WorldWideScience

Sample records for malate synthase activity

  1. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH-, O2, and H2O2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D37=0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D37=6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  2. Cloning and sequencing of the malate synthase gene from Hansenula polymorpha.

    Science.gov (United States)

    Bruinenberg, P G; Blaauw, M; Kazemier, B; Ab, G

    1990-01-01

    We have cloned the MAS gene, encoding the microbody matrix enzyme malate synthase (EC 4.1.3.2.) from the methylotrophic yeast Hansenula polymorpha. The gene was isolated by screening of a genomic library with a mixed-sequence probe, based on the partial amino acid sequence of the purified enzyme. The nucleotide sequence of a 2.4-kilobase stretch of DNA covering the MAS gene was determined. The gene contains an open reading frame of 555 amino acids, amounting to a calculated molecular mass of 63,254 for the encoded protein. Comparison of the amino acid sequence with the malate synthase sequences of Escherichia coli, Brassica napus L. and Cucumis sativus L. clearly establishes the homology of all four proteins. Compared to the soluble enzyme from E. coli, the malate synthases from H. polymorpha and both plant species, which are located in the microbodies, have a short carboxy-terminal extension. In the plant malate synthases, the extension is probably involved in routing to the microbodies, since it contains the potential peroxisomal targeting signal, Ser-Arg/Lys-Leu, at the carboxy terminus. The H. polymorpha enzyme terminates with similar amino acids, but their sequence, Ser-Leu-Lys, does not conform to any of the known peroxisomal targeting signals. PMID:2349836

  3. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae.

    OpenAIRE

    Hartig, A; Simon, M M; Schuster, T.; Daugherty, J R; Yoo, H S; Cooper, T G

    1992-01-01

    We have isolated a second gene (MLS1), which in addition to DAL7, encodes malate synthase from S. cerevisiae. Expression of the two genes is specific for their physiological roles in carbon and nitrogen metabolism. Expression of MLS1, which participates in the utilization of non-fermentable carbon sources, is sensitive to carbon catabolite repression, but nearly insensitive to nitrogen catabolite repression. DAL7, which participates in catabolism of the nitrogenous compound allantoin, is inse...

  4. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  5. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Directory of Open Access Journals (Sweden)

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  6. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.; Wallace, Bret D.; Paige, Carleitta; Hamilton, Chris J.; Dos Santos, Patricia C.; Redinbo, Matthew R.; Reid, Sean D.; Claiborne, Al (Wake Forest); (UNC); (East Anglia); (UCSD)

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.

  7. Malate synthase: proof of a stepwise Claisen condensation using the double-isotope fractionation test

    International Nuclear Information System (INIS)

    Although aldolase-catalyzed condensations proceed by stepwise mechanisms via the intermediacy of nucleophilic enol(ate)s or enamines, the mechanisms of those enzymes that catalyze Claisen-type condensations are unclear. The reaction pathway followed by an enzyme from this second group, malate synthase, has been studied by the double-isotope fractionation method to determine whether the reaction is stepwise or concerted. In agreement with earlier work, a deuterium kinetic isotope effect /sup D/(V/K) of 1.3 +/- 0.1 has been found when [2H3]acetyl-CoA is the substrate. The 13C isotope effect at the aldehydic carbon of glyoxylate has also been measured. For this determination, the malate product was quantitatively transformed into a new sample of malate having the carbon of interest at C-4. This material was decarboxylated by malic enzyme to produce the appropriate CO2 for isotope ratio mass spectrometric analysis. The 13C isotope effect with [1H3]acetyl-CoA is 1.0037 +/- 0.0004. By use of the known values of the intermolecular and intramolecular deuterium effects and of 13(V/K)/sub H/, the value of the 13C isotope effect when deuteriated [2H3]acetyl-CoA is the substrate can be predicted for three possible mechanisms. The results show clearly that the two salient characteristics of enzymes that catalyze Claisen-like condensations, namely, the absence of enzyme-catalyzed proton exchange with solvent and the inversion of the configuration at the nucleophilic center, which had been suggestive of a concerted pathway, are not mechanistically diagnostic

  8. MALATE DEHYDROGENASE ACTIVITY POST EXPOSURE RECOVERY FROM LEAD INTOXICATED FRESHWATER FISH ANABAS TESTUDINEUS

    OpenAIRE

    Afsar Shaikh

    2012-01-01

    Malate dehydrogenase activity are important amongst the several enzymes available in the cells, Carbohydrates play an important role in the cellular process  Under extreme stress conditions, carbohydrate enzyme such as Malate dehydrogenase  have been known to act as the energy supplier in metabolic pathways and biochemical reactions. In the present investigation fish  treated with an equitoxic dose of 10 ppm of lead nitrate and lead acetate intoxicated fish After a period of 15 days of exp...

  9. Closing Plant Stomata Requires a Homolog of an Aluminum-Activated Malate Transporter

    OpenAIRE

    Sasaki, Takayuki; Mori, Izumi C.; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-01-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by AB...

  10. Effects of Al(III and Nano-Al13 Species on Malate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Rong Fu Chen

    2011-05-01

    Full Text Available The effects of different aluminum species on malate dehydrogenase (MDH activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT modified glass carbon electrode (GCE. The results showed that Al(III and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III and Al13 concentration increase. Our study also found that the effects of Al(III and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  11. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) activated root malate and citrate exudation plays an important role in Al tolerance in many plant species. Here, we report on the identification and characterization of AtMATE, a homolog of the recently discovered sorghum and barley Al tolerance genes, here shown to encode an Al-activ...

  12. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    Science.gov (United States)

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure. PMID:20154005

  13. Activities and regulation of peptidoglycan synthases.

    Science.gov (United States)

    Egan, Alexander J F; Biboy, Jacob; Van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-10-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN. PMID:26370943

  14. Enhanced Photosynthetic Performance and Growth as a Consequence of Decreasing Mitochondrial Malate Dehydrogenase Activity in Transgenic Tomato Plants1

    Science.gov (United States)

    Nunes-Nesi, Adriano; Carrari, Fernando; Lytovchenko, Anna; Smith, Anna M.O.; Ehlers Loureiro, Marcelo; Ratcliffe, R. George; Sweetlove, Lee J.; Fernie, Alisdair R.

    2005-01-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the mitochondrial malate dehydrogenase gene in the antisense orientation and exhibiting reduced activity of this isoform of malate dehydrogenase show enhanced photosynthetic activity and aerial growth under atmospheric conditions (360 ppm CO2). In comparison to wild-type plants, carbon dioxide assimilation rates and total plant dry matter were up to 11% and 19% enhanced in the transgenics, when assessed on a whole-plant basis. Accumulation of carbohydrates and redox-related compounds such as ascorbate was also markedly elevated in the transgenics. Also increased in the transgenic plants was the capacity to use l-galactono-lactone, the terminal precursor of ascorbate biosynthesis, as a respiratory substrate. Experiments in which ascorbate was fed to isolated leaf discs also resulted in increased rates of photosynthesis providing strong indication for an ascorbate-mediated link between the energy-generating processes of respiration and photosynthesis. This report thus shows that the repression of this mitochondrially localized enzyme improves both carbon assimilation and aerial growth in a crop species. PMID:15665243

  15. Fluorescent Assays for Ceramide Synthase Activity.

    Science.gov (United States)

    Couttas, Timothy A; Don, Anthony S

    2016-01-01

    Ceramides are the central lipid metabolite of the sphingolipid family, and exert a potent influence over cell polarity, differentiation, and survival through their biophysical properties and their specific interactions with cell signaling proteins. Literature on the importance of ceramides in physiology and pathological conditions continues to grow, with ceramides having been identified as central effectors in major human pathologies such as diabetes and neurodegenerative conditions. In mammals, ceramide synthesis from a sphingoid base and a variable length fatty acid is catalyzed by a family of six ceramide synthases (CERS1-6), whose active sites exhibit differential specificity for different length fatty acids. CERS activity has traditionally been measured using radioactive substrates. More recently mass spectrometry has been used. In this chapter, we describe a fluorescent CERS assay, the results of which can be quantified using thin-layer chromatography (TLC) or high-performance liquid chromatography (HPLC). Methods for quantification with either TLC or HPLC are described. PMID:26552672

  16. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Science.gov (United States)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  17. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    OpenAIRE

    Yuan, Guang-Jin; Zhou, Xiao-Rong; Gong, Zuo-Jiong; ZHANG, PIN; Sun, Xiao-Mei; Zheng, Shi-Hua

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-?B (NF-?B) and tumor necrosis factor-? (TNF-?) expression in the liver.

  18. Disruption of Mitochondrial Malate-Aspartate Shuttle Activity in Mouse Blastocysts Impairs Viability and Fetal Growth1

    OpenAIRE

    Mitchell, Megan; Cashman, Kara S.; Gardner, David K; Thompson, Jeremy G.; Lane, Michelle

    2009-01-01

    The nutrient requirements and metabolic pathways used by the developing embryo transition from predominantly pyruvate during early cleavage stages to glucose at the blastocyst; however, the complexities involved in the regulation of metabolism at different developmental stages are not clear. The aims of this study were to examine the role of the malate-aspartate shuttle (MAS) in nutrient metabolism pathways in the developing mouse blastocyst and the consequences of impaired metabolism on embr...

  19. Changes in lactate dehydrogenase and malate dehydrogenase activities during hypoxia and after temperature acclimation in the armored fish, Rhinelepis strigosa (Siluriformes, Loricariidae

    Directory of Open Access Journals (Sweden)

    PANEPUCCI L.

    2000-01-01

    Full Text Available Lactate (LDH and malate dehydrogenase (MDH of white skeletal muscle of fishes acclimated to 20, 25 and 30°C and thereafter submitted to hypoxia were studied in different substrate concentrations. Significant differences for LDH and MDH of white muscle enzyme activities are described here for the first time in Rhinelepis strigosa of fishes acclimated to 20°C and submitted to hypoxia for six hours. LDH presented a significant decrease in enzyme affinity for pyruvate in acute hypoxia, for fishes acclimated to 20°C and an increase for fishes acclimated to 30°C.

  20. trans activation of the thymidylate synthase promoter of herpesvirus saimiri.

    OpenAIRE

    Lang, G; Fleckenstein, B.

    1990-01-01

    Herpesvirus saimiri has been shown to possess a thymidylate synthase (TS) gene that is unusual in its transcriptional regulation. Although TS is believed to be required for viral DNA synthesis, the TS-specific 2.5-kb mRNA was found most abundantly during the late phases of asynchronous virus replication in permissive cultures. To study the kinetics of gene activation, the TS promoter and regulatory sequences were cloned upstream of the chloramphenicol acetyltransferase (CAT) gene. No CAT expr...

  1. Modulation of nitric oxide synthase activity in macrophages

    OpenAIRE

    Jorens, P.G.; K. E. Matthys; Bult, H

    1995-01-01

    L-Arginine is converted to the highly reactive and unstable nitric oxide (NO) and L-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO2-) and nitrate (NO2-), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO?). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and...

  2. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis.

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant iNOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age and sex showed no such changes. Our data support the hypothesis that NO is a pathogenic factor in MS, and that NOS IR is strongly expressed in brain regions appearing normal by MRI

  3. Development Of New Visible Spectrophotometric Methods For Quantitative Determination Of Almotriptan Malate As An Active Pharmaceutical Ingredient In Formulations

    Directory of Open Access Journals (Sweden)

    U. Viplava Prasad

    2012-06-01

    Full Text Available Purpose: The aim of the investigation was to see the simple and sensitive visible spectrophotometric methods for the determination of the almotriptan malate in bulk and tablet dosage forms. Methods: Two simple, sensitive and cost effective visible spectrophotometric methods (M1-M2 were developed for the estimation of almotriptan malate in bulk and dosage forms. The first method (M1 is based on the formation of blue reduced product by treating drug with Folin Ciocalteu (FC reagent in the presence of sodium carbonate solution with an absorption maximum of 770nm. The second method (M2 is based on the complex formation product by drug with 1, 10-phenanthroline in the presence of Fe (III as an oxidant in phosphoric acid medium with an absorption maximum of 510nm. Results: Beer’s law obeyed in the concentration range of 4-12?g/ml and 1-5 ?g/ml for methodM1 and M2 respectively. No interference was observed from the usually existing additives in pharmaceutical formulations and the applicability of the methods was examined by analyzing AXERT tablets containing AM. Conclusion: The reported methods for its assay involve sophisticated equipment, which are very costly and pose problems of maintenance. To overcome these problems, the use of visible spectrophotometric technique is justifiable. The statistical data proved the accuracy, reproducibility and the precision of the proposed methods.

  4. Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, Race B.

    Science.gov (United States)

    Okada, Shigeru; Devarenne, Timothy P; Murakami, Masahiro; Abe, Hiroki; Chappell, Joseph

    2004-02-01

    The extracellular matrix of the alga Botryococcus braunii, Race B, consists mainly of botryococcenes, which have potential as a hydrocarbon fuel. Botryococcenes are structurally similar to squalene raising the possibility of a common enzyme for the biosynthesis of both. While B. braunii squalene synthase (SS) enzyme activity has been documented, botryococcene synthase (BS) enzyme activity has not been. In the current study, an assay for BS activity has been developed and used to show that many of the assay conditions for BS enzyme activity are similar to those of SS. However, SS enzyme activity is stimulated by Tween 80 while BS enzyme activity is inhibited. Moreover, BS enzyme activity was correlated with the accumulation of botryococcenes during a B. braunii culture growth cycle, which was distinctly different from the profile of SS enzyme activity. While the current results indicate a conservation of enzymological features amongst the BS and SS enzymes, raising the possibility of one enzyme capable of catalyzing both activities, they are also consistent with these two activities arising from separate and distinct enzymes. PMID:14725863

  5. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle.

    OpenAIRE

    Kida, Y; Esposito-Del Puente, A; Bogardus, C; Mott, D M

    1990-01-01

    Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatas...

  6. Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo

    DEFF Research Database (Denmark)

    Volke, V; Wegener, Gregers; Vasar, E; Rosenberg, R

    1999-01-01

    The aim of the present study was to investigate the effect of methylene blue, a guanylate cyclase inhibitor, on the hippocampal nitric oxide synthase activity in vivo. We used a microdialysis-based technique of measuring conversion of [3H]l-arginine to [3H]l-citrulline in freely moving rats. The administration of methylene blue (0.1 and 1 mM) via the microdialysis probe caused a dose-dependent decrease in [3H]l-citrulline efflux comparable with the effect of unselective NOS inhibitor NG-nitro-L-...

  7. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate

    Energy Technology Data Exchange (ETDEWEB)

    Gavva, S.R.; Harris, B.G.; Cook, P.F. (Texas Coll. of Osteopathic Medicine, Fort Worth (United States)); Weiss, P.M. (Univ. of Wisconsin, Madison (United States))

    1991-06-11

    A thiol group at the malate-binding site of the NAD-malic enzyme from Ascaris suum has been modified to thiocyanate. The modified enzyme generally exhibits slight increases in K{sub NAD} and K{sub i metal} and decreases in V{sub max} as the metal size increases from Mg{sup 2+} to Mn{sup 2+} to Cd{sup 2+}, indicative of crowding in the site. The K{sub malate} value increases 10- to 30-fold, suggesting that malate does not bind optimally to the modified enzyme. Deuterium isotope effects on V and V/K{sub malate} increase with all three metal ions compared to the native enzyme concomitant with a decrease in the {sup 13}C isotope effect, suggesting a switch in the rate limitation of the hydride transfer and decarboxylation steps with hydride transfer becoming more rate limiting. The {sup 13}C effect decreases only slightly when obtained with deuterated malate, suggestive of the presence of a secondary {sup 13}C effect in the hydride transfer step, similar to data obtained with non-nicotinamide-containing dinucleotide substrates for the native enzyme (see the preceding paper in this issue). The native enzyme is inactivated in a time-dependent manner by Cd{sup 2+}. This inactivation occurs whether the enzyme alone is present or whether the enzyme is turning over with Cd{sup 2+} as the divalent metal activator. Upon inactivation, only Cd{sup 2+} ions are bound at high stoichiometry to the enzyme, which eventually becomes denatured. Conversion of the active-site thiol to thiocyanate makes it more difficult to inactivate the enzyme by treatment with Cd{sup 2+}.

  8. Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo

    DEFF Research Database (Denmark)

    Volke, V; Wegener, Gregers

    1999-01-01

    The aim of the present study was to investigate the effect of methylene blue, a guanylate cyclase inhibitor, on the hippocampal nitric oxide synthase activity in vivo. We used a microdialysis-based technique of measuring conversion of [3H]l-arginine to [3H]l-citrulline in freely moving rats. The administration of methylene blue (0.1 and 1 mM) via the microdialysis probe caused a dose-dependent decrease in [3H]l-citrulline efflux comparable with the effect of unselective NOS inhibitor NG-nitro-L-arginine (2 mM). We conclude that methylene blue inhibits brain NOS activity in vivo and thus interferes with NO-cGMP cascade in different levels.

  9. Nitric oxide synthase activity in Fasciola hepatica: a radiometric study.

    Science.gov (United States)

    Terenina, N B; Onufriev, M V; Gulyaeva, N V; Moiseeva, Y V; Gustafsson, M K S

    2003-06-01

    The activity of neuronal nitric oxide synthase (nNOS) in homogenates of adult Fasciola hepatica was measured by the direct radiometric assay of the production of L-[3H]citrulline. This is the first radiometric study of the activity of nNOS in a fluke. The effect of arginase was tested. In the presence of L-valine, which is an inhibitor of arginase, the formation of L-[3H]citrulline decreased from 12% to 38%, depending on the time of incubation. This means that the arginase activity in the worm is high, and has to be taken into consideration when measuring the activity of nNOS. When co-factors, such as H4B, and NADPH, were omitted the formation of L-[3H]citrulline decreased significantly (29%). The effects of several nNOS inhibitors were tested. N(omega)-nitro-L-arginine (L-NAME), aminoguanidine and S-methyl-L-thiocitrulline added at a concentration of 1 mM inhibited the L-[3H]citrulline formation by 28%, 15% and 14%, respectively. Chelation of Ca2+ with 1 mM EGTA resulted in a 40% decrease in the formation of L-[3H]citrulline. These results indicate the presence of nNOS activity in homogenates of F. hepatica. PMID:12866797

  10. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Ying, Liang; Chen, Qi; Wang, Yawei; Zhou, Zhihua; Huang, Yiran; Qiu, Feng

    2012-09-01

    Recent studies reveal that long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in cancer biology, and lncRNA MALAT-1 expression is upregulated in some tumors. However, the contributions of MALAT-1 to bladder cancer metastasis remain largely unknown. In the present study we evaluated MALAT-1 expression in bladder cancer tissues by real-time PCR, and defined its biological functions. We verified that MALAT-1 levels were upregulated in bladder cancer tissues compared with adjacent normal tissues, and MALAT-1 expression was remarkably increased in primary tumors that subsequently metastasized, when compared to those primary tumors that did not metastasize. SiRNA-mediated MALAT-1 silencing impaired in vitro bladder cancer cell migration. Downregulation of MALAT-1 resulted in a decrease of the epithelial-mesenchymal transition (EMT)-associated ZEB1, ZEB2 and Slug levels, and an increase of E-cadherin levels. We further demonstrated that MALAT-1 promoted EMT by activating Wnt signaling in vitro. These data suggest an important role for MALAT-1 in regulating metastasis of bladder cancer and the potential application of MALAT-1 in bladder cancer therapy. PMID:22722759

  11. Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Olsen, Anne S B

    2014-01-01

    OBJECTIVE: Ceramides are precursors of complex sphingolipids (SLs), which are important for normal functioning of both the developing and mature brain. Altered SL levels have been associated with many neurodegenerative disorders, including epilepsy, although few direct links have been identified between genes involved in SL metabolism and epilepsy. METHODS: We used quantitative real-time PCR, Western blotting, and enzymatic assays to determine the mRNA, protein, and activity levels of ceramide synthase 2 (CERS2) in fiibroblasts isolated from parental control subjects and from a patient diagnosed with progressive myoclonic epilepsy (PME). Mass spectrometry and fluorescence microscopy were used to examine the effects of reduced CERS2 activity on cellular lipid composition and plasma membrane functions. RESULTS: We identify a novel 27 kb heterozygous deletion including the CERS2 gene in a proband diagnosed with PME. Compared to parental controls, levels of CERS2 mRNA, protein, and activity were reduced by ˜50%in fibroblasts isolated from this proband, resulting in significantly reduced levels of ceramides and sphingomyelins containing the very long-chain fatty acids C24:0 and C26:0. The change in SL composition was also reflected in a reduction in cholera toxin B immunofluorescence, indicating that membrane composition and function are altered. INTERPRETATION: We propose that reduced levels of CERS2, and consequently diminished levels of ceramides and SLs containing very long-chain fatty acids, lead to development of PME.

  12. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity

    DEFF Research Database (Denmark)

    Willemoës, Martin; Mølgaard, Anne; Johansson, Eva; Martinussen, Jan

    2005-01-01

    GTP is an allosteric activator of CTP synthase and acts to increase the k(cat) for the glutamine-dependent CTP synthesis reaction. GTP is suggested, in part, to optimally orient the oxy-anion hole for hydrolysis of glutamine that takes place in the glutamine amidotransferase class I (GATase) domain of CTP synthase. In the GATase domain of the recently published structures of the Escherichia coli and Thermus thermophilus CTP synthases a loop region immediately proceeding amino acid residues formi...

  13. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity

    DEFF Research Database (Denmark)

    Willemoës, Martin; Mølgaard, Anne; Johansson, Eva Helena; Martinussen, Jan

    2005-01-01

    GTP is an allosteric activator of CTP synthase and acts to increase the kcat for the glutamine-dependent CTP synthesis reaction. GTP is suggested, in part, to optimally orient the oxy-anion hole for hydrolysis of glutamine that takes place in the glutamine amidotransferase class I (GATase) domain of CTP synthase. In the GATase domain of the recently published structures of the Escherichia coli and Thermus thermophilus CTP synthases a loop region immediately proceeding amino acid residues forming...

  14. Distinct Roles of Protease-Activated Receptors in Signal Transduction Regulation of Endothelial Nitric Oxide Synthase

    OpenAIRE

    SUZUKI, HIROYUKI; Motley, Evangeline D.; Eguchi, Kunie; Hinoki, Akinari; Shirai, Heigoro; Watts, Vabren; Stemmle, Laura N.; Fields, Timothy A.; EGUCHI, Satoru

    2008-01-01

    Protease-activated receptors such as PAR1 and PAR2 have been implicated in the regulation of endothelial nitric oxide production. We hypothesized that PAR1 and PAR2 distinctly regulate the activity of endothelial nitric oxide synthase through the selective phosphorylation of a positive regulatory site, Ser1179 and a negative regulatory site, Thr497 in bovine aortic endothelial cells. A selective PAR1 ligand, TFLLR, stimulated the phosphorylation of endothelial nitric oxide synthase at Thr497....

  15. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity.

    Science.gov (United States)

    Ohnuma, S i; Hirooka, K; Ohto, C; Nishino, T

    1997-02-21

    Farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are precursors for a variety of important natural products, such as sterols, carotenoids, and prenyl quinones. Although FPP synthase and GGPP synthase catalyze similar consecutive condensations of isopentenyl diphosphate with allylic diphosphates and have several homologous regions in their amino acid sequences, nothing is known about how these enzymes form the specific products. To locate the region that causes the difference of final products between GGPP synthase and FPP synthase, we constructed six mutated archaeal GGPP synthases whose regions around the first aspartate-rich motif were replaced with the corresponding regions of FPP synthases from human, rat, Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia coli, Bacillus stearothermophilus, and from some other related mutated enzymes. From the analysis of these mutated enzymes, we revealed that the region around the first aspartate-rich motif is essential for the product specificity of all FPP synthases and that the mechanism of the chain termination in eukaryotic FPP synthases (type I) is different from those of prokaryotic FPP synthases (type II). In FPP synthases of type I, two amino acids situated at the fourth and the fifth positions before the motif solely determine their product chain length, while the product specificity of the type II enzymes is determined by one aromatic amino acid at the fifth position before the motif, two amino acids inserted in the motif, and other modifications. These data indicate that FPP synthases have evolved from the progenitor corresponding to the archaeal GGPP synthase in two ways. PMID:9030588

  16. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    OpenAIRE

    RACHMILEWITZ, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D. K.

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in ...

  17. Changes in Carbohydrate Content and the Activities of Acid Invertase, Sucrose Synthase and Sucrose Phosphate Synthase in Vegetable Soybean During Fruit Development

    OpenAIRE

    Kassinee Sitthiwong; Toshiyuki Matsui; Nobuyuki Okuda; Haruo Suzuki

    2005-01-01

    This study investigated the changes in carbohydrate content and activities of acid invertase, sucrose synthase (SS) and sucrose phosphate synthase (SPS) in two vegetable soybean cultivars (Glycine max (L.) Merr. vars. Ajigen and Fuuki) during fruit development ranging from 28 to 63 days after anthesis. In both cultivars, sucrose was the predominant sugar while fructose and glucose were found in trace amounts. Sucrose accumulation was highest at 35 and 42 days after anthesis in Fuuki and Ajige...

  18. Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase.

    Science.gov (United States)

    Urbanet, Riccardo; Nguyen Dinh Cat, Aurelie; Feraco, Alessandra; Venteclef, Nicolas; El Mogrhabi, Soumaya; Sierra-Ramos, Catalina; Alvarez de la Rosa, Diego; Adler, Gail K; Quilliot, Didier; Rossignol, Patrick; Fallo, Francesco; Touyz, Rhian M; Jaisser, Frédéric

    2015-07-01

    Metabolic syndrome is a major risk factor for the development of diabetes mellitus and cardiovascular diseases. Pharmacological antagonism of the mineralocorticoid receptor (MR), a ligand-activated transcription factor, limits metabolic syndrome in preclinical models, but mechanistic studies are lacking to delineate the role of MR activation in adipose tissue. In this study, we report that MR expression is increased in visceral adipose tissue in a preclinical mouse model of metabolic syndrome and in obese patients. In vivo conditional upregulation of MR in mouse adipocytes led to increased weight and fat mass, insulin resistance, and metabolic syndrome features without affecting blood pressure. We identified prostaglandin D2 synthase as a novel MR target gene in adipocytes and AT56, a specific inhibitor of prostaglandin D2 synthase enzymatic activity, blunted adipogenic aldosterone effects. Moreover, translational studies showed that expression of MR and prostaglandin D2 synthase is strongly correlated in adipose tissues from obese patients. PMID:25966493

  19. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    International Nuclear Information System (INIS)

    Highlights: ? Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. ? Chitin synthase activity releases chitin, partly associated with the cell surface. ? Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. ? Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. ? This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA? cell lines are shown.

  20. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    Energy Technology Data Exchange (ETDEWEB)

    Schoenitzer, Veronika [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Eichner, Norbert [Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Clausen-Schaumann, Hauke [Munich University of Applied Sciences, Lothstrasse 34, D-80335 Muenchen, Germany, and Center for NanoScience (CeNS), Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Weiss, Ingrid M., E-mail: ingrid.weiss@inm-gmbh.de [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  1. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease.

    Science.gov (United States)

    Cha, Moon-Yong; Cho, Hyun Jin; Kim, Chaeyoung; Jung, Yang Ouk; Kang, Min Jueng; Murray, Melissa E; Hong, Hyun Seok; Choi, Young-Joo; Choi, Heesun; Kim, Dong Kyu; Choi, Hyunjung; Kim, Jisoo; Dickson, Dennis W; Song, Hyun Kyu; Cho, Jin Won; Yi, Eugene C; Kim, Jungsu; Jin, Seok Min; Mook-Jung, Inhee

    2015-11-15

    Glycosylation with O-linked ?-N-acetylglucosamine (O-GlcNAc) is one of the protein glycosylations affecting various intracellular events. However, the role of O-GlcNAcylation in neurodegenerative diseases such as Alzheimer's disease (AD) is poorly understood. Mitochondrial adenosine 5'-triphosphate (ATP) synthase is a multiprotein complex that synthesizes ATP from ADP and Pi. Here, we found that ATP synthase subunit ? (ATP5A) was O-GlcNAcylated at Thr432 and ATP5A O-GlcNAcylation was decreased in the brains of AD patients and transgenic mouse model, as well as A?-treated cells. Indeed, A? bound to ATP synthase directly and reduced the O-GlcNAcylation of ATP5A by inhibition of direct interaction between ATP5A and mitochondrial O-GlcNAc transferase, resulting in decreased ATP production and ATPase activity. Furthermore, treatment of O-GlcNAcase inhibitor rescued the A?-induced impairment in ATP production and ATPase activity. These results indicate that A?-mediated reduction of ATP synthase activity in AD pathology results from direct binding between A? and ATP synthase and inhibition of O-GlcNAcylation of Thr432 residue on ATP5A. PMID:26358770

  2. Calcium-Dependent Nitric Oxide Synthase Activity in Rat Thymocytes

    OpenAIRE

    Cruz, M T; CARMO, A.; Carvalho, A. P; Lopes, M.C.

    1998-01-01

    We examined the conversion of L-[3H]arginine to L-[3H]citrulline in lysate from rat thymocytes, which was dependent on Ca2+and cofactors (FAD, BH4, NADPH). Removal of Ca2+of the medium, reduced the total L-[3H]citrulline formation by about 97%. The L-[3H]citrulline formation was completely inhibited by the NO synthase inhibitors, NG-nitro-L-arginine and NG-monomethyl-L-arginine, with values for IC50of 1.2 [mu]M and 19.4 [mu]M, respectively. In intact thymocytes, the L-[3H]citrulline formation...

  3. Activation of Methyltetrahydrofolate by Cobalamin-Independent Methionine Synthase

    OpenAIRE

    Taurog, Rebecca E.; Matthews, Rowena G

    2006-01-01

    Cobalamin-independent methionine synthase (MetE) catalyzes the final step of de novo methionine synthesis using the triglutamate derivative of methyltetrahydrofolate (CH3-H4PteGlu3) as methyl donor and homocysteine (Hcy) as methyl acceptor. This reaction is challenging because at physiological pH the Hcy thiol is not a strong nucleophile and CH3-H4PteGlu3 provides a very poor leaving group. Our laboratory has previously established that Hcy is ligated to a tightly bound zinc ion in the MetE a...

  4. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  5. The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3alpha activity in diabetic myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael; Brusgaard, Klaus

    2004-01-01

    The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined GS activity ratio, protein expression, and activity of GSK-3alpha and beta under basal and insulin-stimulated conditions when precultured in increasing insulin concentrations. In myotubes precultured at low insulin concentrations acute insulin stimulation increased GS activity more in control than in diabetic subjects, whereas the corresponding GSK-3alpha but not GSK-3beta activity was significantly reduced by acute insulin treatment in both groups. However, in myotubes precultured at high insulin concentrations the effect of insulin on GS and GSK-3alpha activity was blunted in both groups. The protein expression of GSK-3alpha or beta was unaffected. In conclusion, myotubes with a primary defect in GS activity express insulin responsive GSK-3alpha, suggesting that failure of insulin to decrease GS phosphorylation involves abnormal activity of another kinase or phosphatase.

  6. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    OpenAIRE

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20??M) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn ...

  7. Characterization of nitric oxide synthase activity in sheep urinary tract: functional implications.

    OpenAIRE

    García-Pascual, A.; COSTA, G; Labadia, A.; Persson, K.; Triguero, D

    1996-01-01

    1. To define further the role of nitric oxide (NO) in urinary tract function, we have measured the presence of nitric oxide synthase (NOS) activity, and its relationship with functional NO-mediated responses to electrical field stimulation (EFS) in the urethra, the detrusor and the ureter from sheep. NOS activity was assayed by the conversion of L-[14C]-arginine to L-[14C]-citrulline. Endogenous production of citrulline was confirmed by thin layer chromatography. 2. NOS enzymatic activity was...

  8. Assaying Ceramide Synthase Activity In Vitro and in Living Cells Using Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Lim, Xin Ying; Pickford, Russell; Don, Anthony S

    2016-01-01

    Sphingolipids are one the major lipid families in eukaryotes, incorporating a diverse array of structural and signaling lipids such as sphingomyelin and gangliosides. The core lipid component for all complex sphingolipids is ceramide, a diacyl lipid consisting of a variable length fatty acid linked through an amide bond to a long chain base such as sphingosine or dihydrosphingosine. This reaction is catalyzed by a family of six ceramide synthases (CERS1-6), each of which preferentially catalyzes the synthesis of ceramides with different fatty acid chain lengths. Ceramides are themselves potent cellular and physiological signaling molecules heavily implicated in diabetes and neurodegenerative diseases, making it important for researchers to have access to sensitive and accurate assays for ceramide synthase activity. This chapter describes methods for assaying ceramide synthase activity in cell or tissue lysates, or in cultured cells (in situ), using liquid chromatography-tandem mass spectrometry (LC-MS/MS) as the readout. LC-MS/MS is a very sensitive and accurate means for assaying ceramide synthase reaction products. PMID:26552671

  9. ‘Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    OpenAIRE

    Lichman, Benjamin R; Gershater, Markus C.; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M.

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet–Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two propo...

  10. Constitutive nitric oxide synthase (cNOS activity in Langerhans islets from streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Fonovich de Schroeder T.M.

    1998-01-01

    Full Text Available Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.

  11. Constitutive nitric oxide synthase (cNOS) activity in Langerhans islets from streptozotocin diabetic rats

    Scientific Electronic Library Online (English)

    T.M., Fonovich de Schroeder; M.D., Carattino; M., Frontera; O.L., Catanzaro.

    1998-05-01

    Full Text Available Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the p [...] resence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.

  12. Calcium (hydrogen-1-malate) hexahydrate on Echeveria gibbiflora leaves and its effect on sperm cells.

    Science.gov (United States)

    Reyes, R; Sánchez-Vázquez, M L; Merchant Larios, H; Ortega Hernández, A; Delgado, N M

    2005-01-01

    Echeveria gibbiflora is a plant widely used for its contraceptive activity in traditional Mexican medicine. Data on calcium crystals in plants are not outstanding. In the case of the Echeveria gibbiflora leaves, however, its quality, quantity, and salt type are quite surprising; one striking result of its X-ray crystallographic data shows the presence of calcium bis (hydrogen-1-malate) hexahydrate [2(C4H5O(5)1), Ca(1)2+, 6(H2O1)]. This highly soluble compound might explain the rapid shape changes of calcium crystals. Because SEM-EDS analysis shows that calcium malate crystals were obtained in a highly pure state and the immobilization and agglutination pattern that OBACE show on human and bull spermatozoa are not found even when high concentrations of calcium bis (hydrogen-1-malate) hexahydrate salt are present it is not feasible to involucrate molecules as calcium malate as part of the OBACE contraceptive activity. PMID:16214732

  13. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L. (Michigan)

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  14. Role of Arginine-304 in the Diphosphate-Triggered Active Site Closure Mechanism of Trichodiene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Vedula,L.; Cane, D.; Christianson, D.

    2005-01-01

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PPi) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PPi bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg{sup 2+}{sub 3-}PP{sub i}, in which R304 donates hydrogen bonds to PP{sub i} and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP{sub i} in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP{sub i} and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg{sup 2+}{sub 3-}PP{sub i} binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP{sub i} leaving group.

  15. Vacuolar malate uptake is mediated by an anion-selective inward rectifier.

    OpenAIRE

    Hafke, JB; Hafke, Y; Smith, JA; Lüttge, U; Thiel, G

    2003-01-01

    Electrophysiological studies using the patch-clamp technique were performed on isolated vacuoles from leaf mesophyll cells of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana to characterize the malate transport system responsible for nocturnal malic acid accumulation. In the presence of malate on both sides of the membrane, the current-voltage relations of the tonoplast were dominated by a strongly inward-rectifying anion-selective channel that was active at cytoplasmic-...

  16. Constitutive nitric oxide synthase (cNOS) activity in Langerhans islets from streptozotocin diabetic rats

    OpenAIRE

    Fonovich de Schroeder T.M.; Carattino M.D.; Frontera M.; Catanzaro O.L.

    1998-01-01

    Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancre...

  17. Activation of macrophage nuclear factor-?B and induction of inducible nitric oxide synthase by LPS

    OpenAIRE

    Yan Zhong-Qun; Li Ying-Hua; Brauner Annelie; Tullus Kjell

    2002-01-01

    Abstract Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate ...

  18. Thymidylate synthase expression and activity: relation to S-phase parameters and 5-fluorouracil sensitivity.

    OpenAIRE

    Mirjolet, J. F.; Barberi-Heyob, M.; Merlin, J L; Marchal, S; Etienne, M. C.; Milano, G.; Bey, P

    1998-01-01

    Six human cancer cell lines exhibiting a large range of sensitivity to 5-fluorouracil (5-FU) were evaluated for thymidylate synthase (TS) and p53 gene expression, TS and dihydropyrimidine dehydrogenase (DPD) activity, as well as cell cycle parameters, S-phase fraction (SPF), bromodeoxyuridine labelling index (LI) and S-phase duration (SPD). All these parameters were investigated for 7 days in asynchronously growing cell populations and compared with the cell sensitivity to 5-FU. No significan...

  19. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle

    OpenAIRE

    Cha, Seung Hun; Hu, Zhiyuan; Chohnan, Shigeru; Lane, M. Daniel

    2005-01-01

    Malonyl-CoA functions as a mediator in the hypothalamic sensing of energy balance and regulates the neural physiology that governs feeding behavior and energy expenditure. The central administration of C75, a potent inhibitor of the fatty acid synthase (FAS), increases malonyl-CoA concentration in the hypothalamus and suppresses food intake while activating fatty acid oxidation in skeletal muscle. Closely correlated with the increase in muscle fatty acid oxidation is the phosphorylation/inact...

  20. Activation of Rice nicotianamine synthase 2 (OsNAS2) Enhances Iron Availability for Biofortification

    OpenAIRE

    Lee, Sichul; Kim, You-Sun; Jeon, Un Sil; Kim, Yoon-Keun; Schjoerring, Jan K; An, Gynheung

    2012-01-01

    Because micronutrients in human diets ultimately come from plant sources, malnutrition of essential minerals is a significant public health concern. By increasing the expression of nicotianamine synthase (NAS), we fortified the level of bioavailable iron in rice seeds. Activation of iron deficiency-inducible OsNAS2 resulted in a rise in Fe content (3.0-fold) in mature seeds. Its ectopic expression also increased that content. Enhanced expression led to higher tolerance of Fe deficiency and be...

  1. Infectious and inflammatory stimuli decrease endothelial nitric oxide synthase activity in vitro.

    OpenAIRE

    Pescarmona, Gianpiero; MORRA, Emanuella; TODROS, Tullia; SILVAGNO, Maria Francesca; Cardaropoli, Simona

    2003-01-01

    BACKGROUND: Perturbation of iron metabolism, especially the increase of serum ferritin levels, is often associated with both inflammation and hypertension. Changes in iron availability can affect an important regulator of vascular tone, the endothelial nitric oxide synthase (eNOS), activated by a heme-dependent dimerization. OBJECTIVE: To study the regulation of the anti-hypertensive eNOS in human endothelial cells, in correlation with iron metabolism alterations and stimuli triggering them i...

  2. Nitric oxide synthase activity in human trophoblast, term placenta and pregnant myometrium.

    OpenAIRE

    Laurini Ricardo; Andolf Ellika; Al-Hijji J; Batra Satish

    2003-01-01

    Abstract To investigate the possible role of nitric oxide (NO) produced locally or intramurally in the quiescence of the pregnant myometrium, nitric oxide synthase (NOS) activity was measured in samples from first trimester (villous, and non villous-trophoblast), term placenta and pregnant myometrium. Trophoblast tissue was obtained from psychosocial termination of pregnancy (9 – 12 weeks' gestation) whereas placenta and myometrium, from the same patient, at deliveries by Caesarean section. N...

  3. Middle T antigen-transformed endothelial cells exhibit an increased activity of nitric oxide synthase

    OpenAIRE

    1995-01-01

    Endothelioma cell lines transformed by polyoma virus middle T antigen (mTa) cause cavernous hemangiomas in syngeneic mice by recruitment of host cells. The production of nitric oxide (NO), as measured by nitrite and citrulline production, was significantly higher in mTa-transformed endothelial cells in comparison with nontransformed control cells. The maximal activity of NO synthase (NOS) was about 200-fold higher in cell lysates from the tEnd.1 endothelioma cell line than in lysates from non...

  4. Ca(2+)-independent nitric oxide synthase activity in human lung after cardiopulmonary bypass.

    OpenAIRE

    Delgado, R; A. Rojas; Glaría, L. A.; Torres, M.; Duarte, F.; Shill, R.; Nafeh, M.; E. Santin; González, N.; Palacios, M

    1995-01-01

    BACKGROUND--Because surgery involving cardiopulmonary bypass induces a systemic inflammatory response, the effect of cardiopulmonary bypass on nitric oxide (NO) generation was investigated in human lung tissue. METHODS--Nitric oxide synthase (NOS) activity was measured by the conversion of 14C-L-arginine to 14C-L-citrulline in tissue biopsy samples obtained before and after cardiopulmonary bypass. RESULTS--The Ca(2+)-independent production of NO found before cardiopulmonary bypass was extreme...

  5. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    Energy Technology Data Exchange (ETDEWEB)

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C. [Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968 (United States); Miller, R.T., E-mail: tmiller2@utep.edu [Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2010-04-09

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [{sup 14}C]-L-arginine to [{sup 14}C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [{sup 14}C]-L-arginine to [{sup 14}C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  6. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    International Nuclear Information System (INIS)

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  7. Increase of particulate nitric oxide synthase activity and peroxynitrite synthesis in UVB-irradiated keratinocyte membranes

    International Nuclear Information System (INIS)

    Here we demonstrate that human keratinocytes possess a Ca2+/ calmodulin-dependent particulate NO synthase that can be activated to release NO after exposure to UVB radiation. UVB irradiation (up to 20 mJ/cm2) of human keratinocyte plasma membranes resulted in a dose-dependent increase in NO and L-[3H]citrulline production that was inhibited by approx. 90% in the presence of N-monomethyl-L-arginine (L-NMMA). In time-course experiments with UVB-irradiated plasma membranes the changes in NO production were followed by analogous changes in soluble guanylate cyclase (sGC) activity. In reconstitution experiments, when particulate NO synthase was added to purified sGC isolated from keratinocyte cytosol, a 4-fold increase in cGMP was observed; the cGMP was increased by NO synthesized after UVB irradiation (up to 20 mJ/cm2) of particulate NO synthase. A 5-fold increase in superoxide (O2-) and a 7-fold increase in NO formation followed by an 8-fold increase in peroxynitrite (ONOO-) production by UVB (20 mJ/cm2)-irradiated keratinocyte microsomes was observed. UVB radiation (20 mJ/cm2) decreased plasma membrane lipid fluidity as indicated by steady-state fluorescence anisotropy. Membrane fluidity changes were prevented by L-NMMA. Changes in Arrhenius plots of particulate NO synthase in combination with changes in its allosteric properties induced by UVB radiation are consistent with a decreased fluidity of the lipid microenvironment of the enzyme. The present studies provide important new clues to the role of NO and ONOO- released by UVB-irradiated human keratinocytes in skin erythema and inflammation. (Author)

  8. Increase of particulate nitric oxide synthase activity and peroxynitrite synthesis in UVB-irradiated keratinocyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Deliconstantinos, G.; Villiotou, V.; Stavrides, J.C. [Athens Univ. (Greece). Medical School

    1996-12-15

    Here we demonstrate that human keratinocytes possess a Ca{sup 2+}/ calmodulin-dependent particulate NO synthase that can be activated to release NO after exposure to UVB radiation. UVB irradiation (up to 20 mJ/cm{sup 2}) of human keratinocyte plasma membranes resulted in a dose-dependent increase in NO and L-[{sup 3}H]citrulline production that was inhibited by approx. 90% in the presence of N-monomethyl-L-arginine (L-NMMA). In time-course experiments with UVB-irradiated plasma membranes the changes in NO production were followed by analogous changes in soluble guanylate cyclase (sGC) activity. In reconstitution experiments, when particulate NO synthase was added to purified sGC isolated from keratinocyte cytosol, a 4-fold increase in cGMP was observed; the cGMP was increased by NO synthesized after UVB irradiation (up to 20 mJ/cm{sup 2}) of particulate NO synthase. A 5-fold increase in superoxide (O{sub 2}{sup -}) and a 7-fold increase in NO formation followed by an 8-fold increase in peroxynitrite (ONOO{sup -}) production by UVB (20 mJ/cm{sup 2})-irradiated keratinocyte microsomes was observed. UVB radiation (20 mJ/cm{sup 2}) decreased plasma membrane lipid fluidity as indicated by steady-state fluorescence anisotropy. Membrane fluidity changes were prevented by L-NMMA. Changes in Arrhenius plots of particulate NO synthase in combination with changes in its allosteric properties induced by UVB radiation are consistent with a decreased fluidity of the lipid microenvironment of the enzyme. The present studies provide important new clues to the role of NO and ONOO{sup -} released by UVB-irradiated human keratinocytes in skin erythema and inflammation. (Author).

  9. Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Olsen, Anne S B; Neess, Ditte; Ben-David, Oshrit; Klitten, Laura L; Larsen, Jan; Sabers, Anne; Vissing, John; Nielsen, Jørgen E; Hasholt, Lis; Klein, Andres D; Tsoory, Michael M; Hjalgrim, Helle; Tommerup, Niels; Futerman, Anthony H; Møller, Rikke S; Færgeman, Nils J

    2014-01-01

    OBJECTIVE: Ceramides are precursors of complex sphingolipids (SLs), which are important for normal functioning of both the developing and mature brain. Altered SL levels have been associated with many neurodegenerative disorders, including epilepsy, although few direct links have been identified between genes involved in SL metabolism and epilepsy. METHODS: We used quantitative real-time PCR, Western blotting, and enzymatic assays to determine the mRNA, protein, and activity levels of ceramide s...

  10. Active intermediates of polyhydroxyalkanoate synthase from Aeromonas caviae in polymerization reaction.

    Science.gov (United States)

    Numata, Keiji; Motoda, Yoko; Watanabe, Satoru; Tochio, Naoya; Kigawa, Takanori; Doi, Yoshiharu

    2012-11-12

    Polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae FA440 (PhaC(Ac), BAA21815) is one of the most valuable PHA synthase, because of its function to synthesize a practical bioplastic, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. However, biochemical activity and active intermediates of PhaC(Ac) have not been clarified until now. In the present study, a gene of PhaC(Ac) was cloned and overexpressed by a cell-free protein expression system. Both the polymerization activity and oligomerization behavior of the purified PhaC(Ac) were characterized in order to clarify the active intermediates of PhaC(Ac) based on the hydrodynamic diameters and specific activities of PhaC(Ac). The influences of a substrate, (R)-3-hydroxybutyryl-CoA (3HB-CoA), on the oligomerization of PhaC(Ac) (7.5 ?M) were also investigated, and then the Hill coefficient (n = 2.6 ± 0.4) and the microscopic dissociation constant (K(m) = 77 ± 5 ?M) were determined. Based on the results, the active intermediate of PhaC(Ac) was concluded to be the dimeric PhaC(Ac) containing 3HB-CoA as an activator for its dimerization. This information is critical for revealing the relationships between its dimerization and function in PHA synthesis. PMID:23043466

  11. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures.

    OpenAIRE

    Galea, E.; Feinstein, D L; Reis, D J

    1992-01-01

    Exposure of primary cultures of neonatal rat cortical astrocytes to bacterial lipopolysaccharide (LPS) results in the appearance of nitric oxide synthase (NOS) activity. The induction of NOS, which is blocked by actinomycin D, is directly related to the duration of exposure and dose of LPS, and a 2-hr pulse can induce enzyme activity. Cytosol from LPS-treated astrocyte cultures, but not from control cultures, produces a Ca(2+)-independent conversion of L-arginine to L-citrulline that can be c...

  12. Cycling of NADPH by glucose 6-phosphate dehydrogenase optimizes the spectrophotometric assay of nitric oxide synthase activity in cell lysates

    OpenAIRE

    GHIGO, Dario Antonio; BOSIA, Amalia; COSTAMAGNA, Costanzo; GAZZANO, Elena; Riganti, Chiara

    2006-01-01

    The measurement of nitric oxide synthase activity in cell lysates is often performed by radiochemical assay that quantifies the conversion of L-[3H]arginine to L-[3H]citrulline. We have developed a spectrophotometric procedure which continuously recycles NADPH through the addition of glucose 6-phosphate dehydrogenase to the cell lysate. This allows nitric oxide synthase to operate linearly for hours, so that nitric oxide-derived nitrite accumulates at amounts sufficient to be detected with th...

  13. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20??M) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  14. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 ?M) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  15. Structure-Based Inhibitors Exhibit Differential Activities against Helicobacter pylori and Escherichia coli Undecaprenyl Pyrophosphate Synthases

    Directory of Open Access Journals (Sweden)

    Po-Huang Liang

    2008-03-01

    Full Text Available Helicobacter pylori colonizes the human gastric epithelium and causes diseases such as gastritis, peptic ulcers, and stomach cancer. Undecaprenyl pyrophosphate synthase (UPPS, which catalyzes consecutive condensation reactions of farnesyl pyrophosphate with eight isopentenyl pyrophosphate to form lipid carrier for bacterial peptidoglycan biosynthesis, represents a potential target for developing new antibiotics. In this study, we solved the crystal structure of H. pylori UPPS and performed virtual screening of inhibitors from a library of 58,635 compounds. Two hits were found to exhibit differential activities against Helicobacter pylori and Escherichia coli UPPS, giving the possibility of developing antibiotics specially targeting pathogenic H. pylori without killing the intestinal E. coli.

  16. Invertase and sucrose synthase activities in coffee plants sprayed with sucrose solution

    Directory of Open Access Journals (Sweden)

    Silva José Carlos da

    2003-01-01

    Full Text Available One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L. seedlings with reduced (low and high (normal levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.

  17. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M. (UW)

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  18. Induction of long noncoding RNA MALAT1 in hypoxic mice

    Directory of Open Access Journals (Sweden)

    Lelli A

    2015-10-01

    Full Text Available Aurelia Lelli,1,2,* Karen A Nolan,1,2,* Sara Santambrogio,1,2 Ana Filipa Gonçalves,1,2 Miriam J Schönenberger,1,2 Anna Guinot,1,2 Ian J Frew,1,2 Hugo H Marti,3 David Hoogewijs,1,2,4 Roland H Wenger1,2 1Institute of Physiology and Zurich Center for Human Physiology (ZIHP, University of Zurich, Zurich, Switzerland; 2National Center of Competence in Research "Kidney.CH", Zurich, Switzerland; 3Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; 4Institute of Physiology, University of Duisburg-Essen, Essen, Germany *These authors contributed equally to this work Abstract: Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA. Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary kidney epithelial cells. In summary, high expression levels and acute, profound hypoxic induction of MALAT1 suggest a hitherto unrecognized role of this lncRNA in renal proximal tubular function. Keywords: hypoxia-inducible factor, kidney, oxygen, proximal tubule, testis

  19. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  20. The metabolism of malate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-[U-14C]malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain

  1. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor.

