WorldWideScience

Sample records for magnetoencephalography multipolar modeling

  1. MEG (Magnetoencephalography) multipolar modeling of distributed sources using RAP-MUSIC (Recursively Applied and Projected Multiple Signal Characterization)

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. C. (John C.); Baillet, S. (Sylvain); Jerbi, K. (Karim); Leahy, R. M. (Richard M.)

    2001-01-01

    We describe the use of truncated multipolar expansions for producing dynamic images of cortical neural activation from measurements of the magnetoencephalogram. We use a signal-subspace method to find the locations of a set of multipolar sources, each of which represents a region of activity in the cerebral cortex. Our method builds up an estimate of the sources in a recursive manner, i.e. we first search for point current dipoles, then magnetic dipoles, and finally first order multipoles. The dynamic behavior of these sources is then computed using a linear fit to the spatiotemporal data. The final step in the procedure is to map each of the multipolar sources into an equivalent distributed source on the cortical surface. The method is illustrated through an application to epileptic interictal MEG data.

  2. Magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Erin Simon [Children' s Hospital of Philadelphia, Lurie Family Foundations MEG Imaging Center, Department of Radiology, Philadelphia, PA (United States); Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Edgar, J.C.; Gaetz, William C.; Roberts, Timothy P.L. [Children' s Hospital of Philadelphia, Lurie Family Foundations MEG Imaging Center, Department of Radiology, Philadelphia, PA (United States)

    2010-01-15

    Although magnetoencephalography (MEG) may not be familiar to many pediatric radiologists, it is an increasingly available neuroimaging technique both for evaluating normal and abnormal intracranial neural activity and for functional mapping. By providing spatial, temporal, and time-frequency spectral information, MEG affords patients with epilepsy, intracranial neoplasia, and vascular malformations an opportunity for a sensitive and accurate non-invasive preoperative evaluation. This technique can optimize selection of surgical candidates as well as increase confidence in preoperative counseling and prognosis. Research applications that appear promising for near-future clinical translation include the evaluation of children with autism spectrum disorder, traumatic brain injury, and schizophrenia. (orig.)

  3. Magnetoencephalography

    International Nuclear Information System (INIS)

    Although magnetoencephalography (MEG) may not be familiar to many pediatric radiologists, it is an increasingly available neuroimaging technique both for evaluating normal and abnormal intracranial neural activity and for functional mapping. By providing spatial, temporal, and time-frequency spectral information, MEG affords patients with epilepsy, intracranial neoplasia, and vascular malformations an opportunity for a sensitive and accurate non-invasive preoperative evaluation. This technique can optimize selection of surgical candidates as well as increase confidence in preoperative counseling and prognosis. Research applications that appear promising for near-future clinical translation include the evaluation of children with autism spectrum disorder, traumatic brain injury, and schizophrenia. (orig.)

  4. Magnetoencephalography recording and analysis.

    Science.gov (United States)

    Velmurugan, Jayabal; Sinha, Sanjib; Satishchandra, Parthasarathy

    2014-03-01

    Magnetoencephalography (MEG) non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID) inside the magnetically shielded room (MSR). The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coils, electroencephalography (EEG) electrodes (if measured simultaneously), and fiducials are digitized using a 3D digitizer, which aids in movement correction and also in transferring the MEG data from the head coordinates to the device and voxel coordinates, thereby enabling more accurate co-registration and localization. MEG data pre-processing involves filtering the data for environmental and subject interferences, artefact identification, and rejection. Magnetic resonance Imaging (MRI) is processed for correction and identifying fiducials. After choosing and computing for the appropriate head models (spherical or realistic; boundary/finite element model), the interictal/ictal epileptiform discharges are selected and modeled by an appropriate source modeling technique (clinically and commonly used - single equivalent current dipole - ECD model). The equivalent current dipole (ECD) source localization of the modeled interictal epileptiform discharge (IED) is considered physiologically valid or acceptable based on waveform morphology, isofield pattern, and dipole parameters (localization, dipole moment, confidence volume, goodness of fit). Thus, MEG source localization can aid clinicians in sublobar localization, lateralization, and grid placement, by evoking the irritative/seizure onset zone. It also accurately localizes the eloquent cortex-like visual, language areas. MEG also aids in diagnosing and delineating multiple novel findings in other neuropsychiatric disorders, including Alzheimer's disease, Parkinsonism, Traumatic brain injury, autistic disorders, and so oon. PMID:24791077

  5. Magnetoencephalography recording and analysis

    Directory of Open Access Journals (Sweden)

    Jayabal Velmurugan

    2014-01-01

    Full Text Available Magnetoencephalography (MEG non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID inside the magnetically shielded room (MSR. The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coils, electroencephalography (EEG electrodes (if measured simultaneously, and fiducials are digitized using a 3D digitizer, which aids in movement correction and also in transferring the MEG data from the head coordinates to the device and voxel coordinates, thereby enabling more accurate co-registration and localization. MEG data pre-processing involves filtering the data for environmental and subject interferences, artefact identification, and rejection. Magnetic resonance Imaging (MRI is processed for correction and identifying fiducials. After choosing and computing for the appropriate head models (spherical or realistic; boundary/finite element model, the interictal/ictal epileptiform discharges are selected and modeled by an appropriate source modeling technique (clinically and commonly used - single equivalent current dipole - ECD model. The equivalent current dipole (ECD source localization of the modeled interictal epileptiform discharge (IED is considered physiologically valid or acceptable based on waveform morphology, isofield pattern, and dipole parameters (localization, dipole moment, confidence volume, goodness of fit. Thus, MEG source localization can aid clinicians in sublobar localization, lateralization, and grid placement, by evoking the irritative/seizure onset zone. It also accurately localizes the eloquent cortex-like visual, language areas. MEG also aids in diagnosing and delineating multiple novel findings in other neuropsychiatric disorders, including Alzheimer?s disease, Parkinsonism, Traumatic brain injury, autistic disorders, and so oon.

  6. Magnetoencephalography recording and analysis

    OpenAIRE

    Velmurugan, Jayabal; Sinha, Sanjib; Satishchandra, Parthasarathy

    2014-01-01

    Magnetoencephalography (MEG) non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID) inside the magnetically shielded room (MSR). The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coil...

  7. Dynamic filtering of static dipoles in magnetoencephalography

    OpenAIRE

    Sorrentino, Alberto; Johansen, Adam M.; Aston, John A.D.; Nichols, Thomas E.; Kendall, Wilfrid S.

    2012-01-01

    We consider the problem of estimating neural activity from measurements of the magnetic fields recorded by magnetoencephalography. We exploit the temporal structure of the problem and model the neural current as a collection of evolving current dipoles, which appear and disappear, but whose locations are constant throughout their lifetime. This fully reflects the physiological interpretation of the model. In order to conduct inference under this proposed model, it was necess...

  8. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    Science.gov (United States)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  9. A DETAILED SPATIOKINEMATIC MODEL OF THE CONICAL OUTFLOW OF THE MULTIPOLAR PLANETARY NEBULA NGC 7026

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. M.; Lopez, J. A.; Steffen, W.; Richer, M. G., E-mail: dmclark@astro.unam.mx [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Ensenada, Baja California, CA 22860 (United States)

    2013-03-15

    We present extensive, long-slit, high-resolution coverage of the complex planetary nebula (PN) NGC 7026. We acquired 10 spectra using the Manchester Echelle Spectrometer at San Pedro Martir Observatory in Baja California, Mexico, and each shows exquisite detail, revealing the intricate structure of this object. Incorporating these spectra into the three-dimensional visualization and kinematic program SHAPE and using Hubble Space Telescope images of NGC 7026, we have produced a detailed structural and kinematic model of this PN. NGC 7026 exhibits remarkable symmetry consisting of three lobe pairs and four sets of knots, all symmetrical about the nucleus and displaying a conical outflow. Comparing the three-dimensional structure of this nebula to recent XMM-Newton X-ray observations, we investigate the extended X-ray emission in relation to the nebular structure. We find that the X-ray emission, while confined to the closed, northern lobes of this PN, shows an abrupt termination in the middle of the southeast lobe, which our long slit data show to be open. This is where the shocked fast wind seems to be escaping the interior of the nebula and the X-ray emission rapidly cools in this region.

  10. A Detailed Spatiokinematic Model of the Conical Outflow of the Multipolar Planetary Nebula, NGC 7026

    CERN Document Server

    Clark, D M; Steffen, W; Richer, M G

    2012-01-01

    We present an extensive, long-slit, high-resolution coverage of the complex planetary nebula (PN), NGC 7026. We acquired ten spectra using the Manchester Echelle Spectrometer at San Pedro Martir Observatory in Baja California, Mexico, and each shows exquisite detail, revealing the intricate structure of this object. Incorporating these spectra into the 3-dimensional visualization and kinematic program, SHAPE, and using HST images of NGC 7026, we have produced a detailed structural and kinematic model of this PN. NGC 7026 exhibits remarkable symmetry consisting of three lobe-pairs and four sets of knots, all symmetrical about the nucleus and displaying a conical outflow. Comparing the 3-D structure of this nebula to recent, XMM-Newton X-ray observations, we investigate the extended X-ray emission in relation to the nebular structure. We find that the X-ray emission, while confined to the closed, northern lobes of this PN, shows an abrupt termination in the middle of the SE lobe, which our long slit data shows ...

  11. Direct reconstruction algorithm of current dipoles for vector magnetoencephalography and electroencephalography

    International Nuclear Information System (INIS)

    This paper presents a novel algorithm to reconstruct parameters of a sufficient number of current dipoles that describe data (equivalent current dipoles, ECDs, hereafter) from radial/vector magnetoencephalography (MEG) with and without electroencephalography (EEG). We assume a three-compartment head model and arbitrary surfaces on which the MEG sensors and EEG electrodes are placed. Via the multipole expansion of the magnetic field, we obtain algebraic equations relating the dipole parameters to the vector MEG/EEG data. By solving them directly, without providing initial parameter guesses and computing forward solutions iteratively, the dipole positions and moments projected onto the xy-plane (equatorial plane) are reconstructed from a single time shot of the data. In addition, when the head layers and the sensor surfaces are spherically symmetric, we show that the required data reduce to radial MEG only. This clarifies the advantage of vector MEG/EEG measurements and algorithms for a generally-shaped head and sensor surfaces. In the numerical simulations, the centroids of the patch sources are well localized using vector/radial MEG measured on the upper hemisphere. By assuming the model order to be larger than the actual dipole number, the resultant spurious dipole is shown to have a much smaller strength magnetic moment (about 0.05 times smaller when the SNR = 16 dB), so that the number of ECDs is reasonably estimated. We consider that our direct method with greatly reduced computational cost can also be used to provide a good initial guess for conventional dipolar/multipolar fitting algorithms

  12. Direct reconstruction algorithm of current dipoles for vector magnetoencephalography and electroencephalography.

    Science.gov (United States)

    Nara, Takaaki; Oohama, Junji; Hashimoto, Masaru; Takeda, Tsunehiro; Ando, Shigeru

    2007-07-01

    This paper presents a novel algorithm to reconstruct parameters of a sufficient number of current dipoles that describe data (equivalent current dipoles, ECDs, hereafter) from radial/vector magnetoencephalography (MEG) with and without electroencephalography (EEG). We assume a three-compartment head model and arbitrary surfaces on which the MEG sensors and EEG electrodes are placed. Via the multipole expansion of the magnetic field, we obtain algebraic equations relating the dipole parameters to the vector MEG/EEG data. By solving them directly, without providing initial parameter guesses and computing forward solutions iteratively, the dipole positions and moments projected onto the xy-plane (equatorial plane) are reconstructed from a single time shot of the data. In addition, when the head layers and the sensor surfaces are spherically symmetric, we show that the required data reduce to radial MEG only. This clarifies the advantage of vector MEG/EEG measurements and algorithms for a generally-shaped head and sensor surfaces. In the numerical simulations, the centroids of the patch sources are well localized using vector/radial MEG measured on the upper hemisphere. By assuming the model order to be larger than the actual dipole number, the resultant spurious dipole is shown to have a much smaller strength magnetic moment (about 0.05 times smaller when the SNR = 16 dB), so that the number of ECDs is reasonably estimated. We consider that our direct method with greatly reduced computational cost can also be used to provide a good initial guess for conventional dipolar/multipolar fitting algorithms. PMID:17664582

  13. The role of multipolar magnetic fields in pulsar magnetospheres

    CERN Document Server

    Asséo, E; Asseo, Estelle; Khechinashvili, David

    2002-01-01

    We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centered multipolar fields. In configurations involving axially symmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high order multipoles. Consequently, such configurations are unable to provide an efficient pair creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axially symmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow sub-regions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair production p...

  14. Strategies for Business Schools in a Multi-Polar World

    Science.gov (United States)

    Dameron, Stephanie; Durand, Thomas

    2013-01-01

    Purpose: The purpose of this paper is to examine the contours of the emerging business education and institutions in a multi-polar world and to identify the causes of the strategic convergence of management education, to explore the limitations of the dominant models of management education and to propose a range of strategic alternatives for…

  15. Multi-sensor magnetoencephalography with atomic magnetometers

    International Nuclear Information System (INIS)

    The authors have detected magnetic fields from the human brain with two independent, simultaneously operating rubidium spin-exchange-relaxation-free magnetometers. Evoked responses from auditory stimulation were recorded from multiple subjects with two multi-channel magnetometers located on opposite sides of the head. Signal processing techniques enabled by multi-channel measurements were used to improve signal quality. This is the first demonstration of multi-sensor atomic magnetometer magnetoencephalography and provides a framework for developing a non-cryogenic, whole-head magnetoencephalography array for source localization. (paper)

  16. Softened potentials and the multipolar expansion

    OpenAIRE

    Felipe C. Wachlin; Carpintero, Daniel D.

    2006-01-01

    Cuando se calcula el desarrollo multipolar del potencial gravitatorio, los distintos multipolos quedan bien definidos, correspondiendo cada uno a una suma finita de términos de la serie. Sin embargo, al usar el potencial gravitatorio en simulaciones numéricas, suele desarrollarse en serie una versión suavizada del mismo. Ocurre que, en estos casos, el desarrollo multipolar estándar que suele utilizarse ya no aísla los multipolos, sino que cada uno de ellos queda distribuido en infinitos té...

  17. SQUID-based multichannel system for Magnetoencephalography

    OpenAIRE

    Rombetto, S; Granata, C.; Vettoliere, A; Trebeschi, A; Rossi, R.; Russo, M.

    2013-01-01

    Here we present a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG) measurements, developed and installed at Istituto di Cibernetica (ICIB) in Naples. This MEG system, consists of 163 full integrated SQUID magnetometers, 154 channels and 9 references, and has been designed to meet specifications concerning noise, dynamic range, slew rate and linearity through optimized design. The control electronics is locate...

  18. SQUID-based multichannel system for Magnetoencephalography

    CERN Document Server

    Rombetto, S; Vettoliere, A; Trebeschi, A; Rossi, R; Russo, M

    2013-01-01

    Here we present a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG) measurements, developed and installed at Istituto di Cibernetica (ICIB) in Naples. This MEG system, consists of 163 full integrated SQUID magnetometers, 154 channels and 9 references, and has been designed to meet specifications concerning noise, dynamic range, slew rate and linearity through optimized design. The control electronics is located at room temperature and all the operations are performed inside a Magnetically Shielded Room (MSR). The system exhibits a magnetic white noise level of approximatively 5 fT/Hz1=2. This MEG system will be employed for both clinical and routine use. PACS numbers: 74.81.Fa, 85.25.Hv, 07.20.Mc, 85.25.Dq, 87.19.le, 87.85.Ng

  19. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  20. Prospects for a multipolar international monetary system

    OpenAIRE

    Dailami, Mansoor; Masson, Paul

    2011-01-01

    In this DIIS Report, Dr Mansoor Dailami and Professor Paul Masson envisage a fundamental change in the international monetary system, one that is likely to recognize the growing economic and financial clout of emerging market economies, particularly China. The authors see three possible international currency scenarios for the period 2011-25 emerging. First, the US dollar’s dominance remains unchallenged. Second, a multipolar international monetary system emerges, most likely with the dollar,...

  1. Monte Carlo analysis of localization errors in magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Medvick, P.A.; Lewis, P.S.; Aine, C.; Flynn, E.R.

    1989-01-01

    In magnetoencephalography (MEG), the magnetic fields created by electrical activity in the brain are measured on the surface of the skull. To determine the location of the activity, the measured field is fit to an assumed source generator model, such as a current dipole, by minimizing chi-square. For current dipoles and other nonlinear source models, the fit is performed by an iterative least squares procedure such as the Levenberg-Marquardt algorithm. Once the fit has been computed, analysis of the resulting value of chi-square can determine whether the assumed source model is adequate to account for the measurements. If the source model is adequate, then the effect of measurement error on the fitted model parameters must be analyzed. Although these kinds of simulation studies can provide a rough idea of the effect that measurement error can be expected to have on source localization, they cannot provide detailed enough information to determine the effects that the errors in a particular measurement situation will produce. In this work, we introduce and describe the use of Monte Carlo-based techniques to analyze model fitting errors for real data. Given the details of the measurement setup and a statistical description of the measurement errors, these techniques determine the effects the errors have on the fitted model parameters. The effects can then be summarized in various ways such as parameter variances/covariances or multidimensional confidence regions. 8 refs., 3 figs.

  2. Magnetoencephalography with Optically Pumped Atomic Magnetometers

    Science.gov (United States)

    Schwindt, Peter; Colombo, Anthony; Jau, Yuan-Yu; Carter, Tony; Berry, Christopher; Young, Amber; McKay, Jim; Weisend, Michael

    2015-05-01

    We are working to develop a 36-channel array of optically pumped atomic magnetometers (AMs) to perform magnetoencephalography (MEG) with the goal of localizing magnetic sources within the human brain. The 36-channel array will consist of nine 4-channel sensor modules where the channels within each sensor will be spaced by 18 mm and each sensor will cover a 40 mm by 40 mm area of the head. In a previous 4-channel AM prototype, we demonstrated the measurement of evoked responses in both the auditory and somatosensory cortexes. This prototype had a 5 fT/Hz1/2 sensitivity. In the current version of the AM under development we are maintaining the previous sensitivity while implementing several improvements, including increasing the bandwidth from 20 Hz to more than 100 Hz, reducing the separation of the active volume of the AM from exterior of the sensor from 25 mm to 10 mm or less, and reducing the active sensor volume by a factor >10 to ~15 mm3. We will present results on the performance of our most recent AM prototype and progress toward developing a complete MEG system including a person-sized magnetic shield to provide a low-noise magnetic environment for MEG measurements.

  3. Organizing for Spaces and Dynamics of Multipolar Learning in Multinational Corporations

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer; Lotz, Maja

    2015-01-01

    Limited research has been conducted on how MNCs organize conditions and spaces for recursive learning to facilitate the practice of innovation across dispersed units as well as how organizational members at all levels may become involved in innovations through the engagement in ongoing multipolar learning dynamics. Based on longitudinal case studies in two MNCs this paper contributes with insights into how spaces and dynamics of multipolar learning are organized and governed across dispersed MNC units at the micro level of everyday work practices. The paper shows that it is possible to organize spaces and dynamics that can organize recursiveness and continuity in multipolar learning by way of experimentation with new coordination components and governance architectures. Against the previous literature, however, it becomes evident that these are not the outcome of spontaneous interactions in a tacit community of practices that operate on an ad hoc basis parallel to the formal organization. The spaces and dynamics must become a body in their own right, with a set of recursive steps or routines that produce distinct types of results. The system of multipolar learning itself must become formalized, yet autonomous and oriented toward a long-term continuous perspective in contrast to traditional hierarchical models.

  4. Magnetoencephalography with a two-color pump probe atomic magnetometer.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Cort N.

    2010-07-01

    The authors have detected magnetic fields from the human brain with a compact, fiber-coupled rubidium spin-exchange-relaxation-free magnetometer. Optical pumping is performed on the D1 transition and Faraday rotation is measured on the D2 transition. The beams share an optical axis, with dichroic optics preparing beam polarizations appropriately. A sensitivity of <5 fT/{radical}Hz is achieved. Evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer. Recordings were validated by comparison with those taken by a commercial magnetoencephalography system. The design is amenable to arraying sensors around the head, providing a framework for noncryogenic, whole-head magnetoencephalography.

  5. On Convergence Acceleration of Multipolar and Orthogonal Expansions

    OpenAIRE

    Homeier, H. H. H.

    1998-01-01

    Multipolar expansions arise in many branches of the computational sciences. They are an example of orthogonal expansions. We present methods for the convergence acceleration of such expansions. As an example, the computation of the electrostatic potential and its multipolar expansion is treated for the case of a two-center charge density of exponential-type orbitals. This potential may also be considered as a special molecular integral, namely as a three-center nuclear attr...

  6. THICK DISKS WITH NEWTONIAN MULTIPOLAR MOMENTS / DISCOS GRUESOS CON MOMENTOS MULTIPOLARES NEWTONIANOS

    Scientific Electronic Library Online (English)

    Framsol, López-Suspes; Guillermo A., González.

    2013-09-01

    Full Text Available Se presenta una nueva familia de discos gruesos newtonianos estables a partir del método de desplazamiento, corte, llenado y reflexión construidos en (González & Letelier, 2004; Vogt & Letelier, 2005). Soluciones de la ecuación de Laplace en coordenadas cilíndricas son consideradas, éstas representa [...] rán el campo gravitacional de objetos con momentos multipolares externos solamente. Se definen y calculan las cantidades físicas en el plano del disco, tales como, la frecuencia epicíclica, kapa, la frecuencia vertical, ny, y la velocidad circular, ípsilonc de las partículas. Además, se determina la densidad superficial de masa, sigma, la densidad del disco grueso, rho, y el criterio de estabilidad de los discos gruesos a través del momentum angular o el criterio de Rayleigh (Rayleigh, 1917; Landau, 1987). Finalmente, se representan las propiedades físicas para algunos parámetros considerando sólo hasta el término cuadrupolar en la expansión multipolar del potencial gravitacional. Abstract in english We present a new family of stable thick discs from known displace, cut, fill and reflect method (González & Letelier, 2004; Vogt & Letelier, 2005) is presented. Solutions of the Laplace equation in cylindrical coordinates are considered, these one represent the gravitational field of objects with on [...] ly external multipole moments. The physical quantities in the plane of the disk, are defined and calculated such as, the epicyclic frequency, kappa, the vertical frequency, nu, and the circular velocity, upsilonc of particles. The surface density, sigma, density of thick disk, rho, and stability of thick disks through of specific angular momentum or Rayleigh criterion (Rayleigh, 1917), and (Landau, 1987) were calculated. Finally, the physical properties are shown for only some parameters considering only until quadrupolar term in the expasion gravitational potential multipolar

  7. Complexity Measures in Magnetoencephalography: Measuring "Disorder" in Schizophrenia

    OpenAIRE

    Brookes, Matthew J; Hall, Emma L.; Robson, Siân E.; Price, Darren; Palaniyappan, Lena; Liddle, Elizabeth B.; Liddle, Peter F; Robinson, Stephen E.; Morris, Peter G.

    2015-01-01

    This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of ‘disorder’ in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy ...

  8. Non-Parametric Statistical Thresholding for Sparse Magnetoencephalography Source Reconstructions

    OpenAIRE

    JuliaParsonsOwen; KensukeSekihara; SrikantanS.Nagarajan

    2012-01-01

    Uncovering brain activity from magnetoencephalography (MEG) data requires solving an ill-posed inverse problem, greatly confounded by noise, interference, and correlated sources. Sparse reconstruction algorithms, such as Champagne, show great promise in that they provide focal brain activations robust to these confounds. In this paper, we address the technical considerations of statistically thresholding brain images obtained from sparse reconstruction algorithms. The source power distributio...

  9. Neural Signatures of Phonetic Learning in Adulthood: A Magnetoencephalography Study

    OpenAIRE

    Zhang, Yang; Patricia K. Kuhl; Imada, Toshiaki; Iverson, Paul; Pruitt, John; Stevens, Erica B.; Kawakatsu, Masaki; Tohkura, Yoh'ichi; Nemoto, Iku

    2009-01-01

    The present study used magnetoencephalography (MEG) to examine perceptual learning of American English /r/ and /l/ categories by Japanese adults who had limited English exposure. A training software program was developed based on the principles of infant phonetic learning, featuring systematic acoustic exaggeration, multi-talker variability, visible articulation, and adaptive listening. The program was designed to help Japanese listeners utilize an acoustic dimension relevant for phonemic cat...

  10. A global optimization approach to multi-polarity sentiment analysis.

    Science.gov (United States)

    Li, Xinmiao; Li, Jing; Wu, Yukeng

    2015-01-01

    Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From the results of this comparison, we found that PSOGO-Senti is more suitable for improving a difficult multi-polarity sentiment analysis problem. PMID:25909740

  11. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    International Nuclear Information System (INIS)

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  12. Characterization of Electrograms from Multipolar Diagnostic Catheters during Atrial Fibrillation

    Science.gov (United States)

    Ganesan, Prasanth; Cherry, Elizabeth M.; Pertsov, Arkady M.; Ghoraani, Behnaz

    2015-01-01

    Atrial fibrillation (AF) is the most common arrhythmia in USA with more than 2.3 million people affected annually. Catheter ablation procedure is a method for treatment of AF, which involves 3D electroanatomic mapping of the patient's left atrium (LA) by maneuvering a conventional multipolar diagnostic catheter (MPDC) along the LA endocardial surface after which pulmonary vein (PV) isolation is performed, thus eliminating the AF triggers originating from the PVs. However, it remains unclear how to effectively utilize the information provided by the MPDC to locate the AF-sustaining sites, known as sustained rotor-like activities (RotAs). In this study, we use computer modeling to investigate the variations in the characteristics of the MPDC electrograms, namely, total conduction delay (TCD) and average cycle length (CL), as the MPDC moves towards a RotA source. Subsequently, a study with a human subject was performed in order to verify the predictions of the simulation study. The conclusions from this study may be used to iteratively direct an MPDC towards RotA sources thus allowing the RotAs to be localized for customized and improved AF ablation. PMID:26581316

  13. Antiferro multipolar ordering and it's identification by NMR experiment

    International Nuclear Information System (INIS)

    The antiferro-ordering of multipolar moments often plays important roles in the low temperature phase transition of f-electron systems. The splitting of NMR spectra, which is analyzed in terms of the invariant hyperfine coupling between the nuclear spin and the multipolar moments of magnetic ions, gives important information about the multipolar ordering. Experimental and theoretical studies on CeB6 and NpO2 are presented as typical examples. The study on the low temperature phase of PrFe4P12, whose nature has been controversial, are reviewed. It was concluded that it has an antiferro order with the order-parameter characterized by the identity representation of the point group. The large anisotropy of NMR splitting in the magnetic field direction dependence suggests important roles of moments with higher ranks in PrFe4P12. (author)

  14. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles.

    Science.gov (United States)

    Butet, Jérémy; Russier-Antoine, Isabelle; Jonin, Christian; Lascoux, Noëlle; Benichou, Emmanuel; Brevet, Pierre-François

    2012-03-14

    We show that sensing in the nonlinear optical regime using multipolar surface plasmon resonances is more sensitive in comparison to sensing in the linear optical regime. Mie theory, and its extension to the second harmonic generation from a metallic nanosphere, is used to describe multipolar second harmonic generation from silver metallic nanoparticles. The standard figure of merit of a potential plasmonic sensor based on this principle is then calculated. We finally demonstrate that such a sensor is more sensitive to optical refraction index changes occurring in the vicinity of the metallic nanoparticle than its linear counterpart. PMID:22375818

  15. Design of outer-rotor type multipolar SR motor for electric vehicle

    Science.gov (United States)

    Nakamura, Kenji; Suzuki, Yosuke; Goto, Hiroki; Ichinokura, Osamu

    2005-04-01

    In this paper, we design an outer-rotor type multipolar switched reluctance (SR) motor, and examine an application of the SR motor to an electric vehicle (EV). The design is based on a nonlinear magnetic circuit model proposed by the authors. Using the model, we can calculate dynamic characteristics of a SR motor accurately. Furthermore, by combining the nonlinear magnetic circuit model with a motor drive circuit and motion equation of an EV, we can predict dynamic characteristics such as the maximum speed, acceleration torque, and a battery current of the EV.

  16. Design of outer-rotor type multipolar SR motor for electric vehicle

    International Nuclear Information System (INIS)

    In this paper, we design an outer-rotor type multipolar switched reluctance (SR) motor, and examine an application of the SR motor to an electric vehicle (EV). The design is based on a nonlinear magnetic circuit model proposed by the authors. Using the model, we can calculate dynamic characteristics of a SR motor accurately. Furthermore, by combining the nonlinear magnetic circuit model with a motor drive circuit and motion equation of an EV, we can predict dynamic characteristics such as the maximum speed, acceleration torque, and a battery current of the EV

  17. Russia in a multipolar world: Role identities and “cognitive maps”

    Directory of Open Access Journals (Sweden)

    Andrey Makarychev

    2011-12-01

    Full Text Available In this paper the author argues that Russian policy- and opinion-makers, having borrowed the concept of multipolarity from the (neorealist vocabulary, very often they use it in a much broader sense of narratives on Russian identity and subjectivity and, therefore, attach to it quite different non-realist meanings, which include issues of identity and non-state actorship. What hides beneath the pretended realist wording of Russian discourse is a much more complicated and variegated –though not always consistent– set of policy imageries. Against this background, the Russian discourse on multipolarity reminds a patchwork of scattered and loosely tied “cognitive maps”, based upon –and sustained by– certain visions of the world in the diversity of its actors. Since multipolarity originates in the sphere of ideas, it would be quite logical to assume that at certain time there might be more than one pattern of multipolar arrangements. Each of them gives a different answer to the question of what poles, nation states, regions, civilizations, or integrative constructs like EU and CIS are.

  18. State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing

    CERN Document Server

    Long, Christopher J; Temereanca, Simona; Desai, Neil U; Hämäläinen, Matti S; Brown, Emery N; 10.1214/11-AOAS483

    2011-01-01

    Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an $L^2$ regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candida...

  19. Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties

    Science.gov (United States)

    Pétri, J.

    2015-06-01

    The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order l and apply them to the retarded point quadrupole (l = 2), hexapole (l = 3) and octopole (l = 4), a generalization of the retarded point dipole (l = 1). We also compare the Poynting flux from each multipole and show that the spin-down luminosity depends on the ratio R/rL, R being the neutron star radius and rL the light-cylinder radius. Therefore the braking index also depends on R/rL. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field, especially close to the neutron star, we investigate the deformation of the polar caps induced by these multipolar fields. Such fields could have a strong impact on the interpretation of the pulsed radio emission suspected to emanate from these polar caps as well as on the inferred geometry deduced from the high-energy light-curve fitting and on the magnetic field strength. Discrepancies between the two-pole caustic model and our new multipole caustic model are emphasized with the quadrupole field. To this respect, we demonstrate that working with only a dipole field can be very misleading.

  20. Note: Optical receiver system for 152-channel magnetoencephalography

    International Nuclear Information System (INIS)

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/?Hz @ 100 Hz at a sample rate of 1 kSample/s per channel

  1. Note: Optical receiver system for 152-channel magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2014-11-15

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/?Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  2. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    CERN Document Server

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  3. Beam engineering for selective and enhanced coupling to multipolar resonances

    CERN Document Server

    Das, Tanya; Schuller, Jon A

    2015-01-01

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. In this letter, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique, we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. This work enhances the understanding of fundamental light-matter interactions in metamaterials, and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  4. Multipolar radiation of quantum emitters with nanowire optical antennas.

    Science.gov (United States)

    Curto, Alberto G; Taminiau, Tim H; Volpe, Giorgio; Kreuzer, Mark P; Quidant, Romain; van Hulst, Niek F

    2013-01-01

    Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature. PMID:23612291

  5. Beam engineering for selective and enhanced coupling to multipolar resonances

    OpenAIRE

    Das, Tanya; Iyer, Prasad P.; Schuller, Jon A.

    2015-01-01

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. In this letter, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical techni...

  6. Multichannel System Based on a High Sensitivity Superconductive Sensor for Magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Sara Rombetto

    2014-07-01

    Full Text Available We developed a multichannel system based on superconducting quantum interference devices (SQUIDs for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz1=2. The presented magnetoencephalography is the first system working in a clinical environment in Italy.

  7. Design and performance of the LANL 158-channel magnetoencephalography system

    Energy Technology Data Exchange (ETDEWEB)

    Matlachov, A. N. (Andrei N.); Kraus, Robert H., Jr.; Espy, M. A. (Michelle A.); Best, E. D. (Elaine D.); Briles, M. Carolyn; Raby, E. Y. (Eric Y.); Flynn, E. R.

    2002-01-01

    Design and performance for a recently completed whole-head magnetoencephalography (MEG) system using a superconducting imaging-surface (SIS) surrounding an array of SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. The SIS images nearby sources while shields sensors from ambient magnetic noise. The shielding factor depends on magnetometer position and orientation. Typical shielding values of 200 in central sulcus area have been observed. Nine reference channels form three vector magnetometers, which are placed outside SIS. Signal channels consist of 149 SQUID magnetometers with 0.84nT/{Phi}{sub 0} field sensitivity and less then 3 fT/{radical}Hz noise. Typical SQUID - room temperature separations are about 20mm in the cooled state. Twelve 16-channel flux-lock loop units are connected to two 96-channel control units allowing up to 192 total SQUID channels. The control unit includes signal conditioning circuits as well as system test and control circuits. After conditioning all signals are fed to 192-channel, 24-bit data acquisition system capable of sampling up to 48kSa/sec/channel. The SIS-MEG system enables high-quality human functional brain data to be recorded in a one-layer magnetically shielded room.

  8. Noise-free magnetoencephalography recordings of brain function

    International Nuclear Information System (INIS)

    Perhaps the greatest impediment to acquiring high-quality magnetoencephalography (MEG) recordings is the ubiquitous ambient magnetic field noise. We have designed and built a whole-head MEG system using a helmet-like superconducting imaging surface (SIS) surrounding the array of superconducting quantum interference device (SQUID) magnetometers used to measure the MEG signal. We previously demonstrated that the SIS passively shields the SQUID array from ambient magnetic field noise, independent of frequency, by 25-60 dB depending on sensor location. SQUID 'reference sensors' located on the outside of the SIS helmet measure ambient magnetic fields in very close proximity to the MEG magnetometers while being nearly perfectly shielded from all sources in the brain. The fact that the reference sensors measure no brain signal yet are located in close proximity to the MEG sensors enables very accurate estimation and subtraction of the ambient field noise contribution to the MEG sensors using an adaptive algorithm. We have demonstrated total ambient noise reduction factors in excess of 106 (>120 dB). The residual noise for most MEG SQUID channels is at or near the intrinsic SQUID noise floor, typically 2-3 f T Hz-1/2. We are recording MEG signals with greater signal-to-noise than equivalent EEG measurements

  9. Comparisons of wind speed retrieval methods on C-band multi-polarization SAR measurements

    Science.gov (United States)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan; Wang, Difeng

    2014-10-01

    This paper compares the wind speed retrieval methods on C-band multi-polarization SAR measurements to find out the most appropriate one for each polarization data. The RADARSAT-2 SAR quad-polarization (VV+HH+VH+HV) data and NDBC buoy wind data were collocated. For VVpolarization, the retrieved wind speed are compared among four geophysical model function (GMF). For HH polarization, the retrieved wind speed are compared among four polarization ratio model (PR) based on CMOD5 GMF. For VH polarization, the retrieved wind speed are compared between two linear models. Comparisons show all of three polarimetric SAR data have the ability of retrieving wind speed. Based on the error analysis, the commendatory methods are proposed for each polarization.

