ao) was measured using a hollow cathode lamp as spectral source. The relative transition moments and its dependence versus the r-centroid was obtained. Total cross sections for electron scattering by N molecules in the range 600 - 5000 eV have been obtained from measurements of the attenuation of a linear electron beam. The results have been compared with available experimental cross sections and with theoretical calculations based on the first Born approximation. (Author)

  6. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides

    Science.gov (United States)

    Farley, Cory W.; Pantoya, Michelle L.; Losada, Martin; Chaudhuri, Santanu

    2013-08-01

    Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m/s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.

  7. Effect of Chayotte Extract on the Biochemical Determinations and on Molecular and Cellular Levels

    Directory of Open Access Journals (Sweden)

    M.L. Gomes

    2004-01-01

    Full Text Available The use of natural products occurs around the world. The labeling of blood constituents with technetium-99m (99m Tc has been influenced by natural extracts. We evaluated the influence of a chayotte(Sechium edule extract on the labeling of blood elements with 99m Tc, in the structural conformation of DNA, in the biochemistry of blood and in the measurement of. blood pressure. The animals were treated with chayotte during 15 days and samples of blood were withdrawn. The samples were incubated with stannous chloride and with 99mTc. Plasma(P and blood cells (BC were isolated, also precipitated with trichloroacetic acid and soluble(SF and insoluble fractions(IF separated. There was a decrease in the radioactivity in IF-P(from 83.96 ± 4.28 to 53.26 ± 6.69. Samples of blood from the treated group were carried out with specific biochemistry kits and the blood biochemistry analysis compounds was done. It was analyzed the level of uric acid, albumin, cholesterol, creatinine, glucose, high density lipoprotein (HDL, globulin and trigliceridics. The gauging of the blood pressure of the animals was taken. Our results showed a reduction on the level of glucose (from 118.40 ± 10.69 to 97.20 ± 4.32 and globulin (3.52 ± 0.13 to 3.08 ± 0.19 as well as in the diastolic pressure (from 123.80 ± 9.12 to 84.40 ± 3.85. It was observed that the referred extract has induced lesions on the DNA molecule. The effect of chayotte extract probably, could be explained by the metabolization of the chayotte that could be capable to induce the generation of active metabolites with oxidant properties.

  8. Site-scale process integration and utility optimization with multi-level energy requirement definition

    International Nuclear Information System (INIS)

    Highlights: • A methodology for energy efficiency of large-scale chemical plants is developed. • A multi-level data extraction for energy requirement definition is introduced. • The practice of total site integration with the combination of levels is shown. • The suitable utilities are integrated and optimized for different proposals. • A Pareto analysis is performed to find the optimum combination of levels. - Abstract: This study presents a methodology based on process integration techniques to improve the energy efficiency of a large-scale chemical plant. The key to the approach is to represent the energy requirements with different heat transfer interfaces. Considering difficulties of data extraction for a large-scale plant, a multi-level data extraction scheme is introduced based on different heat transfer interfaces and includes five levels of growing complexity: black-box, grey-box, white-box, simple-model and detailed-model analysis. A combination of these levels instead of a single definition for the energy requirement has been applied on an industrial case study. Different steps of the approach are explained in detail and their potential are highlighted. The Single Process Integration (SPI) and Total Site Integration (TSI) has been performed and revealed that a higher potential of heat recovery could be driven through the TSI. The optimized site utility integration together with heat recovery improvement scenarios have considerably increased the energy saving potential in our case study. A multi-objective optimization has also been performed to find the optimum combination of units with different energy requirement levels. In conclusion, results from our case study have indicated that using a combination of different energy requirement levels will reduce the required modification of the actual site configuration

  9. Effect of the natural winemaking process applied at industrial level on the microbiological and chemical characteristics of wine.

    Science.gov (United States)

    Sannino, Ciro; Francesca, Nicola; Corona, Onofrio; Settanni, Luca; Cruciata, Margherita; Moschetti, Giancarlo

    2013-09-01

    The composition of yeast and lactic acid bacteria (LAB) communities and the chemical evolution of the large-scale commercial vinification of Catarratto IGT Sicilia, carried out under the biological regime, was followed from grape harvest until bottling. Simultaneously to the maximum growth of yeasts, LAB counts reached high level of concentration (6-7 log CFU mL(-1)) during the first steps of the alcoholic fermentation. Yeast identification was determined applying different molecular methods. The highest species biodiversity was observed on grape and must samples taken soon after pressing. Saccharomyces cerevisiae was detected at dominant concentrations during the entire winemaking process. LAB cultures were grouped and identified by a combined phenotypic and genotypic approach. Leuconostoc mesenteroides, Lactobacillus hilgardii and Lactobacillus plantarum species were identified; the last was the main LAB recognized during vinification. The winemaking process was also chemically monitored. The alcoholic content was approximately 12.67% (v v(-1)) at bottling; pH, volatile acidity and total acidity showed a moderate increase during vinification. Tartaric, citric and malic acids decreased until bottling, while lactic acid showed a rapid increase at the end of maceration and bottling. Trans-caffeil tartaric acid was the most abundant phenolic compound and volatile organic compounds (VOC) were mainly represented by isoamylic alcohol, isobutanol, ethyl acetate and octanoic acid. PMID:23611824

  10. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Muñoz-Fuentes, Violeta; Green, Andy J; Kopuchian, Cecilia; Tubaro, Pablo L; Alza, Luis; Bulgarella, Mariana; Smith, Matthew M; Wilson, Robert E; Fago, Angela; McCracken, Kevin G; Storz, Jay F

    2015-12-01

    A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. PMID:26637114

  11. Two-years' experience in processing high-level waste at West Valley

    International Nuclear Information System (INIS)

    The U.S. Department of Energy is charged with the solidification of high-level liquid waste remaining from nuclear fuel reprocessing activities that were conducted at West Valley, New York, between 1966 and 1972. Before the high-level waste (HLW) can be vitrified, it must be volume reduced by removing the low-level waste (LLW) fraction. During the past 2 yr, West Valley has successfully processed approximately half of the 600,000 gal of high-level radioactive waste stored in an underground storage tank. Processing involves the removal of the 137Cs from the HLW by ion exchange, evaporation to concentrate the effluent to a predetermined salt concentration, and finally cementation in 71-gal square drums. This produces a class C LLW form that meets the waste form criteria specified in the U.S. Nuclear Regulatory Commission's (NRC's) 1983 Branch Technical Position. The waste produced is stored onsite awaiting final disposition. This paper describes the very successful experience gained over the past 2 yr in processing HLW at West Valley, major operational problems and resolutions thereof, results of the long-term destructive evaluation program of actual product drums, and the product characteristics

  12. Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora.

    Science.gov (United States)

    Agnarsson, Ingi; Kuntner, Matjaz; May-Collado, Laura J

    2010-03-01

    Phylogenies underpin comparative biology as high-utility tools to test evolutionary and biogeographic hypotheses, inform on conservation strategies, and reveal the age and evolutionary histories of traits and lineages. As tools, most powerful are those phylogenies that contain all, or nearly all, of the taxa of a given group. Despite their obvious utility, such phylogenies, other than summary 'supertrees', are currently lacking for most mammalian orders, including the order Carnivora. Carnivora consists of about 270 extant species including most of the world's large terrestrial predators (e.g., the big cats, wolves, bears), as well as many of man's favorite wild (panda, cheetah, tiger) and domesticated animals (dog, cat). Distributed globally, carnivores are highly diverse ecologically, having occupied all major habitat types on the planet and being diverse in traits such as sociality, communication, body/brain size, and foraging ecology. Thus, numerous studies continue to address comparative questions within the order, highlighting the need for a detailed species-level phylogeny. Here we present a phylogeny of Carnivora that increases taxon sampling density from 28% in the most detailed primary-data study to date, to 82% containing 243 taxa (222 extant species, 17 subspecies). In addition to extant species, we sampled four extinct species: American cheetah, saber-toothed cat, cave bear and the giant short-faced bear. Bayesian analysis of cytochrome b sequences data-mined from GenBank results in a phylogenetic hypothesis that is largely congruent with prior studies based on fewer taxa but more characters. We find support for the monophyly of Carnivora, its major division into Caniformia and Feliformia, and for all but one family within the order. The only exception is the placement of the kinkajou outside Procyonidae, however, prior studies have already cast doubt on its family placement. In contrast, at the subfamily and genus level, our results indicate numerous problems with current classification. Our results also propose new, controversial hypotheses, such as the possible placement of the red panda (Ailuridae) sister to canids (Canidae). Our results confirm previous findings suggesting that the dog was domesticated from the Eurasian wolf (Canis lupus lupus) and are congruent with the Near East domestication of the cat. In sum, this study presents the most detailed species-level phylogeny of Carnivora to date and a much needed tool for comparative studies of carnivoran species. To demonstrate one such use, we perform a phylogenetic analysis of evolutionary distinctiveness (EDGE), which can be used to help establish conservation priorities. According with those criteria, and under one of the many possible sets of parameters, the highest priority Carnivora species for conservation of evolutionary diversity include: monk seals, giant and red panda, giant otter, otter civet, Owston's palm civet, sea otter, Liberian mongoose, spectacled bear, walrus, binturong, and the fossa. PMID:19900567

  13. Molecular-level insight into unusual low pressure CO2 affinity in pillared metal-organic frameworks.

    Science.gov (United States)

    Burtch, Nicholas C; Jasuja, Himanshu; Dubbeldam, David; Walton, Krista S

    2013-05-15

    Fundamental insight into how low pressure adsorption properties are affected by chemical functionalization is critical to the development of next-generation porous materials for postcombustion CO2 capture. In this work, we present a systematic approach to understanding low pressure CO2 affinity in isostructural metal-organic frameworks (MOFs) using molecular simulations and apply it to obtain quantitative, molecular-level insight into interesting experimental low pressure adsorption trends in a series of pillared MOFs. Our experimental results show that increasing the number of nonpolar functional groups on the benzene dicarboxylate (BDC) linker in the pillared DMOF-1 [Zn2(BDC)2(DABCO)] structure is an effective way to tune the CO2 Henry's coefficient in this isostructural series. These findings are contrary to the common scenario where polar functional groups induce the greatest increase in low pressure affinity through polarization of the CO2 molecule. Instead, MOFs in this isostructural series containing nitro, hydroxyl, fluorine, chlorine, and bromine functional groups result in little increase to the low pressure CO2 affinity. Strong agreement between simulated and experimental Henry's coefficient values is obtained from simulations on representative structures, and a powerful yet simple approach involving the analysis of the simulated heats of adsorption, adsorbate density distributions, and minimum energy 0 K binding sites is presented to elucidate the intermolecular interactions governing these interesting trends. Through a combined experimental and simulation approach, we demonstrate how subtle, structure-specific differences in CO2 affinity induced by functionalization can be understood at the molecular-level through classical simulations. This work also illustrates how structure-property relationships resulting from chemical functionalization can be very specific to the topology and electrostatic environment in the structure of interest. Given the excellent agreement between experiments and simulation, predicted CO2 selectivities over N2, CH4, and CO are also investigated to demonstrate that methyl groups also provide the greatest increase in CO2 selectivity relative to the other functional groups. These results indicate that methyl ligand functionalization may be a promising approach for creating both water stable and CO2 selective variations of other MOFs for various industrial applications. PMID:23635306

  14. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties.

    Science.gov (United States)

    Shi, Wen; Zhao, Tianqi; Xi, Jinyang; Wang, Dong; Shuai, Zhigang

    2015-10-14

    Tuning carrier concentration via chemical doping is the most successful strategy to optimize the thermoelectric figure of merit. Nevertheless, how the dopants affect charge transport is not completely understood. Here we unravel the doping effects by explicitly including the scattering of charge carriers with dopants on thermoelectric properties of poly(3,4-ethylenedioxythiophene), PEDOT, which is a p-type thermoelectric material with the highest figure of merit reported. We corroborate that the PEDOT exhibits a distinct transition from the aromatic to quinoid-like structure of backbone, and a semiconductor-to-metal transition with an increase in the level of doping. We identify a close-to-unity charge transfer from PEDOT to the dopant, and find that the ionized impurity scattering dominates over the acoustic phonon scattering in the doped PEDOT. By incorporating both scattering mechanisms, the doped PEDOT exhibits mobility, Seebeck coefficient and power factors in very good agreement with the experimental data, and the lightly doped PEDOT exhibits thermoelectric properties superior to the heavily doped one. We reveal that the thermoelectric transport is highly anisotropic in ordered crystals, and suggest to utilize large power factors in the direction of polymer backbone and low lattice thermal conductivity in the stacking and lamellar directions, which is viable in chain-oriented amorphous nanofibers. PMID:26406937

  15. Multi-component molecular-level body composition reference methods: evolving concepts and future directions.

    Science.gov (United States)

    Heymsfield, S B; Ebbeling, C B; Zheng, J; Pietrobelli, A; Strauss, B J; Silva, A M; Ludwig, D S

    2015-04-01

    Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted 'reference' approach for quantifying fat mass in vivo. While the research community generally relies on the multi-component body volume class of 'reference' models for quantifying fat mass, no definable guide discerns among different applied equations for partitioning the four (fat, water, protein and mineral mass) or more quantified components, standardizes 'adjustment' or measurement system approaches for model-required labelled water dilution volumes and bone mineral mass estimates, or firmly establishes the body temperature at which model physical properties are assumed. The resulting differing reference strategies for quantifying body composition in vivo leads to small, but under some circumstances, important differences in the amount of measured body fat. Recent technological advances highlight opportunities to expand model applications to new subject groups and measured components such as total body protein. The current report reviews the historical evolution of multi-component body volume-based methods in the context of prevailing uncertainties and future potential. PMID:25645009

  16. A New Method for Processing Airborne Gamma Ray Spectrometry Data for Mapping Low Level Contaminations

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    1999-01-01

    A new technique for processing airborne gamma ray spectrometry data has been developed. It is based on the noise adjusted singular value decomposition method introduced by Hovgaard in 1997. The new technique opens for mapping of very low contamination levels. It is tested with data from Latvia where the remaining contamination from the 1986 Chernobyl accident together with fallout from the atmospheric nuclear weapon tests includes Cs-137 at levels often well below 1 kBq/m(2) equivalent surface contamination. The limiting factors for obtaining reliable results are radon in the air, spectrum stability and accurate altitude measurements. (C) 1999 Elsevier Science Ltd. All rights reserved.

  17. Region based route planning - Multi-abstraction route planning based on intermediate level vision processing

    Science.gov (United States)

    Doshi, Rajkumar S.; Lam, Raymond; White, James E.

    1989-01-01

    Intermediate and high level processing operations are performed on vision data for the organization of images into more meaningful, higher-level topological representations by means of a region-based route planner (RBRP). The RBRP operates in terrain scenarios where some or most of the terrain is occluded, proceeding without a priori maps on the basis of two-dimensional representations and gradient-and-roughness information. Route planning is accomplished by three successive abstractions and yields a detailed point-by-point path by searching only within the boundaries of relatively small regions.