    Science.gov (United States)

    Chen, Chao-Nan; Chen, Qiong; Liu, Yu-Chao; Zhu, Xiao-Lei; Niu, Cong-Wei; Xi, Zhen; Yang, Guang-Fu

    2010-07-15

    The triazolopyrimidine-2-sulfonanilide, discovered from preparing bioisosteres of the sulfonylurea herbicides, is an important class of acetohydroxyacid synthase (AHAS, EC 4.1.3.18) inhibitors. At least over ten triazolopyrimidine sulfonanilides have been commercialized as herbicides for the control of broadleaf weeds and grass with cereal crop selectivity. Herein, a series of triazolopyrimidine-2-sulfonanilides were designed and synthesized with the aim of discovery of new herbicides with higher activity. The assay results of the inhibition activity of the synthesized compounds against Arabidopsis thatiana AHAS indicated that some compounds showed a little higher activity against flumetsulam (FS), the first commercial triazolopyrimidine-2-sulfonanilide-type herbicide. The ki values of two promising compounds 3d and 8h are respectively, 1.61 and 1.29 microM, while that of FS is 1.85 microM. Computational simulation results indicated the ester group of compound 3d formed hydrogen bonds with the surrounding residues Arg'198 and Ser653, which accounts for its 11.5-folds higher AHAS inhibition activity than Y6610. Further green house assay showed that compound 3d has comparable herbicidal activity as FS. Even at the concentration of 37.5g.ai/ha, 3d showed excellent herbicidal activity against Galium aparine, Cerastium arvense, Chenopodium album, Amaranthus retroflexus, and Rmumex acetasa, moderate herbicidal activity against Polygonum humifusum, Cyperus iria, and Eclipta prostrate. The combination of in vitro and in vivo assay indicated that 3d could be regarded as a new potential acetohydroxyacid synthase-inhibiting herbicide candidate for further study. PMID:20598554

  2. Active-site models for complexes of quinolinate synthase with substrates and intermediates

    International Nuclear Information System (INIS)

    Structural studies of quinolinate synthase suggest a model for the enzyme–substrate complex and an enzyme–intermediate complex with a [4Fe–4S] cluster. Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel ?-sheet flanked by four ?-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe–4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005 ?), J. Biol. Chem.280, 26645–26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe–4S] cluster, prior to cluster assembly

  3. Active-site models for complexes of quinolinate synthase with substrates and intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Erika V.; Zhang, Yang; Colabroy, Keri L.; Sanders, Jennie M.; Settembre, Ethan C.; Dorrestein, Pieter C.; Begley, Tadhg P.; Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2013-09-01

    Structural studies of quinolinate synthase suggest a model for the enzyme–substrate complex and an enzyme–intermediate complex with a [4Fe–4S] cluster. Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel ?-sheet flanked by four ?-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe–4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005 ?), J. Biol. Chem.280, 26645–26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe–4S] cluster, prior to cluster assembly.

  4. NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3?.

    Science.gov (United States)

    Kwon, Hyung-Joon; Kwon, Soon Jae; Lee, Heejae; Park, Hye-Ran; Choi, Go-Eun; Kang, Sang-Wook; Kwon, Seog Woon; Kim, Nacksung; Lee, Soo Young; Ryu, Sangryeol; Kim, Sun Chang; Kim, Hun Sik

    2015-09-01

    Activation of NK cells is triggered by combined signals from multiple activating receptors that belong to different families. Several NK cell activating receptors have been identified, but their role in the regulation of effector functions is primarily understood in the context of their individual engagement. Therefore, little is known about the signaling pathways broadly implicated by the multiple NK cell activation cues. Here we provide evidence pointing to glycogen synthase kinase (GSK)-3? as a negative regulator of multiple NK cell activating signals. Using an activation model that combines NKG2D and 2B4 and tests different signaling molecules, we found that GSK-3 undergoes inhibitory phosphorylation at regulatory serine residues by the engagement of NKG2D and 2B4, either individually or in combination. The extent of such phosphorylation was closely correlated with the degree of NK cell activation. NK cell functions, such as cytokine production and cytotoxicity, were consistently enhanced by the knockdown of GSK-3? or its inhibition with different pharmacological inhibitors, whereas inhibition of the GSK-3? isoform had no effect. In addition, NK cell function was augmented by the overexpression of a catalytically inactive form of GSK-3?. Importantly, the regulation of NK cell function by GSK-3? was common to diverse activating receptors that signal through both ITAM and non-ITAM pathways. Thus, our results suggest that GSK-3? negatively regulates NK cell activation and that modulation of GSK-3? function could be used to enhance NK cell activation. PMID:26022178

  5. Arginase Activity in Mitochondria - an Interfering Factor in Nitric Oxide Synthase Activity Assays

    OpenAIRE

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C; Miller, R. Timothy

    2009-01-01

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent [1]. Aliquots of samples from the NOS assays were then extracted with acetone, separa...

  6. Human platelet nitric oxide synthase activity: an optimized method Atividade da óxido nítrico sintase em plaquetas humanas: um método otimizado

    OpenAIRE

    Elisa Mitiko Kawamato; Isaias Glezer; Carolina Demarchi Munhoz; Cristiane Bernardes; Cristoforo Scavone; Tania Marcourakis

    2002-01-01

    We investigated the kinetic analysis of human platelet Nitric Oxide Synthase (NOS) activity by the rate of conversion of [³H] arginine to [³H]-citrulline in unstimulated fresh platelets. NOS activity was present in the membrane fraction and cytosol, and was Ca2+- and calmodulin dependent which is a characteristic of endothelial NOS. NOS activity was also dependent of NADPH since the omission of this cofactor induced an important decrease (85,2%) in the enzyme activity. The kinetic varied with...

  7. Induction of nitric oxide synthase activity by toxic shock syndrome toxin 1 in a macrophage-monocyte cell line.

    OpenAIRE

    Zembowicz, A; Vane, J R

    1992-01-01

    Toxic shock syndrome toxin 1 (TSST-1) is a Mr 22,000 protein produced by Staphylococcus aureus. It is thought to be the cause of toxic shock syndrome. We investigated the hypothesis that TSST-1 induces nitric oxide (NO) synthase and that the NO formed may be involved in the pathogenesis of toxic shock syndrome. We used the murine monocyte-macrophage cell line J744.2 that responds to TSST-1 and also expresses NO synthase activity upon immunological stimulation. J774.2 macrophages stimulated wi...

  8. Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids.

    Science.gov (United States)

    Gharavi, Nima M; Baker, Nancy A; Mouillesseaux, Kevin P; Yeung, Winnie; Honda, Henry M; Hsieh, Xavier; Yeh, Michael; Smart, Eric J; Berliner, Judith A

    2006-03-31

    Oxidized-1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (Ox-PAPC), found in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to synthesize chemotactic factors, such as interleukin (IL)-8. Previously, we demonstrated that the sustained induction of IL-8 transcription by Ox-PAPC was mediated through the activation of sterol regulatory element-binding protein (SREBP). We now present evidence for the role of endothelial nitric oxide synthase (eNOS) in the activation of SREBP by Ox-PAPC. Ox-PAPC treatment of EC induced a dose- and time-dependent activation of eNOS, as measured by phosphorylation of serine 1177, dephosphorylation of threonine 495, and the conversion of L-arginine to L-citrulline. Activation of eNOS by Ox-PAPC was regulated through a phosphatidylinositol-3-kinase/Akt-mediated mechanism. These studies also demonstrated that pretreatment of EC with NOS inhibitor, Nomega-nitro-L-arginine-methyl ester (L-NAME), significantly inhibited Ox-PAPC-induced IL-8 synthesis. Because SREBP activation had been previously shown to regulate IL-8 transcription by Ox-PAPC, we examined the effects of L-NAME on Ox-PAPC-induced SREBP activation. Our data demonstrated that Ox-PAPC-induced SREBP activation and expression of SREBP target genes were significantly reduced by pretreatment with L-NAME. Interestingly, treatment of EC with NO donor, S-nitroso-N-acetylpenicillamine, did not activate SREBP, suggesting that NO alone was not sufficient for SREBP activation. Rather, our findings indicated that superoxide (O2*-), in combination with NO, regulated SREBP activation by Ox-PAPC. We found that Ox-PAPC treatment generated O2*- through an eNOS-mediated mechanism and that mercaptoethylguanidine, a peroxynitrite scavenger, reduced SREBP activation by Ox-PAPC. Taken together, these findings propose a novel role for eNOS in the activation of SREBP and SREBP-mediated inflammatory processes. PMID:16497987

  9. Effect of hydrogen peroxide on rabbit urinary bladder citrate synthase activity in the presence and absence of a grape suspension

    Scientific Electronic Library Online (English)

    Vijay, Venugopal; Robert E., Leggett; Catherine, Schuler; Robert M., Levin.

    2010-12-01

    Full Text Available PURPOSE: The etiology of obstructive bladder dysfunction includes free radical damage to mitochondria. Feeding rabbits a standardized grape suspension protects the ability of the bladder to contract and empty in part by preventing mitochondrial damage, thus maintaining smooth muscle and mucosal meta [...] bolism. The objective of the current study is to determine the direct effect of this grape suspension on the response of mitochondria to the oxidative effects of hydrogen peroxide. MATERIALS AND METHODS: Six male rabbits were anesthetized with sodium pentobarbital and the bladders excised. Four full thickness strips were obtained for contractile studies and the balance separated into smooth muscle and mucosa compartments by blunt dissection. The effect of hydrogen peroxide on the contractile response to field stimulation was quantitated. Each tissue was homogenized and the effects of increasing concentrations of hydrogen peroxide in the presence and absence of grape suspension on citrate synthase activity was determined. RESULTS: Citrate synthase activity was significantly higher in the mucosa than in the muscle. The grape suspension had no effect on control citrate synthase activity. However, the grape suspension provided significant protection of both smooth muscle and mucosal citrate synthase activity. CONCLUSIONS: These studies support the conclusion that the grape suspension provides direct protection of mitochondrial function.

  10. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Andersen, Nynne Bjerre; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search ...

  11. Modulation of baroreceptor activity by gene transfer of nitric oxide synthase to carotid sinus adventitia.

    Science.gov (United States)

    Meyrelles, Silvana S; Sharma, Ram V; Mao, Hui Z; Abboud, Francois M; Chapleau, Mark W

    2003-05-01

    Administration of nitric oxide (NO) or NO donors to isolated carotid sinus and carotid bodies inhibits the activity of baroreceptor and chemoreceptor afferent nerves. Furthermore, NO synthase (NOS) is present in endothelial cells and in sensory nerves innervating the carotid sinus region. The major goal of this study was to determine whether overexpression of NOS in carotid sinus modulates baroreceptor activity. Rabbits were anesthetized, and adenoviral vectors (5 x 10(8) plaque-forming units) encoding genes for either beta-galactosidase (beta-Gal) or endothelial type III NOS (eNOS) were applied topically to the adventitial surface of one carotid sinus. In some experiments, the NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) was applied to the carotid sinus immediately after the vector. Four to five days later, baroreceptor activity and carotid sinus diameter were measured from the vascularly isolated carotid sinus of the anesthetized rabbits. Transgene expression was confirmed by X-Gal staining of beta-Gal and measurement of NOS activity by citrulline assay. The expression was restricted to the carotid sinus adventitia. Baroreceptor activity was decreased significantly, and the pressure-activity curve was shifted to higher pressures in eNOS-transduced (n = 5) compared with beta-Gal-transduced (n = 5) carotid sinuses. The pressure corresponding to 50% of maximum activity averaged 55 +/- 6 and 76 +/- 7 mmHg in beta-Gal- and eNOS-transduced carotid sinuses, respectively (P < 0.05). Decreased baroreceptor activity was accompanied by a significant increase in carotid diameter in the eNOS-transduced carotid sinuses (n = 5). l-NAME prevented the inhibition of baroreceptor activity and the increase in carotid diameter in eNOS-transduced carotid sinuses (n = 5). We conclude that adenoviral-mediated gene transfer of eNOS to carotid sinus adventitia causes sustained, NO-dependent inhibition of baroreceptor activity and resetting of the baroreceptor function curve to higher pressures. PMID:12676743

  12. Evaluation of 90-day Repeated Dose Oral Toxicity, Glycometabolism, Learning and Memory Ability, and Related Enzyme of Chromium Malate Supplementation in Sprague-Dawley Rats.

    Science.gov (United States)

    Feng, Weiwei; Wu, Huiyu; Li, Qian; Zhou, Zhaoxiang; Chen, Yao; Zhao, Ting; Feng, Yun; Mao, Guanghua; Li, Fang; Yang, Liuqing; Wu, Xiangyang

    2015-11-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the 90-day oral toxicity of chromium malate in Sprague-Dawley rats. The present study inspected the effect of chromium malate on glycometabolism, glycometabolism-related enzymes, lipid metabolism, and learning and memory ability in metabolically healthy Sprague-Dawley rats. The results showed that all rats survived and pathological, toxic, feces, and urine changes were not observed. Chromium malate did not cause measurable damage on liver, brain, and kidney. The fasting blood glucose, serum insulin, insulin resistance index, C-peptide, hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels of normal rats in chromium malate groups had no significant change when compared with control group and chromium picolinate group under physiologically relevant conditions. The serum and organ content of Cr in chromium malate groups had no significant change compared with control group. No significant changes were found in morris water maze test and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and true choline esterase (TChE) activity. The results indicated that supplementation with chromium malate did not cause measurable toxicity and has no obvious effect on glycometabolism and related enzymes, learning and memory ability, and related enzymes and lipid metabolism of female and male rats. The results of this study suggest that chromium malate is safe for human consumption. PMID:25900579

  13. Methylmercury intoxication activates nitric oxide synthase in chick retinal cell culture

    Scientific Electronic Library Online (English)

    A.M., Herculano; M.E., Crespo-López; S.M.A., Lima; D.L.W., Picanço-Diniz; J.L.M. Do, Nascimento.

    2006-03-01

    Full Text Available The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg [...] neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H³]-arginine to L-[H³]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P

  14. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities

    DEFF Research Database (Denmark)

    Volke, A; Wegener, Gregers; Vasar, E; Volke, V

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC ha...

  15. Nitric oxide synthase activity in tissues of the blowfly Chrysomya megacephala: Fabricius, 1794

    Scientific Electronic Library Online (English)

    A. C., Faraldo; A, Sá-Nunes; L. H., Faccioli; E. A., Del Bel; E, Lello.

    2007-08-01

    Full Text Available Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses, which include both cellular and humoral components. Cellular responses are mediated by hemocytes, and humoral responses include the activation of proteolytic cascades that initiate [...] many events, including NO production. In mammals, nitric oxide synthases (NOSs) are also present in the endothelium, the brain, the adrenal glands, and the platelets. Studies on the distribution of NO-producing systems in invertebrates have revealed functional similarities between NOS in this group and vertebrates. We attempted to localize NOS activity in tissues of naïve (UIL), yeast-injected (YIL), and saline-injected (SIL) larvae of the blowfly Chrysomya megacephala, using the NADPH diaphorase technique. Our findings revealed similar levels of NOS activity in muscle, fat body, Malpighian tubule, gut, and brain, suggesting that NO synthesis may not be involved in the immune response of these larval systems. These results were compared to many studies that recorded the involvement of NO in various physiological functions of insects.

  16. Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation

    International Nuclear Information System (INIS)

    Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be phosphorylated and inactivated in vitro with [?-32P]ATP. Thus, it was surprising to find that SPS, extracted from leaves fed mannose in the light to highly activate the enzyme, could be inactivated in an ATP-independent manner when desalted crude extracts were preincubated at 25 degrees C before assay. The spontaneous inactivation involved a loss in activity measured with limiting substrate concentrations in the presence of the inhibitor, Pi, without affecting maximum catalytic activity. The spontaneous inactivation was unaffected by exogenous carrier proteins and protease inhibitors, but was inhibited by inorganic phosphate, fluoride, and molybdate, suggesting that a phosphatase may be involved. Okadaic acid, a potent inhibitor of mammalian type 1 and 2A protein phosphatases, had no effect up to 5 micromolar. Inactivation was stimulated about twofold by exogenous Mg2+ and was relatively insensitive to Ca2+ and to pH over the range pH 6.5 to 8.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with [32P]Pi (initially in the dark and then in the light with mannose) was lost with time when desalted crude extracts were incubated at 25 C, and the loss in radiolabel was substantially reduced by fluoride. These results provide direct evidence for action of an endogenous phosphatase(s) using SPS as substrate

  17. Nitric oxide synthase activity in tissues of the blowfly Chrysomya megacephala: Fabricius, 1794

    Directory of Open Access Journals (Sweden)

    A. C. Faraldo

    2007-08-01

    Full Text Available Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses, which include both cellular and humoral components. Cellular responses are mediated by hemocytes, and humoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In mammals, nitric oxide synthases (NOSs are also present in the endothelium, the brain, the adrenal glands, and the platelets. Studies on the distribution of NO-producing systems in invertebrates have revealed functional similarities between NOS in this group and vertebrates. We attempted to localize NOS activity in tissues of naïve (UIL, yeast-injected (YIL, and saline-injected (SIL larvae of the blowfly Chrysomya megacephala, using the NADPH diaphorase technique. Our findings revealed similar levels of NOS activity in muscle, fat body, Malpighian tubule, gut, and brain, suggesting that NO synthesis may not be involved in the immune response of these larval systems. These results were compared to many studies that recorded the involvement of NO in various physiological functions of insects.

  18. Renal cortical nitric oxide synthase activity during maturational growth in the rat.

    Science.gov (United States)

    Ishii, Naohito; Fujiwara, Keiji; Lane, Pascale H; Patel, Kaushik P; Carmines, Pamela K

    2002-08-01

    The present study was designed to test the hypothesis that growth from puberty to adulthood in the rat is associated with an increase in renal cortical nitric oxide synthase (NOS) activity that results in an augmented impact of nitric oxide (NO) on hemodynamic function. Two groups of male Sprague-Dawley rats were studied: juvenile rats (approximately 2 months old) and mature rats (approximately 5 months old). NOS activity, measured as -nitro-L-arginine (NNA)-sensitive (3)H-L-citrulline production from (3)H-L-arginine, was significantly higher in the renal cortex of mature rats (57+/-2 pmol/h per mg protein) than in juveniles (42+/-3 pmol/h per mg protein). Additional animals from each group were anesthetized to determine the acute impact of NOS inhibition on arterial pressure and renal cortical blood flow, measured by single-fiber Doppler flowmetry. Cortical blood flow was higher in mature rats than in juveniles, averaging 22+/-2 and 16+/-1 perfusion units, respectively. NOS inhibition (10 mg/kg NNA i.v.) decreased renal cortical blood flow in mature rats by 35+/-7%, but only by 9+/-4% in juvenile animals. These data support the hypothesis that maturational growth in the rat is associated with augmented NOS activity coupled with an increased tonic influence of NO on renal cortical blood flow. PMID:12185463

  19. Activation of Glycogen Synthase Kinase-3 Mediates the Olfactory Deficit-Induced Hippocampal Impairments.

    Science.gov (United States)

    Hu, Juan; Huang, He-Zhou; Wang, Xiang; Xie, Ao-Ji; Wang, Xiong; Liu, Dan; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2015-12-01

    The populations with olfactory dysfunction show an increased chance for hippocampus-dependent episodic memory deficit. Although it is known that the olfactory information projects to the hippocampus through entorhinal cortex layer II, the molecular mechanisms linking olfactory deficit to the hippocampus is not understood. Using bilateral olfactory bulbectomy (OBX) as a model, we found that OBX induced memory deficits with activation of several memory-related protein kinases in the hippocampal extracts, including glycogen synthase kinase-3? (GSK-3?), protein kinase A (PKA), extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (PKB). The OBX rats also show suppression of long-term potentiation (LTP); reduction of synapsin I, synaptophysin, NR2A/B, and PSD95; thinner presynaptic active zone and postsynaptic density with enlarged synaptic space; decreased spine numbers and mushroom-type spines; and tau hyperphosphorylation. After injection of SB216763 for several weeks by vena caudalis, selective inhibition of GSK-3? ameliorated the OBX-induced memory deficits with recovery of the synaptic components and tau phosphorylation. Furthermore, genetic ablation of GSK-3? by lentivirus-packed shRNA effectively rescued the memory deficits, synaptic disorder, and tauopathy. Our data indicate that GSK-3 activation mediates the olfactory deficits to the hippocampus, and targeting GSK-3 blocks the pathological connection. PMID:25367884

  20. Antioxidant and nitric oxide synthase activation properties of water soluble polysaccharides from Pleurotus florida

    Directory of Open Access Journals (Sweden)

    Subarna Saha

    2013-01-01

    Full Text Available Context: Cellular damage caused by reactive oxygen species has been implicated in several diseases, and, at the same time, nitric oxide is recognized as an important messenger molecule for several pathophysiological conditions. Hence, a novel antioxidant and nitric oxide synthase (NOS activator from natural sources have significant importance in human health. Aims: The present study was conducted to evaluate the free radical-scavenging activity and NOS activation properties of water-soluble crude polysaccharide (Floridan from Pleurotus florida. Materials and Methods: Crude polysaccharide was precipitated from hot water extract of P. florida, and their physicochemical parameters were determined. Then, ? and ? glucan were estimated using mushroom and yeast ? glucan assay kit and Fourier transform infrared spectroscopy (FT-IR. Floridan was analyzed for their free radical scavenging activity in different test systems, namely hydroxyl and superoxide radical scavenging activity, ferrous ion chelating ability, determination of reducing power and inhibition of lipid peroxidation. Floridan was also tested for NOS activation using oxyhaemoglobin method. Statistical Analysis: The results were statistically analyzed using the Student?s t-test. Results: Results showed that Floridan was rich in water-soluble ? glucan with very low amount of protein and phenols. The EC 50 for hydroxyl and superoxide radical-scavenging activity were 140 and 320 ?g/ml, respectively, 450 ?g/ml for chelating ability, 300 ?g/ml for inhibition of lipid peroxidation and 2 mg/ml for reducing power. Floridan also increased nitric oxide production significantly. Conclusions: The present results revealed that this mushroom polysaccharide may be utilized as a promising dietary supplement to combat several killer diseases.

  1. Valencene synthase

    OpenAIRE

    Achkar, A; Sonke, Th.; Bouwmeester, H.J.; Bosch, H.J.

    2011-01-01

    The present invention relates to a novel valencene synthase, to a nucleic acid encoding such valencene synthase, to a host cell comprising said encoding nucleic acid sequence and to a method for preparing valencene, comprising converting farnesyl diphosphate to valencene in the presence of a valencene synthase according to the invention.

  2. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; Del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. PMID:26196273

  3. Nitric oxide synthase activity in human trophoblast, term placenta and pregnant myometrium

    Directory of Open Access Journals (Sweden)

    Laurini Ricardo

    2003-06-01

    Full Text Available Abstract To investigate the possible role of nitric oxide (NO produced locally or intramurally in the quiescence of the pregnant myometrium, nitric oxide synthase (NOS activity was measured in samples from first trimester (villous, and non villous-trophoblast, term placenta and pregnant myometrium. Trophoblast tissue was obtained from psychosocial termination of pregnancy (9 – 12 weeks' gestation whereas placenta and myometrium, from the same patient, at deliveries by Caesarean section. NOS activity was measured in both cytosolic and particulate fractions by the formation of 14C-citrulline from 14C-arginine. Western immunoblotting was used to identify the endothelial NOS (eNOS and neuronal (nNOS isoforms. The activity of NOS in particulate fractions from all preparations was considerably higher than the cytosolic fractions. Activity in all fractions except the myometrium was highly Ca-dependent. More than 50% of particulate NOS from the myometrium was Ca-independent. NOS activity was highest in the villous trophoblast and there was a significant difference between the villous and non-villous trophoblast. In placenta and myometrium, NOS was 2–4 fold and 20–28-fold lower than the villous trophoblast, respectively. Western blot analysis showed clearly eNOS in the particulate fraction and a weak eNOS band in the cytosolic fractions, whereas nNOS was not detectable in any of the fractions. In view of the marginal activity of NOS in the myometrium, NO produced by the trophoblast and placenta could play a significant role in maintaining uterine quiescence by paracrine effect.

  4. Activation of macrophage nuclear factor-?B and induction of inducible nitric oxide synthase by LPS

    Directory of Open Access Journals (Sweden)

    Yan Zhong-Qun

    2002-09-01

    Full Text Available Abstract Background Chronic lung disease (CLD of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS to stimulate rat alveolar macrophages to produce nitric oxide (NO, express inducible nitric oxide synthase (iNOS and activate nuclear factor-?B (NF-?B in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. Methods Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA was performed to analyze the activation of NF-?B. Results We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (?10 ng/ml and time dependent manner (p -4–10-10 M and dexamethasone (10-4–10-6 M (p Conclusion Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD.

  5. Active-site models for complexes of quinolinate synthase with substrates and intermediates.

    Science.gov (United States)

    Soriano, Erika V; Zhang, Yang; Colabroy, Keri L; Sanders, Jennie M; Settembre, Ethan C; Dorrestein, Pieter C; Begley, Tadhg P; Ealick, Steven E

    2013-09-01

    Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8?Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel ?-sheet flanked by four ?-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe-4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005), J. Biol. Chem. 280, 26645-26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe-4S] cluster, prior to cluster assembly. PMID:23999292

  6. Methylmercury intoxication activates nitric oxide synthase in chick retinal cell culture

    Directory of Open Access Journals (Sweden)

    Herculano A.M.

    2006-01-01

    Full Text Available The visual system is a potential target for methylmercury (MeHg intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H³]-arginine to L-[H³]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05. Maximum values (P < 0.05 were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates. MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system.

  7. Photosynthetic Adaptation to Length of Day Is Dependent on S-Sulfocysteine Synthase Activity in the Thylakoid Lumen1[W

    OpenAIRE

    Bermúdez, María Ángeles; Galmés, Jeroni; Moreno, Inmaculada; Mullineaux, Philip M; Gotor, Cecilia; Romero, Luis C.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) chloroplasts contain two O-acetyl-serine(thiol)lyase (OASTL) homologs, OAS-B, which is an authentic OASTL, and CS26, which has S-sulfocysteine synthase activity. In contrast with OAS-B, the loss of CS26 function resulted in dramatic phenotypic changes, which were dependent on the light treatment. We have performed a detailed characterization of the photosynthetic and chlorophyll fluorescence parameters in cs26 plants compared with those of wild-type plants u...

  8. Coagulase-Negative Staphylococci Favor Conversion of Arginine into Ornithine despite a Widespread Genetic Potential for Nitric Oxide Synthase Activity

    OpenAIRE

    Sánchez Mainar, María; Weckx, Stefan; Leroy, Frédéric

    2014-01-01

    Within ecosystems that are poor in carbohydrates, alternative substrates such as arginine may be of importance to coagulase-negative staphylococci (CNS). However, the versatility of arginine conversion in CNS remains largely uncharted. Therefore, a set of 86 strains belonging to 17 CNS species was screened for arginine deiminase (ADI), arginase, and nitric oxide synthase (NOS) activities, in view of their ecological relevance. In fermented meats, for instance, ADI could improve bacterial comp...

  9. Engrailed-1 Negatively Regulates ?-Catenin Transcriptional Activity by Destabilizing ?-Catenin via a Glycogen Synthase Kinase-3?–independent Pathway

    OpenAIRE

    Bachar-Dahan, Liora; Goltzmann, Janna; Yaniv, Abraham; Gazit, Arnona

    2006-01-01

    The Wnt signaling pathway plays a major role in development, and upon deregulation it is implicated in neoplasia. The hallmark of the canonical Wnt signal is the protection of ?-catenin from ubiquitination and proteasomal degradation induced by glycogen synthase kinase (GSK)-3? inhibition. The stabilized ?-catenin translocates to the nucleus where it binds to T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors, activating the expression of Wnt target genes. In the absence o...

  10. Analysis of the Novel Benzylsuccinate Synthase Reaction for Anaerobic Toluene Activation Based on Structural Studies of the Product

    OpenAIRE

    Beller, Harry R.; Spormann, Alfred M

    1998-01-01

    Recent studies of anaerobic toluene catabolism have demonstrated a novel reaction for anaerobic hydrocarbon activation: the addition of the methyl carbon of toluene to fumarate to form benzylsuccinate. In vitro studies of the anaerobic benzylsuccinate synthase reaction indicate that the H atom abstracted from the toluene methyl group during addition to fumarate is retained in the succinyl moiety of benzylsuccinate. Based on structural studies of benzylsuccinate formed during anaerobic, in vit...

  11. Multitracer Stable Isotope Quantification of Arginase and Nitric Oxide Synthase Activity in a Mouse Model of Pseudomonas Lung Infection

    OpenAIRE

    Hartmut Grasemann; Thomas Jaecklin; Anne Mehl; Hailu Huang; Mahroukh Rafii; Paul Pencharz; Felix Ratjen

    2014-01-01

    Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs) and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using l...

  12. Skeletal muscle glucose uptake, glycogen synthase activity and GLUT 4 content during hypoglycaemia in type 1 diabetic subjects

    DEFF Research Database (Denmark)

    Orskov, L; Schmitz, O; Bak, J F; Lund, Sten; Kaal, A; Nyholm, B; Møller, N

    2001-01-01

    In healthy subjects, hypoglycaemia induces a profound 80% reduction in skeletal muscle glucose uptake and a similar suppression of glycogen synthase activity. The aim of this study was to examine the efficacy of this counterregulatory mechanism in type 1 diabetic subjects, who are especially prone to hypoglycaemic incidents. Nine type 1 diabetic male subjects were examined twice; during 120 min of hyperinsulinaemic (1.5 mU x kg(-1) x min(-1)) euglycaemia followed by (i) 240 min of graded hypogly...

  13. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a ?-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3? (Ser-21/? (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of ?-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  14. Comparative computational analysis of active and inactive cofactors of nitric oxide synthase.

    Science.gov (United States)

    Menyhárd, Dóra K

    2009-03-12

    Nitric oxide synthases (NOSs) are heme proteins that catalyze the formation of nitric oxide from L-Arg in the presence of oxygen. Of the two electrons required for the first step of the reaction, the second is primarily donated by the tetrahydrobiopterin (H4B) cofactor bound adjacent to the heme, which is eventually reduced back to resting state by the ultimate electron source of the reaction, the flavins of the NOS reductase domain. Density functional theory calculations were carried out to identify those protonation states of different cofactor molecules that best support radicalization of the cofactor and the coupled increase in the electron density of the heme-bound oxygen molecule. Three cofactor molecules were studied, native H4B, an active analogue, 5-methyl-H4B, and the inactive 4-amino-H4B. Findings support the emerging model where H4B and 5-methyl-H4B are coupled proton/electron sources of NOS catalysis, while 4-amino-H4B is an inhibitor due to its inability to donate the catalytically required proton. PMID:19708267

  15. MALATE PLAYS A CENTRAL ROLE IN PLANT NUTRITION

    Science.gov (United States)

    Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, ...

  16. Active-site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A

    International Nuclear Information System (INIS)

    3-Chloropropionyl coenzyme A (3-chloropropionyl-CoA) irreversibly inhibits avian liver 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase). Enzyme inactivation follows pseudo-first-order kinetics and is retarded in the presence of substrates, suggesting that covalent labeling occurs at the active site. A typical rate saturation effect is observed when inactivation kinetics are measured as a function of 3-chloropropionyl-CoA concentration. These data indicate a Ki = 15 microM for the inhibitor and a limiting kinact = 0.31 min-1. [1-14C]-3-Chloropropionyl-CoA binds covalently to the enzyme with a stoichiometry (0.7 per site) similar to that measured for acetylation of the enzyme by acetyl-CoA. While the acetylated enzyme formed upon incubation of HMG-CoA synthase with acetyl-CoA is labile to performic acid oxidation, the adduct formed upon 3-chloropropionyl-CoA inactivation is stable to such treatment. Therefore, such an adduct cannot solely involve a thio ester linkage. Exhaustive Pronase digestion of [14C]-3-chloropropionyl-CoA-labeled enzyme produces a radioactive compound which cochromatographs with authentic carboxyethylcysteine using reverse-phase/ion-pairing high-pressure liquid chromatography and both silica and cellulose thin-layer chromatography systems. This suggests that enzyme inactivation is due to alkylation of an active-site cysteine residue

  17. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training.

    DEFF Research Database (Denmark)

    VigelsØ Hansen, Andreas; Andersen, Nynne Bjerre

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. The search profile included: citrate, synthase, human, skeletal, muscle, training, not electrical stimulation, not in-vitro, not rats. Studies that reported changes in CS activity and V.O2max were included. Different training types and subject populations were analyzed independently to assess correlation between relative changes in V.O2max and CS activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P < 0.001) between the relative change in V.O2max and the relative change in CS activity. All reported absolute values of CS and V.O2max did not correlate (r =- 0.07, n = 148, P = 0.4). Training induced changes in whole body oxidative capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across different studies cannot be compared unless a standardized analytical method is used by all laboratories

  18. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    OpenAIRE

    Smith, K.; Sundaram, T K; Kernick, M

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  19. Treatment of rats with glucagon or mannoheptulose increases mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity and decreases succinyl-CoA content in liver.

    Science.gov (United States)

    Quant, P A; Tubbs, P K; Brand, M D

    1989-08-15

    1. The activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (EC 4.1.3.5) in extracts of rapidly frozen rat livers was doubled in animals treated in various ways to increase ketogenic flux. 2. Some 90% of the activity measured was mitochondrial, and changes in mitochondrial activity dominated changes in total enzyme activity. 3. The elevated HMG-CoA synthase activities persisted throughout the isolation of liver mitochondria. 4. Intramitochondrial succinyl-CoA content was lower in whole liver homogenates and in mitochondria isolated from animals treated with glucagon or mannoheptulose. 5. HMG-CoA synthase activity in mitochondria from both ox and rat liver was negatively correlated with intramitochondrial succinyl-CoA levels when these were manipulated artificially. Under these conditions, the differences between mitochondria from control and hormone-treated rats were abolished. 6. These findings show that glucagon can decrease intramitochondrial succinyl-CoA concentration, and that this in turn can regulate mitochondrial HMG-CoA synthase. They support the hypothesis that the formation of ketone bodies from acetyl-CoA may be regulated by the extent of succinylation of mitochondrial HMG-CoA synthase. PMID:2573345

  20. The effect of intermittent cryotherapy on the activities of citrate synthase and lactate dehydrogenase in regenerating skeletal muscle

    Scientific Electronic Library Online (English)

    Nuno Miguel Lopes de, Oliveira; João Luiz Quagliotti, Durigan; Flávia Simone, Munin; Maria Luiza Barcelos, Schwantes; Tania de Fátima, Salvini.

    2013-02-01

    Full Text Available This study examined the effect of three sessions of cryotherapy (three sessions of 30 minutes applied each 2 h) and muscle compression in the regenerating skeletal muscle of the rats. The middle belly of tibialis anterior muscle was injured by a frozen iron bar and received one of the following inte [...] rvention: injury + cryotherapy (treated with cryotherapy); injury + placebo (sand pack), and injury (I).The enzymatic activities of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured in the presence of 1mM or 10mM pyruvate. The ANOVA and Tukey's test (p

  1. Nitric oxide synthase activity and non-adrenergic non-cholinergic relaxation in the rat gastric fundus.

    OpenAIRE

    Currò, D.; Volpe, A. R.; Preziosi, P

    1996-01-01

    1. In the presence of atropine (1 microM) and guanethidine (5 microM), electrical field stimulation (EFS, 120 mA, 1 ms, 0.5-16.0 Hz, trains of 2 min) induced frequency-dependent relaxations of 5-hydroxytryptamine (3 microM)-precontracted longitudinal muscle strips from the rat gastric fundus. 2. L-Citrulline concentrations were measured in the incubation medium of precontracted strips before and after EFS to investigate nitric-oxide (NO) synthase activity and its possible relation to non-adre...

  2. Prostaglandin E2 induces vascular relaxation by E-prostanoid 4 receptor-mediated activation of endothelial nitric oxide synthase

    DEFF Research Database (Denmark)

    Hristovska, Ana-Marija; Rasmussen, Lasse E; Hansen, Pernille B L; Nielsen, Susan S; Nüsing, Rolf M; Narumiya, Shuh; Vanhoutte, Paul; Skøtt, Ole; Jensen, Boye L

    2007-01-01

    The present experiments were designed to test the hypothesis that prostaglandin (PG) E(2) causes vasodilatation through activation of endothelial NO synthase (eNOS). Aortic rings from mice with targeted deletion of eNOS and E-prostanoid (EP) receptors were used for contraction studies. Blood pressure changes in response to PGE(2) were measured in conscious mice. Single doses of PGE(2) caused concentration-dependent relaxations during contractions to phenylephrine (EC(50)=5*10(-8) mol/L). Relaxat...

  3. Regulation of Aldosterone Synthase by Activator Transcription Factor/cAMP Response Element-Binding Protein Family Members

    OpenAIRE

    Nogueira, Edson F.; Rainey, William E.

    2010-01-01

    Aldosterone synthesis is regulated by angiotensin II (Ang II) and K+ acting in the adrenal zona glomerulosa, in part through the regulation of aldosterone synthase (CYP11B2). Here, we analyzed the role of cAMP response element (CRE)-binding proteins (CREBs) in the regulation of CYP11B2. Expression analysis of activator transcription factor (ATF)/CREB family members, namely the ATF1 and ATF2, the CREB, and the CRE modulator, in H295R cells and normal human adrenal tissue was performed using qu...

  4. Clinicopathological and biological significance of aberrant activation of glycogen synthase kinase-3 in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fu Y

    2014-06-01

    Full Text Available Yunfeng Fu,1 Xinyu Wang,1 Xiaodong Cheng,1 Feng Ye,2 Xing Xie,1,2 Weiguo Lu1,2 1Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, 2Women's Reproduction and Health Laboratory of Zhejiang Province, Hangzhou, People's Republic of China Background: Glycogen synthase kinase-3 (GSK-3 plays an important role in human cancer. The aim of this study is to evaluate the clinicopathological significance of expression of GSK-3?/? and pGSK-3?/?Tyr279/216 in patients with epithelial ovarian cancer and to investigate whether GSK-3 inhibition can influence cell viability and tumor growth of ovarian cancer. Methods: Immunohistochemistry was used to examine expression of GSK-3?/? and pGSK-3?/?Tyr279/216 in 71 human epithelial ovarian cancer tissues and correlations between protein expression, and clinicopathological factors were analyzed. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay following exposure of ovarian carcinoma cells to pharmacological inhibitors of GSK-3 or GSK-3 small interfering RNA. In vivo validation of tumor growth inhibition was performed with xenograft mice. Results: The expression levels of GSK-3?/? and pGSK-3?/?Tyr279/216 in ovarian cancers were significantly higher than those in benign tumors. High expression of GSK-3?/? was more likely to be found in patients with advanced International Federation of Gynecology and Obstetrics (FIGO stages and high serum cancer antigen 125. Higher expression of pGSK-3?/?Tyr279/216 was associated with advanced FIGO stages, residual tumor mass, high serum cancer antigen 125, and poor chemoresponse. Worse overall survival was revealed by Kaplan–Meier survival curves in patients with high expression of GSK-3?/? or pGSK-3?/?Tyr279/216. Multivariate analysis indicated that FIGO stage, GSK-3?/? expression, and pGSK-3?/?Tyr279/216 expression were independent prognostic factors for overall survival. GSK-3 inhibition by lithium chloride, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, or GSK-3 small interfering RNA can decrease viability of SKOV3 and SKOV3-TR30 ovarian cancer cells. Additionally, lithium chloride-treated SKOV3 xenograft mice had a significant reduction in tumor growth compared with control-treated animals. Conclusion: Our findings suggest that overexpression and aberrant activation of GSK-3 may contribute to progression and poor prognosis in ovarian cancer. Inhibition of GSK-3 may be a potential therapy for ovarian cancer.Keywords: ovarian carcinoma, immunohistochemistry, lithium chloride, TDZD-8

  5. New procedures to measure synthase and phosphatase activities of bis-phosphoglycerate mutase. Interest for development of therapeutic drugs

    International Nuclear Information System (INIS)

    In red blood cells, a modulation of the level of the allosteric effector of hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) would have implications in the treatment of ischemia and sickle cell anemia. Its concentrations is determined by the relative activities of the synthase and phosphatase reactions of the multifunctional bis-phosphoglycerate mutase (BPGM). In this report we develop first a more direct synthase assay which uses glyceraldehyde phosphate to suppress the aldolase and triose phosphate isomerase reactions. Secondly we propose a radioactive phosphatase assay coupled to chromatographic separation and identification of the reaction products by paper electrophoresis. Such identification of these products allows us to show that the multifunctional BPGM expresses its mutase instead of its phosphatase activity in conditions of competition between the 3-phosphoglycerate and the 2-phospho-glycolate activator in the phosphatase reaction. These two more precise procedures could be used to study the effects of substrate and cofactor analogues regarding potential therapeutic approaches and could be used for clinical analyses to detect deficiency of BPGM. (author)

  6. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare

    DEFF Research Database (Denmark)

    Zerbe, Philipp; Chiang, Angela

    2014-01-01

    Marrubium vulgare (Lamiaceae) is a medicinal plant whose major bioactive compounds, marrubiin and other labdane–related furanoid diterpenoids, have potential applications as anti–diabetics, analgesics or vasorelaxants. Metabolite and transcriptome profiling of M. vulgare leaves identified five different candidate diterpene synthases (diTPSs) of the TPS–c and TPS–e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent–kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3 (+)-copalyl diphosphate synthase, and the functional diTPS pair MvCPS1 and MvELS. In a sequential reaction, MvCPS1 and MvELS produce a unique oxygenated diterpene scaffold 9,13-epoxy-labd-14-ene en route to marrubiin and an array of related compounds. In contrast with previously known diTPSs that introduce a hydroxyl group at carbon C–8 of the labdane backbone, the MvCPS1-catalyzed reaction proceeds via oxygenation of an intermediate carbocation at C–9, yielding the bicyclic peregrinol diphosphate. MvELS belongs to a subgroup of the diTPS TPS–e/f clade with unusual ??–domain architecture. MvELS is active in vitro and in vivo with three different prenyl diphosphate substrates forming the marrubiin precursor 9,13-epoxy-labd-14-ene, as identified by nuclear magnetic resonance (NMR) analysis, manoyl oxide and miltiradiene. MvELS fills a central position in the biosynthetic system that forms the foundation for the diverse repertoire of Marrubium diterpenoids. Co-expression of MvCPS1 and MvELS in engineered E. coli and Nicotiana benthamiana offers opportunities for producing precursors for an array of biologically active diterpenoids.

  7. Role of NAD+-Dependent Malate Dehydrogenase in the Metabolism of Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b

    Directory of Open Access Journals (Sweden)

    Olga N. Rozova

    2015-02-01

    Full Text Available We have expressed the l-malate dehydrogenase (MDH genes from aerobic methanotrophs Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b as his-tagged proteins in Escherichia coli. The substrate specificities, enzymatic kinetics and oligomeric states of the MDHs have been characterized. Both MDHs were NAD+-specific and thermostable enzymes not affected by metal ions or various organic metabolites. The MDH from M. alcaliphilum 20Z was a homodimeric (2 × 35 kDa enzyme displaying nearly equal reductive (malate formation and oxidative (oxaloacetate formation activities and higher affinity to malate (Km = 0.11 mM than to oxaloacetate (Km = 0.34 mM. The MDH from M. trichosporium OB3b was homotetrameric (4 × 35 kDa, two-fold more active in the reaction of oxaloacetate reduction compared to malate oxidation and exhibiting higher affinity to oxaloacetate (Km = 0.059 mM than to malate (Km = 1.28 mM. The kcat/Km ratios indicated that the enzyme from M. alcaliphilum 20Z had a remarkably high catalytic efficiency for malate oxidation, while the MDH of M. trichosporium OB3b was preferable for oxaloacetate reduction. The metabolic roles of the enzymes in the specific metabolism of the two methanotrophs are discussed.

  8. Characterization of the anti-inflammatory activity of enones based on the evaluation of their heme oxygenase-1 and inducible NO synthase activity

    OpenAIRE

    Rücker, Hannelore-Maria

    2015-01-01

    To fight chronic inflammation in autoimmune diseases such as rheumatic arthritis and multiple sclerosis or cancer is an exigency. Therefore the inhibition of proinflammatory proteins such as inducible NO-synthase (iNOS) and the activation of anti-inflammatory proteins such as heme oxygenase-1 (HO-1) are important measures to be addressed. Many natural products and synthetic compounds with an ?,?-unsaturated carbonyl moiety reveal a variety of biological properties, including antioxidant, anti...

  9. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs.

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Ro?. 55, ?. 6 (2006), s. 675-688. ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  10. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    International Nuclear Information System (INIS)

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS

  11. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph, E-mail: kappock@purdue.edu [Purdue University, 175 South University Street, West Lafayette, IN 47907-2063 (United States)

    2015-09-23

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.

  12. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  13. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  14. Tobacco smoke regulates the expression and activity of microsomal prostaglandin E synthase-1: role of prostacyclin and NADPH-oxidase.

    Science.gov (United States)

    Barbieri, Silvia S; Amadio, Patrizia; Gianellini, Sara; Zacchi, Elena; Weksler, Babette B; Tremoli, Elena

    2011-10-01

    Tobacco smoke (TS) interacts with interleukin-1? (IL-1?) to modulate generation of reactive oxygen species (ROS) and expression of cyclooxygenase-2. We explored molecular mechanisms by which TS/IL-1? alters expression and activity of microsomal-prostaglandin E synthase-1 (mPGES-1) and of prostacyclin synthase (PGIS) in mouse cardiac endothelial cells. TS (EC(50) ?5 puffs/L) interacting with IL-1? (2 ?g/L) up-regulates PGE(2) production and mPGES-1 expression, reaching a plateau at 4-6 h, but down-regulates prostacyclin (PGI(2)) release by increasing IL-1?-mediated PGIS tyrosine nitration. Inhibition of NADPH-oxidase, achieved pharmacologically and/or by silencing its catalytic subunit p47phox, or exogenous PGI(2) (carbaprostacyclin; IC(50) ?5 ?M) prevents production of both ROS and PGE(2), and negatively modulates mPGES-1 expression induced by TS/IL-1?. Moreover, inhibiting PGI(2), either using PGIS siRNA and/or CAY10441 (EC(50) ?20 nM), a PGI(2) receptor antagonist, increases NADPH-oxidase activation, mPGES-1 synthesis, and PGE(2) production. Finally, lower PGI(2) levels associated with higher PGIS tyrosine nitration, p47phox translocation to the membrane (an index of activation of NADPH-oxidase), and mPGES-1 expression and activity were detected in cardiovascular tissues of ApoE(-/-) mice exposed to cigarette smoke compared to control mice. In conclusion, cigarette smoke in association with cytokines alters the balance between PGI(2)/PGE(2), reducing PGI(2) production and increasing synthesis and activity of mPGES-1 via NADPH-oxidase activation, predisposing to development of pathological conditions. PMID:21737615

  15. The Cytoplasmic Tail of GM3 Synthase Defines Its Subcellular Localization, Stability, and In Vivo Activity

    OpenAIRE

    Uemura, Satoshi; Yoshida, Sayaka; Shishido, Fumi; Inokuchi, Jin-ichi

    2009-01-01

    GM3 synthase (SAT-I) is the primary glycosyltransferase responsible for the biosynthesis of ganglio-series gangliosides. In this study, we identify three isoforms of mouse SAT-I proteins, named M1-SAT-I, M2-SAT-I, and M3-SAT-I, which possess distinct lengths in their NH2-terminal cytoplasmic tails. These isoforms are produced by leaky scanning from mRNA variants of mSAT-Ia and mSAT-Ib. M2-SAT-I and M3-SAT-I were found to be localized in the Golgi apparatus, as expected, whereas M1-SAT-I was e...

  16. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ?1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  17. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    Science.gov (United States)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; Hare, Joshua M.

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, Pendothelial dysfunction of aging and may therefore be a therapeutic target.

  18. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  19. EDC4 interacts with and regulates the dephospho-CoA kinase activity of CoA synthase.

    Science.gov (United States)

    Gudkova, Daria; Panasyuk, Ganna; Nemazanyy, Ivan; Zhyvoloup, Alexander; Monteil, Pascale; Filonenko, Valeriy; Gout, Ivan

    2012-10-19

    Coenzyme A synthase (CoAsy) is a bifunctional enzyme which facilitates the last two steps of Coenzyme A biogenesis in higher eukaryotes. Here we describe that CoAsy forms a complex with enhancer of mRNA-decapping protein 4 (EDC4), a central scaffold component of processing bodies. CoAsy/EDC4 complex formation is regulated by growth factors and is affected by cellular stresses. EDC4 strongly inhibits the dephospho-CoA kinase activity of CoAsy in vitro. Transient overexpression of EDC4 decreases cell proliferation, and further co-expression of CoAsy diminishes this effect. Here we report that EDC4 might contribute to regulation of CoA biosynthesis in addition to its scaffold function in processing bodies. PMID:22982864

  20. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Science.gov (United States)

    Singh, Shailendra P.; Tao, Shixin; Fields, Timothy A.; Webb, Sydney; Harris, Raymond C.; Rao, Reena

    2015-01-01

    ABSTRACT Glycogen synthase kinase-3? (GSK3?) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3? expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-?1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-?1 treatment increased GSK3? expression and GSK3 inhibition abolished TGF-?1-induced SMAD3 activation and ?-smooth muscle actin (?-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3? stimulated ?-SMA expression even in the absence of TGF-?1 treatment. These results suggest that TGF-? regulates GSK3?, which in turn is important for TGF-?–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-? signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. PMID:26092126

  1. Important differences in nitric oxide synthase activity and predominant isoform in reproductive tissues from human and rat

    Directory of Open Access Journals (Sweden)

    Al-Hijji J

    2003-02-01

    Full Text Available Abstract For the extrapolation of data obtained from experimental animals to the human situation, it is important to know the similarities and differences between human and animal species. Some important characteristics of nitric oxide synthase (NOS in myometrium and vagina from human and rat were compared. NOS-activity was measured by the formation of 14C-citrulline from 14C-arginine and the expression of NOS isoforms was examined by Western blotting. NOS activity in human uterus and vagina was significantly lower than in the tissues from rat. In contrast to the rat where NOS activity was predominantly found in the cytosolic fractions, NOS activity in particulate and cytosolic fractions from both human myometrium and vagina was similar. Data from Western blots confirmed that eNOS and nNOS isoforms were concentrated in the particulate and cytosolic fractions, respectively. Estrogen treatment of rats resulted in a down regulation of uterine cytosolic NOS activity. A down regulation of NOS in the cytosolic fraction was also seen in the human pregnant myometrium as compared with the nonpregnant myometrium. The vaginal NOS activity was considerably higher than the uterus in both species. In spite of some clear-cut qualitative and other differences between human and rat tissues, there are some interesting similarities. Downregulation in pregnancy of human uterine NOS is probably due to, at least in part, the influence of estrogen and progesterone.

  2. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice.

    Science.gov (United States)

    Singh, Shailendra P; Tao, Shixin; Fields, Timothy A; Webb, Sydney; Harris, Raymond C; Rao, Reena

    2015-08-01

    Glycogen synthase kinase-3? (GSK3?) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3? expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-?1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-?1 treatment increased GSK3? expression and GSK3 inhibition abolished TGF-?1-induced SMAD3 activation and ?-smooth muscle actin (?-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3? stimulated ?-SMA expression even in the absence of TGF-?1 treatment. These results suggest that TGF-? regulates GSK3?, which in turn is important for TGF-?-SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-? signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. PMID:26092126

  3. Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Mohammadi

    2010-03-01

    Full Text Available Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods: Transient focal cerebral ischemia was induced by 60 min middle cerebral artery occlusion followed by 12 hours reperfusion in rat. Experiments were performed in three groups of rats (n=12 each Sham, control ischemic, and L-NAME pretreated (1 mg/kg IP. Laser Doppler flowmetry was used to measure the regional blood flow. After neurological deficit score (NDS testing, the brains were prepared for TTC staining or brain water content technique to measure the infarct volume and brain edema. Results: Pretreatment with L-NAME significantly reduced NDS (3.66 ± 0.33 to 1.5 ± 0.34, infarct volume of cortex (374 ± 34 to 160 ± 41 mm3 and striatum (158 ± 15 to 87 ± 16 mm3, tissue swelling (7.35 ± 1.27% to 4.05 ± 0.91% and brain edema (3.5 ± 0.48% to 1.6 ± 0.6% without significant alteration of blood flow of the ischemic region. Conclusion: The findings of this study indicate that inhibition of nitric oxide synthase activity reduces infarct volume and brain edema of the ischemic region induced during 60 min middle cerebral artery occlusion. This effect is not accompanied with any alteration in the blood flow of the ischemic region.