  10. Challenges of a Multi-Polar Nuclear World

    Directory of Open Access Journals (Sweden)

    Yehoshua Socol

    2012-06-01

    Full Text Available Nuclear warfare, being calamitous, is nevertheless, unlike popular perception, far from being apocalyptic. In the article, we consider possible scenarios of nuclear war in a multi-polar nuclear world, arguing that a democratic society has good chances of victory against a totalitarian nuclear-possessing state. Afterwards, we focus on two technical issues of primary importance – targeting doctrine and civil defense. We conclude that a steadfast and determined stance together with properly conceived and well planned policies for dealing with aggression is the price democratic societies must be willing to pay in order to effectively battle aggression at all levels.

  11. BRICS and the myth of the multipolar world

    Directory of Open Access Journals (Sweden)

    Takis Fotopoulos

    2014-12-01

    Full Text Available The aim of this article is to show that the BRICS countries not only don’t form part of a multi-polar world, but in reality are far from sovereign states in any sense of the word. In fact, if their real goal was indeed the creation of an alternative pole of sovereign nation-states, they should have planned at the outset to break their direct dependence on the globalized capitalist market economy, cutting their ties with global institutions controlled by the Transnational Elite (WTO, IMF and World Bank, and moving towards self-reliant economies, so that they could regain their sovereignty.

  12. Molecules and mechanisms that regulate multipolar migration in the intermediate zone

    Directory of Open Access Journals (Sweden)

    Jonathan A Cooper

    2014-11-01

    Full Text Available Most neurons migrate with an elongated, “bipolar” morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone of the neocortex they become “multipolar”. Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically - sideways, up and down. Multipolar cells extend axons while they are in the lower half of the intermediate zone. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia fibers. This reorientation implies the existence of directional signals in the intermediate zone that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex.

  13. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    Science.gov (United States)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  14. Categorical Discrimination of Human Body Parts by Magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Misaki Nakamura

    2015-11-01

    Full Text Available Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA and extrastriate body area (EBA are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body-part categories (with a peak at approximately 48% was above chance (33.3% and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this noninvasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain–machine interface research.

  15. Categorical discrimination of human body parts by magnetoencephalography

    Science.gov (United States)

    Nakamura, Misaki; Yanagisawa, Takufumi; Okamura, Yumiko; Fukuma, Ryohei; Hirata, Masayuki; Araki, Toshihiko; Kamitani, Yukiyasu; Yorifuji, Shiro

    2015-01-01

    Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body-part categories (with a peak at approximately 48%) was above chance (33.3%) and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this non-invasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain–machine interface research. PMID:26582986

  16. The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography.

    Science.gov (United States)

    Astle, Duncan E; Luckhoo, Henry; Woolrich, Mark; Kuo, Bo-Cheng; Nobre, Anna C; Scerif, Gaia

    2015-10-01

    Our ability to hold information in mind is limited, requires a high degree of cognitive control, and is necessary for many subsequent cognitive processes. Children, in particular, are highly variable in how, trial-by-trial, they manage to recruit cognitive control in service of memory. Fronto-parietal networks, typically recruited under conditions where this cognitive control is needed, undergo protracted development. We explored, for the first time, whether dynamic changes in fronto-parietal activity could account for children's variability in tests of visual short-term memory (VSTM). We recorded oscillatory brain activity using magnetoencephalography (MEG) as 9- to 12-year-old children and adults performed a VSTM task. We combined temporal independent component analysis (ICA) with general linear modeling to test whether the strength of fronto-parietal activity correlated with VSTM performance on a trial-by-trial basis. In children, but not adults, slow frequency theta (4-7 Hz) activity within a right lateralized fronto-parietal network in anticipation of the memoranda predicted the accuracy with which those memory items were subsequently retrieved. These findings suggest that inconsistent use of anticipatory control mechanism contributes significantly to trial-to-trial variability in VSTM maintenance performance. PMID:25410426

  17. Sequential Monte Carlo samplers for semi-linear inverse problems and application to magnetoencephalography

    International Nuclear Information System (INIS)

    We discuss the use of a recent class of sequential Monte Carlo methods for solving inverse problems characterized by a semi-linear structure, i.e. where the data depend linearly on a subset of variables and nonlinearly on the remaining ones. In this type of problems, under proper Gaussian assumptions one can marginalize the linear variables. This means that the Monte Carlo procedure needs only to be applied to the nonlinear variables, while the linear ones can be treated analytically; as a result, the Monte Carlo variance and/or the computational cost decrease. We use this approach to solve the inverse problem of magnetoencephalography, with a multi-dipole model for the sources. Here, data depend nonlinearly on the number of sources and their locations, and depend linearly on their current vectors. The semi-analytic approach enables us to estimate the number of dipoles and their location from a whole time-series, rather than a single time point, while keeping a low computational cost. (paper)

  18. Magnetar Giant Flares --- Flux Rope Eruptions in Multipolar Magnetospheric Magnetic Fields

    CERN Document Server

    Yu, Cong

    2012-01-01

    We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. A self-consistent stationary, axisymmetric model of the magnetar magnetosphere is constructed based on a force-free magnetic field configuration which contains a helically twisted force-free flux rope. Given the complex multipolar magnetic fields at the magnetar surface, we also develop a convenient numerical scheme to solve the GS equation. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curves contain two branches, one represents a stable equilibrium branch, the other an unstable equilibrium branch. As a result, the evolution of the system shows...

  19. Multipolar interference for non-reciprocal nonlinear generation

    CERN Document Server

    Poutrina, Ekaterina

    2015-01-01

    We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the nonlinearly produced light decoupled from that of at least one or several of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. The described phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters.

  20. Simulated multipolarized MAPSAR images to distinguish agricultural crops

    Directory of Open Access Journals (Sweden)

    Wagner Fernando Silva

    2012-06-01

    Full Text Available Many researchers have shown the potential of Synthetic Aperture Radar (SAR images for agricultural applications, particularly for monitoring regions with limitations in terms of acquiring cloud free optical images. Recently, Brazil and Germany began a feasibility study on the construction of an orbital L-band SAR sensor referred to as MAPSAR (Multi-Application Purpose SAR. This sensor provides L-band images in three spatial resolutions and polarimetric, interferometric and stereoscopic capabilities. Thus, studies are needed to evaluate the potential of future MAPSAR images. The objective of this study was to evaluate multipolarized MAPSAR images simulated by the airborne SAR-R99B sensor to distinguish coffee, cotton and pasture fields in Brazil. Discrimination among crops was evaluated through graphical and cluster analysis of mean backscatter values, considering single, dual and triple polarizations. Planting row direction of coffee influenced the backscatter and was divided into two classes: parallel and perpendicular to the sensor look direction. Single polarizations had poor ability to discriminate the crops. The overall accuracies were less than 59 %, but the understanding of the microwave interaction with the crops could be explored. Combinations of two polarizations could differentiate various fields of crops, highlighting the combination VV-HV that reached 78 % overall accuracy. The use of three polarizations resulted in 85.4 % overall accuracy, indicating that the classes pasture and parallel coffee were fully discriminated from the other classes. These results confirmed the potential of multipolarized MAPSAR images to distinguish the studied crops and showed considerable improvement in the accuracy of the results when the number of polarizations was increased.

  1. Simulated multipolarized MAPSAR images to distinguish agricultural crops

    Scientific Electronic Library Online (English)

    Wagner Fernando, Silva; Bernardo Friedrich Theodor, Rudorff; Antonio Roberto, Formaggio; Waldir Renato, Paradella; José Claudio, Mura.

    2012-06-01

    Full Text Available Many researchers have shown the potential of Synthetic Aperture Radar (SAR) images for agricultural applications, particularly for monitoring regions with limitations in terms of acquiring cloud free optical images. Recently, Brazil and Germany began a feasibility study on the construction of an orb [...] ital L-band SAR sensor referred to as MAPSAR (Multi-Application Purpose SAR). This sensor provides L-band images in three spatial resolutions and polarimetric, interferometric and stereoscopic capabilities. Thus, studies are needed to evaluate the potential of future MAPSAR images. The objective of this study was to evaluate multipolarized MAPSAR images simulated by the airborne SAR-R99B sensor to distinguish coffee, cotton and pasture fields in Brazil. Discrimination among crops was evaluated through graphical and cluster analysis of mean backscatter values, considering single, dual and triple polarizations. Planting row direction of coffee influenced the backscatter and was divided into two classes: parallel and perpendicular to the sensor look direction. Single polarizations had poor ability to discriminate the crops. The overall accuracies were less than 59 %, but the understanding of the microwave interaction with the crops could be explored. Combinations of two polarizations could differentiate various fields of crops, highlighting the combination VV-HV that reached 78 % overall accuracy. The use of three polarizations resulted in 85.4 % overall accuracy, indicating that the classes pasture and parallel coffee were fully discriminated from the other classes. These results confirmed the potential of multipolarized MAPSAR images to distinguish the studied crops and showed considerable improvement in the accuracy of the results when the number of polarizations was increased.

  2. Increases in Language Lateralization in Normal Children as Observed Using Magnetoencephalography

    Science.gov (United States)

    Ressel, Volker; Wilke, Marko; Lidzba, Karen; Lutzenberger, Werner; Krageloh-Mann, Ingeborg

    2008-01-01

    Previous functional magnetic resonance imaging (fMRI) studies investigating hemispheric dominance for language have shown that hemispheric specialization increases with age. We employed magnetoencephalography (MEG) to investigate these effects as a function of normal development. In sum, 22 healthy children aged 7-16 years were investigated using…

  3. Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG)

    International Nuclear Information System (INIS)

    The aim of this study was to use the technique of magnetoencephalography (MEG) to determine the effects of strabismic amblyopia on the processing of spatial information within the occipital cortex of humans. We recorded evoked magnetic responses to the onset of a chromatic (red/green) sinusoidal grating of periodicity 0.5-4.0 c deg-1 using a 19-channel SQUID-based neuromagnetometer. Evoked responses were recorded monocularly on six amblyopes and six normally-sighted controls, the stimuli being positioned near the fovea in the lower right visual field of each observer. For comparison, the spatial contrast sensitivity function (CSF) for the detection of chromatic gratings was measured for one amblyope and one control using a two alternate forced-choice psychophysical procedure. We chose red/green sinusoids as our stimuli because they evoke strong magnetic responses from the occipital cortex in adult humans (Fylan, Holliday, Singh, Anderson and Harding. (1997). Neuroimage, 6, 47-57). Magnetic field strength was plotted as a function of stimulus spatial frequency for each eye of each subject. Interocular differences were only evident within the amblyopic group: for stimuli of 1-2 c deg-1, the evoked responses had significantly longer latencies and reduced amplitudes through the amblyopic eye (P<0.05). Importantly, the extent of the deficit was uncorrelated with either Snellen acuity or contrast sensitivity. Localization of the evoked responses was performed using a single equivalent current dipole model. Source localizations, for both normal and amblyopic subjects, were consistent with neural activity at the occipital pole near the V1/V2 border. We conclude that MEG is sensitive to the deficit in cortical processing associated with human amblyopia, and can be used to make quantitative neurophysiological measurements. The nature of the cortical deficit is discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Vegetation canopy discrimination and biomass assessment using multipolarized airborne SAR

    Science.gov (United States)

    Ulaby, F. T.; Dobson, M. C.; Held, D. N.

    1985-01-01

    Multipolarized airborne Synthetic Aperture Radar (SAR) data were acquired over a largely agricultural test site near Macomb, Illinois, in conjunction with the Shuttle Imaging Radar (SIR-B) experiment in October 1984. The NASA/JPL L-band SAR operating at 1.225 GHz made a series of daily overflights with azimuth view angles both parallel and orthogonal to those of SIR-B. The SAR data was digitally recorded in the quadpolarization configuration. An extensive set of ground measurements were obtained throughout the test site and include biophysical and soil measurements of approximately 400 agricultural fields. Preliminary evaluation of some of the airborne SAR imagery indicates a great potential for crop discrimination and assessment of canopy condition. False color composites constructed from the combination of three linear polarizations (HH, VV, and HV) were found to be clearly superior to any single polarization for purposes of crop classification. In addition, an image constructed using the HH return to modulate intensity and the phase difference between HH and VV returns to modulate chroma indicates a clear capability for assessment of canopy height and/or biomass. In particular, corn fields heavily damaged by infestations of corn borer are readily distinguished from noninfested fields.

  5. Potential applications of multipolarization SAR for pine plantation biomass estimation

    Science.gov (United States)

    Wu, S. T.

    1985-01-01

    This study was conducted as a part of the research tasks under the Radar Land Cover Analysis Program. The Radar Land Cover Analysis objective is, through utilization of multisensor data, to gain a basic understanding of the measurements and data characteristics in the visible-IR-microwave regions of the electromagnetic spectrum associated with specific surface features and cover types. Since the results of analysis of data acquired by Shuttle Imaging Radar (SIR-A) and LANDSAT Thematic Mapper (TM) over the study area were reported (NSTL/ERL Report No. 228, December 1984), this study focused on the analysis and evaluation of the L-band multipolarization airborne SAR data acquired over a southeastern pine forest scene. The data acquisition mission was flown on September 8 and 9, 1983. The HH, HV polarizations and the VV, VH polarizations were used on the first and the second day, respectively. Due to instrumentation difficulties, the digital recorder recorded only the second day's data. Because of this, only the VV and VH polarization data were used in this analysis. However, the HH and HV polarization images were available for visual comparison. It appears that SAR digital numbers correlate with the index of green biomass.

  6. Early development of cortical brain responses in newborns and fetuses ? cognitive studies with fetal magnetoencephalography

    OpenAIRE

    Sheridan, Carolin

    2008-01-01

    During early developmental stages the brain is more vulnerable to physiological insult than the more mature brain. However, an early diagnosis of deficits might enhance the chances for successful interventions due to the high cortical plasticity of the immature brain. This thesis contains two studies on early cognitive development, conducted with a device called fetal magnetoencephalography (fMEG). It allows non-invasive recordings of cortical responses in utero. Objective: Two study para...

  7. Word repetition priming induced oscillations in auditory cortex: a magnetoencephalography study

    OpenAIRE

    Tavabi, Kambiz; Embick, David; Roberts, Timothy P.L.

    2011-01-01

    Magnetoencephalography was used in a passive repetition priming paradigm. Words in two frequency bins (high/low) were presented to subjects auditorily. Subjects’ brain responses to these stimuli were analyzed using synthetic aperture magnetometry. The main finding is that single word repetition of low frequency word pairs significantly attenuated the post-second word event related desynchronization in the theta-alpha (5–15Hz) bands, 200–600ms post second word stimulus onset. Peak significance...

  8. Temporal course of word recognition in skilled readers: A magnetoencephalography study

    OpenAIRE

    Simos, Panagiotis G.; Pugh, Kenneth; Mencl, Einar; Frost, Stephen; Fletcher, Jack M.; Sarkari, Shirin; Papanicolaou, Andrew C.

    2008-01-01

    The goal of the study was to investigate the neural circuit recruited by adult readers during performance of a lexical decision task by assessing the relative timing of neurophysiological activity in the brain regions that comprise this circuit. The time course of regional activation associated with lexical decision was studied in 17 adult volunteers using magnetoencephalography. Following activity in mesial occipital cortices, activation progressed to lateral and ventral occipito-temporal re...

  9. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations

    OpenAIRE

    Liu, Arthur K.; Belliveau, John W.; Dale, Anders M.

    1998-01-01

    The goal of our research is to develop an experimental and analytical framework for spatiotemporal imaging of human brain function. Preliminary studies suggest that noninvasive spatiotemporal maps of cerebral activity can be produced by combining the high spatial resolution (millimeters) of functional MRI (fMRI) with the high temporal resolution (milliseconds) of electroencephalography (EEG) and magnetoencephalography (MEG). Although MEG and EEG are sensitive to millisecond changes in mental ...

  10. Magnetoencephalography Detection of High-Frequency Oscillations in the Developing Brain

    OpenAIRE

    Leiken, Kimberly; Xiang, Jing; Zhang, Fawen; Shi, Jingping; Tang, Lu; LIU, HONGXING; Wang, Xiaoshan

    2014-01-01

    Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG) methods. Twenty healthy children were studied with a high-sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. ...

  11. Electrophysiological channel interactions using focused multipolar stimulation for cochlear implants

    Science.gov (United States)

    George, Shefin S.; Shivdasani, Mohit N.; Wise, Andrew K.; Shepherd, Robert K.; Fallon, James B.

    2015-12-01

    Objective. Speech intelligibility with existing multichannel cochlear implants (CIs) is thought to be limited by poor spatial selectivity and interactions between CI channels caused by overlapping activation with monopolar (MP) stimulation. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation in the inferior colliculus (IC), compared to MP stimulation. Approach. This study explored interactions in the IC produced by simultaneous stimulation of two CI channels. We recorded multi-unit neural activity in the IC of anaesthetized cats with normal and severely degenerated spiral ganglion neuron populations in response to FMP, TP and MP stimulation from a 14 channel CI. Stimuli were applied to a ‘fixed’ CI channel, chosen toward the middle of the cochlear electrode array, and the effects of simultaneously stimulating a more apical ‘test’ CI channel were measured as a function of spatial separation between the two stimulation channels and stimulus level of the fixed channel. Channel interactions were quantified by changes in neural responses and IC threshold (i.e., threshold shift) elicited by simultaneous stimulation of two CI channels, compared to stimulation of the test channel alone. Main results. Channel interactions were significantly lower for FMP and TP than for MP stimulation (p < 0.001), whereas no significant difference was observed between FMP and TP stimulation. With MP stimulation, threshold shifts increased with decreased inter-electrode spacing and increased stimulus levels of the fixed channel. For FMP and TP stimulation, channel interactions were found to be similar for different inter-electrode spacing and stimulus levels of the fixed channel. Significance. The present study demonstrates how the degree of channel interactions in a CI can be controlled using stimulation configurations such as FMP and TP; such knowledge is essential in enhancing CI function in complex acoustic environments.

  12. Magnetar Giant Flares in Multipolar Magnetic Fields --- II. Flux Rope Eruptions With Current Sheets

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. Especially, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. The released magnetic energy is sufficient to drive giant flares. The flux rope would go away from the magnetar quasi-statically, which is ...

  13. Potential application of multipolarization SAR for pine-plantation biomass estimation

    Science.gov (United States)

    Wu, Shih-Tseng

    1987-01-01

    This paper presents the technique and the potential utility of multipolarization Synthetic Aperture Radar (SAR) data for pine-plantation biomass estimation. Three channels of SAR data, one from the Shuttle Imaging Radar SIR-A and the other two from the aircraft SAR, were acquired over the Baldwin County, Alabama, study area. The SIR-A data were acquired with HH polarization and the aircraft SAR data with VV and VH polarizations. Linear regression techniques are used to estimate the pine-plantation biomass, tree height, and age using 21 test plots. The results indicate that the multipolarization data are highly related to the plantation biomass. The results suggest a potential application of multipolarization SAR for pine-plantation biomass estimation.

  14. The role of angular momentum in the construction of electromagnetic multipolar fields

    CERN Document Server

    Tischler, Nora; Molina-Terriza, Gabriel

    2015-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions originating from different derivations can be difficult to compare. Some of the derivations of the multipolar solutions do not explicitly show their relation to the angular momentum operators, thus hiding important properties of these solutions. In this article, the relation between two of the most common derivations of this set of solutions is explicitly shown and their relation to the angular momentum operators is exposed.

  15. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  16. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.

    Science.gov (United States)

    Zhuo, Xiaolu; Zhu, Xingzhong; Li, Qian; Yang, Zhi; Wang, Jianfang

    2015-07-28

    We report on a method for the preparation of uniform and length-variable Ag nanorods through anisotropic Ag overgrowth on high-purity Au nanobipyramids. The rod diameters can be roughly tailored from ?20 nm to ?50 nm by judicious selection of differently sized Au nanobipyramids. The rod lengths can be tuned from ?150 nm to ?550 nm by varying the Ag precursor amount during the overgrowth process and/or by anisotropic shortening through mild oxidation. The controllable aspect ratios, high purity, and high dimensional uniformity of these Ag nanorods enable the observation of Fabry-Pérot-like multipolar plasmon resonance modes in the colloidal suspensions at the ensemble level, which has so far been demonstrated only on Au nanorods prepared electrochemically with anodic aluminum oxide templates. Depending on the mode order and geometry of the Ag nanorods, the multipolar plasmon wavelengths can be readily tailored over a wide spectral range from the visible to near-infrared region. We have further elucidated the relationships between the multipolar plasmon wavelengths and the geometric dimensions of the Ag nanorods at both the ensemble and single-particle levels. Our results indicate that the Au nanobipyramid-directed, dimensionally controllable Ag nanorods will be an attractive and promising candidate for developing multipolar plasmon-based devices and applications. PMID:26135608

  17. Turkey’s multi-polar diplomacy on its way to the European Union

    Directory of Open Access Journals (Sweden)

    Lika Mkrtchyan

    2011-12-01

    Full Text Available Turkey conducts a multi-polar foreign diplomacy in order to strengthen its positions in the region, to gain control over the neighboring countries; as well as to make its way towards the European Union. Being on the EU’s waiting list, Turkey strives to get advantages of its prolonged status as a candidate country

  18. Magnetoencephalography - a noninvasive brain imaging method with 1 ms time resolution

    International Nuclear Information System (INIS)

    The basics of magnetoencephalography (MEG), i.e. the measurement and the analysis of the tiny magnetic fields generated outside the scalp by the working human brain, are reviewed. Three main topics are discussed: (1) the relationship between the magnetic field and its generators, including on one hand the neurophysiological basis and the physical theory of magnetic field generation, and on the other hand the techniques for the estimation of the sources from the magnetic field measurements; (2) the instrumental techniques and the laboratory practice of neuromagnetic field measurement and (3) the main applications of MEG in basic neurophysiology as well as in clinical neurology. (author)

  19. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  20. Resting-state magnetoencephalography study of “small world” characteristics and cognitive dysfunction in patients with glioma

    Directory of Open Access Journals (Sweden)

    Hu X

    2013-04-01

    Full Text Available Xin-Hua Hu, Ting Lei, Hua-Zhong Xu, Yuan-Jie Zou, Hong-Yi Liu Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China Background: The purpose of this study was to analyze “small world” characteristics in glioma patients in order to understand the relationship between cognitive dysfunction and brain functional connectivity network in the resting state. Methods: Resting-state magnetoencephalography was performed in 20 patients with glioma and 20 healthy subjects. The clustering coefficient of the resting functional connectivity network in the brain, average path length, and “small world” index (SWI were calculated. Cognitive function was estimated by testing of attention, verbal fluency, memory, athletic ability, visual-spatial ability, and intelligence. Results: Compared with healthy controls, patients with glioma showed decreased cognitive function, and diminished low and high gamma band “small world” characteristics in the resting functional connectivity network. Conclusion: The SWI is associated with cognitive function and is diminished in patients with glioma, and is therefore correlated with cognition dysfunction. Keywords: glioma, cognitive dysfunction, “small world”, functional connectivity network, magnetoencephalography

  1. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.

    Science.gov (United States)

    Dehghani, Nima; Cash, Sydney S; Rossetti, Andrea O; Chen, Chih Chuan; Halgren, Eric

    2010-07-01

    Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system. PMID:20427615

  2. The emerging multi-polar world and China's grand game

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rajan [Los Alamos National Laboratory

    2011-01-19

    This talk outlines a scenario describing an emerging multipolar world that is aligned with geographical regions. The stability and security of this multipolar world is examined with respect to demographics, trade (economics), resource constraints, and development. In particular I focus on Asia which has two large countries, China and India, competing for resources and markets and examine the emerging regional relations, opportunities and threats. These relationships must overcome many hurdles - the Subcontinent is in a weak position politically and strategically and faces many threats, and China's growing power could help stabilize it or create new threats. Since the fate of 1.5 billion (2.4 billion by 2050) people depends on how the Subcontinent evolves, this talk is meant to initiates a discussion of what China and India can do to help the region develop and stabilize.

  3. Polarization-dependent multipolar plasmon resonances in anisotropic multiscale au particles.

    Science.gov (United States)

    You, Eun-Ah; Zhou, Wei; Suh, Jae Yong; Huntington, Mark D; Odom, Teri W

    2012-02-28

    This paper reports the fabrication and characterization of three-dimensional (3D) multiscale Au particles with different aspect ratios. Increasing the length of the particles resulted in excitation of a longitudinal mode and two different transverse modes having different multipolar orders. The multipolar orders increased for both longitudinal and transverse modes as the aspect ratio increased. Finite-difference time-domain calculations revealed that the structural asymmetry of the 3D anisotropic particles were the reason for the two distinct transverse plasmon resonances. When the 3D structural change occurred at the ends of the multiscale particle, however, the optical response showed two resonances in the longitudinal direction and only a single resonance in the transverse direction. PMID:22276641

  4. Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks.

    Science.gov (United States)

    Ueno, Kosei; Juodkazis, Saulius; Mizeikis, Vygantas; Ohnishi, Dai; Sasaki, Keiji; Misawa, Hiroaki

    2007-12-10

    Periodically corrugated chains of gold nanoblocks, fabricated with high precision by electron-beam lithography and lift-off techniques, were found to exhibit optical signatures of particle plasmon states in which relative contribution of longitudinal multipolar plasmons is significantly lower than that in equivalent rectangular gold nanorods. Plasmonic response of periodic chains is dominated by dipolar plasmon modes, which in the absence of multipolar exciations are seen as background-free and spectrally well-resolved extinction peaks at infrared (IR) wavelengths. This observation may help improve spectral parameters of IR plasmonic sub-wavelength antennae. Comparative studies of plasmon damping and dephasing in corrugated chains of nanoblocks and smooth rectangular nanorods are also presented. PMID:19550943

  5. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles

    OpenAIRE

    Zasadil, Lauren M.; Andersen, Kristen A.; Yeum, Dabin; Rocque, Gabrielle B.; Wilke, Lee G.; Tevaarwerk, Amye J.; Raines, Ronald T.; Burkard, Mark E; Weaver, Beth A.

    2014-01-01

    The blockbuster chemotherapy drug paclitaxel is widely presumed to cause cell death in tumors as a consequence of mitotic arrest, as it does at concentrations routinely used in cell culture. However, we determine here that paclitaxel levels in primary breast tumors are well below those required to elicit sustained mitotic arrest. Instead, cells in these lower concentrations of drug proceed through mitosis without substantial delay and divide their chromosomes on multipolar spindles, resulting...

  6. Multipolar polarizabilities and two-body dispersion coefficients for Li by a variationally stable procedure

    International Nuclear Information System (INIS)

    Based on the ground-state wave function of Li obtained by Weakest Bound Electron (WBEPM) theory, the multipolar polarizabilities of Li and the two-body dispersion coefficients for the Li-Li system are calculated by utilizing the variationally stable procedure proposed by Gao and Starace. Evaluated values are in agreement with those previously reported, while the method is more simplified and easy to be extended to other alkali metal atoms. (authors)

  7. Deformations of multipolarity six at the saddle point of heaviest nuclei

    International Nuclear Information System (INIS)

    Saddle-point configuration of heaviest nuclei is studied in a multidimensional deformation space. Main attention is given to the role of the deformation of multipolarity six of a general type, described by four independent parameters. The dependence of the potential energy of a superheavy nucleus on these parameters at the saddle-point configuration is illustrated. The analysis is performed within a macroscopic-microscopic approach. (author)

  8. A New Configuration of Multipolar Cuff Electrode and Dedicated IC for Afferent Signal Recording

    OpenAIRE

    Bernard, Serge; Bertrand, Yves; Cathebras, Guy; Gouyet, Lionel; Guiraud, David

    2007-01-01

    Sensory information coming from natural sensors and being propagated on afferent nerve fibers could be used as feedback for a more efficient closed-loop control of a Functional Electrical Stimulation system. In order to extract and separate these signals according to their nerve fascicule origins, we propose a new architecture of a multipolar cuff electrode and an optimized integrated acquisition circuit. Concerning the electrode, we propose a specific configuration using a large number of po...

  9. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles.

    Science.gov (United States)

    Zasadil, Lauren M; Andersen, Kristen A; Yeum, Dabin; Rocque, Gabrielle B; Wilke, Lee G; Tevaarwerk, Amye J; Raines, Ronald T; Burkard, Mark E; Weaver, Beth A

    2014-03-26

    The blockbuster chemotherapy drug paclitaxel is widely presumed to cause cell death in tumors as a consequence of mitotic arrest, as it does at concentrations routinely used in cell culture. However, we determine here that paclitaxel levels in primary breast tumors are well below those required to elicit sustained mitotic arrest. Instead, cells in these lower concentrations of drug proceed through mitosis without substantial delay and divide their chromosomes on multipolar spindles, resulting in chromosome missegregation and cell death. Consistent with these cell culture data, most mitotic cells in primary human breast cancers contain multipolar spindles after paclitaxel treatment. Contrary to the previous hypothesis, we find that mitotic arrest is dispensable for tumor regression in patients. These results demonstrate that mitotic arrest is not responsible for the efficacy of paclitaxel, which occurs because of chromosome missegregation on highly abnormal, multipolar spindles. This mechanistic insight may be used to improve selection of future antimitotic drugs and to identify a biomarker with which to select patients likely to benefit from paclitaxel. PMID:24670687

  10. POWER-SHIFTS IN THE GLOBAL ECONOMY. TRANSITION TOWARDS A MULTIPOLAR WORLD ORDER

    Directory of Open Access Journals (Sweden)

    Ion IGNAT

    2013-12-01

    Full Text Available The paper aims to analyze the new realities and trends related to the new polarity of the global economy, and thus the reconfiguration of global power centers, a process characterized by two simultaneous trends: the rise of new powers and the relative decline of traditional powers. At the beginning of 21st century, global power is suffering two major changes: on the one hand it manifests a transition from West to East, from Atlantic to the Asia-Pacific, and on the other hand, a diffusion from state to non-state actors. Current global economic power has a multipolar distribution, shared between the United States, European Union, Japan and BRICs, with no balance of power between these poles, opposed by the strong ambition of rising countries, China especially, China that rivals the traditional powers represented by the developed countries. The evolution of the main macroeconomic indicators given by the most important global organizations, shows a gradual transition towards a multipolar world. Therefore, the United States is and will remain for a long period of time the global economic leader. However, as China, India and Brazil are growing rapidly, and Russia is looking for lost status, the world is becoming multipolar.

  11. Epistemics for Learning Disabilities: Contributions from Magnetoencephalography, a Functional Neuroimaging Tool

    Directory of Open Access Journals (Sweden)

    VÍCTOR SANTIUSTE-BERMEJO

    2008-01-01

    Full Text Available The syndrome known as Learning Disabilities (LD was described by S. Kirk in 1963. From that point on, institutions from the US, Canada and Spain have engaged in refining the concept and classification of LDs. The Complutense University in Spain, has proposed a descriptive and all-embracing definition, and has studied the different manifestations of LD, pursuing the description of biological markers and neurological features of LD’s main expressions: dyslexia, dyscalculia, dysorthographia, Attention Deficit and Hyperactivity Disorder –ADHD, and so forth. Findings in LD using functional neuroimaging techniques, namely Magnetoencephalography (MEG, are described. MEG is a non-invasive technique, which records magnetic fields naturally generated by the brain and their spatial distribution. It allows simultaneous functional and structural information. MEG is therefore used in the study of primary and superior cognitive functions, in surveillance of patterns of normal cognitive function and those specific to the different LD clinical manifestations.

  12. A custom magnetoencephalography device reveals brain connectivity and high reading/decoding ability in children with autism

    OpenAIRE

    Mitsuru Kikuchi; Yuko Yoshimura; Kiyomi Shitamichi; Sanae Ueno; Tetsu Hirosawa; Toshio Munesue; Yasuki Ono; Tsunehisa Tsubokawa; Yasuhiro Haruta; Manabu Oi; Yo Niida; Remijn, Gerard B; Tsutomu Takahashi; Michio Suzuki; Haruhiro Higashida

    2013-01-01

    A subset of individuals with autism spectrum disorder (ASD) performs more proficiently on certain visual tasks than may be predicted by their general cognitive performances. However, in younger children with ASD (aged 5 to 7), preserved ability in these tasks and the neurophysiological correlates of their ability are not well documented. In the present study, we used a custom child-sized magnetoencephalography system and demonstrated that preserved ability in the visual reasoning task was ass...

  13. Localization of Interictal Epileptiform Activity Using Magnetoencephalography with Synthetic Aperture Magnetometry in Patients with a Vagus Nerve Stimulator

    OpenAIRE

    Stapleton-Kotloski, Jennifer R.; Kotloski, Robert J.; Boggs, Jane A.; Popli, Gautam; O’Donovan, Cormac A.; Couture, Daniel E.; Cornell, Cassandra; Godwin, Dwayne W.

    2014-01-01

    Magnetoencephalography (MEG) provides useful and non-redundant information in the evaluation of patients with epilepsy, and in particular, during the pre-surgical evaluation of pharmaco-resistant epilepsy. Vagus nerve stimulation (VNS) is a common treatment for pharmaco-resistant epilepsy. However, interpretation of MEG recordings from patients with a VNS is challenging due to the severe magnetic artifacts produced by the VNS. We used synthetic aperture magnetometry (g2) [SAM(g2)], an adaptiv...

  14. Characterizing global statistical significance of spatiotemporal hot spots in magnetoencephalography/electroencephalography source space via excursion algorithms

    OpenAIRE

    Xu, Yang; Gustavo P Sudre; Wang, Wei; Douglas J. Weber; Kass, Robert E.

    2011-01-01

    Identifying brain regions with high differential response under multiple experimental conditions is a fundamental goal of functional imaging. In many studies, regions of interest (ROIs) are not determined a priori but are instead discovered from the data, a process that requires care because of the great potential for false discovery. An additional challenge is that magnetoencephalography/electroencephalography sensor signals are very noisy, and brain source images are usually produced by ave...

  15. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes.

    Science.gov (United States)

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; Purohit, Trupta; Dyguda-Kazimierowicz, Edyta; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-09-24

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein-ligand complexes. Such fluorine-backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin-MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin-MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine-backbone interactions in protein-ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin-MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine-backbone interactions may represent a particularly attractive approach to improve inhibitors of protein-protein interactions. PMID:26288158

  16. Magnetoencefalografía: mapeo de la dinámica espaciotemporal de la actividad neuronal / Magnetoencephalography: mapping the spatiotemporal dynamics of neuronal activity

    Scientific Electronic Library Online (English)

    Yang, Zhang; Wenbo, Zhang; Vicenta, Reynoso Alcántara; Juan, Silva-Pereyra.

    2014-01-01

    Full Text Available La magnetoencefalografía es una técnica de neuroimagen no invasiva que mide, con gran exactitud temporal, los campos magnéticos en la superficie de la cabeza producidos por corrientes neuronales en regiones cerebrales. Esta técnica es sumamente útil en la investigación básica y clínica, porque ademá [...] s permite ubicar el origen de la actividad neural en el cerebro. En esta revisión se abordan aspectos básicos de la biofísica del método y se discuten los hallazgos sobre procesos como la percepción del habla, la atención auditiva y la integración de la información visual y auditiva, que son importantes en la investigación. Igualmente, se ilustran sus ventajas, sus limitaciones y las nuevas tendencias en la investigación con magnetoencefalografía. Abstract in english Magnetoencephalography is a noninvasive imaging technique that measures the magnetic fields on the surface of the head --produced by neuronal currents in brain regions -- and provides highly accurate temporal information. Magnetoencephalography is extremely useful in basic and clinical research as i [...] t can also locate the sources of neural activity in the brain. This review chiefly approaches biophysics-related aspects of the method; findings are also discussed on issues such as speech perception, auditory attention and integration of visual-auditory information, which are quintessential in this type of research. Lastly, this review discusses the benefits and limitations of magnetoencephalography and outlines new trends in research with this technique.