  18. Aging of theory of mind: the influence of educational level and cognitive processing.

    Science.gov (United States)

    Li, Xiaoming; Wang, Kai; Wang, Fan; Tao, Qian; Xie, Yu; Cheng, Qi

    2013-01-01

    Previous studies of theory of mind (ToM) in old age have provided mixed results. We predicted that educational level and cognitive processing are two factors influencing the pattern of the aging of ToM. To test this hypothesis, a younger group who received higher education (mean age 20.46 years), an older group with an education level equal to that of the young group (mean age 76.29 years), and an older group with less education (mean age 73.52 years) were recruited. ToM tasks included the following tests: the second-order false-belief task, the faux-pas task, the eyes test, and tests of fundamental aspects of cognitive function that included two background tests (memory span and processing speed) and three subcomponents of executive function (inhibition, updating, and shifting). We found that the younger group and the older group with equally high education outperformed the older group with less education in false-belief and faux-pas tasks. However, there was no significant difference between the two former groups. The three groups of participants performed equivalently in the eyes test as well as in control tasks (false-belief control question, faux-pas control question, faux-pas control story, and Eyes Test control task). The younger group outperformed the other two groups in the cognitive processing tasks. Mediation analyses showed that difficulties in inhibition, memory span, and processing speed mediated the age differences in false-belief reasoning. Also, the variables of inhibition, updating, memory span, and processing speed mediated age-related variance in faux-pas. Discussion focused on the links between ToM aging, educational level, and cognitive processing. Supported by Chinese National Natural Science Foundation (number: 30870766) and Anhui Province Natural Science Foundation (number: 11040606M166). PMID:22515730

  19. Research Frontiers in Bioinspired Energy: Molecular-Level Learning from Natural Systems: A Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zolandz, Dorothy

    2012-03-28

    An interactive, multidisciplinary, public workshop, organized by a group of experts in biochemistry, biophysics, chemical and biomolecular engineering, chemistry, microbial metabolism, and protein structure and function, was held on January 6-7, 2011 in Washington, DC. Fundamental insights into the biological energy capture, storage, and transformation processes provided by speakers was featured in this workshop?which included topics such as microbes living in extreme environments such as hydrothermal vents or caustic soda lakes (extremophiles)? provided a fascinating basis for discussing the exploration and development of new energy systems. Breakout sessions and extended discussions among the multidisciplinary groups of participants in the workshop fostered information sharing and possible collaborations on future bioinspired research. Printed and web-based materials that summarize the committee?s assessment of what transpired at the workshop were prepared to advance further understanding of fundamental chemical properties of biological systems within and between the disciplines. In addition, webbased materials (including two animated videos) were developed to make the workshop content more accessible to a broad audience of students and researchers working across disciplinary boundaries. Key workshop discussion topics included: Exploring and identifying novel organisms; Identifying patterns and conserved biological structures in nature; Exploring and identifying fundamental properties and mechanisms of known biological systems; Supporting current, and creating new, opportunities for interdisciplinary education, training, and outreach; and Applying knowledge from biology to create new devices and sustainable technology.

  20. Study on the interaction of La3+ with bovine serum albumin at molecular level

    International Nuclear Information System (INIS)

    The interaction of La3+ to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by La3+ was a static quenching process and the binding constant is 1.75x104 L mol-1 and the number of binding sites is 1 at 289 K. The thermodynamic parameters (?H=-20.055 kJ mol-1, ?G=-23.474 kJ mol-1, and ?S=11.831 J mol-1 K-1) indicate that electrostatic effect between the protein and the La3+ is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of La3+ changed the conformation of BSA. - Highlights: ? Fluorescence data was used to demonstrate that BSA fluorescence can be quenched by La3+. ? La3+ can bind to BSA with stoichiometric ratio of 1:1. ? BSA-La3+ complex is stabilized mainly by electrostatic effect. ? Synchronous fluorescence and CD data revealed that BSA undergoes conformational changes upon binding to La3+.

  1. A risk governance approach for high-level waste in Belgium: A process appraisal

    International Nuclear Information System (INIS)

    The Belgian nuclear waste management organisation (NIRAS-ONDRAF) has recently started up a public debate on the strategic waste management options for the intermediate- and high-level radioactive waste (cat. B and C waste). This public debate takes place in the context of a (mandatory) strategic environmental impact assessment (SEA) procedure. The paper proposes a critical investigation of four interrelated aspects of this procedure from the point of view of 'good governance': assessment of the remaining uncertainties, guardianship of the democratic process, the organisation of expertise and the interpretation of transgenerational ethics and distributive justice in the new crisis context of globalization and failure of electricity liberalisation. We argue that - in spite of the overall soundness of the geological disposal option - many uncertainties remain: a new technical concept needs to be demonstrated and international financial management needs to be organised. On the process side we argue that although NIRAS-ONDRAF can take up a role as initiator of a public participation process, it can hardly act as a guardian of this process. The debate must be lifted above the local level, opened up to new actors with an active role of the safety authorities and guarded by a non-involved organisation. A condition for success is the creation of critical awareness and the capacity to manage controversy in future with critical expertise. Referring to the RISCOM model for transparent risk communication, we suggest some improvements to the process that is currently taking place

  2. Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis

    DEFF Research Database (Denmark)

    Jensen, Anders; Fagö-Olsen, Helena

    2013-01-01

    The human palatine tonsils, which belong to the central antigen handling sites of the mucosal immune system, are frequently affected by acute and recurrent infections. This study compared the microbiota of the tonsillar crypts in children and adults affected by recurrent tonsillitis with that of healthy adults and children with tonsillar hyperplasia. An in-depth 16S rRNA gene based pyrosequencing approach combined with a novel strategy that included phylogenetic analysis and detection of species-specific sequence signatures enabled identification of the major part of the microbiota to species level. A complex microbiota consisting of between 42 and 110 taxa was demonstrated in both children and adults. This included a core microbiome of 12 abundant genera found in all samples regardless of age and health status. Yet, Haemophilus influenzae, Neisseria species, and Streptococcus pneumoniae were almost exclusively detected in children. In contrast, Streptococcus pseudopneumoniae was present in all samples. Obligate anaerobes like Porphyromonas, Prevotella, and Fusobacterium were abundantly present in children, but the species diversity of Porphyromonas and Prevotella was larger in adults and included species that are considered putative pathogens in periodontal diseases, i.e. Porphyromonas gingivalis, Porphyromonas endodontalis, and Tannerella forsythia. Unifrac analysis showed that recurrent tonsillitis is associated with a shift in the microbiota of the tonsillar crypts. Fusobacterium necrophorum, Streptococcus intermedius and Prevotella melaninogenica/histicola were associated with recurrent tonsillitis in adults, whereas species traditionally associated with acute tonsillitis like pyogenic streptococci and Staphylococcus aureus were scarce. The findings suggest that recurrent tonsillitis is a polymicrobial infection in which interactions within consortia of taxa play an etiologic role. The study contributes to the human microbiome data, to the understanding of the etiology of infections affecting the tonsils, and forms a basis for further insight into the consequences of the intense microbe-host interactions that take place in the tonsils.

  3. An analytical hierarchy process for decision making of high-level-waste management

    International Nuclear Information System (INIS)

    To prove the existence value of nuclear technology for the world of post cold war, demonstration of safe rad-waste disposal is essential. High-level-waste (HLW) certainly is the key issue to be resolved. To assist a rational and persuasive process on various disposal options, an Analytical Hierarchy Process (AHP) for the decision making of HLW management is presented. The basic theory and rationale are discussed, and applications are shown to illustrate the usefulness of the AHP. The authors wish that the AHP can provide a better direction for the current doomed situations of Taiwan nuclear industry, and to exchange with other countries for sharing experiences on the HLW management

  4. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  5. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics.

    Science.gov (United States)

    Mayhew, Terry M

    2015-04-01

    Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM). The ultimate goal of quantitative immunocytochemistry is to estimate numbers of target molecules (usually peptides, proteins or protein complexes) in biological systems and to map their spatial distributions within them. Immunogold cytochemistry utilises target-specific affinity markers (primary antibodies) and visualisation aids (e.g., colloidal gold particles or silver-enhanced nanogold particles) to detect and localise target molecules at high resolution in intact cells and tissues. In the case of post-embedding labelling of ultrathin sections for TEM, targets are localised as a countable digital readout by using colloidal gold particles. The readout comprises a spatial distribution of gold particles across the section and within the context of biological ultrastructure. The observed distribution across structural compartments (whether volume- or surface-occupying) represents both specific and non-specific labelling; an assessment by eye alone as to whether the distribution is random or non-random is not always possible. This review presents a coherent set of quantitative methods for testing whether target molecules exhibit preferential and specific labelling of compartments and for mapping the same targets in two or more groups of cells as their TEM immunogold-labelling patterns alter after experimental manipulation. The set also includes methods for quantifying colocalisation in multiple-labelling experiments and mapping absolute numbers of colloidal gold particles across compartments at specific positions within cells having a point-like inclusion (e.g., centrosome, nucleolus) and a definable vertical axis. Although developed for quantifying colloidal gold particles, the same methods can in principle be used to quantify other electron-dense punctate nanoparticles, including quantum dots. PMID:25403623

  6. Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1 on Postprandial Blood Glucose Level in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Emmanouil Apostolidis

    2013-07-01

    Full Text Available This research investigated the effect of enzymatically digested low molecular weight (MW chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal ?-glucosidase and porcine pancreatic ?-amylase (GO2KA1; 10,000 Da. The in vitro results showed that all tested samples had similar rat ?-glucosidase inhibitory and porcine ?-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax for GO2KA1 was significantly delayed (0.9 h compared to control (0.5 h. These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme ?-glucosidase and since GO2KA1 (MW < 1000 Da had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.

  7. Level of Aflatoxin in Some Fish Feeds from Fish Farming Processes, Feed Factories and Imported Feeds

    OpenAIRE

    ALTU?, Gül?en

    2003-01-01

    Aflatoxins that are toxic metabolites for human and animals were determined in some fish feed. Eighty-five unit samples taken from "fish farming processes", "feed factories" and "imported feeds" in 1998, 1999 and 2000 were analyzed. In the analysis, thin layer chromatography (TLC) and enzyme linked immunosorbent assay (ELISA) technique were used. Consequently, aflatoxin levels above 20 ppb were detected in 20 samples and from 21.2 to 42.4 ppb in 85 samples. In 2...

  8. Alternatives generation and analysis for the phase 1 high-level waste pretreatment process selection

    International Nuclear Information System (INIS)

    This report evaluates the effects of enhanced sludge washing and sludge washing without caustic leaching during the preparation of the Phase 1 high-level waste feeds. The pretreatment processing alternatives are evaluated against their ability to satisfy contractual, cost minimization, and other criteria. The information contained in this report is consistent with, and supplemental to, the Tank Waste Remediation System Operation and Utilization Plan (Kirkbride et al. 1997)

  9. Simulation of the compaction process of a two-level powder metallurgical part

    OpenAIRE

    Bejarano, C; Riera Colom, María Dolores; Prado Pozuelo, José Manuel

    2001-01-01

    In this work, a Plasticity model for granular materials, based on the Drucker-Prager/CAP model, is applied to represent the behaviour of the metallic powders during their cold die compaction. The elastic deformation has been simulated by means of a non-linear law. These constitutive equations have been implemented in a commercial code to simulate the compaction and ejection processes of a two-level PM part.

  10. ENVIROSUITE: USING STATE-OF-THE-ART SYNCHROTRON TECHNIQUES TO UNDERSTAND ENVIRONMENTAL REMEDIATION SCIENCE ISSUES AT THE MOLECULAR LEVEL

    International Nuclear Information System (INIS)

    Although DOE's Environmental Management program has made steady progress in cleaning up environmental legacies throughout the DOE complex, there are still significant remediation issues that remain to be solved. For example, DOE faces difficult challenges related to potential mobilization of radionuclides (e.g., actinides) and other hazardous contaminants in soils, removal and final treatment of high-level waste and residuals from leaking tanks, and the long-term stewardship of remediated sites and engineered disposal facilities, to name just a few. In some cases, new technologies and technology applications will be required based on current engineering expertise. In others, however, basic scientific research is needed to understand the mechanisms of how contaminants behave under specific conditions and how they interact with the environment, from which new engineering solutions can emerge. At Brookhaven National Laboratory (BNL) and Stony Brook University, scientists have teamed to use state-of-the-art synchrotron techniques to help understand the basic interactions of contaminants in the environment. Much of this work is conducted at the BNL National Synchrotron Light Source (NSLS), which is a user facility that provides high energy X-ray and ultraviolet photon beams to facilitate the examination of contaminants and materials at the molecular level. These studies allow us to determine how chemical speciation and structure control important parameters such as solubility, which in turn drive critical performance characteristics such as leaching. In one study for example, we are examining the effects of microbial activity on actinide contaminants under conditions anticipated at the Waste Isolation Pilot Plant. One possible outcome of this research is the identification of specific microbes that can trap uranium or other contaminants within the intracellular structure and help mitigate mobility. In another study, we are exploring the interaction of contaminants with soil and plant roots to better understand the mechanisms responsible for uptake. This effort will lead to improvements in phytoremediation, an innovative and cost-effective approach to the cleanup of large volumes of soil with low concentrations of contaminants. In a third effort, we are investigating molecular interactions of contaminants in high-level waste tanks with potential grouting materials for remediation of the West Valley, NY site to assess their suitability and long-term performance

  11. Investigation on growth process and tribological behavior of mixed alkylsilane self-assembled molecular films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuhong, E-mail: liuyuhong@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Liu, Pengxiao; Xiao, Yuqi; Luo, Jianbin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer The water-based lubrication properties of mixed and single component self-assembled molecular films were investigated. Black-Right-Pointing-Pointer The adsorption equilibrium of the molecular films is relative to the intermolecular interaction forces and the hydrolysis of C8F. Black-Right-Pointing-Pointer The mixing of C8F with C12 and C16 increase the surface tension and reduce the electrical affinity, resulting in the weak hydrophobicity. - Abstract: In this paper, we investigated the frictional behaviors of the mixed self-assembled molecular films of the fluoroalkylsilane (FAS) molecules and non-fluoroalkylsilane (n-FAS) molecules with different chain length covalently absorbed on silicon surfaces, characterized by the universal ball-disk UMT-2 experimental tester under aqueous solution conditions. The surfaces of the substrate modified by mixed self-assembled molecular films were examined by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The formation processes of the molecular films were characterized by quartz crystal microbalance (QCM). The results indicated that it would take a longer time to reach the adsorption equilibrium of the molecular films with the increment of carbon chain length. The measured tribological results showed that the mixing of the fluoroalkylsilane and non-fluoroalkylsilane enhance the lubrication and decrease the friction and wear compared to the one-component thin films. This may be caused by the reduced excitation of the energy dissipation channels.

  12. Leveling the Playing Field: Bringing Development of Biomarkers and Molecular Diagnostics up to the Standards for Drug Development

    OpenAIRE

    Poste, George; Carbone, David P.; Parkinson, David R.; Verweij, Jaap; HEWITT, STEPHEN; Jessup, J. Milburn

    2012-01-01

    Molecular diagnostics are increasingly important in clinical research to stratify or identify molecularly profiled patient cohorts for targeted therapies, to modify the dose of a therapeutic, or to assess early response to therapy or monitor patients. Molecular diagnostics can also be used to identify pharmocogenetic risk of adverse drug reactions. The articles of this CCR Focus section on Molecular Diagnosis describe the development and use of markers for medical decision-making in the cance...