  4. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    Science.gov (United States)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph

    2015-01-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2?Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS. PMID:26457521

  5. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    International Nuclear Information System (INIS)

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 ?g/ml) permeabilized rat adipocytes. Incorporation of 3H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10-9M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different

  6. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase.

    Science.gov (United States)

    Murphy, Jesse R; Donini, Stefano; Kappock, T Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2?Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open' structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS. PMID:26457521

  7. High levels of nitric oxide synthase activity are associated with nasal polyp tissue from aspirin-sensitive asthmatics.

    Science.gov (United States)

    Parikh, A; Scadding, G K; Gray, P; Belvisi, M G; Mitchell, J A

    2002-04-01

    The pathogenesis of aspirin intolerance remains unclear. Inducible nitric oxide synthase (iNOS) expression is upregulated in nasal polyp epithelium, implying a role for nitric oxide (NO) in its formation. We decided to compare iNOS activity in polyp tissue from patients with and without aspirin intolerance. Nasal polyp tissue was collected from 15 patients undergoing routine nasal polypectomy. These patients were classified into three groups: Group A comprised patients with nasal polyps without asthma; Group B contained patients with nasal polyps and asthma; and Group C comprised patients with nasal polyps, asthma and aspirin sensitivity. All subjects in Group C had a history of aspirin-induced reaction and a confirmatory intranasal challenge with lysine-aspirin. NOS activity was measured by the ability of tissue homogenates to convert 3,4-L-arginine to L-citrulline in an L-N(G)-nitro-L-arginine-inhibitable fashion. The iNOS activity (picomoles) in polyp tissue from the 3 groups was: A, 248.72+/-220.79; B, 23.71+/-41.06; and C, 549.71+/-132.11. Thus, nasal polyps from patients with Samter's triad had a significantly higher iNOS activity (p = 0.004; one-way ANOVA). This finding does not correlate simply with disease severity or with the occurrence of asthma and could indicate another important facet of aspirin-induced airways disease. PMID:12030579

  8. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    Science.gov (United States)

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction. PMID:25595727

  9. Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis

    OpenAIRE

    Kimura, H.; Hokari, R; Miura, S.; Shigematsu, T.; Hirokawa, M.; Akiba, Y; Kurose, I; Higuchi, H.; Fujimori, H.; Tsuzuki, Y.; Serizawa, H; Ishii, H

    1998-01-01

    Background—Increased production of reactive metabolites of oxygen and nitrogen has been implicated in chronic inflammation of the gut. The object of this study was to examine the magnitude and location of nitric oxide synthase (NOS) activity and peroxynitrite formation in the colonic mucosa of patients with ulcerative colitis in relation to the degree of inflammation. ?Subjects—Thirty three patients with active ulcerative colitis (17 with mild or moderate inflammation, 16 wi...

  10. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis

    Science.gov (United States)

    Nardone, Glenn; Ikeda, Allison K.; Cunnington, Aubrey J.; Okebe, Joseph; Ebonyi, Augustine O.; Njie, Madi; Correa, Simon; Jayasooriya, Shamanthi; Casals-Pascual, Climent; Billker, Oliver; Conway, David J.; Walther, Michael; Ackerman, Hans

    2015-01-01

    Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis. PMID:26407009

  11. Francisella tularensis live vaccine strain folate metabolism and pseudouridine synthase gene mutants modulate macrophage caspase-1 activation.

    Science.gov (United States)

    Ulland, Tyler K; Janowski, Ann M; Buchan, Blake W; Faron, Matthew; Cassel, Suzanne L; Jones, Bradley D; Sutterwala, Fayyaz S

    2013-01-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1? (IL-1?) and IL-18, which play a crucial role in innate immune responses to F. tularensis. We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as being important for F. tularensis live vaccine strain (LVS) virulence. Infection of mice in vivo with a F. tularensis LVS FTL_0724 mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. The FTL_0724 mutant also induced increased inflammasome-dependent IL-1? and IL-18 secretion and cytotoxicity in macrophages in vitro. In contrast, infection of macrophages with a F. tularensis LVS rluD pseudouridine synthase (FTL_0699) mutant resulted in diminished IL-1? and IL-18 secretion from macrophages in vitro compared to infection of macrophages with wild-type LVS. In addition, the FTL_0699 mutant was not attenuated in vivo. These findings further illustrate that F. tularensis LVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogen in vivo. PMID:23115038

  12. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.

    Science.gov (United States)

    Mukerjee, Anindita; Iyidogan, Pinar; Castellanos-Gonzalez, Alejandro; Cisneros, José A; Czyzyk, Daniel; Ranjan, Amalendu Prakash; Jorgensen, William L; White, A Clinton; Vishwanatha, Jamboor K; Anderson, Karen S

    2015-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having ?M antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy. PMID:25900220

  13. Potential Role of Glycogen Synthase Kinase-3? in Regulation of Myocardin Activity in Human Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Zhou, Yi-Xia; Shi, Zhan; Singh, Pavneet; Yin, Hao; Yu, Yan-Ni; Li, Long; Walsh, Michael P; Gui, Yu; Zheng, Xi-Long

    2016-02-01

    Glycogen synthase kinase (GSK)-3?, a serine/threonine kinase with an inhibitory role in glycogen synthesis in hepatocytes and skeletal muscle, is also expressed in cardiac and smooth muscles. Inhibition of GSK-3? results in cardiac hypertrophy through reducing phosphorylation and increasing transcriptional activity of myocardin, a transcriptional co-activator for serum response factor. Myocardin plays critical roles in differentiation of smooth muscle cells (SMCs). This study, therefore, aimed to examine whether and how inhibition of GSK-3? regulates myocardin activity in human vascular SMCs. Treatment of SMCs with the GSK-3? inhibitors AR-A014418 and TWS 119 significantly reduced endogenous myocardin activity, as indicated by lower expression of myocardin target genes (and gene products), CNN1 (calponin), TAGLN1 (SM22), and ACTA2 (SM ?-actin). In human SMCs overexpressing myocardin through the T-REx system, treatment with either GSK-3? inhibitor also inhibited the expression of CNN1, TAGLN1, and ACTA2. These effects of GSK-3? inhibitors were mimicked by transfection with GSK-3? siRNA. Notably, both AR-A014418 and TWS 119 decreased the serine/threonine phosphorylation of myocardin. The chromatin immunoprecipitation assay showed that AR-A014418 treatment reduced myocardin occupancy of the promoter of the myocardin target gene ACTA2. Overexpression of a dominant-negative GSK-3? mutant in myocardin-overexpressing SMCs reduced the expression of calponin, SM22, and SM ?-actin. As expected, overexpression of constitutively active or wild-type GSK-3? in SMCs without myocardin overexpression increased expression of these proteins. In summary, our results indicate that inhibition of GSK-3? reduces myocardin transcriptional activity, suggesting a role for GSK-3? in myocardin transcriptional activity and smooth muscle differentiation. J. Cell. Physiol. 231: 393-402, 2016. © 2015 Wiley Periodicals, Inc. PMID:26129946

  14. Hypoxia-reduced nitric oxide synthase activity is partially explained by higher arginase-2 activity and cellular redistribution in human umbilical vein endothelium.

    Science.gov (United States)

    Prieto, C P; Krause, B J; Quezada, C; San Martin, R; Sobrevia, L; Casanello, P

    2011-12-01

    Hypoxia relates with altered placental vasodilation, and in isolated endothelial cells, it reduces activity of the endothelial nitric oxide synthase (eNOS) and l-arginine transport. It has been reported that arginase-2 expression, an alternative pathway for l-arginine metabolism, is increased in adult endothelial cells exposed to hypoxia as well as in pre-eclamptic placentae. We studied in human umbilical vein endothelial cells (HUVEC) whether hypoxia-reduced NO synthesis results from increased arginase-mediated l-arginine metabolism and changes in subcellular localization of eNOS and arginase-2. In HUVEC exposed (24 h) to 5% (normoxia) or 2% (hypoxia) oxygen, l-arginine transport kinetics, arginase activity (urea assay), and NO synthase (NOS) activity (l-citrulline assay) were determined. Arginase-1, arginase-2 and eNOS expression were determined by RT-PCR and Western blot. Subcellular localization of arginase-2 and eNOS were studied using confocal microscopy and indirect immunofluorescence. Experiments were done in absence or presence of S-(2-boronoethyl)-l-cysteine-HCl (BEC, arginase inhibitor) or N(G)-nitro-l-arginine methyl ester (l-NAME). Hypoxia-induced reduction in eNOS activity was associated with a reduction in eNOS phosphorylation at Serine-1177 and increased phosphorylation at Threonine-495. This was paralleled with an induction in arginase-2 expression and activity, and decreased l-arginine transport. In hypoxia the arginase inhibition, restored NO synthesis and l-arginine transport, without changes in the eNOS post-translational modification status. Hypoxia increased arginase-2/eNOS colocalization, and eNOS redistribution to the cell periphery. Altogether these data reinforce the thought that eNOS cell location, post-translational modification and substrate availability are important mechanisms regulating eNOS activity. If these mechanisms occur in pregnancy diseases where feto-placental oxygen levels are reduced remains to be clarified. PMID:21962305

  15. Estrogen, but not progesterone, induces the activity of nitric oxide synthase within the medial preoptic area in female rats.

    Science.gov (United States)

    Lima, Fernanda Barbosa; Ota, Fábio Honda; Cabral, Fernanda Jankur; Del Bianco Borges, Bruno; Franci, Celso Rodrigues

    2014-08-26

    The control of gonadotropin-releasing hormone (GnRH) secretion depends on the action of ovarian steroids and several substances, including nitric oxide (NO). NO in the medial preoptic area (MPOA) stimulates the proestrus surge of luteinizing hormone (LH). We studied the effect of estrogen (Tamoxifen-TMX) and progesterone (RU-486) antagonists on mRNA and protein expression of NO synthase (NOS), the enzyme that produces NO, as well as its activity within MPOA. Female rats received s.c. injections of TMX (3mg/animal) on first and second days of the estrous cycle (9 am), RU-486 (2mg/animal) on first, second, (8 am and 5 pm) and third days of the estrous cycle (8 am) or oil (controls) and were killed on the third day (5 pm). Real time-PCR and western blotting were performed to study NOS mRNA and protein expressions. The NOS activity was indirectly assessed by measuring the conversion from [(14)C]-L-arginine into [(14)C]-L-citrulline. TMX significantly decreased neuronal NOS (nNOS) mRNA expression (90%), and the activity of NOS, but did not alter nNOS protein expression. Also, TMX significantly decreased LH, FSH, estrogen and progesterone plasma levels. RU-486 nor affected NOS mRNA and protein expressions neither the NOS activity in the MPOA, but reduced FSH levels. The nitrergic system in the MPOA can be stimulated by estrogen whereas TMX decreased NOS activity and mRNA expression. In conclusion, the involvement of the nitrergic system in the MPOA to induce the surge of LH on proestrus depends on the estrogen action to stimulate the mRNA-nNOS expression and the activity of nNOS but it does not seem to depend on progesterone action. PMID:25044408

  16. Synthesis of alkyl-ether glycerophospholipids in rat glomerular mesangial cells: evidence for alkyldihydroxyacetone phosphate synthase activity

    International Nuclear Information System (INIS)

    We studied the ability of rat glomerular mesangial cells and their microsomal fractions to incorporate 1-[14C]hexadecanol to glycerophospholipids via an O-alkyl ether linkage and assessed the presence and activity of the required enzyme: alkyl-dihydroxy acetone phosphate synthase. Suspensions of cultured mesangial cells incorporated 1-[14C]hexadecanol to the phosphatidyl ethanolamine and phosphatidyl choline lipid pools, via a bond resistant to acid and base hydrolysis. When cell homogenates or microsomal fractions were incubated with palmitoyl-DHAP and 1-[14C]hexadecanol, alkyl-DHAP and 1-O-alkyl glycerol were formed (alkyl:hexadecyl). The activity of the enzyme responsible for the O-alkyl product formation was calculated to be 2.5 +/- 0.3 and 544 +/- 50 pmoles/min/mg protein for mesangial cell homogenates and mesangial cell microsomes, respectively. These observations provide evidence that mesangial cells may elaborate either linked lipid precursors de novo for the biosynthesis of O-alkyl glycerophospholipids

  17. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities.

    DEFF Research Database (Denmark)

    Volke, A; Wegener, Gregers

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure Acidix 250 x 4.6 mm i.d.) under isocratic conditions in less than 20 min with good sensitivity. Using the current method,we have shown the formation of L-citrulline and L-ornithine in vitro using brain tissue homogenate of rats and that of agmatine by Escherichia coli ADC. Udgivelsesdato: null-null

  18. Methylene bridge regulated geometrical preferences of ligands in cobalt(III) coordination chemistry and phenoxazinone synthase mimicking activity.

    Science.gov (United States)

    Panja, Anangamohan; Shyamal, Milan; Saha, Amrita; Mandal, Tarun Kanti

    2014-04-14

    Two new azide bound cobalt(III) complexes, [Co(L(1))(N3)3] (fac-1) and [Co(L(2))(N3)3] (mer-2), where L(1) is bis(2-pyridylmethyl)amine and L(2) is (2-pyridylmethyl)(2-pyridylethyl)amine, derived from tridentate reduced Schiff-base ligands have been reported. Interestingly, a methylene bridge regulated preferential coordination mode of ligands is noticed in their crystal structures: it is found in a facial arrangement in fac-1 and has a meridional disposition in mer-2. Both complexes show phenoxazinone synthase-like activity and the role of the structural factor on the catalytic activity is also explored. Moreover, the easily reducible cobalt(III) center in mer-2 favors the oxidation of o-aminophenol. The ESI-MS positive spectra together with UV-vis spectroscopy clearly suggest the formation of a catalyst-substrate adduct by substitution of the coordinated azide ions in the catalytic cycle. PMID:24522410

  19. Nitric Oxide Synthase Activation as a Trigger of N-methyl-N-nitrosourea-Induced Photoreceptor Cell Death.

    Science.gov (United States)

    Hisano, Suguru; Koriyama, Yoshiki; Ogai, Kazuhiro; Sugitani, Kayo; Kato, Satoru

    2016-01-01

    Retinal degeneration (RD) such as retinitis pigmentosa and age-related macular degeneration are major causes of blindness in adulthood. As one of the model for RD, intraperitoneal injection of N-methyl-N-nitrosourea (MNU) is widely used because of its selective photoreceptor cell death. It has been reported that MNU increases intracellular calcium ions in the retina and induces photoreceptor cell death. Although calcium ion influx triggers the neuronal nitric oxide synthase (nNOS) activation, the role of nNOS on photoreceptor cell death by MNU has not been reported yet. In this study, we investigated the contribution of nNOS on photoreceptor cell death induced by MNU in mice. MNU significantly increased NOS activation at 3 day after treatment. Then, we evaluated the effect of nNOS specific inhibitor, ethyl[4-(trifluoromethyl) phenyl]carbamimidothioate (ETPI) on the MNU-induced photoreceptor cell death. At 3 days, ETPI clearly inhibited the MNU-induced cell death in the ONL. These data indicate that nNOS is a key molecule for pathogenesis of MNU-induced photoreceptor cell death. PMID:26427435

  20. Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation.

    Science.gov (United States)

    Di Lorenzo, Maria; Krantis, Anthony

    2002-10-01

    Nitric oxide (NO) plays a major role in gut mucosal protection and motility. Having demonstrated the protective effects of intravenous L-arginine (L-arg) and the NO donor, sodium nitroprusside (SNP), in an in-vivo premature piglet intraluminal model of necrotizing enterocolitis (NEC) that incorporates both mucosal damage and intestinal dysmotility, we measured the effects on NO synthase (NOS) isoenzyme activities during i.v. manipulation of the nitrergic system in the NEC-injured gut. In newborn premature Yorkshire piglets, NEC was induced in four groups by intraluminal injection of acidified casein solution in closed test loops of bowel separated by normal saline-injected control loops. Group 1 (n = 4) underwent no further treatment. Group 2 (n = 4) received concomitant continuous i.v. L-arg, a NO substrate. Group 3 (n = 6) received concomitant continuous i.v. SNP, a NO donor. Group 4 (n = 5) received concomitant continuous i.v. N-omega-nitro-L-arginine-methyl-ester (L-NAME), a non-selective NO inhibitor. Control and test gut specimens were harvested after 3 h. NO synthase activity in frozen gut segments was assessed using the (14)C-L-arg to (14)C-L-citrulline conversion assay. Total NOS (TNOS), constitutive NOS (cNOS), and inducible NOS (iNOS) activities were compared. The mean and standard error were calculated for each specimen. Group means were used to compare test and control gut enzyme activities in the different treatment groups. One-way analysis of variance and the Bonferroni post test were used to compare differences among groups. A P value of less than 0.05 was considered significant. In the L-NAME group, cNOS activity was lower than in the untreated NEC group. The SNP group had higher iNOS and TNOS activities than the L-arg group; cNOS was also higher in test and control loops in the SNP versus both L-arg and L-NAME groups. However, in L-arg control loops, cNOS activity was greater than in the L-NAME group. SNP and L-arg treatment of NEC did not significantly modify NOS isoenzyme activities. Thus, in this premature piglet 3-h model of NEC, i.v. L-NAME significantly decreases cNOS activity and correlates with our previously published histopathologic findings confirming the protective role of cNOS-derived NO in NEC-injured gut mucosa. In order to further elucidate the mechanisms involved in the mucosal protection afforded by i.v. L-arg and SNP in this NEC model, studies of a longer duration have been undertaken. PMID:12471479

  1. Coagulase-negative Staphylococci favor conversion of arginine into ornithine despite a widespread genetic potential for nitric oxide synthase activity.

    Science.gov (United States)

    Sánchez Mainar, María; Weckx, Stefan; Leroy, Frédéric

    2014-12-01

    Within ecosystems that are poor in carbohydrates, alternative substrates such as arginine may be of importance to coagulase-negative staphylococci (CNS). However, the versatility of arginine conversion in CNS remains largely uncharted. Therefore, a set of 86 strains belonging to 17 CNS species was screened for arginine deiminase (ADI), arginase, and nitric oxide synthase (NOS) activities, in view of their ecological relevance. In fermented meats, for instance, ADI could improve bacterial competitiveness, whereas NOS may serve as an alternative nitrosomyoglobin generator to nitrate and nitrite curing. About 80% of the strains were able to convert arginine, but considerable inter- and intraspecies heterogeneity regarding the extent and mechanism of conversion was found. Overall, ADI was the most commonly employed pathway, resulting in mixtures of ornithine and small amounts of citrulline. Under aerobic conditions, which are more relevant for skin-associated CNS communities, several strains shifted toward arginase activity, leading to the production of ornithine and urea. The obtained data indeed suggest that arginase occurs relatively more in CNS isolates from a dairy environment, whereas ADI seems to be more abundant in strains from a fermented meat background. With some exceptions, a reasonable match between phenotypic ADI and arginase activity and the presence of the encoding genes (arcA and arg) was found. With respect to the NOS pathway, however, only one strain (Staphylococcus haemolyticus G110) displayed phenotypic NOS-like activity under aerobic conditions, despite a wide prevalence of the NOS-encoding gene (nos) among CNS. Hence, the group of CNS displays a strain- and condition-dependent toolbox of arginine-converting mechanisms with potential implications for competitiveness and functionality. PMID:25281381

  2. Changes in lactate dehydrogenase and malate dehydrogenase activities during hypoxia and after temperature acclimation in the armored fish, Rhinelepis strigosa (Siluriformes, Loricariidae) / Mudanças na atividade da lactato desidrogenase e malato desidrogenase durante hipóxia e após aclimatação a diferentes temperaturas no cascudo, Rhinelepis strigosa (Siluriformes, Loricariidae)

    Scientific Electronic Library Online (English)

    L., PANEPUCCI; M. N., FERNANDES; J. R., SANCHES; F. T., RANTIN.

    2000-05-01

    Full Text Available Foram estudadas a lactato desidrogenase (LDH) e malato desidrogenase (MDH) de músculo branco de peixes aclimatados a 20, 25 e 30°C em diferentes concentrações de substrato e submetidos à hipóxia. Diferenças significativas em atividade enzimática para LDH e MDH são descritas aqui pela primeira vez em [...] Rhinelepis strigosa em peixes aclimatados a 20°C e submetidos à hipóxia por seis horas. A LDH apresentou uma diminuição significativa na afinidade enzimática ao piruvato em hipóxia severa de peixes aclimatados a 20°C e um aumento significativo na afinidade enzimática ao piruvato em peixes aclimatados a 30°C. Abstract in english Lactate (LDH) and malate dehydrogenase (MDH) of white skeletal muscle of fishes acclimated to 20, 25 and 30°C and thereafter submitted to hypoxia were studied in different substrate concentrations. Significant differences for LDH and MDH of white muscle enzyme activities are described here for the f [...] irst time in Rhinelepis strigosa of fishes acclimated to 20°C and submitted to hypoxia for six hours. LDH presented a significant decrease in enzyme affinity for pyruvate in acute hypoxia, for fishes acclimated to 20°C and an increase for fishes acclimated to 30°C.

  3. Radiochemical nitric oxide synthase activity determination in rat brain with fast and accurate HPLC analysis.

    OpenAIRE

    Repici, Mariaelena; Vercelli, Alessandro; Colombatto, Sebastiano; CABELLA, Claudia

    2001-01-01

    In the central nervous system, NOS activity is involved in several physiological events, such as refinement of afferent connections in development, or linking cerebral blood flow to neural activity in adulthood, and also in many pathological events, such as cell death in brain ischemia and regulation of vasospasm in hemorrhage. Therefore, we studied NOS activity in the CNS. We describe a fast and accurate method in which we use HPLC analysis to identify and quantify citrulline eluted by ion-e...

  4. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri; Hay-Schmidt, Anders; Jansen-Olesen, Inger; Gupta, Saurabh; Olesen, Jes

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. MATERIALS AND METHODS: The femoral vein was catheterised in rats and GTN was infused (4 µg/kg/min, for 20 minutes, intrave...

  5. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage ?-glucan

    OpenAIRE

    Fujita, Naoko; Hanashiro, Isao; Suzuki, Sachi; Higuchi, Toshiyuki; Toyosawa, Yoshiko; Utsumi, Yoshinori; Itoh, Rumiko; Aihara, Satomi; Nakamura, Yasunori

    2012-01-01

    The relationship between the solubility, crystallinity, and length of the unit chains of plant storage ?-glucan was investigated by manipulating the chain length of ?-glucans accumulated in a rice mutant. Transgenic lines were produced by introducing a cDNA for starch synthase IIa (SSIIa) from an indica cultivar (SSIIa I, coding for active SSIIa) into an isoamylase1 (ISA1)-deficient mutant (isa1) that was derived from a japonica cultivar (bearing inactive SSIIa proteins)....

  6. Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease.

    OpenAIRE

    de Belder, A J; Radomski, M W; Why, H. J.; Richardson, P. J.; J.F. Martin

    1995-01-01

    OBJECTIVE--To determine the activity of the calcium-dependent constitutive (cNOS) and calcium-independent inducible nitric oxide (iNOS) synthases in heart tissue from patients with different cardiac diseases. PATIENTS AND DESIGN--Endomyocardial biopsy specimens were obtained from patients with dilated hearts (by echocardiography and ventriculography) and normal coronary arteries (by selective angiography). Recognised clinical, radiological, and histopathological criteria were used to diagnose...

  7. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A; Tuka, B; Edvinsson, L; Warfvinge, K

    2012-01-01

    Cranial parasympathetic outflow is mediated through the sphenopalatine ganglion (SPG). The present study was performed to examine the expression of the parasympathetic signaling transmitters and their receptors in human and rat SPG. Indirect immunofluorescence technique was used for the demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), VIP an...

  8. Nitric oxide synthase-dependent NADPH-diaphorase activity in the optic lobes of male and female Ceratitis capitata mutants

    Directory of Open Access Journals (Sweden)

    E Roda

    2009-06-01

    Full Text Available Nitric oxide (NO is acknowledged as a messenger molecule in the nervous system with a pivotal role in the modulation of the chemosensory information. It has been shown to be present in the optic lobes of several insect species. In the present study, we used males and females from four different strains of the medfly Ceratitis capitata (Diptera, Tephritidae: or; or,wp (both orange eyed; w,M360 and w,Heraklion (both white eyed, as models to further clarify the involvement of NO in the mutants’ visual system and differences in its activity and localization in the sexes. Comparison of the localization pattern of NO synthase (NOS, through NADPH-diaphorase (NADPHd staining, in the optic lobes of the four strains, revealed a stronger reaction intensity in the retina and in the neuropile region lamina than in medulla and lobula. Interestingly, the intensity of NADPHd staining differs, at least in some strains, in the optic lobes of the two sexes; all the areas are generally strongly labelled in the males of the or and w,M360 strains, whereas the w,Heraklion and or,wp mutants do not show evident sexdependent NADPHd staining. Taken as a whole, our data point to NO as a likely transmitter candidate in the visual information processes in insects, with a possible correlation among NOS distribution, eye pigmentation and visual function in C. capitata males. Moreover, NO could influence behavioural differences linked to vision in the two sexes.

  9. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization.

    Science.gov (United States)

    Dong, Lemeng; Miettinen, Karel; Goedbloed, Miriam; Verstappen, Francel W A; Voster, Alessandra; Jongsma, Maarten A; Memelink, Johan; van der Krol, Sander; Bouwmeester, Harro J

    2013-11-01

    Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed. PMID:24060453

  10. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    Science.gov (United States)

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  11. Sp1 cooperates with Sp3 to upregulate MALAT1 expression in human hepatocellular carcinoma.

    Science.gov (United States)

    Huang, Ziling; Huang, Lanshan; Shen, Siqiao; Li, Jia; Lu, Huiping; Mo, Weijia; Dang, Yiwu; Luo, Dianzhong; Chen, Gang; Feng, Zhenbo

    2015-11-01

    Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known as nuclear-enriched transcript 2 (NEAT2), is highly conserved among mammals and highly expressed in the nucleus. It was first identified in lung cancer as a prognostic marker for metastasis but is also associated with several other solid tumors. In hepatocellular carcinoma (HCC), MALAT1 is a novel biomarker for predicting tumor recurrence after liver transplantation. The mechanism of overexpression in tumor progression remains unclear. In the present study, we investigated the role of specificity protein 1/3 (Sp1/3) in regulation of MALAT1 transcription in HCC cells. The results showed a high expression of Sp1, Sp3 and MALAT1 in HCC vs. paired non-tumor liver tissues, which was associated with the AFP level (Sp1, r=7.44, P=0.0064; MALAT1, r=12.37, P=0.0004). Co-silencing of Sp1 and Sp3 synergistically repressed MALAT1 expression. Sp1 binding inhibitor, mithramycin A (MIT), also inhibited MALAT1 expression in HCC cells. In conclusion, the upstream of MALAT1 contains five Sp1/3 binding sites, which may be responsible for MALAT1 transcription. Inhibitors, such as MIT, provide a potential therapeutic strategy for HCC patients with MALAT1 overexpression. PMID:26352013

  12. Lipid A-activated inducible nitric oxide synthase expression via nuclear factor-?B in mouse choroid plexus cells.

    Science.gov (United States)

    Takano, Masaoki; Ohkusa, Mami; Otani, Mieko; Min, Kyong-Son; Kadoyama, Keiichi; Minami, Katori; Sano, Keiji; Matsuyama, Shogo

    2015-10-01

    Choroid plexus (CP) which is responsible for the inflammatory mediators including nitric oxide (NO) are thought to play a crucial role in the process of bacterial meningitis. The present study investigated the mechanisms regulating inducible nitric oxide synthase (iNOS) expression in the choroid plexus epithelium (CPe) in mice. Initially, the expression of iNOS in mouse CPe was strengthened by intracerebroventriclar (i.c.v.) administration of lipid A, which is part of a Gram-negative bacterial endotoxin located at one end of the lipopolysaccharide (LPS) molecule. Next, the expression of iNOS in the CP epithelial cell line ECPC-4 cells was increased from 24 to 48h after lipid A treatment, although mRNA and proteins of toll-like receptor (TLR)-2 and -4 expressed in ECPC-4 cells were not changed by lipid A. The expression of total nuclear factor ?B (NF?B), an inflammatory transcriptional factor, in ECPC-4 cells was not changed for 72h after lipid A treatment, while cytoplasmic NF?B was decreased and nuclear NF?B was increased from 1 to 2h. In addition, the phosphorylation of inhibitor ?B (I?B) was peaked at 10min, and the level of I?B was attenuated from 10 to 45min after lipid A treatment. Moreover, the RNA interference (RNAi) of NF?B suppressed the expression of iNOS induced by lipid A. We demonstrated that lipid A-induced iNOS expression in ECPC-4 cells was mainly regulated by the activation of NF?B-I?B intracellular signaling pathway. Thus, we propose that the CPe plays a pivotal role in innate immunity responses of the brain, that is, the signal pathway TLRs on the CPe following inflammatory stimulation such as meningitis is activated, leading to iNOS expression through NF?B. PMID:26235132

  13. Inibição da atividade da citrato sintase cerebral em um modelo animal de sepse Inhibition of brain citrate synthase activity in an animal model of sepsis

    Directory of Open Access Journals (Sweden)

    Giselli Scaini

    2011-06-01

    Full Text Available OBJETIVO: Um amplo corpo de evidência oriundo de estudos experimentais indica que a sepse se associa com um aumento da produção de espécies de oxigênio reativo, depleção de antioxidantes, e acúmulo de marcadores de estresse oxidativo. Além disto, a disfunção mitocondrial foi implicada na patogênese da síndrome de disfunção de múltiplos órgãos. A citrato sintase é uma enzima que se localiza no interior das células, na matriz mitocondrial, sendo uma etapa importante do ciclo de Krebs; esta enzima foi utilizada como um marcador enzimático quantitativo da presença de mitocôndrias intactas. Assim, investigamos a atividade da citrato sintase no cérebro de ratos submetidos ao modelo sepse com de ligadura e punção do ceco. MÉTODOS: Em diferentes horários (3, 6, 12, 24 e 48 horas após cirurgia de ligadura e punção do ceco, seis ratos foram sacrificados por decapitação, sendo seus cérebros removidos e dissecados o hipocampo, estriato, cerebelo, córtex cerebral e córtex pré-frontal, e utilizados para determinação da atividade de citrato sintase. RESULTADOS: Verificamos que a atividade de citrato sintase no córtex pré-frontal estava inibida após 12, 24 e 48 horas da ligadura e punção do ceco. No córtex cerebral, esta atividade estava inibida após 3, 12, 24 e 48 horas da ligadura e punção do ceco. Por outro lado a citrato sintase não foi afetada no hipocampo, estriato e cerebelo até 48 horas após a ligadura e punção do ceco. CONCLUSÃO: Considerando-se que é bem descrito o comprometimento da energia decorrente da disfunção mitocondrial na sepse, e que o estresse oxidativo desempenha um papel essencial no desenvolvimento da sepse, acreditamos que o comprometimento da energia pode também estar evolvido nestes processos. Se a inibição da citrato sintase também ocorre em um modelo de sepse, é tentador especular que a redução do metabolismo cerebral pode provavelmente estar relacionada com a fisiopatologia desta doença.OBJECTIVE: An extensive body of evidence from experimental studies indicates that sepsis is associated with increased reactive oxygen species production, depletion of antioxidants, and accumulation of markers of oxidative stress. Moreover, mitochondrial dysfunction has been implicated in the pathogenesis of multiple organ dysfunction syndrome (MODS. Citrate synthase is an enzyme localized in the mitochondrial matrix and an important component of the Krebs cycle; consequently, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase activity in the brains of rats submitted to a cecal ligation puncture model of sepsis. METHODS: At several times points (3, 6, 12, 24 and 48 hours after the cecal ligation puncture operation, six rats were killed by decapitation. Their brains were removed, and the hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex were dissected and used to determine citrate synthase activity. RESULTS: We found that citrate synthase activity in the prefrontal cortex was inhibited 12, 24 and 48 hours after cecal ligation puncture. In the cerebral cortex, citrate synthase activity was inhibited 3, 12, 24 and 48 hours after cecal ligation puncture. Citrate synthase was not affected in the hippocampus, striatum or cerebellum up to 48 hours after cecal ligation puncture. CONCLUSION: Considering that energy impairment due to mitochondrial dysfunction in sepsis has been well described and that oxidative stress plays a crucial role in sepsis development, we believe that energy impairment may also be involved in these processes. If citrate synthase inhibition also occurs in a sepsis model, it is tempting to speculate that a reduction in brain metabolism may be related to the pathophysiology of this disease.

  14. Inibição da atividade da citrato sintase cerebral em um modelo animal de sepse / Inhibition of brain citrate synthase activity in an animal model of sepsis

    Scientific Electronic Library Online (English)

    Giselli, Scaini; Natália, Rochi; Joana, Benedet; Gabriela Kozuchovski, Ferreira; Brena Pereira, Teodorak; Clarissa Martinelli, Comim; Larissa de Souza, Constantino; Francieli, Vuolo; Leandra Celso, Constantino; João, Quevedo; Emilio Luiz, Streck; Felipe, Dal-Pizzol.

    2011-06-01

    Full Text Available OBJETIVO: Um amplo corpo de evidência oriundo de estudos experimentais indica que a sepse se associa com um aumento da produção de espécies de oxigênio reativo, depleção de antioxidantes, e acúmulo de marcadores de estresse oxidativo. Além disto, a disfunção mitocondrial foi implicada na patogênese [...] da síndrome de disfunção de múltiplos órgãos. A citrato sintase é uma enzima que se localiza no interior das células, na matriz mitocondrial, sendo uma etapa importante do ciclo de Krebs; esta enzima foi utilizada como um marcador enzimático quantitativo da presença de mitocôndrias intactas. Assim, investigamos a atividade da citrato sintase no cérebro de ratos submetidos ao modelo sepse com de ligadura e punção do ceco. MÉTODOS: Em diferentes horários (3, 6, 12, 24 e 48 horas) após cirurgia de ligadura e punção do ceco, seis ratos foram sacrificados por decapitação, sendo seus cérebros removidos e dissecados o hipocampo, estriato, cerebelo, córtex cerebral e córtex pré-frontal, e utilizados para determinação da atividade de citrato sintase. RESULTADOS: Verificamos que a atividade de citrato sintase no córtex pré-frontal estava inibida após 12, 24 e 48 horas da ligadura e punção do ceco. No córtex cerebral, esta atividade estava inibida após 3, 12, 24 e 48 horas da ligadura e punção do ceco. Por outro lado a citrato sintase não foi afetada no hipocampo, estriato e cerebelo até 48 horas após a ligadura e punção do ceco. CONCLUSÃO: Considerando-se que é bem descrito o comprometimento da energia decorrente da disfunção mitocondrial na sepse, e que o estresse oxidativo desempenha um papel essencial no desenvolvimento da sepse, acreditamos que o comprometimento da energia pode também estar evolvido nestes processos. Se a inibição da citrato sintase também ocorre em um modelo de sepse, é tentador especular que a redução do metabolismo cerebral pode provavelmente estar relacionada com a fisiopatologia desta doença. Abstract in english OBJECTIVE: An extensive body of evidence from experimental studies indicates that sepsis is associated with increased reactive oxygen species production, depletion of antioxidants, and accumulation of markers of oxidative stress. Moreover, mitochondrial dysfunction has been implicated in the pathoge [...] nesis of multiple organ dysfunction syndrome (MODS). Citrate synthase is an enzyme localized in the mitochondrial matrix and an important component of the Krebs cycle; consequently, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase activity in the brains of rats submitted to a cecal ligation puncture model of sepsis. METHODS: At several times points (3, 6, 12, 24 and 48 hours) after the cecal ligation puncture operation, six rats were killed by decapitation. Their brains were removed, and the hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex were dissected and used to determine citrate synthase activity. RESULTS: We found that citrate synthase activity in the prefrontal cortex was inhibited 12, 24 and 48 hours after cecal ligation puncture. In the cerebral cortex, citrate synthase activity was inhibited 3, 12, 24 and 48 hours after cecal ligation puncture. Citrate synthase was not affected in the hippocampus, striatum or cerebellum up to 48 hours after cecal ligation puncture. CONCLUSION: Considering that energy impairment due to mitochondrial dysfunction in sepsis has been well described and that oxidative stress plays a crucial role in sepsis development, we believe that energy impairment may also be involved in these processes. If citrate synthase inhibition also occurs in a sepsis model, it is tempting to speculate that a reduction in brain metabolism may be related to the pathophysiology of this disease.

  15. A stable blue-light-derived signal modulates ultraviolet-light-induced activation of the chalcone-synthase gene in cultured parsley cells

    International Nuclear Information System (INIS)

    Run-off transcription assays were used to demonstrate that both the ultraviolet (UV)-B and blue-light receptors control transcription rates for chalcone-synthase mRNA in the course of light-induced flavonoid synthesis in parsley (Petroselinum crispum Miller (A.W. Hill)) cell-suspension cultures. Blue and red light alone, presumably acting via a blue-light receptor and active phytochrome (far-red absorbing form) respectively, can induce accumulation of chalcone-synthase mRNA. The extent of the response is however considerably smaller than that obtained when these wavebands are applied in combination with UV light. A preirradiation with blue light strongly increases the response to a subsequent UV pulse and this modulating effect of blue light is stable for at least 20 h. The modulating effect is abolished by a UV induction but can be reestablished by a second irradiation with blue light. (author)

  16. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase.

    Science.gov (United States)

    Talwar, Pooja Saigal; Gupta, Ravi; Maurya, Arun Kumar; Deswal, Renu

    2012-11-01

    Nitric oxide (NO) is an important signaling molecule having varied physiological and regulatory roles in biological systems. The fact that nitric oxide synthase (NOS) is responsible for NO generation in animals, prompted major search for a similar enzyme in plants. Arginine dependent NOS like activity (BjNOSla) was detected in Brassica juncea seedlings using oxyhemoglobin and citrulline assays. BjNOSla showed 25% activation by NADPH (0.4 mM) and 40% by calcium (0.4 mM) but the activity was flavin mononucleotide (FMN), flavin dinucleotide (FAD) and calmodulin (CaM) independent. Pharmacological approach using mammalian NOS inhibitors, NBT (300 ?M) and l-NAME (5 mM), showed significant inhibition (100% and 67% respectively) supporting that the BjNOSla operates via the oxidative pathway. Most of the BjNOSla activity (80%) was confined to shoot while root showed only 20% activity. Localization studies by NADPH-diaphorase and DAF-2DA staining showed the presence of BjNOSla in guard cells. Kinetic analysis showed positive cooperativity with calcium as reflected by a decreased K(m) (?13%) and almost two fold increase in V(max). PMA (438 nM), a kinase activator, activated BjNOSla ?1.9 fold while its inactive analog 4?PDD was ineffective. Calcium and PMA activated the enzyme to ?3 folds. Interestingly, 1,2-DG6 (2.5 ?M) and PS (1 ?M) with calcium activated the enzyme activity to ?7 fold. A significant inhibition of BjNOSla by PKC inhibitors-staurosporine (?90%) and calphostin-C (?40%), further supports involvement of PKC-like kinase. The activity was also enhanced by abiotic stress conditions (7-46%). All these findings suggest that BjNOSla generates NO via oxidative pathway and is probably regulated by phosphorylation. PMID:22947512

  17. Guillain-Barré Syndrome following Treatment with Sunitinib Malate

    OpenAIRE

    Ziad Kanaan; Zain Kulairi; Mirela Titianu; Sandip Saha; Sarwan Kumar

    2014-01-01

    Sunitinib malate (Sutent, SU011248) is an oral multitargeted tyrosine kinase inhibitor (TKI) used for the treatment of metastatic renal cell carcinoma and imatinib (Gleevec)—resistant gastrointestinal stromal tumor (GIST) with few reported side effects including asthenia, myelosuppression, diarrhea, and mucositis. Scarce literature exists regarding the rare but often serious toxicities of sunitinib. Autoimmune and neurological side effects have been linked to sunitinib's inhibition of VEGF re...

  18. Vesicocutaneous fistula formation during treatment with sunitinib malate: Case report

    OpenAIRE

    Sakashita Hiroyuki; Hirashima Yoshinori; Kawano Sakura; Morinaga Ryotaro; Otsu Satoshi; Watanabe Koichiro; Shirao Kuniaki

    2010-01-01

    Abstract Background The oral multi-kinase inhibitor sunitinib malate improves the survival of patients with gastrointestinal stromal tumors (GIST) after the disease progresses or intolerance to imatinib mesylate develops. Urinary fistulae arising during treatment with sunitinib for GIST have not been described. Case presentation We describe a 62-year-old female patient diagnosed with unresectable GIST that involved the abdominal wall, urinary bladder wall, bowel, mesentery and peritoneum in t...

  19. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis

    OpenAIRE

    Moon, Jong-Seok; Lee, Seonmin; Park, Mi-Ae; Siempos, Ilias I.; Haslip, Maria; Lee, Patty J; Yun, Mijin; Kim, Chun K; Howrylak, Judie; Stefan W Ryter; Nakahira, Kiichi; Choi, Augustine M. K.

    2015-01-01

    Cellular lipid metabolism has been linked to immune responses; however, the precise mechanisms by which de novo fatty acid synthesis can regulate inflammatory responses remain unclear. The NLRP3 inflammasome serves as a platform for caspase-1–dependent maturation and secretion of proinflammatory cytokines. Here, we demonstrated that the mitochondrial uncoupling protein-2 (UCP2) regulates NLRP3-mediated caspase-1 activation through the stimulation of lipid synthesis in macrophages. UCP2-defici...

  20. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Hansen, Frederik Teilfeldt; Søndergaard, Teis; Stærk, Dan; Lee, T Verne; Wimmer, Reinhard; Klitgaard, Louise Graabæk; Purup, Stig; Giese, Henriette; Frandsen, Rasmus John Normand

    2012-01-01

    Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster specific transcription factors. We have developed a system in which an expression cassette containing the transcription factor from the targeted PKS cluster disrupts the production of the red mycelium pigme...

  1. Macromolecular crowding and the steady-state kinetics of malate dehydrogenase.

    Science.gov (United States)

    Poggi, Christopher G; Slade, Kristin M

    2015-01-20

    To understand how macromolecular crowding affects enzyme activity, we quantified the Michaelis-Menten kinetics of mitochondrial malate dehydrogenase (MDH) in the presence of hen egg white (HEW), lysozyme, bovine serum albumin (BSA), gum arabic, poly(vinylpyrrolidone) (PVP), and dextrans of various molecular weights. Although crowding tended to decrease Km and Vmax values, the magnitude depended on the crowding agent, reaction direction, and isozyme (mitochondrial porcine heart or thermophlic TaqMDH from Thermus flavus). Crowding slowed oxaloacetate reduction more significantly than malate oxidation, which may suggest that mitochondrial enzymes have evolved to function optimally under the crowded constraints in which they are immersed. Since direct comparisons of neutral to charged crowders are underrepresented in the literature, we performed these studies and found that neutral crowding agents lowered Vmax values more than charged crowders of similar size. The exception was hen egg white, a mixture of charged proteins that caused the largest observed decreases in both Km and Vmax. Finally, the data provide insight about the mechanism by corroborating MDH subunit dependence. PMID:25478785

  2. Nitric oxide enhances MPP(+)-induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum.

    Science.gov (United States)

    Obata, T; Yamanaka, Y

    2001-06-01

    We examined the effect of N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on extracellular potassium ion concentration ([K(+)](o))-enhanced hydroxyl radical (.OH) generation due to 1-methyl-4-phenylpyridinium ion (MPP(+)) was examined in the rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl per min) was infused through a microdialysis probe to detect the generation of.OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Induction of KCl (20, 70 and 140 mM) increased MPP(+)-induced.OH formation trapped as 2,3-dihydroxybenzoic acid (DHBA) in a concentration dependent manner. However, the application of L-NAME (5 mg/kg i.v.) abolished the [K(+)](o) depolarization-induced.OH formation with MPP(+). Dopamine (DA; 10 microM) also increased the levels of DHBA due to MPP(+). However, the effect of DA after application of L-NAME did not change the levels of DHBA. On the other hand, the application of allopurinol (20 mg/kg i.v., 30 min prior to study), a xanthine oxidase (XO) inhibitor was abolished the both [K(+)](o)- and DA-induced.OH generation. Moreover, when iron(II) was administered to MPP(+) then [K(+)](o) (70 mM)-pretreated animals, a marked increase in the level of DHBA. However, when corresponding experiments were performed with L-NAME-pretreated animals, the same results were obtained. Therefore, NOS activation may be no relation to Fenton-type reaction via [K(+)](o) depolarization-induced.OH generation. The present results suggest that [K(+)](o)-induced depolarization augmented MPP(+)-induced.OH formation by enhancing NO synthesis. PMID:11384616

  3. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Science.gov (United States)

    Pardo, Marta; King, Margaret K.; Perez-Costas, Emma; Melendez-Ferro, Miguel; Martinez, Ana; Beurel, Eleonore; Jope, Richard S.

    2015-01-01

    Brain glycogen synthase kinase-3 (GSK3) is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC). To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type (WT) mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with WT mice. Environmental enrichment (EE) increased NPC proliferation in male, but not female, GSK3 knockin mice and WT mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched WT mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 h pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks. PMID:25788881

  4. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana.

    Science.gov (United States)

    Mourad, G; King, J

    1992-11-01

    We have isolated a triazolopyrimidine-resistant mutant csrl-2, of Arabidopsis thaliana (L.) Heynh. Here, we compare csrl-2 with the previously isolated mutants csrl and csr1-1, and with wild-type Arabidopsis for responses to members of four classes of herbicides, namely, sulfonylureas, triazolopyrimidines, imidazolinones, and pyrimidyl-oxy-benzoates. Two separable herbicide binding sites have been identified previously on the protein of acetolactate synthase (ALS). Here, the mutation giving rise to csrl, originating in a coding sequence towards the 5' end of the ALS gene, and that in csrl-2, affected the inhibitory action on growth and ALS activity of sulfonylurea and triazolopyrimidine herbicides but not that of the imidazolinones or pyrimidyl-oxybenzoates. The other mutation, in csrl-1, originating in a coding sequence towards the 3' end of the ALS gene, affected the inhibitory action of imidazolinones and pyrimidyl-oxy-benzoates but not that of the sulfonylureas or triazolopyrimidines. Additional, stimulatory effects of some of these herbicides on growth of seedlings was unrelated to their effect on their primary target, ALS. The conclusion from these observations is that one of the two previously identified herbicide-binding sites may bind sulfonylureas and triazolopyrimidines while the other may bind imidazolinones and pyrimidyl-oxy-benzoates within a herbicide-binding domain on the ALS enzyme. Such a comparative study using near-isogenic mutants from the same species allows not only the further definition of the domain of herbicide binding on ALS but also could aid investigation of the relationship between herbicide-, substrate-, and allosteric-binding sites on this enzyme.This research was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to J.K. PMID:24178380

  5. Lipopolysaccharide induces nitric oxide synthase expression and platelet-activating factor increases nitric oxide production in human fetal membranes in culture

    Directory of Open Access Journals (Sweden)

    Seyffarth Gunter

    2004-06-01

    Full Text Available Abstract Background Platelet-activating factor and nitric oxide may be involved in the initiation of human labour as inflammatory mediators. The aim of this study was to test whether platelet-activating factor and lipopolysaccharide were able to induce nitric oxide synthase expression and stimulate the production of nitric oxide in human fetal membrane explants in culture. Methods Fetal membranes were collected from Caesarean sections at term. RNA was extracted from membranes and subjected to a qualitative RT-PCR to assess the baseline expression of iNOS. Discs of fetal membranes were cultured for 24 hours in the presence of platelet-activating factor at a dose range of 0.1 nanomolar – 1 micomolar or 1 microgram/ml lipopolysaccharide. Nitric oxide production was measured via nitrite ions in the culture medium and mRNA for iNOS was detected by RT-PCR. Results Culturing the membrane discs in medium containing serum induced nitric oxide synthase expression and platelet-activating factor significantly stimulated the production of nitric oxide under these conditions. When cultured without serum inducible nitric oxide synthase expression was induced by lipopolysaccharide, but not by platelet-activating factor. Conclusion Platelet-activating factor may have a role in the initiation of labour, at term or preterm, via the increased local production of nitric oxide as an inflammatory mediator. In this model of intrauterine infection, lipopolysaccharide was found to induce iNOS expression by fetal membranes, and this mechanism could be involved in preterm labour.

  6. Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: Implication in inducible nitric oxide synthase expression

    Directory of Open Access Journals (Sweden)

    Kankaanranta Hannu

    2006-02-01

    Full Text Available Abstract Background Nitric oxide (NO is an inflammatory mediator, which acts as a cytotoxic agent and modulates immune responses and inflammation. p38 mitogen-activated protein kinase (MAPK signal transduction pathway is activated by chemical and physical stress and regulates immune responses. Previous studies have shown that p38 MAPK pathway regulates NO production induced by inflammatory stimuli. The aim of the present study was to investigate the mechanisms involved in the regulation of inducible NO synthesis by p38 MAPK pathway. Results p38 MAPK inhibitors SB203580 and SB220025 stimulated lipopolysaccharide (LPS-induced inducible nitric oxide synthase (iNOS expression and NO production in J774.2 murine macrophages. Increased iNOS mRNA expression was associated with reduced degradation of iNOS mRNA. Treatment with SB220025 increased also LPS-induced c-Jun N-terminal kinase (JNK activity. Interestingly, JNK inhibitor SP600125 reversed the effect of SB220025 on LPS-induced iNOS mRNA expression and NO production. Conclusion The results suggest that inhibition of p38 MAPK by SB220025 results in increased JNK activity, which leads to stabilisation of iNOS mRNA, to enhanced iNOS expression and to increased NO production.

  7. Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity.

    Science.gov (United States)

    Fugelstad, Johanna; Bouzenzana, Jamel; Djerbi, Soraya; Guerriero, Gea; Ezcurra, Inés; Teeri, Tuula T; Arvestad, Lars; Bulone, Vincent

    2009-10-01

    Cellulose biosynthesis is a vital but yet poorly understood biochemical process in Oomycetes. Here, we report the identification and characterization of the cellulose synthase genes (CesA) from Saprolegnia monoica. Southern blot experiments revealed the occurrence of three CesA homologues in this species and phylogenetic analyses confirmed that Oomycete CesAs form a clade of their own. All gene products contained the D,D,D,QXXRW signature of most processive glycosyltransferases, including cellulose synthases. However, their N-terminal ends exhibited Oomycete-specific domains, i.e. Pleckstrin Homology domains, or conserved domains of an unknown function together with additional putative transmembrane domains. Mycelial growth was inhibited in the presence of the cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile or Congo Red. This inhibition was accompanied by a higher expression of all CesA genes in the mycelium and increased in vitro glucan synthase activities. Altogether, our data strongly suggest a direct involvement of the identified CesA genes in cellulose biosynthesis. PMID:19589393

  8. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise

    DEFF Research Database (Denmark)

    Aschenbach, W G; Suzuki, Y; Breeden, K; Prats, C; Hirshman, M F; Dufresne, S D; Sakamoto, K; Vilardo, P G; Steele, M; Kim, J H; Jing, S L; Goodyear, L J; DePaoli-Roach, A A

    2001-01-01

    In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., St...