  17. A magnetoencephalography study of multi-modal processing of pain anticipation in primary sensory cortices.

    Science.gov (United States)

    Gopalakrishnan, R; Burgess, R C; Plow, E B; Floden, D P; Machado, A G

    2015-09-24

    Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas the auditory cortex displayed delayed processing. In addition, during pain anticipation, the visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. PMID:26210576

  18. The neural processing of musical instrument size information in the brain investigated by magnetoencephalography

    Science.gov (United States)

    Rupp, Andre; van Dinther, Ralph; Patterson, Roy D.

    2005-04-01

    The specific cortical representation of size was investigated by recording auditory evoked fields (AEFs) elicited by changes of instrument size and pitch. In Experiment 1, a French horn and one scaled to double the size played a three note melody around F3 or its octave, F4. Many copies of these four melodies were played in random order and the AEF was measured continuously. A similar procedure was applied to saxophone sounds in a separate run. In Experiment 2, the size and type of instrument (French horn and saxophone) were varied without changing the octave. AEFs were recorded in five subjects using magnetoencephalography and evaluated by spatio-temporal source analysis with one equivalent dipole in each hemisphere. The morphology of the source waveforms revealed that each note within the melody elicits a well-defined P1-N1-P2 AEF-complex with adaptation for the 2nd and 3rd note. At the transition of size, pitch, or both, a larger AEF-complex was evoked. However, size changes elicited a stronger N1 than pitch changes. Furthermore, this size-related N1 enhancement was larger for French horn than saxophone. The results indicate that the N1 plays an important role in the specific representation of instrument size.

  19. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  20. Examining Neural Synchrony in Autism During Resting State With Magnetoencephalography (MEG

    Directory of Open Access Journals (Sweden)

    Smith Tyronda D.

    2014-09-01

    Full Text Available Autism Spectrum Disorder (ASD comprises a group of neurodevelopmental disorders associated with the functioning of the central nervous system (American Psychiatric Association, 2013. The symptoms experienced by individuals with this disorder include social impairment, communication difficulties, and repetitive and stereotyped behaviors. The etiology of ASD has yet to be determined, and it is typically diagnosed based on behavioral criteria of the Diagnostic and Statistical Manual- 5th Edition (DSM-5; APA, 2013 and confirmed with “gold standard” assessment tools such as the Autism Diagnostic Observation Schedule (ADOS and Autism Diagnostic Interview- Revised (ADI-R; Johnson Center for Child Health Development, 2014. Abnormalities in synchronous neural activity have been hypothesized to be a core pathophysiological mechanism (Cornew et al., 2012. Magnetoencephalography (MEG can measure synchronous neural activity during resting state, when the brain is not consciously engaged in cognitive processing. Coherence is a measure of the synchronicity. We examined differences in coherence during resting state in ASD, compared to neurotypical developing individuals (NT, in an attempt to identify potential biomarkers and illuminate a core etiological mechanism.

  1. Magnetoencephalography based on high-Tc superconductivity: a closer look into the brain?

    CERN Document Server

    Öisjöen, F; Figueras, G A; Chukharkin, M L; Kalabukhov, A; Hedström, A; Elam, M; Winkler, D

    2011-01-01

    Magnetoencephalography (MEG) enables the study of brain activity by recording the magnetic fields generated by neural currents and has become an important technique for neuroscientists in research and clinical settings. Unlike the liquid-helium cooled low-Tc superconducting quantum interference devices (SQUIDs) that have been at the heart of modern MEG systems since their invention, high-Tc SQUIDs can operate with liquid nitrogen cooling. The relaxation of thermal insulation requirements allows for a reduction in the stand-off distance between the sensor and the room-temperature environment from a few centimeters to less than a millimeter, where MEG signal strength is significantly higher. Despite this advantage, high-Tc SQUIDs have only been used for proof-of-principle MEG recordings of well-understood evoked activity. Here we show high-Tc SQUID-based MEG may be capable of providing novel information about brain activity due to the close proximity of the sensor to the head. We have performed single- and two-...

  2. Magnetoencephalography---theory, instrumentation, and applications to noninvasive studies of the working human brain

    International Nuclear Information System (INIS)

    Magnetoencephalography (MEG) is a noninvasive technique for investigating neuronal activity in the living human brain. The time resolution of the method is better than 1 ms and the spatial discrimination is, under favorable circumstances, 2--3 mm for sources in the cerebral cortex. In MEG studies, the weak 10 fT--1 pT magnetic fields produced by electric currents flowing in neurons are measured with multichannel SQUID (superconducting quantum interference device) gradiometers. The sites in the cerebral cortex that are activated by a stimulus can be found from the detected magnetic-field distribution, provided that appropriate assumptions about the source render the solution of the inverse problem unique. Many interesting properties of the working human brain can be studied, including spontaneous activity and signal processing following external stimuli. For clinical purposes, determination of the locations of epileptic foci is of interest. The authors begin with a general introduction and a short discussion of the neural basis of MEG. The mathematical theory of the method is then explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices. Finally, several MEG experiments performed in the authors' laboratory are described, covering studies of evoked responses and of spontaneous activity in both healthy and diseased brains. Many MEG studies by other groups are discussed briefly as well

  3. Magnetoencephalography Detection of High-Frequency Oscillations in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2014-12-01

    Full Text Available Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG methods. Twenty healthy children were studied with a high sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. To determine if the high-frequency neuromagnetic signals are true brain responses in high-frequency range, we analyzed the MEG data using the conventional averaging as well as newly developed time-frequency analysis along with beamforming. The data of healthy children showed that very high-frequency brain signals (> 1000 Hz in the somatosensory cortex in the developing brain could be detected and localized using MEG. The amplitude of very high-frequency brain signals was significantly weaker than that of the low-frequency brain signals. Very high-frequency brain signals showed a much earlier latency than those of a low-frequency. Magnetic source imaging (MSI revealed that a portion of the high-frequency signals was from the somatosensory cortex, another portion of the high-frequency signals was probably from the thalamus. Our results provide evidence that the developing brain generates high-frequency signals that can be detected with the noninvasive technique of MEG. MEG detection of high-frequency brain signals may open a new window for the study of developing brain function.

  4. Differential spectral power alteration following acupuncture at different designated places revealed by magnetoencephalography

    Science.gov (United States)

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Wang, Hu; Feng, Yuanyuan; Wei, Wenjuan; Tian, Jie

    2012-03-01

    As an ancient therapeutic technique in Traditional Chinese Medicine, acupuncture has been used increasingly in modern society to treat a range of clinical conditions as an alternative and complementary therapy. However, acupoint specificity, lying at the core of acupuncture, still faces many controversies. Considering previous neuroimaging studies on acupuncture have mainly employed functional magnetic resonance imaging, which only measures the secondary effect of neural activity on cerebral metabolism and hemodynamics, in the current study, we adopted an electrophysiological measurement technique named magnetoencephalography (MEG) to measure the direct neural activity. 28 healthy college students were recruited in this study. We filtered MEG data into 5 consecutive frequency bands (delta, theta, alpha, beta and gamma band) and grouped 140 sensors into 10 main brain regions (left/right frontal, central, temporal, parietal and occipital regions). Fast Fourier Transformation (FFT) based spectral analysis approach was further performed to explore the differential band-limited power change patterns of acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. Significantly increased delta power and decreased alpha as well as beta power in bilateral frontal ROIs were observed following stimulation at ST36. Compared with ST36, decreased alpha power in left and right central, right parietal as well as right temporal ROIs were detected in NAP group. Our research results may provide additional evidence for acupoint specificity.

  5. Role of the multipolar black-body radiation shifts in the atomic clocks at the 10-18 uncertainty level

    Indian Academy of Sciences (India)

    B K Sahoo

    2014-08-01

    We present here an overview of the role of the multipolar black-body radiation (BBR) shifts in the single ion atomic clocks to appraise the anticipated 10-18 uncertainty level. With an attempt to use the advanced technologies for reducing the instrumental uncertainties at the unprecedented low, it is essential to investigate contributions from the higher-order systematics to achieve the ambitious goal of securing the most precise clock frequency standard. In this context, we have analysed contributions to the BBR shifts from the multipolar polarizabilities in a few ion clocks.

  6. Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties

    CERN Document Server

    Petri, Jerome

    2015-01-01

    The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order $l$ and apply them to the retarded point quadrupole ($l=2$), hexapole ($l=3$) and octopole ($l=4$), a generalization of the retarded point dipole ($l=1$). We also compare the Poynting flux from each multipole and show that the spin down luminosity depends on the ratio $R/r_{\\rm L}$, $R$ being the neutron star radius and $r_{\\rm L}$ the light-cylinder radius. Therefore the braking index also depends on $R/r_{\\rm L}$. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field...

  7. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Bruners, P.; Schmitz-Rode, T. [RWTH Aachen (Germany). Lehrstuhl fuer Angewandte Medizintechnik; Guenther, R.W.; Mahnken, A. [Universitaetsklinikum RWTH Aachen (Germany). Klinik fuer Radiologische Diagnostik

    2008-03-15

    Purpose: to evaluate the clinical feasibility and safety of hepatic radiofrequency (RF) ablation using a multipolar RF system permitting the simultaneous use of up to six electrodes. Materials and methods: ten patients (3 female, 7 male, mean age 61) suffering from 29 hepatic metastases (range: 1-5) of different tumors were treated with a modified multipolar RF system (CelonLab Power, Celon Medical Instruments, Teltow, Germany) operating four to six needle-shaped internally cooled RF applicators. The procedure duration, applied energy and generator output were recorded during the intervention. The treatment result and procedure-related complications were analyzed. The achieved coagulation volume was calculated on the basis of contrast-enhanced CT scans 24 hours after RF ablation. Results: complete tumor ablation was achieved in all cases as determined by the post-interventional lack of contrast enhancement in the target region using four applicators in five patients, five applicators in one patient and six applicators in four patients. A mean energy deposition of 353.9 {+-} 176.2 kJ resulted in a mean coagulation volume of 115.9 {+-} 79.5 cm{sup 3}. The mean procedure duration was 74.9 {+-} 21.2 minutes. Four patients showed an intraabdominal hemorrhage which necessitated further interventional treatment (embolization; percutaneous histoacryl injection) in two patients. (orig.)

  8. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results

    International Nuclear Information System (INIS)

    Purpose: to evaluate the clinical feasibility and safety of hepatic radiofrequency (RF) ablation using a multipolar RF system permitting the simultaneous use of up to six electrodes. Materials and methods: ten patients (3 female, 7 male, mean age 61) suffering from 29 hepatic metastases (range: 1-5) of different tumors were treated with a modified multipolar RF system (CelonLab Power, Celon Medical Instruments, Teltow, Germany) operating four to six needle-shaped internally cooled RF applicators. The procedure duration, applied energy and generator output were recorded during the intervention. The treatment result and procedure-related complications were analyzed. The achieved coagulation volume was calculated on the basis of contrast-enhanced CT scans 24 hours after RF ablation. Results: complete tumor ablation was achieved in all cases as determined by the post-interventional lack of contrast enhancement in the target region using four applicators in five patients, five applicators in one patient and six applicators in four patients. A mean energy deposition of 353.9 ± 176.2 kJ resulted in a mean coagulation volume of 115.9 ± 79.5 cm3. The mean procedure duration was 74.9 ± 21.2 minutes. Four patients showed an intraabdominal hemorrhage which necessitated further interventional treatment (embolization; percutaneous histoacryl injection) in two patients. (orig.)

  9. Suppressive responses by visual food cues in postprandial activities of insular cortex as revealed by magnetoencephalography.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2014-06-01

    'Hara-Hachibu' in Japanese means a subjective sense by which we stop eating just before the motivation to eat is completely lost, a similar concept to caloric restriction (CR). Insular cortex is a critical platform which integrates sensory information into decision-making processes in eating behavior. We compared the responses of insular cortex, as assessed by magnetoencephalography (MEG), immediately after presentation of food images in the Fasting condition with those in the 'Hara-Hachibu' condition. Eleven healthy, right-handed males [age, 27.2±9.6 years; body mass index, 22.6±2.1kg/m(2) (mean±SD)] were enrolled in a randomized, two-crossover experiment (Fasting and 'Hara-Hachibu' conditions). Before the MEG recordings in the 'Hara-Hachibu' condition, the participants consumed rice balls as much as they judged themselves to have consumed shortly before reaching satiety. During the MEG recordings, they viewed food pictures projected on a screen. The intensities of MEG responses to viewing food pictures were significantly lower in the 'Hara-Hachibu' condition than those in the Fasting condition (Pfood stimuli in the 'Hara-Hachibu' condition was positively associated with the factor-3 (food tasted) (r=0.693, P=0.018) and aggregated scores (r=0.659, P=0.027) of the Power of Food Scale, a self-report measure of hedonic hunger. These findings may help to elucidate the neural basis of variability of appetite phenotypes under the condition of CR among individuals, and to develop possible strategies for the maintenance of adequate CR in daily life. PMID:24768717

  10. A whole-head magnetoencephalography system with compact axial gradiometer structure

    Science.gov (United States)

    Lee, Y. H.; Yu, K. K.; Kwon, H.; Kim, J. M.; Kim, K.; Park, Y. K.; Yang, H. C.; Chen, K. L.; Yang, S. Y.; Horng, H. E.

    2009-04-01

    We have fabricated a whole-head superconducting quantum interference device (SQUID) gradiometer system for measuring the magnetoencephalography (MEG) of the human brain. Major technical features of the system are the compact structure of the gradiometer and compact readout electronics. As the gradiometers, first-order gradiometers of 50 mm baseline were used to reduce environmental noises. To simplify the fabrication process of the gradiometers, and to increase the refill interval of liquid He, the superconductive connection between the pickup coil wires and input coil pads was done by direct bonding of Nb wires. Therefore, bulky superconducting blocks or superconducting screws were not used for the superconductive connection, and superconducting shielding was not used around the SQUID module, resulting in no distortion of external field uniformity. The distance between the compensation coil of the gradiometer and SQUID input coil pad was reduced to 10 mm, and the total length of the gradiometer is 70 mm. A sensor helmet having 128 gradiometers was cooled inside a helmet-shape liquid He dewar. The average boil-off rate of the MEG system is 10 l d-1 and the refill interval is 7 days when the 128-channel system is in operation every day. To simplify the readout electronics of the SQUID system, double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficient were used. The magnetically shielded room (MSR) has a wall thickness of 200 mm, and consists of two layers of Permalloy and one layer of aluminum. When the 128-channel system was operated inside the MSR, the average magnetic field noise level of the 128 channels was about 3.5 fTrms Hz-1/2 at 100 Hz. Spontaneous and evoked brain magnetic fields were measured using the developed system.

  11. Cortical activity associated with the detection of temporal gaps in tones: A magnetoencephalography study

    Directory of Open Access Journals (Sweden)

    Takako Mitsudo

    2014-10-01

    Full Text Available We used magnetoencephalography (MEG in two experiments to investigate spatio-temporal profiles of brain responses to gaps in tones. Stimuli consisted of leading and trailing markers with gaps between the two markers of 0, 30, or 80 ms. Leading and trailing markers were 300 ms pure tones at 800 Hz or 3200 Hz. Two conditions were examined: the within-frequency (WF condition in which the leading and trailing markers had identical frequencies, and the between-frequency (BF condition in which they had different frequencies. Using minimum-norm estimates (MNE, we localized the source activations at the time of the peak response to the trailing markers. Results showed that MEG signals in response to 800 Hz and 3200 Hz tones were localized in different regions within the auditory cortex, indicating that the frequency pathways activated by the two markers were spatially represented. The time course of regional activity (RA was extracted from each localized region for each condition. In Experiment 1, which used a continuous tone for the WF 0-ms stimulus, the N1m amplitude for the trailing marker in the WF condition differed depending on gap duration but not tonal frequency. In contrast, N1m amplitude in BF conditions differed depending on the frequency of the trailing marker. In Experiment 2, in which the 0-ms gap stimulus in the WF condition was made from two markers and included an amplitude reduction in the middle, the amplitude in WF and BF conditions changed depending on frequency, but not gap duration. The difference in temporal characteristics between WF and BF conditions could be observed in the regional activity.

  12. Plasma diffusion through a two-dimensional magnetic field. Application to multipolar discharge

    International Nuclear Information System (INIS)

    In this work, a collisional plasma diffusion theory through a two dimensional magnetic field is presented. This study allows to define two types of diffusion domains: the weak field domain, where diffusion is practically isotropic, and strong field domain where diffusion is only parallel to field lines. The inversion and ion confinement by ambipolar electric field, perpendicular to line fields, is also understood. This theory is applied to a multipolar discharge. A sheath thickness can be defined, which is the width of the region in which the plasma diffusion is limited by the magnetic field. Little dependence with magnetic field is found. All these results have been observed experimentally. The diffusion equation numerical solution allows to find the density and potential profiles. The comparison of the density in the middle of the plasma with and without multicusp field is done

  13. Eficacia de los imanes permanentes multipolares en el tratamiento del dolor crónico en pacientes con osteoartrosis generalizada / Effectiveness of the multipolar permanent magnets in the treatment of chronic pain in patients with generalized osteoarthrosis

    Scientific Electronic Library Online (English)

    Mario, Hechavarría Sánchez; Mercedes, Gay Muguercia; César, Hernández Acosta; Luis Enrique, Bergues Cabrales.

    2013-11-01

    Full Text Available Se efectuó un estudio longitudinal y controlado de 100 pacientes con osteoartrosis generalizada, atendidos en el Servicio de Medicina Natural y Tradicional del Hospital Provincial Docente Clinicoquirúrgico "Saturnino Lora Torres" de Santiago de Cuba, desde enero hasta diciembre del 2010, a fin de ev [...] aluar la eficacia de los imanes permanentes multipolares en el tratamiento del dolor crónico en los afectados. Estos imanes se ubicaron y fijaron en diferentes puntos de acupunturas para aliviar la dolencia. Los niveles de dolor se cuantificaron mediante la Escala Visual Análoga, por sexo y rango de edades; se evaluaron a los 0, 30, 60 y 90 días durante la terapia. Se demostró la factibilidad del uso de los imanes permanentes multipolares en el alivio del dolor de los pacientes con osteoartrosis generalizada por ser simples, seguros, eficaces y no inducir efectos adversos en el organismo. Abstract in english A longitudinal and controlled study of 100 patients with generalized osteoarthrosis, assisted in the Service of Natural and Traditional Medicine of "Saturnino Lora Torres" Clinical Surgical Teaching Provincial Hospital in Santiago de Cuba was carried out from January to December, 2010, in order to e [...] valuate the effectiveness of the multipolar permanent magnets in the treatment of the chronic pain in those affected. These magnets were placed and fixed in different acupuncture points to reduce pain. The pain levels were quantified by means of the Analogue Visual Scale, by sex and age range; they were evaluated at the 0, 30, 60 and 90 days during the therapy. The feasibility of the use of the multipolar permanent magnets was demonstrated in the relief of pain of the patients with generalized osteoarthrosis as they are simple, sure, effective and induce no adverse effects in the organism.

  14. Self-assembly characteristics of a multipolar donor-acceptor-based bis-pyrene integrated molecular tweezer

    Indian Academy of Sciences (India)

    Deepak Asthana; Geeta Hundal; Pritam Mukhopadhyay

    2014-09-01

    A modular design of a molecular tweezer is presented that integrates a multipolar D--A [D: Donor, A: Acceptor] scaffold, 1-aminopyrene-based fluorophore units and L-alanine-based linkers. The synthesis of the molecule is based on two-fold aromatic nucleophilic reactions (ArSN) and coupling reactions of the acid and amino functionalities. This molecule crystallizes in a non-centrosymmteric (P21) space group.We present its rich self-assembly characteristics that involves an array of -stacking interactions. In addition, the molecular tweezer within its cleft forms H-bonding with two dimethylformamide molecules. Such multipolar D--A systems containing chiral and fluorophore units are potential candidatesfor a number of electronic and photonic applications.

  15. Multipolarity analysis for 14C high-energy resonance populated by (18O,16O) two-neutron transfer reaction

    Science.gov (United States)

    Carbone, D.; Cappuzzello, F.; Cavallaro, M.; Bond?, M.; Agodi, C.; Azaiez, F.; Bonaccorso, A.; Cunsolo, A.; Fortunato, L.; Foti, A.; Franchoo, S.; Khan, E.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.

    2015-10-01

    The 12C(18O,16O)14C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition.

  16. Parametrized Post-Newtonian Theory of Reference Frames, Multipolar Expansions and Equations of Motion in the N-body Problem

    OpenAIRE

    Kopeikin, Sergei; Vlasov, Igor

    2004-01-01

    We discuss a covariant generalization of the parametrized post-Newtonian (PPN) formalism in a class of scalar-tensor theories of gravity. It includes an exact construction of a set of global and local (Fermi-like) references frames for an isolated N-body astronomical system as well as PPN multipolar decomposition of gravitational field in these frames. We derive PPN equations of translational and rotational motion of extended bodies taking into account all gravitational mult...

  17. Properties of highly electronegative plasmas produced in a multipolar magnetic-confined device with a transversal magnetic filter

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    Highly electronegative plasmas were produced in Ar/SF6 gas mixtures in a dc discharge with multipolar magnetic confinement and transversal magnetic filter. Langmuir probe and mass spectrometry were used for plasma diagnostics. Plasma potential drift, the influence of small or large area biased electrodes on plasma parameters, the formation of the negative ion sheath and etching rates by positive and negative ions have been investigated for different experimental conditions. When the electron tem...

  18. Multipolar radiofrequency ablation using 4–6 applicators simultaneously: A study in the ex vivo bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Stoffner, Rudolf, E-mail: rudi_stoffner@hotmail.com [Innsbruck Medical University, Department of Radiology, Anichstr. 35, A-6020 Innsbruck (Austria); Kremser, Christian, E-mail: Christian.Kremser@i-med.ac.at [Innsbruck Medical University, Department of Radiology, Anichstr. 35, A-6020 Innsbruck (Austria); Schullian, Peter, E-mail: Peter.Schullian@i-med.ac.at [Innsbruck Medical University, Department of Radiology, Anichstr. 35, A-6020 Innsbruck (Austria); Haidu, Marion, E-mail: Marion.Haidu@i-med.ac.at [Innsbruck Medical University, Department of Radiology, Anichstr. 35, A-6020 Innsbruck (Austria); Widmann, Gerlig, E-mail: Gerlig.Widmann@i-med.ac.at [Innsbruck Medical University, Department of Radiology, Anichstr. 35, A-6020 Innsbruck (Austria); Bale, Reto J., E-mail: Reto.Bale@i-med.ac.at [Innsbruck Medical University, Department of Radiology, Anichstr. 35, A-6020 Innsbruck (Austria)

    2012-10-15

    In this study the volume and shape of coagulation zones after multipolar radiofrequency ablation (RFA) with simultaneous use of 4–6 applicators in the ex vivo bovine liver were investigated. The RF-applicators were positioned in 13 different configurations to simulate ablation of large solitary tumors and simultaneous ablation of multiple lesions with 120 kJ of applied energy/session. In total, 110 coagulation zones were induced. Standardized measurements of the volume and shape of the coagulation zones were carried out on magnetic resonance images and statistically analyzed. The coagulation zones induced with solitary applicators and with 2 applicators were imperceptibly small and incomplete, respectively. At 20 mm applicator distance, the total ablated volume was significantly larger if all applicators were arranged in a single group compared to placement in 2 distant applicator groups, each consisting of 3 applicators (p = .001). The mean total coagulated volume ranged from immeasurably small (if 6 solitary applicators were applied simultaneously) to 74.7 cc (if 6 applicators at 30 mm distance between neighboring applicators were combined to a single group). Applicator distance, number and positioning array impacted time and shape. The coagulation zones surrounding groups with 4–6 applicators were regularly shaped, homogeneous and completely fused, and the axial diameters were almost constant. In conclusion, multipolar RFA with 4–6 applicators is feasible. The multipolar simultaneous mode should be applied for large and solitary lesions only, small and multiple tumors should be ablated consecutively in standard multipolar mode with up to 3 applicators.

  19. Improvement of an on-line electron spectrometer. Determination of transition multipolarity. Application to 102Ag and 108In

    International Nuclear Information System (INIS)

    The aim of this work has been to optimize the transmission, resolution and background of an electron 'Orange' spectrometer, set-up on-line at the Grenoble isochronous cyclotron. The transitions multipolarities in 102Ag and 108In nuclei have been determined measuring the internal conversion coefficients and a cascade of five pure transitions Ml without cross-over E2 has been found in 108In

  20. Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats

    Science.gov (United States)

    George, Shefin S.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.

    2015-06-01

    Objective. Focused multipolar (FMP) stimulation has been shown to produce restricted neural activation using intracochlear stimulation in animals with a normal population of spiral ganglion neurons (SGNs). However, in a clinical setting, the widespread loss of SGNs and peripheral fibres following deafness is expected to influence the effectiveness of FMP. Approach. We compared the efficacy of FMP stimulation to both monopolar (MP) and tripolar (TP) stimulation in long-term deafened cat cochleae (n = 8). Unlike our previous study, these cochleae contained compromising spatial selectivity by varying the degree of current focusing (referred as ‘partial-FMP’ stimulation). Spatial selectivity of all stimulation modes was unaffected by the electrode position. Finally, spatial selectivity in long-term deafened cochleae was significantly less than that of cochleae with normal SGN population (George S S et al 2014 J. Neural Eng. 11 065003). Significance. The present results indicate that the greater spatial selectivity of FMP and TP stimulation over MP stimulation is maintained in cochleae with significant neural degeneration and is not adversely affected by electrode position. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance.

  1. The Evolutionary Dynamics of Biofuel Value Chains : From Unipolar and Government-Driven to Multipolar Governance

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2014-01-01

    In this paper I propose to push the frontier of global value chain (GVC) governance analysis through the concept of ‘polarity’. Much of the existing GVC literature has focused on ‘unipolar’ value chains, where one group of ‘lead firms’ inhabiting a specific function in a chain plays a dominant role in governing it. Some scholars have explored the dynamics of governance in GVCs characterized as ‘bipolar’, where two sets of actors in different functional positions both drive the chain. I expand this direction further to suggest conceptualizing governance within a continuum between unipolarity and multipolarity. Empirically, I do so by examining the evolutionary dynamics of governance in biofuel value chains, with specific focus on the key regulatory and institutional features that facilitated their emergence and expansion. First, I examine the formation, evolution, and governance of three national/regional value chains (in Brazil, the US, and the EU); then, I provide evidence to support a trend towards the increasing but still partial formation of a global biofuel value chain and examine its governance traits.

  2. Neutron star deformation due to arbitrary-order multipolar magnetic fields

    CERN Document Server

    Mastrano, Alpha; Melatos, Andrew

    2013-01-01

    Certain multi-wavelength observations of neutron stars, such as intermittent radio emissions from rotation-powered pulsars beyond the pair-cascade death line, the pulse profile of the magnetar SGR 1900+14 after its 1998 August 27 giant flare, and X-ray spectral features of PSR J0821-4300 and SGR 0418+5729, suggest that the magnetic fields of non-accreting neutron stars are not purely dipolar and may contain higher-order multipoles. Here, we calculate the ellipticity of a non-barotropic neutron star with (i) a quadrupole poloidal-toroidal field, and (ii) a purely poloidal field containing arbitrary multipoles, deriving the relation between the ellipticity and the multipole amplitudes. We present, as a worked example, a purely poloidal field comprising dipole, quadrupole, and octupole components. We show the correlation between field energy and ellipticity for each multipole, that the l=4 multipole has the lowest energy, and that l=5 has the lowest ellipticity. We show how a mixed multipolar field creates an ob...

  3. A multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using Magnetoencephalography-derived functional connectivity

    Science.gov (United States)

    Maestú, Fernando; Peña, Jose-Maria; Garcés, Pilar; González, Santiago; Bajo, Ricardo; Bagic, Anto; Cuesta, Pablo; Funke, Michael; Mäkelä, Jyrki P.; Menasalvas, Ernestina; Nakamura, Akinori; Parkkonen, Lauri; López, Maria E.; del Pozo, Francisco; Sudre, Gustavo; Zamrini, Edward; Pekkonen, Eero; Henson, Richard N.; Becker, James T.

    2015-01-01

    Synaptic disruption is an early pathological sign of the neurodegeneration of Dementia of the Alzheimer's type (DAT). The changes in network synchronization are evident in patients with Mild Cognitive Impairment (MCI) at the group level, but there are very few Magnetoencephalography (MEG) studies regarding discrimination at the individual level. In an international multicenter study, we used MEG and functional connectivity metrics to discriminate MCI from normal aging at the individual person level. A labeled sample of features (links) that distinguished MCI patients from controls in a training dataset was used to classify MCI subjects in two testing datasets from four other MEG centers. We identified a pattern of neuronal hypersynchronization in MCI, in which the features that best discriminated MCI were fronto-parietal and interhemispheric links. The hypersynchronization pattern found in the MCI patients was stable across the five different centers, and may be considered an early sign of synaptic disruption and a possible preclinical biomarker for MCI/DAT. PMID:26448910

  4. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  5. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    International Nuclear Information System (INIS)

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m2 before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m2 after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  6. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  7. [Morphometry of giant multipolar neurons of the brain stem reticular formation in rats on board the Kosmos-1667 biosatellite].

    Science.gov (United States)

    Belichenko, P V; Leontovich, T A

    1989-05-01

    Giant multipolar neurons of nucleus reticularis gigantocellularis of rats which had been kept on board the biosatellite "Kosmos-1667" were morphometrically studied. There was a trend towards the increase in the cellular surface, the maximum diameter of dendritic field, the volume of the whole dendritic territory in the test group ad in the control experimental group kept on the earth. A reliable decrease in dendritic mass oriented to nucleus vestibularis and an increase in dendritic mass oriented to the midline were also found in test group, as compared to 3 control groups. Our data were discussed in the light of nervous tissue plasticity in adult mammals. PMID:2736303

  8. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single photon ranging precision of 8 cm. The high speed, high throughput data system is capable of recording 22 million time-tagged photon detection events per second. At typical aircraft flight speeds, each of the 16 channels acquires a single photon range every 5 to 15 cm along the four profiles providing a highly sampled measure of surface roughness. The nominal flight altitude is 5 km yielding 10 m spacing between the four beam profiles, providing a measure of surface slope at 10 m length scales. The altitude is currently constrained by the low signal level of the NIR cross-polarized channels. SIMPL’s measurement capabilities provide information about surface elevation, roughness, slope and type of value in characterizing ice sheet surfaces and sea ice, including their melt state. Capabilities will be illustrated using data acquired over Lake Erie ice cover in February, 2009.

  9. Proposal for a new method for multipolarity determinations: an application of the electron-positron angular correlation in internal-pair transitions

    International Nuclear Information System (INIS)

    A combination of semicircular Si(Li) detectors with two magnetic lens spectrometers is shown to offer a possibility to construct an effective spectroscopic instrument for multipolarity determinations. The method is based on the fact that the angular correlation between the electron-positron pair is sensitive to multipolarity, even at high transition energies. Response characteristics and multipole discrimination power are given for different detection geometries. The calculations are based on the zero-order Born approximation (ZBA) and are sufficiently accurate at least for k>3 and Z<50. (author)

  10. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study

    Directory of Open Access Journals (Sweden)

    Panagiotis G Simos

    2014-01-01

    Full Text Available The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n=29 or did not (n=36 meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n=18 or a higher IQ (n=44 subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ measures and IQ-discrepancy criteria in the diagnosis of dyslexia.

  11. Many-body dipole-induced dipole model for electrorheological fluids

    OpenAIRE

    J.P. Huang; Yu, K. W.

    2002-01-01

    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch due to many-body and multipolar interactions. Thus various work attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar...

  12. Crisis del lóbulo temporal registrada mediante magnetoencefalografía: caso clínico Temporal lobe seizure recorded by magnetoencephalography: case report

    Directory of Open Access Journals (Sweden)

    Carlos Amo

    2004-09-01

    Full Text Available La localización del inicio de las crisis es un factor importante para la evaluación prequirúrgica de la epilepsia. En este trabajo se describe la localización del inicio de una crisis registrada mediante magnetoencefalografía (MEG en un niño de 12 años que presenta crisis parciales complejas farmacorresistentes. La RM muestra una lesión de 20mm de diámetro en el hipocampo izquierdo. EEG de superficie con ondas theta temporales izquierdas. Registro MEG interictal con punta-onda aislada posterior e inferior a la lesión de la RM. Registro MEG ictal con punta-onda (2 Hz. La localización de los dipolos indica el inicio de la crisis en la circunvolución temporal inferior en la misma localización que la actividad interictal MEG. Esta actividad ictal se propaga bilateralmente a áreas frontales. El registro corticográfico intraquirúrgico confirma los resultados de la localización interictal mediante MEG.Ictal onset localization is a important factor in presurgical evaluation of epilepsy. This paper describes the localization of a seizure onset recorded by magnetoencephalography (MEG from a 12-year-old male patient who suffered from complex partial drug-resistant seizures. MRI revealed a 20mm diameter lesion located in left hippocampus. Scalp EEG showed left temporal theta waves. Interictal MEG registrations detected isolated spike-wave activity posterior and inferior to the MRI lesion. Ictal MEG showed continuous spike-wave activity (2 Hz. Dipole localization sited seizure onset in the inferior left temporal gyrus, the same localization of the interictal MEG activity. This ictal activity spreads bilaterally to frontal areas. Intrasurgical electrocorticography recording confirmed interictal MEG results.

  13. Crisis del lóbulo temporal registrada mediante magnetoencefalografía: caso clínico / Temporal lobe seizure recorded by magnetoencephalography: case report

    Scientific Electronic Library Online (English)

    Carlos, Amo; Marta, Santiuste; Fernando, Maestú; Alberto, Fernández; Renata, Egatz; Mercedes, González-Hidalgo; Cristóbal, Saldaña; Antonio, Sáiz; Tomás, Ortiz.

    2004-09-01

    Full Text Available La localización del inicio de las crisis es un factor importante para la evaluación prequirúrgica de la epilepsia. En este trabajo se describe la localización del inicio de una crisis registrada mediante magnetoencefalografía (MEG) en un niño de 12 años que presenta crisis parciales complejas farmac [...] orresistentes. La RM muestra una lesión de 20mm de diámetro en el hipocampo izquierdo. EEG de superficie con ondas theta temporales izquierdas. Registro MEG interictal con punta-onda aislada posterior e inferior a la lesión de la RM. Registro MEG ictal con punta-onda (2 Hz). La localización de los dipolos indica el inicio de la crisis en la circunvolución temporal inferior en la misma localización que la actividad interictal MEG. Esta actividad ictal se propaga bilateralmente a áreas frontales. El registro corticográfico intraquirúrgico confirma los resultados de la localización interictal mediante MEG. Abstract in english Ictal onset localization is a important factor in presurgical evaluation of epilepsy. This paper describes the localization of a seizure onset recorded by magnetoencephalography (MEG) from a 12-year-old male patient who suffered from complex partial drug-resistant seizures. MRI revealed a 20mm diame [...] ter lesion located in left hippocampus. Scalp EEG showed left temporal theta waves. Interictal MEG registrations detected isolated spike-wave activity posterior and inferior to the MRI lesion. Ictal MEG showed continuous spike-wave activity (2 Hz). Dipole localization sited seizure onset in the inferior left temporal gyrus, the same localization of the interictal MEG activity. This ictal activity spreads bilaterally to frontal areas. Intrasurgical electrocorticography recording confirmed interictal MEG results.