  13. Online monitoring of molecular processes in a plasma air purifying system.

    Science.gov (United States)

    Schmid, Stefan; Meier, Lukas; Berchtold, Christian; Zenobi, Renato

    2012-04-01

    Plasma air purifying systems present an interesting alternative to filters for purifying air. In this study, molecular processes in a commercially available ac driven plasma air purifier were studied in detail. This air purifier is supposed to reduce all air contaminants to small nontoxic molecules (e.g., H(2)O and CO(2)). However, degradation mechanisms are not yet fully understood. In this study, we investigated the exhaust of the plasma air purifier to determine which degradation products are formed. An interface was designed and constructed to allow the direct coupling of the plasma air purifier's exhaust to a mass spectrometer. The compounds studied, primary and secondary amines, were introduced at a concentration of 1 ppmV. Contrary to our expectations, polymerization instead of degradation was observed. The higher the ac voltage applied (max. 9.0 kV) to the plasma air purifier, the higher the mass of the oligomer distribution. Side chain oxidation products as well as oligomers could be observed for all compounds tested. Starting with amines of low mass (m/z air purifier. Detailed analysis of the observed mass spectra as well as experiments with deuterated dibutylamine helped to unravel the mechanism taking place in the plasma air purifier. Nitrate anions generated in the plasma air purifier (presumably from N(2)) are proposed to form ionic clusters with protonated amines. PMID:22420672

  14. Ab initio molecular dynamics simulation of the energy-relaxation process of the protonated water dimer.

    Science.gov (United States)

    Yamauchi, Yusuke; Ozawa, Shiho; Nakai, Hiromi

    2007-03-22

    Relaxation processes of the energy-rich protonated water dimer H+(H2O)2 were investigated by the ab initio molecular dynamics (AIMD) method. At first, the energy-rich H+(H2O)2 was reproduced by simulating a collision reaction between the protonated water monomer H3O+ and H2O. Next it was collided with N2 in order to observe the effects of intramolecular vibration redistribution and intermolecular energy transfer. Forty-eight AIMD simulations of the collision of H+(H2O)2 with N2 were performed by changing the initial orientation and the time interval between two collisions. It was revealed that the amount of energy transferred from H+(H2O)2 to N2 decreased the longer the time interval. The relationship between the intermolecular energy transfer and the vibrational states was examined with the use of an energy-transfer spectrogram (ETS), which is an analysis technique combining energy density analysis and short-time Fourier transform. The ETS demonstrates a characteristic vibrational mode for the energy transfer, which corresponds to the stretching of the hydrogen bond between H+(H2O)2 and N2 in an active complex. PMID:17388294

  15. Molecular mechanism of the inhibition effect of Lipoxin A4 on corneal dissolving pathology process

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2013-02-01

    Full Text Available AIM: Excessive dissolve of corneal tissue induced by MMPs which were activated by cytokins and chemokines will lead to corneal ulcer. The molecular mechanism of Lipoxin A4 (LXA4 on corneal collagen degradation in three dimensions was investigated.METHODS:Rabbit corneal fibroblasts were harvested and suspended in serum-free MEM. Type I collagen, DMEM, collagen reconstitution buffer and corneal fibroblast suspension were mixed on ice. The resultant mixture solidified in an incubator, after which test reagents and plasminogen was overlaid and the cultures were returned to the incubator. The supernatants from collagen gel incubations were collected and the amount of hydroxyproline in the hydrolysate was measured. Immunoblot analysis of MMP-1, -3 and TMMP-1,-2 was performed. MMP-2,-9 was detected by the method of Gelatin zymography. Cytotoxicity assay was measured.RESULTS:LXA4 inhibited corneal collagen degradation in a dose and time manner. LXA4 inhibited the IL-1? induced increases in the pro-MMP-1, -2, -3, -9 and active MMP-1, -2, -3, -9 in a concentration dependent manner. LXA4 could also inhibit the IL-1? induced increases in TIMP-1, -2.CONCLUSION: As a potent anti-inflammation reagent, LXA4 can inhibit corneal collagen degradation induced by IL-1? in corneal fibroblasts thus inhibiting corneal dissolving pathology process.

  16. Uncovering Molecular Relaxation Processes with Nonlinear Spectroscopies in the Deep UV

    Science.gov (United States)

    West, Brantley Andrew

    Conical intersections mediate internal conversion dynamics that compete with even the fastest nuclear motions in molecular systems. Traditional kinetic models do not apply in this regime of commensurate electronic and nuclear motion because the surroundings do not maintain equilibrium throughout the relaxation process. This dissertation focuses on uncovering the physics associated with vibronic interactions at conical intersections. Of particular interest are coherent nuclear motions driven by steep excited state potential energy gradients. Technical advances have only recently made these dynamics accessible in many systems including DNA nucleobases and cyclic polyene molecules. Optical analogues of multidimensional NMR spectroscopies have recently yielded transformative insight in relaxation processes ranging from energy transfer in photosynthesis to bond making and breaking in liquids. Prior to the start of this research, such experiments had only been conducted at infrared and visible wavelengths. Applications in the ultraviolet were motivated by studies of numerous biological systems (e.g., DNA, proteins), but had been challenged by technical issues. The work presented in this dissertation combines pulse generation techniques developed in the optical physics community with spectroscopic techniques largely pioneered by physical chemists to implement two-dimensional ultraviolet spectroscopy (2DUV). This technique is applied at the shortest wavelengths and with the best signal-to-noise ratios reported to date. Sub-picosecond excited state deactivation processes provide photo stability to the DNA double helix. Vibrational energy transfer from the solute to surrounding solvent enables relaxation of the highly non-equilibrium ground state produced by fast internal conversion. In this dissertation, nonlinear spectroscopies carried out at cryogenic temperatures are used to uncover the particular nuclear modes in the solvent that primarily accept vibrational energy from the solute. These measurements additionally expose a competition between internal conversion and vibrational energy transfer onto the DNA backbone. Ring-opening reactions in cycloalkenes are one of the most fundamental reactions in organic chemistry. Traditional textbook understandings of these reactions conveniently hide the intricate physics that occurs prior to bond breaking. Sub-100-femtosecond internal conversion processes precede bond breaking in these systems. This dissertation directly monitors these dynamics in a derivative of cyclohexadiene, alpha-terpinene, and detects coherent wavepacket motions for the first time in solution.

  17. In-situ NMR study of molecular and ionic processes inside carbon nanopores

    Science.gov (United States)

    Luo, Zhixiang

    Interactions of simple ions with water and interfaces play critical roles in many electrochemical and biological processes. They are especially significant in nanoconfined regions and have a profound impact in many applications, for instance nanofluidics and supercapacitors. This dissertation employs a nuclear magnetic resonance (NMR) technique to study their influence on the ionic processes inside carbon nanopores. To characterize the carbon micropore structure, a convenient NMR method is established by taking a 1H magic angle spinning (MAS) spectrum of the adsorbed water. A density functional theory (DFT) computation of the nucleus-independent chemical shift (NICS) yields a quantitative relationship between the NICS values and the micropore sizes. The carbon micropore size and distribution are derived from the chemical shift and the spectrum lineshape. For aqueous electrolytes inside uncharged carbon nanopores, the measurement of ion concentrations reveals a substantial electroneutrality breakdown. The specific ion effects and ion-ion correlations are shown to play crucial roles in determining the degree of electroneutrality breakdown. The importance of those interactions is further revealed by the asymmetric and nonlinear responses of ion concentrations to the charging of the confining carbon walls. Such information is obtained with a carbon supercapacitor built into the NMR probe. The NMR observations are validated by a numerical calculation of the ion distribution in the nanopores using the generalized Poisson-Boltzmann (PB) equation, demonstrating that the nonelectrostatic interfacial interactions can indeed dominate the electrostatic interactions and lead to the breakdown of electroneutrality inside nanoconfined regions. Interfacial ion hydration is an essential part of the specific ion effects. Using in-situ 23Na and 19F NMR on carbon supercapacitors with different carbon pore sizes, I provide a molecular-scale understanding of the permeation and dehydration of ions in voltage-gated carbon nanopores.

  18. Quantum computation and the physical computation level of biological information processing

    CERN Document Server

    Castagnoli, Giuseppe

    2009-01-01

    On the basis of introspective analysis, we establish a crucial requirement for the physical computation basis of consciousness: it should allow processing a significant amount of information together at the same time. Classical computation does not satisfy the requirement. At the fundamental physical level, it is a network of two body interactions, each the input-output transformation of a universal Boolean gate. Thus, it cannot process together at the same time more than the three bit input of this gate - many such gates in parallel do not count since the information is not processed together. Quantum computation satisfies the requirement. At the light of our recent explanation of the speed up, quantum measurement of the solution of the problem is analogous to a many body interaction between the parts of a perfect classical machine, whose mechanical constraints represent the problem to be solved. The many body interaction satisfies all the constraints together at the same time, producing the solution in one ...

  19. Alternatives for high-level waste forms, containers, and container processing systems

    International Nuclear Information System (INIS)

    This study evaluates alternatives for high-level waste forms, containers, container processing systems, and onsite interim storage. Glass waste forms considered are cullet, marbles, gems, and monolithic glass. Small and large containers configured with several combinations of overpack confinement and shield casks are evaluated for these waste forms. Onsite interim storage concepts including canister storage building, bore holes, and storage pad were configured with various glass forms and canister alternatives. All favorable options include the monolithic glass production process as the waste form. Of the favorable options the unshielded 4- and 7-canister overpack options have the greatest technical assurance associated with their design concepts due to their process packaging and storage methods. These canisters are 0.68 m and 0.54 m in diameter respectively and 4.57 m tall. Life-cycle costs are not a discriminating factor in most cases, varying typically less than 15 percent

  20. Effect of almond processing on levels and distribution of aflatoxins in finished products and byproducts.

    Science.gov (United States)

    Zivoli, Rosanna; Gambacorta, Lucia; Perrone, Giancarlo; Solfrizzo, Michele

    2014-06-18

    The fate of aflatoxins during processing of contaminated almonds into nougat, pastries, and almond syrup was evaluated by testing the effect of each processing step (blanching, peeling, roasting, caramelization, cooking, and water infusion) on the distribution and levels of aflatoxins. Blanching and peeling did not reduce total aflatoxins that were distributed between peeled almonds (90-93%) and skins (7-10%). Roasting of peeled almonds reduced up to 50% of aflatoxins. Up to 70% reduction of aflatoxins was observed during preparation and cooking of almond nougat in caramelized sugar. Aflatoxins were substantially stable during preparation and cooking of almond pastries. The whole process of almond syrup preparation produced a marked increase of total aflatoxins (up to 270%) that were distributed between syrup (18-25%) and spent almonds (75-82%). The increase of total aflatoxins was probably due to the activation of almond enzymes during the infusion step that released free aflatoxins from masked aflatoxins. PMID:24873870

  1. Higher-level Innovization : A Case Study from Friction Stir Welding Process Optimization

    DEFF Research Database (Denmark)

    Bandaru, Sunith; Tutum, Cem Celal

    2011-01-01

    The task of finding crucial design interdependencies in the form of mathematical relationships (empirical or otherwise) in an engineering design problem using the Paretooptimal front is referred to as innovization. Past studies on the subject have limited themselves to a single front. In this paper we introduce the higher-level innovization task through an application of a manufacturing process simulation for the Friction Stir Welding (FSW) process where commonalities among two different Pareto-optimal fronts are analyzed. Multiple design rules are simultaneously deciphered from each front separately and compared. Important design aspects of the FSW problem are revealed in the process. The overall study aims at showing how some design principles can considerably ease the task of optimizing future enhancements to the design.

  2. Justice Tides: How and When Levels of ICC Involvement Affect Peace Processes

    DEFF Research Database (Denmark)

    Gissel, Line Engbo

    2015-01-01

    This article investigates how involvement by the International Criminal Court (ICC) in situations of ongoing conflict affects peace processes. It argues that the level of ICC involvement is crucial for the Court’s impact on peace settlements and that this impact takes the form of delegating politico-legal and discursive authority away from peace process actors. To make this argument, the article disaggregates the processes of ICC involvement and peacemaking into component parts and conceptualizes a broad notion of judicialization. This analytical framework is applied to two cases with different negotiation outcomes: the Juba talks between the Ugandan government and the Lord’s Resistance Army and the Kenya National Dialogue and Reconciliation between the Party of National Unity and the Orange Democratic Movement.

  3. High level radioactive waste siting processes: critical lessons from Canadian siting successes

    International Nuclear Information System (INIS)

    While not without controversy, Canada's Crown Corporations, municipalities, agencies and private companies have had success in siting and achieving approval for operating: toxic and hazardous waste facilities; dry radioactive materials storage facilities; the Federal low-level radioactive waste disposal facility; and, several large and small domestic landfills. The cumulative experience gained from these siting and approval processes provides valuable advice in support of the siting and approval of high-level radioactive disposal facilities. Among the critical elements for the success of these siting efforts are: 1) the tinting, scope and character of the siting process reflects the cultural and social values of affected people; 2) the siting and approval processes has integrity -- characterized as rational processes in pursuit of the public interest; 3) sufficient time and resources are dedicated to listening carefully and examining issues seen to be important by the public; 4) all information is shared -- even if the information is potentially detrimental to the approval of the facility; 5) proponent has a prioritized multiple focus on 'health, safety and environment issues', on 'insuring that the environmental assessment process is socially acceptable' as well as on the 'approval considerations'; 6) the implementing agency seeks cooperation and win-win solutions with the local community; 7) the community has the option of opting-out of the process and the do-nothing and/or the not here option continues to be considered by the proponent; 8) local emergency response people are well-trained and accepting of the facility; 9) the community has a strong role in determining the terms, conditions and compensation related to the future facility. (author)

  4. Present Status and Plan of the GOSAT Level 2 Data Processing and Validation

    Science.gov (United States)

    Yokota, T.; Watanabe, H.; Uchino, O.; Morino, I.; Yoshida, Y.; Maksyutov, S.

    2009-04-01

    The Greenhouse gases Observing SATellite (GOSAT) is scheduled to be launched during the period between January 21 and February 28, 2009. The main target of the GOSAT observation is obtaining column abundances of global CO2 and CH4. For three months after the launch, functional tests and tuning of the satellite and the onboard sensors will be performed by the Japan Aerospace Exploration Agency (JAXA) as the initial check-out (ICO). After the ICO period, the GOSAT mission data (i.e. observational Level 1 data) will be transferred from JAXA to the GOSAT Data Handling Facility (DHF) at the National Institute for Environmental Studies (NIES) for further processing. In the next three months after the ICO period, NIES will conduct testing and tuning of the operational system of the GOSAT DHF and the initial data validation. JAXA will calibrate sensors onboard the satellite during that time. Level 1 data (interferogram and spectra for Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) and uncorrected data for Cloud and Aerosol Imager (TANSO-CAI)) will be generated by JAXA. Then, the data will be transferred to GOSAT DHF at NIES for producing CAI Level 1B data (geometric and radiometric correction), Level 2 data (FTS-generated CO2 and CH4 column abundances, CAI-generated cloud flag data, and cloud and aerosol properties), and other higher-level data products. NIES is also responsible for developing the data processing algorithms, validating data quality, and managing generated data products. As for the data validation, the column abundances or column averaged volume mixing ratios of CO2 and CH4 (Level 2 data) will be validated by utilizing the ground-based FTS network (Total Carbon Column Network: TCCON) data collected at worldwide observation sites in Tsukuba (Japan), Darwin (Australia), Lauder (New Zealand), Bremen (Germany), Park Falls (USA), and others. We expect that the transfer of several GOSAT mission data (i.e. observational Level 1 data) from JAXA to NIES to be completed before the start of 2009 EGU General Assembly, where we present the current status of data processing at the NIES GOSAT DHF. Also, samples of tentative validation data will be shown there.

  5. Energy transfer and energy level decay processes of Er3+ in water-free tellurite glass

    Science.gov (United States)

    Gomes, Laercio; Rhonehouse, Daniel; Nguyen, Dan T.; Zong, Jie; Chavez-Pirson, Arturo; Jackson, Stuart D.

    2015-12-01

    This report details the fundamental spectroscopic properties of a new class of water-free tellurite glasses studied for future applications in mid-infrared light generation. The fundamental excited state decay processes relating to the 4I11/2 ? 4I13/2 transition in singly Er3+-doped Tellurium Zinc Lanthanum glass have been investigated using time-resolved fluorescence spectroscopy. The excited state dynamics was analyzed for Er2O3 concentrations between 0.5 mol% and 4 mol%. Selective laser excitation of the 4I11/2 energy level at 972 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that in a similar way to other Er3+-doped glasses, a strong energy-transfer upconversion by way of a dipole-dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 ?m transition. The 4I13/2 and 4I11/2 energy levels emitted luminescence with peaks located at 1532 nm and 2734 nm respectively with luminescence efficiencies of 100% and 8% for the higher (4 mol.%) concentration sample. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ?57 kW cm-2 for a CW laser pump at 976 nm for [Er2O3] = 2 mol.%.

  6. Nanobody: The “Magic Bullet” for Molecular Imaging?

    OpenAIRE

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable f...