  9. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity.

    OpenAIRE

    Rosenkranz-Weiss, P; Sessa, W.C.; Milstien, S.; Kaufman, S; Watson, C. A.; Pober, J. S.

    1994-01-01

    We have examined cytokine regulation of nitric oxide synthase (NOS) in human umbilical vein endothelial cells (HUVEC). 24-h treatment with IFN-gamma (200 U/ml) plus TNF (200 U/ml) or IL-1 beta (5 U/ml) increased NOS activity in HUVEC lysates, measured as conversion of [14C]L-arginine to [14C]L-citrulline. Essentially, all NOS activity in these cells was calcium dependent and membrane associated. Histamine-induced nitric oxide release, measured by chemiluminescence, was greater in cytokine-tre...

  10. L-Malate content in irradiated onions (Allium Cepa L.) cv. Valenciana sintetica 14

    International Nuclear Information System (INIS)

    Results of L-malate evaluation in control and irradiated onions, (v. 'Valenciana sintetica 14') and its correlation with sprouting cumulative values are reported. It was concluded that if on the 150th day of storage, the malate content reaches a maximum value and the sprouting is 1 per cent or less, then it would indicate that the samples have been irradiated. L-malate values are positively correlated to sprouting in control samples, while for irradiated ones correlation was negative. (author)

  11. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  12. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    International Nuclear Information System (INIS)

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-?-stimulated monocytes to endothelial cells and suppressed the TNF-? induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-?-induced nuclear factor-?B activation, which was attenuated by pretreatment with NG-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: ? Puerarin induced the phosphorylation of eNOS and the production of NO. ? Puerarin activated eNOS through ER-dependent PI3-kinase and Ca2+-dependent AMPK. ? Puerarin-induced NO was involved in the inhibition of NF-kB activation. ? Puerarin may help for prevention of vascular dysfunction and diabetes.

  13. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    International Nuclear Information System (INIS)

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by [14C]iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two [14C]carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated [14C]carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15

  14. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.; Le Marechal, P.; Jacquot, J.P.; Gadal, P.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.

  15. Human platelet nitric oxide synthase activity: an optimized method Atividade da óxido nítrico sintase em plaquetas humanas: um método otimizado

    Directory of Open Access Journals (Sweden)

    Elisa Mitiko Kawamato

    2002-09-01

    Full Text Available We investigated the kinetic analysis of human platelet Nitric Oxide Synthase (NOS activity by the rate of conversion of [³H] arginine to [³H]-citrulline in unstimulated fresh platelets. NOS activity was present in the membrane fraction and cytosol, and was Ca2+- and calmodulin dependent which is a characteristic of endothelial NOS. NOS activity was also dependent of NADPH since the omission of this cofactor induced an important decrease (85,2% in the enzyme activity. The kinetic varied with protein and arginine concentration but optimum concentrations were found up to 60 minutes, and up to 80 µg of protein at 120 nM of arginine and 0.5 µCi of ³H-arginine. NOS activity in the absence of FAD (flavin adenine dinucleotide, FMN (flavin mononucleotide and BH4 (tetrahydrobiopterin was only 2.8% of the activity measured in the presence of these three cofactors. The enzyme activity was completely inhibited by L-NAME (1 mM (98.1 % and EGTA (5 mM (98.8 %. Trifluoperazine (TFP caused 73.2% inhibition of the enzyme activity at 200 µM and 83.8 % at 500 µM. Under basal conditions, NOS Km for L-arginine was 0.84 ± 0.08 µM and mean Vmax values were 0.122 ± 0.025 pmol.mg-1.min-1. Mean human NOS platelet activity was 0.020 ± 0.010 pmol.mg-1.min-1. Results indicate that the eNOS in human platelet can be evaluated by conversion of [³H]-arginine to [³H]citrulline in an optimized method, which provide reproducible and accurate results with good sensitivity to clinical experiments involving neurological and psychiatric diseases.A análise cinética da atividade da óxido nítrico sintase (NOS plaquetária foi avaliada pela conversão de [³H]-arginina em [³H]-citrulina em plaquetas humanas frescas não estimuladas. A atividade da NOS foi detectada na fração citosólica e na membrana, além de ser dependente de Ca2+-calmodulina, que é uma característica da NOS endotelial (eNOS. A omissão de NADPH levou à diminuição da atividade da NOS dependente da dose causando redução de 85,2% da atividade enzimática. A cinética variou de acordo com as concentrações de proteína e de arginina, sendo que as melhores leituras foram obtidas com 80 µg de proteína, 120 nM de arginina em 0,5 µCi de ³H arginina, em 60 minutos de incubação. A atividade da NOS na ausência de FAD (flavina adenina dinucleotídeo, FMN (flavina mononucleotídeo e BH4 (tetrahidrobiopterina foi de apenas 2,8% da atividade medida na presença destes três cofatores. A atividade da enzima foi completamente inibida pelo L-NAME (1 mM; 98,1 %, EGTA (5 mM; 98,8 % e adição de trifluoperazina (TFP, nas concentrações de 200 µM e 500 µM, inibiu a atividade da enzima em 73,2% e 83,8 %, respectivamente. Em condições basais, o Km da NOS para Larginina foi de 0,84 ± 0,08 µM e o valor de Vmax foi de 0,122 ± 0,025 pmol.mg-1.min-1. A atividade média da NOS plaquetária humana foi de 0,020 ± 0,010 pmol.mg-1.min-1. Os resultados indicam que a eNOS em plaquetas humanas pode ser avaliada pelo método da conversão de [³H]-arginina em [³H]-citrulina, que em condições otimizadas, fornece resultados reprodutíveis e precisos com ótima sensibilidade para experimentos clínicos envolvendo doenças neurológicas e psiquiátricas.

  16. Human platelet nitric oxide synthase activity: an optimized method / Atividade da óxido nítrico sintase em plaquetas humanas: um método otimizado

    Scientific Electronic Library Online (English)

    Elisa Mitiko, Kawamato; Isaias, Glezer; Carolina Demarchi, Munhoz; Cristiane, Bernardes; Cristoforo, Scavone; Tania, Marcourakis.

    2002-09-01

    Full Text Available A análise cinética da atividade da óxido nítrico sintase (NOS) plaquetária foi avaliada pela conversão de [³H]-arginina em [³H]-citrulina em plaquetas humanas frescas não estimuladas. A atividade da NOS foi detectada na fração citosólica e na membrana, além de ser dependente de Ca2+-calmodulina, que [...] é uma característica da NOS endotelial (eNOS). A omissão de NADPH levou à diminuição da atividade da NOS dependente da dose causando redução de 85,2% da atividade enzimática. A cinética variou de acordo com as concentrações de proteína e de arginina, sendo que as melhores leituras foram obtidas com 80 µg de proteína, 120 nM de arginina em 0,5 µCi de ³H arginina, em 60 minutos de incubação. A atividade da NOS na ausência de FAD (flavina adenina dinucleotídeo), FMN (flavina mononucleotídeo) e BH4 (tetrahidrobiopterina) foi de apenas 2,8% da atividade medida na presença destes três cofatores. A atividade da enzima foi completamente inibida pelo L-NAME (1 mM; 98,1 %), EGTA (5 mM; 98,8 %) e adição de trifluoperazina (TFP), nas concentrações de 200 µM e 500 µM, inibiu a atividade da enzima em 73,2% e 83,8 %, respectivamente. Em condições basais, o Km da NOS para Larginina foi de 0,84 ± 0,08 µM e o valor de Vmax foi de 0,122 ± 0,025 pmol.mg-1.min-1. A atividade média da NOS plaquetária humana foi de 0,020 ± 0,010 pmol.mg-1.min-1. Os resultados indicam que a eNOS em plaquetas humanas pode ser avaliada pelo método da conversão de [³H]-arginina em [³H]-citrulina, que em condições otimizadas, fornece resultados reprodutíveis e precisos com ótima sensibilidade para experimentos clínicos envolvendo doenças neurológicas e psiquiátricas. Abstract in english We investigated the kinetic analysis of human platelet Nitric Oxide Synthase (NOS) activity by the rate of conversion of [³H] arginine to [³H]-citrulline in unstimulated fresh platelets. NOS activity was present in the membrane fraction and cytosol, and was Ca2+- and calmodulin dependent which is a [...] characteristic of endothelial NOS. NOS activity was also dependent of NADPH since the omission of this cofactor induced an important decrease (85,2%) in the enzyme activity. The kinetic varied with protein and arginine concentration but optimum concentrations were found up to 60 minutes, and up to 80 µg of protein at 120 nM of arginine and 0.5 µCi of ³H-arginine. NOS activity in the absence of FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide) and BH4 (tetrahydrobiopterin) was only 2.8% of the activity measured in the presence of these three cofactors. The enzyme activity was completely inhibited by L-NAME (1 mM) (98.1 %) and EGTA (5 mM) (98.8 %). Trifluoperazine (TFP) caused 73.2% inhibition of the enzyme activity at 200 µM and 83.8 % at 500 µM. Under basal conditions, NOS Km for L-arginine was 0.84 ± 0.08 µM and mean Vmax values were 0.122 ± 0.025 pmol.mg-1.min-1. Mean human NOS platelet activity was 0.020 ± 0.010 pmol.mg-1.min-1. Results indicate that the eNOS in human platelet can be evaluated by conversion of [³H]-arginine to [³H]citrulline in an optimized method, which provide reproducible and accurate results with good sensitivity to clinical experiments involving neurological and psychiatric diseases.

  17. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum

    DEFF Research Database (Denmark)

    SØrensen, Jens Laurids; Hansen, Frederik Teilfeldt

    2012-01-01

    Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster specific transcription factors. We have developed a system in which an expression cassette containing the transcription factor from the targeted PKS cluster disrupts the production of the red mycelium pigment aurofusarin. This aids with identification of mutants as they appear as white colonies and metabolite analyses where aurofusarin and its intermediates are normally among the most abundant compounds. The system was used for constitutive expression of the local transcription factor from the PKS9 cluster (renamed FSL) leading to production of three novel fusarielins, F, G and H. This group of compounds has not previously been reported from F. graminearum or linked to a biosynthetic gene in any fungal species. The toxicity of the three novel fusarielins was examined against colorectal cancer cell lines where fusarielin H was more potent than fusarielin F and G.

  18. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum.

    DEFF Research Database (Denmark)

    SØrensen, Jens Laurids; T. Hansen, Frederik

    2012-01-01

    Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster specific transcription factors. We have developed a system in which an expression cassette containing the transcription factor from the targeted PKS cluster disrupts the production of the red mycelium pigment aurofusarin. This aids with identification of mutants as they appear as white colonies and metabolite analyses where aurofusarin and its intermediates are normally among the most abundant compounds. The system was used for constitutive expression of the local transcription factor from the PKS9 cluster (renamed FSL) leading to production of three novel fusarielins, F, G and H. This group of compounds has not previously been reported from F.?graminearum or linked to a biosynthetic gene in any fungal species. The toxicity of the three novel fusarielins was examined against colorectal cancer cell lines where fusarielin H was more potent than fusarielin F and G.

  19. The time-dependent effect of provinolsTM on brain NO synthase activity in L-NAME-induced hypertension.

    Czech Academy of Sciences Publication Activity Database

    Jendeková, L.; Kojšová, S.; Andriantsitohaina, R.; Pechá?ová, Olga

    2006-01-01

    Ro?. 55, ?. S1 (2006), S31-S37. ISSN 0862-8408 Grant ostatní: VEGA(SK) 2/6148/26; VEGA(SK) 1/342906 Institutional research plan: CEZ:AV0Z50110509 Keywords : red wine polyphenols * oxidative damage * nitric oxide synthase Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  20. A heterodimer of human 3'-phospho-adenosine-5'-phosphosulphate (PAPS) synthases is a new sulphate activating complex

    International Nuclear Information System (INIS)

    3'-Phospho-adenosine-5'-phosphosulphate (PAPS) synthases are fundamental to mammalian sulphate metabolism. These enzymes have recently been linked to a rising number of human diseases. Despite many studies, it is not yet understood how the mammalian PAPS synthases 1 and 2 interact with each other. We provide first evidence for heterodimerisation of these two enzymes by pull-down assays and Foerster resonance energy transfer (FRET) measurements. Kinetics of dimer dissociation/association indicates that these heterodimers form as soon as PAPSS1 and -S2 encounter each other in solution. Affinity of the homo- and heterodimers were found to be in the low nanomolar range using anisotropy measurements employing proteins labelled with the fluorescent dye IAEDANS that - in spite of its low quantum yield - is well suited for anisotropy due to its large Stokes shift. Within its kinase domain, the PAPS synthase heterodimer displays similar substrate inhibition by adenosine-5'-phosphosulphate (APS) as the homodimers. Due to divergent catalytic efficacies of PAPSS1 and -S2, the heterodimer might be a way of regulating PAPS synthase function within mammalian cells.

  1. Metabolic activation of the antitumor drug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by NO synthases.

    Science.gov (United States)

    Chandor, Alexia; Dijols, Sylvie; Ramassamy, Booma; Frapart, Yves; Mansuy, Daniel; Stuehr, Dennis; Helsby, Nuala; Boucher, Jean-Luc

    2008-04-01

    Nitric oxide synthases (NOSs) are flavohemeproteins that catalyze the oxidation of L-arginine to L-citrulline with formation of the signaling molecule nitric oxide (NO). In addition to their fundamental role in NO biosynthesis, NOSs are also involved in the formation of reactive oxygen and nitrogen species (RONS) and in the interactions with some drugs. 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) is a dinitroaromatic compound tested as an antitumor prodrug that requires reduction to the 2- and 4-hydroxylamines to be cytotoxic. Here, we studied the interaction of neuronal, inducible, and endothelial NOSs with CB1954. Our results showed that the three purified recombinant NOSs selectively reduced the 4-nitro group of CB1954 to the corresponding 4-hydroxylamine with minimal 2-nitroreduction. Little further two-electron reduction of the hydroxylamines to the corresponding 2- and 4-amines was observed. The reduction of CB1954 catalyzed by the neuronal NOS (nNOS) was inhibited by O 2 and a flavin/NADPH binding inhibitor, diphenyliodonium (DPI), but insensitive to the addition of the heme ligands imidazole and carbon monoxide and of l-arginine analogues. This reduction proceeded with intermediate formation of a nitro-anion free radical observed by EPR. Involvement of the reductase domain of nNOS in the reduction of CB1954 was confirmed by the ability of the isolated reductase domain of nNOS to catalyze the reaction and by the stimulating effect of Ca (2+)/calmodulin on the accumulation of 4- and 2-hydroxylamines. The recombinant inducible and endothelial NOS isoforms reduced CB1954 with lower activity but higher selectivity for the cytotoxic 4-hydroxylamine compared with nNOS. Finally, CB1954 did not modify the formation of l-citrulline and RONS catalyzed by nNOS. Our results show that all three NOS isoforms are involved in the nitroreduction of CB1954, with predominant formation of the cytotoxic 4-hydroxylamine derivative. This nitroreduction could be of interest for the selective activation of prodrugs by NOSs overexpressed in tumor cells. PMID:18370414

  2. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Scientific Electronic Library Online (English)

    Gabriela K., Ferreira; Mariane R., Cardoso; Isabela C., Jeremias; Cinara L., Gonçalves; Karolina V., Freitas; Rafaela, Antonini; Giselli, Scaini; Gislaine T., Rezin; João, Quevedo; Emilio L., Streck.

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and cre [...] atine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  3. Heat inactivation of leaf phosphoenolpyruvate carboxylase: Protection by aspartate and malate in C4 plants.

    Science.gov (United States)

    Rathnam, C K

    1978-01-01

    The activity of phosphoenolpyruvate (PEP) carboxylase EC 4.1.1.31 in leaf extracts of Eleusine indica L. Gaertn., a C4 plant, exhibited a temperature optimum of 35-37° C with a complete loss of activity at 50° C. However, the enzyme was protected effectively from heat inactivation up to 55° C by L-aspartate. Activation energies (Ea) for the enzyme in the presence of aspartate were 2.5 times lower than that of the control enzyme. Arrhenius plots of PEP carboxylase activity (±aspartate) showed a break in the slope around 17-20° C with a 3-fold increase in the Ea below the break. The discontinuity in the slopes was abolished by treating the enzyme extracts with Triton X-100, suggesting that PEP carboxylase in C4 plants is associated with lipid and may be a membrane bound enzyme. Depending upon the species, the major C4 acid formed during photosynthesis (malate or aspartate) was found to be more protective than the minor C4 acid against the heat inactivation of their PEP carboxylase. Oxaloacetate, the reaction product, was less effective compared to malate or aspartate. Several allosteric inhibitors of PEP carboxylase were found to be moderately to highly effective in protecting the C4 enzyme while its activators showed no significant effect. PEP carboxylase from C3 species was not protected from thermal inactivation by the C4 acids. The physiological significance of these results is discussed in relation to the high temperature tolerance of C4 plants. PMID:24414875

  4. An active triple-catalytic hybrid enzyme engineered by linking cyclo-oxygenase isoform-1 to prostacyclin synthase that can constantly biosynthesize prostacyclin, the vascular protector.

    Science.gov (United States)

    Ruan, Ke-He; So, Shui-Ping; Cervantes, Vanessa; Wu, Hanjing; Wijaya, Cori; Jentzen, Rebecca R

    2008-12-01

    It remains a challenge to achieve the stable and long-term expression (in human cell lines) of a previously engineered hybrid enzyme [triple-catalytic (Trip-cat) enzyme-2; Ruan KH, Deng H & So SP (2006) Biochemistry45, 14003-14011], which links cyclo-oxygenase isoform-2 (COX-2) to prostacyclin (PGI(2)) synthase (PGIS) for the direct conversion of arachidonic acid into PGI(2) through the enzyme's Trip-cat functions. The stable upregulation of the biosynthesis of the vascular protector, PGI(2), in cells is an ideal model for the prevention and treatment of thromboxane A(2) (TXA(2))-mediated thrombosis and vasoconstriction, both of which cause stroke, myocardial infarction, and hypertension. Here, we report another case of engineering of the Trip-cat enzyme, in which human cyclo-oxygenase isoform-1, which has a different C-terminal sequence from COX-2, was linked to PGI(2) synthase and called Trip-cat enzyme-1. Transient expression of recombinant Trip-cat enzyme-1 in HEK293 cells led to 3-5-fold higher expression capacity and better PGI(2)-synthesizing activity as compared to that of the previously engineered Trip-cat enzyme-2. Furthermore, an HEK293 cell line that can stably express the active new Trip-cat enzyme-1 and constantly synthesize the bioactive PGI(2) was established by a screening approach. In addition, the stable HEK293 cell line, with constant production of PGI(2), revealed strong antiplatelet aggregation properties through its unique dual functions (increasing PGI(2) production while decreasing TXA(2) production) in TXA(2) synthase-rich plasma. This study has optimized engineering of the active Trip-cat enzyme, allowing it to become the first to stably upregulate PGI(2) biosynthesis in a human cell line, which provides a basis for developing a PGI(2)-producing therapeutic cell line for use against vascular diseases. PMID:19021758

  5. Concentration Gradient Effects of Sodium and Lithium Ions and Deuterium Isotope Effects on the Activities of H+-ATP Synthase from Chloroplasts

    OpenAIRE

    Chen, M.-F.; Wang, J.-D.; Su, T.-M.

    2009-01-01

    We explored the concentration gradient effects of the sodium and lithium ions and the deuterium isotope's effects on the activities of H+-ATP synthase from chloroplasts (CF0F1). We found that the sodium concentration gradient can drive the ATP synthesis reaction of CF0F1. In contrast, the lithium ion can be an efficient enzyme-inhibitor by blocking the entrance channel of the ion translocation pathway in CF0. In the presence of sodium or lithium ions and with the application of a membrane pot...

  6. Independent fluctuations of malate and citrate in the CAM species Clusia hilariana Schltdl. under low light and high light in relation to photoprotection.

    Science.gov (United States)

    Miszalski, Zbigniew; Kornas, Andrzej; Rozp?dek, Piotr; Fischer-Schliebs, Elke; Lüttge, Ulrich

    2013-03-15

    Clusia hilariana Schltdl. is described in literature as an obligate Crassulacean acid metabolism (CAM) species. In the present study we assessed the effect of irradiance with low light (LL, 200?molm(-2)s(-1)) and high light (HL, 650-740?molm(-2)s(-1)), on the interdependency of citrate and malate diurnal fluctuations. In plants grown at HL CAM-type oscillations of concentration of citrate and malate were obvious. However, at LL daily courses of both acids do not seem to indicate efficient utilization of these compounds as CO2 and NADPH sources. One week after transferring plants from LL to HL decarboxylation of malate was accelerated. Thus, in the CAM plant C. hilariana two independent rhythms of accumulation and decarboxylation of malate and citrate take place, which appear to be related to photosynthesis and respiration, respectively. Non photochemical quenching (NPQ) of photosystem II, especially well expressed during the evening hours was enhanced. Exposure to HL for 7 d activated oxidative stress protection mechanisms such as the interconversion of violaxanthin (V), antheraxanthin (A) and zeaxanthin (Z) (epoxydation/de-epoxydation) measured as epoxydation state (EPS). This was accompanied by a slight increase in the total amount of these pigments. However, all these changes were not observed in plants exposed to HL for only 2 d. Besides violaxanthin cycle components also lutein, which shows a small, but not significant increase, may be involved in dissipating excess light energy in C. hilariana. PMID:23253483

  7. Safety Assessment of Dialkyl Malates as Used in Cosmetics.

    Science.gov (United States)

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 6 dialkyl malate compounds used in cosmetics. These ingredients function mostly as skin-conditioning agents-emollients. The Panel reviewed relevant animal and human data related to the ingredients along with a previous safety assessment of malic acid. The similar structure, properties, functions, and uses of these ingredients enabled grouping them and using the available toxicological data to assess the safety of the entire group. The Panel concluded that these dialkyl maleate compounds are safe in the present practices of use and concentration as given in this safety assessment. PMID:26227891

  8. Quininium Malates: partial chiral discrimination via diastereomeric salt formation

    Scientific Electronic Library Online (English)

    Nikoletta B., Báthori; Ayesha, Jacobs; Luigi R., Nassimbeni; Baganetsi K., Sebogisi.

    2014-01-01

    Full Text Available Quinine was employed as a resolving agent for racemic malic acid. The resultant product was a quininium salt containing 75 % of the D-malate anion. Quinine was also crystallized with pure L- and D-malic acids and the structures of the resulting diastereomeric salts were elucidated. The crystal packi [...] ngs were analyzed in terms of their non-bonded interactions and the conformation of the quinine, which was compared with other quinine structures recorded in the Cambridge Structural Database. The results indicate that the mechanism of enantiomeric resolution is reliant upon hydrogen bonded interactions.

  9. The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Manipulates the Activity of Glycogen Synthase Kinase-3?

    OpenAIRE

    Fujimuro, Masahiro; Hayward, S Diane

    2003-01-01

    The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is expressed in all KSHV-associated malignancies. LANA is essential for replication and maintenance of the viral episomes during latent infection. However, LANA also has a transcriptional regulatory role and can affect gene expression both positively and negatively. A previously performed yeast two-hybrid screen identified glycogen synthase kinase 3 (GSK-3) as a LANA-interacting protein. Interactio...

  10. Kaposi's Sarcoma-Associated Herpesvirus LANA Protein Downregulates Nuclear Glycogen Synthase Kinase 3 Activity and Consequently Blocks Differentiation?

    OpenAIRE

    Liu, Jianyong; Martin, Heather; Shamay, Meir; Woodard, Crystal; Tang, Qi-Qun; Hayward, S Diane

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) protein interacts with glycogen synthase kinase 3 (GSK-3) and relocalizes GSK-3 in a manner that leads to stabilization of ?-catenin and upregulation of ?-catenin-responsive cell genes. The LANA-GSK-3 interaction was further examined to determine whether there were additional downstream consequences. In the present study, the nuclear GSK-3 bound to LANA in transfected cells and in BCBL1 primary effusion lymp...

  11. Up-regulation of platelet-activating factor synthases and its receptor in spinal cord contribute to development of neuropathic pain following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Okubo Masamichi

    2012-02-01

    Full Text Available Abstract Background Platelet-activating factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine is a lipid mediator derived from cell membrane. It has been reported that PAF is involved in various pathological conditions, such as spinal cord injury, multiple sclerosis, neuropathic pain and intrathecal administration of PAF leads to tactile allodynia. However, the expression of PAF synthases and its receptor in the spinal cord following peripheral nerve injury is unknown. Methods Using the rat spared nerve injury (SNI model, we investigated the expression of PAF synthases (LPCAT1 and 2 and PAF receptor (PAFr mRNAs in the spinal cord. Reverse transcription polymerase chain reaction (RT-PCR and double-labeling analysis of in situ hybridization histochemistry (ISHH with immunohistochemistry (IHC were employed for the analyses. Pain behaviors were also examined with PAFr antagonist (WEB2086. Results RT-PCR showed that LPCAT2 mRNA was increased in the ipsilateral spinal cord after injury, but not LPCAT1 mRNA. Double-labeling of ISHH with IHC revealed that LPCAT1 and 2 mRNAs were constitutively expressed by a subset of neurons, and LPCAT2 mRNA was increased in spinal microglia after nerve injury. RT-PCR showed that PAFr mRNA was dramatically increased in the ipsilateral spinal cord after nerve injury. Double-labeling analysis of ISHH with IHC revealed that after injury PAFr mRNA was predominantly colocalized with microglia in the spinal cord. Continuous intrathecal administration of the PAFr antagonist suppressed mechanical allodynia following peripheral nerve injury. Delayed administration of a PAFr antagonist did not reverse the mechanical allodynia. Conclusions Our data show the histological localization of PAF synthases and its receptor in the spinal cord following peripheral nerve injury, and suggest that PAF/PAFr signaling in the spinal cord acts in an autocrine or paracrine manner among the activated microglia and neurons, thus contributing to development of neuropathic pain.

  12. Mutation and Selection of Lactobacillus plantarum Strains That Do Not Produce Carbon Dioxide from Malate

    OpenAIRE

    Daeschel, M A; McFeeters, R. F.; Fleming, H P; Klaenhammer, T. R.; Sanozky, R. B.

    1984-01-01

    A differential medium was developed to distinguish between malate-decarboxylating (MDC+) and -non-decarboxylating (MDC?) strains of Lactobacillus plantarum. MDC? strains produced a visible acid reaction in the medium, whereas MDC+ strains did not. Use of the medium allowed for rapid screening and isolation of mutagenized cells that had lost the ability to produce CO2 from malate.

  13. In Vitro and In Vivo Activities of E5700 and ER-119884, Two Novel Orally Active Squalene Synthase Inhibitors, against Trypanosoma cruzi

    Science.gov (United States)

    Urbina, Julio A.; Concepcion, Juan Luis; Caldera, Aura; Payares, Gilberto; Sanoja, Cristina; Otomo, Takeshi; Hiyoshi, Hironobu

    2004-01-01

    Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans. These compounds were found to be potent noncompetitive or mixed-type inhibitors of T. cruzi SQS with Ki values in the low nanomolar to subnanomolar range in the absence or presence of 20 ?M inorganic pyrophosphate. The antiproliferative 50% inhibitory concentrations of the compounds against extracellular epimastigotes and intracellular amastigotes were ca. 10 nM and 0.4 to 1.6 nM, respectively, with no effects on host cells. When treated with these compounds at the MIC, all of the parasite's sterols disappeared from the parasite cells. In vivo studies indicated that E5700 was able to provide full protection against death and completely arrested the development of parasitemia when given at a concentration of 50 mg/kg of body weight/day for 30 days, while ER-119884 provided only partial protection. This is the first report of an orally active SQS inhibitor that is capable of providing complete protection against fulminant, acute Chagas' disease. PMID:15215084

  14. [Lipoamide dehydrogenase, citrate synthase and beta-hydroxyacyl-CoA-dehydrogenase in skeletal muscle. 12. The influence of electric stimulation of beef carcasses on activity and subcellular distribution].

    Science.gov (United States)

    Gottesmann, P; Hamm, R

    1985-12-01

    The effect of electrical stimulation (ES) of beef carcasses at 450 V on the total extractable activity and subcellular distribution of the mitochondrial enzymes lipoamide dehydrogenase, citrate synthase and beta-hydroxyacyl-CoA-dehydrogenase in skeletal muscle (activities in the supernatant of a phosphate buffer extract and in muscle press juice) was studied. There was no influence of ES on the total activity and the subcellular distribution of these enzymes in the muscle tissue stored at +2 degrees C for 7 days nor did ES influence the extent of the release of the three enzymes from the mitochondria into the sarcoplasm by freezing (-20 degrees C) and thawing. From these results it can be concluded that ES does not result in an appreciable disintegration of the inner membrane of muscle mitochondria. PMID:3841248

  15. The Malat1 long non-coding RNA is upregulated by signalling through the PERK axis of unfolded protein response during flavivirus infection.

    Science.gov (United States)

    Bhattacharyya, Sankar; Vrati, Sudhanshu

    2015-01-01

    Flavivirus infection causes host cell death by initiation of an unfolded protein response (UPR). UPR is initiated following activation of three ER-membrane resident sensors, PERK, IRE1? and ATF6, which are otherwise kept inactive through association with the ER-chaperone GRP78. Activation precedes cellular and molecular changes that act to restore homeostasis but might eventually initiate apoptosis. These changes involve influencing function of multiple genes by either transcriptional or post-transcriptional or post-translational mechanisms. Transcriptional control includes expression of transcription factor cascades, which influence cognate gene expression. Malat1 is a long non-coding RNA which is over-expressed in many human oncogenic tissues and regulates cell cycle and survival. In this report, for the first time we show activation of Malat1 following infection by two flaviviruses, both of which activate the UPR in host cells. The temporal kinetics of expression was restricted to later time points. Further, Malat1 was also activated by pharmacological inducer of UPR, to a similar degree. Using drugs that specifically inhibit or activate the PERK or IRE1? sensors, we demonstrate that signalling through the PERK axis activates this expression, through a transcriptional mechanism. To our knowledge, this is the first report of an UPR pathway regulating the expression of an lncRNA. PMID:26634309

  16. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare

    DEFF Research Database (Denmark)

    Zerbe, Philipp; Chiang, Angela; Dullat, Harpreet; O'Neil-Johnson, Mark; Starks, Courtney; Hamberger, Björn Robert; Bohlmann, Jörg

    2014-01-01

    Marrubium vulgare (Lamiaceae) is a medicinal plant whose major bioactive compounds, marrubiin and other labdane-related furanoid diterpenoids, have potential applications as anti-diabetics, analgesics or vasorelaxants. Metabolite and transcriptome profiling of M. vulgare leaves identified five different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-k...

  17. Rapamycin downregulates thymidylate synthase and potentiates the activity of pemetrexed in non-small cell lung cancer

    OpenAIRE

    Kawabata, Shigeru; Chiang, Chun-Te; Tsurutani, Junji; Shiga, Hideaki; Arwood, Matthew L.; Komiya, Takefumi; Gills, Joell J.; Memmott, Regan M.; Dennis, Phillip A

    2014-01-01

    Non-small cell lung cancer (NSCLC) accounts for 80–85% of lung cancer cases, and almost half of newly diagnosed patients have metastatic disease. Pemetrexed is a widely used drug for NSCLC and inhibits several folate-dependent enzymes including thymidylate synthase (TS). Increased expression of TS confers resistance to pemetrexed in vitro and predicts poor response to pemetrexed. Rapamycin is an mTOR inhibitor and suppresses cap-dependent synthesis of specific mRNA species. Here, we show that...

  18. [Ureido-¹?N]citrulline UPLC-MS/MS nitric oxide synthase (NOS) activity assay: development, validation, and applications to assess NOS uncoupling and human platelets NOS activity.

    Science.gov (United States)

    Böhmer, Anke; Gambaryan, Stepan; Flentje, Markus; Jordan, Jens; Tsikas, Dimitrios

    2014-08-15

    In healthy human subjects, less than 0.2% of l-arginine is converted to l-citrulline and nitric oxide (NO) by NO synthases (NOS), a metabolic pathway present in all cell types. Assessment of NOS activity in vitro and in vivo by measuring l-citrulline or NO is difficult. l-citrulline is formed from l-arginine to a much higher extent by other pathways including the urea cycle. Furthermore, NO is a very short-lived gaseous molecule and is oxidized to nitrite and nitrate which are ubiquitous. In fact, nitrite and nitrate are also derived from food and air and are major laboratory contaminants. Further, NOS (in the uncoupled state) are also able to produce superoxide in addition and/or instead of l-citrulline and NO. The difficulties of NOS assays based on l-citrulline and NO measurement can only in part be overcome by sophisticated techniques including use of radio-labeled ((3)H or (14)C) and stable-isotope labeled ((15)N2 at the guanidine group) l-arginine analogs as substrates for NOS and measurement of radio-labeled l-citrulline and (15)N-labeled nitrite and nitrate, respectively. In the present work, we report on the development, validation and application of an UPLC-MS/MS method for the assessment of the activity of recombinant NOS enzymes by using [guanidino-(15)N2]-l-arginine (20 ?M for recombinant NOS, 5mM in cell systems) as the substrate and by measuring [ureido-(15)N]-l-citrulline as the reaction product (usually formed at concentrations below 1 ?M) using (2)H7-l-citrulline as the internal standard. The lower limit of detection of the method is about 80 fmol (2)H7-l-citrulline. In cell systems, exceeding [guanidino-(15)N2]-l-arginine is removed by strong cation exchanger solid-phase extraction. The method was cross-validated by a GC-MS assay that measures simultaneously (15)N-nitrite and (15)N-nitrate as pentafluorobenzyl derivatives, with unlabeled nitrite and nitrate serving as the internal standards. By means of this UPLC-MS/MS (15)N-citrulline assay, N(G)-nitro-arginine (100 ?M) was found to inhibit recombinant inducible NOS (iNOS) activity (by 38%), whereas nitrite and GSSG (each at 500 ?M) did not affect iNOS activity at all. Nitrite and GSSG at pathophysiological concentrations are unlikely to uncouple NOS. NOS activity was not detectable in platelets of healthy humans by the UPLC-MS/MS and GC-MS assays. PMID:25033468

  19. Pengaruh Pengasapan (Thermal Fogging Insektisida Piretroid (Malation 95% Terhadap Nyamuk Aedes aegypti dan Culex quinquefasciatus di Pemukiman

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2009-12-01

    Full Text Available The evaluation of piretroid insecticide (active ingredient Malation 95% was con-ducted in Sub district Tengarang, Semarang Segency, Central Java Province. The insecti-cide was applied using thermal fogging method for dosages of 125, 250, 375, 500 and 625 ml/ha (diluted in diesel to 10 litters. The evaluation of the efficacy was conducted against two mosquito species, Aedes aegypti (the main dengue haemorrhagic fever and Culex quinquefasciatus (the urban lymphatic fil-ariasis vector. Result of the evaluation was revealed that dosages of 500 and 625 ml/ha were effective against both tested mosquito species indoor and outdoor.

  20. A single amino acid determines the site of deprotonation in the active center of sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor.

    Science.gov (United States)

    Garms, Stefan; Chen, Feng; Boland, Wilhelm; Gershenzon, Jonathan; Köllner, Tobias G

    2012-03-01

    The multitude of terpene carbon skeletons found in nature is formed by enzymes known as terpene synthases (TPSs). These proteins are often multiproduct enzymes converting a single prenyl diphosphate substrate into a mixture of terpene products. The recently identified sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor produce terpene blends containing the same products, but in different proportions. A single amino acid in the active site was reported to determine the different product specificities of SbTPS1 and SbTPS2. In this study we examined the reaction mechanism of the Sorghum TPSs. Feeding experiments with deuterium-labeled substrates and chiral analysis of the enzyme products zingiberene, ?-sesquiphellandrene and ?-bisabolene revealed that the reactions catalyzed by both enzymes proceeded via (S)-nerolidyl diphosphate and the cyclic (6S)-bisabol-7-yl and (6R)-bisabol-1-yl cation intermediates. The site of deprotonation of the final cation was shown to be the only catalytic difference between SbTPS1 and SbTPS2. Docking of the (6R)-bisabol-1-yl cation into structural models of SbTPS1 and SbTPS2 indicated a potential role of initially cleaved pyrophosphate group as a proton acceptor. PMID:22226036

  1. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Dong Ju Son

    2014-08-01

    Full Text Available PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum and long pepper (Piper longum, was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2, COX-1, COX-2, and thromboxane A2 (TXA2 synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PGE2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.

  2. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH?-terminal (sites 2 + 2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz

    2013-01-01

    Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. Previously, we demonstrated that phosphorylation of Thr³?? on Akt (p-Akt-Thr³??), Akt2 activity, and GS activity in muscle were positively associated with insulin sensitivity. Here, in the same study population, we determined the influence of several upstream elements in the canonical PI3K signaling on muscle GS activation. One-hundred eighty-one nondiabetic twins were examined with the euglycemic hyperinsulinemic clamp combined with excision of muscle biopsies. Insulin signaling was evaluated at the levels of the insulin receptor, IRS-1-associated PI3K (IRS-1-PI3K), Akt, and GS employing activity assays and phosphospecific Western blotting. The insulin-stimulated GS activity was positively associated with p-Akt-Thr³?? (P = 0.01) and Akt2 activity (P = 0.04) but not p-Akt-Ser??³ or IRS-1-PI3K activity. Furthermore, p-Akt-Thr³?? and Akt2 activity were negatively associated with NH?-terminal GS phosphorylation (P = 0.001 for both), which in turn was negatively associated with insulin-stimulated GS activity (P <0.001). We found no association between COOH-terminal GS phosphorylation and Akt or GS activity. Employing whole body Akt2-knockout mice, we validated the necessity for Akt2 in insulin-mediated GS activation. However, since insulin did not affect NH?-terminal phosphorylation in mice, we could not use this model to validate the observed association between GS NH?-terminal phosphorylation and Akt activity in humans. In conclusion, our study suggests that although COOH-terminal dephosphorylation is likely necessary for GS activation, Akt2-dependent NH?-terminal dephosphorylation may be the site for "fine-tuning" insulin-mediated GS activation in humans.

  3. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  4. Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi.

    Science.gov (United States)

    Singkaravanit, Suthitar; Kinoshita, Hiroshi; Ihara, Fumio; Nihira, Takuya

    2010-02-01

    Based on comparative amino-acid sequence alignment of geranylgeranyl diphosphate (GGPP) synthase from filamentous fungi, degenerated oligonucleotide primers were designed for searching GGPP synthase gene(s) in entomopathogenic fungi. Polymerase chain reaction with the designed primers amplified GGPP synthase homologues from five representative entomopathogenic fungi: Metarhizium anisopliae, Beauveria bassiana, Verticillium lecanii, Paecilomyces farinosus, and Nomuraea rileyi. Sequence comparison of the amplified of GGPP synthase homologue fragments revealed that M. anisopliae and B. bassiana have at least two different types of the GGPP synthase gene homologues. The first type (designated as ggs1), which is highly conserved among the five strains, has a unique Ser-rich region, SSXSSVSGSSS (X refers to L, A, V, or S), and is constitutively expressed throughout growth. In contrast, the second type of GGPP synthase gene homologue (ggs2) was discovered only in some strains, and genes of this type possessed high similarity to each other but showed relatively weak similarity to the ggs1 genes, with no detectable transcription under the cultivation conditions applied in this experiment. The ggs1 cloned from M. anisopliae, which encoded a putative protein of 359 amino acid residues, was heterologously expressed in E. coli. The recombinant protein showed activity to synthesize GGPP from farnesyl diphosphate and isopentenyl diphosphate. These results strongly suggested that the ggs1 gene encodes a GGPP synthase involved in primary metabolism. PMID:19690851

  5. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe) Varieties

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10?3 M and 10?5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10?5 M SA treatment. As the SA concentration was decreased from 10?3 M to 10?5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 ?g mL?1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10?5 M SA treatment followed by the 10?3 M SA (52.14%–63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10?5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar application of SA in a controlled environment and that the anticancer activity in young ginger extracts could be improved. PMID:23203096

  6. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe Varieties

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2012-11-01

    Full Text Available The effect of foliar application of salicylic acid (SA at different concentrations (10?3 M and 10?5 M was investigated on the production of secondary metabolites (flavonoids, chalcone synthase (CHS activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231 in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS enzyme activity (involving flavonoid synthesis and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10?5 M SA treatment. As the SA concentration was decreased from 10?3 M to 10?5 M, the free radical scavenging power (FRAP increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 ?g mL?1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10?5 M SA treatment followed by the 10?3 M SA (52.14%–63.66% treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%. These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10?5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar application of SA in a controlled environment and that the anticancer activity in young ginger extracts could be improved.

  7. Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Vind, B F; Birk, Jesper Bratz

    2012-01-01

    AIMS/HYPOTHESIS: In type 2 diabetes, reduced insulin-stimulated glucose disposal, primarily glycogen synthesis, is associated with defective insulin activation of glycogen synthase (GS) in skeletal muscle. Hyperglycaemia may compensate for these defects, but to what extent it involves improved insulin signalling to glycogen synthesis remains to be clarified. METHODS: Whole-body glucose metabolism was studied in 12 patients with type 2 diabetes, and 10 lean and 10 obese non-diabetic controls by means of indirect calorimetry and tracers during a euglycaemic-hyperinsulinaemic clamp. The diabetic patients underwent a second isoglycaemic-hyperinsulinaemic clamp maintaining fasting hyperglycaemia. Muscle biopsies from m. vastus lateralis were obtained before and after the clamp for examination of GS and relevant insulin signalling components. RESULTS: During euglycaemia, insulin-stimulated glucose disposal, glucose oxidation and non-oxidative glucose metabolism were reduced in the diabetic group compared with both control groups (p¿

  8. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine ?-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 ?L of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  9. The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer.

    Science.gov (United States)

    Cathcart, Mary-Clare; Reynolds, John V; O'Byrne, Kenneth J; Pidgeon, Graham P

    2010-04-01

    Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI(2)/TXA(2) ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer. PMID:20122998

  10. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    JØrgensen, Sebastian B; Nielsen, Jakob N.

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). In muscle of mice with targeted deletion of the alpha2-AMPK gene, phosphorylation of GS site 2 was decreased under basal conditions and unchanged by AICAR treatment. In contrast, in alpha1-AMPK knockout mice, the response to AICAR was normal. Fuel surplus (glucose loading) decreased AMPK activation by AICAR, but the phosphorylation of the downstream targets acetyl-CoA carboxylase-beta and GS was normal. Fractionation studies suggest that this suppression of AMPK activation was not a direct consequence of AMPK association with membranes or glycogen, because AMPK was phosphorylated to a greater extent in response to AICAR in the membrane/glycogen fraction than in the cytosolic fraction. Thus, the downstream action of AMPK in response to AICAR was unaffected by glucose loading, whereas the action of the kinase upstream of AMPK, as judged by AMPK phosphorylation, was decreased. The fact that alpha2-AMPK is a GS kinase that inactivates GS while simultaneously activating glucose transport suggests that a balanced view on the suitability for AMPK as an antidiabetic drug target should be taken.

  11. Processes of malate catabolism during the anaerobic metabolism of grape berries

    International Nuclear Information System (INIS)

    In order to precise malate fate during the anaerobic metabolism of grape, malate-3-14C was injected into Carignan berries kept in darkness at 350C under carbon dioxide atmosphere. The injection of labelled malate was effected in presence or not of non-labelled oxalate which inhibits malic enzyme (EC I.I.I.40). The analyses of the samples fixed after 3 and 7 days anaerobiosis concerned the titration of various substrates, organic acids, amino-acids and glycolysis products, and the measuring of the NADP+-malic enzyme (EC I.I.I.40) and malate dehydrogenase (EC I.I.I.40). Radioactivity is mainly observed in ethanol, amino-butyrate the non-separated group glycerate-shikimate and succinate. Malic enzyme acts in the first sequence of a process leading from malate to ethanol. Alanin synthesis seems to be stimulated in presence of oxalate. The results obtained and some hypotheses presented in the literature induce to suggest a utilization scheme for malate in the anaerobic metabolism of grape

  12. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  13. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    International Nuclear Information System (INIS)

    Highlights: ? As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. ? RhoA activation increases PGE2 levels and its metabolic enzyme mPGES-1. ? RhoA-activated NF-?B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E2 (PGE2), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE2 levels and gene expression of the rate-limiting PGE2 producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1?-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1?-mediated phosphorylated nuclear factor-?B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE2 production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  14. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. MATERIALS AND METHODS: The femoral vein was catheterised in rats and GTN was infused (4 µg/kg/min, for 20 minutes, intravenously). Immunohistochemistry was performed to analyse Fos, nNOS and CGRP and Western blot for measuring nNOS protein expression. The effect of olcegepant, L-nitro-arginine methyl ester (L-NAME) and neurokinin (NK)-1 receptor antagonist L-733060 were analysed on Fos activation. RESULTS: GTN-treated rats showed a significant increase of nNOS and CGRP in dura mater and CGRP in the trigeminal nucleus caudalis (TNC). Upregulation of Fos was observed in TNC four hours after the infusion. This activation was inhibited by pre-treatment with olcegepant. Pre-treatment with L-NAME and L-733060 also significantly inhibited GTN induced Fos expression. CONCLUSION: The present study indicates that blockers of CGRP, NOS and NK-1 receptors all inhibit GTN induced Fos activation. These findings also predict that pre-treatment with olcegepant may be a better option than post-treatment to study its inhibitory effect in GTN migraine models.

  15. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    International Nuclear Information System (INIS)

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from 14C-labeled acetate to those supplied exogenously as 14C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of fatty acids produced by FASN to those derived exogenously. • Cancer cells do not have a specific requirement for fatty acids produced by FASN. • Fatty acids produced by FASN are in excess of cell requirements and are excreted. • Increased FASN activity is not required to sustain elevations in glycolysis

  16. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of fatty acids produced by FASN to those derived exogenously. • Cancer cells do not have a specific requirement for fatty acids produced by FASN. • Fatty acids produced by FASN are in excess of cell requirements and are excreted. • Increased FASN activity is not required to sustain elevations in glycolysis.

  17. Human FAD synthase is a bi-functional enzyme with a FAD hydrolase activity in the molybdopterin binding domain.

    Science.gov (United States)

    Giancaspero, Teresa Anna; Galluccio, Michele; Miccolis, Angelica; Leone, Piero; Eberini, Ivano; Iametti, Stefania; Indiveri, Cesare; Barile, Maria

    2015-09-25

    FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is involved in the biochemical pathway for converting riboflavin into FAD. Human FADS exists in different isoforms. Two of these have been characterized and are localized in different subcellular compartments. hFADS2 containing 490 amino acids shows a two domain organization: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and a resembling molybdopterin-binding (MPTb) domain. By a multialignment of hFADS2 with other MPTb containing proteins of various organisms from bacteria to plants, the critical residues for hydrolytic function were identified. A homology model of the MPTb domain of hFADS2 was built, using as template the solved structure of a T. acidophilum enzyme. The capacity of hFADS2 to catalyse FAD hydrolysis was revealed. The recombinant hFADS2 was able to hydrolyse added FAD in a Co(2+) and mersalyl dependent reaction. The recombinant PAPS reductase domain is not able to perform the same function. The mutant C440A catalyses the same hydrolytic function of WT with no essential requirement for mersalyl, thus indicating the involvement of C440 in the control of hydrolysis switch. The enzyme C440A is also able to catalyse hydrolysis of FAD bound to the PAPS reductase domain, which is quantitatively converted into FMN. PMID:26277395

  18. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes Niklas Fabian

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS inhibitors led to a decrease in intraerythrocytic NO accumulation and if this was associated with a change in surface expression of the phagocytosis markers CD47 and phosphatidyl serine. The specific inducible NOS inhibitors l-canavanine and GW274150 dose-dependently decreased intraerythrocytic NO while l-NMMA (an unspecific NOS inhibitor) and caveolin-1 scaffolding domain peptide (a specific endothelial NOS inhibitor) did not affect NO levels. Phosphatidyl serine externalization markedly increased upon P. falciparum infection. l-canavanine did not modify this whereas caveolin-1 scaffolding domain peptide increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion, the data imply that NOS inhibitors decrease NO accumulation in P. falciparum-infected erythrocytes but this does not correlate with the level of two major erythrocytic phagocytosis markers.

  19. The influence of active site conformations on the hydride transfer step of the thymidylate synthase reaction mechanism.

    Science.gov (United States)

    Swiderek, Katarzyna; Kohen, Amnon; Moliner, Vicent

    2015-11-18

    The hydride transfer from C6 of tetrahydrofolate to the reaction's exocyclic methylene-dUMP intermediate is the rate limiting step in thymidylate synthase (TSase) catalysis. This step has been studied by means of QM/MM molecular dynamics simulations to generate the corresponding free energy surfaces. The use of two different initial X-ray structures has allowed exploring different conformational spaces and the existence of chemical paths with not only different reactivities but also different reaction mechanisms. The results confirm that this chemical conversion takes place preferentially via a concerted mechanism where the hydride transfer is conjugated to thiol-elimination from the product. The findings also confirm the labile character of the substrate-enzyme covalent bond established between the C6 of the nucleotide substrate and a conserved cysteine residue. The calculations also reproduce and rationalize a normal H/T 2° kinetic isotope effect measured for that step. From a computational point of view, the results demonstrate that the use of an incomplete number of coordinates to describe the real reaction coordinate can render biased results. PMID:25868526

  20. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva Maria Regina de

    1998-01-01

    Full Text Available A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC 1.1.1.37 in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes analyzed (AB1B2 individuals. Klebe's serial dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  1. Vesicocutaneous fistula formation during treatment with sunitinib malate: Case report

    Directory of Open Access Journals (Sweden)

    Sakashita Hiroyuki

    2010-11-01

    Full Text Available Abstract Background The oral multi-kinase inhibitor sunitinib malate improves the survival of patients with gastrointestinal stromal tumors (GIST after the disease progresses or intolerance to imatinib mesylate develops. Urinary fistulae arising during treatment with sunitinib for GIST have not been described. Case presentation We describe a 62-year-old female patient diagnosed with unresectable GIST that involved the abdominal wall, urinary bladder wall, bowel, mesentery and peritoneum in the pelvic cavity. Intestinocutaneous fistulae developed on a surgical lesion after orally administered imatinib was supplemented by an arterial infusion of 5-flurouracil. Sunitinib was started after the patient developed resistance to imatinib. On day 4 of the fourth course of sunitinib, a widely dilated cutaneous fistula discharged large amounts of fluid accompanied by severe abdominal pain. Urinary communication was indicated based on the results of an intravenous injection of indigo carmine. Computed tomography findings suggested a small opening on the anterior urinary bladder wall and fistulous communication between the bladder and abdominal walls bridged by a subcutaneous cavity. The fistula closed and the amount of discharge decreased when sunitinib was discontinued. Therefore, sunitinib might have been associated with the development of the vesicocutaneous fistula in our patient. Conclusion This is the first description of a vesicocutaneous fistula forming while under sunitinib treatment. Clinicians should be aware of the possible complication of vesicocutaneous fistula formation during treatment with molecular targeting agents in patients with extravesical invasion and peritoneal dissemination of GIST.