  14. Establishment of M1 multipolarity of a 6.5 mu_N^2 resonance in 172-Yb at E_gamma=3.3 MeV

    OpenAIRE

    A. Schiller; Voinov, A.; Algin, E.; J. A. Becker; Bernstein, L. A.; Garrett, P. E.; Guttormsen, M.; Nelson, R. O.; Rekstad, J.; Siem, S.

    2004-01-01

    Two-step-cascade spectra in 172-Yb have been measured after thermal neutron capture. They are compared to calculations based on experimental values of the level density and radiative strength function (RSF) obtained from the 173-Yb(3-He,alpha gamma)172-Yb reaction. The multipolarity of a 6.5(15) mu_N^2 resonance at E_gamma=3.3(1) MeV in the RSF is determined to be M1 by this comparison.

  15. Collisional diffusion of a plasma in multipolar and picket fence devices

    International Nuclear Information System (INIS)

    A collisional diffusion model of a low-#betta# plasma in a two-dimensional magnetic field is worked out under the assumption of joint diffusion of electrons and ions in the plane of the magnetic field. This model is applied to multidipole and picket fence discharges; density and potential profile are computed. The main features observed experimentally are in qualitative agreement with this computation: a leak width proportional to the hybrid gyroradius and the existence of potential hills between the cusps and poor plasma confinement

  16. A Rússia na ordem mundial: com o Ocidente, com o Oriente ou um pólo autônomo em um mundo multipolar?

    Scientific Electronic Library Online (English)

    Alexander, Zhebit.

    2003-06-01

    Full Text Available O artigo persegue o objetivo de definir o lugar e o papel da Rússia nas relações internacionais contemporâneas nos últimos anos. Ao se debruçar sobre o dilema tradicional da política externa russa - Ocidentalismo versus Orientalismo - o autor analisa o cenário de multipolaridade defendido pela nova [...] concepção da política externa russa e o relaciona com a fase do pragmatismo e do multilateralismo que caracteriza a atuação internacional da Rússia de Putin, fazendo considerações, decorrentes do impacto dos ataques terroristas aos Estados Unidos em 11 de setembro de 2001 sobre a política externa russa. A atitude pragmática e a natureza multivetorial da política externa russa contribuem, segundo o autor, para o fortalecimento das posições internacionais da Rússia em comparação com a perda ou a natureza incerta das alianças e dos relacionamentos do período da transição pós-soviética. Abstract in english The article pursues the purpose to place Russia and its politics within the context of today's international relations. While discussing the traditional dilemma of the Russian foreign politics - Occidentalism versus Orientalism - the author analyses the scenario of multipolarity, backed up by the ne [...] w Russian foreign policy concept. Hence it is related to the pragmatism and the multilateralism of the international posture of Putin's Russia, the author makes several considerations, which follow from the impact of the September 11th, 2001, terrorist attacks on the United States of America with regard to Russia's foreign policy. The pragmatic attitude and the multi-axis nature of the Russian foreign policy nowadays contribute, according to the author, to strengthen Russia's international background in comparison with the loss or the uncertain nature of alliances and relationships of the post-Soviet transition period.

  17. A Rússia na ordem mundial: com o Ocidente, com o Oriente ou um pólo autônomo em um mundo multipolar?

    Directory of Open Access Journals (Sweden)

    Alexander Zhebit

    2003-06-01

    Full Text Available O artigo persegue o objetivo de definir o lugar e o papel da Rússia nas relações internacionais contemporâneas nos últimos anos. Ao se debruçar sobre o dilema tradicional da política externa russa - Ocidentalismo versus Orientalismo - o autor analisa o cenário de multipolaridade defendido pela nova concepção da política externa russa e o relaciona com a fase do pragmatismo e do multilateralismo que caracteriza a atuação internacional da Rússia de Putin, fazendo considerações, decorrentes do impacto dos ataques terroristas aos Estados Unidos em 11 de setembro de 2001 sobre a política externa russa. A atitude pragmática e a natureza multivetorial da política externa russa contribuem, segundo o autor, para o fortalecimento das posições internacionais da Rússia em comparação com a perda ou a natureza incerta das alianças e dos relacionamentos do período da transição pós-soviética.The article pursues the purpose to place Russia and its politics within the context of today's international relations. While discussing the traditional dilemma of the Russian foreign politics - Occidentalism versus Orientalism - the author analyses the scenario of multipolarity, backed up by the new Russian foreign policy concept. Hence it is related to the pragmatism and the multilateralism of the international posture of Putin's Russia, the author makes several considerations, which follow from the impact of the September 11th, 2001, terrorist attacks on the United States of America with regard to Russia's foreign policy. The pragmatic attitude and the multi-axis nature of the Russian foreign policy nowadays contribute, according to the author, to strengthen Russia's international background in comparison with the loss or the uncertain nature of alliances and relationships of the post-Soviet transition period.

  18. Multipolarity remanences in lower oceanic crustal gabbros recovered by drilling at Hess Deep (Integrated Ocean Drilling Program Expedition 345)

    Science.gov (United States)

    Morris, Antony; Horst, Andrew; Friedman, Sarah; Nozaka, Toshio

    2015-04-01

    A long-term goal of the scientific ocean drilling community is to understand the processes by which the ocean crust is constructed through magmatism, deformation, metamorphism and hydrothermal cooling. Insights into the magnetic properties of the lower crust have come from drilling at oceanic core complexes and in tectonic windows. At the Hess Deep Rift, propagation of the Cocos-Nazca Ridge into young, fast-spreading East Pacific Rise crust exposes a dismembered, but nearly complete lower crustal section. Here, IODP Expedition 345 (Site U1415) recovered primitive plutonic lithologies including gabbro, troctolitic gabbro and olivine gabbronorite. These rocks exhibit cumulate textures similar to those found in layered basic intrusions and some ophiolite complexes. Metamorphism is dominated by background greenschist facies alteration associated with cataclastic deformation that likely results from Cocos-Nazca rifting. Some intervals display complex, multiple remanence components within individual samples. A high temperature component unblocks above 500°-520°C and an intermediate temperature component of nearly antipodal direction unblocks between 425°-450°C and 500°-520°C. In addition, a few samples display a third component that unblocks between 100-350°C that is nearly parallel to the highest temperature component. These multiple, nearly antipodal components suggest that remanence was acquired in different geomagnetic chrons, and represent the first multipolarity remanences seen in Pacific lower oceanic crust. Similar remanence structures, however, have been reported in lower crustal gabbros recovered from slow-spreading rate crust along the Mid-Atlantic Ridge, and have been interpreted to reflect protracted accretion or protracted cooling. In contrast, at Hess Deep unblocking temperatures appear consistent with temperatures inferred for successive phases of alteration, suggesting an alteration history spanning at least two polarity chrons.

  19. Multipolar SPM machines for direct drive application: a comprehensive design approach

    OpenAIRE

    Boazzo, Barbara; Pellegrino, Gian-Mario Luigi; Vagati, Alfredo

    2012-01-01

    A closed-form, per-unit formulation is proposed, for the design of surface mounted permanent magnet motors with high number of poles. The model evaluates the shear stress, the power factor and the specific Joule loss as the indicators of the machine performance, and demonstrates that this is determined by the correct choice of a very limited set of key-geometrical parameters. The design criteria are described analytically and then applied to example designs, FEA validated. Distributed- and co...

  20. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga 816-8580 (Japan)

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understanding the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.

  1. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    International Nuclear Information System (INIS)

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understanding the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance

  2. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    DEFF Research Database (Denmark)

    Jakobsen, Sofie; Bereau, Tristan

    2015-01-01

    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential, which is especially important to describe key, challenging interactions, such as lone pairs, ?-interactions, and hydrogen bonds. These chemical environments are probed by focusing on the hydration properties of two molecules: N-methylacetamide and phenyl bromide. Both, equilibrium and dynamical, quantities are affected by the quality of the electrostatic model. The alteration of the first solvation shell in MTP simulations is validated by comparing with lifetimes and correlation times of solute–solvent interactions from experiment. The improved dynamical behavior found in the MTP simulations—observed for molecules parametrized using very different protocols—suggests that a systematic improvement of both equilibrium and dynamical quantities when using MTP electrostatics is possible.

  3. A program for calculating gamma-gamma directional correlation coefficients and angular distribution coefficients for gamma rays of mixed multipolarities from partially aligned nuclei

    International Nuclear Information System (INIS)

    Conservation of angular momentum governs the multipolarity of electromagnetic transitions between nuclear excited states. In certain cases a mixture of two multipolarities may occur in a single transition. The amount of mixing, i.e. the mixing ratio, is determined by the structure of the nuclear levels involved. The most probable mixing ratio can be determined by accurately measuring the directional correlation between two transitions or the angular distribution of a gamma ray with respect to a beam of charged particles which partially aligns the nucleus. The program ANGCOR, catalogue number ABPG, for analyzing gamma-gamma directional correlations has been modified to include analysis of the angular distribution data. The program has two modes of operation. In mode I or data analysis mode, directional correlation or distribution coefficients Asub(K) are fit to the experimental data by the method of least-squares with second- and fourth-order Legendre polynomials having only even terms. Mode II, the data simulation mode, calculates a set of directional correlation coefficients either from spins and two mixing ratios or from a mixing ratio and a value of sigma corrects for solid angle, and calculates a set of angular correlation data normalized to A0 = 10 000. These simulated data are then entered in mode I and result in a similar output. In effect, the second mode allows the user to test the program. (Auth.)

  4. Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome.

    Science.gov (United States)

    Robb Swan, Ashley; Nichols, Sharon; Drake, Angela; Angeles, AnneMarie; Diwakar, Mithun; Song, Tao; Lee, Roland R; Huang, Ming-Xiong

    2015-10-01

    Mild traumatic brain injury (mTBI) is common in the United States, accounting for as many as 75-80% of all TBIs. It is recognized as a significant public health concern, but there are ongoing controversies regarding the etiology of persistent symptoms post-mTBI. This constellation of nonspecific symptoms is referred to as postconcussive syndrome (PCS). The present study combined results from magnetoencephalography (MEG) and cognitive assessment to examine group differences and relationships between brain activity and cognitive performance in 31 military and civilian individuals with a history of mTBI+PCS and 33 matched healthy control subjects. An operator-free analysis was used for MEG data to increase reliability of the technique. Subjects completed a comprehensive neuropsychological assessment, and measures of abnormal slow-wave activity from MEG were collected. Results demonstrated significant group differences on measures of executive functioning and processing speed. In addition, significant correlations between slow-wave activity on MEG and patterns of cognitive functioning were found in cortical areas, consistent with cognitive impairments on exams. Results provide more objective evidence that there may be subtle changes to the neurobiological integrity of the brain that can be detected by MEG. Further, these findings suggest that these abnormalities are associated with cognitive outcomes and may account, at least in part, for long-term PCS in those who have sustained an mTBI. PMID:25808909

  5. Neural masses and fields in dynamic causal modeling.

    OpenAIRE

    RosalynJMoran

    2013-01-01

    Dynamic causal modelling (DCM) provides a framework for the analysis of effective connectivity among neuronal subpopulations that subtend invasive (electrocorticograms and local field potentials) and non-invasive (electroencephalography and magnetoencephalography) electrophysiological responses. This paper reviews the suite of neuronal population models including neural masses, fields and conductance–based models that are used in DCM. These models are expressed in terms of sets of differentia...

  6. Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution.

    Science.gov (United States)

    Piquemal, Jean-Philip; Gresh, Nohad; Giessner-Prettre, Claude

    2003-12-01

    We have, within the framework of the molecular mechanics method SIBFA, improved the formulation of the Coulomb (electrostatic) energy contribution to the intermolecular interaction energy. This was done by integrating "overlap-like" terms into two components of the multipolar development used to calculate this contribution in SIBFA. The calibration of the new component is done on five water dimers by fitting this augmented electrostatic contribution to the corresponding Ec term. Several tests are done on (i) representative neutral and ionic hydrogen-bonded complexes; (ii) the complexes of metal cations (Cu(I) and Cu(II)) with a neutral or an anionic ligand; and (iii) a representative stacked complex. The improvement brought by the new formulation reduces the difference between the ab initio (Ec) and molecular mechanics (EMTP*) values by almost an order of magnitude when compared to the values of EMTP calculated using the standard method. PMID:26313624

  7. Spectral power and functional connectivity changes during mindfulness meditation with eyes open: A magnetoencephalography (MEG) study in long-term meditators.

    Science.gov (United States)

    Wong, W P; Camfield, D A; Woods, W; Sarris, J; Pipingas, A

    2015-10-01

    Whilst a number of previous studies have been conducted in order to investigate functional brain changes associated with eyes-closed meditation techniques, there is a relative scarcity in the literature with regards to changes occurring during eyes-open meditation. The current project used magnetoencephalography (MEG) to investigate differences in spectral power and functional connectivity between 11 long-term mindfulness meditators (LTMMs) with >5 years of experience and 12 meditation-naïve control participants both during baseline eyes-open rest and eyes-open open-monitoring (OM) mindfulness meditation. During resting with eyes-open, prior to meditating, greater mean alpha power was observed for LTMMs in comparison to controls. However, during the course of OM meditation, a significantly greater increase in theta power was observed over a broad fronto-centro-parietal region for control participants in comparison to LTMMs. In contrast, whole-head mean connectivity was found to be significantly greater for long-term meditators in comparison to controls in the theta band both during rest as well as during meditation. Additionally, mean connectivity was significantly lower for long-term meditators in the low gamma band during rest and significantly lower in both low and high gamma bands during meditation; and the variance of low-gamma connectivity scores for long-term meditators was significantly decreased compared to the control group. The current study provides important new information as to the trait functional changes in brain activity associated with long-term mindfulness meditation, as well as the state changes specifically associated with eyes-open open monitoring meditation techniques. PMID:26166440

  8. Consistencia epistémica del síndrome de Dificultades del Aprendizaje: aportaciones de la magnetoencefalografía como técnica de neuroimagen funcional / Epistemics for Learning Disabilities: Contributions from Magnetoencephalography, a Functional Neuroimaging Tool

    Scientific Electronic Library Online (English)

    VÍCTOR, SANTIUSTE-BERMEJO; MARTA, SANTIUSTE-DÍAZ.

    2008-12-01

    Full Text Available El síndrome Dificultades del Aprendizaje (DA) fue descrito en 1963 por S. Kirk. Desde entonces, diversas escuelas en EE.UU., Canadá y España han afinado su concepto y clasificación. La UCM en España ha propuesto una definición descriptiva y totalizadora, y ha estudiado empíricamente distintas manife [...] staciones, intentando descubrir sus marcadores biológicos y las características neurológicas de sus principales manifestaciones (dislexia, discalculia, disortografia, TDA, TDAH, etc.). Se describen los hallazgos en DA a partir de estudios como la magnetoencefalografía (MEG), técnica inocua que recoge campos magnéticos generados naturalmente por el cerebro y analiza su distribución espacial para localizar los generadores neuronales responsables, proporcionando información simultánea sobre la estructura y la función cerebral en patrones de normalidad en el procesamiento cognitivo y patrones aberrantes propios de las particulares manifestaciones clínicas del síndrome DA. Abstract in english The syndrome known as Learning Disabilities (LD) was described by S. Kirk in 1963. From that point on, institutions from the US, Canada and Spain have engaged in refining the concept and classification of LDs. The Complutense University in Spain, has proposed a descriptive and all-embracing definiti [...] on, and has studied the different manifestations of LD, pursuing the description of biological markers and neurological features of LD’s main expressions: dyslexia, dyscalculia, dysorthographia, Attention Deficit and Hyperactivity Disorder -ADHD, and so forth. Findings in LD using functional neuroimaging techniques, namely Magnetoencephalography (MEG), are described. MEG is a non-invasive technique, which records magnetic fields naturally generated by the brain and their spatial distribution. It allows simultaneous functional and structural information. MEG is therefore used in the study of primary and superior cognitive functions, in surveillance of patterns of normal cognitive function and those specific to the different LD clinical manifestations.

  9. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    Science.gov (United States)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  10. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  11. Imagens multipolarizadas do sensor Palsar/Alos na discriminação das fases fenológicas da cana?de?açúcar / Multipolarized Palsar/Alos images to discriminate sugarcane phenological phases

    Scientific Electronic Library Online (English)

    Michelle Cristina Araujo, Picoli; Rubens Augusto, Lamparelli; Edson Eyji, Sano; Jansle Vieira, Rocha.

    2012-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o potencial das imagens multipolarizadas do sensor?radar Palsar/Alos em diferenciar as fases fenológicas da cana?de?açúcar. Valores digitais de quatro imagens do sensor, dos meses de fevereiro, maio, agosto e outubro de 2008, com polarizações HH (emissão e receb [...] imento de onda na polarização horizontal) e HV (emissão de onda na polarização horizontal e recebimento na vertical), foram convertidos para coeficientes de retroespalhamento (?°), para a análise de dados de cana?de?açúcar, cultivadas em talhões na região nordeste do Estado de São Paulo. Foram selecionadas três variedades, em diferentes estágios fenológicos: RB85?5156, seis talhões; RB86?7515, dez talhões; e RB92?5345, dez talhões. As diferenças entre as fases fenológicas foram avaliadas para cada uma das variedades e, também, entre as variedades. A utilização simultânea ou não dos dados do sensor Palsar/Alos, obtidos em duas polarizações, foi capaz de discriminar as diferentes fases de crescimento da cana?de?açúcar, com exceção da fase de crescimento dos colmos e a fase de maturação, em que não foi observada diferença significativa. Abstract in english The objective of this work was to evaluate the potential of multipolarized Palsar/Alos satellite images to discriminate phenological phases of sugarcane. Digital values from four digital images of February, May, August, and October 2008, with HH (sending and receiving wave in horizontal polarization [...] ) and HV polarizations (sending wave in horizontal polarization and receiving in vertical polarization), were converted to backscattering coefficients (?°) for data analysis of sugarcane cultivated in the northeastern of the state of São Paulo, Brazil. Three varieties were selected at different phenological stages: RB85?5156, six stands; RB86?7515, ten stands; and RB92?5345, ten stands. The differences between the phenological phases were analyzed for each variety, and also between varieties. The single or dual?poralized Palsar/Alos data, obtained in two polarizations, were able of discriminating the different phases of sugarcane growth, except for the grand growth period and maturity phase, in which no significant difference was observed.

  12. Internal conversion calculations in Hartree-Fock atomic model: improved agreement with experiment

    International Nuclear Information System (INIS)

    Two relativistic, independent-particle atomic models are employed to calculate two sets of internal conversion coefficients, viz., the Hartree-Fock model and the Hartree-Fock-Slater model with the weighting factor C=1 in the exchange term. Eight transitions with energies of 50 to 412 keV, multipolarities, M1,E2,E3,M4, in nuclei with Z=47 to 80 are considered. The former set of the conversion coefficients is found to agree substantially better with 68 experimental data than the latter. (author)

  13. Internal conversion calculations in Hartree-Fock atomic model: improved agreement with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dragoun, O.; Rysavy, M.; Becvar, F.; Brabec, V. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky)

    1981-01-01

    Two relativistic, independent-particle atomic models are employed to calculate two sets of internal conversion coefficients, viz., the Hartree-Fock model and the Hartree-Fock-Slater model with the weighting factor C=1 in the exchange term. Eight transitions with energies of 50 to 412 keV, multipolarities, M1,E2,E3,M4, in nuclei with Z=47 to 80 are considered. The former set of the conversion coefficients is found to agree substantially better with 68 experimental data than the latter.

  14. Information Content Analysis for the Multi-Viewing, Multi-Channel, Multi-Polarization Imaging (3MI) Instrument : Toward Retrieval of Vertically Resolved Cloud Properties from Passive Only Measurements.

    Science.gov (United States)

    Riedi, J.; Merlin, G.; Labonnote, L.; Cornet, C.; Ferlay, N.; Desmons, M.; Dubuisson, P.; Parol, F.; Davis, A. B.; Marbach, T.

    2014-12-01

    The EUMETSAT Polar System- Second Generation (EPS-SG) is currently under development to take over the current EUMETSAT Polar System at the 2020 horizon. As part of it, the Multi-Viewing Multi-Channel Multi-Polarization Imaging mission (3MI) will be dedicated to the operational monitoring of aerosols but will also provide unique observations for characterization of cloud properties building on the legacy of POLDER and particularly of its 3rd mission (PARASOL) within the A-Train. Through the synergy of POLDER3/PARASOL and MODIS/AQUA several studies have demonstrated the great interest of combining multispectral, multiangle and polarization measurements in the visible, near and shortwave infrared to better constrain retrieval of clouds microphysical and macrophysical properties. Remote-sensing of cloud thermodynamic phase (Riedi et al, 2010), liquid (Bréon and Doutriaux-Boucher, 2005) or ice clouds microphysics (Zhang et al, 2009; Cole et al, 2012), cloud radiative (Zeng et al, 2012) or macrophysical properties (Ferlay et al, 2010; Desmons et al, 2013) can unarguably benefit from the additional information content brought by polarization and multiangle measurements. At the same time, retrieval algorithms are gaining further complexity and skills. Thanks to availability of computational resources, practical implementation of optimal estimation or related optimization techniques (Delanoe & Hogan, 2008; Dubovik et al, 2013) have appeared that allow simultaneous and consistent retrieval of larger sets of parameters from constantly growing observations vectors. Therefore 3MI observations will not only allow to improve accuracy of future cloud products but also opens perspectives for the development of new retrieval algorithms. A major challenge for cloud remote-sensing from passive measurements is to obtain information on clouds properties vertical distribution and structure. Through results of a comprehensive information content analysis we will illustrate our current efforts to obtain vertically resolved information on cloud properties from 3MI passive measurements only. In particular the synergy of multiangle polarization measurements at 443 and 865 nm with Oxygen A-band differential absorption information to retrieve cloud geometrical thickness will be discussed.

  15. The african protoproverbial in a multipolar world

    OpenAIRE

    Taiwo, ?l?runt?ba-Oju

    2014-01-01

    The proverb is a rhetorical universal and as such shares features across linguistic, ethnic and culture boundaries, thus making typological distinctions along ethnic or regional lines a daunting task. Further complicating this scenario within the African context is the relentless hybridization and subversion of the African proverb consequent on colonial contact and sundry postcolonial interventions. This twin trajectory, the conceptual universalism of the proverb and the relent...

  16. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.

    Science.gov (United States)

    Engemann, Denis A; Gramfort, Alexandre

    2015-03-01

    Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. PMID:25541187

  17. Dynamical modeling and the interactions with the ISM

    CERN Document Server

    Steffen, Wolfgang

    2011-01-01

    This paper is a review of some of the recent modeling efforts to improve our understanding of structure formation and evolution of planetary nebulae including their interaction with the interstellar medium. New propositions have been made for the formation mechanism of multi-polar PNe and PPNe. These mechanisms are based on the central engine with interacting binary stars or hole producing instabilities in expanding shock waves leading to illumination effects from the central star that change the appearance of the nebula. Furthermore, there has been a lot of progress in the observation and 3D modeling of the kinematics, which is key to the understanding of the dynamics. Extensive observational catalogs are coming online for the kinematics, as well as some very detailed proper motion measurements have been made. New techniques for morpho--kinematic 3D modeling help to make the interpretation of kinematic data more reliable and detailed. In addition to individual pointed observations, new surveys have lead to t...

  18. Giant resonance of electrical multipole from droplet model

    International Nuclear Information System (INIS)

    The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author)

  19. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions. PMID:26277163

  20. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-01

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  1. Magnetoencephalography Demonstrates Multiple Asynchronous Generators During Human Sleep Spindles

    OpenAIRE

    Dehghani, Nima; Cash, Sydney S.; Rossetti, Andrea O.; Chen, Chih Chuan; Halgren, Eric

    2010-01-01

    Sleep spindles are ?1 s bursts of 10–16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG ...

  2. Distorted cortical networks in dislexia: findings using Magnetoencephalography (MEG

    Directory of Open Access Journals (Sweden)

    Eduardo M. Catillo

    2008-04-01

    Full Text Available In dyslexic children a functional deficit in the brain circuitry supporting some of the cognitive operations taking place while they learn how the printed words maps onto spoken language is suspected. Until recently, however, no information existed regarding the functional status of this circuit during the early stages of reading acquisition. In the context of three studies we sought to address key issues in the pathophysiology of this condition using Magnetoencephalograhy (MEG at the University of Texas-Houston. The first study, including 30 kindergarten children at risk for developing reading problems and 15 not-at-risk controls, ascertained that the aberrant neural circuit that underlies reading problems appears to be present in the initial stages of reading acquisition. A subset of these children were retested a year later using identical procedures in a second study. Children in the at-risk group showed the most prominent changes in brain activation profiles and successfully predicted individual differences in the growth of reading skill measures. The results of a third study showed clearly that the aberrant activation profile can be normalized following intensive behavioral instruction. These findings are consistent with the view that dyslexia represents a functional deficit in the neural network that mediates the conversion of print to sound, which is amenable to change given adequate instruction.

  3. Adaptive Cluster Analysis Approach for Functional Localization Using Magnetoencephalography

    OpenAIRE

    HoomanAlikhanian; J. DouglasCrawford

    2013-01-01

    In this paper we propose an agglomerative hierarchical clustering Ward’s algorithm in tandem with the Affinity Propagation algorithm to reliably localize active brain regions from magnetorencephalography (MEG) brain signals. Reliable localization of brain areas with MEG has been difficult due to variations in signal strength, and the spatial extend of the reconstructed activity. The proposed approach to resolve this difficulty is based on adaptive clustering on reconstructed beamformer images...

  4. Phase-compensated averaging for analyzing electroencephalography and magnetoencephalography epochs.

    Science.gov (United States)

    Matani, Ayumu; Naruse, Yasushi; Terazono, Yasushi; Iwasaki, Taro; Fujimaki, Norio; Murata, Tsutomu

    2010-05-01

    Stimulus-locked averaging for electroencephalography and/or megnetoencephalography (EEG/MEG) epochs cancels out ongoing spontaneous activities by treating them as noise. However, such spontaneous activities are the object of interest for EEG/MEG researchers who study phase-related phenomena, e.g., long-distance synchronization, phase-reset, and event-related synchronization/desynchronization (ERD/ERS). We propose a complex-weighted averaging method, called phase-compensated averaging, to investigate phase-related phenomena. In this method, any EEG/MEG channel is used as a trigger for averaging by setting the instantaneous phases at the trigger timings to 0 so that cross-channel averages are obtained. First, we evaluated the fundamental characteristics of this method by performing simulations. The results showed that this method could selectively average ongoing spontaneous activity phase-locked in each channel; that is, it evaluates the directional phase-synchronizing relationship between channels. We then analyzed flash evoked potentials. This method clarified the directional phase-synchronizing relationship from the frontal to occipital channels and recovered another piece of information, perhaps regarding the sequence of experiments, which is lost when using only conventional averaging. This method can also be used to reconstruct EEG/MEG time series to visualize long-distance synchronization and phase-reset directly, and on the basis of the potentials, ERS/ERD can be explained as a side effect of phase-reset. PMID:20172813

  5. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors

    Science.gov (United States)

    Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr

    2010-06-01

    An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.

  6. Decoding Brain States Based on Magnetoencephalography From Prespecified Cortical Regions.

    Science.gov (United States)

    Zhang, Jinyin; Li, Xin; Foldes, Stephen T; Wang, Wei; Collinger, Jennifer L; Weber, Douglas J; Bagic, Anto

    2016-01-01

    Brain state decoding based on whole-head MEG has been extensively studied over the past decade. Recent MEG applications pose an emerging need of decoding brain states based on MEG signals originating from prespecified cortical regions. Toward this goal, we propose a novel region-of-interest-constrained discriminant analysis algorithm (RDA) in this paper. RDA integrates linear classification and beamspace transformation into a unified framework by formulating a constrained optimization problem. Our experimental results based on human subjects demonstrate that RDA can efficiently extract the discriminant pattern from prespecified cortical regions to accurately distinguish different brain states. PMID:26699648

  7. Electro-magneto-encephalography for the three-shell model: minimal L2-norm in spherical geometry

    International Nuclear Information System (INIS)

    The problem of determining a continuously distributed neuronal current inside the brain within the framework of the three-shell model was analysed in Fokas (2009 J. R. Soc. Interface 6 479–88), where it was shown that the simultaneous use of electro-encephalography and magneto-encephalography yields information about two of the three scalar functions specifying the interior current. In particular, for the spherical and ellipsoidal geometries, it is possible to determine the angular parts of these two functions, as well as to obtain certain explicit constraints satisfied by their radial parts. The complete determination of the radial parts of these two functions, as well as the determination of the third unknown function, requires some a priori assumption about the current. One such possible assumption is that the current minimizes the L2-norm. It is shown here that in the case of spherical geometry this assumption yields a unique and explicit formula for the current. (paper)

  8. Electro-magneto-encephalography for the three-shell model: numerical implementation via splines for distributed current in spherical geometry

    International Nuclear Information System (INIS)

    The basic inverse problems for the functional imaging techniques of electroencephalography (EEG) and magnetoencephalography (MEG) consist in estimating the neuronal current in the brain from the measurement of the electric potential on the scalp and of the magnetic field outside the head. Here we present a rigorous derivation of the relevant formulae for a three-shell spherical model in the case of independent as well as simultaneous MEG and EEG measurements. Furthermore, we introduce an explicit and stable technique for the numerical implementation of these formulae via splines. Numerical examples are presented using the locations and the normal unit vectors of the real 102 magnetometers and 70 electrodes of the Elekta Neuromag (R) system. These results may have useful implications for the interpretation of the reconstructions obtained via the existing approaches. (paper)

  9. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    International Nuclear Information System (INIS)

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  10. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    Energy Technology Data Exchange (ETDEWEB)

    Aristovich, K Y; Khan, S H, E-mail: kirill.aristovich.1@city.ac.u [School of Engineering and Mathematical Sciences, City University London, Northampton Square, London EC1V 0HB (United Kingdom)

    2010-07-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  11. Evaluation of multiple-sphere head models for MEG source localization

    International Nuclear Information System (INIS)

    Magnetoencephalography (MEG) source analysis has largely relied on spherical conductor models of the head to simplify forward calculations of the brain's magnetic field. Multiple- (or overlapping, local) sphere models, where an optimal sphere is selected for each sensor, are considered an improvement over single-sphere models and are computationally simpler than realistic models. However, there is limited information available regarding the different methods used to generate these models and their relative accuracy. We describe a variety of single- and multiple-sphere fitting approaches, including a novel method that attempts to minimize the field error. An accurate boundary element method simulation was used to evaluate the relative field measurement error (12% on average) and dipole fit localization bias (3.5 mm) of each model over the entire brain. All spherical models can contribute in the order of 1 cm to the localization bias in regions of the head that depart significantly from a sphere (inferior frontal and temporal). These spherical approximation errors can give rise to larger localization differences when all modeling effects are taken into account and with more complex source configurations or other inverse techniques, as shown with a beamformer example. Results differed noticeably depending on the source location, making it difficult to recommend a fitting method that performs best in general. Given these limitations, it may be advisable to expand the use of realistic head models.

  12. THE FILAMENTARY MULTI-POLAR PLANETARY NEBULA NGC5189

    Directory of Open Access Journals (Sweden)

    L. Sabin

    2012-01-01

    Full Text Available We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN NGC5189. The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.

  13. The filamentary multi-polar planetary nebula NGC 5189

    Scientific Electronic Library Online (English)

    L., Sabin; R., Vázquez; J. A., López; Ma. T., García-Díaz; G., Ramos-Larios.

    2012-10-01

    Full Text Available Presentamos un conjunto de imágenes ópticas e infrarrojas combinadas con espectros de rendija larga de mediana y alta dispersión de la Nebulosa Planetaria (NP) del sur NGC 5189. La compleja morfología de esta NP es desconcertante y no había sido estudiada en detalle hasta ahora. Nuestra investigació [...] n revela la presencia de un toroide denso y frío, en el infrarrojo, el cual probablemente generó uno de los dos flujos bipolares vistos en el óptico y podría, mediante un proceso de interacción, ser también responsable de la apariencia retorcida del toroide óptico. Los espectros de alta resolución del MES-AAT muestran claramente la presencia de nudos y estructuras filamentosas, así como tres burbujas en expansión. Nuestros hallazgos sugieren que NGC 5189 es una NP cuadrupolar con varios conjuntos de condensaciones simétricas en la cual la interacción de flujos determinó su compleja morfología. Abstract in english We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN) NGC 5189. The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense [...] and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.

  14. The filamentary Multi-Polar Planetary Nebula NGC 5189

    CERN Document Server

    Sabin, L; López, J A; García-Díaz, Ma T; Ramos-Larios, G

    2012-01-01

    We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN) NGC 5189. The complex morphology of this PN is puzzling and has not been studied in detail so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined the complex morphology.

  15. Bayesian mixture models for source separation in MEG

    International Nuclear Information System (INIS)

    This paper discusses the problem of imaging electromagnetic brain activity from measurements of the induced magnetic field outside the head. This imaging modality, magnetoencephalography (MEG), is known to be severely ill posed, and in order to obtain useful estimates for the activity map, complementary information needs to be used to regularize the problem. In this paper, a particular emphasis is on finding non-superficial focal sources that induce a magnetic field that may be confused with noise due to external sources and with distributed brain noise. The data are assumed to come from a mixture of a focal source and a spatially distributed possibly virtual source; hence, to differentiate between those two components, the problem is solved within a Bayesian framework, with a mixture model prior encoding the information that different sources may be concurrently active. The mixture model prior combines one density that favors strongly focal sources and another that favors spatially distributed sources, interpreted as clutter in the source estimation. Furthermore, to address the challenge of localizing deep focal sources, a novel depth sounding algorithm is suggested, and it is shown with simulated data that the method is able to distinguish between a signal arising from a deep focal source and a clutter signal. (paper)

  16. Mercado Simbólico: um modelo de comunicação para políticas públicas / The symbolic market: a communication model for public policies / Mercado Simbólico: un modelo de comunicación para políticas públicas

    Scientific Electronic Library Online (English)

    Inesita Soares de, Araújo.

    2004-02-01

    Full Text Available O trabalho tem como objetivo propor um modelo para análise e planejamento estratégico da comunicação nas políticas públicas, considerando que os modelos correntes não dão conta adequadamente da prática comunicativa nos processos de intervenção social, frustrando os altos investimentos e expectativas [...] que despertam. O "Modelo do Mercado Simbólico", em rede, descentrado e multipolar, é composto por uma formulação teórica, uma representação gráfica dos principais componentes e suas relações e de uma matriz de análise e planejamento estratégico das relações comunicativas. A representação gráfica contempla: a rede de sentidos sociais, os interlocutores e seus contextos e "lugar de interlocução". A matriz inclui fontes, campos, instâncias, comunidades discursivas e uma tipologia de fatores de mediação. Abstract in spanish El trabajo tiene como objetivo proponer un modelo para análisis y planificación estratégica de la comunicación en las políticas públicas, considerando que los modelos corrientes no sustentan adecuadamente la práctica comunicativa en los procesos de intervención social, frustrando las altas inversion [...] es y expectativas que despiertan. El "Modelo del Mercado Simbólico", en red, descentrado y multipolar, es compuesto por una formulación teórica, una representación gráfica de los principales componentes y sus relaciones y de una matriz de análisis y planificación estratégica de las relaciones comunicativas. La representación gráfica contempla: la red de sentidos sociales, los interlocutores y sus contextos y "lugar de interlocución". La matriz incluye fuentes, campos, instancias, comunidades discursivas y una tipología de factores de mediación. Abstract in english The purpose of this paper is to put forth a model for the analysis and strategic planning of the communication of public policies, given that the current models fail to adequately fulfill communication requirements in the processes of social intervention, frustrating the high investments and expecta [...] tions that they give rise to. The "Symbolic Market Model", in network form, both decentralized and multipolar, is comprised of (i) a theoretical formulation, (ii) a graphical representation of the main components and the relations between them and (iii) an analysis and strategic planning matrix of communicative relations. The graphic representation takes into account: the network of social senses, the interlocutors and their contexts, and the "place of dialogue". The matrix includes sources, fields, instances, discursive communities and a typology of mediation factors.