  7. Encapsulation of lycopene using spray-drying and molecular inclusion processes

    Scientific Electronic Library Online (English)

    Itaciara Larroza, Nunes; Adriana Zerlotti, Mercadante.

    2007-09-01

    Full Text Available Técnicas de encapsulamento, como "spray-drying" e formação de complexos por inclusão com ciclodextrinas, vêm sendo avaliadas para viabilizar a adição de carotenóides em sistemas hidrofílicos e aumentar a sua estabilidade durante o processamento e estocagem. Portanto, o objetivo do presente trabalho [...] foi obter licopeno encapsulado na forma de pó, utilizando processos de "spray-drying" ou de inclusão molecular com beta -ciclodextrina (CD) seguido de liofilização. A eficiência do encapsulamento utilizando "spray-drying" variou de 94 a 96% e o rendimento médio foi de 51%, com as microcápsulas apresentando indentações superficiais, porém sem falhas ou aberturas na superfície. A formação de complexo licopeno- beta -CD ocorreu apenas quando utilizada razão molar de 1:4, e estruturas irregulares de diferentes tamanhos que eventualmente formaram agregados, similares às da beta -CD, foram observadas após liofilização. O licopeno não complexado neste processo ficou em torno de 50%. A pureza do licopeno (% área do all-trans-licopeno) aumentou de 96,4 para 98,1% após o encapsulamento, enquanto que a pureza do licopeno diminuiu de 97,7 para 91,3% após complexação e liofilização. Os dois processos de secagem resultaram em pós rosa claro, secos e com bom fluxo. Abstract in english This study aimed to obtain encapsulated lycopene in a powder form, using either spray-drying or molecular inclusion with beta -cyclodextrin ( beta -CD) followed by freeze-drying. The encapsulation efficiency using spray-drying ranged from 94 to 96%, with an average yield of 51%, with microcapsules s [...] howing superficial indentations and lack of cracks and breakages. Lycopene- beta -CD complexes were only formed at a molar ratio of 1:4, and irregular structures of different sizes that eventually formed aggregates, similar to those of beta -CD, were observed after freeze-drying. About 50% of the initial lycopene did not form complexes with beta -CD. Lycopene purity increased from 96.4 to 98.1% after spray-drying, whereas lycopene purity decreased from 97.7 to 91.3% after complex formation and freeze-drying. Both the drying processes yielded pale-pink, dry, free-flowing powders.

  8. Encapsulation of lycopene using spray-drying and molecular inclusion processes

    Directory of Open Access Journals (Sweden)

    Itaciara Larroza Nunes

    2007-09-01

    Full Text Available This study aimed to obtain encapsulated lycopene in a powder form, using either spray-drying or molecular inclusion with beta -cyclodextrin ( beta -CD followed by freeze-drying. The encapsulation efficiency using spray-drying ranged from 94 to 96%, with an average yield of 51%, with microcapsules showing superficial indentations and lack of cracks and breakages. Lycopene- beta -CD complexes were only formed at a molar ratio of 1:4, and irregular structures of different sizes that eventually formed aggregates, similar to those of beta -CD, were observed after freeze-drying. About 50% of the initial lycopene did not form complexes with beta -CD. Lycopene purity increased from 96.4 to 98.1% after spray-drying, whereas lycopene purity decreased from 97.7 to 91.3% after complex formation and freeze-drying. Both the drying processes yielded pale-pink, dry, free-flowing powders.Técnicas de encapsulamento, como "spray-drying" e formação de complexos por inclusão com ciclodextrinas, vêm sendo avaliadas para viabilizar a adição de carotenóides em sistemas hidrofílicos e aumentar a sua estabilidade durante o processamento e estocagem. Portanto, o objetivo do presente trabalho foi obter licopeno encapsulado na forma de pó, utilizando processos de "spray-drying" ou de inclusão molecular com beta -ciclodextrina (CD seguido de liofilização. A eficiência do encapsulamento utilizando "spray-drying" variou de 94 a 96% e o rendimento médio foi de 51%, com as microcápsulas apresentando indentações superficiais, porém sem falhas ou aberturas na superfície. A formação de complexo licopeno- beta -CD ocorreu apenas quando utilizada razão molar de 1:4, e estruturas irregulares de diferentes tamanhos que eventualmente formaram agregados, similares às da beta -CD, foram observadas após liofilização. O licopeno não complexado neste processo ficou em torno de 50%. A pureza do licopeno (% área do all-trans-licopeno aumentou de 96,4 para 98,1% após o encapsulamento, enquanto que a pureza do licopeno diminuiu de 97,7 para 91,3% após complexação e liofilização. Os dois processos de secagem resultaram em pós rosa claro, secos e com bom fluxo.

  9. Effect of cooking or handling conditions on the furan levels of processed foods.

    Science.gov (United States)

    Kim, T-K; Lee, Y-K; Park, Y S; Lee, K-G

    2009-06-01

    The aim of this study was to investigate the possible effects of cooking or handling conditions on the concentration of furan in processed foods. The analytical method used to analyse furan levels in foods was optimized based on solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). In baby soups, the concentration of furan decreased by up to 22% after opening a lid for 10 min. In the baby food in retort packaging, the level of furan was reduced by 15-33% after heating the foods at 50 degrees C without a lid. Furan in rice seasonings was evaporated completely after heating the foods at 60 degrees C. Regarding powered milk, the levels of furan were too low to be compared under various conditions. The levels of furan decreased to 58% in beverage products for babies, after storing them at 4 degrees C for 1 day without a lid. The levels of furan in canned foods such as cereal and vegetable were reduced by zero to 52% when they were stored without stirring in a refrigerator at 4 degrees C for 1 day. When we boiled canned fish, the furan present was almost completely evaporated. It is recommended that canned meats be heated up to 50-70 degrees C for the reduction (26-46%) of furan levels. The levels of furan in instant and brewed coffee samples were significantly reduced after storing for 11 to 20 min at room temperature without a lid (p < 0.05). PMID:19680949

  10. Decision Processes During Development of Molecular Biomarkers for Gonadal Phenotypic Sex

    Science.gov (United States)

    Molecular biomarkers for determination of gonadal phenotypic sex in the Japanese medaka (Oryzias latipes), will serve as a case study. The medaka has unique features that aid in the development of appropriate molecular biomarkers of gonad phenotype, a) genetic sex can be determin...

  11. Teaching the Process of Molecular Phylogeny and Systematics: A Multi-Part Inquiry-Based Exercise

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.; Carpi, Anthony

    2010-01-01

    Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from "Homo sapiens" and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although these…

  12. Leveling Process of Total Electron Content (TEC Using Malaysian Global Positioning System (GPS Data

    Directory of Open Access Journals (Sweden)

    Y. Norsuzila

    2008-01-01

    Full Text Available The signals from the satellites of the Navstar Global Positioning System (GPS travel through the earth's ionosphere on their way to GPS receivers. However, ionospheric delay is one of the main sources of error in GPS. The magnitude of the ionospheric delay is influenced by the Total Electron Content (TEC along the radio wave path from a GPS satellite to the ground receiver. This study investigates the TEC using GPS data collected from Wisma Tanah, Kuala Lumpur, KTPK (3° 10' 15.44"N, 101° 43' 03.35"E station and processed and analyzed under quiet geomagnetic day at the equatorial region on 8 November 2005. This research assesses the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called leveling process, which was applied to reduce multipath from the data. It was found that the leveled carrier-phase ionosphere observable was affected by a systematic error, produced by code-delay multipath through the leveling procedure. The effects, however, do not cancel after averaging all the data. Dual frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observable related to the slant TEC (TECs along the satellite-receiver line of sight (los. This results in the absolute differential delay and the remaining noise was discarded. These are the first results obtained using TEC-GPS technique for TEC measurement in Malaysia.

  13. [Sex differences in relationship between creativity and hemispheric information processing in global and local levels].

    Science.gov (United States)

    Razumnikova, O M; Vol'f, N V

    2012-01-01

    Sex differences in creativity related global-local hemispheric selective processing were examined by hierarchical letter presenting in conditions of their perception and comparison. Fifty-six right-handed males and 68 females (aged 17-22 years) participated in the experiments. Originality-imagery was assessed by a computer-based Torrance 'Incomplete Figures' test software. Verbal creativity was valued by original sentence using of three nouns from remote semantic categories. The results show that irrespectively of the sex factor and the type of creative thinking, its originality is provided by high speed of right-hemispheric processes of information selection on the global level and delay in the interhemispheric communication. Relationships between originality of ideas and hemispheric attentional characteristics are presented mostly in men while verbal creative problem solving, and in women while figurative original thinking. Originality of verbal activity in men is more associated with success of selective processes in the left hemisphere, but in women--with selective functions of both hemispheres. Figurative thinking in men is less related to hemispheric characteristics of attention compared with women. Increase of figurative originality in women is accompanied acceleration of processes of selection of the information in the right hemisphere, and also higher efficiency of local attention as well as speeds ofglobal processing in the left hemisphere. PMID:23101238

  14. Hardware Implementation of Instruction Level Parallel Architecture Incorporating Special Functional Units for Image Processing Algorithms

    Directory of Open Access Journals (Sweden)

    M. Kannan

    2006-01-01

    Full Text Available Parallel processing is an efficient form of information processing with emphasis on the exploitation concurrent events in computations. Considering a sequence of assembly instructions for a specific problem it is found that many of the consecutive instructions are independent of each other, without any data dependencies between them. This work exploits such situations and it executes pairs of instructions, which do not have dependencies between them, on two different processing elements, thus enhancing the speed of operations. It is not always true that any two instructions taken from a sequence of instructions could go in parallel. The various types of dependencies that exist among the instructions are the bottleneck in executing instruction in parallel. The various possible data dependencies and control transfers are handled so that most of the instructions are run pairs. The ILP(Instruction Level Parallelism architecture designed here is to be used for image processing applications. Since specific hardware solutions are always faster that their software counterparts and we have dedicated hardware units for most frequently used image processing problems of finding DFT and DCT. The proposed architecture improves the performance with a speed up factor of more than 1.5 with lesser data dependencies, we can get a higher speed up factor, upper bounded by the value of 2 by the Amdahl`s law.

  15. TECNETIUM-99 BEHAVIOR IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGES DURING WASTE PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    BIBLER, N.E.; FELLINGER, T. L.; HOBBS, D.T.

    2006-01-03

    This paper presents results of a study of the behavior of technetium-99 (Tc-99) during high level waste (HLW) processing operations at Savannah River Site (SRS). Its behavior during HLW processing is important to understand because Tc-99 can fractionate in the waste and appear in both the sludge and the salt tanks at SRS. It can also be soluble in groundwaters and thus is an important radionuclide that may dictate how much waste has to be removed from a tank to prepare it for permanent closure. The HLW processing steps considered in this study are: (1) The initial caustic neutralization of the acidic waste streams generated in the SRS canyons to prepare the waste for storage in the mild steel tanks in the SRS Tank Farm. Waste that is insoluble in caustic precipitates while soluble elements remain in the supernates. At SRS insoluble components are segregated into sludge tanks and soluble components into the salt tanks. (2) The operations in the SRS Tank Farm that wash the sludge in preparation for immobilization for permanent disposal. (3) The sludge immobilization process in the Defense Waste Processing Facility (DWPF) that solidifies the solids into a stable borosilicate glass. The data in this study are from tests performed at SRNL with both a simulated HLW doped with Tc-99 and tests preformed remotely in the Shielded Cells with a sample of actual radioactive HLW that contained Tc-99 and other radionuclides generated in the SRS reactors. Detailed results are discussed in the paper.

  16. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2000-08-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process.

  17. Best Practices to Achieve CMMI Level 2 Configuration Management Process Area through VSS tool

    Directory of Open Access Journals (Sweden)

    Prerna Gupta

    2011-05-01

    Full Text Available Over the past years, the capability maturity model (CMM and capability maturity model integration (CMMI have been broadly used for assessing organizational maturity and process capability throughout the world. However, the rapid pace of change in information technology has caused increasing frustration to the heavyweight plans, specifications, and other documentation imposed by contractual inertia and maturity model compliance criteria. In light of that, configuration management methodologies have been adopted to tackle this challenge. The aim of our paper is to present mapping between CMMI and one of the SCM tool VSS. It shows how VSS addresses the Configuration Management Process Areas of CMMI and help in achieving all the goals which are defined at CMMI level 2 Configuration process areas. This is useful for organizations that have their plan-driven process based on the CMMI model and are planning to improve its processes toward agility or to help organizations to define a new project management framework based on both CMMI and configuration practices.

  18. From perceptual to lexico-semantic analysis-cortical plasticity enabling new levels of processing.

    Science.gov (United States)

    Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias

    2015-11-01

    Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. Hum Brain Mapp 36:4512-4528, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26304153

  19. Process for the separation of gas mixtures into component fractions according to their molecular or atomic weight

    International Nuclear Information System (INIS)

    A process is provided for separation of gas mixtures into component fractions according to their molecular or atomic weight. The mixture is subjected to the centrifugal force applied in a cone-shaped vortex having a diameter of not over 5 mm at a gas feed absolute pressure from about 5 to about 1000 mm of mercury, and a pressure ratio within the range from about 1.5 to about 10. In the case where an inert gas is used in admixture with the gas mixture, the gas feed pressure can exceed 1000 mm of mercury, and gas inlet and outlet pressures can range up to the liquefaction pressure of any gas in the mixture at the operating temperature. The higher molecular or atomic weight fractions are separated from an outer or peripheral portion of th vortex, and the lower molecular or atomic weight fractions are separated from an inner or core portion of the vortex

  20. Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing.

    Science.gov (United States)

    Di Liberto, Giovanni M; O'Sullivan, James A; Lalor, Edmund C

    2015-10-01

    The human ability to understand speech is underpinned by a hierarchical auditory system whose successive stages process increasingly complex attributes of the acoustic input. It has been suggested that to produce categorical speech perception, this system must elicit consistent neural responses to speech tokens (e.g., phonemes) despite variations in their acoustics. Here, using electroencephalography (EEG), we provide evidence for this categorical phoneme-level speech processing by showing that the relationship between continuous speech and neural activity is best described when that speech is represented using both low-level spectrotemporal information and categorical labeling of phonetic features. Furthermore, the mapping between phonemes and EEG becomes more discriminative for phonetic features at longer latencies, in line with what one might expect from a hierarchical system. Importantly, these effects are not seen for time-reversed speech. These findings may form the basis for future research on natural language processing in specific cohorts of interest and for broader insights into how brains transform acoustic input into meaning. PMID:26412129

  1. Broad levels in $^{17}$O and their relevance for the astrophysical s-process

    CERN Document Server

    Faestermann, Thomas; Hertenberger, Ralf; Wirth, Hans-Friedrich

    2015-01-01

    Levels in $^{17}$O affect the astrophysical s-process in two opposite ways. The neutron production is enhanced by resonances in the $^{13}$C($\\alpha$,$n$)$^{16}$O reaction at excitation energies around 7 MeV in $^{17}$O, and the number of available neutrons is reduced by low-lying resonances in the $^{16}$O($n$,$\\gamma$)$^{17}$O reaction corresponding to levels in $^{17}$O with excitation energies of $4-5$ MeV. The present work uses the $^{19}$F($d$,$\\alpha$)$^{17}$O reaction to determine absolute widths of the relevant levels in $^{17}$O. The results improve the uncertainties of the previously adopted values and resolve a discrepancy between recent studies for the $1/2^+$ level close to the threshold of the $^{13}$C($\\alpha$,$n$)$^{16}$O reaction. In addition, improved excitation energies and widths are provided for several states in $^{17}$O up to excitation energies close to 8 MeV.

  2. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.S. [Environmental Protection Agency, Washington, DC (United States); Penzin, R. [Association for Advanced Technologies, Moscow (Russian Federation); Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States); Sorlie, A. [Norwegian Radiation Protection Authority, Osteras (Norway)

    1996-12-31

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

  3. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    International Nuclear Information System (INIS)

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper

  4. Work in process level definition: a method based on computer simulation and electre tri

    Scientific Electronic Library Online (English)

    Isaac, Pergher; Guilherme Luís Roehe, Vaccaro.