  2. Prion peptide PrP106-126 induces inducible nitric oxide synthase and proinflammatory cytokine gene expression through the activation of NF-?B in macrophage cells.

    Science.gov (United States)

    Lu, Yun; Liu, Ailing; Zhou, Xiangmei; Kouadir, Mohammed; Zhao, Wei; Zhang, Siming; Yin, Xiaomin; Yang, Lifeng; Zhao, Deming

    2012-05-01

    The inflammatory response in prion diseases is dominated by microglia activation. The molecular mechanisms that lie behind this inflammatory process are not very well understood. In the present study, we examined the activat2ion of nuclear factor-kappa B (NF-?B) upon exposure to PrP106-126 and its role in PrP106-126-induced upregulation of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines (interleukin [IL]-1?, tumor necrosis factor [TNF]-?, IL-6) in Ana-1 macrophages. The results showed that iNOS and proinflammatory cytokine release was significantly elevated in Ana-1 macrophages upon exposure to PrP106-126; that PrP106-126 treatment led to a significant NF-?B activation; that proinflammatory cytokines gene expression was elevated in macrophages upon exposure to PrP106-126; and that NF-?B inhibition significantly abrogated PrP106-126-induced upregulation of iNOS and inflammatory cytokine mRNA expression. These results suggest that treatment with neurotoxic prion peptides leads to the activation of transcription factor NF-?B, which in turn stimulates gene expression of iNOS and proinflammatory cytokines in Ana-1 macrophages. PMID:22149924

  3. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  4. Constitutive activation of glycogen synthase kinase-3? correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Cho Yu

    2010-08-01

    Full Text Available Abstract Background Aberrant regulation of glycogen synthase kinase-3? (GSK-3? has been implicated in several human cancers; however, it has not been reported in the gastric cancer tissues to date. The present study was performed to determine the expression status of active form of GSK-3? phosphorylated at Tyr216 (pGSK-3? and its relationship with other tumor-associated proteins in human gastric cancers. Methods Immunohistochemistry was performed on tissue array slides containing 281 human gastric carcinoma specimens. In addition, gastric cancer cells were cultured and treated with a GSK-3? inhibitor lithium chloride (LiCl for immunoblot analysis. Results We found that pGSK-3? was expressed in 129 (46% of 281 cases examined, and was higher in the early-stages of pathologic tumor-node-metastasis (P P P P P Conclusions GSK-3? activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis. Thus, these findings suggest that GSK-3? activation is a useful prognostic marker for the early-stage gastric cancer.

  5. Invertase and sucrose synthase activities in coffee plants sprayed with sucrose solution / Atividade de invertases e sacarose sintase em plantas de cafeeiro pulverizadas com solução de sacarose

    Scientific Electronic Library Online (English)

    José Carlos da, Silva; José Donizeti, Alves; Amauri Alves de, Alvarenga; Marcelo Murad, Magalhães; Dárlan Einstein do, Livramento; Daniela Deitos, Fries.

    Full Text Available Uma prática cuja eficiência não foi ainda comprovada cientificamente, é a pulverização dos cafeeiros com solução diluída de sacarose, como fonte de carbono para as plantas. Este trabalho visou estudar o efeito da pulverização de açúcar via folha nos teores endógenos de carboidratos e na atividade da [...] s enzimas invertases e sacarose sintase em mudas de cafeeiros (Coffea arabica L.) com baixo (baixo) e alto (normal) nível de reservas de carbono. As pulverizações ocorreram nas concentrações de 0,5 e 1% de sacarose utilizando-se água como testemunha. A aplicação de sacarose a 1% aumentou a concentração de açúcares solúveis totais (AST) em plantas depauperadas, como também aumentou as atividades das enzimas invertase ácida da parede, invertase ácida do vacúolo, invertase neutra do citosol e sacarose sintase. Em plantas com níveis normais de carboidratos não foi observada nenhuma alteração nos teores dos AST, como também nas atividades de tais enzimas. Independentemente dos tratamentos aplicados e do estado fisiológico das plantas, não foram observadas diferenças na transpiração e na condutância estomática, mostrando, desta forma, o controle estomático da transpiração. A fotossíntese foi estimulada a 0,5% e 1% em plantas depauperadas, o que não aconteceu com plantas normais. A pulverização de sacarose em mudas de cafeeiros só é eficiente tratando-se de plantas depauperadas na concentração de 1%. Abstract in english One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activ [...] ities of invertase and sucrose synthase in coffee (Coffea arabica L.) seedlings with reduced (low) and high (normal) levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.

  6. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. (Univ. of Iowa, Iowa City (United States) Western Michigan Univ., Kalamazoo (United States))

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  7. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; HØjlund, Kurt

    2008-01-01

    CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P < 0.05) was associated with a lower insulin-stimulated GS activity in PCOS patients (P < 0.05), compared with controls. This was, in part, explained by absent insulin-mediated dephosphorylation of GS at the NH2-terminal sites 2+2a, whereas dephosphorylation at the COOH-terminal sites 3a+3b was intact in PCOS subjects (P < 0.05). Consistently, multiple linear regression analysis showed that insulin activation of GS was dependent on dephosphorylation of sites 3a+3b in women with PCOS. No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P < 0.05) and restored the ability of insulin to dephosphorylate GS at sites 2 and 2a. CONCLUSIONS: Impaired insulin activation of GS including absent dephosphorylation at sites 2+2a contributes to insulin resistance in skeletal muscle in PCOS. The ability of pioglitazone to enhance insulin sensitivity, in part, involves improved insulin action on GS activity and dephosphorylation at NH2-terminal sites.

  8. Identification of Pseudomonas fluorescens Chemotaxis Sensory Proteins for Malate, Succinate, and Fumarate, and Their Involvement in Root Colonization

    OpenAIRE

    Oku, Shota; Komatsu, Ayaka; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi

    2014-01-01

    Pseudomonas fluorescens Pf0-1 exhibited chemotactic responses to l-malate, succinate, and fumarate. We constructed a plasmid library of 37 methyl-accepting chemotaxis protein (MCP) genes of P. fluorescens Pf0-1. To identify a MCP for l-malate, the plasmid library was screened using the PA2652 mutant of Pseudomonas aeruginosa PAO1, a mutant defective in chemotaxis to l-malate. The introduction of Pfl01_0728 and Pfl01_3768 genes restored the ability of the PA2652 mutant to respond to l-malate. ...

  9. Higher plant cellulose synthases

    OpenAIRE

    Richmond, Todd

    2000-01-01

    The sole function of cellulose synthases, which are found in plants bacteria, fungi, and animals, is to produce the biopolymer cellulose. Although no crystal structure has yet been solved, a considerable amount is known about their structure, function and evolution.

  10. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats

    Science.gov (United States)

    Rahmati, Masoud; Taherabadi, Seyed Jalal; Mehrabi, Mahmoud

    2015-01-01

    Background: The relationship between decreased activity/neuropathic pain and gene expression alterations in soleus muscle has remained elusive. Objectives: In this experimental study, we investigated the effects of decreased activity in neuropathic pain form on Cyclin-Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase-3 ? (GSK-3?) gene expression in soleus muscle of rats. Materials and Methods: Twelve male Wistar rats were randomly divided into three groups: (1) tight ligation of the L5 spinal nerve (SNL: n = 4); (2) sham surgery (Sham: n = 4), and (3) control (C: n = 4). The threshold to produce a withdrawal response to a mechanical and thermal stimulus was measured using von Frey filaments and radiation heat apparatus, respectively. Following 4 weeks after surgery, the left soleus muscle was removed and mRNA levels were determined by real-time Polymerase Chain Reaction (PCR). Results: Compared to control animals, L5 ligated animals developed mechanical and heat hypersensitivity during total period of study. Soleus muscle weight as well as CDK5 mRNA levels (less than ~ 0.4 fold) was decreased and GSK-3? mRNA levels (up to ~ 7 folds) increased in L5 ligated animals. Conclusions: These results showed enhanced muscle atrophy processes following peripheral nerve damage and might provide a useful approach to study underlying muscle mechanisms associated with clinical neuropathic pain syndromes. PMID:26290750

  11. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. PMID:26466878

  12. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Jensen, Jacob Krüger; Harholt, Jesper; Sørensen, Susanne Oxenbøll; Moller, Isabel Eva; Blaukopf, Claudia; Johansen, Bo Buchholt; Delotto, Robert; Pauly, Markus; Scheller, Henrik Vibe; Willats, William George Tycho

    2007-01-01

    Members of a large family of cellulose synthase-like genes (CSLs) are predicted to encode glycosyl transferases (GTs) involved in the biosynthesis of plant cell walls. The CSLA and CSLF families are known to contain mannan and glucan synthases, respectively, but the products of other CSLs are unknown. Here we report the effects of disrupting ATCSLD5 expression in Arabidopsis. Both stem and root growth were significantly reduced in ATCSLD5 knock-out plants, and these plants also had increased sus...

  13. The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177

    Directory of Open Access Journals (Sweden)

    Pei?Rung Wu

    2014-08-01

    Full Text Available NO production catalysed by eNOS (endothelial nitric-oxide synthase plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293 cells with a series of deletion mutants in both the AIE (?594–604, ?605–612 and ?626–634 and the C-terminal tail (?14; deletion of 1164–1177. The expression of ?594–604 and ?605–612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, ?626–634 and ?1164–1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS. Intriguingly, mutant ?594–604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594–604 regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.

  14. Process-driven bacterial community dynamics are key to cured meat colour formation by coagulase-negative staphylococci via nitrate reductase or nitric oxide synthase activities.

    Science.gov (United States)

    Sánchez Mainar, María; Leroy, Frédéric

    2015-11-01

    The cured colour of European raw fermented meats is usually achieved by nitrate-into-nitrite reduction by coagulase-negative staphylococci (CNS), subsequently generating nitric oxide to form the relatively stable nitrosomyoglobin pigment. The present study aimed at comparing this classical curing procedure, based on nitrate reductase activity, with a potential alternative colour formation mechanism, based on nitric oxide synthase (NOS) activity, under different acidification profiles. To this end, meat models with and without added nitrate were fermented with cultures of an acidifying strain (Lactobacillus sakei CTC 494) and either a nitrate-reducing Staphylococcus carnosus strain or a rare NOS-positive CNS strain (Staphylococcus haemolyticus G110), or by relying on the background microbiota. Satisfactory colour was obtained in the models prepared with added nitrate and S. carnosus. In the presence of nitrate but absence of added CNS, however, cured colour was only obtained when L. sakei CTC 494 was also omitted. This was ascribed to the pH dependency of the emerging CNS background microbiota, selecting for nitrate-reducing Staphylococcus equorum strains at mild acidification conditions but for Staphylococcus saprophyticus strains with poor colour formation capability when the pH decrease was more rapid. This reliance of colour formation on the composition of the background microbiota was further explored by a side experiment, demonstrating the heterogeneity in nitrate reduction of a set of 88 CNS strains from different species. Finally, in all batches prepared with S. haemolyticus G110, colour generation failed as the strain was systematically outcompeted by the background microbiota, even when imposing milder acidification profiles. Thus, when aiming at colour formation through CNS metabolism, technological processing can severely interfere with the composition and functionality of the meat-associated CNS communities, for both nitrate reductase and NOS activities. Several major bottlenecks, among which the rareness of phenotypic NOS activity in meat-compatible CNS, need to be considered, which is seriously questioning the relevance of this pathway in fermented meats. PMID:25805616

  15. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt

    Directory of Open Access Journals (Sweden)

    Hunter Randy

    2008-01-01

    Full Text Available Abstract Background Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-?-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS; however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1 the effect of the PPAR-? agonist pioglitazone on lipopolysaccharide (LPS-induced iNOS activity and nitric oxide (NO generation by microglia; (2 the differential role of p38 mitogen-activated protein kinase (p38 MAPK, c-Jun NH(2-terminal kinase (JNK, and phosphoinositide 3-kinase (PI3K on LPS-induced NO generation; and (3 the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. Methods Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-?, PI3K, and protein kinase B (Akt were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH-positive neurons were counted in mesencephalic neuron-microglia mixed cultures. Results Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38 MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-?, PI3K, and Akt levels were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production. Furthermore, wortmannin prevented the inhibitory effect of pioglitazone on the LPS-induced NO increase. Conclusion We demonstrate that pioglitazone protects dopaminergic neurons against LPS insult at least via inhibiting iNOS expression and NO generation, which is potentially mediated via inhibition of p38 MAPK activity. In addition, the PI3K pathway actively participates in the negative regulation of LPS-induced NO production. Our findings suggest that PPAR-? activation may involve differential regulation of p38 MAPK and of the PI3K/Akt pathway in the regulation of the inflammatory process.

  16. Smoking cessation early in pregnancy and birth weight, length, head circumference, and endothelial nitric oxide synthase activity in umbilical and chorionic vessels: an observational study of healthy singleton pregnancies

    DEFF Research Database (Denmark)

    Andersen, Malene R; Simonsen, Ulf; Uldbjerg, Niels; Stender, Steen; Aalkjaer, Christian

    2009-01-01

    BACKGROUND: Reduced production of the vasodilator nitric oxide (NO) in fetal vessels in pregnant smokers may lower the blood flow to the fetus and result in lower birth weight, length, and head circumference. The present study measured endothelial NO synthase (eNOS) activity in fetal umbilical and chorionic vessels from nonsmokers, smokers, and ex-smokers and related the findings to the fetal outcome. METHODS AND RESULTS: Of 266 healthy, singleton pregnancies, 182 women were nonsmokers, 43 were ...

  17. The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site

    OpenAIRE

    Mark J. S. Kelly; Ball, Linda J.; Krieger, Cornelia; YU, YIHUA; Fischer, Markus; Schiffmann, Susanne; Schmieder, Peter; Kühne, Ronald; Bermel, Wolfgang; Bacher, Adelbert; Richter, Gerald; Oschkinat, Hartmut

    2001-01-01

    Recent developments in NMR have extended the size range of proteins amenable to structural and functional characterization to include many larger proteins involved in important cellular processes. By applying a combination of residue-specific isotope labeling and protein deuteration strategies tailored to yield specific information, we were able to determine the solution structure and study structure–activity relationships of 3,4-dihydroxy-2-butanone-4-phosphate synthase, a 47-kDa enzyme from...

  18. Glycogen synthase kinase 3? dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy.

    Science.gov (United States)

    Xu, Weiwei; Ge, Yan; Liu, Zhihong; Gong, Rujun

    2014-10-01

    Aberrant focal adhesion turnover is centrally involved in podocyte actin cytoskeleton disorganization and foot process effacement. The structural and dynamic integrity of focal adhesions is orchestrated by multiple cell signaling molecules, including glycogen synthase kinase 3? (GSK3?), a multitasking kinase lately identified as a mediator of kidney injury. However, the role of GSK3? in podocytopathy remains obscure. In doxorubicin (Adriamycin)-injured podocytes, lithium, a GSK3? inhibitor and neuroprotective mood stabilizer, obliterated the accelerated focal adhesion turnover, rectified podocyte hypermotility, and restored actin cytoskeleton integrity. Mechanistically, lithium counteracted the doxorubicin-elicited GSK3? overactivity and the hyperphosphorylation and overactivation of paxillin, a focal adhesion-associated adaptor protein. Moreover, forced expression of a dominant negative kinase dead mutant of GSK3? highly mimicked, whereas ectopic expression of a constitutively active GSK3? mutant abolished, the effect of lithium in doxorubicin-injured podocytes, suggesting that the effect of lithium is mediated, at least in part, through inhibition of GSK3?. Furthermore, paxillin interacted with GSK3? and served as its substrate. In mice with doxorubicin nephropathy, a single low dose of lithium ameliorated proteinuria and glomerulosclerosis. Consistently, lithium therapy abrogated GSK3? overactivity, blunted paxillin hyperphosphorylation, and reinstated actin cytoskeleton integrity in glomeruli associated with an early attenuation of podocyte foot process effacement. Thus, GSK3?-modulated focal adhesion dynamics might serve as a novel therapeutic target for podocytopathy. PMID:25239564

  19. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong-Whan [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Jung-Eun [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang-Min [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Hui-Sun; Choe, Han [Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Seung-Chul [CrystalGenomics, Seoul (Korea, Republic of); Kim, Dong-Hou, E-mail: dhkim@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  20. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed in the sarcolemma as well as the cytoplasm of type I muscle fibres. NADPH diaphorase activity confirmed a higher level of NO synthase activity in the sarcolemma as well as the cytoplasm of type I muscle fibers. Histochemical staining for cytochrome oxidase showed a staining pattern similar to that observed for type I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different cellular compartments and suggest that NO may have specific actions in relation to its site of production. The localization of type I NO synthase in the vicinity of mitochondria supports a specific action of NO on mitochondrial respiration, whereas the localization of type III NO synthase in vascular endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle.

  1. Zinc-homocysteine binding in cobalamin-dependent methionine synthase and its role in the substrate activation: DFT, ONIOM, and QM/MM molecular dynamics studies.

    Science.gov (United States)

    Abdel-Azeim, Safwat; Li, Xin; Chung, Lung Wa; Morokuma, Keiji

    2011-11-30

    Cobalamin-dependent methionine synthase (MetH) is an important metalloenzyme responsible for the biosynthesis of methionine. It catalyzes methyl transfer from N(5)-methyl-tetrahydrofolate to homocysteine (Hcy) by using a zinc ion to activate the Hcy substrate. Density functional theory (B3LYP) calculations on the active-site model in gas phase and in a polarized continuum model were performed to study the Zn coordination changes from the substrate-unbound state to the substrate-bound state. The protein effect on the Zn(2+) coordination exchange was further investigated by ONIOM (B3LYP:AMBER)-ME and EE calculations. The Zn(2+)-coordination exchange is found to be highly unfavorable in the gas phase with a high barrier and endothermicity. In the water solution, the reaction becomes exothermic and the reaction barrier is drastically decreased to about 10.0 kcal/mol. A considerable protein effect on the coordination exchange was also found; the reaction is even more exothermic and occurs without barrier. The enzyme was suggested to constrain the zinc coordination sphere in the reactant state (Hcy-unbound state) more than that in the product state (Hcy-bound state), which promotes ligation of the Hcy substrate. Molecular dynamics simulations using molecular mechanics (MM) and PM3/MM potentials suggest a correlation between the flexibility of the Zn(2+)-binding site and regulation of the enzyme function. Directed in silico mutations of selected residues in the active site were also performed. Our studies support a dissociative mechanism starting with the Zn-O(Asn234) bond breaking followed by the Zn-S((Hcy)) bond formation; the proposed associative mechanism for the Zn(2+)-coordination exchange is not supported. PMID:21837727

  2. Alterations of nitric-oxide synthase and xanthine-oxidase activities of human keratinocytes by ultraviolet-B radiation -potential role for peroxynitrite in skin inflammation

    International Nuclear Information System (INIS)

    In the present study, we demonstrated that NO synthase (cNOS) and xanthine oxidase (XO) of human keratinocytes can be activated to release NO, superoxide (O-2(-)) and peroxynitrite (ONOO-) following exposure to ultraviolet B (UVB) radiation. We defined that this photo induced response may be involved in the pathogenesis of sunburn erythema and inflammation. Treatment of human keratinocytes with UVB (290-320 nm) radiation (up to 200 mJ/cm(2)) resulted in a dose-dependent increase in NO and ONOO-release that was inhibited by N-monomethyl-L-arginine (L-NMMA). NO and ONOO- release from keratinocytes was accompanied by an increase in intracellular cGMP levels. Treatment of human keratinocyte cytosol with various doses of UVB (up to 100 mJ/cm(2)) resulted in an increase in XO activity that was inhibited by oxypurinol. In in vivo experiments, when experimental animals were subjected to UVB radiation, a protection factor (PF) of 6.5 ± 1.8 was calculated when an emulsified cream formulation containing nitro-L-arginine (L-NA) (2%) and L-NMMA (2%) was applied to their skin. The present study indicates that UVB radiation acts as a potent stimulator of cNOS and XO activities in human keratinocytes. NO and ONOO- may exert cytotoxic effects in keratinocytes themselves, as well as in their neighbouring endothelial and smooth muscle cells. This may be a major part of the integrated response leading to erythema production and the inflammation process. (UK)rocess. (UK)

  3. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J

    2012-01-01

    Cranial parasympathetic outflow is mediated through the sphenopalatine ganglion (SPG). The present study was performed to examine the expression of the parasympathetic signaling transmitters and their receptors in human and rat SPG. Indirect immunofluorescence technique was used for the demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), VIP and PACAP common receptors (VPAC1, VPAC2), and PACAP receptor (PAC1). In addition, double labeling was carried out to reveal the co-localization of neurotransmitters. VIP-immunoreactive (-ir) neurons as well as fibers were frequently found in human SPG. Many, homogenously stained NOS-ir cells were found, but no positive fibers. In addition, PACAP-ir was observed in some of the neurons and in fibers. Co-localization was found between VIP and NOS. In rat VIP-, NOS-, and PACAP-ir were found in many neurons and fibers. Co-localization of PACAP and NOS was observed in neurons. PACAP and GS double staining revealed that the PACAP-ir was localized in/close to the cell membrane, but not in the satellite glial cells. PAC1 and VPAC1 immunoreactivity was found in the satellite glial cells of both human and rat. Western blot revealed protein expression of PAC1, VPAC1, and VPAC2 in rat SPG. The trigeminal-autonomic reflex may be active in migraine attacks. We hypothesized that VIP, PACAP, NOS, PAC1, VPAC1, and VPAC2 play a role in the activation of parasympathetic cranial outflow during migraine attacks.

  4. Changes in Phytochemical Synthesis, Chalcone Synthase Activity and Pharmaceutical Qualities of Sabah Snake Grass (Clinacanthus nutans L. in Relation to Plant Age

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2014-10-01

    Full Text Available In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old. The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74 was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW] and total phenolic (TP (18.21 mg/g DW were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW and gallic acid (5.96 mg/g DW were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50 values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP assay showed a higher activity in 6-month-old buds (488 ?M of Fe(II/g than in 1-year-old buds (453 ?M of Fe(II/g, in contrast to the DPPH result. Significant correlations (p < 0.05 were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.

  5. Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803.

    OpenAIRE

    Ro, Y T; Eom, C Y; Song, T.; Cho, J W; Kim, Y.M.

    1997-01-01

    Acinetobacter sp. strain JC1 DSM 3803, a carboxydobacterium, grown on methanol was found to show dihydroxyacetone synthase, dihydroxyacetone kinase, and ribulose 1,5-bisphosphate carboxylase, but no hydroxypyruvate reductase and very low hexulose 6-phosphate synthase, activities. The dihydroxyacetone synthase was found to be expressed earlier than the ribulose 1,5-bisphosphate carboxylase. The dihydroxyacetone synthase was purified 19-fold in eight steps to homogeneity, with a yield of 9%. Th...

  6. Aciculatin inhibits lipopolysaccharide-mediated inducible nitric oxide synthase and cyclooxygenase-2 expression via suppressing NF-?B and JNK/p38 MAPK activation pathways

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chih

    2011-05-01

    Full Text Available Abstract Objectives Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl-5-hydroxy-2-(4-hydroxyphenyl-7-methoxy-4H-chromen-4-one, one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS-activated macrophages. Methods We used nitrate and prostaglandin E2 (PGE2 assays to examine inhibitory effect of aciculatin on nitric oxide (NO and PGE2 levels in LPS-activated mouse RAW264.7 macrophages and further investigated the mechanisms of aciculatin suppressed LPS-mediated iNOS/COX-2 expression by western blot, RT-PCR, reporter gene assay and confocal microscope analysis. Results Aciculatin remarkably decreased the LPS (1 ?g/mL-induced mRNA and protein expression of iNOS and COX-2 as well as their downstream products, NO and PGE2 respectively, in a concentration-dependent manner (1-10 ?M. Such inhibition was found, via immunoblot analyses, reporter gene assays, and confocal microscope observations that aciculatin not only acts through significant suppression of LPS-induced NF-?B activation, an effect highly correlated with its inhibitory effect on LPS-induced I?B kinase (IKK activation, I?B degradation, NF-?B phosphorylation, nuclear translocation and binding of NF-?B to the ?B motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of JNK/p38 mitogen-activated protein kinases (MAPKs. Conclusion Our results demonstrated that aciculatin exerts potent anti-inflammatory activity through its dual inhibitory effects on iNOS and COX-2 by regulating NF-?B and JNK/p38 MAPK pathways.

  7. Francisella tularensis Live Vaccine Strain Folate Metabolism and Pseudouridine Synthase Gene Mutants Modulate Macrophage Caspase-1 Activation

    OpenAIRE

    Ulland, Tyler K.; Janowski, Ann M; Buchan, Blake W.; Faron, Matthew; Cassel, Suzanne L.; Jones, Bradley D.; Sutterwala, Fayyaz S.

    2013-01-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1? (IL-1?) and IL-18, which play a crucial role in innate immune responses to ...

  8. Malate supplementation to beef cattle: effects on growth performance and rumen fermentation products

    OpenAIRE

    Stefano Vandoni; Carlo Angelo Sgoifo Rossi

    2010-01-01

    Two trials were performed to evaluate the effects of malate supplementation on the growth performance as well as on ruminal pH and fermentation products of beef cattle. A total of 80 Charolaise bullocks were randomly allotted to one of the four experimental groups which included two experiments. The first experiment involved a control group (C) fed with a corn silage based diet and a treated group (T) fed the same diet supplemented with 20 g/head/day of malate. The second experiment involved ...

  9. Expression of MALAT1 in the peripheral whole blood of patients with lung cancer

    OpenAIRE

    Fengjie GUO; YU, FANG; Wang, Jing; Li, Yongwen; Li, Ying; Li, Zhigang; Qinghua ZHOU

    2015-01-01

    A blood-based biomarker assay is a non-invasive way to screen that can identify lung cancer at an earlier stage to improve the clinical outcome. MALAT1 is a broadly expressed, long non-coding RNA in human tissues and is overexpressed in numerous human carcinomas. The potential of MALAT1 in the whole blood of lung cancer was evaluated. In the present study, blood samples of patients with lung cancer and healthy volunteers (controls) were recruited and analyzed by quantitative polymerase chain ...

  10. Development and validation of HPTLC method for the estimation of almotriptan malate in tablet dosage form

    Directory of Open Access Journals (Sweden)

    Suneetha A

    2010-01-01

    Full Text Available A new, simple, precise and accurate high performance thin layer chromatographic method has been proposed for the determination of almotriptan malate in a tablet dosage form. The drug was separated on aluminum plates precoated with silica gel 60 GF 254 with butanol:acetic acid:water (3:1:1 was used as mobilephase. Quantitative analysis was performed by densitometric scanning at 300 nm. The method was validated for linearity, accuracy, precision and robustness. The calibration plot was linear over the range of 100-700 ng/band for almotriptan malate. The method was successfully applied to the analysis of drug in a pharmaceutical dosage form.

  11. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes)

    Scientific Electronic Library Online (English)

    Maria Regina de, Aquino-Silva; Maria Luiza B., Schwantes; Arno Rudi, Schwantes.

    1998-12-01

    Full Text Available A fim de explicar o padrão eletroforético de seis componentes detectado para a malato desidrogenase solúvel (MDH, EC 1.1.1.37) em 84% dos exemplares de G. brasiliensis analisados (Cichlidae, Perciformes), uma duplicação recente no loco sMDH-B* é sugerida. Diluições seriadas de Klebe realizadas com e [...] xtratos de músculo esquelético mostraram para as subunidades B1 e B2 o mesmo ponto final visual sugerindo um padrão de expressão não divergente para esses genes duplicados. Uma vez que não existe evidência de poliploidia na família Cichlidae, é sugerido que a duplicação no loco sMDH-B* seja resultante de uma duplicação regional. Especificidade tissular, termoestabilidade e propriedades cinéticas mostraram-se similares para as isoformas B, em ambos os fenótipos detectados, sugerindo estarem esses sob a ação do mesmo gene regulador. Os resultados similares obtidos para os fenótipos de três (AB1) e seis (AB1B2) componentes aqui analisados não mostraram nenhum indicativo de vantagem adaptativa deste último sobre o primeiro, em região subtropical. Abstract in english A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC 1.1.1.37) in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes) analyzed (AB1B2 individuals). Klebe's seri [...] al dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  12. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer.

    OpenAIRE

    Tzeng, E.; Billiar, T R; Robbins, P D; Loftus, M; Stuehr, D. J.

    1995-01-01

    Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absen...

  13. Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Hamberger Björn

    2010-06-01

    Full Text Available Abstract Background Laser microdissection (LMD has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ. Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD. Results We describe robust methods for isolation of individual tissue-types from white spruce (Picea glauca stems for analysis of RNA, enzyme activity and metabolites. A tangential cryosectioning approach was important for obtaining large quantities of CRD and CZ tissues using LMD. We report differential expression of genes involved in terpenoid metabolism between CRD and CZ tissues and in response to methyl jasmonate (MeJA. Transcript levels of ?-pinene synthase and levopimaradiene/abietadiene synthase were constitutively higher in CRDs, but induction was stronger in CZ in response to MeJA. 3-Carene synthase was more strongly induced in CRDs compared to CZ. A differential induction pattern was observed for 1-deoxyxyulose-5-phosphate synthase, which was up-regulated in CRDs and down-regulated in CZ. We identified terpene synthase enzyme activity in CZ protein extracts and terpenoid metabolites in both CRD and CZ tissues. Conclusions Methods are described that allow for analysis of RNA, enzyme activity and terpenoid metabolites in individual tissues isolated by LMD from woody conifer stems. Patterns of gene expression are demonstrated in specific tissues that may be masked in analysis of heterogenous samples. Combined analysis of transcripts, proteins and metabolites of individual tissues will facilitate future characterization of complex processes of woody plant development, including periodic stem growth and dormancy, cell specialization, and defense and may be applied widely to other plant species.

  14. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole; Mundy, John

    2002-01-01

    Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-...

  15. Suppression of autophagy and activation of glycogen synthase kinase 3beta facilitate the aggregate formation of tau.

    Science.gov (United States)

    Kim, Song-In; Lee, Won-Ki; Kang, Sang-Soo; Lee, Sue-Young; Jeong, Myeong-Ja; Lee, Hee Jae; Kim, Sung-Soo; Johnson, Gall V W; Chun, Wanjoo

    2011-04-01

    Neurofibrillary tangle (NFT) is a characteristic hallmark of Alzheimer's disease. GSK3? has been reported to play a major role in the NFT formation of tau. Dysfunction of autophagy might facilitate the aggregate formation of tau. The present study examined the role of GSK3?-mediated phosphorylation of tau species on their autophagic degradation. We transfected wild type tau (T4), caspase-3-cleaved tau at Asp421 (T4C3), or pseudophosphorylated tau at Ser396/Ser404 (T4-2EC) in the presence of active or enzyme-inactive GSK3?. Trehalose and 3-methyladenine (3-MA) were used to enhance or inhibit autophagic activity, respectively. All tau species showed increased accumulation with 3-MA treatment whereas reduced with trehalose, indicating that tau undergoes autophagic degradation. However, T4C3 and T4-2EC showed abundant formation of oligomers than T4. Active GSK3? in the presence of 3-MA resulted in significantly increased formation of insoluble tau aggregates. These results indicate that GSK3?-mediated phosphorylation and compromised autophagic activity significantly contribute to tau aggregation. PMID:21660151

  16. Enzyme activities of demersal fishes from the shelf to the abyssal plain

    Science.gov (United States)

    Drazen, Jeffrey C.; Friedman, Jason R.; Condon, Nicole E.; Aus, Erica J.; Gerringer, Mackenzie E.; Keller, Aimee A.; Elizabeth Clarke, M.

    2015-06-01

    The present study examined metabolic enzyme activities of 61 species of demersal fishes (331 individuals) trawled from a 3000 m depth range. Citrate synthase, lactate dehydrogenase, malate dehydrogenase, and pyruvate kinase activities were measured as proxies for aerobic and anaerobic activity and metabolic rate. Fishes were classified according to locomotory mode, either benthic or benthopelagic. Fishes with these two locomotory modes were found to exhibit differences in metabolic enzyme activity. This was particularly clear in the overall activity of citrate synthase, which had higher activity in benthopelagic fishes. Confirming earlier, less comprehensive studies, enzyme activities declined with depth in benthopelagic fishes. For the first time, patterns in benthic species could be explored and these fishes also exhibited depth-related declines in enzyme activity, contrary to expectations of the visual interactions hypothesis. Trends were significant when using depth parameters taken from the literature as well as from the present trawl information, suggesting a robust pattern regardless of the depth metric used. Potential explanations for the depth trends are discussed, but clearly metabolic rate does not vary simply as a function of mass and habitat temperature in fishes as shown by the substantial depth-related changes in enzymatic activities.

  17. Geranyl diphosphate synthase from mint

    Science.gov (United States)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  18. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  19. delta-Aminolevulinic acid synthase from Euglena gracilis.

    OpenAIRE

    Beale, S I; FOLEY, T; Dzelzkalns, V

    1981-01-01

    delta-Aminolevulinic acid (ALA) synthase [succinyl-CoA:glycine C-succinyltransferase (decarboxylating), EC 2.3.1.37] activity was detected in cell extracts of the unicellular green flagellate alga Euglena gracilis. The enzyme was identified by substrate and cofactor requirements, and activity was proportional to number of cells extracted and duration of incubation. The incubation product was spectrophotometrically and chromatographically identical to ALA. ALA synthase activity is present in t...

  20. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of sabah snake grass (Clinacanthus nutans L.) in relation to plant age.

    Science.gov (United States)

    Ghasemzadeh, Ali; Nasiri, Alireza; Jaafar, Hawa Z E; Baghdadi, Ali; Ahmad, Izham

    2014-01-01

    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 ?M of Fe(II)/g) than in 1-year-old buds (453 ?M of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds. PMID:25361426

  1. DksA-Dependent Resistance of Salmonella enterica Serovar Typhimurium against the Antimicrobial Activity of Inducible Nitric Oxide Synthase

    OpenAIRE

    Henard, Calvin A.; Vázquez-Torres, Andrés

    2012-01-01

    In coordination with the ppGpp alarmone, the RNA polymerase regulatory protein DksA controls the stringent response of eubacteria, negatively regulating transcription of translational machinery and directly activating amino acid promoters and de novo amino acid biosynthesis. Given the effects of nitric oxide (NO) on amino acid biosynthetic pathways and the intimate relationship of DksA with amino acid synthesis and transport, we tested whether DksA contributes to the resistance of Salmonella ...

  2. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be context or cell line dependent, but could also be explained on the basis that although NF-kappaB is an important mediator of pancreatic cancer cell survival, it plays a minor role in gemcitabine resistance. Further work is needed to understand the mechanisms of this effect, including the potential for rational combination of GSK3 inhibitors with other targeted agents for the treatment of pancreatic cancer

  3. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be context or cell line dependent, but could also be explained on the basis that although NF-kappaB is an important mediator of pancreatic cancer cell survival, it plays a minor role in gemcitabine resistance. Further work is needed to understand the mechanisms of this effect, including the potential for rational combination of GSK3 inhibitors with other targeted agents for the treatment of pancreatic cancer.

  4. STRUCTURAL ANALYSIS AND MOLECULAR DYNAMICS STUDY OF PHB SYNTHASE

    Directory of Open Access Journals (Sweden)

    T. Femlin Blessia

    2012-02-01

    Full Text Available Polyhydroxybutyrate (PHB is a polyhydroxyalkanoate (PHA, a polymer belonging to polyesters class and is composed of hydroxy fatty acids. PHB is produced by microorganisms apparently in response to conditions of physiological stress. PHB synthases are the key enzymes of PHB biosynthesis. The PHB synthases obtained from Chromobacterium violaceum, belongs to the class I PHA synthases. Due to the limited structural information of PHB synthase, its functional properties including catalysis are unknown. Therefore, this study seeks to investigate the structural and functional properties of PHB synthase (phaC by predicting its three dimensional structure using bioinformatics methods. Present 15 ns molecular dynamics study provides an overall insight about some of the parameters such as energy, RMSD (Root Mean Square Deviation, SASA (Solvent Accessible Surface Area, hydrogen bonds, etc., Protein-protein docking reveals the binding mode of the protein in the active dimer state.

  5. Glycogen synthase kinase 3 ? activity is required for hBora/Aurora A-mediated mitotic entry

    OpenAIRE

    Lee, Yu-Cheng; Liao, Po-Chi; Liou, Yih-Cherng; Hsiao, Michael; Huang, Chi-Ying; Lu, Pei-Jung

    2013-01-01

    The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3? can interact with hBora and phosphorylate hBora at Ser274 and S...

  6. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure?activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K.; Arakaki, Tracy L.; Napuli, Alberto J.; Inampudi, Krishna K.; Keyloun, Katelyn R.; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A.; Van Voorhis, Wesley C. (UWASH)

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18{_}V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 {angstrom} resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3{beta} (HsGSK-3{beta}) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  7. Conformational stability and activity analysis of two hydroxymethylbilane synthase mutants, K132N and V215E, with different phenotypic association with acute intermittent porphyria

    Directory of Open Access Journals (Sweden)

    Aurora Martinez

    2013-08-01

    Full Text Available The autosomal dominantly inherited disease AIP (acute intermittent porphyria is caused by mutations in HMBS [hydroxymethylbilane synthase; also known as PBG (porphobilinogen deaminase], the third enzyme in the haem biosynthesis pathway. Enzyme-intermediates with increasing number of PBG molecules are formed during the catalysis of HMBS. In this work, we studied the two uncharacterized mutants K132N and V215E comparative with wt (wild-type HMBS and to the previously reported AIP-associated mutants R116W, R167W and R173W. These mainly present defects in conformational stability (R116W, enzyme kinetics (R167W or both (R173W. A combination of native PAGE, CD, DSF (differential scanning fluorimetry and ion-exchange chromatography was used to study conformational stability and activity of the recombinant enzymes. We also investigated the distribution of intermediates corresponding to specific elongation stages. It is well known that the thermostability of HMBS increases when the DPM (dipyrromethane cofactor binds to the apoenzyme and the holoenzyme is formed. Interestingly, a decrease in thermal stability was measured concomitant to elongation of the pyrrole chain, indicating a loosening of the structure prior to product release. No conformational or kinetic defect was observed for the K132N mutant, whereas V215E presented lower conformational stability and probably a perturbed elongation process. This is in accordance with the high association of V215E with AIP. Our results contribute to interpret the molecular mechanisms for dysfunction of HMBS mutants and to establish genotype–phenotype relations for AIP.

  8. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage ?-glucan.

    Science.gov (United States)

    Fujita, Naoko; Hanashiro, Isao; Suzuki, Sachi; Higuchi, Toshiyuki; Toyosawa, Yoshiko; Utsumi, Yoshinori; Itoh, Rumiko; Aihara, Satomi; Nakamura, Yasunori

    2012-10-01

    The relationship between the solubility, crystallinity, and length of the unit chains of plant storage ?-glucan was investigated by manipulating the chain length of ?-glucans accumulated in a rice mutant. Transgenic lines were produced by introducing a cDNA for starch synthase IIa (SSIIa) from an indica cultivar (SSIIa (I), coding for active SSIIa) into an isoamylase1 (ISA1)-deficient mutant (isa1) that was derived from a japonica cultivar (bearing inactive SSIIa proteins). The water-soluble fraction accounted for >95% of the total ?-glucan in the isa1 mutant, whereas it was only 35-70% in the transgenic SSIIa (I)/isa1 lines. Thus, the ?-glucans from the SSIIa (I)/isa1 lines were fractionated into soluble and insoluble fractions prior to the following characterizations. X-ray diffraction analysis revealed a weak B-type crystallinity for the ?-glucans of the insoluble fraction, while no crystallinity was confirmed for ?-glucans in isa1. Concerning the degree of polymerization (DP) ?30, the chain lengths of these ?-glucans differed significantly in the order of SSIIa (I)/isa1 insoluble > SSIIa (I)/isa1 soluble > ?-glucans in isa1. The amount of long chains with DP ?33 was higher in the insoluble fraction ?-glucans than in the other two ?-glucans. No difference was observed in the chain length distributions of the ?-amylase limit dextrins among these ?-glucans. These results suggest that in the SSIIa (I)/isa1 transgenic lines, the unit chains of ?-glucans were elongated by SSIIa(I), whereas the expression of SSIIa(I) did not affect the branch positions. Thus, the observed insolubility and crystallinity of the insoluble fraction can be attributed to the elongated length of the outer chains due to SSIIa(I). PMID:23048127

  9. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3.

    Science.gov (United States)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G J; Verlinde, Christophe L M J; Merritt, Ethan A; Van Voorhis, Wesley C

    2011-04-01

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 ? resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3? (HsGSK-3?) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found. PMID:21195115

  10. In vitro dissociation-recombination of malate dehydrogenase subunits in Corydalis solida.

    Science.gov (United States)

    Nagy, A H; Siddiqui, M O; Kocsis, Z G; Vida, G

    1980-07-01

    Two allelic forms of NAD specific malate dehydrogenase were found in samples of a wild population of Corydalis solida. The dimeric nature and the origin of the heterodimeric form has been demonstrated by in vitro dissociation and recombination of the subunits detected by subsequent electrophoresis. The method is applicable for polyacrylamide gel electrophoresis of crude leaf extracts of individual MDH isozyme forms. PMID:24301014

  11. The intracellular localization of malate dehydrogenase isoenzymes in Pisum arvense roots

    Directory of Open Access Journals (Sweden)

    Genowefa Kubik-Dorosz

    2014-02-01

    Full Text Available Mitochondria and plastids were isolated from Pisum arvense root cells by sucrose density gradient centrifugation. The individual subcellular fractions so obtained were subjected to isoelectric focusing on cellulose acetate strips. Mitochondria and plastids each contained one NAD -malate dehydrogenase, while three isoenzymes were associated with the supernatant.

  12. Malate supplementation to beef cattle: effects on growth performance and rumen fermentation products

    Directory of Open Access Journals (Sweden)

    Stefano Vandoni

    2010-01-01

    Full Text Available Two trials were performed to evaluate the effects of malate supplementation on the growth performance as well as on ruminal pH and fermentation products of beef cattle. A total of 80 Charolaise bullocks were randomly allotted to one of the four experimental groups which included two experiments. The first experiment involved a control group (C fed with a corn silage based diet and a treated group (T fed the same diet supplemented with 20 g/head/day of malate. The second experiment involved a dry control group (DC fed with a dry diet (without corn silage and a treated group (DMS fed with the same diet supplemented with 20 g/head/day malate. Bullocks fed diets with corn silage and supplemented with malate demonstrated higher live weight in the transition, fattening (P<0.05 and finishing periods (P<0.10, and higher average daily gain in the fattening and finishing period (P<0.10 than the control group. In the second experiment no difference in growth performance were highlighted. In both trials no statistical difference was highlighted for ruminal fluid pH. In regards to fermentation products, the supplemented animals exhibited a higher propionic acid proportion, lower acetate:propionate ratio, and higher N-NH3 concentration than the controls for both trials.

  13. Homochiral Cu(II) and Ni(II) malates with tunable structural features

    Energy Technology Data Exchange (ETDEWEB)

    Zavakhina, Marina S. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., 630090 Novosibirsk (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Virovets, Alexander V. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., 630090 Novosibirsk (Russian Federation); Dybtsev, Danil N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., 630090 Novosibirsk (Russian Federation); Division of the Advanced Materials Science, POSTECH, San 31, Hyojadong, 790-784 Pohang (Korea, Republic of); Fedin, Vladimir P., E-mail: cluster@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-02-15

    Four new homochiral metal–organic frameworks (MOFs) based on S-malate anions and N-donor linkers of different length have been prepared under solvothermal conditions. [Cu(mal)(bpy)]·H{sub 2}O (1), [Cu(mal)(bpe)]·2H{sub 2}O (2), [Ni(mal)(bpy)]·1.3CH{sub 3}OH (3) and [Ni(mal)(bpe)]·4H{sub 2}O (4) (mal=S-malate, bpy=4,4?-bipyridil, bpe=trans-1,2-bis(4-pyridyl)ethylene) were characterized by a number of analytical methods including powder X-ray diffraction, elemental, thermogravimetric analyses, IR spectroscopy. Compounds 1–3 were structurally characterized by X-ray crystallography. The absence of the chiral ligand racemization under synthetic conditions was unambiguously confirmed by polarimetry experiments. Compounds 1 and 2 contain metal-malate layered motives, connected by N-donor linkers and contribute to the family of isoreticular Cu(II) malates and tartrates [Cu(mal)L] and [Cu(tart)L], (tart=tartrate; L=ditopic rigid organic ligand). The Ni-based compounds 3 and 4 share 1D chiral (Ni(mal)) motives and possess novel type of the chiral framework, previously unknown for chiral carboxylates. The linear N-donor linkers connect these chiral chains, thus controlling the channel diameter and guest accessible volume of the homochiral structure, which exceeds 60 %. - Graphical abstract: Four new homochiral metal–organic frameworks are built from Ni{sup 2+} or Cu{sup 2+} cations, S-malate anions and N-donor linkers of different length, which controls the size of pores and guest accessible volume of the homochiral structure. Display Omitted - Highlights: • Four new homohiral metal–organic frameworks based on Ni{sup 2+} and Cu{sup 2+}. • Cu(II)–malate layers and Ni(II)–malate chains are connected by N-donor linkers. • N-donor linkers of different length control the size of pores.

  14. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  15. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression.

    Science.gov (United States)

    Mann, Giovanni E; Rowlands, David J; Li, Francois Y L; de Winter, Patricia; Siow, Richard C M

    2007-07-15

    The endothelium plays a key role in the maintenance of vascular homeostasis, and increased oxidative stress in vascular disease leads to reduced nitric oxide bioavailability and impaired endothelium-dependent relaxation of resistance vessels. Although epidemiological evidence suggests that diets containing high amounts of natural antioxidants afford protection against coronary heart disease (CHD), antioxidant supplementation trials have largely reported only marginal health benefits. There is controversy concerning the cardiovascular benefits of prolonged estrogen/progestin or soy isoflavone therapy for postmenopausal women and patients with an increased risk of CHD. Research on the potential health benefits of soy isoflavones and other polyphenols contained in red wine, green and black tea and dark chocolate developed rapidly during the 1990's, and recent clinical trials and studies in animal models and cultured endothelial cells provide important and novel insights into the mechanisms by which dietary polyphenols afford protection against oxidative stress. In this review, we highlight that NO and reactive oxygen radicals may mediate dietary polyphenol induced activation of Nrf2, which in turn triggers antioxidant response element (ARE) driven transcription of phase II detoxifying and antioxidant defense enzymes in vascular cells. PMID:17498676

  16. 17?-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ziyi [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Chen, Changjin [Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041 (China); Liu, Yu [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Wu, Chuanfang, E-mail: 879413966@qq.com [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China)

    2014-03-07

    Highlights: • E2 affects not only estrogen-receptor ? positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor ?-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor ? (ER?), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ER? show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17?-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ER?. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ER? independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ER? -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level.

  17. 17?-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    International Nuclear Information System (INIS)

    Highlights: • E2 affects not only estrogen-receptor ? positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor ?-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor ? (ER?), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ER? show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17?-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ER?. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ER? independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ER? -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level

  18. Effect of lead on the NAD/sup +/-dependent malate dehydrogenase in Medicago sativa L. and Zebrina pendula Schnizl

    Energy Technology Data Exchange (ETDEWEB)

    Maier, R.

    1977-01-01

    The relative activity and the pattern of the multiple forms of the NAD/sup +/-dependent malate-dehydrogenase under lead treatment were studied at different temperatures (17/sup 0/C and 32/sup 0/C). For these investigations young plants of Medicago sativa and cuttings of Zebrina pendula were used. In Medicago-roots grown in 500 ppm Pb solutions, MDH-activity decreases, and a loss of bands and a change in the pattern of multiple forms takes place. The MDH-activity and the bands' positions vary with the temperature given during the treatment. In contrast to Medicago-roots, its leaves show an increase in MDH-activity at both temperatures. In the leaves of Zebrina-cuttings cultivated at 17/sup 0/C in 500 ppm Pb solutions, MDH-activity is almost quadrupled compared with the control. At the same time additional bands appear in the zymogram combined with positional changes. Zebrina-cuttings grown at 32/sup 0/C in 200 ppm Pb solutions show a raised MDH-activity in their leaves. The number and position of the bands remain constant, while 500 ppm Pb solutions reduce the MDH-activity to 30% and diminish the number of bands.

  19. Protein kinase A-dependent Neuronal Nitric Oxide Synthase Activation Mediates the Enhancement of Baroreflex Response by Adrenomedullin in the Nucleus Tractus Solitarii of Rats

    Directory of Open Access Journals (Sweden)

    Ho I-Chun

    2011-05-01

    Full Text Available Abstract Background Adrenomedullin (ADM exerts its biological functions through the receptor-mediated enzymatic mechanisms that involve protein kinase A (PKA, or neuronal nitric oxide synthase (nNOS. We previously demonstrated that the receptor-mediated cAMP/PKA pathway involves in ADM-enhanced baroreceptor reflex (BRR response. It remains unclear whether ADM may enhance BRR response via activation of nNOS-dependent mechanism in the nucleus tractus solitarii (NTS. Methods Intravenous injection of phenylephrine was administered to evoke the BRR before and at 10, 30, and 60 min after microinjection of the test agents into NTS of Sprague-Dawley rats. Western blotting analysis was used to measure the level and phosphorylation of proteins that involved in BRR-enhancing effects of ADM (0.2 pmol in NTS. The colocalization of PKA and nNOS was examined by immunohistochemical staining and observed with a laser confocal microscope. Results We found that ADM-induced enhancement of BRR response was blunted by microinjection of NPLA or Rp-8-Br-cGMP, a selective inhibitor of nNOS or protein kinase G (PKG respectively, into NTS. Western blot analysis further revealed that ADM induced an increase in the protein level of PKG-I which could be attenuated by co-microinjection with the ADM receptor antagonist ADM22-52 or NPLA. Moreover, we observed an increase in phosphorylation at Ser1416 of nNOS at 10, 30, and 60 min after intra-NTS administration of ADM. As such, nNOS/PKG signaling may also account for the enhancing effect of ADM on BRR response. Interestingly, biochemical evidence further showed that ADM-induced increase of nNOS phosphorylation was prevented by co-microinjection with Rp-8-Br-cAMP, a PKA inhibitor. The possibility of PKA-dependent nNOS activation was substantiated by immunohistochemical demonstration of co-localization of PKA and nNOS in putative NTS neurons. Conclusions The novel finding of this study is that the signal transduction cascade that underlies the enhancement of BRR response by ADM in NTS is composed sequentially of cAMP/PKA and nNOS/PKG pathways.

  20. Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers.

    OpenAIRE

    Pantoja, O; Smith, JA

    2002-01-01

    The organic anion malate is accumulated in the central vacuole of most plant cells. Malate has several important roles in plant vacuoles, such as the maintenance of charge balance and pH regulation, as an osmolyte involved in the generation of cell turgor, and as a storage form of CO2. Transport of malate across the vacuolar membrane is important for the regulation of cytoplasmic pH and the control of cellular metabolism, particularly in plants showing crassulacean acid metabolism (CAM), in w...

  1. [Lipoamide dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA-dehydrogenase in skeletal muscles. X. The influence of frozen storage of bovine and porcine muscle on activity and subcellular distribution].