  17. Generalized Multipole X-Wind Model

    Science.gov (United States)

    Mohanty, Subhanjoy; Shu, Frank H.

    The X-wind model for magnetospheric accretion and outflow in classical T Tauri stars (CTTS) has gained credence in recent years for a variety of theoretical and observational reasons. However, both this model as well as other theoretical scenarios for explaining magnetospheric disk accretion assume that the stellar field, were it not perturbed by an electrically conducting accretion disk, would have a dipolar geometry (e.g., [5]; OS95 hereafter). Observations of accretion hot spot sizes and net field polarization on the surface of CTTS, however, clearly indicate that the stellar field has a complex multipolar structure. To overcome this discrepancy between theory and data, we reformulate X-wind theory without the dipole constraint. This contribution represents a brief summary of the paper by Mohanty and Shu [6]. In Sect. 1 we present the fundamental physical ideas of the generalized theory, and the associated equations; in Sect. 2 we compare the resulting theoretical prediction to recent observations, and provide some illustrative numerical simulations with multipole stellar fields.

  18. Remote sensing of forest ecosystem dynamics: Measurements and modeling

    Science.gov (United States)

    Williams, Darrel L.; Ranson, K. Jon; Knox, Robert G.; Levine, Elissa R.

    1994-01-01

    The development of an integrated approach to the modeling of forest dynamics encompassing submodels of forest growth and succession, soil processes and radiation interactions, is reported. Remote sensing technology is a key element of this study in that it provides data for developing, initializing, updating, and validating the models. The objectives are reviewed, the data collected and models in use are discussed, and a framework for studying interactions between the forest growth, soil process and energy interaction components, is described. Remote sensing technology used in the study includes optical and microwave field, aircraft and satellite borne instruments. The types of data collected during intensive field and aircraft campaigns included bidirectional reflectance, thermal emittance and multifrequency, multipolarization synthetic aperture radar backscatter. Synthetic imagery of derived products such as forest biomass and NDVI (Normalized Difference Vegetative Index), and collections of ground data are being assembled in a georeferenced data base. These data are used to drive or test multidiscipline simulations of forested ecosystems. Enhancements to the modeling environment permit considerable flexibility in configuring simulations and selecting results for reporting and graphical display.

  19. Multi-area neural mass modeling of EEG and MEG signals.

    Science.gov (United States)

    Babajani-Feremi, Abbas; Soltanian-Zadeh, Hamid

    2010-09-01

    We previously proposed an integrated electroencephalography (EEG), magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI) model based on an extended neural mass model (ENMM) within a single cortical area. In the ENMM, a cortical area contains several minicolumns where strengths of their connections diminish exponentially with their distances. The ENMM was derived based on the physiological principles of the cortical minicolumns and their connections within a single cortical area to generate EEG, MEG, and fMRI signals. The purpose of this paper is to further extend the ENMM model from a single-area to a multi-area model to develop a neural mass model of the entire brain that generates EEG and MEG signals. For multi-area modeling, two connection types are considered: short-range connections (SRCs) and long-range connections (LRCs). The intra-area SRCs among the minicolumns within the areas were previously modeled in the ENMM. To define inter-area LRCs among the cortical areas, we consider that the cell populations of all minicolumns in the destination area are affected by the excitatory afferent of the pyramidal cells of all minicolumns in the source area. The state-space representation of the multi-area model is derived considering the intra-minicolumn, SRCs', and LRCs' parameters. Using simulations, we evaluate effects of parameters of the model on its dynamics and, based on stability analysis, find valid ranges for parameters of the model. In addition, we evaluate reducing redundancy of the model parameters using simulation results and conclude that the parameters of the model can be limited to the LRCs and SRCs while the intra-minicolumn parameters stay at their physiological mean values. The proposed multi-area integrated E/MEG model provides an efficient neuroimaging technique for effective connectivity analysis in healthy subjects as well as neurological and psychiatric patients. PMID:20080193

  20. Modelling

    CERN Document Server

    Spädtke, P

    2013-01-01

    Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.

  1. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling.

    Science.gov (United States)

    Akram, Sahar; Presacco, Alessandro; Simon, Jonathan Z; Shamma, Shihab A; Babadi, Behtash

    2016-01-01

    The underlying mechanism of how the human brain solves the cocktail party problem is largely unknown. Recent neuroimaging studies, however, suggest salient temporal correlations between the auditory neural response and the attended auditory object. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects, we propose a decoding approach for tracking the attentional state while subjects are selectively listening to one of the two speech streams embedded in a competing-speaker environment. We develop a biophysically-inspired state-space model to account for the modulation of the neural response with respect to the attentional state of the listener. The constructed decoder is based on a maximum a posteriori (MAP) estimate of the state parameters via the Expectation Maximization (EM) algorithm. Using only the envelope of the two speech streams as covariates, the proposed decoder enables us to track the attentional state of the listener with a temporal resolution of the order of seconds, together with statistical confidence intervals. We evaluate the performance of the proposed model using numerical simulations and experimentally measured evoked MEG responses from the human brain. Our analysis reveals considerable performance gains provided by the state-space model in terms of temporal resolution, computational complexity and decoding accuracy. PMID:26436490

  2. Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI.

    Science.gov (United States)

    Klamer, Silke; Elshahabi, Adham; Lerche, Holger; Braun, Christoph; Erb, Michael; Scheffler, Klaus; Focke, Niels K

    2015-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are widely used to localize brain activity and their spatial resolutions have been compared in several publications. While most clinical studies demonstrated higher accuracy of MEG source localization, simulation studies suggested a more accurate EEG than MEG localization for the same number of channels. However, studies comparing real MEG and EEG data with equivalent number of channels are scarce. We investigated 14 right-handed healthy subjects performing a motor task in MEG, high-density-(hd-) EEG and fMRI as well as a somatosensory task in MEG and hd-EEG and compared source analysis results of the evoked brain activity between modalities with different head models. Using individual head models, hd-EEG localized significantly closer to the anatomical reference point obtained by fMRI than MEG. Source analysis results were least accurate for hd-EEG based on a standard head model. Further, hd-EEG and MEG localized more medially than fMRI. Localization accuracy of electric source imaging is dependent on the head model used with more accurate results obtained with individual head models. If this is taken into account, EEG localization can be more accurate than MEG localization for the same number of channels. PMID:25296614

  3. Modeling

    International Nuclear Information System (INIS)

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste

  4. Bayesian multi-dipole modelling of a single topography in MEG by adaptive sequential Monte Carlo samplers

    International Nuclear Information System (INIS)

    In this paper, we develop a novel Bayesian approach to the problem of estimating neural currents in the brain from a fixed distribution of magnetic field (called topography), measured by magnetoencephalography. Differently from recent studies that describe inversion techniques, such as spatio-temporal regularization/filtering, in which neural dynamics always plays a role, we face here a purely static inverse problem. Neural currents are modelled as an unknown number of current dipoles, whose state space is described in terms of a variable-dimension model. Within the resulting Bayesian framework, we set up a sequential Monte Carlo sampler to explore the posterior distribution. An adaptation technique is employed in order to effectively balance the computational cost and the quality of the sample approximation. Then, both the number and the parameters of the unknown current dipoles are simultaneously estimated. The performance of the method is assessed by means of synthetic data, generated by source configurations containing up to four dipoles. Eventually, we describe the results obtained by analysing data from a real experiment, involving somatosensory evoked fields, and compare them to those provided by three other methods. (paper)

  5. Modeling Modeling

    OpenAIRE

    Muller, Pierre-Alain; Fondement, Frédéric; Baudry, Benoit

    2009-01-01

    Model-driven engineering and model-based approaches have permeated all branches of software engineering; to the point that it seems that we are using models, as Molière's Monsieur Jourdain was using prose, without knowing it. At the heart of modeling, there is a relation that we establish to represent something by something else. In this paper we review various definitions of models and relations between them. Then, we define a canonical set of relations that can be used to express various ki...

  6. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification

    Science.gov (United States)

    Spinnato, J.; Roubaud, M.-C.; Burle, B.; Torrésani, B.

    2015-06-01

    Objective. The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. Approach. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Main results. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. Significance. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.

  7. Modeling Modeling Modeling

    OpenAIRE

    Muller, Pierre-Alain; Fondement, Frédéric; Baudry, Benoit; Combemale, Benoit

    2012-01-01

    Model-driven engineering and model-based approaches have permeated all branches of software engineering to the point that it seems that we are using models, as Molière's Monsieur Jourdain was using prose, without knowing it. At the heart of modeling, there is a relation that we establish to represent something by something else. In this paper we review various definitions of models and relations between them. Then, we define a canonical set of relations that can be used to express various kin...

  8. Weighted minimum-norm source estimation of magnetoencephalography utilizing the temporal information of the measured data

    Science.gov (United States)

    Iwaki, Sunao; Ueno, Shoogo

    1998-06-01

    The weighted minimum-norm estimation (wMNE) is a popular method to obtain the source distribution in the human brain from magneto- and electro- encephalograpic measurements when detailed information about the generator profile is not available. We propose a method to reconstruct current distributions in the human brain based on the wMNE technique with the weighting factors defined by a simplified multiple signal classification (MUSIC) prescanning. In this method, in addition to the conventional depth normalization technique, weighting factors of the wMNE were determined by the cost values previously calculated by a simplified MUSIC scanning which contains the temporal information of the measured data. We performed computer simulations of this method and compared it with the conventional wMNE method. The results show that the proposed method is effective for the reconstruction of the current distributions from noisy data.

  9. Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    OpenAIRE

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O’Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W.; Hershey, Andrew D

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using...

  10. The Nature of Abstract Orthographic Codes: Evidence from Masked Priming and Magnetoencephalography

    OpenAIRE

    Pylkkänen, Liina; Okano, Kana

    2010-01-01

    What kind of mental objects are letters? Research on letter perception has mainly focussed on the visual properties of letters, showing that orthographic representations are abstract and size/shape invariant. But given that letters are, by definition, mappings between symbols and sounds, what is the role of sound in orthographic representation? We present two experiments suggesting that letters are fundamentally sound-based representations. To examine the role of sound in orthographic represe...

  11. The nature of abstract orthographic codes: evidence from masked priming and magnetoencephalography.

    Science.gov (United States)

    Pylkkänen, Liina; Okano, Kana

    2010-01-01

    What kind of mental objects are letters? Research on letter perception has mainly focussed on the visual properties of letters, showing that orthographic representations are abstract and size/shape invariant. But given that letters are, by definition, mappings between symbols and sounds, what is the role of sound in orthographic representation? We present two experiments suggesting that letters are fundamentally sound-based representations. To examine the role of sound in orthographic representation, we took advantage of the multiple scripts of Japanese. We show two types of evidence that if a Japanese word is presented in a script it never appears in, this presentation immediately activates the ("actual") visual word form of that lexical item. First, equal amounts of masked repetition priming are observed for full repetition and when the prime appears in an atypical script. Second, visual word form frequency affects neuromagnetic measures already at 100-130 ms whether the word is presented in its conventional script or in a script it never otherwise appears in. This suggests that Japanese orthographic codes are not only shape-invariant, but also script invariant. The finding that two characters belonging to different writing systems can activate the same form representation suggests that sound identity is what determines orthographic identity: as long as two symbols express the same sound, our minds represent them as part of the same character/letter. PMID:20520833

  12. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  13. Development of Theory of Mind Stimuli in Magnetoencephalography for Nursing Evaluation

    Directory of Open Access Journals (Sweden)

    Sungwon Park

    2009-09-01

    Full Text Available We introduce the development of animation stimuli for theory of mind (ToM in magnetoencepalography (MEG. We will discuss apparatus for presenting animation stimuli and a technical problem like an eye movement signal generated from following triangles in the animations, and its rejection using independent component analysis (ICA. With the ToM animations and the apparatus, we conducted MEG measurements for 8 normal controls and 6 schizophrenic patients. We present a preliminary assessment result for the developed animation stimuli as a tool for ToM test, which has been obtained by scoring in the followingup interview after the MEG measurement.

  14. An asymmetric jet-launching model for the protoplanetary nebula CRL 618

    International Nuclear Information System (INIS)

    We propose an asymmetrical jet-ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNs), such as the pPN CRL 618. Three-dimensional hydrodynamical simulations of a precessing jet launched from an orbiting source were carried out, including an alternation in the ejections of the two outflow lobes, depending on which side of the precessing accretion disk is hit by the accretion column from a Roche lobe-filling binary companion. Both synthetic optical emission maps and position-velocity diagrams were obtained from the numerical results with the purpose of carrying out a direct comparison with observations. Depending on the observer's point of view, multipolar morphologies are obtained that exhibit a mirror symmetry at large distances from the central source. The obtained lobe sizes and their spatial distributions are in good agreement with the observed morphology of the pPN CRL 618. We also obtain that the kinematic ages of the fingers are similar to those obtained in the observations.

  15. An asymmetric jet-launching model for the protoplanetary nebula CRL 618

    Energy Technology Data Exchange (ETDEWEB)

    Velázquez, Pablo F.; Raga, Alejandro C.; Toledo-Roy, Juan C. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, C.P. 04510 D.F. (Mexico); Riera, Angels, E-mail: pablo@nucleares.unam.mx [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, E-08036 Barcelona (Spain)

    2014-10-20

    We propose an asymmetrical jet-ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNs), such as the pPN CRL 618. Three-dimensional hydrodynamical simulations of a precessing jet launched from an orbiting source were carried out, including an alternation in the ejections of the two outflow lobes, depending on which side of the precessing accretion disk is hit by the accretion column from a Roche lobe-filling binary companion. Both synthetic optical emission maps and position-velocity diagrams were obtained from the numerical results with the purpose of carrying out a direct comparison with observations. Depending on the observer's point of view, multipolar morphologies are obtained that exhibit a mirror symmetry at large distances from the central source. The obtained lobe sizes and their spatial distributions are in good agreement with the observed morphology of the pPN CRL 618. We also obtain that the kinematic ages of the fingers are similar to those obtained in the observations.

  16. Internal conversion coefficients in the Hartree-Fock atomic model. Calculations and experiments for 199Hg

    International Nuclear Information System (INIS)

    The internal conversion coefficients were calculated for the transitions in 199Hg using both Hartree-Fock and Hartree-Fock-Slater atomic models. The relative conversion line intensities were measured with the magnetic spectrometers in Prague and Heidelberg. The multipolarities were determined to be: M1 + (0.20 +- 0.03)% E2, pure E2 and M1 + (13.4 +- 0.4)% E2 for the 50, 158 and 208 keV transitions, respectively. Allowing for the nuclear structure effect in M1 component we obtained: M1 + (0.15 +- 0.03)% E2, lambda = 2.4 +- 1.0 for the 50 keV and M1 + (10.9 +- 0.7)% E2, lambda = 3.8 +- 0.5 for the 208 keV transitions. Very good agreement was found between theory and experiment for the atomic subshells, K, Lsub(1-3), Msub(1-5), N, and O + P. (orig.)

  17. Spatially sparse source cluster modeling by Compressive Neuromagnetic Tomography

    OpenAIRE

    Chang, Wei-Tang; Nummenmaa, Aapo; Lin, Fa-Hsuan

    2010-01-01

    Magnetoencephalography enables non-invasive detection of weak cerebral magnetic fields by utilizing super-conducting quantum interference devices (SQUIDs). Solving the MEG inverse problem requires reconstructing the locations and orientations of the underlying neuronal current sources based on the extracranial measurements. Most inverse problem solvers explicitly favor either spatially more focal or diffuse current source patterns. Naturally, in a situation where both focal and spatially exte...

  18. The Mutliple Lobes and Geometric Model of Hubble 12: A Young Planetary Nebula with two pairs of H2 Knots

    Science.gov (United States)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong; Kwok, Sun

    2015-08-01

    Hubble 12 (Hb 12) is a member of the rare group of planetary nebulae (PNs) exhibiting nested shells. Its intrinsic structures and shaping mechanism are still not fully understood. We present new near-infrared narrow-band imaging observations of Hb 12 using Wide-field InfraRed Camera on the Canada-France-Hawaii Telescope (CFHT). Combining Hubble Space Telescope optical imaging and CFHT observations, we find a number of co-axial rings aligned with the bipolar lobes and two pairs of separate knots with different orientations. These rings are thought to be the manifestation of a time-variable, collimated fast wind of bipolar lobes interacting with surrounding asymptotic giant branch circumstellar medium. The existence of knots with different orientations suggests that this PN hosts a bipolar, rotating, episodic jet (BRET). We construct a three-dimensional model that allows the visualization of the nebula viewed from different orientations, and infer that this PN might have intrinsic structures similar to the young multipolar PNs, Hen 2-320 and M 2-9.

  19. Spatially sparse source cluster modeling by compressive neuromagnetic tomography.

    Science.gov (United States)

    Chang, Wei-Tang; Nummenmaa, Aapo; Hsieh, Jen-Chuen; Lin, Fa-Hsuan

    2010-10-15

    Magnetoencephalography enables non-invasive detection of weak cerebral magnetic fields by utilizing super-conducting quantum interference devices (SQUIDs). Solving the MEG inverse problem requires reconstructing the locations and orientations of the underlying neuronal current sources based on the extracranial measurements. Most inverse problem solvers explicitly favor either spatially more focal or diffuse current source patterns. Naturally, in a situation where both focal and spatially extended sources are present, such reconstruction methods may yield inaccurate estimates. To address this problem, we propose a novel ComprEssive Neuromagnetic Tomography (CENT) method based on the assumption that the current sources are compressible. The compressibility is quantified by the joint sparsity of the source representation in the standard source space and in a transformed domain. The purpose of the transformation sparsity constraint is to incorporate local spatial structure adaptively by exploiting the natural redundancy of the source configurations in the transform domain. By combining these complementary constraints of standard and transformed domain sparsity we obtain source estimates, which are not only locally smooth and regular but also form globally separable clusters. In this work, we use the l(1)-norm as a measure of sparsity and convex optimization to yield compressive estimates in a computationally tractable manner. We study the Laplacian matrix (CENT(L)) and spherical wavelets (CENT(W)) as alternatives for the transformation in the compression constraint. In addition to the two prior constraints on the sources, we control the discrepancy between the modeled and measured data by restricting the power of residual error below a specified value. The results show that both CENT(L) and CENT(W) are capable of producing robust spatially regular source estimates with high computational efficiency. For simulated sources of focal, diffuse, or combined types, the CENT method shows better accuracy on estimating the source locations and spatial extents than the minimum l(1)-norm or minimum l(2)-norm constrained inverse solutions. Different transformations yield different benefits: By utilizing CENT with the Laplacian matrix it is possible to suppress physiologically atypical activations extending across two opposite banks of a deep sulcus. With the spherical wavelet transform CENT can improve the detection of two nearby yet not directly connected sources. As demonstrated by simulations, CENT is capable of reflecting the spatial extent for both focal and spatially extended current sources. The analysis of in vivo MEG data by CENT produces less physiologically inconsistent "clutter" current sources in somatosensory and auditory MEG measurements. Overall, the CENT method is demonstrated to be a promising tool for adaptive modeling of distributed neuronal currents associated with cognitive tasks. PMID:20488248

  20. Multipolarities of nuclear transitions involved in the one neutron disintegration of /sup 238/U

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.N.; Wolynec, E.; Moscati, G.

    1977-08-01

    Measurements of the electrodisintegration cross section /sup 238/U(e,e',n)/sup 237/U in the energy region 6--25 MeV are presented. A virtual photon analysis of experimental data shows that neutron emission occurs only through E1 absorption. Our data establish an upper limit to the strength of E2 transitions, which is only 0.25% of the E1 transitions. Existing data on the decay channels of the isoscalar giant quadrupole resonance in /sup 238/U are compared with available data on E2 absorption by this nucleus. A discussion of available experimental data indicating a selectivity of decay modes on the spin and parity of the excited resonance is presented. The sensitivity of electrodisintegration cross sections to the existence of quadrupole components is assessed.

  1. Multipolarities of nuclear transitions involved in the one neutron disintegration of 238U

    International Nuclear Information System (INIS)

    Measurements of the electrodisintegration cross section 238U(e,e',n)237U in the energy region 6--25 MeV are presented. A virtual photon analysis of experimental data shows that neutron emission occurs only through E1 absorption. Our data establish an upper limit to the strength of E2 transitions, which is only 0.25% of the E1 transitions. Existing data on the decay channels of the isoscalar giant quadrupole resonance in 238U are compared with available data on E2 absorption by this nucleus. A discussion of available experimental data indicating a selectivity of decay modes on the spin and parity of the excited resonance is presented. The sensitivity of electrodisintegration cross sections to the existence of quadrupole components is assessed

  2. Multi-Polarization ASAR Backscattering from Herbaceous Wetlands in Poyang Lake Region, China

    OpenAIRE

    Huiyong Sang; Jixian Zhang; Hui Lin; Liang Zhai

    2014-01-01

    Wetlands are one of the most important ecosystems on Earth. There is an urgent need to quantify the biophysical parameters (e.g., plant height, aboveground biomass) and map total remaining areas of wetlands in order to evaluate the ecological status of wetlands. In this study, Environmental Satellite/Advanced Synthetic Aperture Radar (ENVISAT/ASAR) dual-polarization C-band data acquired in 2005 is tested to investigate radar backscattering mechanisms with the variation of hydrological conditi...

  3. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    DEFF Research Database (Denmark)

    Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus

    2015-01-01

    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential, which is especially important to describe key, challenging interactions, such as lone pairs, ?-interactions, and hydrogen bonds. These chemical environments are probed by focusing on the hydration pr...

  4. Study of H- production in H2 microwave multipolar plasmas by optical and electrical diagnostics

    International Nuclear Information System (INIS)

    A way to achieve heating is the injection in the plasma of highly energetic particles (? MeV) that will transfer their energy during collisions. For this purpose, energetic charged particles are independently created in D2 plasmas and then neutralized so they can penetrate into the tokamak without being sensitive to the magnetic confinement. Neutral beam injection can deliver up to 16 MW into the ITER plasma. D- beams are used rather than D+ as the neutralisation of the latter is almost zero instead of 60% for D-, at the energy of interest. In this framework, our work is devoted to the production of H- negative ions from H2 microwave multi-dipolar plasmas. Negative ions are produced inside the plasma volume by dissociative electron attachment to highly vibrationally-excited molecules H2 (step 3). They can also be produced throughout plasma-surface interactions, where H atoms created in the plasma volume stick on the material (step 1) and recombine with hydrogen present on the surface, resulting in the desorption of a vibrationally-excited H2 molecule (step 2), which reacts with a cold electron to form a negative ion (step 3). Plasma diagnostics are implemented to better understand the mechanisms involved in H production. Step 3 is studied by means of Langmuir probes for electron density and energy distribution measurements, while laser photo-detachment (Nd-YAG, 1064 nm) gives negative ion densities. H atom densities are followed by Optical Emission Spectroscopy (OES) using actinometry, as well as Laser Induced Fluorescence with one (LIF) or two (TALIF) photons. By generating H atom spatial profiles via Abel transform, we try to differentiate volume mechanisms from surface ones. This document is composed of a short paper followed by a poster

  5. Multipolar permanent-magnet synchronous generators intended for wind power plants

    Science.gov (United States)

    Kovalev, L. K.; Kovalev, K. L.; Tulinova, Ye. Ye.; Ivanov, N. S.

    2012-12-01

    The analytical method of calculating two-dimensional magnetic fields in the active section of permanent-magnet synchronous electrical rotating machines, as applied to their use in the wind energy industry, has been developed. The analytical relationships for calculating distribution of two-dimensional magnetic fields and determining output parameters with due regard for geometry of the active section, the number of pairs of poles, and magnetic characteristics of materials have been obtained. The criteria dependences needed for calculating the electromotive force and main inductive reactance of permanent-magnet synchronous electric machines, with consideration for the geometry of a machine and electrophysical properties of materials being used, have been derived. The procedure of evaluating parameters of permanent-magnet synchronous generators for large-size wind power plants is presented.

  6. Treatment of atrial fibrillation with radiofrequency ablation and simultaneous multipolar mapping of the pulmonary veins

    Directory of Open Access Journals (Sweden)

    Rocha Neto Almino C.

    2001-01-01

    Full Text Available OBJECTIVE: To demonstrate the feasibility and safety of simultaneous catheterization and mapping of the 4 pulmonary veins for ablation of atrial fibrillation. METHODS: Ten patients, 8 with paroxysmal atrial fibrillation and 2 with persistent atrial fibrillation, refractory to at least 2 antiarrhythmic drugs and without structural cardiopathy, were consecutively studied. Through the transseptal insertion of 2 long sheaths, 4 pulmonary veins were simultaneously catheterized with octapolar microcatheters. After identification of arrhythmogenic foci radiofrequency was applied under angiographic or ultrasonographic control. RESULTS: During 17 procedures, 40 pulmonary veins were mapped, 16 of which had local ectopic activity, related or not with the triggering of atrial fibrillation paroxysms. At the end of each procedure, suppression of arrhythmias was obtained in 8 patients, and elimination of pulmonary vein potentials was accomplished in 4. During the clinical follow-up of 9.6±3 months, 7 patients remained in sinus rhythm, 5 of whom were using antiarrhythmic drugs that had previously been ineffective. None of the patients had pulmonary hypertension or evidence of stenosis in the pulmonary veins. CONCLUSION: Selective and simultaneous catheterization of the 4 pulmonary veins with microcatheters for simultaneous recording of their electrical activity is a feasible and safe procedure that may help ablation of atrial fibrillation.

  7. Multipolar universal relations between f-mode frequency and tidal deformability of compact stars

    CERN Document Server

    Chan, T K; Leung, P T; Lin, L -M

    2014-01-01

    Though individual stellar parameters of compact stars usually demonstrate obvious dependence on the equation of state (EOS), EOS-insensitive universal formulas relating these parameters remarkably exist. In the present paper, we explore the inter-relationship between two such formulas, namely the f-I relation connecting the $f$-mode quadrupole oscillation frequency $\\omega_2$ and the moment of inertia $I$, and the I-Love-Q relations relating $I$, the quadrupole tidal deformability $\\lambda_2$, and the quadrupole moment $Q$, which have been proposed by Lau et al. [Astrophys. J. {\\bf 714}, 1234 (2010)], and Yagi and Yunes [Science, {\\bf 341}, 365 (2013)], respectively. A relativistic universal relation between $\\omega_l$ and $\\lambda_l$ with the same angular momentum $l=2,3,\\ldots$, the so called "diagonal f-Love relation" that holds for realistic compact stars and stiff polytropic stars, is unveiled here. An in-depth investigation in the Newtonian limit is further carried out to pinpoint its underlying physica...

  8. Reshaping Europe In A Multipolar World: Can The EU Rise To The Challenge?

    Directory of Open Access Journals (Sweden)

    Dean Carroll

    2011-09-01

    Full Text Available Globalisation and the emergence of economic players such as Brazil, Russia, India and China (BRIC have led to predictions that US hegemony will quickly decline as a new world order emerges. With the European Union (EU also facing a downgrading of its own status – as economic, political and cultural power shifts from west to east – now is the time to ensure the Union has a strategy in place to remain an influential global actor despite its lack of natural resources and member state sovereign debt arising from the 2008/9 economic crisis. Only concerted efforts at institutional future-proofing (or widening and deepening plus by the EU and a global vision for the supranational body will ensure its survival and prosperity.

  9. Internal conversion of high-multipolarity transitions in 109Ag and 113In

    International Nuclear Information System (INIS)

    The internal conversion coefficients were measured for the 88.032 keV E3 transition in 109Ag using the 4? pressurized proportional counter, the windowless 4? scintillation counter and the double-focusing magnetic spectrometer. The results are: ?sub(T) = 26.4 +- 0.4, ?sub(K) = 11.4 +- 0.3, ?sub(L1) = 0.63 +- 0.13, ?sub(L2) = 5.48 +- 0.18, ?sub(L3) = 6.11 +- 0.20, ?sub(M) = 2.40 +- 0.08, ?sub(NO) = 0.405 +- 0.021. The theoretical conversion coefficients were calculated for this transition and for the 391.69 keV M4 transition in 113In and were found to be in agreement with the experiment. (orig.)

  10. Multipolar universal relations between f -mode frequency and tidal deformability of compact stars

    Science.gov (United States)

    Chan, T. K.; Sham, Y.-H.; Leung, P. T.; Lin, L.-M.

    2014-12-01

    Though individual stellar parameters of compact stars usually demonstrate obvious dependence on the equation of state (EOS), EOS-insensitive universal formulas relating these parameters remarkably exist. In the present paper, we explore the interrelationship between two such formulas, namely the f -I relation connecting the f -mode quadrupole oscillation frequency ?2 and the moment of inertia I , and the I -Love-Q relations relating I , the quadrupole tidal deformability ?2, and the quadrupole moment Q , which have been proposed by Lau, Leung, and Lin [Astrophys. J. 714, 1234 (2010)] and Yagi and Yunes [Science 341, 365 (2013)], respectively. A relativistic universal relation between ?l and ?l with the same angular momentum l =2 ,3 ,… , the so-called "diagonal f -Love relation" that holds for realistic compact stars and stiff polytropic stars, is unveiled here. An in-depth investigation in the Newtonian limit is further carried out to pinpoint its underlying physical mechanism and hence leads to a unified f -I -Love relation. We reach the conclusion that these EOS-insensitive formulas stem from a common physical origin—compact stars can be considered as quasiincompressible when they react to slow time variations introduced by f -mode oscillations, tidal forces and rotations.

  11. Multi-Polarization ASAR Backscattering from Herbaceous Wetlands in Poyang Lake Region, China

    Directory of Open Access Journals (Sweden)

    Huiyong Sang

    2014-05-01

    Full Text Available Wetlands are one of the most important ecosystems on Earth. There is an urgent need to quantify the biophysical parameters (e.g., plant height, aboveground biomass and map total remaining areas of wetlands in order to evaluate the ecological status of wetlands. In this study, Environmental Satellite/Advanced Synthetic Aperture Radar (ENVISAT/ASAR dual-polarization C-band data acquired in 2005 is tested to investigate radar backscattering mechanisms with the variation of hydrological conditions during the growing cycle of two types of herbaceous wetland species, which colonize lake borders with different elevation in Poyang Lake region, China. Phragmites communis (L. Trin. is semi-aquatic emergent vegetation with vertical stem and blade-like leaves, and the emergent Carex spp. has rhizome and long leaves. In this study, the potential of ASAR data in HH-, HV-, and VV-polarization in mapping different wetland types is examined, by observing their dynamic variations throughout the whole flooding cycle. The sensitivity of ASAR backscattering coefficients to vegetation parameters of plant height, fresh and dry biomass, and vegetation water content is also analyzed for Phragmites communis (L. Trin. and Carex spp. The research for Phragmites communis (L. Trin. shows that HH polarization is more sensitive to plant height and dry biomass than HV polarization. ASAR backscattering coefficients are relatively less sensitive to fresh biomass, especially in HV polarization. However, both are highly dependent on canopy water content. In contrast, the dependence of HH- and HV- backscattering from Carex community on vegetation parameters is poor, and the radar backscattering mechanism is controlled by ground water level.

  12. The World Bank and the emerging world order: Adjusting to multipolarity at the second decimal point

    OpenAIRE

    Vestergaard, Jakob

    2011-01-01

    The report provides a brief overview of the World Bank’s key governance arrangements and the evolution of the voice reform agenda at the bank from 2003 to 2007. It further examines two bank reform phases (in 2008 and 2010), and critically assesses the key components of the voice reform process (or voting power realignment), and identifies some problems that will arise as a result, especially with respect to future shareholding reviews.

  13. Human in vitro reporter model of neuronal development and early differentiation processes

    Directory of Open Access Journals (Sweden)

    Bogdahn Ulrich

    2008-02-01

    Full Text Available Abstract Background During developmental and adult neurogenesis, doublecortin is an early neuronal marker expressed when neural stem cells assume a neuronal cell fate. To understand mechanisms involved in early processes of neuronal fate decision, we investigated cell lines for their capacity to induce expression of doublecortin upon neuronal differentiation and develop in vitro reporter models using doublecortin promoter sequences. Results Among various cell lines investigated, the human teratocarcinoma cell line NTERA-2 was found to fulfill our criteria. Following induction of differentiation using retinoic acid treatment, we observed a 16-fold increase in doublecortin mRNA expression, as well as strong induction of doublecortin polypeptide expression. The acquisition of a neuronal precursor phenotype was also substantiated by the establishment of a multipolar neuronal morphology and expression of additional neuronal markers, such as Map2, ?III-tubulin and neuron-specific enolase. Moreover, stable transfection in NTERA-2 cells of reporter constructs encoding fluorescent or luminescent genes under the control of the doublecortin promoter allowed us to directly detect induction of neuronal differentiation in cell culture, such as following retinoic acid treatment or mouse Ngn2 transient overexpression. Conclusion Induction of doublecortin expression in differentiating NTERA-2 cells suggests that these cells accurately recapitulate some of the very early events of neuronal determination. Hence, the use of reporter genes under the control of the doublecortin promoter in NTERA-2 cells will help us to investigate factors involved early in the course of neuronal differentiation processes. Moreover the ease to detect the induction of a neuronal program in this model will permit to perform high throughput screening for compounds acting on the early neuronal differentiation mechanisms.

  14. How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex

    LENUS (Irish Health Repository)

    Setty, Yaki

    2011-09-30

    Abstract Background Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. Results The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. Conclusions We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

  15. Crisis del lóbulo temporal registrada mediante magnetoencefalografía: caso clínico Temporal lobe seizure recorded by magnetoencephalography: case report

    OpenAIRE

    Carlos Amo; Marta Santiuste; Fernando Maestú; Alberto Fernández; Renata Egatz; Mercedes González-Hidalgo; Cristóbal Saldaña; Antonio Sáiz; Tomás Ortiz

    2004-01-01

    La localización del inicio de las crisis es un factor importante para la evaluación prequirúrgica de la epilepsia. En este trabajo se describe la localización del inicio de una crisis registrada mediante magnetoencefalografía (MEG) en un niño de 12 años que presenta crisis parciales complejas farmacorresistentes. La RM muestra una lesión de 20mm de diámetro en el hipocampo izquierdo. EEG de superficie con ondas theta temporales izquierdas. Registro MEG interictal con punta-onda aislada poster...

  16. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

    Science.gov (United States)

    McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S

    2015-01-01

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432

  17. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    Directory of Open Access Journals (Sweden)

    Wilbert A. McClay

    2015-09-01

    Full Text Available Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  18. On macromolecular refinement at subatomic resolution withinteratomic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Lunin, Vladimir Y.; Urzhumtsev, Alexandre

    2007-11-09

    A study of the accurate electron density distribution in molecular crystals at subatomic resolution, better than {approx} 1.0 {angstrom}, requires more detailed models than those based on independent spherical atoms. A tool conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 {angstrom}, the number of experimental data is insufficient for the full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark datasets gave results comparable in quality with results of multipolar refinement and superior of those for conventional models. Applications to several datasets of both small- and macro-molecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  19. Modelling Practice

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    This chapter deals with the practicalities of building, testing, deploying and maintaining models. It gives specific advice for each phase of the modelling cycle. To do this, a modelling framework is introduced which covers: problem and model definition; model conceptualization; model data requirements; model construction; model solution; model verification; model validation and finally model deployment and maintenance. Within the adopted methodology, each step is discussedthrough the considerat...