    2014-09-01

    Full Text Available This paper proposes a method for defining the levels of work in progress (WIP) in productive environments managed by constant work in process (CONWIP) policies. The proposed method combines the approaches of Computer Simulation and Electre TRI to support estimation of the adequate level of WIP and i [...] s presented in eighteen steps. The paper also presents an application example, performed on a metalworking company. The research method is based on Computer Simulation, supported by quantitative data analysis. The main contribution of the paper is its provision of a structured way to define inventories according to demand. With this method, the authors hope to contribute to the establishment of better capacity plans in production environments.

  5. Molecular processes as basis for plasmid-mediated bacterial UV-light resistance and mutagenesis

    International Nuclear Information System (INIS)

    The increase of UV-resistance and UV-induced mutagenesis by lambda 1 pint intmid as well as molecular-genetic mechanisms of plasmid participation in reparation and DNA replication and its degradation after UV-irradiation in plasmid cells on pKM101 plasmid model have been investigated. Data testifying to the necessity of intmid integration in chromosome as obligatory stage of intmid participation in increasing UV-resistance of bacterial cells are obtained. It has been found that intmid raises UV-resistance of cells and increases respectively the UV-induced reverants efficiency. On the basis of the experiment data the conclusion is drawn that the intmid capacity to raise UV-resistance and, possibly, mutagenesis is bound not only with its integration into chromosome but also with pol A+ chromosome replication by dependendent imtmid replication complex. It is shown that pKM101 plasmid ensures functioning in E coli cells of inducible, chloroamphenicol-resistant DNA replication, highly resistant to UV-light harmful effect and that the volume of excision reparation in E. coli cells carrying pKM101 plasmid is increased as compared with the volume of reparation in plasmid legs cells. The combination of the data obtained gives grounds to the authors to assume that inducible replication, inducible reparation of DNA and inducible decrease of DNA degradation determined by pKM101 plasmid may serve as recA+lexA+ basis dependent increase of UV-resistance and mutagenesis and that these processes provide the possibility of functioning of integrative replication mechanism of plasmid participation in ensuring UV-resistance and mutagenesis of plants

  6. Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Kwan, Johnson; Lu, Chun-Mei; Ito, Yuko; Wang, Mei; Baumgartner, Adolf; Hayward, Simon W.; Weier, Jingly F.; Zitzelsberger, Horst F.

    2009-07-07

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.

  7. Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

    International Nuclear Information System (INIS)

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.

  8. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting.

    Science.gov (United States)

    Ronconi, Federico; Syrgiannis, Zois; Bonasera, Aurelio; Prato, Maurizio; Argazzi, Roberto; Caramori, Stefano; Cristino, Vito; Bignozzi, Carlo Alberto

    2015-04-15

    [(N,N'-Bis(2-(trimethylammonium)ethylene) perylene 3,4,9,10-tetracarboxylic acid bisimide)(PF6)2] (1) was observed to spontaneously adsorb on nanocrystalline WO3 surfaces via aggregation/hydrophobic forces. Under visible irradiation (? > 435 nm), the excited state of 1 underwent oxidative quenching by electron injection (kinj > 10(8) s(-1)) to WO3, leaving a strongly positive hole (Eox ? 1.7 V vs SCE), which allows to drive demanding photo-oxidation reactions in photoelectrochemical cells (PECs). The casting of IrO2 nanoparticles (NPs), acting as water oxidation catalysts (WOCs) on the sensitized electrodes, led to a 4-fold enhancement in photoanodic current, consistent with hole transfer from oxidized dye to IrO2 occurring on the microsecond time scale. Once the interaction of the sensitizer with suitable WOCs is optimized, 1/WO3 photoanodes may hold potentialities for the straightforward building of molecular level devices for solar fuel production. PMID:25837588

  9. Source Apportionment of Background PAHs in the Peace-Athabasca Delta (Alberta, Canada) Using Molecular Level Radiocarbon Analysis.

    Science.gov (United States)

    Jautzy, Josué J; Ahad, Jason M E; Hall, Roland I; Wiklund, Johan A; Wolfe, Brent B; Gobeil, Charles; Savard, Martine M

    2015-08-01

    The downstream accumulation of polycyclic aromatic hydrocarbons (PAHs) in the Peace-Athabasca Delta (PAD), an ecologically important landscape, is a key issue of concern given the rapid development of the oil sands industry in Northern Alberta, Canada. In addition to PAHs derived from industrial activity (i.e., oil sands mining) within the Athabasca watershed, however, forest fires and erosion of fossil fuel deposits within both the Athabasca and Peace watersheds are two potentially important natural sources of PAHs delivered to the PAD. Consequently, evaluating the environmental impact of mining activities requires a quantitative understanding of natural, background PAHs. Here, we utilize molecular-level natural-abundance radiocarbon measurements on an amalgamated sediment record from a Peace River flood-susceptible oxbow lake in the northern Peace sector of the PAD to quantitatively discriminate sources of naturally occurring alkylated PAHs (fossil and modern biomass). A radiocarbon mass balance quantified a predominantly natural petrogenic source (93% petrogenic, 7% forest fire) for alkylated PAHs during the past ?50 years. Additionally, a significant petrogenic component determined for retene, a compound usually considered a biomarker for softwood combustion, suggests that its use as a unique forest fire indicator may not be suitable in PAD sediments receiving Peace watershed-derived fluvial inputs. PMID:26115178

  10. Assessment of Changes in Community Level Physiological Profile and Molecular Diversity of Bacterial Communities in Different Stages of Jute Retting

    Directory of Open Access Journals (Sweden)

    Manabendra Nath Saha

    2013-01-01

    Full Text Available Retting of jute is essentially microbiological and biochemical in nature. Community Level Physiological Profiles (CLPP as well as genomic diversity of bacterial communities were assessed in water samples collected during pre-retting, after 1st and 2nd charges of retting. The water samples were collected from two widely cultivated jute growing locations, Sonatikari (22°41'27"N; 88°35'44"E and Baduria (22°44'24"N; 88°47'24"E, West Bengal, India. The CLPP, expressed as net area under substrate utilization curve, was studied by carbon source utilization patterns in BIOLOG Ecoplates. Molecular diversity was studied by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE of total DNA from water samples. Both between locations and stages of retting, substrate utilizations pattern were carbohydrates> carboxylic acids>polymers>amino acids>amines/amides>phenolic compounds. Differential substrate utilization pattern as well as variation in banding pattern in DGGE profiles was observed between the two locations and at different stages of retting. The variations in CLPP in different stages of retting were due to the change in bacterial communities.

  11. Effects of freshwater pollution on the genetics of zebra mussels (Dreissena polymorpha) at the molecular and population level.

    Science.gov (United States)

    Thomas, Emilia G; Srut, Maja; Stambuk, Anamaria; Klobu?ar, Göran I V; Seitz, Alfred; Griebeler, Eva Maria

    2014-01-01

    Revealing long-term effects of contaminants on the genetic structure of organisms inhabiting polluted environments should encompass analyses at the population, molecular, and cellular level. Following this concept, we studied the genetic constitution of zebra mussel populations from a polluted (Dp) and reference sites (Cl) at the river Drava, Croatia, and applied microsatellite and DNA damage analyses (Comet assay, micronucleus test (MNT)). Additionally, mussels from both populations were exposed to polluted wastewater in the laboratory for three days, and DNA damage was analyzed to evaluate acclimatization and genetic adaptation of the investigated populations to the polluted environment. The two populations differed in their genetic constitution. Microsatellite analysis suggested that Dp had undergone a genetic bottleneck. Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that Dp had an increased percentage of micronuclei in hemocytes in comparison to Cl. The laboratory experiment revealed that Dp had a lower percentage of tail DNA and a higher percentage of micronuclei than Cl. These differences between populations were possibly caused by an overall decreased fitness of Dp due to genetic drift and by an enhanced DNA repair mechanism due to acclimatization to pollution in the source habitat. PMID:24883328

  12. Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy

    Science.gov (United States)

    Zhang, Hongrui; Molino, Paul J.; Wallace, Gordon G.; Higgins, Michael J.

    2015-09-01

    Single Cell Force Spectroscopy was combined with Electrochemical-AFM to quantify the adhesion between live single cells and conducting polymers whilst simultaneously applying a voltage to electrically switch the polymer from oxidized to reduced states. The cell-conducting polymer adhesion represents the non-specific interaction between cell surface glycocalyx molecules and polymer groups such as sulfonate and dodecylbenzene groups, which rearrange their orientation during electrical switching. Single cell adhesion significantly increases as the polymer is switched from an oxidized to fully reduced state, indicating stronger cell binding to sulfonate groups as opposed to hydrophobic groups. This increase in single cell adhesion is concomitant with an increase in surface hydrophilicity and uptake of cell media, driven by cation movement, into the polymer film during electrochemical reduction. Binding forces between the glycocalyx and polymer surface are indicative of molecular-level interactions and during electrical stimulation there is a decrease in both the binding force and stiffness of the adhesive bonds. The study provides insight into the effects of electrochemical switching on cell adhesion at the cell-conducting polymer interface and is more broadly applicable to elucidating the binding of cell adhesion molecules in the presence of electrical fields and directly at electrode interfaces.

  13. Tank waste remediation system high-level waste feed processability assessment report

    International Nuclear Information System (INIS)

    This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050 degrees C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150 degrees C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150 degrees C to 1400 degrees C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site's high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit

  14. Tank waste remediation system high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L. [Westinghouse Hanford Co., Richland, WA (United States); Kim, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-01

    This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

  15. Low level laser therapy and its effects on reparatory processes of the skin

    Directory of Open Access Journals (Sweden)

    Mati? Milan 1

    2003-01-01

    Full Text Available Introduction Application of laser beams for therapeutic purposes is of relatively recent date, but today there is no field of medicine where lasers cannot be used. Physical characteristics of laser radiation Laser radiation is a type of electromagnetic radiation with some specific characteristics such as coherence, monochromaticity and parallelity. Types of laser devices Nowadays, there are many laser devices on the market used in medicine and dentistry. According to the type of their active medium, lasers can be classified as solid, gas, semiconductor and liquid. Effects of low level laser therapy on biological systems The exact mechanism of action of low level laser therapy is still not completely understood. Its basic feature is to modulate cell behaviour, without causing significant temperature increase. During irradiation of a tissue with a laser beam, an interaction between cells and photons takes place - photochemical reaction. After a cell absorbs the photon, the photon stops existing, and its energy is incorporated into the molecule which has absorbed it. Once this energy is transferred to different bio-molecules, it can be transferred to other molecules as well. The energy transferred to the molecule can increase its kinetic energy, and activate or deactivate enzymes or alter physical or chemical properties of main macromolecules. Effects of low level laser therapy on wound healing Effects of low level laser therapy on wound healing process is one of the most fully studied aspects of this type of therapy. It affects all phases of this very complex process. This paper offers a more detailed analysis of these aspects.

  16. A new centralized facility for low level DAW processing and conditioning in Belgium

    International Nuclear Information System (INIS)

    Since the early sixties, Belgium has an important activity in the radwaste management field. The suspension of sea disposal in 1983 has imposed a revision of the program: new interim storage structures, development of shallow-land disposal increased waste volume reduction. In this respect, an optimization study of possible VR strategies has been undertaken for low level DAW (exclusive of TRU waste) leading to the recommendation of a new centralized processing and conditioning facility provided for waste incineration and supercompaction followed by a residues encapsulation in concrete. The paper briefly outlines the facility composition as planned at the conceptual design stage

  17. Development of new treatment process for low level radioactive waste at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    The Low-level radioactive Waste Treatment Facility (LWTF) was constructed at the Tokai Reprocessing Plant (TRP) and cold testing has been carried out since 2006. The waste which will be treated in the LWTF is combustible/incombustible solid waste and liquid waste. In the LWTF, the combustible/incombustible solid waste will be incinerated. The liquid waste will be treated by a radio-nuclides removal process and subsequently solidified in cement. This report describes the essential technologies of the LWTF and results of R and D work for the nitrate-ion decomposition technology for the liquid waste. (author)

  18. Processing moldable tasks on the grid: Late job binding with lightweight user-level overlay

    CERN Document Server

    Moscicki, J T; Sloot, P M A; Lamanna, M

    2011-01-01

    Independent observations and everyday user experience indicate that performance and reliability of large grid infrastructures may suffer from large and unpredictable variations. In this paper we study the impact of the job queuing time on processing of moldable tasks which are commonly found in large-scale production grids. We use the mean value and variance of makespan as the quality of service indicators. We develop a general task processing model to provide a quantitative comparison between two models: early and late job binding in a user-level overlay applied to the EGEE Grid infrastructure. We find that the late-binding model effectively defines a transformation of the distribution of makespan according to the Central Limit Theorem. As demonstrated by Monte Carlo simulations using real job traces, this transformation allows to substantially reduce the mean value and variance of makespan. For certain classes of applications task granularity may be adjusted such that a speedup of an order of magnitude or m...

  19. Ontario Hydro Technologies chemical process for the destruction of high level PCB wastes

    International Nuclear Information System (INIS)

    A process, based on the distillation of chlorobenzenes from the askarel (PCB) mixtures, and the subsequent reaction of the PCB residue with metallic sodium dispersion, has been developed by Ontario Hydro Technologies for the low temperature chemical destruction of concentrated PCB wastes. The process has been extensively tested in a mobile unit; it is nearly emission-free, economically competitive, and provides an on-site solution for the disposal of high-level PCB liquids, without the need for and thr hazards associated with transporting them to a disposal facility. Commercial scale units with a daily capacity of 1,500 kg of askarels are expected to be available in a matter of months. 3 refs

  20. Organization of the two-level memory in the image processing system on scanning measuring projectors

    International Nuclear Information System (INIS)

    Discussed are the problems of improving the efficiency of the system for processing pictures taken in bubble chambers with the use of scanning measuring projectors. The system comprises 20 to 30 pro ectors linked with the ICL-1903A computer provided with a mainframe memory, 64 kilobytes in size. Because of the insufficient size of a mainframe memory, a part of the programs and data is located in a second-level memory, i.e. in an external memory. The analytical model described herein is used to analyze the effect of the memory organization on the characteristics of the system. It is shown that organization of pure procedures and introduction of the centralized control of the tWo-leVel memory result in substantial improvement of the efficiency of the picture processing system

  1. Cortland County's perspective on the New York State low-level radioactive waste siting process

    International Nuclear Information System (INIS)

    After being designated as a potential low-level radioactive waste (LLRW) disposal site, Cortland County coordinated an extensive multifaceted effort against the state's proposal Opposition from county and local governments and from the citizenry resulted due to the New York State LLRW Siting Commission's technically deficient plans; its deviations from specified procedures; and its attempt to site the facility by force. The Siting Commission's approach, which resulted in numerous confrontations with citizens, created a political climate conducive to legislative change. While the 1990 legislative amendments to the 1986 LLRW Management Act afford sited communities greater control over the siting process, they do not provide sited communities with local veto power. Despite the improvements to the process provided by the 1990 amendments, the Siting Commission's lack of credibility and its continued pursuit of unwilling hosts have doomed the siting effort to failure. (author)

  2. Functional specificity for high-level linguistic processing in the human brain.

    Science.gov (United States)

    Fedorenko, Evelina; Behr, Michael K; Kanwisher, Nancy

    2011-09-27

    Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain regions. For the critical case of language, conflicting answers arise from the neuropsychological literature, which features striking dissociations between deficits in linguistic and nonlinguistic abilities, vs. the neuroimaging literature, which has argued for overlap between activations for linguistic and nonlinguistic processes, including arithmetic, domain general abilities like cognitive control, and music. Here, we use functional MRI to define classic language regions functionally in each subject individually and then examine the response of these regions to the nonlinguistic functions most commonly argued to engage these regions: arithmetic, working memory, cognitive control, and music. We find little or no response in language regions to these nonlinguistic functions. These data support a clear distinction between language and other cognitive processes, resolving the prior conflict between the neuropsychological and neuroimaging literatures. PMID:21885736