    Science.gov (United States)

    Hamm, R; Gottesmann, P

    1985-10-01

    The influence of storage of bovine and porcine muscle at -20 degrees C for 12 months and of thawing on the total extractable activity and subcellular distribution (activities in the supernatant of a phosphate buffer extract and in the press juice of the thawed tissue) of the mitochondrial enzymes lipoamide dehydrogenase (LIPDH), citrate synthase (CS) and beta-hydroxyacyl-CoA-dehydrogenase (HADH) was studied. The total activity of LIPDH decreased during frozen storage whereas the activities of CS and HADH did not change appreciably. From the increase of CS and HADH activities in the muscle press juice it was concluded that--additionally to the effect of freezing and thawing itself--frozen storage results in further damage to the inner membrane of muscle mitochondria, which may be recognized from the increased release of membrane-bound enzymes. In this respect porcine muscle mitochondria seem to be more sensitive than bovine muscle mitochondria. PMID:3840939

  2. Soybean seed galactinol synthase activity as determined by a novel colorimetric assay / Atividade de galactinol sintase de semente de soja determinada por um novo ensaio calorimétrico

    Scientific Electronic Library Online (English)

    MARLUCI, RIBEIRO; CARLOS R., FELIX; SILENE DE PAULINO, LOZZI.

    Full Text Available Galactinol sintase (GS) é a enzima-chave para a biossíntese de oligosacarídeos de rafinose (RO), que são os fatores antinutricionais causadores de flatulência, os quais estão presentes em sementes de soja e em outros legumes. A GS catalisa a formação de galactinol e UDP a partir de UDP-gal e mioinos [...] itol. A atividade dessa enzima é determinada atualmente pelo método radioisotópico que, apesar de adequado tecnicamente, apresenta vários inconvenientes, tais como a necessidade de substrato de alto custo, bem como de cuidados adicionais e serviços especializados para descarte dos resíduos radioativos. Assim, desenvolveu-se um método colorimétrico alternativo ao método radioisotópico, baseado na determinação colorimétrica indireta do UDP formado pela hidrólise enzimática (apirase) desse nucleotídeo e determinação do Pi resultante pelo método de Fiske & SubbaRow, com modificações. A cor desenvolvida é estável e o método é sensível para detecção de quantidades nanomolares de Pi. Os perfis de atividade da GS em sementes de soja em diferentes fases de desenvolvimento, determinados pelos métodos colorimétrico e radioisotópico, são semelhantes. Adicionalmente, a GS de sementes de soja foi purificada (46-vezes) por tratamento do extrato das sementes com MnCl2, e uma seqüência de cromatografias em colunas de DEAE-Sepharose, Phenyl-Sepharose CL-4B e Q-Sepharose. As atividades de GS no extrato bruto e na amostra parcialmente purificada foram máximas em pH 7.0 e 50 ºC. Ditiotreitol e MnCl2 aumentaram consideravelmente a atividade da enzima parcialmente purificada. Enquanto UDP-glc pode ser hidrolisado pela enzima com uma atividade relativa correspondendo a 49% da atividade contra UDP-gal, UDP-man e sacarose foram completamente ineficazes como substratos alternativos. Os valores de K M para conversão de UDP-gal e mio-inositol foram de 2,0 mM e 2,93 mM, respectivamente, determinados pelo método de Lineaweaver-Burk. Abstract in english Galactinol synthase (GS) is a key enzyme for the biosynthesis of raffinose oligosaccharides (RO) which are the flatulence factors present in soybean seeds and several other legumes. Understanding of soybean seed GS properties is, therefore, of biotechnological interest. The GS enzyme catalyses forma [...] tion of galactinol and UDP from UDP-gal and myo-inositol. This enzyme is currently assayed by an isotopic method. We have then idealized a more convenient method for GS assay based on the indirect colorimetric determination of the UDP formed which is then hydrolyzed by exogenous apyrase and the resulting Pi quantified by a modification of the colorimetric method of Fiske & SubbaRow. The color developed is stable, and the method is suitable for detection of very low GS activity. The GS activity profiles of developing soybean seeds determined by the isotopic and the colorimetric methods are closely related. The GS enzyme was partially purified (46-fold) by treatment of seed extract with MnCl2, sequential chromatographies on DEAE-Sepharose, Phenyl-Sepharose CL-4B and Q-Sepharose columns. The crude and the partially purified enzyme showed maximum activity at pH 7.0 and 50 ºC. Dithiothreitol and MnCl2 enhanced considerably the activity of the partially purified enzyme. While UDP-glc could be hydrolyzed by the enzyme at a reative activity corresponding to 49% of that calculated for UDP-gal, UDP-man and sucrose were completely ineffective as alternative substrates.

  3. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/?-catenin signal pathway.

    Science.gov (United States)

    Ji, Qing; Liu, Xuan; Fu, Xiaoling; Zhang, Long; Sui, Hua; Zhou, Lihong; Sun, Jian; Cai, Jianfeng; Qin, Jianmin; Ren, Jianlin; Li, Qi

    2013-01-01

    Resveratrol, extracted from Chinese herbal medicine Polygonum cuspidatum, is known to inhibit invasion and metastasis of human colorectal cancer (CRC), in which long non-coding Metastasis Associated Lung Adenocarcinoma Transcript 1 (RNA-MALAT1) also plays an important role. Using MALAT1 lentiviral shRNA and over-expression constructs in CRC derived cell lines, LoVo and HCT116, we demonstrated that the anti-tumor effects of resveratrol on CRC are through inhibiting Wnt/?-catenin signaling, thus the expression of its target genes such as c-Myc, MMP-7, as well as the expression of MALAT1. In detail, resveratrol down-regulates MALAT1, resulting in decreased nuclear localization of ?-catenin thus attenuated Wnt/?-catenin signaling, which leads to the inhibition of CRC invasion and metastasis. This finding of ours surely provides important pre-clinical evidence supporting future use of resveratrol in prevention and treatment of CRC. PMID:24244343

  4. Monoterpene synthases from common sage (Salvia officinalis)

    Science.gov (United States)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  5. Evidence for mediation of L-2-chloropropionic acid-induced delayed neuronal cell death by activation of a constitutive nitric oxide synthase.

    OpenAIRE

    Widdowson, P. S.; Farnworth, M.; Moore, R B; Dunn, D.; Wyatt, I

    1996-01-01

    1. Delayed neuronal cell death elicited by excess excitatory amino acid concentrations has been strongly implicated in many neurological disorders including head trauma, stroke, motor neurone disease and Huntington's disease. We have used the neurotoxin, L-2-chloropropionic acid (L-CPA) to model cellular events in vivo leading to delayed neuronal cell loss which is confined to the cerebellar cortex and can be prevented by inhibitors of nitric oxide synthase such as NG-nitro-L-arginine methyl ...

  6. Functional Dissection of N-Acetylglutamate Synthase (ArgA) of Pseudomonas aeruginosa and Restoration of Its Ancestral N-Acetylglutamate Kinase Activity

    OpenAIRE

    Sancho-Vaello, Enea; Fernández-Murga, María L.; Rubio Zamora, Vicente

    2012-01-01

    In many microorganisms, the first step of arginine biosynthesis is catalyzed by the classical N-acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) and C-terminal histone acetyltransferase (GNAT) domains that bind the feedback inhibitor arginine and the substrates, respectively. In NAGS, three AAK domain dimers are interlinked by their N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK domain of an adjacent dimer. Th...

  7. LncRNA MALAT1 overexpression is an unfavorable prognostic factor in human cancer: evidence from a meta-analysis

    OpenAIRE

    Zhang, Jun; Zhang, Bingya; Wang, Tiejun; WANG, HONGYONG

    2015-01-01

    Long non-coding RNAs (lncRNAs) have been suggested to serve as an important role in tumor development and progression. The aim of this study was to analyse the association between lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and cancer patients’ overall survival. We systematically and carefully searched the studies from electronic databases and seriously identified according to eligibility criteria. The correlation between lncRNA MALAT1 expression and overall surviva...

  8. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters.

    Science.gov (United States)

    Wax, Benjamin; Kavazis, Andreas N; Weldon, Kevin; Sperlak, Joseph

    2015-03-01

    The purpose of this investigation was to test the efficacy of citrulline malate supplementation on exercise performance, blood lactate, heart rate, and blood pressure during lower-body dynamic resistance exercise. We hypothesized that citrulline malate ingestion before performing submaximal repeated bouts of multiple lower-body resistance exercises would improve performance. Twelve advanced resistance-trained male subjects participated in a randomized, counterbalanced, double-blind study. Subjects were randomly assigned to placebo (PL) or citrulline malate (8 g) groups and then performed repeated bouts of multiple lower-body resistance exercise. Specifically, subjects performed 5 sequential sets (60% 1 repetition maximum) to failure on the leg press, hack squat, and leg extension machines. Blood lactate, heart rate, systolic blood pressure, and diastolic blood pressure were determined before and after exercise. The exercise protocol resulted in sequential significant (p ? 0.05) decrease in the number of repetitions in all 3 exercises. However, subjects in the citrulline malate group performed significantly (p ? 0.05) higher number of repetitions during all 3 exercises compared with PL group. Blood lactate and heart rate were significantly increased (p ? 0.05) after exercise compared with before exercise but were not significantly different between citrulline malate and PL (p > 0.05). No significant (p > 0.05) differences were detected for blood pressure measurements. In conclusion, our results suggest that citrulline malate supplementation may be beneficial in improving exercise performance during lower-body multiple-bout resistance exercise in advanced resistance-trained men. PMID:25226311

  9. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo [Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502 (Japan); Oishi, Yuichi, E-mail: y3oishi@nodai.ac.jp [Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502 (Japan)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  10. Coronary microvascular pericytes are the cellular target of sunitinib malate induced cardiotoxicity

    OpenAIRE

    Chintalgattu, Vishnu; Rees, Meredith L.; Culver, James C.; Goel, Aditya; Jiffar, Tilahu; Zhang, Jianhu; Dunner, Kenneth; Pati, Shibani; Bankson, James A.; Pasqualini, Renata; Arap, Wadih; Nathan S Bryan; Taegtmeyer, Heinrich; Langley, Robert R; Yao, Hui

    2013-01-01

    Sunitinib malate is a multi-targeted receptor tyrosine kinase inhibitor used in the treatment of human malignancies. A substantial number of sunitinib-treated patients develop cardiac dysfunction, but the mechanism of sunitinib-induced cardiotoxicity is poorly understood. We show that mice treated with sunitinib develop cardiac and coronary microvascular dysfunction and exhibit an impaired cardiac response to stress. The physiological changes caused by treatment with sunitinib are accompanied...

  11. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle

    DEFF Research Database (Denmark)

    Nielsen, Torsten Toftegård; Støttrup, Nicolaj Brejnholt; Løfgren, Bo; Bøtker, Hans Erik

    2011-01-01

    The convergence of cardioprotective intracellular signalling pathways to modulate mitochondrial function as an end-target of cytoprotective stimuli is well described. However, our understanding of whether the complementary changes in mitochondrial energy metabolism are secondary responses or inherent mechanisms of ischaemic cardioprotection remains incomplete. In the heart, the malate-aspartate shuttle (MAS) constitutes the primary metabolic pathway for transfer of reducing equivalents from the ...

  12. Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus.

    Science.gov (United States)

    Han, Xiangan; Tong, Yongliang; Tian, Mingxing; Sun, Xiaoqing; Wang, Shaohui; Ding, Chan; Yu, Shengqing

    2014-07-01

    Brucella abortus is a gram-negative, facultative intracellular pathogen that causes brucellosis, a chronic zoonotic disease resulting in abortion in pregnant cattle and undulant fever in humans. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, plays important metabolic roles in aerobic energy producing pathways and in malate shuttle. In this study, the MDH-encoding gene for malate dehydrogenase mdh of B. abortus S2308 was cloned, sequenced and expressed. Western blot analysis demonstrated that MDH is an immunogenic membrane-associated protein. In addition, recombinant MDH showed sero-reactivity with 30 individual bovine B. abortus-positive sera by enzyme-linked immunosorbent assay, indicates that MDH may be used as a candidate marker for sero-diagnosis of brucellosis. Furthermore, MDH exhibits fibronectin and plasminogen-binding ability in immunoblotting assay. Inhibition assays on HeLa cells demonstrated that rabbit anti-serum against MDH significantly reduced both bacterial adherence and invasion abilities (p < 0.05), suggesting that MDH play a role in B. abortus colonization. Our results indicated that MDH is not only an immunogenic protein, but is also related to bacterial pathogenesis and may act as a new virulent factor, which will benefit for further understanding the MDH's roles in B. abortus metabolism, pathogenesis and immunity. PMID:24609497

  13. Polyketide synthase from Fusarium

    DEFF Research Database (Denmark)

    Kvesel, Kasper; Wimmer, Reinhard; Sørensen, Jens Laurids; Hansen, Frederik; Overgaard, Michael Toft; Giese, Henriette; Søndergaard, Teis

    2014-01-01

    Fungi produce a wide array of secondary metabolites, with interesting bioactivities by help of a number of enzyme complexes. Polyketide synthases (PKS) are a class of multidomain enzymes, producing a class of secondary metabolites called polyketides1,2. Only few structures of PKS’s have been described, even fewer from fungi and none from Fusarium species. Multidomain proteins can be quite challenging to work with, which is why the project intends to solve the 3D-structures of single domains of P...

  14. Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: Implication in inducible nitric oxide synthase expression

    OpenAIRE

    Kankaanranta Hannu; Sareila Outi; Lahti Aleksi; Moilanen Eeva

    2006-01-01

    Abstract Background Nitric oxide (NO) is an inflammatory mediator, which acts as a cytotoxic agent and modulates immune responses and inflammation. p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is activated by chemical and physical stress and regulates immune responses. Previous studies have shown that p38 MAPK pathway regulates NO production induced by inflammatory stimuli. The aim of the present study was to investigate the mechanisms involved in the regulation of ...

  15. Nitric oxide synthase in the pineal gland

    OpenAIRE

    Lopez-Figueroa, M.O.; Moller, M.

    1996-01-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased ...

  16. The cellulose synthase gene of Dictyostelium

    OpenAIRE

    Blanton, Richard L.; Fuller, Danny; Iranfar, Negin; Grimson, Mark J.; Loomis, William F.

    2000-01-01

    Cellulose is a major component of the extracellular matrices formed during development of the social amoeba, Dictyostelium discoideum. We isolated insertional mutants that failed to accumulate cellulose and had no cellulose synthase activity at any stage of development. Development proceeded normally in the null mutants up to the beginning of stalk formation, at which point the culminating structures collapsed onto themselves, then proceeded to attempt culmination again. No spores or stalk ce...

  17. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S?

    OpenAIRE

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of...

  18. Mechanisms of angiotensin II-mediated activation of aldosterone synthase in H295R human adrenocortical and rat adrenal glomerulosa cells

    OpenAIRE

    Szekeres, Mária; Turu, Gábor; Orient, Anna; Szalai, Bence; Süpeki, Katinka; Cserz?, Miklós; Várnai, Péter; Hunyady, László

    2009-01-01

    Abstract In adrenal zona glomerulosa cells angiotensin II (Ang II) is a key regulator of steroidogenesis. Our purpose was to compare the mechanisms of Ang II-induced changes in the expression level of early transcription factors NR4A1 (NGFIB) and NR4A2 (Nurr1) genes, and the CYP11B2 gene encoding aldosterone synthase in H295R human adrenocortical tumor cells and in primary rat adrenal glomerulosa cells. Real-time PCR studies have demonstrated that Ang II increased the expression le...

  19. In Vitro Activity of a New Oral Glucan Synthase Inhibitor (MK-3118) Tested against Aspergillus spp. by CLSI and EUCAST Broth Microdilution Methods

    OpenAIRE

    Pfaller, Michael A.; Messer, Shawn A.; Motyl, Mary R.; Ronald N Jones; Castanheira, Mariana

    2013-01-01

    MK-3118, a glucan synthase inhibitor derived from enfumafungin, and comparator agents were tested against 71 Aspergillus spp., including itraconazole-resistant strains (MIC, ?4 ?g/ml), using CLSI and EUCAST reference broth microdilution methods. The CLSI 90% minimum effective concentration (MEC90)/MIC90 values (?g/ml) for MK-3118, amphotericin B, and caspofungin, respectively, were as follows: 0.12, 2, and 0.03 for Aspergillus flavus species complex (SC); 0.25, 2, and 0.06 for Aspergillus fum...

  20. An active triple-catalytic hybrid enzyme engineered by linking COX-1 to prostacyclin synthase that can constantly biosynthesize prostacyclin, the vascular protector

    OpenAIRE

    Ruan, Ke-He; So, Shui-Ping; Cervantes, Vanessa; Wu, Hanjing; Wijaya, Cori; Jentzen, Rebecca R.

    2008-01-01

    It remains a challenge to create the stable and long-term expression (in human cell lines) of a previously engineered hybrid enzyme (Trip-cat enzyme-2, [Ruan, KH., et al. (2006) Biochemistry 45, 14003 – 14011]), which links cyclooxygenase-2 (COX-2) to prostacyclin (PGI2) synthase (PGIS) for the direct conversion of arachidonic acid into PGI2 through the enzyme’s triple-catalytic (Trip-cat) functions. The stable up-regulation of the biosynthesis of the vascular protector, PGI2, in cells is an ...

  1. High concentration of L-arginine suppresses nitric oxide synthase activity and produces reactive oxygen species in NB9 human neuroblastoma cells.

    OpenAIRE

    Todoroki, S.; Goto, S.; Urata, Y; Komatsu, K.; Sumikawa, K.; T. Ogura; Matsuda, I.; Kondo, T.

    1998-01-01

    Hereditary argininemia manifests as neurological disturbance and mental retardation, features not observed in other amino acidemias. The cytotoxic effect of a high concentration of L-arginine (L-Arg) was investigated using NB9 human neuroblastoma cells (NB9), which express neuronal nitric oxide synthase (nNOS). When the concentration of L-Arg in the medium increased from 50 microM to 2 mM after incubation for 48 hr, the intracellular concentration of L-Arg increased from 68.0 +/- 1 pmol/10(6)...

  2. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells.

    Czech Academy of Sciences Publication Activity Database

    Holá?, Vladimír; Pindjáková, Jana; Zajícová, Alena; Krulová, Magdalena; Železná, Blanka; Matoušek, Petr; Svoboda, Petr

    2005-01-01

    Ro?. 12, ?. 3 (2005), s. 227-234. ISSN 0908-665X R&D Projects: GA MZd(CZ) NR7816; GA ?R(CZ) GP310/02/D162; GA ?R(CZ) GD310/03/H147; GA MŠk(CZ) ME 300; GA AV ?R KSK5020115 Institutional research plan: CEZ:AV0Z5052915; CEZ:AV0Z50110509 Keywords : inducible nitric oxide synthase production * nitric oxide * suppressive molecule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2005

  3. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    Science.gov (United States)

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2?2?2?, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  4. Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization.

    Science.gov (United States)

    Oku, Shota; Komatsu, Ayaka; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi

    2014-01-01

    Pseudomonas fluorescens Pf0-1 exhibited chemotactic responses to l-malate, succinate, and fumarate. We constructed a plasmid library of 37 methyl-accepting chemotaxis protein (MCP) genes of P. fluorescens Pf0-1. To identify a MCP for l-malate, the plasmid library was screened using the PA2652 mutant of Pseudomonas aeruginosa PAO1, a mutant defective in chemotaxis to l-malate. The introduction of Pfl01_0728 and Pfl01_3768 genes restored the ability of the PA2652 mutant to respond to l-malate. The Pfl01_0728 and Pfl01_3768 double mutant of P. fluorescens Pf0-1 showed no response to l-malate or succinate, while the Pfl01_0728 single mutant did not respond to fumarate. These results indicated that Pfl01_0728 and Pfl01_3768 were the major MCPs for l-malate and succinate, and Pfl01_0728 was also a major MCP for fumarate. The Pfl01_0728 and Pfl01_3768 double mutant unexpectedly exhibited stronger responses toward the tomato root exudate and amino acids such as proline, asparagine, methionine, and phenylalanine than those of the wild-type strain. The ctaA, ctaB, ctaC (genes of the major MCPs for amino acids), Pfl01_0728, and Pfl01_3768 quintuple mutant of P. fluorescens Pf0-1 was less competitive than the ctaA ctaB ctaC triple mutant in competitive root colonization, suggesting that chemotaxis to l-malate, succinate, and/or fumarate was involved in tomato root colonization by P. fluorescens Pf0-1. PMID:25491753

  5. Identification and Characterization of a Re-Citrate Synthase in Dehalococcoides Strain CBDB1?‡

    OpenAIRE

    Marco-Urrea, Ernest; Paul, Steffanie; Khodaverdi, Viola; Seifert, Jana; von Bergen, Martin; Kretzschmar, Utta; Adrian, Lorenz

    2011-01-01

    The genome annotations of all sequenced Dehalococcoides strains lack a citrate synthase, although physiological experiments have indicated that such an activity should be encoded. We here report that a Re face-specific citrate synthase is synthesized by Dehalococcoides strain CBDB1 and that this function is encoded by the gene cbdbA1708 (NCBI accession number CAI83711), previously annotated as encoding homocitrate synthase. Gene cbdbA1708 was heterologously expressed in Escherichia coli, and ...

  6. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tomohiro Bito

    2014-01-01

    Full Text Available In this study, we showed that cyanocobalamin dodecylamine, a ribose 5?-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1, methylmalonic acidemia cobalamin A complementation group (mmaa-1, methylmalonic aciduria cblC type (cblc-1, and methionine synthase reductase (mtrr-1. In contrast, the level of the mRNAs encoding cob(Ialamin adenosyltransferase (mmab-1 was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  7. Sunitinib Malate plus Lomustine for Patients with Temozolomide-refractory Recurrent Anaplastic or Low-grade Glioma.

    Science.gov (United States)

    Duerinck, Johnny; DU Four, Stephanie; Sander, Wilhelm; VAN Binst, Anne-Marie; Everaert, Hendrik; Michotte, Alex; Hau, Peter; Neyns, Bart

    2015-10-01

    Tyrosine kinase signaling through the vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor- ? (PDGFR-?) and KIT cell surface receptors mediates neo-angiogenesis and contributes to cancer cell survival in recurrent anaplastic and low-grade glioma. Thirteen patients with temozolomide-refractory recurrent anaplastic or low-grade glioma were treated with sunitinib malate, a small-molecule tyrosine kinase inhibitor of the VEGFR, PDGFR, and KIT receptors, in combination with lomustine. The most frequent grade 3 and 4 adverse events were fatigue, thrombocytopenia, neutropenia and lymphopenia. The best objective tumor response by Response Assessment in Neuro-Oncology (RANO) criteria was one complete response, one unconfirmed partial response and three cases of stable disease. The median progression-free survival was 1.8 months (95% confidence interval=1.0-2.7 months) with 6-month progression-free survival of 15% (95% confidence interval=0-35%). The median overall survival was 6.7 months (95% confidence interval=0.7-12 months). The investigated combination regimen of sunitinib and lomustine is well-tolerated but insufficiently active to warrant further investigation in an unselected population of patients with temozolomide-refractory recurrent anaplastic and low-grade glioma. PMID:26408725

  8. NADP-malate Dehydrogenase Isoforms of Wheat Leaves under Drought: Their Localization, and Some physicochemical and Kinetic Properties

    Directory of Open Access Journals (Sweden)

    H.G. Babayev

    2015-09-01

    Full Text Available Changes in sub-cellular localization, isoenzyme spectrum and kinetic characteristics of NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.82 in Triticum durum Desf. genotypes with contrasting drought tolerance have been studied. In chloroplast and cytosol fractions of mesophyll cells of wheat flag leaves 70-75% and 25-30% of the total NADP-MDH activity were found to be localized, respectively. Three isoforms of NADP-MDH with molecular weights of 66, 74 and 86 kDa were revealed in the chloroplast fraction, whereas in the cytosolic fraction molecular weights of the isoenzymes were found to be 42, 66 and 74 kDa. Drought caused the formation of a new 90 kDa isoform of the enzyme in the chloroplast fraction in anthesis phase of ontogenesis. In the drought-tolerant genotype the appearance of the new isoform in the chloroplast fraction was accompanied by a more rapid increase in Km and Vmax contrary to the chloroplast fraction of the drought-sensitive genotype manifesting a slight decrease in these parameters, suggesting one of the adaptive traits in forming drought tolerance in C3 plants.

  9. Helper component-proteinase enhances the activity of 1-deoxy-D -xylulose-5-phosphate synthase and promotes the biosynthesis of plastidic isoprenoids in Potato virus Y-infected tobacco.

    Science.gov (United States)

    Li, Heng; Ma, Dongyuan; Jin, Yongsheng; Tu, Yayi; Liu, Liping; Leng, Chunxu; Dong, Jiangli; Wang, Tao

    2015-10-01

    Virus-infected plants show strong morphological and physiological alterations. Many physiological processes in chloroplast are affected, including the plastidic isoprenoid biosynthetic pathway [the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway]; indeed, isoprenoid contents have been demonstrated to be altered in virus-infected plants. In this study, we found that the levels of photosynthetic pigments and abscisic acid (ABA) were altered in Potato virus Y (PVY)-infected tobacco. Using yeast two-hybrid assays, we demonstrated an interaction between virus protein PVY helper component-proteinase (HC-Pro) and tobacco chloroplast protein 1-deoxy-D-xylulose-5-phosphate synthase (NtDXS). This interaction was confirmed using bimolecular fluorescence complementation (BiFC) assays and pull-down assays. The Transket_pyr domain (residues 394-561) of NtDXS was required for interaction with HC-Pro, while the N-terminal region of HC-Pro (residues 1-97) was necessary for interaction with NtDXS. Using in vitro enzyme activity assays, PVY HC-Pro was found to promote the synthase activity of NtDXS. We observed increases in photosynthetic pigment contents and ABA levels in transgenic plants with HC-Pro accumulating in the chloroplasts. During virus infection, the enhancement of plastidic isoprenoid biosynthesis was attributed to the enhancement of DXS activity by HC-Pro. Our study reveals a new role of HC-Pro in the host plant metabolic system and will contribute to the study of host-virus relationships. PMID:25736930

  10. Isolations and characterization of highly water-soluble dimeric lanthanide citrate and malate with ethylenediaminetetraacetate.

    Science.gov (United States)

    Chen, Mao-Long; Gao, Song; Zhou, Zhao-Hui

    2012-01-28

    Highly water-soluble lanthanum and cerium citrates or malates with ethylenediaminetetraacetate (NH(4))(8)[Ln(2)(Hcit)(2)(EDTA)(2)]·9H(2)O [Ln = La, 1; Ce, 2], K(8)[La(2)(Hcit)(2)(EDTA)(2)]·16H(2)O (3) and K(6)[Ln(2)(Hmal)(2)(EDTA)(2)]·14H(2)O [Ln = La, 4; Ce, 5] (H(4)cit = citric acid, H(3)mal = malic acid, and H(4)EDTA = ethylenediaminetetracetic acid) were prepared from the reactions of lanthanide ethylenediaminetetraacetate trihydrates with citric or malic acid at pH 5.0-6.5. These compounds were characterized by elemental analyses, IR, TG-DTG, solution (13)C{(1)H} NMR, solid state (13)C NMR spectra and X-ray structural analyses. The main structural feature of the compounds consists of a dinuclear unit deca-coordinated by EDTA and citrate or malate. The ?-hydroxy and ?-carboxy groups of citrate and malate chelate in five-membered ring with one lanthanide ion, while one of the ?-carboxy group coordinates with the other lanthanide ion, forming a dimeric structure. The other pendent ?-carboxy groups in 1-3 form very strong intramolecular hydrogen bond with ?-hydroxy groups [O1O7 2.594(4), 2.587(8) and 2.57(1) Å for 1-3 respectively]. (13)C NMR spectra of the lanthanum compounds show obvious downfield shifts based on solid and solution NMR measurements, indicating the coordinations of mixed-ligand in lanthanum complexes, while highfield shifts are observed in cerium complexes. PMID:22116197

  11. Human methionine synthase reductase is a molecular chaperone for human methionine synthase

    OpenAIRE

    Yamada, Kazuhiro; Gravel, Roy A; Toraya, Tetsuo; Matthews, Rowena G

    2006-01-01

    Sustained activity of mammalian methionine synthase (MS) requires MS reductase (MSR), but there have been few studies of the interactions between these two proteins. In this study, recombinant human MS (hMS) and MSR (hMSR) were expressed in baculovirus-infected insect cells and purified to homogeneity. hMSR maintained hMS activity at a 1:1 stoichiometric ratio with a Kact value of 71 nM. Escherichia coli MS, however, was not activated by hMSR. Moreover, hMS was not significantly active in the...

  12. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    Science.gov (United States)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  13. Resveratrol Inhibits Invasion and Metastasis of Colorectal Cancer Cells via MALAT1 Mediated Wnt/?-Catenin Signal Pathway

    OpenAIRE

    Ji, Qing; Liu, Xuan; Fu, Xiaoling; Zhang, Long; Sui, Hua; Zhou, Lihong; Sun, Jian; Cai, Jianfeng; Qin, Jianmin; Ren, Jianlin; Li, Qi

    2013-01-01

    Resveratrol, extracted from Chinese herbal medicine Polygonum cuspidatum, is known to inhibit invasion and metastasis of human colorectal cancer (CRC), in which long non-coding Metastasis Associated Lung Adenocarcinoma Transcript 1 (RNA-MALAT1) also plays an important role. Using MALAT1 lentiviral shRNA and over-expression constructs in CRC derived cell lines, LoVo and HCT116, we demonstrated that the anti-tumor effects of resveratrol on CRC are through inhibiting Wnt/?-catenin signaling, thu...

  14. Clinical value of lncRNA MALAT1 as a prognostic marker in human cancer: systematic review and meta-analysis

    Science.gov (United States)

    Tian, Xiaoling; Xu, Guoxiong

    2015-01-01

    Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is found to be overexpressed and associated with clinicopathological features in patients with cancer. Objectives To evaluate the clinical value of MALAT1 as a prognostic marker in human cancers by a comprehensive meta-analysis of published studies. Data sources The data on the prognostic impact of MALAT1 in cancer were collected from 11 September 2003 to 10 July 2015. Setting and participants Fourteen eligible studies with a total of 1373 patients conducted in 3 countries (9 in China, 3 in Japan and 2 in Germany) were matched to our inclusion criteria. Outcome measures Pooled HRs with 95% CIs were calculated to estimate the strength of the link between MALAT1 and clinical prognoses. The combined HRs heterogeneity was tested using a ?2-based Cochran Q test and Higgins I2 statistic. Publication bias was evaluated using a funnel plot with Egger's bias indicator test. Results A significant association between MALAT1 overexpression and poor overall survival (OS) (HR=1.95; 95% CI 1.57 to 2.41) was observed. Residence region (Germany and China), cancer type (respiratory, digestive or other system disease), sample size and paper quality did not alter the predictive value of MALAT1 on OS in investigated cancers. MALAT1 expression was an independent prognostic marker for OS in patients with cancer using univariate and multivariate analyses. Subgroup analysis showed that the elevated MALAT1 appeared to be a powerful prognostic marker for patients with respiratory, digestive and other system cancers. A similar effect was also seen in different regions. Furthermore, the overexpression of MALAT1 was associated with disease-free, recurrence-free and progression-free survivals. Conclusions MALAT1 may potentially be used as a new prognostic marker to predict poorer survival of patients with cancer. More clinical studies on the different types of human cancer not yet investigated need to be conducted. PMID:26423854

  15. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma.

    Science.gov (United States)

    Zhang, Hai-min; Yang, Feng-qiang; Chen, Shao-Jun; Che, Jianping; Zheng, Jun-hua

    2015-04-01

    Long noncoding RNAs (lncRNAs) have been investigated as a new class of regulators of cellular processes, such as cell growth, apoptosis, and carcinogenesis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has recently been identified to be involved in tumorigenesis of several cancers such as lung cancer, pancreatic cancer, and cervical cancer. However, the role of lncRNA MALAT1 in clear cell renal cell carcinoma (ccRCC) remains unclear. Expression levels of lncRNA MALAT1 in ccRCC tissues and renal cancer cell lines were evaluated by quantitative real-time PCR (qRT-PCR), and its association with overall survival of patients was analyzed by statistical analysis. Small interfering RNA (siRNA) was used to suppress MALAT1 expression in renal cancer cells. In vitro assays were conducted to further explore its role in tumor progression. The expression level of MALAT1 was higher in ccRCC tissues and renal cancer cells compared to adjacent non-tumor tissues and normal human proximal tubule epithelial cells HK-2. The ccRCC patients with higher MALAT1 expression had an advanced clinical features and a shorter overall survival time than those with lower MALAT1 expression. And multivariate analysis showed that the status of MALAT1 expression was an independent predictor of overall survival in ccRCC. Additionally, our data indicated that knockdown expression of MALAT1 decreased renal cancer cell proliferation, migration, and invasion. Our data suggested that lncRNA MALAT1 was a novel molecule involved in ccRCC progression, which provided a potential prognostic biomarker and therapeutic target. PMID:25480417

  16. Gbetagamma-mediated prostacyclin production and cAMP-dependent protein kinase activation by endothelin-1 promotes vascular smooth muscle cell hypertrophy through inhibition of glycogen synthase kinase-3.

    Science.gov (United States)

    Taurin, Sebastien; Hogarth, Kyle; Sandbo, Nathan; Yau, Douglas M; Dulin, Nickolai O

    2007-07-01

    Endothelin-1 (ET1) is a vasoactive peptide that stimulates hypertrophy of vascular smooth muscle cells (VSMC) through diverse signaling pathways mediated by G(q)/G(i)/G(13) heterotrimeric G proteins. We have found that ET1 stimulates the activity of cAMP-dependent protein kinase (PKA) in VSMC as profoundly as the G(s)-linked beta-adrenergic agonist, isoproterenol (ISO), but in a transient manner. PKA activation by ET1 was mediated by type-A ET1 receptors (ETA) and recruited an autocrine signaling mechanism distinct from that of ISO, involving G(i)-coupled betagamma subunits of heterotrimeric G proteins, extracellular signal-regulated kinases ERK1/2, cyclooxygenase COX-1 (but not COX-2) and prostacyclin receptors. In the functional studies, inhibition of PKA or COX-1 attenuated ET1-induced VSMC hypertrophy, suggesting the positive role of PKA in this response to ET1. Furthermore, we found that ET1 stimulates a Gbetagamma-mediated, PKA-dependent phosphorylation and inactivation of glycogen synthase kinase-3 (GSK3), an enzyme that regulates cell growth. Together, this study describes that (i) PKA can be transiently activated by G(i)-coupled agonists such as ET1 by an autocrine mechanism involving Gbetagamma/calcium/ERK/COX-1/prostacyclin signaling, and (ii) this PKA activation promotes VSMC hypertrophy, at least in part, through PKA-dependent phosphorylation and inhibition of GSK3. PMID:17513863

  17. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP+). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP+ as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP+-induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP+ from apoptosis via the GSK-3beta signaling pathway.

  18. In vivo active aldosterone synthase inhibitors with improved selectivity: lead optimization providing a series of pyridine substituted 3,4-dihydro-1H-quinolin-2-one derivatives.

    Science.gov (United States)

    Lucas, Simon; Heim, Ralf; Ries, Christina; Schewe, Katarzyna E; Birk, Barbara; Hartmann, Rolf W

    2008-12-25

    Pyridine substituted naphthalenes (e.g., I-III) constitute a class of potent inhibitors of aldosterone synthase (CYP11B2). To overcome the unwanted inhibition of the hepatic enzyme CYP1A2, we aimed at reducing the number of aromatic carbons of these molecules because aromaticity has previously been identified to correlate positively with CYP1A2 inhibition. As hypothesized, inhibitors with a tetrahydronaphthalene type molecular scaffold (1-11) exhibit a decreased CYP1A2 inhibition. However, tetralone 9 turned out to be cytotoxic to the human cell line U-937 at higher concentrations. Consequent structural optimization culminated in the discovery of heteroaryl substituted 3,4-dihydro-1H-quinolin-2-ones (12-26), with 12, a bioisostere of 9, being nontoxic up to 200 microM. The investigated molecules are highly selective toward both CYP1A2 and a wide range of other cytochrome P450 enzymes and show a good pharmacokinetic profile in vivo (e.g., 12 with a peroral bioavailability of 71%). Furthermore, isoquinoline derivative 21 proved to significantly reduce plasma aldosterone levels of ACTH stimulated rats. PMID:19049427

  19. Substrate Recognition by ?-Ketoacyl-ACP Synthases

    OpenAIRE

    Borgaro, Janine G.; Chang, Andrew; Machutta, Carl A.; Zhang, Xujie; Tonge, Peter J

    2011-01-01

    ?-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a ?-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII e...

  20. Thermal stability of soluble malate dehydrogenase isozymes of subtropical fish belonging to the orders Characiformes, Siluriformes and Perciformes

    Directory of Open Access Journals (Sweden)

    Monteiro Maria do Carmo

    1998-01-01

    Full Text Available Electrophoretic thermostability tests of soluble malate dehydrogenases (sMDH isozymes in tissue extracts of 21 subtropical fish belonging to the orders Characiformes, Siluriformes and Perciformes showed three distinct results. The first, characterized by thermal stability of the slowest-migrating band or A-isoform, was detected in 52% of all species. The second, exhibited in 29% of the species analyzed, had a bidirectionally divergent pattern of their sMDH locus expression, and was characterized by a nondivergent thermostability pattern of both sMDH-A* and B*. In the third category, obtained in 19% of the species studied (the four Siluriformes species, thermostability of the fastest-migrating bands, or B-isoforms, was observed. Comparison of the effects of habitat temperature on the activity of paralogous and orthologous isoforms in tissue extracts of two of these species with different thermostability properties (Leporinus friderici - thermostable sMDH-A*, and Pimelodus maculatus - reverse thermostability properties or reverse electrophoretic pattern, collected during winter and summer months, showed that A and B subunits were present at different quantitative levels and their activities were nearly season independent. Differences in susceptibility to temperature (50°C of both sMDH loci from tissue extracts of these species were found. In P. maculatus, these susceptibilities helped strengthen one of the hypotheses: the reverse thermostability pattern, where the fastest-migrating band or the B-isoform was the thermostable sMDH. Thus, temperature differences among orthologous homologues of sMDH seem to have occurred in these acclimatized species, where the fastest-migrating band, usually muscle specific and thermolabile in most teleosts, appeared in P. maculatus as the thermostable isoform.

  1. Spermidine synthase as affected by osmotic stress in oat leaves

    International Nuclear Information System (INIS)

    Osmotically-induced putrescine (Put) accumulation in cereals could result not only from the activation of the arginine decarboxylase pathway, but also from the inhibition of spermidine synthase, the enzyme which catalyzes the transformation of Put to spermidine (Spd). To test the latter possibility, they evaluated Spd synthase activity in oat leaves as affected by osmotic stress. They developed a new assay for Spd synthase activity by adding S-adenosylmethionine, C14-Put and pyridoxal phosphate to the assay mixture. Incorporation of the C14-label into Spd can be detected after 45 min of incubation at 370C. Labelled Spd is separated from labelled Put or spermine by elution with HCl in Dowex 50 W-H+ columns. In peeled oat leaves floated in the dark over 0.6 M sorbitol in 1mM PO4 buffer (pH 5.8) for 6 and 136 h. Spd synthase activity is reduced by 24 and 53%, respectively, as compared with controls. The results suggest that the activity of this enzyme is inhibited by osmotic stress, and could partially account for the accumulation of Put

  2. Identification of poly G bound to thymidylate synthase.

    Science.gov (United States)

    Thorndike, J; Kisliuk, R L

    1986-09-14

    Thymidylate synthase activity is increased in some methotrexate-resistant strains of Streptococcus faecium. The purified enzyme is associated with a polynucleotide which is not removed by dialysis. This polynucleotide contains one mole each of purine ribose and phosphate per mole base. Phosphate analyses after incubation with digestive enzymes indicate a tetranucleotide with one terminal phosphate. The constituent nucleosides are recovered quantitatively in a specific assay for guanosine. On HPLC, they are inseparable from authentic guanosine and the UV spectrum after HPLC is identical to that of guanosine. We conclude that poly G (GpGpGpGp) is bound to thymidylate synthase. PMID:3094514

  3. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    Ahmad, Zulfiqar; Thomas F. Laughlin; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null cont...

  4. Chronic stress adaptation of the nitric oxide synthases and IL-1? levels in brain structures and hypothalamic-pituitary-adrenal axis activity induced by homotypic stress.

    Science.gov (United States)

    Gadek-Michalska, A; Tadeusz, J; Rachwalska, P; Bugajski, J

    2015-06-01

    The aim of this study was to determine the effect of repeated restraint stress (RS) on a single restraint (homotypic) stress-induced expression of interleukin-1? (IL-1?), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in the prefrontal cortex (PFC), hippocampus and hypothalamus and their adaptational changes in chronic stress. Also the involvement of plasma IL-1? in adrenocorticotropic hormone (ACTH) and corticosterone secretion during chronic stress was investigated. Rats were subjected to a single restraint for 10 minutes or restrained twice a day for 3, 7 and 14 consecutive days and 24 hours after the last stress period rats were restrained for 10 min and rapidly decapitated 0, 1, 2 and 3 hours later. The IL-1?, nNOS and iNOS protein levels in brain structures samples were analyzed by Western blot procedure and IL-1?, ACTH and corticosterone levels were determined in plasma. Single restraint induced a strongest decrease of iNOS protein levels (1-3 h) in the PFC and a weaker decline in the hippocampus and hypothalamus (3 h) after stress cessation. Single restraint markedly increased IL-1? protein level in PFC and hippocampus. In the PFC repeated restraint for 3 days significantly increased the homotypic stress induced iNOS and IL-1? protein levels and this increase gradually declined after 7 and 14 days of repeated restraint. Much weaker yet a parallel changes appeared with neuronal NOS level. In the hippocampus prior stress for 3, 7 and 14 days significantly increased the homotypic stress induced iNOS protein level parallel with IL-1? level which gradually declined with prolonged period of repeated restraint. In the hippocampus a longer restraint period, 7 and 14 days markedly decreased nNOS protein level evoked by homotypic stress. In the hypothalamus prior stress for 3 days strongly enhanced the homotypic stress-induced iNOS level and repeated stress for 7 and 14 days blunted this effect. Repeated stress increased IL-1? level in response to homotypic stress after 3 days and after 14 days. The present results indicate time-related similarities in the potent alterations in IL-1? and iNOS protein levels in brain structures. Single restraint induced a significant increase of plasma IL-1? level which was abolished by pretreatment with IL-1 receptor antagonist (IL-1Ra). A parallel strong increase of plasma ACTH and corticosterone levels were significantly impaired by IL-1Ra suggesting a marked involvement of stress-induced stimulation of ACTH and corticosterone by IL-1? in single restraint. In repeatedly restrained rats IL-1Ra significantly blunted plasma IL-1? level induced by homotypic stress. A parallel strong increase in plasma ACTH level by homotypic stress was not substantially altered by pretreatment with IL-1Ra in repeatedly stressed rats. Plasma a corticosterone level increased by homotypic stress in rats restrained for 3 and 14 days was not affected by pretreatment with IL-1Ra, but after for 7 days its level was significantly enhanced. These results suggest that repeated stress desensitizes IL-1?-induced stimulatory component in a single restraint stress-induced hypothalamic-pituitary-adrenal (HPA) axis stimulation. A sensitization by homotypic stress of corticosterone response after restraint for 7 days may depend on other stimulatory systems acting within adrenal glands during prolonged stress. Comparative data from the same model of rather mild psychological stress allows for the comparison of functional adaptive changes of NO synthases and IL-1? in brain structures involved in stress regulation. In general, the iNOS system is strongly sensitized by repeated stress for 3 days in prefrontal cortex and hippocampus. Increased plasma IL-1? level by a single restraint stress is significantly involved in ACTH and corticosterone secretion. Repeated stress for 3-14 days reduces this participation of IL-1? in pituitary-adrenal stimulation. PMID:26084225

  5. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Fr?czyk, Tomasz; Ruman, Tomasz

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.

  6. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae.

    Science.gov (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2015-04-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA. PMID:25595755

  7. The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer

    OpenAIRE

    Pidgeon, Graham; O'Byrne, Ken; Reynolds, John

    2010-01-01

    Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be pro-tumor, an anti-carcinogenic role for thromboxane synthase has been demonstrated in a variety of...

  8. Evaluation of the Reproductive Toxicity, Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism of Chromium Malate Supplementation in Sprague-Dawley Rats.

    Science.gov (United States)

    Feng, Weiwei; Zhang, Weijie; Zhao, Ting; Mao, Guanghua; Wang, Wei; Wu, Xueshan; Zhou, Zhaoxiang; Huang, Jing; Bao, Yongtuan; Yang, Liuqing; Wu, Xiangyang

    2015-11-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the reproductive toxicity of chromium malate in Sprague-Dawley rats and then inspected the effect of chromium malate on glycometabolism, glycometabolism-related enzymes, and lipid metabolism. The results showed that no pathological, toxic feces and urine changes were observed in clinical signs of parental and fetal rats in chromium malate groups. The fasting blood glucose, serum insulin, insulin resistance index, C-peptide, hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels of chromium malate groups have no significant change compared with control group and chromium picolinate group. The serum and organ contents of Cr in chromium malate groups have no significant change when compared with control group. No measurable damage on liver, brain, kidney, and testis/uterus of chromium malate groups was found. No significant change in body mass, absolute and relative organ weights, and hematological and biochemical changes of rats were observed compared with the control and chromium picolinate groups. The results indicated that supplements with chromium malate does not cause obvious damage and has no obvious effect on glycometabolism, glycometabolism-related enzyme, and lipid metabolism on female and male rats. The results of this study suggested that chromium malate is safe for human consumption and has the potential for application as a functional food ingredient and dietary supplement. PMID:25876088

  9. Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis.

    Science.gov (United States)

    Ohnuma, S; Nakazawa, T; Hemmi, H; Hallberg, A M; Koyama, T; Ogura, K; Nishino, T

    1996-04-26

    Prenyltransferases catalyze the consecutive condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to produce prenyl diphosphates whose chain lengths are absolutely determined by each enzyme. In order to investigate the mechanisms of the consecutive reaction and of the determination of ultimate chain length, a random mutational approach was planned. The farnesyl diphosphate (FPP) synthase gene of Bacillus stearothermophilus was subjected to random mutagenesis by NaNO2 treatment to construct libraries of mutated FPP synthase genes on a high-copy plasmid. From the libraries, the mutants that showed the activity of geranylgeranyl diphosphate (GGPP) synthase were selected by the red-white screening method (Ohnuma, S.-i., Suzuki, M., and Nishino, T. (1994) J. Biol. Chem. 268, 14792-14797), which utilized carotenoid synthetic genes, phytoene synthase, and phytoene desaturase, to visualize the formation of GGPP in vivo. Eleven red positive clones were identified from about 24,300 mutants, and four (mutant 1, 2, 3, and 4) of them were analyzed for the enzyme activities. Results of in vitro assays demonstrated that all these mutants produced (all-E)-GGPP although the amounts were different. Each mutant was found to contain a few amino acid substitutions: mutant 1, Y81H and L275S; mutant 2, L34V and R59Q; mutant 3, V157A and H182Y; mutant 4, Y81H, P239R, and A265T. Site-directed mutagenesis showed that Y81H, L34V, or V157A was essential for the expression of the activity of GGPP synthase. Especially, the replacement of tyrosine 81 by histidine is the most effective because the production ratios of GGPP to FPP in mutant 1 and 4 are the largest. Based on prediction of the secondary structure, it is revealed that the tyrosine 81 situates on a point 11 approximately 12 A apart from the first DDXXD motif, whose distance is similar to the length of hydrocarbon moiety of FPP. These data might suggest that the aromatic ring of tyrosine 81 blocks the chain elongation longer than FPP. Comparisons of kinetic parameters of the mutated and wild type enzymes revealed several phenomena that may relate with the change of the ultimate chain length. They are a decrease of the total reaction rate, increase of Kmfor dimethylallyl diphosphate, decrease of Vmax for dimethylallyl diphosphate, and allylic substrate dependence of Km for IPP. PMID:8626566

  10. Soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes: isolated isoforms and kinetics properties

    Directory of Open Access Journals (Sweden)

    Maria Regina de Aquino-Silva

    2008-01-01

    Full Text Available Kinetic properties and thermal stabilities of Geophagus brasiliensis skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to examine a possible sMDH-B* locus duplication in a fixation process influenced by genetic drift. Two optimal pHs were detected: 7.5 for AB1 unfractionated muscle phenotype and its B1 isoform, and 8.0 for AB1B2 unfractionated muscle phenotype, A and B2 isoforms. While G. brasiliensis A isoform could be characterized as thermostable, the duplicated B isoform cannot be assumed as thermolabile. Km values for isolated B2 isoforms were 1.6 times lower than for B1. A duplication event in progress best explains the electrophoretic six-band pattern detected in G. brasiliensis, which would be caused by genetic drift.

  11. Soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes): isolated isoforms and kinetics properties

    Scientific Electronic Library Online (English)

    Maria Regina de, Aquino-Silva; Maria Luiza Barcellos, Schwantes; Flavia Simone, Munin; Arno Rudi, Schwantes; Silvana Pereira dos, Santos.

    Full Text Available Kinetic properties and thermal stabilities of Geophagus brasiliensis skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37) and its isolated isoforms were analyzed to examine a possible sMDH-B* locus duplication in a fixation process influenced by genetic drift. Two optimal pHs were [...] detected: 7.5 for AB1 unfractionated muscle phenotype and its B1 isoform, and 8.0 for AB1B2 unfractionated muscle phenotype, A and B2 isoforms. While G. brasiliensis A isoform could be characterized as thermostable, the duplicated B isoform cannot be assumed as thermolabile. Km values for isolated B2 isoforms were 1.6 times lower than for B1. A duplication event in progress best explains the electrophoretic six-band pattern detected in G. brasiliensis, which would be caused by genetic drift.

  12. Mitochondrial malate dehydrogenase (Mor-1) in the mouse: linkage to chromosome 5 markers

    Energy Technology Data Exchange (ETDEWEB)

    Womack, J.E.; Hawes, N.L.; Soares, E.R.; Roderick, T.H.

    1975-01-01

    Malate dehydogenase is present in most mammalian tissues in both supernatant and mitochondrial forms. Although genetic variation for the supernatant form has not been observed in the mouse, electrophoretic variants caused by alleles at the mitochondrial locus (Mor-1) have been previously described. We have located this locus 11.0 +- 2.9 cM from the ..beta..-glucuronidase structural gene, Gus, on chromosome 5. The gene order is Hm--Pgm-1--rd--bf--Gus--Mor-1. Thus Mor-1 is presently the most distal marker on chromosome 5. Three different nuclear loci for mitochondrial enzymes (Mod-2, Got-2, and Mor-1) have now been mapped in the mouse, all on different chromosomes.

  13. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  14. [Lipoamide dehydrogenase, citrate synthase and beta-hydroxyacyl-CoA-dehydrogenase in skeletal muscle. IX. The influence of the rate of thawing on activity and subcellular distribution in fast and slow frozen bovine muscle].