  20. Las relaciones entre Colombia y Brasil en un contexto de regionalización diversificada en Suramérica y de un mundo multipolar emergente / The Relationship between Colombia and Brazil in the Context of Regional Diversification in South America and an Increasingly Multipolar World

    Scientific Electronic Library Online (English)

    Eduardo, Pastrana Buelvas; Diego, Vera Piñeros.

    2013-12-01

    Full Text Available El artículo interpreta los desafíos que tiene la política exterior colombiana, tanto en el plano regional como en el global, de cara a la proyección de Brasil como potencia regional y jugador global. Para ello, en primer lugar, se lleva a cabo un acercamiento teórico al escenario regional actual y a [...] l horizonte de las relaciones colombo-brasileñas, desde la perspectiva de algunos presupuestos del realismo neoclásico (predominantemente) y del neoliberalismo institucional (subsidiariamente). En segundo lugar, se examinan las fuentes y alcances de la presunta caída de la hegemonía norteamericana y el ascenso gradual de la hegemonía brasileña en Suramérica. En tercer lugar, se analiza la calidad de Colombia como potencia secundaria, luego la diversificación geográfica y temática de su política exterior a partir de agosto de 2010, y sus estrategias de competencia y cooperación con respecto a Brasil en la región. Finalmente, se identifican y se interpretan las perspectivas bilaterales y multilaterales de la profundización de los intercambios y compromisos entre Colombia y Brasil, que tendrían un alto potencial para institucionalizar una alianza estratégica multitemática con repercusiones importantes para impulsar y afianzar el proceso de regionalización en Suramérica. Abstract in english This article interprets the challenges of Colombia's foreign policy, both on a regional and global level, with regard to Brazil's ambitions as a regional power and global player. First, a theoretical analysis of the current regional scenario and the horizon of the Colombian-Brazilian relations is do [...] ne, mainly from various neoclassical realist positions and also from institutional neoliberal viewpoints. Second, sources and impact of the proclaimed decay of the North American hegemony and the gradual rise of a Brasilian hegemony in South America are examined. Third, Colombia's capacity as a secondary power is analized, followed by an analysis of the geographic and thematic diversification of its foreign policy since August 2010, as well as its strategy of competition and cooperation with Brazil in the region. Finally, those bilateral and multilateral perspectives of profundization of the exchanges and committments between Brazil and Colombia are identified and interpreted, which would have a high potential to be institutionalized as a strategic multithematic alliance with an important impact to promote and strengthen the regionalization process in South America.

  1. Model Validation and Model Error Modeling

    OpenAIRE

    Ljung, Lennart

    1999-01-01

    To validate an estimated model and to have a good understanding of its reliability is a central aspect of System Identification. This contribution discusses these aspects in the light of model error models that are explicit descriptions of the model error. A model error model is implicitly present in most model validation methods, so the concept is more of a representation form than a set of new techniques. Traditional model validation is essentially a test of whether the confidence region of...

  2. Spin, parity, and multipolarity assignments and g-factor measurements using the TRISTAN superconducting magnet and four detector coincidence apparatus

    International Nuclear Information System (INIS)

    The use of a multidetector ?-ray coincidence system for perturbed and unperturbed ?-ray angular correlations at the on-line mass separator TRISTAN is described. Applications of angular correlation techniques for deducing spin and parity assignments in a variety of even-even nuclides (116Ag, 142Ba, 142Ce, 144Ce), odd-odd nuclides (144La, 138Cs, 132Sb) and odd-mass nuclides (139Xe, 105Rh) are discussed. (Auth.)

  3. Study of H{sup -} production in H{sub 2} microwave multipolar plasmas by optical and electrical diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Soum-Glaude, A.; Bechu, S. [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Welzel, S.; Engeln, R. [Group Plasma and Materials Processing, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)

    2011-07-01

    A way to achieve heating is the injection in the plasma of highly energetic particles ({approx} MeV) that will transfer their energy during collisions. For this purpose, energetic charged particles are independently created in D{sub 2} plasmas and then neutralized so they can penetrate into the tokamak without being sensitive to the magnetic confinement. Neutral beam injection can deliver up to 16 MW into the ITER plasma. D{sup -} beams are used rather than D{sup +} as the neutralisation of the latter is almost zero instead of 60% for D{sup -}, at the energy of interest. In this framework, our work is devoted to the production of H{sup -} negative ions from H{sub 2} microwave multi-dipolar plasmas. Negative ions are produced inside the plasma volume by dissociative electron attachment to highly vibrationally-excited molecules H{sub 2} (step 3). They can also be produced throughout plasma-surface interactions, where H atoms created in the plasma volume stick on the material (step 1) and recombine with hydrogen present on the surface, resulting in the desorption of a vibrationally-excited H{sub 2} molecule (step 2), which reacts with a cold electron to form a negative ion (step 3). Plasma diagnostics are implemented to better understand the mechanisms involved in H production. Step 3 is studied by means of Langmuir probes for electron density and energy distribution measurements, while laser photo-detachment (Nd-YAG, 1064 nm) gives negative ion densities. H atom densities are followed by Optical Emission Spectroscopy (OES) using actinometry, as well as Laser Induced Fluorescence with one (LIF) or two (TALIF) photons. By generating H atom spatial profiles via Abel transform, we try to differentiate volume mechanisms from surface ones. This document is composed of a short paper followed by a poster

  4. Assessment of tropical forest stand characteristics with multipolarization SAR data acquired over a mountainous region in Costa Rica

    Science.gov (United States)

    Wu, Shih-Tseng

    1990-01-01

    A digital terrain elevation data set was coregistered with radar data for assessing tropical forest stand characteristics. Both raw and topographically corrected L-band polarimetric radar data acquired over the tropical forests of Costa Rica were analyzed and correlated with field-collected tree parameter data to study the stand characteristics. The results of analyses using 18 out of 81 plots for sites A and B indicated that per-plot bole volume and tree volume are related to SAR data, particularly at site A. The topographically corrected SAR data appear to produce the same findings as those of uncorrected data.

  5. Preferred Ice Crystal Orientation Fabric Measurements within the Greenland Ice Sheet Using Multi-Polarization Radar Data

    Science.gov (United States)

    Velez-Gonzalez, J. A.; JiLu, L.; Leuschen, C.; Gogineni, P.; Van der Veen, C. J.; Tsoflias, G. P.; Drews, R.; Harish, A. R.

    2013-12-01

    Discharge of ice from the Greenland Ice Sheet to the ocean has increased significantly over the last 25 years due to the acceleration of important outlet glaciers. It was reported that the Greenland Ice Sheet contributed about 2.5 m out of about 6 m of sea-level rise during the Eemian interglacial period. The temperatures during Eemian were reported to be about 8o×4o C higher than the mean of the past millennium. Laboratory measurements have shown that glacial ice, characterized by preferred crystal orientation fabric (COF), is three times more deformable than ice with randomly oriented crystalline structures. Layers characterized by preferred ice COF can influence the flow behavior of a glacier or ice sheet. However, COF measurements are typically obtained from ice cores, and thus are very spatially limited and mostly constrained to areas with little ice flow. A more efficient technique to map the extent of ice fabric over larger regions of ice sheets is needed to better understand the effects on large scale ice flow processes. Radar measurements are capable of discriminating between reflections caused by changes in density, electrical permittivity and COF by exploiting the anisotropic and birefringent properties of ice crystals. For this investigation two radar datasets were collected during the survey of the Greenland Eemian Ice Drilling Site (77.45°N 51.06°W) in August 2008, using a ground-based and chirped-pulse Multi-Channel Radar Depth Sounder (MCRDS) developed by the Center for Remote Sensing of Ice Sheets (CReSIS). The radar used two transmit and eight receive antennas at the center frequency of 150 MHz with a bandwidth of 30 MHz. The first data set consisted of polarimatric measurements acquired in a circular pattern (radius: 35 m) with two co-polarized antenna orientations (one transmitter and four receivers oriented with 90° offsets in the directions of the incident H-Field and E-Field, respectively). Analysis of the circular data shows a periodic power variation with four distinct extinction patterns occurring at 90 degree intervals starting at approximately 700 m depth. Furthermore a 20 degree phase change is observed between the E- and H-field data. Both observations suggest that approximately 72% of the 2542m ice column exhibits birefringent anisotropy caused by preferred ice crystal orientation. The second dataset was acquired in a grid pattern consisting of twenty 10-Km 2D lines (NW to SE) spaced at 0.5-Km and three 10-Km lines (NE to SW) spaced at 2.5-Km. Both transmit and eight receive antenna were oriented parallel to the vehicle track, resulting in E-Field co-polarized data. We will determine the dominant COF relative to the ice divide for a 100 square Km region around the NEEM camp using the results from both datasets. The results of this investigation will be compared to the NEEM ice core observations to determine the accuracy of the analysis. In this investigation we will provide a brief overview of the system and experiments and present the results of data analysis.

  6. Surface-enhanced Raman scattering on silvered porous alumina templates: role of multipolar surface plasmon resonant modes.

    Science.gov (United States)

    Terekhov, S N; Kachan, S M; Panarin, A Yu; Mojzes, P

    2015-11-25

    Nanostructured silver films with different thicknesses were prepared by vapor deposition onto the surface of the anodic aluminum oxide (AAO) template to be used as surface-enhanced Raman scattering (SERS) active substrates. Both the peak position of the surface plasmon resonance (SPR) band and SERS enhancement of silvered AAO samples displayed non-monotonous dependence on Ag layer thickness. Using 441.6 nm excitation and a water-soluble cationic porphyrin, Cu(ii)-tetrakis(4-N-methylpyridyl) (CuTMPyP4), as a SERS-reporting analyte, two maxima of the SERS enhancement were obtained for Ag layers of 15 and 120 nm thickness. Thickness dependencies have been analyzed taking into account the type of SPR modes identified by means of quasicrystalline approximation (QCA) of statistical theory of multiple scattering of waves and multi-Lorentzian deconvolution. The analysis revealed that SERS enhancement is related to the absolute magnitude of the distance between excitation wavelength and spectral position of collective SPR mode. It was shown that matching of excitation wavelength and the most intensive SPR modes with non-radiative decay, generated mainly by coherent interaction of higher-order plasmon resonant modes (quadrupole and octupole), plays a dominate role in SERS performance. Besides, it has been observed that more intense SERS signal can be obtained when the analyte deposited on the Ag/AAO substrate was excited through the AAO template rather than from the silvered side. Our results demonstrate that appropriate excitation geometry and fine-tuning of the optical properties of the Ag/AAO substrate by adjusting the thickness of the Ag layer with respect to particular excitation wavelength can contribute to more effective SERS enhancement. PMID:26563558

  7. Mental Models, Conceptual Models, and Modelling.

    Science.gov (United States)

    Greca, Ileana Maria; Moreira, Marco Antonio

    2000-01-01

    Reviews science education research into representations constructed by students in their interactions with the world, its phenomena, and artefacts. Features discussions of mental models, conceptual models, and the activity of modeling. (Contains 30 references.) (Author/WRM)

  8. Position models and language modeling

    OpenAIRE

    Zdziobeck, Arnaud; Thollard, Franck

    2008-01-01

    In statistical language modelling the classic model used is $n$-gram. This model is not able however to capture long term dependencies, \\emph{i.e.} dependencies larger than $n$. An alternative to this model is the probabilistic automaton. Unfortunately, it appears that preliminary experiments on the use of this model in language modelling is not yet competitive, partly because it tries to model too long term dependencies. We propose here to improve the use of this model by restricting the dep...

  9. Modelling the models

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    By analysing the production of mesons in the forward region of LHC proton-proton collisions, the LHCf collaboration has provided key information needed to calibrate extremely high-energy cosmic ray models.   Average transverse momentum (pT) as a function of rapidity loss ?y. Black dots represent LHCf data and the red diamonds represent SPS experiment UA7 results. The predictions of hadronic interaction models are shown by open boxes (sibyll 2.1), open circles (qgsjet II-03) and open triangles (epos 1.99). Among these models, epos 1.99 shows the best overall agreement with the LHCf data. LHCf is dedicated to the measurement of neutral particles emitted at extremely small angles in the very forward region of LHC collisions. Two imaging calorimeters – Arm1 and Arm2 – take data 140 m either side of the ATLAS interaction point. “The physics goal of this type of analysis is to provide data for calibrating the hadron interaction models – the well-known &...

  10. Modelling Practice

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    This chapter deals with the practicalities of building, testing, deploying and maintaining models. It gives specific advice for each phase of the modelling cycle. To do this, a modelling framework is introduced which covers: problem and model definition; model conceptualization; model data requirements; model construction; model solution; model verification; model validation and finally model deployment and maintenance. Within the adopted methodology, each step is discussedthrough the consideration of key issues and questions relevant to the modelling activity. Practical advice, based on many years of experience is providing in directing the reader in their activities.Traps and pitfalls are discussed and strategies also given to improve model development towards “fit-for-purpose” models. The emphasis in this chapter is the adoption and exercise of a modelling methodology that has proven very successful in many model building activities. It is vital that good methodologies are adopted for both thoroughness andefficiency purposes. Asking good questions for each modelling stage can aid in getting to effective and efficient solutions in modelling practice. Modelling is very much a ‘goal oriented’ activity, under constraints of system insight, time, cost and human resources. The George Box dictum that “all models are wrong, some are useful” should be coupled with the parsimony principle to ensure optimal outcomes.

  11. Causal Modeling

    OpenAIRE

    Lemmer, John F.

    2013-01-01

    Causal Models are like Dependency Graphs and Belief Nets in that they provide a structure and a set of assumptions from which a joint distribution can, in principle, be computed. Unlike Dependency Graphs, Causal Models are models of hierarchical and/or parallel processes, rather than models of distributions (partially) known to a model builder through some sort of gestalt. As such, Causal Models are more modular, easier to build, more intuitive, and easier to understand than...

  12. Models within models

    International Nuclear Information System (INIS)

    Anyone who worries that physicists are running out of interesting challenges to tackle and important problems to solve should read the two, very different feature articles in this issue. In 'Climate change: complexity in action', Klaus Hasselmann and colleagues write about the challenges of including economic and political dimensions in computer simulations of climate change. It is hard to imagine a physics-based topic that has a greater impact on the world at large. In 'Quarks, diquarks and pentaquarks', Robert Jaffe and Frank Wilczek describe our current understanding of quantum chromodynamics and the strong nuclear force. In this case it is hard to think of many more difficult problems in fundamental physics. Traditional climate modelling is difficult enough because a whole range of effects in the atmosphere and the oceans have to be taken into account. It typically takes weeks for a state-of-the-art supercomputer to simulate 100 years of climate change with a horizontal resolution of 100 km. But climate change is about much more than solving difficult differential equations - there are crucial social, political and economic influences as well. Some researchers, including a significant number of physicists, have started to look at this integrated-assessment approach. The first challenge is to develop climate models that take minutes to run on a laptop. The next challenge is to develop analogous models that work in the social, political and economic arenas - which is not a trivial task - and then integrate all these different models and explore all the possible global-warming scenarios. Physicists also hope to integrate quantum chromodynamics (QCD) into the larger framework of a so-called theory of everything. Like climate modellers, particle theorists working on QCD require enormous computational resources for their calculations, and even then there are limits to what can be achieved (e.g. the mass of the proton has yet to be calculated from first principles). However, QCD can explain the results of an enormous range of experiments, and has recently been given some new particles - 'pentaquarks' - to get its teeth into. Moreover, physicists searching for a theory of everything can take heart from the fact that, unlike researchers working on integrated-assessment models, they already have highly successful theories for the phenomena they are trying to unify. However, the ultimate challenge for the climate community will be to persuade governments and big business that they need to do something to avoid the potentially disastrous consequences of climate change. The UK's chief scientific advisor, David King, made headlines recently when he wrote that, in his view, 'climate change is the most severe problem that we are facing today - more serious even than the threat of terrorism' (Science 303 176-177). It is too soon to say if the message is getting through, but at least climate scientists now have an unlikely ally in the shape of the climate-change disaster movie The Day After Tomorrow. (U.K.)

  13. Matrix Models

    OpenAIRE

    Sochichiu, Corneliu

    2005-01-01

    Matrix models and their connections to String Theory and noncommutative geometry are discussed. Various types of matrix models are reviewed. Most of interest are IKKT and BFSS models. They are introduced as 0+0 and 1+0 dimensional reduction of Yang--Mills model respectively. They are obtained via the deformations of string/membrane worldsheet/worldvolume. Classical solutions leading to noncommutative gauge models are considered.

  14. Statistical analysis of multipole-model-derived structural parameters and charge-density properties from high-resolution X-ray diffraction experiments.

    Science.gov (United States)

    Kami?ski, Rados?aw; Domaga?a, S?awomir; Jarzembska, Katarzyna N; Hoser, Anna A; Sanjuan-Szklarz, W Fabiola; Gutmann, Matthias J; Makal, Anna; Mali?ska, Maura; B?k, Joanna M; Wo?niak, Krzysztof

    2014-01-01

    A comprehensive analysis of various properties derived from multiple high-resolution X-ray diffraction experiments is reported. A total of 13 charge-density-quality data sets of ?-oxalic acid dihydrate (C2H2O4·2H2O) were subject to Hansen-Coppens-based modelling of electron density. The obtained parameters and properties were then statistically analysed yielding a clear picture of their variability across the different measurements. Additionally, a computational approach (CRYSTAL and PIXEL programs) was utilized to support and examine the experimental findings. The aim of the study was to show the real accuracy and interpretation limits of the charge-density-derived data. An investigation of raw intensities showed that most of the reflections (60-70%) fulfil the normality test and the lowest ratio is observed for weak reflections. It appeared that unit-cell parameters are determined to the order of 10(-3)?Å (for cell edges) and 10(-2)?° (for angles), and compare well with the older studies of the same compound and with the new 100?K neutron diffraction data set. Fit discrepancy factors are determined within a 0.5% range, while the residual density extrema are about ±0.16?(3)?e?Å(-3). The geometry is very well reproducible between different data sets. Regarding the multipole model, the largest errors are present on the valence shell charge-transfer parameters. In addition, symmetry restrictions of multipolar parameters, with respect to local coordinate systems, are well preserved. Standard deviations for electron density are lowest at bond critical points, being especially small for the hydrogen-bonded contacts. The same is true for kinetic and potential energy densities. This is also the case for the electrostatic potential distribution, which is statistically most significant in the hydrogen-bonded regions. Standard deviations for the integrated atomic charges are equal to about 0.1?e. Dipole moments for the water molecule are comparable with the ones presented in various earlier studies. The electrostatic energies should be treated rather qualitatively. However, they are quite well correlated with the PIXEL results. PMID:24419172

  15. Chaoticity and dissipation of nuclear collective motion in a classical model

    CERN Document Server

    Baldo, Marcello; Rapisarda, A; Schuck, P

    1996-01-01

    We analyze the behavior of a gas of classical particles moving in a two-dimensional "nuclear" billiard whose multipole-deformed walls undergo periodic shape oscillations. We demonstrate that a single particle Hamiltonian containing coupling terms between the particles' motion and the collective coordinate induces a chaotic dynamics for any multipolarity, independently on the geometry of the billiard. The absence of coupling terms allows us to recover qualitatively the "wall formula" predictions. We also discuss the dissipative behavior of the wall motion and its relation with the order-to-chaos transition in the dynamics of the microscopic degrees of freedom.

  16. Geochemical modeling

    International Nuclear Information System (INIS)

    Contributions to the workshop 'Geochemical modeling' from 19 to 20 September 1990 at the Karlsruhe Nuclear Research Centre. The report contains the programme and a selection of the lectures held at the workshop 'Geochemical modeling'. (BBR)

  17. Differential Model

    Directory of Open Access Journals (Sweden)

    Ping Du

    2013-01-01

    Full Text Available In order to push table tennis into more cutting-edge area, we need to conduct sound research and simulation for the flying condition of table tennis in the air. This study analyzes the force characteristic of objects moving in the air and establishes differential equation model of three force conditions for the characteristics of table tennis, namely the flight model of table tennis only by gravity, the flight model of table tennis only by gravity and air resistance, as well as the flight model of table tennis only by gravity and air resistance and Magnus force. The research results: For the table tennis flight condition of the first model and the third model it conducts Matlab trajectory situation and achieves good simulation results. The model and simulation methods established in this study provide a theoretical basis for the flight conditions of table tennis in the air and provide a model-based simulation for the movement.

  18. Numerical models

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Manoj, N.T.

    Various numerical models used to study the dynamics and horizontal distribution of salinity in Mandovi-Zuari estuaries, Goa, India is discussed in this chapter. Earlier, a one-dimensional network model was developed for representing the complex...

  19. Model Building

    OpenAIRE

    Frampton, Paul H.

    1997-01-01

    In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light le...

  20. Enterprise Modeling

    OpenAIRE

    Fox, Mark S.; Gruninger, Michael

    1998-01-01

    To remain competitive, enterprises must become increasingly agile and integrated across their functions. Enterprise models play a critical role in this integration, enabling better designs for enterprises, analysis of their performance, and management of their operations. This article motivates the need for enterprise models and introduces the concepts of generic and deductive enterprise models. It reviews research to date on enterprise modeling and considers in detail the Toronto virtual ent...

  1. Constitutive Models

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Piccolo, Chiara

    2011-01-01

    This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic procedure is introduced for the analysis and solution of property models. Models that capture and represent the temperature dependent behaviour of physical properties are introduced, as well as equation of state models (EOS) such as the SRK EOS. Modelling of liquid phase activity coefficients are also covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses the degrees of freedom, dependent and independent variables and solution strategy. Vapour-liquid and solid-liquid equilibrium is covered, and applications to droplet evaporation and kinetic models are given.

  2. ICRF modelling

    International Nuclear Information System (INIS)

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs

  3. Modelling in Business Model design:

    OpenAIRE

    Simonse, W.L.

    2013-01-01

    It appears that business model design might not always produce a design or model as the expected result. However when designers are involved, a visual model or artefact is produced. To assist strategic managers in thinking about how they can act, the designers challenge is to combine strategy and design notions. However, so far little is known about the modelling methods and recipe approaches that can be used. In this paper the author discusses the development of a methodology for modellin...

  4. Model choice versus model criticism

    OpenAIRE

    Robert, Christian p.; Mengersen, Kerrie,; Chen, Carla

    2009-01-01

    The new perspectives on ABC and Bayesian model criticisms presented in Ratmann et al.(2009) are challenging standard approaches to Bayesian model choice. We discuss here some issues arising from the authors' approach, including prior influence, model assessment and criticism, and the meaning of error in ABC.

  5. Inter-trial effect in luminance processing revealed by magnetoencephalography / Efecto inter-ensayo en el procesamiento de iluminación revelado por magnetoencefalografía

    Scientific Electronic Library Online (English)

    Aki, Kondo; Katsumi, Watanabe.

    2013-12-15

    Full Text Available En este estudio, se examinó si el procesamiento de iluminación en el sistema visual humano exhibie algún efecto de historia (es decir, modulación inter-ensayo) en experimentos psicofísicos y de magnetoencefalografía (MEG). Un disco se presentó contra un fondo negro en varios niveles de iluminación e [...] n un orden aleatorio. Durante el registro de MEG, los participantes fueron instruidos para clasificar el brillo del disco (estimación de magnitud) y reportarlo durante el intervalo inter-ensayo. Los resultados de MEG mostraron que la activación neuromagnetica alrededor 200-220 ms después de la aparición de estímulo en las regiones occipito-temporal izquierda en un ensayo dade fue más débil cuando la iluminación de disco en el ensayo inmediatamente antes fue mayor. También se observó un efecto inverso inter-ensayo en el experimento psicofísico. Estos hallazgos sugieren que la actividad neuromagnética refleja la modulación inter-ensayo de procesamiento de iluminación que se correlaciona con la percepción subjetiva de brillo. Abstract in english In this study, we examined whether luminance processing in the human visual system would exhibit any history effect (i.e., inter-trial modulation) in psychophysical and magnetoencephalographic experiments. A disk was presented against a black background at various luminance levels in a randomized or [...] der. During the MEG recording, participants were instructed to rate the brightness of the disk (magnitude estimation) and to report it aloud during inter-stimulus interval. The MEG results showed that the neuromagnetic activation around 200-220 ms after the stimulus onset in the left occipito-temporal regions at a given trial was weaker when the disk luminance in the immediately prior trial was higher. An inverse inter-trial effect was also observed in the psychophysical experiment. These findings suggest that the neuromagnetic activity reflects the inter-trial modulation of luminance processing that correlates with the subjective perception of brightness.

  6. Turbulence modelling

    International Nuclear Information System (INIS)

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-? two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (Rij-?) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)

  7. Event Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2001-01-01

    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse are dynamic and we present a modeling approach that can be used to model such dynamics.We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can be characterized by their occurrence times and the participating books and borrowers. When we characterize events as information objects we focus on concepts like information structures. When viewed as change agents events are phenomena that trigger change. For example, when borrow event occurs books are moved temporarily from bookcases to borrowers. When we characterize events as change agents we focus on concepts like transactions, entity processes, and workflow processes.

  8. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan

    2011-01-01

    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence. The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations.

  9. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all lev...

  10. Ventilation Model

    International Nuclear Information System (INIS)

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4)

  11. Modeling Documents with Event Model

    Directory of Open Access Journals (Sweden)

    Longhui Wang

    2015-08-01

    Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.

  12. Martingale Model

    OpenAIRE

    Giandomenico, Rossano

    2006-01-01

    The model determines a stochastic continuous process as continuous limit of a stochastic discrete process so to show that the stochastic continuous process converges to the stochastic discrete process such that we can integrate it. Furthermore, the model determines the expected volatility and the expected mean so to show that the volatility and the mean are increasing function of the time.

  13. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human pathology, to biomarkers in diagnosis and prognostic evaluation, to drug testing and targeted medicine.

  14. Neurofuzzy Modelling

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    A neural network can approximate a function, but it is impossible to interpret the result in terms of natural language. The fusion of neural networks and fuzzy logic in neurofuzzy models provide learning as well as readability. Control engineers find this useful, because the models can be interpreted and supplemented by process operators.

  15. OSPREY Model

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to OSPREY to used and evaluate the model.

  16. Programming models

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, David J [Los Alamos National Laboratory; Mc Pherson, Allen [Los Alamos National Laboratory; Thorp, John R [Los Alamos National Laboratory; Barrett, Richard [SNL; Clay, Robert [SNL; De Supinski, Bronis [LLNL; Dube, Evi [LLNL; Heroux, Mike [SNL; Janssen, Curtis [SNL; Langer, Steve [LLNL; Laros, Jim [SNL

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  17. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  18. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  19. Model theory

    CERN Document Server

    Hodges, Wilfrid

    1993-01-01

    An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.

  20. Paleoclimate Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Computer simulations of past climate. Variables provided as model output are described by parameter keyword. In some cases the parameter keywords are a subset of...

  1. Supernova models

    International Nuclear Information System (INIS)

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  2. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabilistic functionalism, and concerns the environment and the mind, and adaptation by the latter to the former. This entry is about the lens model, and probabilistic functionalism more broadly. Focus will mo...

  3. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    Science.gov (United States)

    Sopuerta, Carlos F.; Yunes, Nicolás

    2012-06-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesies. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesies, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.

  4. Mechanistic models

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) interaction'' of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  5. Mechanistic models

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) ``interaction`` of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  6. Droplet model

    International Nuclear Information System (INIS)

    The effectiveness of the liquid drop model is noted, and this model and the leptodermous (A/sup -1/3/ << 1) approaches in general are related to other methods in many-body theory. Then the Hill-Wheeler box is used to show that the leptodermous approach is applicable to quantum systems with even relatively small numbers of particles. The smooth part of the total energy is separated from the shell effects; it is clear that an A/sup 1/3/ term must be included. After a brief introduction to the methods used to obtain the droplet model energy equation, a simplified version is used to display the most important new terms that enter. The theory is applied to calculation of nuclear ground-state masses and single-particle potential well parameters. 17 figures

  7. Subcomponent models

    International Nuclear Information System (INIS)

    According to the instruction given by Professor Lanius and Professor Uhlman, the Conference Chairmen, and by Professor Ranft and Professor Nowak, the Chairmen of the Program Committee, I have organized the Session B04 ''Subcomponent Models'' in the following way: First, I have tried to review recent theoretical works on composite models of quarks and leptons, including twenty-six contributed papers allocated to this session, with the title of ''Composite Models''. Next, I have asked Professor Yamada from University of Tokyo to review recent experimental works related to this subject, including three contributed papers allocated to this session, with the title of ''Experimental Search for Compositeness''. After that, I have invited Professor Mohapatra from University of Maryland and Professor Nielsen from Niels Bohr Institute to give talks on their own recent works contributed to this session, with the titles of ''Fermion Generations and Compositeness'' and ''Field Theories without Fundamental (Gauge) Symmetry'', respectively. (author)

  8. Smashnova Model

    OpenAIRE

    Sivaram, C

    2007-01-01

    An alternate model for gamma ray bursts is suggested. For a white dwarf (WD) and neutron star (NS) very close binary system, the WD (close to Mch) can detonate due to tidal heating, leading to a SN. Material falling on to the NS at relativistic velocities can cause its collapse to a magnetar or quark star or black hole leading to a GRB. As the material smashes on to the NS, it is dubbed the Smashnova model. Here the SN is followed by a GRB. NS impacting a RG (or RSG) (like i...

  9. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Sharma Aarti

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  10. Environmental modeling

    CERN Document Server

    Holzbecher, Ekkehard

    2012-01-01

    The book has two aims: to introduce basic concepts of environmental modelling and to facilitate the application of the concepts using modern numerical tools such as MATLAB. It is targeted at all natural scientists dealing with the environment: process and chemical engineers, physicists, chemists, biologists, biochemists, hydrogeologists, geochemists and ecologists. MATLAB was chosen as the major computer tool for modeling, firstly because it is unique in it's capabilities, and secondly because it is available in most academic institutions, in all universities and in the research departments of

  11. Application of radar polarimetry to forestry

    Science.gov (United States)

    Durden, S. L.; Zebker, H. A.; Vanzyl, J. J.

    1988-01-01

    In order to understand L-band multipolarization radar measurements of forested areas, a model for the forest polarization signature was developed. The model is based on backscatter from dielectric cylinders which represent branches and trunks. In the model the Stokes matrices corresponding to several different scattering mechanisms is calculated, combining the results to get the total Stokes matrix. Comparison of model predictions with radar measurements shows that the model can accurately predict the forest polarization signature.

  12. Defect modelling

    International Nuclear Information System (INIS)

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  13. Geoinformation modelling.

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana; Ocelíková, E.

    Pardubice : Univerzita Pardubice, 2006 - (Taufer, I.; Dušek, F.; Honc, D.), s. 1-5 ISBN 80-7194-860-8. [Process Control 2006. Kouty nad Desnou (CZ), 13.06.2006-16.06.2006] Institutional research plan: CEZ:AV0Z10750506 Keywords : spatial data uncertainty * contextual modelling * context uncertainty * Web services * control GIS Subject RIV: BC - Control Systems Theory

  14. Quasimolecular modelling

    CERN Document Server

    Greenspan, Donald

    1991-01-01

    In this book the author has tried to apply "a little imagination and thinking" to modelling dynamical phenomena from a classical atomic and molecular point of view. Nonlinearity is emphasized, as are phenomena which are elusive from the continuum mechanics point of view. FORTRAN programs are provided in the Appendices.

  15. A Note on the Phase Locking Value and its Properties

    OpenAIRE

    Aydore, Sergul; Pantazis, Dimitrios; Leahy, Richard M.

    2013-01-01

    We investigate the properties of the Phase Locking Value (PLV) and the Phase Lag Index (PLI) as metrics for quantifying interactions in bivariate local field potential (LFP), electroencephalography (EEG) and magnetoencephalography (MEG) data. In particular we describe the relationship between nonparametric estimates of PLV and PLI and the parameters of two distributions that can both be used to model phase interactions. The first of these is the von Mises distribution, for which the sample PL...

  16. Acute effects of alcohol on stimulus-induced gamma oscillations in human primary visual and motor cortices

    OpenAIRE

    Campbell, Anne Eileen; Sumner, Petroc; Singh, Krish D; Muthukumaraswamy, Suresh D.

    2014-01-01

    Alcohol is a rich drug affecting both the ?-amino butyric acid (GABA) and glutamatergic neurotransmitter systems. Recent findings from both modelling and pharmacological manipulation have indicated a link between GABAergic activity and oscillations measured in the gamma frequency range (30-80Hz), but there are no previous reports of alcohol’s modulation of gamma-band activity measured by magnetoencephalography (MEG) or electroencephalography (EEG). In this single-blind, placebo-controlled cro...

  17. Criticality Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

  18. The Novelty of Europe as seen from the Periphery: Indian Perception of the 'New Europe' in a Multi-polar world

    OpenAIRE

    Mitra, Subrata K.

    2005-01-01

    Europa ist, so verstanden, dass eine Stimme den Anspruch erhebt, für alle fünfundzwanzig zu sprechen, selbst für den vermeintlichen Europäer etwas Neues. Verständlicherweise herrscht bei den Außenstehenden mit dem Blick nach Europa hinein eher Unverständnis und Konfusion. Folglich bleibt das Verständnis des neuen Europas bei Nicht-Europäern vage, widersprüchlich und fragwürdig, begleitet von einem besorgten Unterton. In diesem Artikel werden, schwerpunktmäßig aus der Sicht Indiens, die Ursprü...

  19. Many-body theory of dilute gas condensates - derivation of a field-modified Gross-Pitaevskii equation from multipolar QED

    CERN Document Server

    Boussiakou, L G; Babiker, M

    2000-01-01

    The Hamiltonian of a moving atom in electromagnetic fields includes velocity- dependent terms. We show that the leading velocity dependence emerges systematically in the non-relativistic limit from a scheme firmly based on the relativistic invariance of the energy-momentum stress tensor of the coupled matter-fields system. We then extend the Hamiltonian to the many-body situation suitable for describing a Bose-Einstein condensate (BEC). From first principles, we use the equation of motion for the condensate wavefunction to obtain an extended version of the Gross-Pitaevskii (GP) equation and an equation for the internal states of the atoms. It is shown that laser fields modify the GP equation by inclusion of convective terms involving a Rontgen interaction plus a term coupling the centre of mass momentum to the Poynting vector. We also obtain the modified Maxwell equations for the electromagnetic fields coupled to the BEC involving the average velocity of the atoms.

  20. Multipolar phases and magnetically hidden order: Review of the heavy-fermion compound Ce(1-x)La(x)B6

    OpenAIRE

    Cameron, A S; Friemel, G; Inosov, D.S.

    2015-01-01

    Cerium hexaboride is a cubic f-electron heavy-fermion compound that displays a rich array of low-temperature magnetic ordering phenomena which have been the subject of investigation for more than 50 years. Its complex behaviour is the result of competing interactions, with both itinerant and local electrons playing important roles. Investigating this material has proven to be a substantial challenge, in particular because of the appearance of a "magnetically hidden order" ph...

  1. Multipolarity of statistical #betta#-rays from f-p shell nuclei produced in deep-inelastic heavy-ion reactions

    International Nuclear Information System (INIS)

    Measurements of the circular polarization and the angular correlation of #betta#-rays from highly excited polarized nuclei, produced in 16O+58Ni deep-inelastic reactions, indicate a strong quadrupole component in the spectra of statistical #betta#-decay at Esub(#betta#)>2 MeV. Differences in the anisotropies observed for the 16O+58Ni and the 16O+48Ti reactions are attributed to the influence of nuclear structure. (orig.)