  3. The time-dependent close-coupling method for atomic and molecular collision processes

    International Nuclear Information System (INIS)

    We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions. (topical review)

  4. Adaptive neural network controller for the molten steel level control of strip casting processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hung Yi [Mingchi University, Taipei (China); Huang, Shiuh Jer [National Taiwan University, Taipei (China)

    2010-03-15

    The twin-roll strip casting process is a steel-strip production method which combines continuous casting and hot rolling processes. The production line from molten liquid steel to the final steel-strip is shortened and the production cost is reduced significantly as compared to conventional continuous casting. The quality of strip casting process depends on many process parameters, such as molten steel level in the pool, solidification position, and roll gap. Their relationships are complex and the strip casting process has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate process model for designing a model-based controller to monitor the strip quality. In this paper, a model-free adaptive neural network controller is developed to overcome this problem. The proposed control strategy is based on a neural network structure combined with a sliding-mode control scheme. An adaptive rule is employed to on-line adjust the weights of radial basis functions by using the reaching condition of a specified sliding surface. This surface has the on-line learning ability to respond to the system's nonlinear and time-varying behaviors. Since this model-free controller has a simple control structure and small number of control parameters, it is easy to implement. Simulation results, based on a semi experimental system dynamic model and parameters, are executed to show the control performance of the proposed intelligent controller. In addition, the control performance is compared with that of a traditional Pid controller

  5. Adaptive neural network controller for the molten steel level control of strip casting processes

    International Nuclear Information System (INIS)

    The twin-roll strip casting process is a steel-strip production method which combines continuous casting and hot rolling processes. The production line from molten liquid steel to the final steel-strip is shortened and the production cost is reduced significantly as compared to conventional continuous casting. The quality of strip casting process depends on many process parameters, such as molten steel level in the pool, solidification position, and roll gap. Their relationships are complex and the strip casting process has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate process model for designing a model-based controller to monitor the strip quality. In this paper, a model-free adaptive neural network controller is developed to overcome this problem. The proposed control strategy is based on a neural network structure combined with a sliding-mode control scheme. An adaptive rule is employed to on-line adjust the weights of radial basis functions by using the reaching condition of a specified sliding surface. This surface has the on-line learning ability to respond to the system's nonlinear and time-varying behaviors. Since this model-free controller has a simple control structure and small number of control parameters, it is easy to implement. Simulation results, based on a semi experimental system dynamic model and parameters, are executed to show the control performance of the proposed intelligent controller. In addition, the control performance is compared with that of a traditional Pid controller

  6. Forward osmosis - a novel membrane process for concentration of low level radioactive wastes

    International Nuclear Information System (INIS)

    Forward osmosis (FO) is an emerging membrane process in which osmotic pressure differential across a semi-permeable membrane between the solution to be concentrated (feed) and a concentrated solution of high osmotic pressure (draw solution) than the feed is used to effect separation of water from dissolved solutes. With time, feed stream gets concentrated with dilution of draw solution and this technology recently being used as more energy efficient alternative to reverse osmosis (RO) in some of the application areas, particularly for the concentration of low volume high value products. The use of pressure driven membrane processes like reverse osmosis (RO) and ultrafiltration (UF) are already demonstrated in the treatment of radioactive laundry, laboratory effluents and some other applications in nuclear industry. The application of FO membrane process to concentrate simulated inactive ammonium-diuranate (ADU) filtered effluent solution (by mixing uranyl nitrate and ammonium nitrate) using indigenously developed cellulose acetate (CA) and thin-film composite polyamide (TFCP) membranes has been published recently from our laboratory. In this presentation, we briefly discuss our views on possibility of using FO membrane process with proper selection of membrane for concentration of low level radioactive wastes generated in various steps of nuclear fuel cycle in most effective way. (author)

  7. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    Energy Technology Data Exchange (ETDEWEB)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl+4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. By using these algorithms we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 seconds per time step to 6.9 seconds per time step.

  8. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    Energy Technology Data Exchange (ETDEWEB)

    Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Weare, Jonathan Q., E-mail: weare@uchicago.edu [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States); Weare, John H., E-mail: jweare@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} ? f(x{sub (i?1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  9. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.

    Science.gov (United States)

    Bylaska, Eric J; Weare, Jonathan Q; Weare, John H

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial?execution/timeparallel?execution?time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step. PMID:23968079

  10. The improvement of the manufacturing process of a company by the Sigma level: the case of the company BAG (Batna

    Directory of Open Access Journals (Sweden)

    Athmane MECHENENE

    2014-06-01

    Full Text Available This modest work aims to evaluate the performance of the manufacturing process of the company by a new measurement tool, namely the sigma level whose purpose is to quantify the costs inherent in each production process, measure the levels of six Sigma in adjacent processes, to achieve weight calculate DPMO (Defects Per Million Opportunity and thus assess the overall competitiveness of the company. This new tool for measuring the performance of the manufacturing process (sigma level is applied to manufacturing gas cylinders (BAG - Batna.

  11. Similarities and Differences Between Working Memory and Long-Term Memory: Evidence From the Levels-of-Processing Span Task

    OpenAIRE

    Rose, Nathan S; Myerson, Joel; Roediger, Henry L.; Hale, Sandra

    2010-01-01

    Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on WM tests, yet subsequent memory for the same items on delayed tests showed the typical benefits of semantic processing. Although the difference in LO...

  12. The effect of urinary tract calculosis to levels of low molecular inhibitors of crystallization in the urine

    Directory of Open Access Journals (Sweden)

    Milenkovi? Dragica

    2006-01-01

    Full Text Available The incidence of urinary tract calculosis continuously progresses. The triggering event in the process of stone formation is decreased urinary level of crystallizing inhibitors. The aim of our study was to investigate whether the existing stone or applied therapeutic procedure - extracorporeal shock waves lithotripsy (ESWL - has effect to urinary levels of Mg, citrate and pyrophosphate. Study included 128 patients with the upper urinary tract stones. ESWL using the Lithostar (Siemens device was used as a mode of treatment. Out of all patients, 76 (59% were free of stone particles before 1 month, while 52 (41% had residual stone fragments even 3 months after ESWL. Mg, citrate and pyrophosphate were measured in 24hurine specimens: before, between days 2 and 3, as well as 1 and 3 months after ESWL. The analysis of the results revealed that stone itself had no effect on urinary crystallizing inhibitors. Detected increased urinary levels of Mg, citrate and pyrophosphate after ESWL, compared with pre-treatment values, could be attributed to applied therapeutic procedure.

  13. Process and outcome evaluation of an organizational-level stress management intervention in Switzerland.

    Science.gov (United States)

    Jenny, Gregor J; Brauchli, Rebecca; Inauen, Alice; Füllemann, Désirée; Fridrich, Annemarie; Bauer, Georg F

    2015-09-01

    This field study evaluates the process and outcome of an organizational-level stress management intervention (SMI) in eight companies, taking into account the lessons learned from previous evaluation research. It utilizes the RE-AIM evaluation framework to capture the Reach and Adoption of the intervention in the companies, the appraisal of the Implementation process and the project's Effectiveness and Maintenance with a range of qualitative and quantitative methods. It applies an adapted research design in the context of a field study involving entire organizations, retrospectively assigning study participants to comparison groups. The results of a longitudinal analysis (n = 1400) showed that the SMI had a positive impact on the participants' job demands and resources, when controlled for baseline levels. Qualitative data analysis revealed that the companies had built capacities for ongoing health promotion and showed what issues must be borne in mind when implementing such projects. The study also showed that participation in such interventions alone does not suffice to achieve the desired impact, but that the individual participants' appraisal of the intervention and the collective involvement of the teams must be further researched to fully understand how change occurs. PMID:24395958

  14. Updated level-1 processing after two-years operation of TANSO-FTS

    Science.gov (United States)

    Suto, Hiroshi; Kuze, Akihiko; Shiomi, Kei; Nakajima, Masakatsu

    2011-09-01

    To monitor the global column concentration of carbon dioxide (CO2) and methane (CH4) from space, the Greenhouse gases Observing SATellite (GOSAT) was launched on January 23, 2009, and has started the operational observation. Thermal and Near Infrared Sensor for Carbon Observation- Fourier Transform Spectrometer (TANSO-FTS) has been continuously measuring CO2 and CH4 distributions globally every three days, and data distribution to the public started from Feb. 16, 2010. During two years operational periods, the radiometric, geometric and spectroscopic characterizations of TANSO have been continuously conducted with updating the Level-1 processing algorithm. To make a precise spectroscopic observation, correction algorithms were newly developed, demonstrated and installed on operational processing. Two major corrections are discussed. One is correction of the scan-speed instability caused by microvibration from satellite. Through the on-orbit data analysis, degrading spectroscopic accuracy caused by periodically micro-vibrations was found, and these distortion effects were compensated with applying the re-sampling technique for interferogram. The other is non-linearity correction in the electronics. In this presentation, the detail of on-orbit characteristics and the current status of Level-1procesing for TANSO will be presented.

  15. Low-level radioactive waste disposal technology development through a public process

    International Nuclear Information System (INIS)

    When Pennsylvania's legislature ratified the Appalachian States Low-Level Radioactive Waste Compact in 1985, the Commonwealth of Pennsylvania became the host state designee for the compact's low-level radioactive waste (LLWR) disposal facility. Programs necessary for the establishment of this facility became the responsibility of the Department of Environmental Resources' (DER), Bureau of Radiation Protection's, Division of Nuclear Safety (DNS). It was realized early in the process that the technical aspects of this program, while challenging, probably were not the largest obstacle to completing the facility on schedule. The largest obstacle was likely to be public acceptance. Recognizing this, the DNS set out to develop a program that would maximize public involvement in all aspects of site and facility development. To facilitate public involvement in the process, the DNS established a LLRW advisory committee and a strategy for holding public meetings throughout Pennsylvania. As a result of the significant public involvement generated by these efforts, Pennsylvania passed, in February of 1988, one of the most stringent and technically demanding LLRW disposal laws in the nation. Hopefully, increased public confidence will reduce to a minimum public opposition to the facility

  16. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Ananna; Cho, Yunju [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Yim, Un Hyuk; Shim, Won Joon [Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 656-834 (Korea, Republic of); Kim, Young Hwan [Division of Mass Spectrometry Research and Center for Analytical Research in Disease Sciences, Korea Basic Science Institute, Ochang 863-883 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Sunghwan, E-mail: sunghwank@knu.ac.kr [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Division of Mass Spectrometry Research and Center for Analytical Research in Disease Sciences, Korea Basic Science Institute, Ochang 863-883 (Korea, Republic of)

    2013-12-15

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S{sub 1} class in the saturate fraction and increase of S{sub 1}O{sub 1} class compounds with high DBE values in resin fraction. Levels of N{sub 1} and N{sub 1}O{sub 1} class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques.

  17. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    International Nuclear Information System (INIS)

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S1 class in the saturate fraction and increase of S1O1 class compounds with high DBE values in resin fraction. Levels of N1 and N1O1 class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques

  18. Investigations into the molecular-level adhesion characteristics of hydroxyapatite-coated and anodized titanium surfaces using the molecular orbital approach.

    Science.gov (United States)

    Saju, K K; Jayadas, N H; Vidyanand, S; James, J

    2011-03-01

    It has been established that the adhesion of cells on to the surfaces of orthopaedic implants depends on the ability of the surfaces to accommodate protein molecules. Hydroxyapatite coating and anodizing are the most common methods to make TiAl6V4 implants (Ti) more biocompatible. In this paper Spartan 02, a molecular dynamics software, is used to analyze and predict the bonding characteristics of Extra cellular matrix protein sequence arginine-glycine-aspartic acid (RGD) on a Hyrdoxyapatite (HA) coated Ti and an anodized Ti surface based on the property of its constituent atoms, their polarity (net electrostatic charge, Qr), the energies of the molecular orbital E_HOMO (energy of the highest occupied molecular orbital), and E_LUMO (energy of the lowest unoccupied molecular orbital). The results show favourable criterion for formation of bonding between the HOMO orbital of the HA coated and anodized surfaces and LUMO orbital of the glycine strand from the RGD unit. The mechanism of bonding of individual atoms to form primary calcium oxide compounds is likely only in the case of HA coated surfaces . The surface texture of the anodized Ti with inherent porosities appear more responsible for the adsorption of proteins on to them by mechanical interlocking than the formation of any intermediate calcium oxide compounds. PMID:21485326

  19. Development and application of in vivo molecular traps reveals that dynein light chain occupancy differentially affects dynein-mediated processes

    OpenAIRE

    Varma, Dileep; Dawn, Amrita; Ghosh-Roy, Anindya; Weil, Sarah J.; Ori-McKenney, Kassandra M; Zhao, Yanqiu; Keen, James; Vallee, Richard B.; Williams, John C.

    2010-01-01

    The ability to rapidly and specifically regulate protein activity combined with in vivo functional assays and/or imaging can provide unique insight into underlying molecular processes. Here we describe the application of chemically induced dimerization of FKBP to create nearly instantaneous high-affinity bivalent ligands capable of sequestering cellular targets from their endogenous partners. We demonstrate the specificity and efficacy of these inducible, dimeric “traps” for the dynein light ...

  20. Preparation and characterization of an anionic dye-polycation molecular films by electrostatic Layer-by-Layer adsorption process

    OpenAIRE

    Dey, D.; Hussain, Syed Arshad; Nath, R. K.; Bhattacharjee, D.

    2008-01-01

    This communication reports the formation and characterization of self assembled films of a low molecular weight anionic dye amaranth and polycation Poly (allylamine hydrochloride) (PAH) by electrostatic alternating Layer-by-Layer (LBL) adsorption. It was observed that there was almost no material loss occurred during adsorption process. The UV-Vis absorption and fluorescence spectra of amaranth solution reveal that with the increase in amaranth concentration in solution, the...

  1. Molecular processes in the biodegradation of crude oils and crude oil products in the natural reservoir and in laboratory experiments

    International Nuclear Information System (INIS)

    Two ains were pursued in the present study; first, to find positive indicators of the onset of biodegradation of reservoir oil wherever other parameters fail to give a clear picture; second, to establish a basic understanding of the molecular processes underlying the biodegradation of hydrocarbons and thus create a starting point for finding better criteria for valuating biological restoration methods for crude oil contaminated soils. (orig./HS)

  2. Surface damage correction, and atomic level smoothing of optics by Accelerated Neutral Atom Beam (ANAB) Processing

    Science.gov (United States)

    Walsh, M.; Chau, K.; Kirkpatrick, S.; Svrluga, R.

    2014-10-01

    Surface damage and surface contamination of optics has long been a source of problems for laser, lithography and other industries. Nano-sized surface defects may present significant performance issues in optical materials for deep UV and EUV applications. The effects of nanometer sized surface damage (scratches, pits, and organics) on the surface of optics made of traditional materials and new more exotic materials is a limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, zinc sulfide, BK7 and others presents a unique set of challenges. Exogenesis Corporation, using its proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and contamination and leaves many material surfaces with roughness typically around one angstrom. This process technology has been demonstrated on nonlinear crystals, and various other high-end optical materials. This paper describes the ANAB technology and summarizes smoothing results for various materials that have been processed with ANAB. All surface measurement data for the paper was produced via AFM analysis. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply normal forces associated with traditional polishing techniques. ANAB efficiently removes surface contaminants, nano-scale scratches, bumps and other asperities under low energy physical sputtering conditions as the removal action proceeds. ANAB may be used to remove a precisely controlled, uniform thickness of material without any increase of surface roughness, regardless of the total amount of material removed. The ANAB process does not involve the use of slurries or other polishing compounds and therefore does not require any post process cleaning. ANAB can be integrated as an in-situ surface preparation method for other process steps in the uninterrupted fabrication of optical devices.