    Science.gov (United States)

    Gottesmann, P; Hamm, R

    1985-10-01

    Samples of bovine muscle (post rigor) were frozen at -30 degrees C at two different rates (1.27 min/degrees C and 13.10 min/degrees C) and thawed at different rates between 1.6 (22 degrees C) and 430 min/degrees C (0 degrees C). The activities of the mitochondrial enzymes lipoamide dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA-dehydrogenase were determined in the supernatant of the tissue homogenate in phosphate buffer (total activity) and in the press juice of the intact tissue (activity in the sarcoplasma). The rate of thawing did not show a significant influence on total enzyme activities. In most cases, however, slow thawing caused a greater release of the enzymes from the mitochondria into the sarcoplasmic fluid than fast thawing, this effect being apparently independent of the rate of freezing. The greater damage to mitochondrial membranes upon slow thawing cannot be due to a longer exposure of the muscle cell to increased ionic strength in the non-freezable part of the cell water at the "critical" temperature around -3 degrees C because freezing of muscle samples at -3 degrees C and incubating them at -3 degrees C for five days resulted neither in changes of the total enzyme activities nor in a release of the three mitochondrial enzymes. From these results it is concluded that the influence of thawing rate on the damage to muscle mitochondria is probably not due to ionic effects or to recrystallization phenomena in the ice phase. PMID:3840938

  15. Characterization of nitric oxide synthases in non-adrenergic non-cholinergic nerve containing tissue from the rat anococcygeus muscle.

    OpenAIRE

    Mitchell, J.A.; Sheng, H.; Förstermann, U.; Murad, F.

    1991-01-01

    Tissue homogenates prepared from rat anococcygeus muscle converted L-arginine to L-citrulline indicating the presence of nitric oxide (NO) synthase. NO synthase activity was also found in crude and partially-purified soluble and particulate fractions prepared from the homogenates. Both soluble and particulate NO synthase were dependent on NADPH, 5,6,7,8-tetrahydrobiopterin and calcium, and inhibited by NG-nitro-L-arginine. Tissue homogenates or crude cytosolic and membrane fractions from rat ...

  16. Intrinsic uncoupling in the ATP synthase of Escherichia coli.

    Science.gov (United States)

    D'Alessandro, Manuela; Turina, Paola; Melandri, B Andrea

    2008-12-01

    The ATP hydrolysis activity and proton pumping of the ATP synthase of Escherichia coli in isolated native membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis activity was inhibited by Pi with an half-maximal effect at 140 microM, which increased progressively up in the millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased. The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D. Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004) 11126-11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic coupling between hydrolysis and proton transport, which are modulated by ADP and Pi. PMID:18952048

  17. [Lipoamide dehydrogenase, citrate synthase and beta-hydroxyacyl-CoA-dehydrogenase in skeletal muscle. VIII. The influence of temperature and rate of freezing of bovine muscle on the activity and subcellular distribution of the enzymes in the thawed tissue].

    Science.gov (United States)

    Hamm, R; Gottesmann, P

    1985-09-01

    Samples of bovine muscle (post rigor) were frozen at different temperatures between -5 degrees and -196 degrees C at different freezing rates, and thawed at room temperature. The activities of the mitochondrial enzymes lipoamide dehydrogenase, citrate synthase and beta-hydroxyacyl-CoA-dehydrogenase were determined in the supernatant of the tissue homogenates in phosphate buffer (total enzyme activity), as well as in the press juice of the intact tissue (enzyme activity in the sarcoplasma). Neither the temperature nor the rate of freezing (varying from 25.5 to 0.01 min/degrees C) showed a significant influence on the total enzyme activities. Freezing at -5 degrees and -10 degrees C (at different rates but without intracellular freezing) and thawing did not result in an appreciable release of enzymes. Below -10 degrees C the release of the three enzymes from their binding to the inner membrane of the mitochondrion into the sarcoplasmic fluid increased upon rapid freezing with decreasing temperature i.e. with increasing intracellular ice formation, whereas at slow freezing (with extracellular ice formation only) freezing below -20 degrees C did not cause further enzyme release. At freezing temperatures below -20 degrees C rapid freezing resulted in a significantly stronger release of the three enzymes than slow freezing. From these results it was concluded that the damage to mitochondrial membranes upon fast freezing is primarily a result of intracellular (and perhaps also intramitochondrial) ice formation, whereas the membrane damage during slow freezing is primarily due to dehydration caused by the migration of water from the muscle fibers into the extracellular space as a result of osmotic effects. Ion concentration in the nonfreezing fraction of tissue water seems to be only of minor importance for the disintegration of mitochondrial membranes. PMID:3840312

  18. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.

    Science.gov (United States)

    Pry, T A; Hsu, R Y

    1980-03-01

    Malic enzyme (ME) from pigeon liver is a tetrameric protein containing apparently identical subunits. In the present study, equilibrium dialysis and fluorescence titration techniques are employed to determine the binding parameters of nucleotide cofactors, malate, and the inhibitor oxalate. ME binds NADP+ or NADPH at four independent and equivalent sites with dissociation constants of 1.33 microM (pH 7.5, 4 degrees C) and 0.29 microM (pH 7.0, 5 degrees C), respectively, showing "all-of-the-sites" reactivity. The affinity of both nucleotides decreases with increasing temperature, yielding delta Hdissociation values of 11.4 kcal/mol for E-NADP+ and 8.9 kcal/mol for E-NADPH, thus implicating the involvement of polar forces in the binding process. The affinity of NADP+ is independent of pH between 6.1 and 8.4 whereas that of NADPH is highly pH dependent and decreases approximately 63-fold from pH 6.0 to pH 8.0. The pH profile suggests the participation of a protonated enzyme group(s) (pK = 7.2-7.5) in NADPH binding, probably a histidine residue. The affinity of NADP+ is enhanced ca. twofold by pyruvate, in the presence of Mn2+ (50-100 microM) saturating only two "tight" metal sites [Hsu, R. Y., Mildvan, A. S., Chang, G. G., & Fung, C. H. (1976) J. Biol. Chem. 251, 6574]. Binding of Mn2+ at weak metal sites (KD congruent to 0.9 mM) prevents this change. Malate binds free ME or binary E-Mn2+ and E-NADP+ (H) complexes weakly with dissociation constants of greater than or equal to 2 mM. The affinity is significantly increased by Mn2+ and NADPH in the ternary E-Mn2+-NADPH complex, yielding two "tight" (KD = 22-30 microM) and two "weak" (KD = 250-400 microM) malate sites per enzyme tetramer as the result of either preexisting nonidentity or negative cooperativity between intitially identical sites. The transition-state inhibitor oxalate binds ME tightly (KD = 65 microM) at the two tight malate sites, showing "half-of-the-sites" stoichiometry. The binding parameters are unaffected by Mn2+, whereas the affinity of this inhibitor is enhanced 3.5-fold by saturation with NADPH. Further evidence for the half-of-the-sites reactivity of the affinity label bromopyruvate [Pry, T. A., & Hsu, R. Y. (1978) Biochemistry 17, 4024] is obtained by sequential modification of the four putatively identical SH groups of ME with bromopyruvate, 5,5'-dithiobis(2-nitro-benzoic acid), and K14CN. The modified enzyme has a structure of E4(S-pyr)2(S-14CN)2 and is "inactive" in the reaction with malate. In contrast, the E(S-14CN)4 derivative prepared in the absence of bromopyruvate is completely active. The oxidative decarboxylase reaction is inhibited by high concentrations (greater than or equal to 0.3 mM) of malate in the presence of tightly bound Mn2+. Direct binding studies show a parallel increase in the affinity of NADPH, confirming our previous notion [Reynolds, C. H., Hsu, R. Y., Matthews, B., Pry, T. A., & Daibits the rate-limiting NADPH release step. PMID:7356971

  19. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.

    Science.gov (United States)

    Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

    2013-04-01

    Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-?-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. PMID:23550753

  20. Discovery of 4-Aryl-5,6,7,8-tetrahydroisoquinolines as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors: In Vivo Evaluation in Rodents and Cynomolgus Monkeys.

    Science.gov (United States)

    Martin, Rainer E; Aebi, Johannes D; Hornsperger, Benoit; Krebs, Hans-Jakob; Kuhn, Bernd; Kuglstatter, Andreas; Alker, André M; Märki, Hans Peter; Müller, Stephan; Burger, Dominique; Ottaviani, Giorgio; Riboulet, William; Verry, Philippe; Tan, Xuefei; Amrein, Kurt; Mayweg, Alexander V

    2015-10-22

    Inappropriately high levels of aldosterone are associated with many serious medical conditions, including renal and cardiac failure. A focused screen hit has been optimized into a potent and selective aldosterone synthase (CYP11B2) inhibitor with in vitro activity against rat, mouse, human, and cynomolgus monkey enzymes, showing a selectivity factor of 160 against cytochrome CYP11B1 in the last species. The novel tetrahydroisoquinoline compound (+)-(R)-6 selectively reduced aldosterone plasma levels in vivo in a dose-dependent manner in db/db mice and cynomolgus monkeys. The selectivity against CYP11B1 as predicted by cellular inhibition data and free plasma fraction translated well to Synacthen challenged cynomolgus monkeys up to a dose of 0.1 mg kg(-1). This compound, displaying good in vivo potency and selectivity in mice and monkeys, is ideally suited to perform mechanistic studies in relevant rodent models and to provide the information necessary for translation to non-human primates and ultimately to man. PMID:26403853

  1. Genome-Wide Screening of Salt Tolerant Genes by Activation-Tagging Using Dedifferentiated Calli of Arabidopsis and Its Application to Finding Gene for Myo-Inositol-1-P-Synthase

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Kobayashi, Kyoko; Shimizu, Masanori; Ito, Sohei; Usui, Yumiko; Nakayama, Tsutomu; Kobayashi, Hirokazu

    2015-01-01

    Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis. PMID:25978457

  2. Genome-wide screening of salt tolerant genes by activation-tagging using dedifferentiated calli of Arabidopsis and its application to finding gene for Myo-inositol-1-p-synthase.

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Kobayashi, Kyoko; Shimizu, Masanori; Ito, Sohei; Usui, Yumiko; Nakayama, Tsutomu; Kobayashi, Hirokazu

    2015-01-01

    Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis. PMID:25978457

  3. Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro.

    Science.gov (United States)

    Parks, J K; Smith, T S; Trimmer, P A; Bennett, J P; Parker, W D

    2001-02-01

    Beta amyloid (Abeta) peptides accumulate in Alzheimer's disease and are neurotoxic possibly through the production of oxygen free radicals. Using brain microdialysis we characterized the ability of Abeta to increase oxygen radical production in vivo. The 1-40 Abeta fragment increased 2,3-dehydroxybenzoic acid efflux more than the 1-28 fragment, in a manner dependent on nitric oxide synthase and NMDA receptor channels. We then examined the effects of Abeta peptides on mitochondrial function in vitro. Induction of the mitochondrial permeability transition in isolated rat liver mitochondria by Abeta(25-35) and Abeta(35-25) exhibited dose dependency and required calcium and phosphate. Cyclosporin A prevented the transition as did ruthenium red, chlorpromazine, or N-ethylmaleimide. ADP and magnesium delayed the onset of mitochondrial permeability transition. Electron microscopy confirmed the presence of Abeta aggregates and swollen mitochondria and preservation of mitochondrial structure by inhibitors of mitochondrial permeability transition. Cytochrome c oxidase (COX) activity was selectively inhibited by Abeta(25-35) but not by Abeta(35-25). Neurotoxic Abeta peptide can increase oxidative stress in vivo through mechanisms involving NMDA receptors and nitric oxide sythase. Increased intracellular Abeta levels can further exacerbate the genetically driven complex IV defect in sporadic Alzheimer's disease and may precipitate mitochondrial permeability transition opening. In combination, our results provide potential mechanisms to support the feed-forward hypothesis of Abeta neurotoxicity. PMID:11181824

  4. P2 purinergic receptor activation of neuronal nitric oxide synthase and guanylyl cyclase in the dorsal facial area of the medulla increases blood flow in the common carotid arteries of cats.

    Science.gov (United States)

    Hung, Y-W; Leung, Y-M; Lin, N-N; Lee, T J-F; Kuo, J-S; Tung, K-C; Gong, C-L

    2015-02-12

    In the dorsal facial area (DFA) of the medulla, an activation of either P2 purinergic receptor or nitric oxide synthase (NOS) results in the release of glutamate, leading to an increase in blood flow of the common carotid artery (CCA). It is not known whether activation of the P2 receptor by ATP may mediate activation of NOS/guanylyl cyclase to cause glutamate release and/or whether L-Arg (nitric oxide (NO) precursor) may also cause ATP release from any other neuron, to cause an increase in CCA flow. We demonstrated that microinjections of P2 receptor agonists (ATP, ?,?-methylene ATP) or NO precursor (L-arginine) into the DFA increased CCA blood flow. The P2-induced CCA blood flow increase was dose-dependently reduced by pretreatment with NG-nitro-arginine methyl ester (L-NAME, a non-specific NOS inhibitor), 7-nitroindazole (7-NI, a relatively selective neuronal NOS inhibitor) or methylene blue (MB, a guanylyl cyclase inhibitor) but not by that with D-NAME (an isomer of L-NAME) or N5-(1-iminoethyl)-L-ornithine (L-NIO, a potent endothelial NOS inhibitor). Involvement of glutamate release in these responses were substantiated by microdialysis studies, in which perfusions of ATP into the DFA increased the glutamate concentration in dialysates, but co-perfusion of ATP with L-NAME or 7-NI did not. Nevertheless, the arginine-induced CCA blood flow increase was abolished by combined pretreatment of L-NAME and MB, but not affected by pretreatment with a selective P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). In conclusion, ATP activation of the P2 receptor in the DFA induced activation of neuronal NOS/guanylyl cyclase, which causes glutamate release leading to an increase in CCA blood flow. However, arginine activation of neuronal NOS/guanylyl cyclase, which also caused glutamate release and CCA blood flow increase, did not induce activation of P2 receptors. These findings provide important information for drug design and/or developing therapeutic strategies for the diseases associated with CCA blood flow that supplies intra- and extra-cranial tissues. PMID:25433238

  5. Alteration of Ceramide Synthase 6/C16-Ceramide Induces Activating Transcription Factor 6-mediated Endoplasmic Reticulum (ER) Stress and Apoptosis via Perturbation of Cellular Ca2+ and ER/Golgi Membrane Network*

    Science.gov (United States)

    Senkal, Can E.; Ponnusamy, Suriyan; Manevich, Yefim; Meyers-Needham, Marisa; Saddoughi, Sahar A.; Mukhopadyay, Archana; Dent, Paul; Bielawski, Jacek; Ogretmen, Besim

    2011-01-01

    Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1–6 (CerS1–6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C16-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C16-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca2+ from the ER stores ([Ca2+]ER), which resulted in the fragmentation of Golgi membranes in response to CerS6/C16-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca2+ chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C16-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C16-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas. PMID:22013072

  6. Glutamine synthetase and glutamate synthase activities in relation to nitrogen fixation in Lotus spp. / Atividade da sintetase da glutamina e sintase do glutamato em relação a fixação de nitrogênio em Lotus spp.

    Scientific Electronic Library Online (English)

    SUSANA, GONNET; PEDRO, DÍAZ.

    Full Text Available Plantas de Lotus corniculatus, L. tenuis, L. pedunculatus e L. subbiflorus foram inoculadas com Mesorhizobium loti cepa NZP2037 e mantidas numa câmara de crescimento. A massa seca da planta (MS), massa fresca dos nódulos (MF), atividade de nitrogenase, atividades de sintetase de glutamina (GS) e sin [...] tase de glutamato (GOGAT), bem como o teor de leghemoglobina e de aminoácidos no caule foram avaliados 28 dias após inoculação. A maior MS das plantas foi encontrada em L. tenuis e a maior MF de nódulos foi encontrada em L. pedunculatus. Atividade de nitrogenase em L. tenuis, L. pedunculatus e L. subbiflorus foi seis vezes a atividade em L. corniculatus. As atividades de GS e GOGAT nos nódulos não mostraram o mesmo padrão. As maiores atividades de GS e GOGAT foram encontradas nos nódulos de L. tenuis associadas com a alta atividade de nitrogenase, resultados compativeis com sua alta MS. As quatro espécies de Lotus foram comparadas e nenhuma correlação entre os parâmetros de fixação de nitrogênio e enzimas de assimilação de amonia foi encontrada, mas a razão GS/GOGAT tem uma correlação positiva e significativa (r²=0.82**) com o teor de aminoácidos nos caules. Abstract in english Lotus corniculatus, L. tenuis, L. pedunculatus, and L. subbiflorus inoculated with Mesorhizobium loti NZP2037 strain were grown in a growth chamber. The plants dry weight (DW), the nodule fresh weight (FW), the nitrogenase activity, the nodule glutamine synthetase (GS) and glutamate synthase (GOGAT) [...] activities, as well as the leghemoglobin content and the amino acid in the stem were measured 28 days after inoculation. The highest DW of plants was measured in L. tenuis and the highest FW of nodules was measured in L. pedunculatus. Nitrogenase activity in L. tenuis, L. pedunculatus and L. subbiflorus was six fold the activity in L. corniculatus. Nodule GS and GOGAT activities did not follow this same pattern. L. tenuis had the highest values of GS and GOGAT activities in the nodule, and a high nitrogenase activity which is consistent with its high plant DW. The four species of Lotus were compared and no correlation between nitrogen fixation parameters and ammonia assimilation enzymes was found, but the GS/GOGAT ratio has a positive and significant correlation (r²=0.82**) with the amino acid content in stems.

  7. Basic studies of various /sup 99m/Tc-labelled renal agents and clinical application of /sup 99m/Tc--malate

    Energy Technology Data Exchange (ETDEWEB)

    Machida, T.; Miki, M.; Ueda, M.; Tanaka, A.; Ikeda, I.

    1977-02-01

    Various renal imaging agents that were reported in the past and a new agent, /sup 99m/Tc-malate as well as /sup 99m/Tc-cystein acetazolamide complex were prepared using electrolysis and electrochemical methods. These were studied for their labelling efficiency. After animal experiments with selected /sup 99m/Tc-compounds, /sup 99m/Tc-malate proved to be sufficient for renal imaging with adequate concentration. /sup 99m/Tc-malate differs from other renal imaging agents in the utilization of endogeneous metabolic product. The first half time of /sup 99m/Tc-malate in humans is 17 minutes, on the average, and the urinary excretion rate of /sup 99m/Tc-malate is 36 +- 6.05 percent in 1 hour after intravenous administration, 44 +- 3.41 percent in 2 hours and 50 +- 5.62 percent in 3 hours. In our 40 clinical experiences of /sup 99m/Tc-malate, most cases demonstrated quite clear renal images in the serial scintiphotos except cases whose serum creatinines were over 4.5 mg/dl.

  8. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants.

    Science.gov (United States)

    Lehmann, Marco M; Rinne, Katja T; Blessing, Carola; Siegwolf, Rolf T W; Buchmann, Nina; Werner, Roland A

    2015-09-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. ? (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in ?(13)C of putative leaf respiratory carbon sources (? (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined ? (13) C R with an in-tube incubation technique and ? (13) C RS with compound-specific isotope analysis during a daily cycle. The highest ? (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to ? (13) C R (up to 5.2‰) and compared to ? (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between ? (13) C R and ? (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P?0.001) and nighttime (r(2)=0.36, P?0.001) under all environmental conditions. A multiple linear regression analysis revealed ? (13) C RS of malate as the most important carbon source influencing ? (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. PMID:26139821

  9. Search for genes involved in the synthesis of poly(L-malate) in the plasmodium of Physarum polycephalum

    OpenAIRE

    Pinchai, Nadthanun

    2005-01-01

    The accellular slime mold Physarum polycephalum is characterized by two distinctive growth phases: uninucleate amoebae and multinucleate syncytial plasmodia. These two cell types differ in cellular organization, behaviour and gene expression. Plasmodium distinguishes from other stages of the life cycle by the production of an unusual polyester, ß-poly(L-malate) (PMLA). The polymer is concentrated in the nuclei and has been proposed to function as storage molecule and a mobile matrix for nucle...

  10. Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection

    DEFF Research Database (Denmark)

    Støttrup, Nicolaj; Løfgren, Bo; Birkler, Rune Dupont; Nielsen, J. M.; Wang, Lixing; Caldarone, Christopher Anthony; Kristiansen, Steen Buus; Contractor, Hussain; Johannsen, Mogens; Bøtker, Hans Erik; Nielsen, Torsten Toftegaard

    2010-01-01

    AIMS: Preserved mitochondrial function is essential for protection against ischaemia-reperfusion (IR) injury. The malate-aspartate (MA) shuttle constitutes the principal pathway for transport of reducing cytosolic equivalents for mitochondrial oxidation. We hypothesized that a transient shut-down of the MA-shuttle by aminooxyacetate (AOA) during ischaemia and early reperfusion modulates IR injury by mechanisms comparable to ischaemic preconditioning (IPC). METHODS AND RESULTS: Isolated perfused ...

  11. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning

    OpenAIRE

    Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J.; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M.

    2014-01-01

    A key transducer in energy conservation and signaling cell death is the mitochondrial H+-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H+-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H+-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the a...

  12. Changes in the level of cytosolic calcium, nitric oxide and nitric oxide synthase activity during platelet aggregation: an in vitro study in platelets from normal subjects and those with cirrhosis

    Indian Academy of Sciences (India)

    Sam Annie-JeyachristYn; Arumugam Geetha; Rajagopal Surendran

    2008-03-01

    Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis. In the present investigation, we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis. The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver. Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis. Platelet aggregation was also measured in the presence of the eNOS inhibitor, diphenylene iodinium chloride (DIC). The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects. During the course of platelet aggregation, concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples, whereas the elevation was not significant in platelets of patients with cirrhosis. A parallel increase was observed in the levels of NO and NOS activity. In the presence of the eNOS inhibitor, platelet aggregation was enhanced and accompanied by an elevated calcium level. The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS. Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis. The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance, and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.

  13. Mapping the interactions between flavodoxin and its physiological partners flavodoxin reductase and cobalamin-dependent methionine synthase

    OpenAIRE

    Hall, Diane A.; Vander Kooi, Craig W; Stasik, Chad N.; Stevens, Shawn Y.; Zuiderweg, Erik R.P.; Matthews, Rowena G

    2001-01-01

    Flavodoxins are electron-transfer proteins that contain the prosthetic group flavin mononucleotide. In Escherichia coli, flavodoxin is reduced by the FAD-containing protein NADPH:ferredoxin (flavodoxin) oxidoreductase; flavodoxins serve as electron donors in the reductive activation of anaerobic ribonucleotide reductase, biotin synthase, pyruvate formate lyase, and cobalamin-dependent methionine synthase. In addition, domains homologous to flavodoxin are components...

  14. Novel type III polyketide synthases from Aloe arborescens.

    Science.gov (United States)

    Mizuuchi, Yuusuke; Shi, She-Po; Wanibuchi, Kiyofumi; Kojima, Akiko; Morita, Hiroyuki; Noguchi, Hiroshi; Abe, Ikuro

    2009-04-01

    Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85-96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 degrees C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. PMID:19348024

  15. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    OpenAIRE

    Bito, Tomohiro; Yabuta, Yukinori; Ichiyanagi, Tsuyoshi; Kawano, Tsuyoshi; Watanabe, Fumio

    2014-01-01

    •CN-Cbl dodecylamine, a derivative of cyanocobalamin, was absorbed by C. elegans.•CN-Cbl dodecylamine decreased activities of cobalamin-dependent enzymes.•CN-Cbl dodecylamine induced cobalamin deficiency in C. elegans.•CN-Cbl dodecylamine acts as an inhibitor of cobalamin-dependent enzymes.

  16. A functional cellulose synthase from ascidian epidermis

    OpenAIRE

    Matthysse, Ann G.; Deschet, Karine; Williams, Melanie; Marry, Mazz; White, Alan R.; William C Smith

    2004-01-01

    Among animals, urochordates (e.g., ascidians) are unique in their ability to biosynthesize cellulose. In ascidians cellulose is synthesized in the epidermis and incorporated into a protective coat know as the tunic. A putative cellulose synthase-like gene was first identified in the genome sequences of the ascidian Ciona intestinalis. We describe here a cellulose synthase gene from the ascidian Ciona savignyi that is expressed in the epidermis. The predicted C. savignyi cellulose synthase ami...

  17. CHARACTERIZATION OF BARLEY SUCROSE PHOSPHATE SYNTHASE

    Directory of Open Access Journals (Sweden)

    Amani Abdel-Latif

    2014-08-01

    Full Text Available Sucrose phosphate synthase (SPS is one of a number of sucrose-metabolizing enzymes that regulates the sucrose synthesis pathway. SPS was assayed from green barley(HordeurnvulgareL. seedlings (GBS,from etiolated barley seedlings (DBS that were continuously grown in darkness, and barley seedlings that were grown in darkness and illuminated only for 30 minutes before returning to the dark conditions again (EBS.Except for DBS, both GBS and EBSSPS activities wereallosterically regulated by G-6-P(activator or Pi (inhibitor.Thiol reagents became sensitized to the enzyme activity, but could be restored with DTT or ?-ME. Glucose, maltose and lactose activated the enzymewhile ?-gluconolactone and mannose inhibited it. When compared to those plants which were maintained in total darkness, extractable sucrose-Psynthase activity of 30-min.illuminated seedlings increased about 4 folds by 1h .The activity remained constant for an additional two hours and then decreased to about 50% of maximal 5 h post illumination.

  18. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    Science.gov (United States)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  19. Biosynthesis of P(3HB-co-3HV-co-3HHp terpolymer by Cupriavidus necator PHB-4 transformant harboring the highly active PHA synthase gene of Chromobacterium sp. USM2

    Directory of Open Access Journals (Sweden)

    Rathi, D-N.

    2013-01-01

    Full Text Available Aims: This study evaluates potentials of Cupriavidus necator PHB?4 transformant harboring the highly activepolyhydroxyalkanoate synthase gene (phaC of a locally isolated Chromobacterium sp. USM2 for its ability toincorporate 3-hydroxyheptanoate (3HHp monomer.Methodology and results: A mixture of fructose and sodium heptanoate fed to the culture gave rise to poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyheptanoate, [P(3HB-co-3HV-co-3HHp] terpolymer synthesis, withtraces of 3HHp monomers confirmed through gas chromatography (GC, proton (1H and carbon (13C NMR spectra.Conclusion, significance and impact of study: This study has revealed that the PHA synthase of Chromobacteriumsp. USM2 has a broad range of substrate specificity. The synthase is able to polymerize 3-hydroxyalkanoate monomershaving 4–7 carbon atoms.

  20. Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis

    OpenAIRE

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-01-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea–induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS ...

  1. Activation of the protein kinase B and glycogen synthase kinase-3 signalling pathway during transient differentiation of human colon cancer HT-29 cells.

    Czech Academy of Sciences Publication Activity Database

    Tuhá?ková, Zdena; Šloncová, Eva; Hlavá?ek, Jan; Sovová, Vlasta; Velek, Ji?í

    Ústav organické chemie a biochemie AV ?R, v. v. i.. Ro?. 3, - (1999), s. 19-22 ISSN 0010-0765. [Biologically Active Peptides /6./. 21.04.1999-23.04.1999, Praha] R&D Projects: GA MZd IZ3517; GA ?R GA312/97/1188; GA ?R GV312/96/K205 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  2. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats

    Scientific Electronic Library Online (English)

    Artur, Guimarães Filho; Rodrigo Maranguape Silva da, Cunha; Paulo Roberto Leitão de, Vasconcelos; Sergio Botelho, Guimarães.

    2014-06-01

    Full Text Available PURPOSE: To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. METHODS: One-hundred and eight male Wistar rats were ra [...] ndomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fed 30 minutes before 70% partial hepatectomy. Blood and liver samples were collected three, seven and 14 days after laparotomy/hepatectomy for quantification of MDH1/MDH2 enzymes using the real-time polymerase chain reaction (PCR) methodology. Relative enzymes expression was calculated by the 2-??C T method using the threshold cycle (CT) value for normalization. RESULTS: MDH1/MDH2 RGE was not different in hepatectomized rats treated with OKG compared to rats treated with CCa. However, MDH1/MDH2 RGE was greater on days 3 (321:1/26.48:1) and 7 (2.12:1/2.48:1) while MDH2 RGE was greater on day 14 (7.79:1) in hepatectomized rats treated with GLN compared to control animals. CONCLUSION: Glutamine has beneficial effects in liver regeneration in rats by promoting an up-regulation of the MDH1 and MDH2 relative gene expression.

  3. Kinetic simulation of malate-aspartate and citrate-pyruvate shuttles in association with Krebs cycle.

    Science.gov (United States)

    Korla, Kalyani; Vadlakonda, Lakshmipathi; Mitra, Chanchal K

    2015-11-01

    In the present work, we have kinetically simulated two mitochondrial shuttles, malate-aspartate shuttle (used for transferring reducing equivalents) and citrate-pyruvate shuttle (used for transferring carbon skeletons). However, the functions of these shuttles are not limited to the points mentioned above, and they can be used in different arrangements to meet different cellular requirements. Both the shuttles are intricately associated with Krebs cycle through the metabolites involved. The study of this system of shuttles and Krebs cycle explores the response of the system in different metabolic environments. Here, we have simulated these subsets individually and then combined them to study the interactions among them and to bring out the dynamics of these pathways in focus. Four antiports and a pyruvate pump were modelled along with the metabolic reactions on both sides of the inner mitochondrial membrane. Michaelis-Menten approach was extended for deriving rate equations of every component of the system. Kinetic simulation was carried out using ordinary differential equation solver in GNU Octave. It was observed that all the components attained steady state, sooner or later, depending on the system conditions. Progress curves and phase plots were plotted to understand the steady state behaviour of the metabolites involved. A comparative analysis between experimental and simulated data show fair agreement thus validating the usefulness and applicability of the model. PMID:25559761

  4. Mechanical and thermal properties of biodegradable hydroxyapatite/poly(sorbitol sebacate malate composites

    Directory of Open Access Journals (Sweden)

    Weng Hong Tham

    2013-02-01

    Full Text Available In this project, novel hydroxyapatite (HAp/poly(sorbitol sebacate malate (PSSM composites for potential application in soft tissue engineering were developed. The composites consist of the biodegradable polyester prepared from sorbitol,sebacic acid, malic acid and various amount of HAp (5, 10, and 15 wt%. Effects of different weight percents of HAp on theproperties of the composites were studied. Fourier transform infrared spectroscopy was performed to analyze chemical interactions between HAp/PSSM. Tensile tests and differential scanning calorimetry were conducted to evaluate the mechanicaland thermal properties of HAp/PSSM composites. Tensile testing on HAp/PSSM composites showed that their mechanicalproperties improved with increasing concentration of HAp. The Young’s modulus and tensile strength of the compositesranged from 16.20±1.73 to 23.96±2.56 MPa and 626.96±81.04 to 1,026.46±105.12 MPa, respectively. The glass transition temperature of all samples was slightly higher than room temperature.

  5. High Performance Liquid Chromatographic Analysis of Almotriptan Malate in Bulk and Tablets

    Directory of Open Access Journals (Sweden)

    Chandra Bala Sekaran

    2013-02-01

    Full Text Available Purpose: A simple RP-HPLC method has been developed and validated for the determination of almotriptan malate (ATM in bulk and tablets. Methods: Chromatographic separation of ATM was achieved by using a Thermo Scientific C18 column. A Mobile phase containing a mixture of methanol, water and acetic acid (4:8:0.1 v/v was pumped at the flow rate of 1 mL/min. Detection was performed at 227 nm. According to ICH guidelines, the method was validated. Results: The calibration curve was linear in the concentration range 5–60 ?g/mL for the ATM with regression coefficient 0.9999. The method was precise with RSD <1.2%. Excellent recoveries of 99.60 - 100.80% proved the accuracy of the method. The limits of detection and quantification were found to be 0.025 and 0.075 ?g/mL, respectively. Conclusion: The method was successfully applied for the quantification of ATM in tablets with acceptable accuracy and precision.

  6. Genetic control and development expression of malate dehydrogenase in Apis mellifera.

    Science.gov (United States)

    Contel, E P; Mestriner, M A; Martins, E

    1977-10-01

    Starch gel electrophoresis of extracts of Apis mellifera indicates that genetic variability exists for the enzyme cytoplasmic malate dehydrogenase (E.C. 1.1.1.37). Analysis of individuals throughout development indicates that the isozyme patterns are identical for larvae and adults and suggests a dimeric structure for the molecule. The isozyme pattern observed in pupae is more complex than that of larvae and adults may be due to an additional pupal-specific MDH gene being expressed or to an epigenetic modification of the isozymes. Forty-three colonies with artificially inseminated queens were used to study the Mendelian pattern of inheritance. The data revealed that the MDH isozymes are encoded by three alleles, Mdh-1A, Mdh-1B, and Mdh-1C. The frequency of the Mdh-1 alleles is different in two analyzed subspecies, A. m. adansonii (African bees) and A. m. ligustica (Italian bees), with Mdh-1A and Mdh-1B in the African bees being 0-768 and 0.202, respectively. For the Italian bees, these frequencies are 0.136 and 0:154, respectively. PMID:588235

  7. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle

    DEFF Research Database (Denmark)

    Nielsen, Torsten Toftegård; StØttrup, Nicolaj Brejnholt

    2011-01-01

    The convergence of cardioprotective intracellular signalling pathways to modulate mitochondrial function as an end-target of cytoprotective stimuli is well described. However, our understanding of whether the complementary changes in mitochondrial energy metabolism are secondary responses or inherent mechanisms of ischaemic cardioprotection remains incomplete. In the heart, the malate-aspartate shuttle (MAS) constitutes the primary metabolic pathway for transfer of reducing equivalents from the cytosol into the mitochondria for oxidation. The flux of MAS is tightly linked to the flux of the tricarboxylic acid cycle and the electron transport chain, partly by the amino acid l-glutamate. In addition, emerging evidence suggests the MAS is an important regulator of cytosolic and mitochondrial calcium homeostasis. In the isolated rat heart, inhibition of MAS during ischaemia and early reperfusion by the aminotransferase inhibitor aminooxyacetate induces infarct limitation, improves haemodynamic responses, and modulates glucose metabolism, analogous to effects observed in classical ischaemic preconditioning. On the basis of these findings, the mechanisms through which MAS preserves mitochondrial function and cell survival are reviewed. We conclude that the available evidence is supportive of a down-regulation of mitochondrial respiration during lethal ischaemia with a gradual 'wake-up' during reperfusion as a pivotal feature of ischaemic cardioprotection. Finally, comments on modulating myocardial energy metabolism by the cardioprotective amino acids glutamate and glutamine are given.

  8. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.

    Science.gov (United States)

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W V; Sivaraman, J

    2015-11-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ?20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  9. Structure of Salmonella typhimurium OMP Synthase in a Complete Substrate Complex

    DEFF Research Database (Denmark)

    Grubmeyer, Charles; Hansen, Michael Riis; Fedorov, Alexander A.; Almo, Steven C.

    2012-01-01

    Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, EC 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been cocrystallized in a complete substrate E·MgPRPP·orotate complex and the structure determined to 2.2 Å resolution. This structure resembles that of Saccharomyces cerevisiae OMP synthase in showing a dramatic and asymmetric reorganization around the active site-bound ligands but shares the same basic topology previously observed in compl...

  10. REACTION MECHANISMS OF 15-HYDROPEROXYEICOSATETRAENOIC ACID CATALYZED BY HUMAN PROSTACYCLIN AND THROMBOXANE SYNTHASES

    OpenAIRE

    Yeh, Hui-Chun; Tsai, Ah-Lim; Wang, Lee-Ho

    2007-01-01

    Prostacyclin synthase (PGIS) and thromboxane synthase (TXAS) are atypical cytochrome P450s. They do not require NADPH or dioxygen for isomerization of prostaglandin H2 (PGH2) to produce prostacyclin (PGI2) and thromboxane A2 (TXA2). PGI2 and TXA2 have opposing actions on platelet aggregation and blood vessel tone. In this report, we use a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), to explore the active site characteristics of PGIS and TXAS. The two enzymes transforme...

  11. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Ahuja, Monica; Rai, Taranjit Singh; Kohli, Harbir Singh; Sud, Kamal; Bhansali, Anil; Khullar, Madhu

    2008-01-01

    Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease, including diabetic nephropathy. Endothelial-derived nitric oxide synthase (eNOS) gene polymorphisms affect eNOS activity and are associated with endothelial dysfunction. We evaluated the association of the constitutive endothelial nitric oxide synthase gene (eNOS) polymorphisms with type 2 diabetic nephropathy. We genotyped three polymorphisms of eNOS (Two SNPs: -786T > C, 894G > T and one 27-bp repeat pol...

  12. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase

    OpenAIRE

    Elmore, C. Lee; Wu, Xuchu; Leclerc, Daniel; Watson, Erica D.; Bottiglieri, Teodoro; Krupenko, Natalia I.; Krupenko, Sergey A.; Cross, James C; Rozen, Rima; Gravel, Roy A; Matthews, Rowena G

    2007-01-01

    Hyperhomocyst(e)inemia is a metabolic derangement that is linked to the distribution of folate pools, which provide one-carbon units for biosynthesis of purines and thymidylate and for remethylation of homocysteine to form methionine. In humans, methionine synthase deficiency results in the accumulation of methyltetrahydrofolate at the expense of folate derivatives required for purine and thymidylate biosynthesis. Complete ablation of methionine synthase activity in mice results in embryonic ...

  13. Structure of Salmonella typhimurium OMP synthase in a complete substrates complex

    OpenAIRE

    Grubmeyer, Charles; Hansen, Michael Riis; Fedorov, Alexander A.; Almo, Steven C.

    2012-01-01

    Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, E.C. 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been co-crystallized in a complete substrate complex of E•MgPRPP•orotate, and the structure solved to 2.2 Å resolution. This structure resembles that for Saccharomyces cerevisiae OMP synthase in showing a dramatic and asymmetric reorganization around the active site-bound ligands, but shares the same basic topology previously observed in ...

  14. Activation of neural cholecystokinin-1 receptors induces relaxation of the isolated rat duodenum which is reduced by nitric oxide synthase inhibitors

    Directory of Open Access Journals (Sweden)

    S.R. Martins

    2006-02-01

    Full Text Available Cholecystokinin (CCK influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM and cerulein (EC50: 58; 95% CI: 18-281 nM induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

  15. Activation of neural cholecystokinin-1 receptors induces relaxation of the isolated rat duodenum which is reduced by nitric oxide synthase inhibitors

    Scientific Electronic Library Online (English)

    S.R., Martins; R.B., de Oliveira; G., Ballejo.

    2006-02-01

    Full Text Available Cholecystokinin (CCK) influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the [...] rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM) and cerulein (EC50: 58; 95% CI: 18-281 nM) induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG) reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM) in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

  16. Extract from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells.

    Science.gov (United States)

    Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Dudzinska, Dominika; Rozalski, Marek; Krajewska, Urszula; Balcerczak, Ewa; Podsedek, Anna; Redzynia, Malgorzata; Watala, Cezary

    2014-12-01

    The aim of the present study was to evaluate whether blackcurrant leaf extract (BLE) modulates endothelium antithrombotic function, namely increases the expression/activity of ADPase (CD39) and augments the production of nitric oxide in human umbilical vein endothelial cells (HUVEC). It was found that BLE with proanthocyanidins (60 % of the total polyphenol content) increased the CD39-positive endothelial cell fraction (up to 10 % for 2.5 ?g/ml, and up to 33 % for 15 ?g/ml, p BLE at a lower range of polyphenol concentrations, significantly increased cell viability with a maximal effect at 2.5 ?g/ml (viability increased by 24.8 ± 1.0 % for 24 h and by 32.5 ± 2.7 % for 48-h time incubation, p BLE may improve endothelial cell viability at low physiological concentrations without affecting the antiplatelet action of endothelium. PMID:25407137

  17. Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2.

    Science.gov (United States)

    Sparacino-Watkins, Courtney E; Tejero, Jesús; Sun, Bin; Gauthier, Marc C; Thomas, John; Ragireddy, Venkata; Merchant, Bonnie A; Wang, Jun; Azarov, Ivan; Basu, Partha; Gladwin, Mark T

    2014-04-11

    Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production. PMID:24500710

  18. Nitrite Reductase and Nitric-oxide Synthase Activity of the Mitochondrial Molybdopterin Enzymes mARC1 and mARC2*

    Science.gov (United States)

    Sparacino-Watkins, Courtney E.; Tejero, Jesús; Sun, Bin; Gauthier, Marc C.; Thomas, John; Ragireddy, Venkata; Merchant, Bonnie A.; Wang, Jun; Azarov, Ivan; Basu, Partha; Gladwin, Mark T.

    2014-01-01

    Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production. PMID:24500710

  19. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  20. Metabolism of aromatic amines by prostaglandin H synthase.

    OpenAIRE

    Boyd, J A; Eling, T. E.

    1985-01-01

    The metabolism of aromatic amines by the peroxidase activity of prostaglandin H synthase (PHS) has been studied in this laboratory by use of two model compounds, the carcinogenic primary amine 2-aminofluorene (2-AF) and the substituted amine aminopyrine (AP). 2-AF is oxidized by PHS to 2, 2-azobisfluorene, 2-aminodifluorenylamine, 2-nitrofluorene, polymeric material, and products covalently bound to macromolecules. In the presence of phenolic compounds, 2-AF oxidation results in the formation...

  1. Inducible Nitric Oxide Synthase Genetic Polymorphism and Risk of Asbestosis

    OpenAIRE

    Alenka Franko; Metoda Dodi?-Fikfak; Niko Arneri?; Vita Dolžan

    2011-01-01

    Asbestos, a known occupational pollutant, may upregulate the activity of inducible nitric oxide synthase (iNOS) and thus the production of nitric oxide (NO). This study investigated whether iNOS?(CCTTT)n polymorphism is associated with an increased asbestosis risk in exposed workers. The study cohort consisted of 262 cases with asbestosis and 265 controls with no asbestos-related disease. For each subject the cumulative asbestos exposure data were available. The number of CCTTT repeats wa...

  2. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    Science.gov (United States)

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-?-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion. PMID:25605536

  3. Immunolocalization of nitric oxide synthase (NOS) isoforms in ovarian follicles of the catfish, Clarias batrachus and its relation with ovarian activity.

    Science.gov (United States)

    Singh, Vinay Kumar; Lal, Bechan

    2015-09-01

    Nitric oxide, a gaseous molecule, is produced during the conversion of arginine to citrulline by the action of NOS isoforms (eNOS, iNOS or nNOS). Role of NO in regulation of mammalian reproduction is well established; however, practically no report is available on fishes. Hence, in the present study, expression of all three isoforms of NOS was worked out in the ovary of Clarias batrachus immunohistochemically during different phases of its reproductive cycle and its relation with ovarian activities. No immunoreactivity of eNOS was observed in the ovary of C. batrachus during the late-quiescence and early-recrudescence phases. While during the recrudescence phase (April and May) it expressed intensely in thecal and granulosa cells of the oocyte-II and III, but immune-intensity decreased in the late-recrudescence and spawning phases (June and July). Similar pattern of immunoprecipitation was also observed in case of iNOS. However, the immunoreactivity pattern of nNOS was quite varied, it expressed moderately only in the nucleus and cytoplasm of perinuclear and oocyte-I stages during late-quiescence phase. While during the early recrudescence phase, the expression of nNOS disappeared completely from the nucleus and cytoplasm, rather it expressed intensely in the thecal and granulosa cells, which declined in the late-recrudescence and spawning phases. Moderate immunoreactivity of iNOS could also be localized in the zona radiata of ovulated oocyte. The intense NOS immunoreactivity in the thecal and granulosa cells coincided with increased levels of ovarian NO and 17?-estradiol content. They exhibited statistically significant positive correlation amongst themselves, suggesting the involvement of ovarian NOS/NO system in oogenesis and steroidogenesis in the catfish. PMID:24755185

  4. Synthesis and structural characterization of hydrolysis products within the uranyl iminodiacetate and malate systems.

    Science.gov (United States)

    Unruh, Daniel K; Gojdas, Kyle; Flores, Erin; Libo, Anna; Forbes, Tori Z

    2013-09-01

    The interplay of hydrolysis and chelation by organic ligands results in the formation of novel uranium species in aqueous solutions. Many of these molecular complexes have been identified by spectroscopic and potentiometric techniques, but a detailed structural understanding of these species is lacking. Identification of possible uranyl hydrolysis products in the presence of organic functional groups has been achieved by the crystallization of molecular species into a solid-state compound, followed by structural and chemical characterization of the material. The structures of three novel molecular complexes containing either iminodiacetate (ida) (Na3[(UO2)3(OH)3(ida)3]·8H2O (1)) or malate (mal) (K(pip)2[(UO2)3O(mal)3]·6H2O (2a) (pip = C4N2H12), (2b) (pip)3[(UO2)3O(mal)3]·H2O, and (pip)6[(UO2)11(O)4(OH)4(mal)6(CO3)2]·23H2O (3)) ligands have been determined by single-crystal X-ray diffraction and have been chemically characterized by IR, Raman, and NMR spectroscopies. A major structural component in compounds 1 and 2 is a trimeric 3:3 uranyl ida or mal species, but different bridging groups between the metal centers create variations in the structural topologies of the molecular units. Compound 3 contains a large polynuclear cluster with 11 U atoms, which is composed of trimeric and pentameric building units chelated by mal ligands and linked through hydroxyl groups and carbonate anions. The characterized compounds represent novel structural topologies for U(6+) hydrolysis products that may be important molecular species in near-neutral aqueous systems. PMID:23957694

  5. Inheritance of malate dehydrogenase in wild pepper / Herança da malato desidrogenase em pimenta-silvestre

    Scientific Electronic Library Online (English)

    ADILSON RICKEN, SCHUELTER; VICENTE WAGNER DIAS, CASALI; FERNANDO LUIZ, FINGER.

    Full Text Available Extratos de folhas de pimenta silvestre (Capsicum flexuosum Sendt) foram analisados para a presença do sistema isoenzimático malato desidrogenase (E.C. 1.1.1.37; MDH), usando a técnica eletroforese em gel de amido hidrolisado. Sete fenótipos de malato desidrogenase foram observados entre os genitore [...] s. As análises de segregação em progênies F1 revelaram que cinco locos gênicos estavam envolvidos na codificação de MDH. Os padrões de bandeamento dos híbridos indicaram que os genes MDH-3 e MDH-4 codificavam para enzimas monoméricas, enquanto o MDH-5, para uma isoforma dimérica. Para o loco MDH-2, detectou-se desvio significativo para proporção de segregação esperada. Outros genes podem estar controlando a expressão de MDH-2 em pimenta. Como nos outros locos MDH, detectaram-se dois alelos codificando para MDH-2. Por outro lado, o MDH-1 foi monomórfico para todos os genótipos avaliados no experimento. Abstract in english Leaf extracts from wild pepper (Capsicum flexuosum Sendt) were analysed for the presence of malate dehydrogenase (E.C. 1.1.1.37; MDH) isozymes using starch gel electrophoresis. Seven phenotypes for MDH isozymes were observed in the genitors. Genetic analysis in F1 progenies revealed five loci coding [...] for MDH. Isozyme banding patterns of hybrids indicated that MDH-3 and MDH-4 genes code for monomeric enzymes, while MDH-5 for a dimeric isoform. In MDH-2 loci, one particular F1 progeny showed a significant deviation from the expected isozyme pattern. It is possible that other genes are controlling the expression of MDH-2 in pepper. Also, there are two alleles coding for MDH-2 isozyme. On the other hand, MDH-1 was monomorphic for all genotypes used in the experiment.

  6. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme’s active site closure

    Directory of Open Access Journals (Sweden)

    Park Jaeok

    2012-12-01

    Full Text Available Abstract Background Human farnesyl pyrophosphate synthase (FPPS controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme’s C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP. This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme’s active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. Results We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi, inorganic pyrophosphate (PPi, and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. Conclusions In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the “off” position in the absence of bound IPP. Q242 plays the role of a gatekeeper and directly controls the anchoring of R351 side chain. The interactions between the residues K57 and N59 and those upstream and downstream of Y349 are likely responsible for the switch activation. The findings of this study can be exploited for structure-guided optimization of existing inhibitors as well as development of new pharmacophores.

  7. Acetolactate synthase activity in Euphorbia heterophylla resistant to ALS- and protox- inhibiting herbicides / Atividade da enzima acetolactato sintase em Euphorbia heterophylla com resistência múltipla aos herbicidas inibidores da ALS e da protox

    Scientific Electronic Library Online (English)

    E., Xavier; M.C., Oliveira; M.M., Trezzi; R.A., Vidal; F., Diesel; F.D., Pagnoncelli; E., Scalcon.

    2013-12-01

    Full Text Available O objetivo deste trabalho foi determinar a atividade da enzima ALS em biótipos de leiteiro (Euphorbia heterophylla) com resistência múltipla aos inibidores da ALS e da Protox na presença e ausência dos herbicidas imazapyr, imazethapyr e nicosulfuron. Efetuou-se ensaio in vitro da enzima acetolactato [...] sintase (ALS) extraída de plantas dos biótipos Vitorino, Bom Sucesso do Sul e Medianeira (com resistência múltipla aos inibidores da ALS e da Protox) e de um biótipo suscetível, na ausência e presença dos herbicidas imazapyr, imazethapyr e nicosulfuron. Na ausência dos herbicidas, os biótipos com resistência múltipla demonstraram maior afinidade da enzima pelo substrato piruvato em comparação ao biótipo suscetível. Os herbicidas imazapyr, imazethapyr e nicosulfuron produziram reduzido efeito sobre a atividade da enzima ALS dos biótipos resistentes e, ao contrário, elevado efeito inibitório sobre a ALS do biótipo suscetível. Os fatores de resistência foram elevados, superiores a 438, 963 e 474 para os biótipos Vitorino, Bom Sucesso do Sul e Medianeira, respectivamente. A resistência observada deve-se à insensibilidade da enzima ALS aos herbicidas tanto do grupo das imidazolinonas quanto das sulfonilureias, caracterizando resistência cruzada. Abstract in english The objective of this study was to determine the activity of the enzyme acetolactate synthase in biotypes of wild poinsettia (Euphorbia heterophylla) with multiple resistance to ALS- and Protox- inhibitors in the presence and absence of imazapyr, imazethapyr and nicosulfuron. We conducted in vitro a [...] ssay of ALS enzyme extracted from plants of Vitorino, Bom Sucesso do Sul and Medianeira biotypes (with multiple resistance) and a susceptible population in the absence and presence of imazapyr, imazethapyr and nicosulfuron. In the absence of herbicides, biotypes with multiple resistance showed higher affinity for the substrate of the enzyme compared with the susceptible population. The herbicides imazapyr, imazethapyr and nicosulfuron had little effect on the enzyme activity of ALS-resistant biotypes and, conversely, high inhibitory effect on ALS of the susceptible population. Resistance factors were very high, greater than 438, 963 and 474 for Vitorino, Bom Sucesso do Sul and Medianeira biotypes, respectively. The resistance to ALS inhibitors is due to the insensitivity of ALS to herbicides of both imidazolinone and sulfonylurea groups, characterizing a cross-resistance.

  8. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    Directory of Open Access Journals (Sweden)

    Ro Dae-Kyun

    2009-07-01

    Full Text Available Abstract Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L. were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon ?-cadinene as one of the two main products with ?-muuorlene, ?-caryophyllene, ?-humulene and ?-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes as well. Conclusion This study functionally identified sesquiterpene synthase genes predominantly expressed in sunflower trichomes. Evidence for the transcriptional regulation of sesquiterpene synthase genes in trichome cells suggest a potential use for these specialized cells for the identification of further genes involved in the biosynthesis, transport, and regulation of sesquiterpene lactones.