  2. Building Models and Building Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Skauge, Jørn

    2008-01-01

    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om computerbaseret bygningsmodeller beskrives og de primære potentialer vedrørende modelbaseret design af bygninger bliver fremhævet. De næste to kapitler beskriver fundamentale emner om bygningsmodellering og ...

  3. Molecular Modelling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-12-01

    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  4. Fibre Models

    Science.gov (United States)

    Herrmann, H. J.; Kun, F.

    2007-12-01

    Fibre models have been introduced as simple models to describe failure. They are based on the probability distribution of broken fibres. The load redistribution after a fibre yields can be global or local and the first case can often be solved analytically. We will present an interpolation between these the local and the global case and apply it to experimental situations like the compression of granular packings. Introducing viscoelastic fibres allows to describe the creep of wood. It is even possible to deal analytically with a gradual degradation of fibres and consider damage as well as healing. In this way Basquin's law of fatigue can be reproduced and new universalities concerning the histograms of bursts and waiting times can be uncovered.

  5. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabilistic functionalism, and concerns the environment and the mind, and adaptation by the latter to the former. This entry is about the lens model, and probabilistic functionalism more broadly. Focus will mostly be on firms and their employees, but, to fully appreciate the scope, we have to keep in mind the fact that probabilistic functionalism extends to all purposive organisms. Probabilistic functionalism is currently experiencing growing interest among strategy scholars, and some very recent papers are highlighted in conclusion.

  6. Adsorption Modelling

    OpenAIRE

    Musin, Eduard

    2013-01-01

    In this study, adsorption was explored to remove toxic metals from wastewaters. The main focus of the research work lies on adsorption process, which is described theoretically and studied experimentally. Theoretical part involves studying of the adsorption concepts, adsorbents and adsorption process modelling. Experimental part of the work was aimed to create a condition which will allow examining the adsorption process by using adsorbents to remove toxic metal from aqueous solution. The exp...

  7. Leadership model

    OpenAIRE

    Almeida, Leandro S.; Cruz, José Fernando A.; Ferreira, Helena Isabel dos Santos Ribeiro; Pinto, Alberto

    2011-01-01

    The Theory of Planned Behavior studies the decision-making mechanisms of individuals. We propose the Nash Equilibria as one, of many, possible mechanisms of transforming human intentions in behavior. This process corresponds to the best strategic individual decision taking in account the collective response. We built a game theoretical model to understand the role of leaders in decision-making of individuals or groups. We study the characteristics of the leaders that can have a...

  8. Nuclear Models

    International Nuclear Information System (INIS)

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  9. Modeling Overstock

    OpenAIRE

    Fernandes, Rui; Gouveia, Borges; Pinho, Carlos

    2010-01-01

    Two main problems have been emerging in supply chain management: the increasing pressure to reduce working capital and the growing variety of products. Most of the popular indicators have been developed based on a controlled environment. A new indicator is now proposed, based on the uncertainty of the demand, the flexibility of the supply chains, the evolution of the products lifecycle and the fulfillment of a required service level. The model to support the indicator will be developed wit...

  10. Cheating models

    DEFF Research Database (Denmark)

    Arnoldi, Jakob

    2012-01-01

    The article discusses the use of algorithmic models for so-called High Frequency Trading (HFT) in finance. HFT is controversial yet widespread in modern financial markets. It is a form of automated trading technology which critics among other things claim can lead to market manipulation. Drawing on two cases, this article shows that manipulation more likely happens in the reverse way, meaning that human traders attempt to make algorithms ‘make mistakes’ or ‘mislead’ algos. Thus, it is algorithmi...

  11. Modeling biomembranes.

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  12. Discrete choice models

    OpenAIRE

    Boštjan Kerbler

    2006-01-01

    The paper systematically describes special regression methods – discrete choice models – known as probability models. The meaning of models and their methodological characteristics are described, as well as different types of models, especially binary-choice models and censored regression models. We considered three most commonly used approaches to estimating such models – logit, probit and tobit model.

  13. Document Models

    CERN Document Server

    Van Herwijnen, Eric

    1997-01-01

    Exchanging electronic texts in different formats has been a problem for many years. For example, it is difficult to convert a TeX document into an MS Word document. Proprietary solutions exist for specific purposes, but their application is restricted to a limited community of users. A truly universal for document archival consists of the use of a number of standards for document models. This article describes the standards that have been recently adopted in that area : SGML, CALS, HTML, XML, HyTime, DSSSL, CSS, MHEG and PREMO. Together, they attempt to solve the problem of interchanging and reusing composite documents.

  14. Model Awal Dan Model Klasik Struktur Informasi

    OpenAIRE

    Widayati, Dwi

    2010-01-01

    This paper describes early models of information structure and classical models of information structure. Early models of information structure consist of (1) subject- predicate structure, (2) the early psychological model, (3) the communicative model, and (4) linguistics, psychology, and information structure. Classical models is begun from the Prague school, Halliday and the American structuralists, Chafe on givenness, and Chomsky on focus and presupposition. The most characteristic feat...

  15. Model Selection in Linear Mixed Models

    OpenAIRE

    Müller, Samuel; Scealy, J. L.; Welsh, A. H.

    2013-01-01

    Linear mixed effects models are highly flexible in handling a broad range of data types and are therefore widely used in applications. A key part in the analysis of data is model selection, which often aims to choose a parsimonious model with other desirable properties from a possibly very large set of candidate statistical models. Over the last 5-10 years the literature on model selection in linear mixed models has grown extremely rapidly. The problem is much more complicat...

  16. Towards a Multi Business Model Innovation Model

    DEFF Research Database (Denmark)

    Lindgren, Peter; JØrgensen, Rasmus

    2012-01-01

    This paper studies the evolution of business model (BM) innovations related to a multi business model framework. The paper tries to answer the research questions: • What are the requirements for a multi business model innovation model (BMIM)? • How should a multi business model innovation model look like? Different generations of BMIMs are initially studied in the context of laying the baseline for how next generation multi BM Innovation model (BMIM) should look like. All generations of models are analyzed with the purpose of comparing the characteristics and challenges of previous generations of BMIMs. On behalf of these results and case analyses, the paper concludes by proposing a framework for a multi BMIM.

  17. The IMACLIM model; Le modele IMACLIM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)

  18. Rotating universe models

    International Nuclear Information System (INIS)

    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.)

  19. Concept Modeling vs. Data modeling in Practice

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2015-01-01

    This chapter shows the usefulness of terminological concept modeling as a first step in data modeling. First, we introduce terminological concept modeling with terminological ontologies, i.e. concept systems enriched with characteristics modeled as feature specifications. This enables a formal account of the inheritance of characteristics and allows us to introduce a number of principles and constraints which render concept modeling more coherent than earlier approaches. Second, we explain how terminological ontologies can be used as the basis for developing conceptual and logical data models. We also show how to map from the various elements in the terminological ontology to elements in the data models, and explain the differences between the models. Finally the usefulness of terminological ontologies as a prerequisite for IT development and data modeling is illustrated with examples from the Danish public sector (a user interface for drug prescription and a data model for food control).

  20. Concept Modeling vs. Data modeling in Practice

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2015-01-01

    This chapter shows the usefulness of terminological concept modeling as a first step in data modeling. First, we introduce terminological concept modeling with terminological ontologies, i.e. concept systems enriched with characteristics modeled as feature specifications. This enables a formal account of the inheritance of characteristics and allows us to introduce a number of principles and constraints which render concept modeling more coherent than earlier approaches. Second, we explain how t...

  1. Comparisons of debris environment model breakup models

    Science.gov (United States)

    Jonas, F.; Yates, K.; Evans, R.

    1993-01-01

    This paper presents a comparison of current spacecraft breakup models used in orbital (space) debris computational environment models. The breakup models to be compared come from the NASA EVOLVE (Evolutionary) model long term debris model, the IMPACT code developed by Aerospace Corp., and the Fragmentation Algorithms for Satellite Targets (FAST) developed by Kaman Sciences. The comparison will show the methodologies and results obtained for each model such as mass versus fragment number distributions. Implications for debris cloud formation will be discussed in terms of the environments produced. No attempt is made to recommend any one model over the other as each were designed and employed for specific purposes in the environment models they are part of or contribute to. The comparisons are intended to provide researchers both quantitative and qualitative information on the models for use in their own research activities.

  2. Armas estratégicas e poder no sistema internacional: o advento das armas de energia direta e seu impacto potencial sobre a guerra e a distribuição multipolar de capacidades Strategic weapons and power in international system: the arise of direct energy weapons and their potential impact over the war and multipolar distribution of capabilities

    Directory of Open Access Journals (Sweden)

    Fabrício Schiavo Ávila

    2009-04-01

    Full Text Available O pós-Guerra Fria (1991-2006 apresenta uma mudança significativa no cenário estratégico: a maior acessibilidade da tecnologia militar e o surgimento de novas armas capazes de modificar o poder coercitivo dos países - como as armas de energia direta - acabam pondo em xeque a ideia de que a primazia nuclear é condição suficiente para garantir a unipolaridade. Focando-se no atual recrudescimento das tensões entre EUA e Rússia - especialmente com a proposta norte-americana de implementação do Escudo Antimíssil no Leste Europeu - e analisando as relações de poder entre os três países, procuramos revelar que tipo de competição ocorrerá no sistema internacional nas próximas décadas. O presente artigo analisa as reais possibilidades de que a primazia nuclear norte-americana se torne efetiva, uma vez que, para tanto, é necessário o desarmamento estratégico das demais potências. Como uma guerra nuclear entre os três países possui um custo político muito elevado, as disputas tendem a ser decididas na esfera das operações. Para ilustrar esta última afirmação, usamos um cenário contrafactual de guerra nuclear limitada entre Estados Unidos, Rússia e China, por meio do qual tentamos evidenciar as precondições táticas e operacionais para uma eventual vitória da coalizão sino-russa.The evolution of the Post-Cold War (1991-2006 international system shows a significant amount of change regarding the strategic capabilities of United States, Russia, and China. The rise of a new class of strategic weapons called directed energy weapons (lasers and high power microwaves, as well as the great costs associated with the quest for nuclear primacy, demand closer examination of the current assumption about the links between nuclear primacy and unipolar distribution of power in the International System. Starting with the current tensions between US and Russia, we try to reveal in this article what kind of competition might be observed in the international system over the next decade. The present work analyzes the real possibilities of the USA achieving an effective nuclear primacy condition, which requires the complete disarmament of all other powers. Since a nuclear war between the three countries has a very high political cost, disputes tend to be settled on the operational sphere. In order to demonstrate this final point, we made comparative use of two nuclear war scenarios. The article concludes by establishing the tactical and operational conditions that Russia and China seems to counting with in order to defeat United States if a shooting war comes.

  3. Armas estratégicas e poder no sistema internacional: o advento das armas de energia direta e seu impacto potencial sobre a guerra e a distribuição multipolar de capacidades / Strategic weapons and power in international system: the arise of direct energy weapons and their potential impact over the war and multipolar distribution of capabilities

    Scientific Electronic Library Online (English)

    Fabrício Schiavo, Ávila; José Miguel, Martins; Marco, Cepik.

    2009-04-01

    Full Text Available O pós-Guerra Fria (1991-2006) apresenta uma mudança significativa no cenário estratégico: a maior acessibilidade da tecnologia militar e o surgimento de novas armas capazes de modificar o poder coercitivo dos países - como as armas de energia direta - acabam pondo em xeque a ideia de que a primazia [...] nuclear é condição suficiente para garantir a unipolaridade. Focando-se no atual recrudescimento das tensões entre EUA e Rússia - especialmente com a proposta norte-americana de implementação do Escudo Antimíssil no Leste Europeu - e analisando as relações de poder entre os três países, procuramos revelar que tipo de competição ocorrerá no sistema internacional nas próximas décadas. O presente artigo analisa as reais possibilidades de que a primazia nuclear norte-americana se torne efetiva, uma vez que, para tanto, é necessário o desarmamento estratégico das demais potências. Como uma guerra nuclear entre os três países possui um custo político muito elevado, as disputas tendem a ser decididas na esfera das operações. Para ilustrar esta última afirmação, usamos um cenário contrafactual de guerra nuclear limitada entre Estados Unidos, Rússia e China, por meio do qual tentamos evidenciar as precondições táticas e operacionais para uma eventual vitória da coalizão sino-russa. Abstract in english The evolution of the Post-Cold War (1991-2006) international system shows a significant amount of change regarding the strategic capabilities of United States, Russia, and China. The rise of a new class of strategic weapons called directed energy weapons (lasers and high power microwaves), as well a [...] s the great costs associated with the quest for nuclear primacy, demand closer examination of the current assumption about the links between nuclear primacy and unipolar distribution of power in the International System. Starting with the current tensions between US and Russia, we try to reveal in this article what kind of competition might be observed in the international system over the next decade. The present work analyzes the real possibilities of the USA achieving an effective nuclear primacy condition, which requires the complete disarmament of all other powers. Since a nuclear war between the three countries has a very high political cost, disputes tend to be settled on the operational sphere. In order to demonstrate this final point, we made comparative use of two nuclear war scenarios. The article concludes by establishing the tactical and operational conditions that Russia and China seems to counting with in order to defeat United States if a shooting war comes.

  4. Business Model Innovation

    OpenAIRE

    Dodgson, Mark; Gann, David; Phillips, Nelson; Massa, Lorenzo; Tucci, Christopher

    2014-01-01

    The chapter offers a broad review of the literature at the nexus between Business Models and innovation studies, and examines the notion of Business Model Innovation in three different situations: Business Model Design in newly formed organizations, Business Model Reconfiguration in incumbent firms, and Business Model Innovation in the broad context of sustainability. Tools and perspectives to make sense of Business Models and support managers and entrepreneurs in dealing with Business Model ...

  5. Mathematical modeling of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dnestrovskii, Iu.N.; Kostomarov, D.P.

    1982-01-01

    Problems related to the mathematical modeling of high-temperature plasmas are discussed with particular reference to controlled nuclear fusion. Attention is given to the modeling of kinetic processes with Coulomb interaction, the modeling of magnetohydrodynamic processes, transport models, and hybrid models. The discussion covers the principal mathematical models, the statement of problems, and numerical methods of solution. Consideration is also given to the analysis of the physical results obtained by mathematical modeling. 7 references.

  6. Modeling, computation and optimization

    CERN Document Server

    Neogy, S K

    2009-01-01

    This volume provides recent developments and a state-of-the-art review in various areas of mathematical modeling, computation and optimization. It contains theory, computation as well as the applications of several mathematical models to problems in statistics, games, optimization and economics for decision making. It focuses on exciting areas like models for wireless networks, models of Nash networks, dynamic models of advertising, application of reliability models in economics, support vector machines, optimization, complementarity modeling and games.

  7. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to...

  8. Product and Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian T.; Gani, Rafiqul

    2011-01-01

    This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models. These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product...

  9. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake parameterizations are demonstrated in theWeather Research and Forecasting mesoscale model (WRF) in an idealized atmospheric flow. The model framework is the Horns Rev I wind farm experiencing an 7.97 m/s wind from 269.4o. Three of the four parameterizations use thrust output from the CRESflow-NS microscale model. The characteristics of the mesoscale wake that developed from the four parameterizations are examined. In addition the mesoscale model wakes are compared to measurement data from Horns Rev I. Overall it is seen as an advantage to incorporate microscale model data in mesocale model wake parameterizations.

  10. QSMSR QUALITATIVE MODEL

    Directory of Open Access Journals (Sweden)

    Tahir Abdullah

    2012-02-01

    Full Text Available Software architecture design and requirement engineering are core and independent areas of engineering. A lot of research, education and practice are carried on Requirement elicitation and doing refine it, but it is a major issue of engineering. QSMSR model act as a bridge between requirement and design there is a huge gap between these two areas of software architecture and requirement engineering. The QSMSR model divide into two sub model qualitative model and Principal model in this research we focus on Qualitative model which further divide into two sub models fabricated model and classified model. Classified model make the sub groups of the role and match it with components. The Fabricated model link QSMSR Principal Model to an architecture design. At the end it provides the QSMSR Architecture model of the system as output.

  11. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.; Sieros, G.; Ott, Søren; Réthoré, Pierre-Elouan; Hahmann, Andrea N.; Hasager, Charlotte Bay

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake parameterizations are demonstrated in theWeather Research and Forecasting mesoscale model (WRF) in an idealized atmospheric flow. The model framework is the Horns Rev I wind farm experiencing an 7.97 m/s wind f...

  12. Mapping DEVS Models onto UML Models

    OpenAIRE

    Zinoviev, Dmitry

    2005-01-01

    Discrete event simulation specification (DEVS) is a formalism designed to describe both discrete state and continuous state systems. It is a powerful abstract mathematical notation. However, until recently it lacked proper graphical representation, which made computer simulation of DEVS models a challenging issue. Unified modeling language (UML) is a multipurpose graphical modeling language, a de-facto industrial modeling standard. There exist several commercial and open-sou...

  13. From 1-matrix model to Kontsevich model

    OpenAIRE

    Ambjorn, Jan; Kristjansen, Charlotte F.

    1993-01-01

    Loop equations of matrix models express the invariance of the models under field redefinitions. We use loop equations to prove that it is possible to define continuum times for the generic hermitian {1-matrix} model such that all correlation functions in the double scaling limit agree with the corresponding correlation functions of the Kontsevich model expressed in terms of kdV times. In addition the double scaling limit of the partition function of the hermitian matrix mode...

  14. Model selection for logistic regression models

    Science.gov (United States)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  15. The modeling process for stage models

    OpenAIRE

    Solli-Sæther, Hans; Gottschalk, Petter

    2010-01-01

    Purpose – The purpose of this paper is to present and test a modeling procedure, as researchers have struggled for decades to develop stages of growth models that are both theoretically founded and empirically validated. This article presents the concept and hypothesis of stages, the history of stage models and a procedure that may serve as a useful tool in modeling stages of growth. Design/methodology/approach – Based on previous research and lessons learned from case study experience of the...

  16. Semantic Business Process Modeling

    OpenAIRE

    Markovic, Ivan

    2010-01-01

    This book presents a process-oriented business modeling framework based on semantic technologies. The framework consists of modeling languages, methods, and tools that allow for semantic modeling of business motivation, business policies and rules, and business processes. Quality of the proposed modeling framework is evaluated based on the modeling content of SAP Solution Composer and several real-world business scenarios.

  17. Automated data model evaluation

    International Nuclear Information System (INIS)

    Modeling process is essential phase within information systems development and implementation. This paper presents methods and techniques for analysis and evaluation of data model correctness. Recent methodologies and development results regarding automation of the process of model correctness analysis and relations with ontology tools has been presented. Key words: Database modeling, Data model correctness, Evaluation

  18. Modeling transient rootzone salinity (SWS Model)

    Science.gov (United States)

    The combined, water quality criteria for irrigation, water and ion processes in soils, and plant and soil response is sufficiently complex that adequate analysis requires computer models. Models for management are also needed but these models must consider that the input requirements must be reasona...

  19. Molecular Models: Construction of Models with Magnets

    Directory of Open Access Journals (Sweden)

    Kalinov?i? P.

    2015-07-01

    Full Text Available Molecular models are indispensable tools in teaching chemistry. Beside their high price, commercially available models are generally too small for classroom demonstration. This paper suggests how to make space-filling (callote models from Styrofoam with magnetic balls as connectors and disc magnets for showing molecular polarity

  20. China model: Energy modeling the modern dynasty

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.

    1996-05-01

    In this paper a node-based microeconomic analysis is used to model the Chinese energy system. This model is run across multiple periods employing Lagrangian Relaxation techniques to achieve general equilibrium. Later, carbon dioxide emissions are added and the model is run to answer the question, {open_quotes}How can greenhouse gas emissions be reduced{close_quotes}?

  1. From Numeric Models to Granular System Modeling

    Directory of Open Access Journals (Sweden)

    Witold Pedrycz

    2015-03-01

    To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.

  2. Truncated resolution model structures

    CERN Document Server

    Biedermann, G

    2006-01-01

    Using the dual of Bousfield-Friedlander localization we colocalize resolution model structures on cosimplicial objects over a left proper model category to get truncated resolution model structures. These are useful to study realization and moduli problems in algebraic topology.

  3. Wildfire Risk Main Model

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The model combines three modeled fire behavior parameters (rate of spread, flame length, crown fire potential) and one modeled ecological health measure (fire...

  4. Model Transformation Testing Challenges

    OpenAIRE

    Baudry, Benoit; Dinh-Trong, Trung; Mottu, Jean-Marie; Simmonds, Devon; France, Robert; Ghosh, Sudipto; Fleurey, Franck; Le Traon, Yves

    2006-01-01

    Model transformations play a critical role in Model Driven Engineering, and thus rigorous techniques for testing model transformations are needed. This paper identifies and discusses important issues that must be tackled to define sound and practical techniques for testing transformations.

  5. Assessing Financial Model Risk

    OpenAIRE

    Barrieu, Pauline; Scandolo, Giacomo

    2013-01-01

    Model risk has a huge impact on any risk measurement procedure and its quantification is therefore a crucial step. In this paper, we introduce three quantitative measures of model risk when choosing a particular reference model within a given class: the absolute measure of model risk, the relative measure of model risk and the local measure of model risk. Each of the measures has a specific purpose and so allows for flexibility. We illustrate the various notions by studying ...

  6. On Model Subtyping

    OpenAIRE

    Guy, Clément; Combemale, Benoit; Derrien, Steven; Steel, James; Jézéquel, Jean-Marc

    2012-01-01

    Various approaches have recently been proposed to ease the manipulation of models for specific purposes (e.g., automatic model adaptation or reuse of model transformations). Such approaches raise the need for a unified theory that would ease their combination, but would also outline the scope of what can be expected in terms of engineering to put model manipulation into action. In this work, we address this problem from the model substitutability point of view, through model typing. We introd...

  7. Predictive Models for Music

    OpenAIRE

    Paiement, Jean-François; Grandvalet, Yves; Bengio, Samy

    2008-01-01

    Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce generative models for melodies. We decompose melodic modeling into two subtasks. We first propose a rhythm model based on the distributions of distances between subsequences. Then, we define a generative model for melodies given chords and rhythms based on modeling sequences of Narmour featur...

  8. Computational neurogenetic modeling

    CERN Document Server

    Benuskova, Lubica

    2010-01-01

    Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol

  9. Elastic Appearance Models

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Fagertun, Jens; Larsen, Rasmus

    2011-01-01

    This paper presents a fusion of the active appearance model (AAM) and the Riemannian elasticity framework which yields a non-linear shape model and a linear texture model – the active elastic appearance model (EAM). The non-linear elasticity shape model is more flexible than the usual linear subspace model, and it is therefore able to capture more complex shape variations. Local rotation and translation invariance are the primary explanation for the additional flexibility. In addition, we introd...

  10. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    2007-01-01

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate sta...

  11. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    2014-01-01

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state fMRI data. The models used are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and Infinite Diagonal Model (IDM). The models have different constraints on how they cluster nodes. IR...

  12. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements ...

  13. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2

  14. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

  15. Simplicity, complexity and modelling

    CERN Document Server

    Christie, Mike; Dawid, Philip; Senn, Stephen S

    2011-01-01

    Several points of disagreement exist between different modelling traditions as to whether complex models are always better than simpler models, as to how to combine results from different models and how to propagate model uncertainty into forecasts. This book represents the result of collaboration between scientists from many disciplines to show how these conflicts can be resolved. Key Features: Introduces important concepts in modelling, outlining different traditions in the use of simple and complex modelling in statistics. Provides numerous case studies on complex modelling, such as c

  16. Power- Supply Network Modeling

    OpenAIRE

    Levant, Jean-Luc; Ramdani, Mohamed; Perdriau, Richard

    2002-01-01

    This work deals with the extraction of ICEM parameters and its validation on the power supply network of a 8-bit microcontroller. The objective of the ICEM model [1] (Integrated Circuit Electromagnetic Model) for Components is to propose electrical modeling for conducted and radiation emission prediction [2]. The ICEM model is based on two sub-models. The first one models the power network of the I.C. and the second one models the I.C. activity as a current generator. The ICEM model can be us...

  17. Statistical thermodynamics of fluids with both dipole and quadrupole moments.

    Science.gov (United States)

    Benavides, Ana L; Delgado, Francisco J García; Gámez, Francisco; Lago, Santiago; Garzón, Benito

    2011-06-21

    New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Ri?o, Physica A 202, 420 (1994)] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated. PMID:21702567

  18. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Clinton Lum

    2002-02-04

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

  19. Hierarchical control models for multimodal process modeling.

    Science.gov (United States)

    Zhang, Weidong; Chen, Feng; Xu, Wenli

    2009-10-01

    The multimodal and hierarchical structure characteristics of a system make process modeling quite difficult. In this paper, we present a hierarchical control model (HCM) for hierarchically multimodal processing. From multiple streams, a control layer extracts the inherent group process that denotes the evolution of the system and controls the evolution of every modality. HCMs model the influences of the group on modalities and represent the hierarchical structure of the system by a multilayer network. To estimate the state order of the model, we also present a new information criterion that corrects the preference of traditional criteria for more complex models and proves the rationality of HCMs. Comparisons with other models on multiagent activity recognition show that HCMs are reliable and efficient. PMID:19342349

  20. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    International Nuclear Information System (INIS)

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS MandO 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS MandO 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM

  1. A future of the model organism model

    OpenAIRE

    Rine, Jasper

    2014-01-01

    Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. Howe...

  2. Multiple Model Approaches to Modelling and Control,

    DEFF Research Database (Denmark)

    1997-01-01

    Why Multiple Models?This book presents a variety of approaches which produce complex models or controllers by piecing together a number of simpler subsystems. Thisdivide-and-conquer strategy is a long-standing and general way of copingwith complexity in engineering systems, nature and human problem solving. More complex plants, advances in information technology, and tightened economical and environmental constraints in recent years have lead topractising engineers being faced with modelling and...

  3. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  4. Biosphere Model Report

    International Nuclear Information System (INIS)

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  5. On the Origin of Morphological Structures of Planetary Nebulae

    Science.gov (United States)

    Kwok, Sun

    2015-08-01

    Infrared and submm observations have revealed that for many bipolar and multipolar planetary nebulae, most of the masses reside in the equatorial region and the spherical envelope. It is suggested that the optically bright lobes are in fact low-density cavities cleared out by fast outflows and photoionized by UV photons leaked from the torus. In this paper, we will discuss the morphological structures of planetary nebulae in the visible, infrared, submm, and radio and propose models to their intrinsic structures.

  6. Experimental core electron density of cubic boron nitride

    DEFF Research Database (Denmark)

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse; Becker, Jacob; Iversen, Bo Brummerstedt

    2014-01-01

    Experimental core electron density of cubic boron nitride Nanna Wahlberg*, Niels Bindzus*, Lasse Bjerg*, Jacob Becker*, and Bo B. Iversen* *Aarhus University, Department of Chemistry, CMC, Langelandsgade 140, 8000 Århus, Denmark The resent progress in powder diffraction provides data of quality beyond multipolar modeling of the valence density. As was recently shown in a benchmark study of diamond by Bindzus et al.1 The next step is to investigate more complicated chemical bonding motives, to de...

  7. 2.5PN kick from black-hole binaries in circular orbit: Nonspinning case

    OpenAIRE

    Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.

    2013-01-01

    Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick ...

  8. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    OpenAIRE

    Sopuerta, Carlos F.; Yunes, Nicolas

    2012-01-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription...

  9. The Principles of Causal Conspiracy

    OpenAIRE

    Michael M. Anthony

    2014-01-01

    The human mind understands logical processes and causality and formulates theories based on logical descriptions of empirical evidence. The Principles of Causal Conspiracy is based on defining information as logical charges similar to electric charges. Such information charges can be modeled in the vacuum of a quantum probability firmament as symmetry of quantum charges with a zero net charge. Observation of a state lifts one of these charges in a Möbius transformation from a multipolar f...

  10. Internal conversion coefficients for superheavy elements

    International Nuclear Information System (INIS)

    Internal conversion coefficients (ICC) were calculated for all atomic subshells of the elements with 104?Z?126, E1...E4, M1...M4 multipolarities and transition energies between 10 and 1000 keV. The atomic screening was treated in the relativistic Hartree-Fock-Slater model. Tables comprising almost 90 000 subshell and total ICC were deposited at the LANL preprint server (http://xxx.lanl.gov/e-print/nucl-th/0004003). (author)

  11. Internal conversion coefficients for superheavy elements

    CERN Document Server

    Dragoun, O; Spalek, A

    2000-01-01

    The internal conversion coefficients (ICC) were calculated for all atomic subshells of the elements with 104<=Z<=126, the E1...E4, M1...M4 multipolarities and the transition energies between 10 and 1000 keV. The atomic screening was treated in the relativistic Hartree-Fock-Slater model. The Tables comprising almost 90000 subshell and total ICC were recently deposited at LANL preprint server.

  12. Internal conversion coefficients for superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Dragoun, O.; Spalek, A. [Nuclear Physics Institute, Acad. Sci. Czech Republic, CZ-250 68 Rez near Prague (Czech Republic); Rysavy, M. [Nuclear Physics Institute, Acad. Sci. Czech Republic, CZ-250 68 Rez near Prague (Czech Republic). E-mail: rysavy at ujf.cas.cz

    2000-10-01

    Internal conversion coefficients (ICC) were calculated for all atomic subshells of the elements with 104{<=}Z{<=}126, E1...E4, M1...M4 multipolarities and transition energies between 10 and 1000 keV. The atomic screening was treated in the relativistic Hartree-Fock-Slater model. Tables comprising almost 90 000 subshell and total ICC were deposited at the LANL preprint server (http://xxx.lanl.gov/e-print/nucl-th/0004003). (author)

  13. Structure studies on fp-shell nuclei

    International Nuclear Information System (INIS)

    In this thesis, the structure of fp-shell nuclei is studied for the mass region 52-62. Model calculations are done to investigate excitation energies, electric quadrupole and magnetic dipole moments and transitions. Next, collective states are analyzed microscopically, single-particle transfer strength for more than twenty reactions are discussed. The next chapter deals with electron scattering form factors. Besides elastic magnetic scattering and inelastic quadrupole scattering, attention is given to excitations of high multipolarity

  14. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise. Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically activated sludge models – are introduced since these define a boundary of validity for WWTP model applications.

  15. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise. Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically, activated sludge models – are introduced since these define a boundary of validity for WWTP model applications.

  16. Animal Models for imaging

    OpenAIRE

    Barbara Y. Croft

    2002-01-01

    Animal models can be used in the study of disease. This chapter discusses imaging animal models to elucidate the process of human disease. The mouse is used as the primary model. Though this choice simplifies many research choices, it necessitates compromises for in vivo imaging. In the future, we can expect improvements in both animal models and imaging techniques.

  17. Generative Models of Disfluency

    Science.gov (United States)

    Miller, Timothy A.

    2010-01-01

    This thesis describes a generative model for representing disfluent phenomena in human speech. This model makes use of observed syntactic structure present in disfluent speech, and uses a right-corner transform on syntax trees to model this structure in a very natural way. Specifically, the phenomenon of speech repair is modeled by explicitly…

  18. Yet another hysteresis model

    OpenAIRE

    Langvagen, Sergey

    2001-01-01

    A hysteresis model based on the assumption of fixed order magnetization reversals is proposed. The model uses one-dimensional diagram for representing states of a system despite of two-dimensional Preisach diagram. The distinctive feature of the model is that it is applicable to any system compliant with the return-point memory and includes Preisach model as a special case.

  19. Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  20. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  1. Complex Game Design Modeling

    OpenAIRE

    Narayanasamy, Viknashvaran; Wong, Kok Wai; Rai, Shri; Chiou, Andrew

    2010-01-01

    This paper looks at the game design and engineering approach to model the game design. The game modeling framework discussed in this paper could be a systematic alternative for implementing in the game engine architecture. The suggested game modeling framework incorporates structural game component, temporal game component and boundary game component frameworks. It is suitable to model most complex games and game engines.

  2. AIDS Epidemiological models

    Science.gov (United States)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  3. Multivariate GARCH models

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    2008-01-01

    This article contains a review of multivariate GARCH models. Most common GARCH models are presented and their properties considered. This also includes nonparametric and semiparametric models. Existing specification and misspecification tests are discussed. Finally, there is an empirical example in which several multivariate GARCH models are fitted to the same data set and the results compared.

  4. Multivariate GARCH models

    OpenAIRE

    Silvennoinen, Annastiina; Teräsvirta, Timo

    2007-01-01

    This article contains a review of multivariate GARCH models. Most common GARCH models are presented and their properties considered. This also includes semiparametric and nonparametric GARCH models. Existing specification and misspecification tests are discussed. Finally, there is an empirical example in which several multivariate GARCH models are fitted to the same data set and the results compared with each other.

  5. Multimodeling and Model Abstraction

    Science.gov (United States)

    The multiplicity of models of the same process or phenomenon is the commonplace in environmental modeling. Last 10 years brought marked interest to making use of the variety of conceptual approaches instead of attempting to find the best model or using a single preferred model. Two systematic approa...

  6. Validation of HEDR models

    International Nuclear Information System (INIS)

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  7. Dynamic cable analysis models

    Energy Technology Data Exchange (ETDEWEB)

    Palo, P.A.; Meggitt, D.J.; Nordell, W.J.

    1983-05-01

    This paper presents a summary of the development and validation of undersea cable dynamics computer models by the Naval Civil Engineering Laboratory (NCEL) under the sponsorship of the Naval Facilities Engineering Command. These models allow for the analysis of both small displacement (strumming) and large displacement (static and dynamic) deformations of arbitrarily configured cable structures. All of the large displacement models described in this paper are available to the public. This paper does not emphasize the theoretical development of the models (this information is available in other references) but emphasizes the various features of the models, the comparisons between model output and experimental data, and applications for which the models have been used.

  8. Protein Models Comparator

    CERN Document Server

    Widera, Pawe?

    2011-01-01

    The process of comparison of computer generated protein structural models is an important element of protein structure prediction. It has many uses including model quality evaluation, selection of the final models from a large set of candidates or optimisation of parameters of energy functions used in template free modelling and refinement. Although many protein comparison methods are available online on numerous web servers, their ability to handle a large scale model comparison is often very limited. Most of the servers offer only a single pairwise structural comparison, and they usually do not provide a model-specific comparison with a fixed alignment between the models. To bridge the gap between the protein and model structure comparison we have developed the Protein Models Comparator (pm-cmp). To be able to deliver the scalability on demand and handle large comparison experiments the pm-cmp was implemented "in the cloud". Protein Models Comparator is a scalable web application for a fast distributed comp...

  9. Nonuniform Markov models

    CERN Document Server

    Ristad, E S; Ristad, Eric Sven; Thomas, Robert G.

    1996-01-01

    A statistical language model assigns probability to strings of arbitrary length. Unfortunately, it is not possible to gather reliable statistics on strings of arbitrary length from a finite corpus. Therefore, a statistical language model must decide that each symbol in a string depends on at most a small, finite number of other symbols in the string. In this report we propose a new way to model conditional independence in Markov models. The central feature of our nonuniform Markov model is that it makes predictions of varying lengths using contexts of varying lengths. Experiments on the Wall Street Journal reveal that the nonuniform model performs slightly better than the classic interpolated Markov model. This result is somewhat remarkable because both models contain identical numbers of parameters whose values are estimated in a similar manner. The only difference between the two models is how they combine the statistics of longer and shorter strings. Keywords: nonuniform Markov model, interpolated Markov m...