  3. Evaluating the ability of process based models to project sea-level change

    International Nuclear Information System (INIS)

    We evaluate the ability of process based models to reproduce observed global mean sea-level change. When the models are forced by changes in natural and anthropogenic radiative forcing of the climate system and anthropogenic changes in land-water storage, the average of the modelled sea-level change for the periods 1900–2010, 1961–2010 and 1990–2010 is about 80%, 85% and 90% of the observed rise. The modelled rate of rise is over 1 mm yr?1 prior to 1950, decreases to less than 0.5 mm yr?1 in the 1960s, and increases to 3 mm yr?1 by 2000. When observed regional climate changes are used to drive a glacier model and an allowance is included for an ongoing adjustment of the ice sheets, the modelled sea-level rise is about 2 mm yr?1 prior to 1950, similar to the observations. The model results encompass the observed rise and the model average is within 20% of the observations, about 10% when the observed ice sheet contributions since 1993 are added, increasing confidence in future projections for the 21st century. The increased rate of rise since 1990 is not part of a natural cycle but a direct response to increased radiative forcing (both anthropogenic and natural), which will continue to grow with ongoing greenhouse gas emissions. (letter)

  4. Technical assessment of processes to enable recycling of low-level contaminated metal waste

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, G.A.

    1991-10-01

    Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

  5. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  6. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-10-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact.

  7. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes

    Directory of Open Access Journals (Sweden)

    L. K. Xue

    2014-08-01

    Full Text Available We analyzed measurements of ozone (O3 and its precursors made at rural/suburban sites downwind of four large Chinese cities – Beijing, Shanghai, Guangzhou and Lanzhou, to elucidate their pollution characteristics, regional transport, in situ production, and impacts of heterogeneous processes. The same measurement techniques and observation-based model were used to minimize uncertainties in comparison of the results due to difference in methodologies. All four cities suffered from serious O3 pollution but showed different precursor distributions. The model-calculated in situ O3 production rates were compared with the observed change rates to infer the relative contributions of on-site photochemistry and transport. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high O3 levels (up to an hourly value of 286 ppbv, while the O3 pollution observed at suburban sites of Shanghai, Guangzhou and Lanzhou was dominated by intense in-situ production. The O3 production was in a VOCs-limited regime in both Shanghai and Guangzhou, and a NOx-controlled regime in Lanzhou. The key VOC precursors are aromatics and alkenes in Shanghai, and aromatics in Guangzhou. The potential impacts on O3 production of several heterogeneous processes, namely, hydrolysis of dinitrogen pentoxide (N2O5, uptake of hydro peroxy radical (HO2 on particles and surface reactions of NO2 forming nitrous acid (HONO, were assessed. The analyses indicate the varying and considerable impacts of these processes in different areas of China depending on the atmospheric abundances of aerosol and NOx, and suggest the urgent need to better understand these processes and represent them in photochemical models.

  8. The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3--an efficient dual-function metal-free promoter for environmentally benign applications.

    Science.gov (United States)

    Khokhlova, Elena A; Kachala, Vadim V; Ananikov, Valentine P

    2012-04-01

    The mechanistic nature of the conversion of carbohydrates to the sustainable platform chemical 5-hydroxymethylfurfural (5-HMF) was revealed at the molecular level. A detailed study of the key sugar units involved in the biomass conversion process has shown that the simple dissolution of fructose in the ionic liquid 1-butyl-3-methylimidazolium chloride significantly changes the anomeric composition and favors the formation of the open fructoketose form. A special NMR approach was developed for the determination of molecular structures and monitoring of chemical reactions directly in ionic liquids. The transformation of glucose to 5-HMF has been followed in situ through the detection of intermediate species. A new environmentally benign, easily available, metal-free promoter with a dual functionality (B(2)O(3)) was developed for carbohydrate conversion to 5-HMF. PMID:22359390

  9. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    Science.gov (United States)

    Livschitz, Yakov; Munro, Rosemary; Lang, Rüdiger; Fiedler, Lars; Dyer, Richard; Eisinger, Michael

    2010-05-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument's health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument's degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  10. Chemical Reaction Equilibrium and Space-Dependent Self-Diffusion for Dimerization Reactions in Carbon-like Slit and Cylindrical Nanopores: Insight from Molecular-Level Simulations.

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; P?edota, Milan; Aim, Karel

    2010, s. 110. ISBN N. [International Conference on Properties and Phase Equilibria for Product and Process Design PPEPPD 2010 /20./. Suzhou (CN), 16.05.2010-21.05.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : molecular simulations * chemical reaction equilibria * nanopores Subject RIV: CF - Physical ; Theoretical Chemistry http://www.ppeppd2010.cn/

  11. Constructing and enhanced degradation rate of N-AZO/TiO2 core/shell nanocomposite by idiopathic molecular cladding process

    Science.gov (United States)

    Deng, Ya-Juan; Wang, Jian-Dong; Liu, Jin-Ku; Tong, Qin; Wang, Jiang-Jie; Yang, Xiao-Hong

    2015-07-01

    The N-AZO/TiO2 heterogeneous nanocomposite with core/shell structure revealed a better photocatalytic activity than the single N-AZO nanocrystals (NCs) even though it has a good photocatalytic effect. The recombination degree of photo-induced electrons and holes reduced significantly after molecular TiO2 layer composited on the surface of N-AZO NCs. From the experiment of degrading rhodamine B solution (2 × 10-5 g/L) under solar light, the optimum photocatalytic efficiency was the N-AZO/TiO2 composite prepared by idiopathic molecule-cladding (IMC) process and the best proportion of Zn/Ti was 2:1 in our research, which improved by 67% than pure N-AZO. Moreover, the N-AZO/TiO2 composite prepared by IMC process achieved a molecular combination level between the two components, which not only can improve the immobility of composite structure, but also can make the photogenerated electrons and holes transport easier.

  12. Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Palomares Laura A

    2011-05-01

    Full Text Available Abstract Background Virus-like particles (VLP have an increasing range of applications including vaccination, drug delivery, diagnostics, gene therapy and nanotechnology. These developments require large quantities of particles that need to be obtained in efficient and economic processes. Production of VLP in yeast is attractive, as it is a low-cost protein producer able to assemble viral structural proteins into VLP. However, to date only single-layered VLP with simple architecture have been produced in this system. In this work, the first steps required for the production of rotavirus-like particles (RLP in S. cerevisiae were implemented and improved, in order to obtain the recombinant protein concentrations required for VLP assembly. Results The genes of the rotavirus structural proteins VP2, VP6 and VP7 were cloned in four Saccharomyces cerevisiae strains using different plasmid and promoter combinations to express one or three proteins in the same cell. Performance of the best constructs was evaluated in batch and fed-batch cultures using a complete synthetic media supplemented with leucine, glutamate and succinate. The strain used had an important effect on recombinant protein concentration, while the type of plasmid, centromeric (YCp or episomal (YEp, did not affect protein yields. Fed-batch culture of the PD.U-267 strain resulted in the highest concentration of rotavirus proteins. Volumetric and specific productivities increased 28.5- and 11-fold, respectively, in comparison with batch cultures. Expression of the three rotavirus proteins was confirmed by immunoblotting and RLP were detected using transmission electron microscopy. Conclusions We present for the first time the use of yeast as a platform to express multilayered rotavirus-like particles. The present study shows that the combined use of molecular and bioprocess tools allowed the production of triple-layered rotavirus RLP. Production of VLP with complex architecture in yeasts could lead to the development of new vaccine candidates with reduced restrictions by regulatory agencies, using the successful experience with other yeast-based VLP vaccines commercialized worldwide.

  13. Social acceptance process model for ensuring the high-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Generally speaking, a vast, advanced and unfamiliar science and technology are unacceptable to the public for fear of their unknown nature. Here, the social acceptance process model was examined on the basis of the analysis of the cause phenomenon and numerical grounds, by referring to the problems on the application of literature documentation for location examination of a high-level radioactive waste disposal site in Toyo town in Kochi Pref. in April 2007. In analyzing the Toyo town case, we have found a possibility that the majority of local residents knew very little about the object opposed by the fringe route processing. To ensure a healthy decision making by the public, it is vital to convey fundamental information using sufficient wide-area PR media before the issue becomes actual. After the issue becomes actual, dialog with residents through a careful technology assessment is indispensable. The authors focus attention on the decision-making process of human beings from the social and psychological viewpoints, and point out that it is desirable for promoting social acceptance by adopting two approaches: a direct approach aiming at better intelligibility for the different resident layers and a deductive approach in technological essence. (author)

  14. Applications of neural networks to real-time data processing at the Environmental and Molecular Sciences Laboratory (EMSL)

    International Nuclear Information System (INIS)

    Detailed design of the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory (PNL) is nearing completion and construction is scheduled to begin later this year. This facility will assist in the environmental restoration and waste management mission at the Hanford Site. This paper identifies several real-time data processing applications within the EMSL where neural networks can potentially be beneficial. These applications include real-time sensor data acquisition and analysis, spectral analysis, process control, theoretical modeling, and data compression

  15. Data for molecular processes in edge plasmas. Summary report of final IAEA research co-ordination meeting

    International Nuclear Information System (INIS)

    Eleven international experts discussed in detail the outcomes of their research at the final Research Coordination Meeting (RCM) on 'Data for molecular processes in edge plasmas' at IAEA Headquarters on 1-2 November 2004. Participants summarized their results obtained in the course of the Coordinated Research Project (CRP), and the impact of the data generated on the modelling and design of fusion devices. Data needs still exist, and the specialists hoped that further research on these processes will be supported in the future. The discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  16. VBFNLO: A parton level Monte Carlo for processes with electroweak bosons

    Science.gov (United States)

    Arnold, K.; Bähr, M.; Bozzi, G.; Campanario, F.; Englert, C.; Figy, T.; Greiner, N.; Hackstein, C.; Hankele, V.; Jäger, B.; Klämke, G.; Kubocz, M.; Oleari, C.; Plätzer, S.; Prestel, S.; Worek, M.; Zeppenfeld, D.

    2009-09-01

    VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order in the strong coupling constant. VBFNLO includes Higgs and vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading-order one-loop level with the full top- and bottom-quark mass dependence in a generic two-Higgs-doublet model. A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order. Program summaryProgram title:VBFNLO Catalogue identifier: AEDO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL version 2 No. of lines in distributed program, including test data, etc.: 339 218 No. of bytes in distributed program, including test data, etc.: 2 620 847 Distribution format: tar.gz Programming language: Fortran, parts in C++ Computer: All Operating system: Linux, should also work on other systems Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord PDF Interface library and the GNU Scientific library Nature of problem: To resolve the large scale dependence inherent in leading order calculations and to quantify the cross section error induced by uncertainties in the determination of parton distribution functions, it is necessary to include NLO corrections. Moreover, whenever stringent cuts are required on decay products and/or identified jets the question arises whether the scale dependence and a k-factor, defined as the ratio of NLO to LO cross section, determined for the inclusive production cross sections are valid for the search region one is interested in. Solution method: The problem is best addressed by implementing the one-loop QCD corrections in a fully flexible NLO parton-level Monte Carlo program, where arbitrary cuts can be specified as well as various scale choices. In addition, any currently available parton distribution function set can be used through the LHAPDF library. Running time: Depending on the process studied. Usually from minutes to hours.

  17. Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model

    OpenAIRE

    Emmanouil Apostolidis; Young-Cheul Kim; Chen-Gum Oh; Jong-Gwan Kim; Kyoung-Sik Moon; Kyoung-Soo Ha; Sung-Hoon Jo; Young-In Kwon

    2013-01-01

    This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal ?-glucosidase and porcine pancreatic ?-amylase (GO2KA1; 10,000 Da). The in vitro results showed that all tested samples had similar rat ?-glucosidase inhibitory and porcine ?-amylase inhibitory activity. Based on these obs...

  18. Operational retrieval algorithms for JEM/SMILES level 2 data processing system

    International Nuclear Information System (INIS)

    To measure the thermal emission from stratospheric minor species with high sensitivity, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS) carries 4 K cooled Superconductor-Insulator-Superconductor (SIS) mixers. The major feature of the SMILES is its high-sensitive measurement ability with low system noise temperature less than 700 K. As a part of the ground system for the SMILES, a level 2 data processing system (DPS-L2) has been developed. It retrieves the density distributions of the target species from calibrated spectra in near-real-time. The retrieval process consists of two parts: the forward model, which computes radiative transfer, and the inverse model, which deduces atmospheric states. Since the forward model must provide the most accurate basis for results and be implemented under limited computing resources, the forward model algorithm for an operational system has to be accurate and fast. Hence, the algorithm is improved (1) by designing accurate instrument functions such as the instrumental field of view (FOV), sideband rejection ratio of sideband separator, and spectral responses of acousto-optic spectrometer (AOS) and (2) by optimizing radiative transfer calculation. This paper presents the development of the DPS-L2 along with the details on its algorithm and the algorithm performance. The accuracy of this algorithm is better than 1%, and the processing time for single-scan spectra is less than 1 min with eight parallel processings using a 3.16-GHz Quad-Core Intel Xeon processor. Thus, this algorithm is suitable for the SMILES measurement.

  19. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    International Nuclear Information System (INIS)

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch

  20. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.

    Science.gov (United States)

    Koch, K; Barthlott, W; Koch, S; Hommes, A; Wandelt, K; Mamdouh, W; De-Feyter, S; Broekmann, P

    2006-01-01

    In order to elucidate the self assembly process of plant epicuticular waxes, and the molecular arrangement within the crystals, re-crystallisation of wax platelets was studied on biological and non-biological surfaces. Wax platelets were extracted from the leaf blades of wheat (Triticum aestivum L., c.v. 'Naturastar', Poaceae). Waxes were analysed by gas chromatography (GC) and mass spectrometry (MS). Octacosan-1-ol was found to be the most abundant chemical component of the wax mixture (66 m%) and also the determining compound for the shape of the wax platelets. The electron diffraction pattern showed that both the wax mixture and pure octacosan-1-ol are crystalline. The re-crystallisation of the natural wax mixture and the pure octacosan-1-ol were studied by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystallisation of wheat waxes and pure octacosano-1-ol on the non polar highly ordered pyrolytic graphite (HOPG) led to the formation of platelet structures similar to those found on the plant surface. In contrast, irregular wax morphologies and flat lying plates were formed on glass, silicon, salt crystals (NaCl) and mica surfaces. Movement of wheat wax through isolated Convallaria majalis cuticles led to typical wax platelets of wheat, arranged in the complex patterns typical for C. majalis. STM of pure octacosan-1-ol monolayers on HOPG showed that the arrangement of the molecules strictly followed the hexagonal structure of the substrate crystal. Re-crystallisation of wheat waxes on non-polar crystalline HOPG substrate showed that technical surfaces could be used to generate microstructured, biomimetic surfaces. AFM and SEM studies proved that a template effect of the substrate determined the orientation of the re-grown crystals. These effects of the structure and polarity of the substrate on the morphology of the epicuticular waxes are relevant for understanding interactions between biological as well as technical surfaces and waxes. PMID:16133211

  1. Novel additives in radiation polymerisation processes. Significance of molecular weight data in their application to grafting, curing and composite formation

    International Nuclear Information System (INIS)

    The role of additives in accelerating rates of reaction has been investigated in the following related radiation polymerisation processes, i.e simple homopolymerisation, grafting, WPC formation and curing. Additives used include mineral acid, polyfunctional monomers, urea and thermal and photochemical initiators. Molecular weight analysis carried out on the polymers formed in the presence of the additives indicate that both chemical and physical processes are involved in the mechanism of the polymerisation reaction. Chemical processes (free radicals) lead to an enhancement in initial rate of polymerisation whilst the physical parameter involves partitioning of reagents during reaction. Both chemical and physical processes are shown to act in concert to influence both polymer yield and properties