  9. Fatty acid synthase inhibitors isolated from Punica granatum L

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, He-Zhong [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, (China); Ma, Qing-Yun; Liang, Wen-Juan; Huang, Sheng-Zhuo; Dai, Hao-Fu; Wang, Peng-Cheng; Zhao, You-Xing, E-mail: zhaoyx1011@163.com [Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou (China); Fan, Hui-Jin; Ma, Xiao-Feng, E-mail: maxiaofeng@gucas.ac.cn [College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing (China)

    2012-05-15

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC{sub 50} value of 10.3 {mu}mol L{sup -1}. (author)

  10. Fatty acid synthase inhibitors isolated from Punica granatum L

    International Nuclear Information System (INIS)

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC50 value of 10.3 ?mol L-1. (author)

  11. Radiolabeling of a wound-inducible pyridoxal phosphate utilizing protein from tomato: evidence for its identification as ACC synthase

    International Nuclear Information System (INIS)

    Aminocyclopropane 1-carboxylic acid (ACC) synthase, a pyridoxal phosphate utilizing enzyme, catalyzes the conversion of S-adenosylmethionine to ACC, the rate limiting step in the biosynthesis of the plant hormone, ethylene. Ethylene, besides being involved in normal plant growth processes, is also produced in response to stress, e.g. wounding, pathogen infection, etc. The authors report the partial purification (400 fold) of ACC synthase from wounded pink tomato pericarp by classical techniques including ammonium sulfate precipitation, ion exchange and phenyl sepharose chromatography. Further purification results in a decrease in specific activity apparently due to the instability of the enzyme and the low levels present in plant tissue. Radiolabeling of a pyridoxal phosphate-utilizing protein in the ACC synthase enriched fraction was achieved. Evidence that this radiolabeled protein is ACC synthase will be presented. Amino acid sequence determination of putative ACC synthase-derived peptides is underway

  12. Novel inhibitors of nitric oxide synthase with antioxidant properties.

    Science.gov (United States)

    Salerno, Loredana; Modica, Maria N; Romeo, Giuseppe; Pittalà, Valeria; Siracusa, Maria A; Amato, Maria E; Acquaviva, Rosaria; Di Giacomo, Claudia; Sorrenti, Valeria

    2012-03-01

    We previously described a series of imidazole-based inhibitors substituted at N-1 with an arylethanone chain as interesting inhibitors of neuronal nitric oxide synthase (nNOS), endowed with good selectivity vs endothelial nitric oxide synthase (eNOS). As a follow up of these studies, several analogs characterized by the presence of substituted imidazoles or other mono or bicyclic nitrogen-containing heterocycles instead of simple imidazole were synthesized, and their biological evaluation as in vitro inhibitors of both nNOS and eNOS is described herein. Most of these compounds showed improved nNOS and eNOS inhibitory activity with respect to reference inhibitors. Selected compounds were also tested to analyze their antioxidant properties. Some of them displayed good capacity to scavenge free radicals and ability to reduce lipid peroxidation. PMID:22280820

  13. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus

    DEFF Research Database (Denmark)

    Leucci, Eleonora; Patella, Francesca; Waage, Johannes; Holmstrøm, Kim; Lindow, Morten; Porse, Bo; Kauppinen, Sakari; Lund, Anders H.

    2013-01-01

    microRNAs regulate the expression of over 60% of protein coding genes by targeting their mRNAs to AGO2-containing complexes in the cytoplasm and promoting their translational inhibition and/or degradation. There is little evidence so far for microRNA-mediated regulation of other classes of non-coding RNAs. Here we report that microRNA-9 (miR-9) regulates the expression of the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), one of the most abundant and conserved long non-coding ...

  14. QUANTITATIVE ASSAY OF ALMOTRIPTAN MALATE IN PURE DRUG AND PHARMACEUTICAL PREPARATIONS USING SIMPLE AND CONVENIENT VISIBLE SPECTROPHOTOMETRIC METHODS

    OpenAIRE

    U. VIPLOVA PRASAD; M. SYAM BAB; B. KALYANA RAMU

    2012-01-01

    Two direct, simple and sensitive visible spectrophotometric methods (M1&M2) are described for the assay of almotripan malate in pure and solid dosage forms. The method M1 involves oxidative coupling of drug with brucine in presence of sodium meta periodate and purple red colored species is formed and exhibits absorption maxima at 520nm. The method M2 is based on the formation of yellowish brown colored species by the drug with Folin reagent and exhibits absorption maxima at 450nm. Regression ...

  15. Effects of fatty acids on cardioprotection by pre-ischaemic inhibition of the malate-aspartate shuttle

    DEFF Research Database (Denmark)

    Dalgas, Christian; Povlsen, Jonas Agerlund; Løfgren, Bo; Erichsen, Sune Brinck; Bøtker, Hans Erik

    2012-01-01

    1. The malate-aspartate shuttle (MAS) is the main pathway for balancing extra- and intramitochondrial glucose metabolism. Pre-ischaemic shutdown of the MAS by aminooxyacetate (AOA) mimics ischaemic preconditioning (IPC) in rat glucose-perfused hearts. The aim of the present study was to determine the effects of fatty acids (FA) on cardioprotection by pre-ischaemic inhibition of the MAS. 2. Isolated rat hearts were divided into four groups (control; pre-ischaemic AOA (0.2 mmol/L); IPC; and AOA + ...

  16. Thermal stability of soluble malate dehydrogenase isozymes of subtropical fish belonging to the orders Characiformes, Siluriformes and Perciformes

    Scientific Electronic Library Online (English)

    Maria do Carmo, Monteiro; Maria Luiza B., Schwantes; Arno Rudi, Schwantes; Maria Regina de Aquino, Silva.

    1998-06-01

    Full Text Available No presente trabalho, mostramos em ortólogos da sMDH de 21 espécies de peixes subtropicais das ordens Characiformes, Siluriformes e Perciformes, três diferentes estabilidades térmicas. A primeira, caracterizada pela termoestabilidade do componente menos anódico ou isoforma-A, foi detectada em 52% de [...] todas as espécies. A segunda, exibida por 29% das espécies aqui analisadas, caracterizou-se por um padrão não-divergente de termoestabilidade dos locos sMDH-A* e sMDH-B*. Na terceira resposta, obtida em 19% das espécies analisadas (as 4 espécies Siluriformes), foi observada a termoestabilidade da banda mais anódica ou isoforma-B. O efeito da temperatura ambiental na atividade relativa de isoformas parálogas e ortólogas de duas dessas espécies com diferentes respostas térmicas (Leporinus friderici - sMDH-A*, termoestável, e Pimelodus maculatus, termoestabilidade reversa ou padrão eletroforético reverso), coletadas em meses de inverno e de verão, mostrou que as subunidades A e B estão presentes em seus extratos de tecidos em diferentes níveis quantitativos e suas atividades relativas são, praticamente, independentes da época de coleta. Na incubação de extratos de tecidos dessas 2 espécies a 50°C, diferentes respostas de inativação térmica foram dadas pelos locos da sMDH. Em P. maculatus, a resposta obtida em músculo esquelético ajudou a escolher a hipótese mais provável - a da termoestabilidade reversa, onde a banda mais anódica ou isoforma-B é a sMDH termoestável. Assim, diferenças na susceptibilidade à temperatura parecem ter ocorrido entre homólogos ortólogos da sMDH, nessas espécies, onde a banda mais rápida, normalmente músculo-específica e termolábil na maioria dos teleósteos, aparece em P. maculatus como a isoforma termoestável. Abstract in english Electrophoretic thermostability tests of soluble malate dehydrogenases (sMDH) isozymes in tissue extracts of 21 subtropical fish belonging to the orders Characiformes, Siluriformes and Perciformes showed three distinct results. The first, characterized by thermal stability of the slowest-migrating b [...] and or A-isoform, was detected in 52% of all species. The second, exhibited in 29% of the species analyzed, had a bidirectionally divergent pattern of their sMDH locus expression, and was characterized by a nondivergent thermostability pattern of both sMDH-A* and B*. In the third category, obtained in 19% of the species studied (the four Siluriformes species), thermostability of the fastest-migrating bands, or B-isoforms, was observed. Comparison of the effects of habitat temperature on the activity of paralogous and orthologous isoforms in tissue extracts of two of these species with different thermostability properties (Leporinus friderici - thermostable sMDH-A*, and Pimelodus maculatus - reverse thermostability properties or reverse electrophoretic pattern), collected during winter and summer months, showed that A and B subunits were present at different quantitative levels and their activities were nearly season independent. Differences in susceptibility to temperature (50°C) of both sMDH loci from tissue extracts of these species were found. In P. maculatus, these susceptibilities helped strengthen one of the hypotheses: the reverse thermostability pattern, where the fastest-migrating band or the B-isoform was the thermostable sMDH. Thus, temperature differences among orthologous homologues of sMDH seem to have occurred in these acclimatized species, where the fastest-migrating band, usually muscle specific and thermolabile in most teleosts, appeared in P. maculatus as the thermostable isoform.

  17. Cell wall polysaccharide synthases are located in detergent-resistant membrane microdomains in oomycetes.

    Science.gov (United States)

    Briolay, Anne; Bouzenzana, Jamel; Guichardant, Michel; Deshayes, Christian; Sindt, Nicolas; Bessueille, Laurence; Bulone, Vincent

    2009-04-01

    The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1-->3)-beta-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1-->3)-beta-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth. PMID:19201970

  18. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[35S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  19. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  20. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  1. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  2. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.

    2014-01-01

    The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding.

  3. A trehalose 6-phosphate synthase gene of the hemocytes of the blue crab, Callinectes sapidus: cloning, the expression, its enzyme activity and relationship to hemolymph trehalose levels

    OpenAIRE

    Chung J Sook

    2008-01-01

    Abstract Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS en...

  4. Granulocyte-macrophage colony-stimulating factor activates the transcription of nuclear factor kappa B and induces the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, M Teresa; Carlos B. Duarte; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Lopes, M Celeste

    2001-01-01

    Nitric oxide (NO) produced by skin dendritic cells and keratinocytes plays an important role in skin physiology, growth and remodelling. Nitric oxide is also involved in skin inflammatory processes and in modulating antigen presentation (either enhancing or suppressing it). In this study, we found that GM-CSF stimulates the expression of the inducible isoform of nitric oxide synthase (iNOS) in a fetal-skin-derived dendritic cell line (FSDC) and, consequently, increases the nitrite production ...

  5. Properties of Succinyl-Coenzyme A:l-Malate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    OpenAIRE

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by l-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:l-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding gen...

  6. Inhibition of corneal neovascularization with new Tyrosine Kinase Inhibitors targeting vascular endothelial growth factor receptors: Sunitinib malate and Sorafenib

    Directory of Open Access Journals (Sweden)

    Delnia Arshadi

    2007-06-01

    Full Text Available Corneal neovascularization (NV is a significant, sight-threatening, complication of many ocular surface disorders. Presence of new vessels in cornea can compromise clarity and thus vision. The data supporting a causal role for vascular endothelial growth factor (VEGF in corneal NV are extensive. Inhibition of VEGF remains as a main strategy for treating corneal NV. There is a growing body of evidence that corneal NV can be reduced by using anti-VEGF agents. Sunitinib malate and Sorafenib are new orally bio-available anti-angiogenic agents undergoing tests of efficacy in the treatment of various types of cancers. The main mechanism of these drugs is inhibiting angiogenesis by diminishing signaling through VEGF receptor1 (VEGFR1, VEGFR2, and platelet-derived growth factor receptors. Since VEGF exerts its angiogenic effects through tyrosine kinase receptors in cornea, any mechanisms which reduce VEGF signaling may inhibit corneal NV or at least attenuate it. Based on this fact we herein hypothesize that Sunitinib malate and Sorafenib can be prepared in topical form and be used in corneal neovascularization states. These approaches offer new hope for the successful treatment of corneal NV. Further investigations in animal models are needed to place these two drugs alongside corneal NV therapeutics.

  7. QUANTITATIVE ASSAY OF ALMOTRIPTAN MALATE IN PURE DRUG AND PHARMACEUTICAL PREPARATIONS USING SIMPLE AND CONVENIENT VISIBLE SPECTROPHOTOMETRIC METHODS

    Directory of Open Access Journals (Sweden)

    U. VIPLOVA PRASAD

    2012-05-01

    Full Text Available Two direct, simple and sensitive visible spectrophotometric methods (M1&M2 are described for the assay of almotripan malate in pure and solid dosage forms. The method M1 involves oxidative coupling of drug with brucine in presence of sodium meta periodate and purple red colored species is formed and exhibits absorption maxima at 520nm. The method M2 is based on the formation of yellowish brown colored species by the drug with Folin reagent and exhibits absorption maxima at 450nm. Regression analysis of Beer-Lambert plots showed good correlation in the concentration ranges (8.0-24 ?g/ml for method M1, (16-48 ?g/ml for method M2 respectively. The proposed methods are applied to commercial available tablets and the results are statistically compared with those obtained by the reported UV reference method and validated by recovery studies. The results are found satisfactory and reproducible. These methods are applied successfully for the estimation of the almotriptan malate in the presence of other ingredients that are usually present in dosageforms. These methods offer the advantages of rapidity, simplicity and sensitivity and normal cost and can be easily applied to resource-poor settings without the need for expensive instrumentation and reagents.

  8. The structural basis of Erwinia rhapontici isomaltulose synthase.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations. PMID:24069347

  9. PHA synthase engineering toward superbiocatalysts for custom-made biopolymers.

    Science.gov (United States)

    Nomura, Christopher T; Taguchi, Seiichi

    2007-01-01

    Poly-3-hydroxyalkanoates [P(3HA)s] are biologically produced polyesters that have attracted much attention as biodegradable polymers that can be produced from biorenewable resources. These polymers have many attractive properties for use as bulk commodity plastics, fishing lines, and medical uses that are dependent on the repeating unit structures. Despite the readily apparent benefits of using P(3HA)s as replacements for petrochemical-derived plastics, the use and distribution of P(3HA)s have been limited by their cost of production. This problem is currently being addressed by the engineering of enzymes involved in the production of P(3HA)s. Polyhydroxyalkanoate (PHA) synthase (PhaC) enzymes, which catalyze the polymerization of 3-hydroxyacyl-CoA monomers to P(3HA)s, were subjected to various forms of protein engineering to improve the enzyme activity or substrate specificity. This review covers the recent history of PHA synthase engineering and also summarizes studies that have utilized engineered PHA synthases. PMID:17123079

  10. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  11. Substrate Recognition by the Human Fatty-acid Synthase*

    OpenAIRE

    Carlisle-Moore, Loretha; Gordon, Chris R.; Machutta, Carl A.; MILLER, W. TODD; Tonge, Peter J

    2005-01-01

    The human fatty-acid synthase (HFAS) is a potential target for anti-tumor drug discovery. As a prelude to the design of compounds that target the enoyl reductase (ER) component of HFAS, the recognition of NADPH and exogenous substrates by the ER active site has been investigated. Previous studies demonstrate that modification of Lys-1699 by pyridoxal 5?-phosphate results in a specific decrease in ER activity. For the overall HFAS reaction, the K1699A and K1699Q mutations reduced kcat and kcat...

  12. Cellulose Synthase Complexes: Composition and Regulation

    OpenAIRE

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we beg...

  13. Terpene synthases are widely distributed in bacteria

    OpenAIRE

    Yamada, Yuuki; Kuzuyama, Tomohisa; KOMATSU, MAMORU; SHIN-YA, KAZUO; OMURA, SATOSHI; CANE, DAVID E.; IKEDA, HARUO

    2014-01-01

    Terpenes are generally considered to be plant or fungal metabolites, although a small number of odoriferous terpenes of bacterial origin have been known for many years. Recently, extensive bacterial genome sequencing and bioinformatic analysis of deduced bacterial proteins using a profile based on a hidden Markov model have revealed 262 distinct predicted terpene synthases. Although many of these presumptive terpene synthase genes seem to be silent in their parent microorganisms, controlled e...

  14. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    Science.gov (United States)

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits ? (non-catalytic) and ? (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5?M. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active ?3?3? complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-?3?3? complex interaction. Whereas the ?3?3? complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. PMID:25681694

  15. Effects of pressure and osmolytes on the allosteric equilibria of Salmonella typhimurium tryptophan synthase.

    Science.gov (United States)

    Phillips, Robert S; Wang, Alexandre Kim; Marchal, Stephane; Lange, Reinhard

    2012-11-20

    Osmolytes are common constituents of bacteria that may be produced or accumulate at high concentrations, up to 1 M, when cells are subjected to stresses like ionic strength and temperature. However, the effects of osmolytes on the allosteric properties of bacterial enzymes have rarely been examined. We have studied the effects of osmolytes and hydrostatic pressure on the allosteric equilibria of Salmonella typhimurium tryptophan (Trp) synthase. Trp synthase is a well-studied multienzyme complex with activity tightly regulated by allosteric interactions between the ?- and ?-subunits. Trp synthase activity is affected by a wide range of physical parameters, including monovalent cations, pH, ligands, solvents, and hydrostatic pressure. Osmolytes, including betaine, taurine, sucrose, and polyethylene glycol, activate Trp synthase 2-3-fold in the absence of monovalent cations, indicating that osmolytes can stabilize the active closed conformation. However, in the presence of monovalent cations, osmolytes have only minor effects on activity and allosteric equilibria, but 1 M betaine stabilizes the Trp synthase-Ser-indoline complex against apparent pressure-induced subunit dissociation. Na(+) and K(+) are more effective at shifting the ?-aminoacrylate-indoline quinonoid equilibrium toward the quinonoid side, with a K(Q) of 8-10, than NH(4)(+)(K(Q) ~ 2). Furthermore, pressure-jump experiments show that the mechanism of indoline reaction to form a quinonoid complex may be different for the NH(4)(+) enzyme than the Na(+) and K(+) forms. These results show that osmolytes have subtle but significant effects on the allosteric properties of Trp synthase, and these effects may be important in vivo. PMID:23088292

  16. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    OpenAIRE

    Dong Ju Son; Satoshi Akiba; Jin Tae Hong; Yeo Pyo Yun; Seock Yeon Hwang; Young Hyun Park; Sung Eun Lee

    2014-01-01

    PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the m...

  17. Cancer–Osteoblast Interaction Reduces Sost Expression in Osteoblasts and Up-Regulates lncRNA MALAT1 in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Aimy Sebastian

    2015-10-01

    Full Text Available Dynamic interaction between prostate cancer and the bone microenvironment is a major contributor to metastasis of prostate cancer to bone. In this study, we utilized an in vitro co-culture model of PC3 prostate cancer cells and osteoblasts followed by microarray based gene expression profiling to identify previously unrecognized prostate cancer–bone microenvironment interactions. Factors secreted by PC3 cells resulted in the up-regulation of many genes in osteoblasts associated with bone metabolism and cancer metastasis, including Mmp13, Il-6 and Tgfb2, and down-regulation of Wnt inhibitor Sost. To determine whether altered Sost expression in the bone microenvironment has an effect on prostate cancer metastasis, we co-cultured PC3 cells with Sost knockout (SostKO osteoblasts and wildtype (WT osteoblasts and identified several genes differentially regulated between PC3-SostKO osteoblast co-cultures and PC3-WT osteoblast co-cultures. Co-culturing PC3 cells with WT osteoblasts up-regulated cancer-associated long noncoding RNA (lncRNA MALAT1 in PC3 cells. MALAT1 expression was further enhanced when PC3 cells were co-cultured with SostKO osteoblasts and treatment with recombinant Sost down-regulated MALAT1 expression in these cells. Our results suggest that reduced Sost expression in the tumor microenvironment may promote bone metastasis by up-regulating MALAT1 in prostate cancer.

  18. Terpene synthases are widely distributed in bacteria.

    Science.gov (United States)

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-Ya, Kazuo; Omura, Satoshi; Cane, David E; Ikeda, Haruo

    2015-01-20

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  19. Elevated expression of thymidylate synthase cycle genes in cisplatin-resistant human ovarian carcinoma A2780 cells

    International Nuclear Information System (INIS)

    Activity of the thymidylate synthase cycle was compared in the human ovarian carcinoma cell line A2780 and a subline that is resistant to cisplatin by a factor of 3. Resistant cells exhibited a 3-fold increase in mRNA for both dihydrofolate reductase and thymidylate synthase when compared with the parent line. Resistance to cisplatin also resulted in a 2.5-fold increase in enzyme activity for dihydrofolate reductase and thymidylate synthase; however, this increase did not result from amplification of the genes for these two enzymes. These data suggest that the initial step of cisplatin resistance in A2780 cells is a consequence of enhanced expression of the thymidylate synthase cycle

  20. Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high-concentrate diets.

    Science.gov (United States)

    Malekkhahi, M; Tahmasbi, A M; Naserian, A A; Danesh Mesgaran, M; Kleen, J L; Parand, A A

    2015-04-01

    The experiment was conducted to evaluate the effects of dietary supplementation with a mixture of essential oils (MEO), yeast culture (YC) and malate on performance, nutrient digestion, rumen fermentation and blood metabolites of lambs fed high-concentrate growing diets. For this purpose, twenty Baluchi lambs (17.3 ± 0.5 kg body weight and 3 months old) were randomly assigned to four dietary treatments in a completely randomized design with five lambs per treatment. The treatment groups were as follows: (i) control: basal diet without any additive, (ii) basal diet plus 400 mg/day MEO (thymol, carvacrol, eugenol, limonene and cinnamaldehyde), (iii) basal diet with 4 g/day YC and (iv) basal diet plus 4 g/day malate. No differences between the dietary treatments were observed in dry matter intake, average daily gain or feed conversion ratio (p > 0.05). Compared with control and malate treatment, lambs fed MEO and YC had an improved crude protein digestibility (p  0.05) cell wall digestibility compared to the other treatments. No differences were observed between treatments with respect to nitrogen balance or ruminal pH and ammonia concentrations (p > 0.05). No differences were observed between treatments with respect to ruminal total volatile fatty acid concentration and molar proportions of acetate, butyrate and valerate. Molar proportion of propionate was higher (p lambs fed YC and malate than in lambs fed the control or the MEO diet. Blood concentration of triglycerides significantly decreased when feeding the MEO and YC diets (p feed additive for manipulation of rumen fermentation in lambs fed with high-concentrate diets than MEO and malate, because YC enhanced crude protein and cell wall digestibility, ruminal molar proportion of propionate and plasma glucose concentration. PMID:25060172

  1. Synthesis of N-(Methoxycarbonylthienylmethylthioureas and Evaluation of Their Interaction with Inducible and Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Michael D. Threadgill

    2010-04-01

    Full Text Available Two isomeric N-(methoxycarbonylthienylmethylthioureas were synthesised by a sequence of radical bromination of methylthiophenecarboxylic esters, substitution with trifluoroacetamide anion, deprotection, formation of the corresponding isothiocyanates and addition of ammonia. The interaction of these new thiophene-based thioureas with inducible and neuronal nitric oxide synthase was evaluauted. These novel thienylmethylthioureas stimulated the activity of inducible Nitric Oxide Synthase (iNOS.

  2. Affinity of Cystathionine ?-Synthase for Pyridoxal 5?-Phosphate in Cultured Cells: A MECHANISM FOR PYRIDOXINE-RESPONSIVE HOMOCYSTINURIA

    OpenAIRE

    Lipson, Mark H.; Kraus, Jan; Rosenberg, Leon E.

    1980-01-01

    Previous attempts to correlate in vivo pyridoxine-responsiveness with in vitro assays of cystathionine ?-synthase activity in synthase-deficient homocystinuric patients have been only partially successful. All such studies, however, have been conducted with extracts of cultured skin fibroblasts grown in medium containing a high concentration (1,000 ng/ml) of pyridoxal. Having recently shown that such growth conditions may obscure important aspects of enzyme-coenzyme interactions by saturating...

  3. Studies on the Expression of Sesquiterpene Synthases Using Promoter-?-Glucuronidase Fusions in Transgenic Artemisia annua L

    Science.gov (United States)

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for ?-caryophyllene (CPS), epi-cedrol (ECS) and ?-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  4. Bacillus PHA Synthase III C Gene showed Regulatory Functions: An In-silico Analysis

    Directory of Open Access Journals (Sweden)

    Gargi N. Edkie

    2014-01-01

    Full Text Available PHA synthase IIIC gene of 1114 bp isolated from Bacillus is AT rich. Scratch Protein Predictor analysis suggest that the protein is globular in nature and predicted 5 disulphide bridges. GRAVY index suggests that the protein is hydrophobic in nature. SOPMA analysis indicate that the predicted protein possess 44.71% alpha-helices with transmembrane domains, possibly play a role in cell recognition and signalling. Prediction of the position of helices using EXPASY tool suggest that Bacillus PHA synthase IIIC has two major helices with lengthy NORS region. Prosite- prediction analysis suggests that Bacillus PHA synthase IIIC has potential N-glycosylation, myristylation, protein kinase C and casein kinase II type phosphorylation domains. These are responsible for general metabolic activities associated with the protein and most of them are located in NORS region. Sequence alignment of PHA synthase IIIC using ClustalW program and MEGA4.0 program showed 96% identity with Bacillus megaterium PHA synthase IIIC gene.

  5. Cyclopropane fatty acid synthase from Oenococcus oeni: expression in Lactococcus lactis subsp. cremoris and biochemical characterization.

    Science.gov (United States)

    To, Thi Mai Huong; Grandvalet, Cosette; Alexandre, Hervé; Tourdot-Maréchal, Raphaëlle

    2015-11-01

    Bacterial cyclopropane fatty acid synthases (CFA synthases) catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the double bond of a lipid chain, thereby forming a cyclopropane ring. CFAs contribute to resistance to acidity, dryness, and osmotic imbalance in many bacteria. This work describes the first biochemical characterization of a lactic acid bacterium CFA synthase. We have overexpressed Oenococcus oeni CFA synthase in E. coli in order to purify the enzyme. The optimum cyclopropanation activity was obtained at pH 5.6 and 35.8 °C. The high K m (AdoMet) value obtained (2.26 mM) demonstrates the low affinity of O. oeni enzyme toward the L. lactis subsp. cremoris unsaturated phospholipids. These results explain the partial complementation of the L. lactis subsp. cremoris cfa mutant by the O. oeni cfa gene and suggest a probable substrate specificity of the O. oeni enzyme. The current study reveals an essential hypothesis about the specificity of O. oeni CFA synthase which could play a key function in the acid tolerance mechanisms of this enological bacterium. PMID:26294376

  6. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.

    Science.gov (United States)

    Jimenez, Laure; Laporte, Damien; Duvezin-Caubet, Stephane; Courtout, Fabien; Sagot, Isabelle

    2014-02-15

    Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities. PMID:24338369

  7. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    International Nuclear Information System (INIS)

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy ? and originally identified CoA synthase, CoASy ?. The transcript specific for CoASy ? was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy ?. In contrast to CoASy ?, which shows ubiquitous expression, CoASy ? is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  8. Identification of a novel CoA synthase isoform, which is primarily expressed in the brain.

    Science.gov (United States)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy beta and originally identified CoA synthase, CoASy alpha. The transcript specific for CoASy beta was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy beta. In contrast to CoASy alpha, which shows ubiquitous expression, CoASy beta is primarily expressed in the brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in the brain, requires further elucidation. PMID:16460672

  9. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase : a bent dimer defining the adenine specificity of the substrate ATP

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila

    2015-01-01

    The enzyme 5-phosphoribosyl-1-?-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  10. Morphometric Analysis of Mice Testicular Tubules after Administration of Malathion and Maca Análisis Morfométrico de los Túbulos Testiculares del Ratón Después de la Administración de Malation y Maca

    Directory of Open Access Journals (Sweden)

    Eduardo Bustos-Obregón

    2007-06-01

    Full Text Available Organophosphoric (OP agropesticidas are amply used to increase food production. However, it has been verified that they induce alterations at testicular level related to the diminution of fertility in humans as in animals. On the other hand, different studies have been made to develop chemical or natural compounds that can induce an antagonistic effect to OP. In previous studies an extract from a plant, from the Peruvian Andes (Maca has been recognized by its stimulating action on spermatogenesis. In the present study the effects of both external agents were evaluated on testicular sections of testis of adult male mice on a population of 52 mice CF1, divided at random in 4 groups (Control, Malathion, Maca, Malathion-Maca, with sacrifice intervals of 1,7, 14 and 21 days. By means of morphometric technique and using the "Image Tools 3,1" software, the histology of testicular sections was evaluated, to analyze the degree of alteration induced by these agents. The epithelial height mainly has a rise in day 1, for Malathion group and then fall to day 7 to be normal by day 14. However, Malathion-Maca groups show no changes. The tubular lumen decreases at day 7 and day 14 to be normal by day 21 in Malathion group. However, in Malathion - Maca group, the tubular lumen decreases only at 14 days. The tubular diameter, at day 7 (pLos agropesticidas organofosforados (OF son ampliamente usados para incrementar la producción alimentaría. Sin embargo, se ha demostrado que inducen alteraciones a nivel testicular, relacionadas con la disminución de la fertilidad tanto en humanos como en animales. Por otra parte, diferentes estudios han sido llevados a cabo para desarrollar compuestos químicos o naturales que puedan inducir un efecto antagónico sobre los OF. En estudios anteriores, un extracto de una planta de los Andes peruanos (Maca ha sido reconocido por su acción estimulante sobre la espermatogénesis. En el presente trabajo se estudiaron los efectos de ambos agentes externos sobre el testículo. Una población de 52 ratones machos adultos de la cepa CF1 fue dividida al azar en 4 grupos (Control, Malation, Maca, Malation-Maca, con intervalos de sacrificio de 1, 7, 14 y 21 días. Para analizar el grado de alteración inducida por estos agentes, se utilizaron técnicas de histomorfometría con ayuda del programa Image tools 3.1, en secciones testiculares. Nuestros resultados muestran que la altura del epitelio aumentó al día 1 en el grupo tratado con malation, cayendo al día 7 y llegando a valores similares al control, al día 14. Sin embargo, el grupo Malation-Maca no mostró cambios significativos. El lumen tubular, disminuyó al día 7 y 14, para normalizarse al día 21 en el grupo Malation. Sin embargo, en el grupo Malation-Maca el lumen tubular sólo bajó al día 14. El diámetro tubular disminuyó a los días 7 (p < 0.01, 14 y 21 en el grupo Malation, con respecto al control (p< 0.05. Sin embargo, el grupo Malation-Maca mostró valores normales. En conclusión, es posible establecer que el daño inducido por Malation es revertido al día 21 post administración de maca

  11. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells.

    OpenAIRE

    Wu, K. K.; Sanduja, R; Tsai, A. L.; Ferhanoglu, B.; Loose-Mitchell, D S

    1991-01-01

    Prostaglandin H (PGH) synthase (EC 1.14.99.1) is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations (0.1-1 micrograms/ml) inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-i...

  12. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica; Svensson, Birte

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was seen, which was found by mutational analysis to be essential for the activity of HvSSI on glycogen. We now show in binding studies using surface plasmon resonance that HvSSI has no detectable affinity fo...

  13. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McGuire, James N

    2004-01-01

    The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms possesses very different thermal properties. The B. caldolyticus enzyme has optimal activity at 60-65 degrees C and a half-life of 26 min at 65 degrees C, compared to values of 46 degrees C and 60 s a...

  14. Identification of novel isoprene synthases through genome mining and expression in Escherichia coli.

    Science.gov (United States)

    Ilmén, Marja; Oja, Merja; Huuskonen, Anne; Lee, Sangmin; Ruohonen, Laura; Jung, Simon

    2015-09-01

    Isoprene is a naturally produced hydrocarbon emitted into the atmosphere by green plants. It is also a constituent of synthetic rubber and a potential biofuel. Microbial production of isoprene can become a sustainable alternative to the prevailing chemical production of isoprene from petroleum. In this work, sequence homology searches were conducted to find novel isoprene synthases. Candidate sequences were functionally expressed in Escherichia coli and the desired enzymes were identified based on an isoprene production assay. The activity of three enzymes was shown for the first time: expression of the candidate genes from Ipomoea batatas, Mangifera indica, and Elaeocarpus photiniifolius resulted in isoprene formation. The Ipomoea batatas isoprene synthase produced the highest amounts of isoprene in all experiments, exceeding the isoprene levels obtained by the previously known Populus alba and Pueraria montana isoprene synthases that were studied in parallel as controls. PMID:26275749

  15. Hydroxybenzaldoximes Are D-GAP-Competitive Inhibitors of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase.

    Science.gov (United States)

    Bartee, David; Morris, Francine; Al-Khouja, Amer; Freel Meyers, Caren L

    2015-08-17

    1-Deoxy-D-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low-micromolar inhibitors, competitive against D-glyceraldehyde 3-phosphate (D-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of D-GAP-competitive DXP synthase inhibitors, offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis. PMID:26174207

  16. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    Science.gov (United States)

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-?-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-?-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene. PMID:23554321

  17. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3alpha and beta isoforms in patients with NIDDM

    DEFF Research Database (Denmark)

    Hansen, L; Arden, K C; Rasmussen, S B; Viars, C S; Vestergaard, H; Hansen, T; Møller, A M; Woodgett, J R; Pedersen, O

    1997-01-01

    Activation of glycogen synthesis in skeletal muscle in response to insulin results from the combined inactivation of glycogen synthase kinase-3 (GSK-3) and activation of the protein phosphatase-1, changing the ratio between the inactive phosphorylated state of the glycogen synthase to the active dephosphorylated state. In a search for genetic defects responsible for the decreased insulin stimulated glycogen synthesis seen in patients with non-insulin-dependent diabetes mellitus (NIDDM) and their...

  18. Temporal expression of hepatic inducible nitric oxide synthase in liver cirrhosis

    OpenAIRE

    Wei, Chang-Li; Hon, Wei-Min; Lee, Kang-Hoe; Khoo, Hoon-Eng

    2005-01-01

    AIM: Nitric oxide (NO) has been implicated in the pathogenesis of liver cirrhosis. We have found inducible nitric oxide synthase (iNOS) can be induced in hepatocytes of cirrhotic liver. This study further investigated the temporal expression and activity of hepatic iNOS in cirrhosis development.

  19. Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin.

    Science.gov (United States)

    Hu, Chia-Wei; Hsu, Chia-Lang; Wang, Yu-Chao; Ishihama, Yasushi; Ku, Wei-Chi; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-12-01

    Citreoviridin, one of toxic mycotoxins derived from fungal species, can suppress lung cancer cell growth by inhibiting the activity of ectopic ATP synthase, but has limited effect on normal cells. However, the mechanism of citreoviridin triggering dynamic molecular responses in cancer cells remains unclear. Here, we performed temporal phosphoproteomics to elucidate the dynamic changes after citreoviridin treatment in cells and xenograft model. We identified a total of 829 phosphoproteins and demonstrated that citreoviridin treatment affects protein folding, cell cycle, and cytoskeleton function. Furthermore, response network constructed by mathematical modeling shows the relationship between the phosphorylated heat shock protein 90 ? and mitogen-activated protein kinase signaling pathway. This work describes that citreoviridin suppresses cancer cell growth and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling by site-specific dephosphorylation of HSP90AB1 on Serine 255 and provides perspectives in cancer therapeutic strategies. PMID:26503892

  20. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure

    OpenAIRE

    Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D

    2009-01-01

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in...

  1. Oxidized Lipoproteins Suppress Nitric Oxide Synthase in Macrophages:Study of Glucocorticoid Receptor Involvement

    OpenAIRE

    K. E. Matthys; Jorens, P.G.; Marescau, B; Rosseneu, M.; Bult, H; Herman, A. G.

    1994-01-01

    Activated cholesterol-laden macrophages in atherosclerotic lesions are believed to influence the progression of this disease. The induction of nitric oxide synthase (iNOS) activity was investigated in control and cholesterol-laden J774 macrophages, obtained by pre-incubation with oxidized or acetylated low density lipoproteins (oxLDL, acLDL). Loading with oxLDL caused a small induction of NOS activity in unstimulated cells, as indicated by nitrite and citrulline accumulat...

  2. Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones

    OpenAIRE

    Langridge, W. H. R.; Fitzgerald, K. J.; Koncz, C; Schell, J; Szalay, A. A.

    1989-01-01

    Temporal and spacial distribution of mannopine synthase (mas) promoter activity was determined throughout the development of transgenic tobacco plants using bacterial luciferase luxA and luxB as reporter genes. Luciferase activity was determined by luminometry in vitro and visualized by computer-enhanced single-photon video imaging in vivo. The activity of the mas dual promoters increased basipetally in developing plants and was wound-inducible in leaf and stem tissue. Hormone bioassays with ...

  3. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

    Science.gov (United States)

    Shaw, Jeffrey J; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J; Dunican, Brian F; Portero, Carolina E; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-03-27

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  4. Producing dicarboxylic acids using polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  5. Scientific Opinion on the substantiation of a health claim related to citrulline-malate and faster recovery from muscle fatigue after exercise pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    OpenAIRE

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2014-01-01

    Following an application from Biocodex, submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Belgium, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to citrulline-malate and faster recovery from muscle fatigue after exercise. The Panel considers that citrulline-malate is sufficiently characterised. The ...

  6. Crystallization and preliminary X-ray diffraction studies of tetrameric malate dehydrogenase from the novel Antarctic psychrophile Flavobacterium frigidimaris KUC-1

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tomomi [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Oikawa, Tadao; Muraoka, Ikuo [Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 (Japan); Soda, Kenji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 (Japan); Hata, Yasuo, E-mail: hata@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2007-11-01

    A psychrophilic malate dehydrogenase from the novel Antarctic bacterium F. frigidimaris KUC-1 was crystallized using the hanging-drop vapour-diffusion method. The crystals contained one tetrameric molecule per asymmetric unit. The best crystal diffracted to 1.8 Å resolution. Flavobacterium frigidimaris KUC-1 is a novel psychrotolerant bacterium isolated from Antarctic seawater. Malate dehydrogenase (MDH) is an essential metabolic enzyme in the citric acid cycle and has been cloned, overexpressed and purified from F. frigidimaris KUC-1. In contrast to the already known dimeric form of MDH from the psychrophile Aquaspirillium arcticum, F. frigidimaris MDH exists as a tetramer. It was crystallized at 288 K by the hanging-drop vapour-diffusion method using ammonium sulfate as the precipitating agent. The crystal diffracted to a maximum resolution of 1.80 Å. It contains one tetrameric molecule in the asymmetric unit.

  7. Geranyl diphosphate synthase large subunit, and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney B. (Pullman, WA); Burke, Charles C. (Moscow, ID); Wildung, Mark R. (Colfax, WA)

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  8. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Science.gov (United States)

    Guerriero, Gea; Avino, Mariano; Zhou, Qi; Fugelstad, Johanna; Clergeot, Pierre-Henri; Bulone, Vincent

    2010-01-01

    Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control. PMID:20865175

  9. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening

    Science.gov (United States)

    Kuzmanoff, K. M.

    1984-01-01

    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  10. Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: Potential inhibitors of geranylgeranyl diphosphate synthase

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2014-07-01

    Full Text Available A set of bisphosphonate ethers has been prepared through sequential phosphonylation and alkylation of monophosphonate ethers. After formation of the corresponding phosphonic acid salts, these compounds were tested for their ability to inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS. Five of the new compounds show IC50 values of less than 1 ?M against GGDPS with little to no activity against the related enzyme farnesyl diphosphate synthase (FDPS. The most active compound displayed an IC50 value of 82 nM when assayed with GGDPS, and no activity against FDPS even at a 10 ?M concentration.

  11. Substrate Recognition by ?-Ketoacyl-ACP Synthases

    Science.gov (United States)

    Borgaro, Janine G.; Chang, Andrew; Machutta, Carl A.; Zhang, Xujie; Tonge, Peter J.

    2011-01-01

    ?-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a ?-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14 residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the kcat/Km for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway. PMID:22017312

  12. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides.

    Science.gov (United States)

    Hartwig, S; Frister, T; Alemdar, S; Li, Z; Scheper, T; Beutel, S

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ?325 mg/L(-1) were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni(2+)-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pI 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg(2+) containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC-MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis-Menten model, kinetic parameters of KM = 1.111 ?M (±0.113), vmax = 0.3245 ?M min(-1) (±0.0035), kcat = 2.95 min(-1), as well as a catalytic efficiency kcat/KM = 4.43 × 10(4) M(-1)s(-1) were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. PMID:25701786

  13. An explanation of the achromatic bands produced by peroxidase isozymes in polyacrylamide electrophoresis gels stained for malate dehydrogenase.

    Science.gov (United States)

    Fieldes, M A

    1992-01-01

    When plant tissue extracts are electrophoresed on polyacrylamide gels and the gels are stained for malate dehydrogenase by the standard NAD-dependent dehydrogenase reaction, terminating in the formation of reduced Nitroblue Tetrazolium (NBT), achromatic bands, in addition to the expected chromatic bands, are observed. The achromatic bands are seen when the staining conditions favor a generalized background staining of the gel and have been shown, in a previous study, to be caused by peroxidase isozymes [1]. The present study examined the mechanism by which peroxidase produced the achromatic bands using horseradish peroxidase (HRP). The generalized background staining resulted from the phenazine methosulfate (PMS)-mediated reduction of NBT. This reduction was enhanced by H2O2 and suppressed by HRP. Peroxidase apparently catalyzes the peroxidative oxidation of reduced PMS, which suppresses the generalized reduction of NBT in gel regions containing peroxidase isozymes producing the achromatic bands. In contrast, however, HRP also appears to catalyze the peroxidative oxidation of reduced NAD, but this reaction increases the reduction of NBT. The results are discussed in the context of the mechanisms proposed by others for the PMS-mediated reduction of NBT and for the peroxidase-catalyzed NADH-dependent formation of H2O2. This peroxidase-catalyzed reaction has been proposed for the plant peroxidases involved in lignification. PMID:1375153

  14. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  15. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    International Nuclear Information System (INIS)

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus

  16. A thymidylate synthase ternary complex-specific antibody, FTS, permits functional monitoring of fluoropyrimidines dosing

    OpenAIRE

    Patel, Kalpesh; Yerram, Sashidhar R; Azad, Nilofer A.; Kern, Scott E.

    2012-01-01

    5-Fluorouracil (5FU) and similar fluoropyrimidines induce covalent modification of thymidylate synthase (TS) and inhibit its activity. They are often used to treat solid cancers, but drug resistance and toxicity are drawbacks. Therefore, there is an unmet need for a functional assay to quantify fluorouracil activity in tissues, so as to individually tailor dosing. It is cumbersome to separately quantify unmodified and 5FU-modified TS using currently available commercial anti-TS antibodies bec...

  17. Inducible Nitric Oxide Synthase in Long-term Intermittent Hypoxia: Hypersomnolence and Brain Injury

    OpenAIRE

    Zhan, Guanxia; Fenik, Polina; Pratico, Domenico; Veasey, Sigrid C.

    2005-01-01

    Rationale: Long-term intermittent hypoxia (LTIH) exposure in adult mice, modeling oxygenation patterns of moderate–severe obstructive sleep apnea, results in lasting hypersomnolence and is associated with nitration and oxidation injuries in many brain regions, including wake-active regions. Objectives: We sought to determine if LTIH activates inducible nitric oxide synthase (iNOS) in sleep/wake regions, and if this source of NO contributes to the LTIH-induced proinflammatory gene response, ox...

  18. Characterization of the Interaction between Latency-Associated Nuclear Antigen and Glycogen Synthase Kinase 3??

    OpenAIRE

    Hagen, Thilo

    2009-01-01

    The latency-associated nuclear antigen (LANA) of Karposi's sarcoma-associated herpesvirus has been reported to interact with glycogen synthase kinase 3? (GSK-3?) and regulate its activity, leading to inhibition of GSK-3-dependent ?-catenin degradation. In this study, the interaction between LANA and GSK-3? was characterized further. LANA was found to interact with GSK-3? in vitro as well as in intact cells. However, LANA did not regulate GSK-3? kinase activity and LANA-induced upregulation of...

  19. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J. (Iowa State)

    2013-09-24

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 {angstrom} resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains ({alpha}, {beta}, and {gamma}). The class I active site is within the C-terminal {alpha} domain, and the class II active site is between the N-terminal {gamma} and {beta} domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg{sup 2+} complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This 'loop-in' conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the 'loop-out' conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.

  20. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase.

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe B

    2007-01-01

    Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding. Udgivelsesdato: 2007-Feb

  1. Crystal Structure of the Human Prostacyclin Synthase

    OpenAIRE

    Chiang, Chia-Wang; Yeh, Hui-Chun; Wang, Lee-Ho; Chan, Nei-Li

    2006-01-01

    Prostacyclin synthase (PGIS) catalyzes an isomerization of prostaglandin H2 to prostacyclin, a potent mediator of vasodilation and anti-platelet aggregation. Here, we report the crystal structure of human PGIS at 2.15 Å resolution, which represents the first three-dimensional structure of a class III cytochrome P450. While notable sequence divergence has been recognized between PGIS and other P450s, PGIS exhibits the typical triangular prism-shaped P450 fold with only moderate structural diff...

  2. Mitochondrial ATP synthase: architecture, function and pathology

    OpenAIRE

    Jonckheere, An I.; Smeitink, Jan A.M.; Rodenburg, Richard J. T.

    2011-01-01

    Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F1, situated in the mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to com...

  3. Tertiary model of a plant cellulose synthase

    OpenAIRE

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a ...

  4. 2-epi-5-epi-Valiolone synthase activity is essential for maintaining phycobilisome composition in the cyanobacterium Anabaena variabilis ATCC 29413 when grown in the presence of a carbon source.

    Science.gov (United States)

    Spence, Edward; Bryan, Samantha J; Lisfi, Mohamed; Cullum, John; Dunlap, Walter C; Shick, J Malcolm; Mullineaux, Conrad W; Long, Paul F

    2013-09-01

    The cyclase 2-epi-5-epi-valiolone synthase (EVS) is reported to be a key enzyme for biosynthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis ATCC 29413. Subsequently, we demonstrated that an in-frame complete deletion of the EVS gene had little effect on in vivo production of shinorine. Complete segregation of the EVS gene deletion mutant proved difficult and was achieved only when the mutant was grown in the dark and in a medium supplemented with fructose. The segregated mutant showed a striking colour change from native blue-green to pale yellow-green, corresponding to substantial loss of the photosynthetic pigment phycocyanin, as evinced by combinations of absorbance and emission spectra. Transcriptional analysis of the mutant grown in the presence of fructose under dark or light conditions revealed downregulation of the cpcA gene that encodes the alpha subunit of phycocyanin, whereas the gene encoding nblA, a protease chaperone essential for phycobilisome degradation, was not expressed. We propose that the substrate of EVS (sedoheptulose 7-phosphate) or possibly lack of its EVS-downstream products, represses transcription of cpcA to exert a hitherto unknown control over photosynthesis in this cyanobacterium. The significance of this finding is enhanced by phylogenetic analyses revealing horizontal gene transfer of the EVS gene of cyanobacteria to fungi and dinoflagellates. It is also conceivable that the EVS gene has been transferred from dinoflagellates, as evident in the host genome of symbiotic corals. A role of EVS in regulating sedoheptulose 7-phosphate concentrations in the photophysiology of coral symbiosis is yet to be determined. PMID:23857509

  5. Structural and functional analysis of C2-type ketoreductases from modular polyketide synthases.

    Science.gov (United States)

    Zheng, Jianting; Keatinge-Clay, Adrian T

    2011-07-01

    The process by which ?-stereocenters of polyketide intermediates are set by modular polyketide synthases (PKSs) when condensation is not immediately followed by reduction is mysterious. However, the reductase-incompetent ketoreductase (KR) from the third module of 6-deoxyerythronolide B synthase has been proposed to operate as a racemase, aiding in the epimerization process that reverses the orientation of the ?-methyl group of the polyketide intermediate generated by the ketosynthase to the configuration observed in the 6-deoxyerythronolide B final product. To learn more about the epimerization process, the structure of the C2-type KR from the third module of the pikromycin synthase, analogous to the KR from the third module of 6-deoxyerythronolide B synthase, was determined to 1.88 Å resolution. This first structural analysis of this KR-type reveals differences from reductase-competent KRs such as that the site NADPH binds to reductase-competent KRs is occluded by side chains and the putative catalytic tyrosine possesses more degrees of freedom. The active-site geometry may enable C2-type KRs to align the thioester and ?-keto groups of a polyketide intermediate to reduce the pK(a) of the ?-proton and accelerate its abstraction. Results from in vivo assays of engineered PKSs support that C2-type KRs cooperate with epimer-specific ketosynthases to set the configurations of substituent-bearing ?-carbons. PMID:21570406

  6. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Yu, Xiyan, E-mail: yuxiyan@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Wang, Xiufeng, E-mail: xfwang@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China)

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  7. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    International Nuclear Information System (INIS)

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  8. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    OpenAIRE

    Srivastava Anurag; Shukla Nootan K; DattaGupta Siddartha; Sawhney Meenakshi; Kaur Jatinder; Ralhan Ranju

    2010-01-01

    Abstract Background We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signa...

  9. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  10. The cellulose synthase superfamily in fully sequenced plants and algae

    OpenAIRE

    Xu Ying; Huang Jinling; Yin Yanbin

    2009-01-01

    Abstract Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is foun...

  11. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce (Pullman, WA); Burke, Charles Cullen (Moscow, ID)

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  12. The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.).

    Science.gov (United States)

    Mizuno, Kouichi; Kato, Misako; Irino, Fumi; Yoneyama, Naho; Fujimura, Tatsuhito; Ashihara, Hiroshi

    2003-07-17

    In coffee and tea plants, caffeine is synthesized from xanthosine via a pathway that has three methylation steps. We identified and characterized the gene encoding the enzyme for the first methylation step of caffeine biosynthesis. The full-length cDNA of coffee tentative caffeine synthase 1, CtCS1, previously isolated by the rapid amplification of cDNA ends was translated with an Escherichia coli expression system and the resultant recombinant protein was purified using Ni-NTA column. The protein renamed CmXRS1 has 7-methylxanthine synthase (xanthosine:S-adenosyl-L-methionine methyltransferase) activity. CmXRS1 was specific for xanthosine and xanthosine 5'-monophosphate (XMP) could not be used as a substrate. The K(m) value for xanthosine was 73.7 microM. CmXRS1 is homologous to coffee genes encoding enzymes for the second and third methylation steps of caffeine biosynthesis. PMID:12860386

  13. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  14. Farnesyl diphosphate synthase inhibitors with unique ligand-binding geometries.

    Science.gov (United States)

    Liu, Yi-Liang; Cao, Rong; Wang, Yang; Oldfield, Eric

    2015-03-12

    Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis. PMID:25815158

  15. Nitric oxide synthase in tissues around failed hip prostheses.

    Science.gov (United States)

    Stea, S; Visentin, M; Donati, M E; Granchi, D; Ciapetti, G; Sudanese, A; Toni, A

    2002-12-01

    Nineteen patients who had undergone hip revision surgery for aseptic loosening of joint prostheses were studied. Tissue samples were harvested at the interface between bone and implant, either at the stem or at the cotyle level. Immunohistochemistry was performed on tissue sections to detect nitric oxide synthase (NOS), the enzyme which enables the synthesis of nitric oxide (NO), a molecule which can activate bone resorption. Quantitative analysis of the positive cells and correlation with the presence of particulate wear debris and radiological data were performed. The authors observed a trend towards a moderate increase in positive cells due to inducible NOS in tissues containing particulate wear debris, especially of a plastic material. This increase, however, did not achieve statistical significance. On the contrary, there was a statistical correlation between iNOS (inducible NOS) and the severity of osteolysis around the prosthetic implant. Pharmacological control of the biosynthesis of NO may be considered in the prevention or treatment of loosening. PMID:12361623