  2. Tri butyl phosphate process for actinide partitioning from high level wastes

    International Nuclear Information System (INIS)

    Partitioning of actinides from High Level Wastes (HLW) arising from fuel reprocessing plants prior to their immobilisation in vitreous matrices would reduce the long term hazards of the vitreous waste product. Actinide partitioning studies based on solvent extraction were carried out on simulated HLW solutions using tri-n-butyl phosphate (TBP) as an extractant. Study on extraction of americium was taken up as an example in this case. Extraction of americium from HLW by TBP requires low acidity and presence of salting out agents. It was shown that americium can be effectively partitioned even from HLW solutions with high acidity using higher concentrations of TBP, higher organic to aqueous phase ratios and proper salting out agents. Counter-current experiments using mixer-settlers were conducted to assess the process feasibility. (author). 16 refs., 8 figs., 7 tabs

  3. Prediction of the safety level in a tritium processing facility through predictive maintenance

    International Nuclear Information System (INIS)

    Full text: The safety level of a nuclear facility for personnel and environment depends generally on the technological process quality of operation and maintenance and particularly on several technical, technological, economic, and human factors. The role of maintenance is fundamental because it is determined by all the technical, economic and human elements as parts of an integrated system dominated by an important feedback from upstream activities which eventually define the life cycle of the nuclear facility considered. In the maintenance activity as in case of any dynamic area, new elements may appear which, sometimes, require new methods of approach. For considered installation which is a Nuclear Detritiation Plant (NDP) operating as a division of the National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI, Rm.Valcea, in order to ensure a safety level in operation as high as possible through predictive maintenance, the fuzzy theory and software LabVIEW were applied. The final aim is to achieve the best practices in maintenance of the tritium processing plant. The safety in operation of the NDP equipment and installations is directly related with the maintenance achieved by improving the reliability through methods and advanced techniques. The maintainability is the capacity of an industrial product, in given utilization conditions, to be maintained and re-established up to achieve specified functions. In general the reliability on some interval is a probability conditioned by good operation at the beginning of the interval, representing thus the probability as the element which operated at t = t0 to operate in the interval (t0, t1). The failure is a fundamental event in the reliability theory. Breakdown (failure) is understood as the stop process of the function required from a given product, the failure representing the effect upon that process. The operation of a product on a certain duration can be a 'success' or a 'failure' and it is analyzed in order to assess the solutions and the measures applied to an equipment. Through fuzzyfication the degrees of membership for a variable (v) results. Then through inference the degrees of membership for variable(s) result. Through defuzzyfication the value of the exit variable calculated with the gravity centre of the maxima is obtained. Finally, through the quantification of the obtained result a level of reliability is established which substantiates the safety of operating the compressor considered. For modelling and the simulation of the method the graphic programming with software LabVIEW produced by National Instruments is utilized . By using the method developed, with a LabVIEW software support and an adequate hardware, the required level of reliability of the considered plant is achieved. Finally a dynamical quality is ensured in close relation with the evolution of the monitoring variables giving a continuous diagnosis through vibrations for the behavior of the equipment considered. (author)

  4. Behavioral inhibition and anxiety disorders: multiple levels of a resilience process.

    Science.gov (United States)

    Degnan, Kathryn Amey; Fox, Nathan A

    2007-01-01

    Behavioral inhibition is reported to be one of the most stable temperamental characteristics in childhood. However, there is also evidence for discontinuity of this trait, with infants and toddlers who were extremely inhibited displaying less withdrawn social behavior as school-age children or adolescents. There are many possible explanations for the discontinuity in this temperament over time. They include the development of adaptive attention and regulatory skills, the influence of particular styles of parenting or caregiving contexts, and individual characteristics of the child such as their level of approach-withdrawal motivation or their gender. These discontinuous trajectories of behaviorally inhibited children and the factors that form them are discussed as examples of the resilience process. PMID:17705900

  5. Post-processing V&V level II ASC milestone (2360) results.

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Elmer; Karelitz, David B.; Brunner, Thomas A.; Trucano, Timothy Guy; Moreland, Kenneth D.; Weirs, V. Gregory; Shead, Timothy M.

    2007-09-01

    The 9/30/2007 ASC Level 2 Post-Processing V&V Milestone (Milestone 2360) contains functionality required by the user community for certain verification and validation tasks. These capabilities include loading of edge and face data on an Exodus mesh, run-time computation of an exact solution to a verification problem, delivery of results data from the server to the client, computation of an integral-based error metric, simultaneous loading of simulation and test data, and comparison of that data using visual and quantitative methods. The capabilities were tested extensively by performing a typical ALEGRA HEDP verification task. In addition, a number of stretch criteria were met including completion of a verification task on a 13 million element mesh.

  6. The development of a 'large liner' for the processing and solidification of intermediate level wastes

    International Nuclear Information System (INIS)

    Magnox Electric have developed a ''Large Liner'' for the processing and solidification of the majority of the slurry from intermediate level wastes which arise on its power station sites (operational or undergoing decommissioning). The Liner comprises a cylindrical vessel of approximate dimensions 1.7 m diameter by 1.2 m high and it has been developed to comply with the requirements of the current Nirex Package Specifications. It is manufactured from stainless steel, being of all welded construction, with a bolted lid, incorporating an ''O'' ring elastomer seal. The Liner can be fitted with a paddle for the ''in drum'' solidification of slurry form wastes. This paper describes the development of the Liner, outlining the main stages from initial concepts to the final testing and receipt of approval from Nirex, who have adopted the Liner as one of its ''Standard'' waste containers. (Author)

  7. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  8. Roles of Upper-Level Processes in the Multi-Intensity Changes of Hurricane Sandy (2012)

    Science.gov (United States)

    Shin, J. H.; Zhang, D. L.

    2014-12-01

    The multi-intensity changes of Hurricane Sandy (2012) are examined by using a cloud resolving WRF model. An analysis of Sandy's life cycle shows four distinct stages: (1) rapid deepening, (2) weakening, (3) deepening with little intensification of rotational wind, and (4) re-intensification of vortex winds. Results from the model simulations indicate that Sandy's multi-intensity changes are closely related to (i) changes in the magnitude and direction of environmental vertical wind shear (VWS), (ii) upper-tropospheric warming associated with deep convection in the core region, (iii) lower-stratospheric warmth as the storm moves poleward into lower-tropopause regions, and (iv) the possible roles of inertial instability in the upper outflow regions as approaching a upper-level trough/jet stream. Specifically, Sandy intensifies steadily since October 24 as it moves over warm SST surface from Caribbean Sea to Cuba Island. After the storm passes Cuba Island, its warm core begins to tilt under the influence of increasing VWS as it approaches to an upper-level subtropical jet stream, leading to the weakening of the storm. After October 27, Sandy deepens as it moves far away from the upper-level jet core VWS, though over a colder SST surface. By hydrostatic reasoning, we find that during the 3rd stage Sandy's deepening results partly from the stacked upper-level warming in the core region but more from low stratospheric warmth as it moves to higher latitudes with lower tropopause height. Unlike the former scenario, this stratospheric warmth occurs over a meso-alpha-scale region encompassing the storm, thus causing widespread surface pressure falls. This explains why the rotational wind of Sandy shows little intensity changes while its central pressure keeps falling. During the final stage, organized deep convection in the core region increases upper-level tropospheric warming, leading to both the deepening of central pressure and re-intensification of rotational winds. It appears that the presence of inertial instability in the upper outflow channel may play some roles in the intensification of the storm. It is concluded that the intensity changes of Sandy are not only influenced by the tropospheric processes but also by the lower-stratospheric warmth, especially after moving into the mid-latitudes.

  9. Ion-atom cold collision: Formation of cold molecular ion by radiative processes

    OpenAIRE

    Rakshit, Arpita; Deb, Bimalendu

    2010-01-01

    We discuss theoretically ion-atom collisions at low energy and predict the possibility of formation of cold molecular ion by photoassociation. We present results on radiative homo- and hetero-nuclear atom-ion cold collisions that reveal threshold behaviour of atom-ion systems.

  10. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Science.gov (United States)

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  11. Evaluation of operating experience for low-level nuclear waste processing. Glass Furnace Project final report

    International Nuclear Information System (INIS)

    In October 1980, at the request of the Low-Level Waste Management Program Branch Office of the Department of Energy, Mound began a study to determine the feasibility of using a joule-heated glass furnace for treatment of low-level radioactive wastes generated at commercial nuclear power facilities. Consideration of the joule-heated glass melter for treatment of power plant waste was based on major advantages of the device. Despite these apparent advantages, however, the ability of the system to handle waste treatment remained unproven. This study centered on the major waste processing concerns of the nuclear industry and the feasibility of using the glass melter to fulfill these needs. Specific questions addressed in the study included: (1) Could the furnace provide adequate combustion quality. (2) Could the furnace glass capture and immobilize radioactivity. (3) What effect would the loading of glass with waste components, oxidative conditions in the chamber, and high chamber air and combustion by-produce gas throughput have on furnace life. (4) Joule-heated glass melter operation and waste vitrification are both considered high-cost operations. Can use of the glass melter for radwaste treatment be economically justified. This paper presents the final results of this evaluation with conclusions and recommendations for practical use of such a system

  12. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling

    Science.gov (United States)

    Nourani, Vahid; Alami, Mohammad Taghi; Vousoughi, Farnaz Daneshvar

    2015-05-01

    Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, a Self-Organizing-Map (SOM)-based clustering technique was used to identify spatially homogeneous clusters of groundwater level (GWL) data for a feed-forward neural network (FFNN) to model one and multi-step-ahead GWLs. The wavelet transform (WT) was also used to extract dynamic and multi-scale features of the non-stationary GWL, runoff and rainfall time series. The performance of the FFNN model was compared to the newly proposed combined WT-FFNN model and also the conventional linear forecasting method of ARIMAX (Auto Regressive Integrated Moving Average with exogenous input). GWL predictions were investigated under three different scenarios. The results indicated that the proposed FFNN model coupled with the SOM-based clustering method decreased the dimensionality of the input variables and consequently the complexity of the FFNN models. On the other hand, the application of the wavelet transform to GWL data increased the performance of the FFNN model up to 15.3% in average by revealing the dominant periods of the process.

  13. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    International Nuclear Information System (INIS)

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm2 in 6061-T6 aluminum samples and 5000 pulses/cm2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products

  14. National Parliaments as New Actors in the Decision-making Process at the European Level

    Directory of Open Access Journals (Sweden)

    Viera Knutelská

    2011-09-01

    Full Text Available National parliaments have two basic ways of influencing the outcomes of the European decision-making process. First, they influence national input legitimacy at the national level on European issues through influencing and controlling their respective national governments. Second, they influence national input legitimacy at the European level on European issues through directly entering into the European decision-making and interacting with the European institutions participating in it. To be able to make use of this second possibility, national parliaments have to devise instruments of cooperation and coordination and learn to use them effectively. The first steps have already been made: national parliaments exchange information on their scrutiny of European legislation and other activities through their permanent representatives in Brussels, the IPEX database and other channels. This article examines the cooperation, or, at least, information exchange among national parliaments on a number of legislative proposals - those chosen for coordinated tests of subsidiarity by national parliaments themselves, those most voted on in the Council of the European Union (EU and those subjected to three readings in the co-decision procedure - discussed between May 2004 and the entry into force of the Lisbon Treaty. It shows that national parliaments face difficulties caused by the high costs of such cooperation, including the need for flexibility and speed of their own decision-making, as well as administrative costs, whilst they increasingly use the cooperation channels available to them.

  15. Lagrangian analysis of low level anthropogenic plume processing across the North Atlantic

    Directory of Open Access Journals (Sweden)

    E. Real

    2008-04-01

    Full Text Available The photochemical evolution of an anthropogenic plume from the New-York/Boston region during its transport at low altitudes over the North Atlantic to the European west coast has been studied using a Lagrangian framework. This plume, originally strongly polluted, was sampled by research aircraft just off the North American east coast on 3 successive days, and 3 days downwind off the west coast of Ireland where another aircraft re-sampled a weakly polluted plume. Changes in trace gas concentrations during transport were reproduced using a photochemical trajectory model including deposition and mixing effects.

    Chemical and wet deposition processing dominated the evolution of all pollutants in the plume. The mean net O3 production was evaluated to be -5 ppbv/day leading to low values of O3 by the time the plume reached Europe. Wet deposition of nitric acid was responsible for an 80% reduction in this O3 production. If the plume had not encountered precipitation, it would have reached the Europe with O3 levels up to 80-90 ppbv, and CO levels between 120 and 140 ppbv. Photochemical destruction also played a more important role than mixing in the evolution of plume CO due to high levels of both O3 and water vapour showing that CO cannot always be used as a tracer for polluted air masses, especially for plumes transported at low altitudes. The results also show that, in this case, an important increase in the O3/CO slope can be attributed to chemical destruction of CO and not to photochemical O3 production as is often assumed.

  16. Integrated process analysis of treatment systems for mixed low level waste

    International Nuclear Information System (INIS)

    Selection of technologies to be developed for treatment of DOE's mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements

  17. Plasma Hearth Process vitrification of DOE low-level mixed waste

    International Nuclear Information System (INIS)

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is recognized as one of the more promising solutions to DOE's mixed waste treatment needs, with potential application in the treatment of a wide variety of DOE mixed wastes. The PHP is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. This technology will be equally applicable to low-level mixed wastes generated by nuclear utilities. The final waste form will be volume reduced to the maximum extent practical, because all organics will have been destroyed and the inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. This project is structured to ensure that the plasma technology can be successfully employed in radioactive service. The PHP technology will be developed into a production system through a sequence of tests on several test units, both non-radioactive and radioactive. As the final step, a prototype PHP system will be constructed for full-scale radioactive waste treatment demonstration

  18. Natural Language Processing Technologies for Multi-Level Intelligent Spam Mail-Filter

    Directory of Open Access Journals (Sweden)

    Haiyan

    2014-04-01

    Full Text Available To overcome the lack of existing mail filtering system, we designed a content-based message filtering system of multi-level intelligence. Using natural language processing technology, it denotes the E-mail content including attachments. First, it pre-processes the content of E-mail, including segmentation, feature extraction. Second, combining knowledge-base and expansion of the feature, it can form the vector. Corresponding categories vector in the database, two vectors similar degree of calculation determines the credibility of the message. Based on the above theory, with the Java EE 6+SQL Server 2005 platform, a mail filtering system is achieved. It can maximize the elimination of spam. The major features are following: 1 black /white list filtering. It can intercept white list blacklist e-mail messages released. 2 reverse DNS testing. it can effectively eliminate the anonymous e-mail attacks. 3 content-based message filtering. An accurate analysis of mail content can filter out suspicious messages. 4 fingerprint recognition. It can mimic the biological concept of fingerprint identification to complete the identification of spam. 5 user-personalized filtering. The user independently designed filter program. 6 intent detection. It can detect the content URL connection in email. Experiment shows mail filter system can play a very good effect on spam filters.

  19. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  20. Comparison of deep level spectra in p-type and n-type GaN grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, A.; Ringel, S.A. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States); Poblenz, C.; Mishra, U.K.; Speck, J.S. [Department of Materials and Electrical and Computer Engineering, University of California, Santa Barbara, CA 93016 (United States)

    2007-06-15

    Deep levels in n-type GaN:Si and p-type GaN:Mg grown by molecular beam epitaxy were compared using deep level optical spectrscopy (DLOS). For n-GaN, the major bandgap states were observed to lie within 1 eV of the valence band edge. For the p-type film, hole photoemission from deep levels at near the conduction band edge and electron photoemission from a deep level near the valence band edge were resolved. Overall, the p-GaN filmed incorporated nearly ten times greater deep level concentration. Bandgap states attributed to residual carbon impurities with large concentration were found near the minority band edge in both films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)