  10. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  11. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  12. Lumped Thermal Household Model

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle

    2013-01-01

    In this paper we discuss two different approaches to model the flexible power consumption of heat pump heated households: individual household modeling and lumped modeling. We illustrate that a benefit of individual modeling is that we can overview and optimize the complete flexibility of a heat pump portfolio. Following, we illustrate two disadvantages of individual models, namely that it requires much computational effort to optimize over a large portfolio, and second that it is difficult to accurately model the houses in certain time periods due to local disturbances. Finally, we propose a lumped model approach as an alternative to the individual models. In the lumped model, the portfolio is seen as baseline consumption superimposed with an ideal storage of limited power and energy capacity. The benefit of such a lumped model is that the computational effort of flexibility optimization is significantly reduced. Further, the individual disturbances will smooth out as the number of houses in the portfolio increases.

  13. Modeling in Chemical Engineering

    OpenAIRE

    Jaap van Brakel

    2000-01-01

    Models underlying the use of similarity considerations, dimensionless numbers, and dimensional analysis in chemical engineering are discussed. Special attention is given to the many levels at which models and ceteris paribus conditions play a role and to the modeling of initial and boundary conditions. It is shown that both the laws or dimensionless number correlations and the systems to which they apply are models. More generally, no matter which model or description one picks out, what is b...

  14. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    2010-01-01

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. The REFT model exhibi...

  15. Matching Model-Snippets

    OpenAIRE

    Ramos, Rodrigo; Barais, Olivier; Jézéquel, Jean-Marc

    2007-01-01

    An important demand in Model-Driven Development is the simple and efficient expression of model patterns. Current approaches tend to distinguish the language they use to express patterns from the one for modelling. Consequently, productivity is reduced by dealing with a distinct new language, and new intermediate steps are introduced in order to support pattern-matching. In this paper we propose a frame- work for expressing patterns as model-snippets. We present how model- snippets are specif...

  16. [RIVM Model Catalogus.

    OpenAIRE

    Wortelboer FG

    2007-01-01

    This report contains the descriptions of the models currently used within the National Institute of Public Health and Environmental Protection (RIVM). Each model description contains the following entries: Name of the model, Contact in RIVM, Purpose, Policy theme, Technical specifications, Status, Availability, Documentation. Besides, the report contains a list of the models grouped by laboratory, a list of the models grouped by theme, and an index. The purpose of thi...

  17. Lumped Thermal Household Model

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob; Madsen, Mathias Bækdal; Hansen, Lars Henrik

    2013-01-01

    In this paper we discuss two different approaches to model the flexible power consumption of heat pump heated households: individual household modeling and lumped modeling. We illustrate that a benefit of individual modeling is that we can overview and optimize the complete flexibility of a heat pump portfolio. Following, we illustrate two disadvantages of individual models, namely that it requires much computational effort to optimize over a large portfolio, and second that it is difficult to a...

  18. Controlling Modelling Artifacts

    OpenAIRE

    Smith, Michael James Andrew; Nielson, Flemming; Nielson, Hanne Riis

    2011-01-01

    When analysing the performance of a complex system, we typically build abstract models that are small enough to analyse, but still capture the relevant details of the system. But it is difficult to know whether the model accurately describes the real system, or if its behaviour is due to modelling artifacts that were inadvertently introduced. In this paper, we propose a novel methodology to reason about modelling artifacts, given a detailed model and a highlevel (more ...

  19. Model breaking points conceptualized

    OpenAIRE

    Vig, Rozy Brar; Murray, Eileen Christina; Star, Jon R

    2014-01-01

    Current curriculum initiatives (e.g. National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot, or arguable should not, be used. In this work, we explore the breaking point of the chip model for integer subtraction and the area model for fraction...

  20. Reconstruction of Inflation Models

    OpenAIRE

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Zerbini, Sergio

    2015-01-01

    In this paper, we reconstruct viable inflationary models by starting from spectral index and tensor-to-scalar ratio from Planck observations. We analyze three different kinds of models: scalar field theories, fluid cosmology and f(R)-modified gravity. We recover the well known R^2-inflation in Jodan frame and Einstein frame representation, the massive scalar inflaton models and two models of inhomogeneous fluid. A model of R^2-correction to Einstein's gravity plus a "cosmolo...

  1. Global Business Models

    DEFF Research Database (Denmark)

    Rask, Morten

    2012-01-01

    Firms internationalizing their activities work with business model innovation understood as the creation, or reinvention, of the business itself so that the combination of innovation with internationalization makes the business model play an integrative role. This paper aims to integrate basic insight from the literature about business models, international product policy, international entry modes and globalization into a conceptual model of relevant design elements of global business models, e...

  2. Zephyr - the prediction models

    DEFF Research Database (Denmark)

    Nielsen, Torben Skov; Madsen, Henrik; Nielsen, Henrik Aalborg; Landberg, L.; Giebel, G.

    2001-01-01

    This paper briefly describes new models and methods for predicationg the wind power output from wind farms. The system is being developed in a project which has the research organization Risø and the department of Informatics and Mathematical Modelling (IMM) as the modelling team and all the Danish utilities as partners and users. The new models are evaluated for five wind farms in Denmark as well as one wind farm in Spain. It is shown that the predictions based on conditional parametric models ...

  3. An Enhanced Communication Model

    OpenAIRE

    Per Flensburg

    2009-01-01

    The concept of information is often taken for more or less granted in research about information systems. This paper introduces a model starting with Shannon and Weaver data transmission model and ends with knowledge transfer between individual persons. The model is in fact an enhanced communication model giving a framework for discussing problems in the communication process. A specific feature of the model is the aim for providing design guidelines in designing the communication process. Th...

  4. On ground model definability

    OpenAIRE

    Gitman, Victoria; Johnstone, Thomas A.

    2013-01-01

    Laver, and Woodin independently, showed that models of ${\\rm ZFC}$ are uniformly definable in their set-forcing extensions, using a ground model parameter. We investigate ground model definability for models of fragments of ${\\rm ZFC}$, particularly of ${\\rm ZF}+{\\rm DC}_\\delta$ and of ${\\rm ZFC}^-$, and we obtain both positive and negative results. Generalizing the results of Laver and Woodin, we show that models of ${\\rm ZF}+{\\rm DC}_\\delta$ are uniformly definable in thei...

  5. Topics in volatility models

    OpenAIRE

    Yi, Cong

    2010-01-01

    In this thesis I will present my PhD research work, focusing mainly on financial modelling of asset’s volatility and the pricing of contingent claims (financial derivatives), which consists of four topics: 1. Several changing volatility models are introduced and the pricing of European options is derived under these models; 2. A general local stochastic volatility model with stochastic interest rates (IR) is studied in the modelling of foreign exchange (FX) rates. The pricin...

  6. Polynomial term structure models

    OpenAIRE

    Cheng, Si; Tehranchi, Michael R.

    2015-01-01

    In this article, we explore a class of tractable interest rate models that have the property that the prices of zero-coupon bonds can be expressed as polynomials of a state diffusion process. These models are, in a sense, generalisations of exponential polynomial models. Our main result is a classification of such models in the spirit of Filipovic's maximal degree theorem for exponential polynomial models.

  7. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illu...

  8. Bubble models, data acquisition and model applicability.

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Kloužek, Jaroslav; N?mec, Lubomír

    Vsetín : GLASS SERVICE ,INC, 2005, s. 182-191. ISBN 80-239-4687-0. [International Seminar on Mathematical Modeling and Advanced Numerical Methods in Furnace Design and Operation /8./. Velké Karlovice (CZ), 19.05.2005-20.05.2005] Institutional research plan: CEZ:AV0Z40320502 Keywords : bubble models Subject RIV: CA - Inorganic Chemistry

  9. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation, density of accumulation, and the geometry of the accumulation zone. The density of accumulation and the geometry of the accumulation zone are calculated using a characterization of the fracture system based on field measurements made in the proposed repository (BSC 2001k). The model predicts that accumulation would spread out in a conical accumulation volume. The accumulation volume is represented with layers as shown in Figure 1. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance

  10. Geochemistry Model Validation Report: External Accumulation Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Zarrabi

    2001-09-27

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation, density of accumulation, and the geometry of the accumulation zone. The density of accumulation and the geometry of the accumulation zone are calculated using a characterization of the fracture system based on field measurements made in the proposed repository (BSC 2001k). The model predicts that accumulation would spread out in a conical accumulation volume. The accumulation volume is represented with layers as shown in Figure 1. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance.

  11. Prognostic diffusion models - accident model chain

    International Nuclear Information System (INIS)

    In the mesoscale regime the inhomogeneous distribution of meteorological quantities and topographic conditions influence the diffusion of radionuclides. Therefore it is necessary to develop a specific model system for the mesoscale which enables both the calculation of meteorological fields and of radionuclide diffusion. This model system is named accident model chain and explained. Model calculations performed by means of KAMM and TRAVELING show that these models are suitable for simulating radioactive effluent diffusion under complex meteorological conditions. Simulation results demonstrate the influence of orography on the flow and its effects on the dispersion of an effluent from a 100 m high source. In four different large-scale flows, under otherwise equal conditions, the calculated plume structures differ fundamentally. (orig./DG)

  12. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.

  13. Operational risk modeling analytics

    CERN Document Server

    Panjer, Harry H

    2006-01-01

    Discover how to optimize business strategies from both qualitative and quantitative points of viewOperational Risk: Modeling Analytics is organized around the principle that the analysis of operational risk consists, in part, of the collection of data and the building of mathematical models to describe risk. This book is designed to provide risk analysts with a framework of the mathematical models and methods used in the measurement and modeling of operational risk in both the banking and insurance sectors.Beginning with a foundation for operational risk modeling and a focus on the modeling process, the book flows logically to discussion of probabilistic tools for operational risk modeling and statistical methods for calibrating models of operational risk. Exercises are included in chapters involving numerical computations for students'' practice and reinforcement of concepts.Written by Harry Panjer, one of the foremost authorities in the world on risk modeling and its effects in business management, this is ...

  14. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor. These models help illustrate aspects of model formulation, the generation of the underlying assumptions about the systems, the degrees of freedom analysis and finally the solution and simulation of the models subject to changes in a variety of inputs. It is shown how an integrated system such as ICAS-MoT can be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment.

  15. Model Validation Status Review

    International Nuclear Information System (INIS)

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5

  16. Multiple Model Approaches to Modelling and Control,

    DEFF Research Database (Denmark)

    1997-01-01

    Why Multiple Models?This book presents a variety of approaches which produce complex models or controllers by piecing together a number of simpler subsystems. Thisdivide-and-conquer strategy is a long-standing and general way of copingwith complexity in engineering systems, nature and human problem solving. More complex plants, advances in information technology, and tightened economical and environmental constraints in recent years have lead topractising engineers being faced with modelling and control problems of increasing complexity. When confronted with such problems, there is a strongintuitive appeal in building systems which operate robustly over a wide range of operating conditions by decomposing them into a number of simplerlinear modelling or control problems, even for nonlinear modelling or control problems. This appeal has been a factor in the development of increasinglypopular `local' and multiple-model approaches to coping with strongly nonlinear and time-varying systems.Such local approaches are directly based on the divide-and-conquer strategy, in the sense that the core of the representation of the model or controlleris a partitioning of the system's full range of operation into multiple smaller operating regimes each of which is associated a locally valid model orcontroller. This can often give a simplified and transparent nonlinear model or control representation. In addition, the local approach has computationaladvantages, it lends itself to adaptation and learning algorithms, and allows direct incorporation of high-level and qualitative plant knowledge into themodel. These advantages have proven to be very appealing for industrial applications, and the practical, intuitivelyappealing nature of the framework isdemonstrated in chapters describing applications of local methods to problems in the process industries, biomedical applications and autonomoussystems. The successful application of the ideas to demanding problems is already encouraging, but creative development of the basic framework isneeded to better allow the integration of human knowledge with automated learning. The underlying question is `How should we partition the system - what is `local'?'. This book presents alternative ways of bringing submodels together,which lead to varying levels of performance and insight. Some are further developed for autonomous learning of parameters from data, while others havefocused on the ease with which prior knowledge can be incorporated. It is interesting to note that researchers in Control Theory, Neural Networks,Statistics, Artificial Intelligence and Fuzzy Logic have more or less independently developed very similar modelling methods, calling them Local ModelNetworks, Operating Regime based Models, Multiple Model Estimation and Adaptive Control, Gain Scheduled Controllers Heterogeneous Control,Mixtures of Experts, Piecewise Models, Local Regression techniques, or Tagaki-Sugeno Fuzzy Models}, among other names. Each of these approacheshas different merits, varying in the ease of introduction of existing knowledge, as well as the ease of model interpretation. This book attempts to outlinemuch of the common ground between the various approaches, encouraging the transfer of ideas.Recent progress in algorithms and analysis is presented, with constructive algorithms for automated model development and control design, as well astechniques for stability analysis, model interpretation and model validation.

  17. RF multipole implementation

    CERN Document Server

    Latina, A

    2012-01-01

    The electromagnetic radio-frequency (RF) field of accelerating structures and crab-cavities can exhibit transverse field components due to asymmetries in the azimuthal direction of the element geometry. Tracking simulations must be performed to evaluate the impact of such transverse RF deflections on the beam dynamics. In an ultra-relativistic regime where the Panofsky-Wenzel theorem is applicable, these RF deflections can be modeled via a multipolar expansion of the generating RF field similarly to what is done with static magnetic elements. The element implementing such RF multipolar fields has been called RF multipole. In this note we present an analytical formulation of a thin RF multipole Hamiltonian, and we explicitly calculate the RF kick and the elements of its first- and second- order transfer matrices. Also, we present the implementation of the corresponding code in MAD-X, plus some tests of tracking, simplecticity, consistency, and reflected maps that we successfully applied to verify the correctne...

  18. Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay

    CERN Document Server

    Kolwas, Krystyna

    2012-01-01

    Damping rates of multipolar, localized surface plasmons (SP) of gold and silver nanospheres of radii up to $1000nm$ were found with the tools of classical electrodynamics. The significant increase in damping rates followed by noteworthy decrease for larger particles takes place along with substantial red-shift of plasmon resonance frequencies as a function of particle size. We also introduced interface damping into our modeling, which substantially modifies the plasmon damping rates of smaller particles. We demonstrate unexpected reduction of the multipolar SP damping rates in certain size ranges. This effect can be explained by the suppression of the nonradiative decay channel as a result of the lost competition with the radiative channel. We show that experimental dipole damping rates [H. Baida, et al., Nano Lett. 9(10) (2009) 3463, and C. S\\"onnichsen, et al., Phys. Rev. Lett. 88 (2002) 077402], and the resulting resonance quality factors can be described in a consistent and straightforward way within our ...

  19. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    CERN Document Server

    Sopuerta, Carlos F

    2012-01-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesics. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geo...

  20. Five models of capitalism

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Bresser-Pereira

    2012-03-01

    Full Text Available Besides analyzing capitalist societies historically and thinking of them in terms of phases or stages, we may compare different models or varieties of capitalism. In this paper I survey the literature on this subject, and distinguish the classification that has a production or business approach from those that use a mainly political criterion. I identify five forms of capitalism: among the rich countries, the liberal democratic or Anglo-Saxon model, the social or European model, and the endogenous social integration or Japanese model; among developing countries, I distinguish the Asian developmental model from the liberal-dependent model that characterizes most other developing countries, including Brazil.

  1. An Enhanced Communication Model

    Directory of Open Access Journals (Sweden)

    Per Flensburg

    2009-05-01

    Full Text Available The concept of information is often taken for more or less granted in research about information systems. This paper introduces a model starting with Shannon and Weaver data transmission model and ends with knowledge transfer between individual persons. The model is infact an enhanced communication model giving a framework for discussing problems in the communication process. A specific feature of the model is the aim for providing design guidelines in designing the communication process. The article ends with identifying a need for develop the model further to incorporate also communication within and between organisations of different kinds.

  2. Microsoft tabular modeling cookbook

    CERN Document Server

    Braak, Paul te

    2013-01-01

    This book follows a cookbook style with recipes explaining the steps for developing analytic data using Business Intelligence Semantic Models.This book is designed for developers who wish to develop powerful and dynamic models for users as well as those who are responsible for the administration of models in corporate environments. It is also targeted at analysts and users of Excel who wish to advance their knowledge of Excel through the development of tabular models or who wish to analyze data through tabular modeling techniques. We assume no prior knowledge of tabular modeling

  3. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  4. Biosphere Model Report

    International Nuclear Information System (INIS)

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  5. Modeller af komplicerede systemer

    DEFF Research Database (Denmark)

    Mortensen, J.

    1991-01-01

    This thesis, "Modeller af komplicerede systemer", represents part of the requirements for the Danish Ph.D.degree. Assisting professor John Nørgaard-Nielsen, M.Sc.E.E.Ph.D. has been principal supervisor and professor Morten Lind, M.Sc.E.E.Ph.D. has been assisting supervisor. The thesis is concerned with conceptual modeling in relation to process control. It´s purpose is to present classify and exemplify the use of a set of qualitative model types. Such model types are useful in the early phase of modeling, where no structured methods are at hand. Although the models are general in character, this thesis emphasizes their use in relation to technical systems. All the presented models, with the exception of the types presented in chapter 2, are non-theoretical non-formal conceptual network models. Two new model types are presented: 1) The System-Environment model, which describes the environments interaction with the system (chapter 5). 2) The extended Input-Parameter-Output model, which describes subsystems interaction with the environment as well as with other subsystems (chapter 6). An implementation of a causal model in an expert system is made, and process-operator problems are considered in a modeling perspective.

  6. Empirical Model Building Data, Models, and Reality

    CERN Document Server

    Thompson, James R

    2011-01-01

    Praise for the First Edition "This...novel and highly stimulating book, which emphasizes solving real problems...should be widely read. It will have a positive and lasting effect on the teaching of modeling and statistics in general." - Short Book Reviews This new edition features developments and real-world examples that showcase essential empirical modeling techniques Successful empirical model building is founded on the relationship between data and approximate representations of the real systems that generated that data. As a result, it is essential for researchers who construct these m

  7. Financial modeling using Gaussian process models.

    Czech Academy of Sciences Publication Activity Database

    Petelin, D.; Šindelá?, Jan; P?ikryl, Jan; Kocijan, J.

    Piscataway : IEEE, 2011, s. 672-677. ISBN 978-1-4577-1424-5. [6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. Prague (CZ), 15.09.2011-17.09.2011] R&D Projects: GA MŠk 1M0572; GA TA ?R TA01030603; GA ?R GA102/08/0567; GA MŠk(CZ) MEB091015 Institutional research plan: CEZ:AV0Z10750506 Keywords : gaussian process models * autoregression * financial * efficient markets Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/AS/sindelar-financial modeling using gaussian process models.pdf

  8. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the same document, even allowing the author to select those who may edit and approve the document. To maintain knowledge integrity, all documents are moderated before they are visible to the public. Modeling Guru, running on Clearspace by Jive Software, has been an active resource to the NASA modeling and HEC communities for more than a year and currently has more than 100 active users. SIVO will soon install live instant messaging support, as well as a user-customizable homepage with social-networking features. In addition, SIVO plans to implement a large dataset/file storage capability so that users can quickly and easily exchange datasets and files with one another. Continued active community participation combined with periodic software updates and improved features will ensure that Modeling Guru remains a vibrant, effective, easy-to-use tool for the NASA scientific community.

  9. Modeling in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    Jaap van Brakel

    2000-10-01

    Full Text Available Models underlying the use of similarity considerations, dimensionless numbers, and dimensional analysis in chemical engineering are discussed. Special attention is given to the many levels at which models and ceteris paribus conditions play a role and to the modeling of initial and boundary conditions. It is shown that both the laws or dimensionless number correlations and the systems to which they apply are models. More generally, no matter which model or description one picks out, what is being modeled is itself a model of something else. Instead of saying that the artifact S models the given B, it is therefore better to say that S and B jointly make up B and S.

  10. NASA breakup model implementation

    OpenAIRE

    Rossi, Alessandro; Koppenwallner, G.; Krisko, Paula H.; Oswald, M.; Xu, M

    2006-01-01

    The implementation of the NASA model for the breakup of spacecraft is compared between five different groups. The purpose is to identify possible sources of differences in the evolutionary models, related to the breakup simulation.

  11. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanis?aw J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  12. Modelling of Corrosion Cracks

    OpenAIRE

    Thoft-Christensen, Palle

    2010-01-01

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.

  13. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  14. TMDL RUSLE MODEL

    Science.gov (United States)

    We developed a simplified spreadsheet modeling approach for characterizing and prioritizing sources of sediment loadings from watersheds in the United States. A simplified modeling approach was developed to evaluate sediment loadings from watersheds and selected land segments. ...

  15. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  16. Kernel PLS path modelling

    OpenAIRE

    Tenenhaus, Arthur

    2009-01-01

    This paper deals with a kernel extension of a companion paper entitled “new criterion based PLS path modeling approach to structural equation modeling” [Tenenhaus, 2009] which will be presented during the PLS'09 conference.

  17. Modeling EERE deployment programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  18. Melanoma Risk Prediction Models

    Science.gov (United States)

    The following risk prediction models are intended primarily for research use and have been peer-reviewed, meaning the methodology and results of these models have been evaluated by qualified scientists and clinicians and published in scientific and medical journals.

  19. CCF model comparison

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, U. [VTT Industrial Systems (Finland)

    2004-04-01

    The report describes a simple comparison of two CCF-models, the ECLM, and the Beta-model. The objective of the comparison is to identify differences in the results of the models by applying the models in some simple test data cases. The comparison focuses mainly on theoretical aspects of the above mentioned CCF-models. The properties of the model parameter estimates in the data cases is also discussed. The practical aspects in using and estimating CCFmodels in real PSA context (e.g. the data interpretation, properties of computer tools, the model documentation) are not discussed in the report. Similarly, the qualitative CCF-analyses needed in using the models are not discussed in the report. (au)

  20. LAT Background Models

    Data.gov (United States)

    National Aeronautics and Space Administration — The Galactic model is a spatial and spectral template. The model for the Galactic diffuse emission was developed using spectral line surveys of HI and CO (as a...

  1. PARTICIPANT MODELING IN STUTTERING

    OpenAIRE

    Bhargava, S.C.

    1988-01-01

    Participant modeling was tried in twenty five stutterers; auditory feedback of modelled speech and guided exposure were also done along with. The patients were able to have a fluent stuttering free speech in most situations.

  2. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  3. World Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  4. World Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  5. Modeling of Industrial Robots

    OpenAIRE

    Norrlöf, Mikael

    1999-01-01

    A general theory for modeling of industrial robots is presented and, based on the theory, some algorithms for the actual modeling process are derived and described. As an example of an application of the theory an industrial manipulator, an IRB1400 from ABB Robotics Products, is used. A kinematic model and a dynamical model for the first three joints of the IRB1400 manipulator is found. One part of the report is also devoted to flexible manipulators, especially manipulators with joint flexibi...

  6. Modeling of ultrasound transducers

    OpenAIRE

    Bæk, David

    2011-01-01

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. ...

  7. Sparse Additive Models

    OpenAIRE

    Ravikumar, Pradeep; Lafferty, John; LIU, HAN; Wasserman, Larry

    2007-01-01

    We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity...

  8. Yale Lung Cancer Model

    OpenAIRE

    Holford, Theodore R.; Ebisu, Keita; McKay, Lisa; Oh, Cheongeun; Zheng, Tongzhang

    2012-01-01

    The age-period-cohort model is known to provide an excellent description of the temporal trends in lung cancer incidence and mortality. This analytic approach is extended to include the contribution of carcinogenesis models for smoking. Usefulness of this strategy is that it offers a way to temporally calibrate a model that is fitted to population data and it can be readily adopted for the consideration of many different models. In addition, it provides diagnostics that can suggest temporal l...

  9. A BPS Skyrme model

    OpenAIRE

    Adam, C.; Sanchez-Guillen, J.; Wereszczynski, A.

    2011-01-01

    Within the set of generalized Skyrme models, we identify a submodel which has both infinitely many symmetries and a Bogomolny bound which is saturated by infinitely many exact soliton solutions. Concretely, the submodel consists of the square of the baryon current and a potential term only. Further, already on the classical level, this BPS Skyrme model reproduces some features of the liquid drop model of nuclei. Here, we review the properties of the model and we discuss the ...

  10. On Model Typing

    OpenAIRE

    Steel, Jim; Jézéquel, Jean-Marc

    2007-01-01

    Where object-oriented languages deal with objects as described by classes, model-driven development uses models, as graphs of interconnected objects, described by metamodels. A number of new languages have been and continue to be developed for this modelbased paradigm, both for model transformation and for general programming using models. Many of these use single-object approaches to typing, derived from solutions found in object-oriented systems, while others use metamodels asmodel types, b...

  11. Chaos Models in Economics

    OpenAIRE

    Paul Pascu; Dumitru Ostafe; Sorin Vlad

    2010-01-01

    The paper discusses the main ideas of the chaos theory and presents mainly the importance of the nonlinearities in the mathematical models. Chaos and order are apparently two opposite terms. The fact that in chaos can be found a certain precise symmetry (Feigenbaum numbers) is even more surprising. As an illustration of the ubiquity of chaos, three models among many other existing models that have chaotic features are presented here: the nonlinear feedback profit model, one ...

  12. Modeling Design Process

    OpenAIRE

    Takeda, Hideaki; Veerkamp, Paul; Yoshikawa, Hiroyuki

    1990-01-01

    This article discusses building a computable design process model, which is a prerequisite for realizing intelligent computer-aided design systems. First, we introduce general design theory, from which a descriptive model of design processes is derived. In this model, the concept of metamodels plays a crucial role in describing the evolutionary nature of design. Second, we show a cognitive design process model obtained by observing design processes using a protocol analysis method. We then di...

  13. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety of models with regards to their purpose, character, field of application and time dimension inherently calls for a similar diversity in validation approaches. A classification of models in terms of the menti...

  14. Nonuniform Markov models

    OpenAIRE

    Ristad, Eric Sven; Thomas, Robert G.

    1996-01-01

    A statistical language model assigns probability to strings of arbitrary length. Unfortunately, it is not possible to gather reliable statistics on strings of arbitrary length from a finite corpus. Therefore, a statistical language model must decide that each symbol in a string depends on at most a small, finite number of other symbols in the string. In this report we propose a new way to model conditional independence in Markov models. The central feature of our nonuniform ...

  15. Modelling approaches in biomechanics.

    OpenAIRE

    Alexander, R McN

    2003-01-01

    Conceptual, physical and mathematical models have all proved useful in biomechanics. Conceptual models, which have been used only occasionally, clarify a point without having to be constructed physically or analysed mathematically. Some physical models are designed to demonstrate a proposed mechanism, for example the folding mechanisms of insect wings. Others have been used to check the conclusions of mathematical modelling. However, others facilitate observations that would be difficult to m...

  16. Optimization modeling with spreadsheets

    CERN Document Server

    Baker, Kenneth R

    2015-01-01

    An accessible introduction to optimization analysis using spreadsheets Updated and revised, Optimization Modeling with Spreadsheets, Third Edition emphasizes model building skills in optimization analysis. By emphasizing both spreadsheet modeling and optimization tools in the freely available Microsoft® Office Excel® Solver, the book illustrates how to find solutions to real-world optimization problems without needing additional specialized software. The Third Edition includes many practical applications of optimization models as well as a systematic framework that illuminates the common

  17. Entrepreneurship and Role Models

    OpenAIRE

    Bosma, N.; Hessels, S.J.A.; Schutjens, V.; van Praag, M.; Verheul, I.

    2011-01-01

    In the media role models are increasingly being acknowledged as an influential factor in explaining the reasons for the choice of occupation and career. Various conceptual studies have proposed links between role models and entrepreneurial intentions. However, empirical research aimed at establishing the importance of role models for (nascent) entrepreneurs is scarce. Knowledge of the presence of entrepreneurial role models, their specific functions and characteristics is therefore limited. O...

  18. Bicycles, motorcycles, and models

    OpenAIRE

    Limebeer, D J N; Sharp, R S

    2006-01-01

    Single-track vehicles are multibody systems which include bicycles, motorcycles and motor scooters. The Whipple's model of bicycle consists of two frames, the rear frame and the front frame, which are hinged together along an inclined steering-head assembly. The nonslipping road wheels as with this model are modeled by holonomic constraints in the normal direction and by nonholonomic constraints in the longitudinal and lateral directions. The bicycle model has three degrees of freedom such as...

  19. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor. These models help illustrate aspects of model formulation, the generation of the underlying assumptions about the systems, the degrees of freedom analysis and finally the solution and simulation of the mo...

  20. Modeling Enterprise Dependency Networks

    OpenAIRE

    Periorellis, Panayiotis; Bokma, Albert; Smith, Peter

    1998-01-01

    The term enterprise modeling, synonymous with enterprise engineering, often refers to methodologies, developed for modeling activities, states, time, and cost within an enterprise architecture. They serve as a vehicle for evaluating and modeling activities resources and so on. CIM - OSA (Computer Integrated Manufacturing Open Systems Architecture) is a methodology for modeling computer integrated environments, and its major objective is the appropriate integration of enterprise operations by ...

  1. Endochronic viscoplasticity model

    International Nuclear Information System (INIS)

    The endochronic viscoplasticity model is presented, and the criteria for general problem analyses are discussed. Two approaches are then developed for inclusion of this model in nonlinear finite element codes. One approach includes reformulating the stiffness matrix for solution by iteration, and the other approach does not. Also, the uniaxial tension problem is studied, and the problems encountered with the use of this model are stated. Finally, recommendations are presented to check the basic postulates used to develop this model

  2. Automated Simulation Model Generation:

    OpenAIRE

    Huang, Y

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become available in many organizations. This often allows for and requires a certain degree of automation in modeling. The research presented in this dissertation studied how to automatically generate s...

  3. The Moody Mask Model

    DEFF Research Database (Denmark)

    Larsen, Bjarke Alexander; Andkjær, Kasper Ingdahl; Schoenau-Fog, Henrik

    2015-01-01

    This paper proposes a new relation model, called "The Moody Mask model", for Interactive Digital Storytelling (IDS), based on Franceso Osborne's "Mask Model" from 2011. This, mixed with some elements from Chris Crawford's Personality Models, is a system designed for dynamic interaction between characters in an interactive setting. The system was evaluated with a quantitative study investigating the impact of interactivity, with some open-ended questions for qualitative analysis. Furthermore, it ...

  4. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to m...

  5. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to...

  6. Modelling Heart Rate Kinetics

    OpenAIRE

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time an...

  7. Generic Market Models

    OpenAIRE

    Pietersz, R.; Regenmortel, M. van

    2005-01-01

    Currently, there are two market models for valuation and risk management of interest rate derivatives, the LIBOR and swap market models. In this paper, we introduce arbitrage-free constant maturity swap (CMS) market models and generic market models featuring forward rates that span periods other than the classical LIBOR and swap periods. We develop generic expressions for the drift terms occurring in the stochastic differential equation driving the forward rates under a single pricing meas...

  8. The helicoidal Hubbard model

    OpenAIRE

    Gouveia, José Daniel Lago da Silva Neves

    2010-01-01

    The Hubbard model is one of the most simple models to describe the motion and interaction of electrons in solids. It has been widely studied due to its applications in the description of organic conductors and in the search for high Tc superconductivity. In this work, the Hubbard model in a helicoidal lattice is studied, a lattice identical to the two-dimensional square lattice in the thermodynamic limit. The magnetic phases of this model are analyzed by building mean eld ...

  9. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    Modelling Binary Data, Second Edition now provides an even more comprehensive and practical guide to statistical methods for analyzing binary data. Along with thorough revisions to the original material-now independent of any particular software package- it includes a new chapter introducing mixed models for binary data analysis and another on exact methods for modelling binary data. The author has also added material on modelling ordered categorical data and provides a summary of the leading software packages.

  10. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    2014-01-01

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading to imperfect model forecasts. It remains a crucial challenge to account for system uncertainty, so as to provide model outputs accompanied by a quantified confidence interval. Properly characterizing and...

  11. Modelling Railway Interlocking Systems

    DEFF Research Database (Denmark)

    Lindegaard, Morten Peter; Viuf, P.; Haxthausen, Anne Elisabeth

    2000-01-01

    In this report we present a model of interlocking systems, and describe how the model may be validated by simulation. Station topologies are modelled by graphs in which the nodes denote track segments, and the edges denote connectivity for train traÆc. Points and signals are modelled by annotations on the edges, thereby restricting the driving possibilities. We de ne the safe station states as predicates on the graph, and present a rst step towards an implementation of these predicates.

  12. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al. The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal compo...

  13. MODERN MEDIA EDUCATION MODELS

    OpenAIRE

    Alexander Fedorov

    2011-01-01

    The author supposed that media education models can be divided into the following groups:- educational-information models (the study of the theory, history, language of media culture, etc.), based on the cultural, aesthetic, semiotic, socio-cultural theories of media education;- educational-ethical models (the study of moral, religions, philosophical problems relying on the ethic, religious, ideological, ecological, protectionist theories of media education;- pragmatic models (practical media...

  14. Causal Models in Educational Research: Recursive Models

    Science.gov (United States)

    Anderson, James G.; Evans, Francis B.

    1974-01-01

    In this paper one type of causal modeling technique involving a structural set of equations that are recursive in form has been used to reanalyze the data from two empirical studies that have appeared in the literature. (Author)

  15. Aggregation in ecosystem models and model stability

    Science.gov (United States)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  16. On the Inozemtsev model

    OpenAIRE

    TAKEMURA, KOUICHI

    2003-01-01

    The BC_N Inozemtsev model is investigated. Finite-dimensional spaces which are invariant under the action of the Hamiltonian of the BC_N Inozemtsev model are introduced and it is shown that commuting operators of conserved quantities also preserve the finite-dimensional spaces. The BC_2 Inozemtsev model is studied in more detail.

  17. Modelling Chinese Smart Grid

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

    2012-01-01

    In this document, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

  18. The nontopological soliton model

    International Nuclear Information System (INIS)

    The nontopological soliton model introduced by Friedberg and Lee, and variations of it, provide a method for modeling QCD which can effectively include the dynamics of hadronic collisions as well as spectra. Absolute color confinement is effected by the assumed dielectric properties of the medium. A recently proposed version of the model is chirally invariant. 32 refs., 5 figs., 1 tab

  19. Superstatistical turbulence models

    OpenAIRE

    Beck, Christian

    2005-01-01

    Recently there has been some progress in modeling the statistical properties of turbulent flows using simple superstatistical models. Here we briefly review the concept of superstatistics in turbulence. In particular, we discuss a superstatistical extension of the Sawford model and compare with experimental data.

  20. Rock Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  1. Tests of Rating Models

    Science.gov (United States)

    Masin, Sergio Cesare; Busetto, Martina

    2010-01-01

    The study reports empirical tests of Anderson's, Haubensak's, Helson's, and Parducci's rating models when two end anchors are used for rating. The results show that these models cannot predict the judgment effect called here the Dai Pra effect. It is shown that an extension of Anderson's model is consistent with this effect. The results confirm…

  2. Modelling a Suspension Bridge.

    Science.gov (United States)

    Rawlins, Phil

    1991-01-01

    The quadratic function can be modeled in real life by a suspension bridge that supports a uniform weight. This activity uses concrete models and computer generated graphs to discover the mathematical model of the shape of the main cable of a suspension bridge. (MDH)

  3. Qualitative Modeling in Education

    OpenAIRE

    Bredeweg, Bert; Forbus, Kenneth D.

    2003-01-01

    We argue that qualitative modeling provides a valuable way for students to learn. Two modelbuilding environments, VMODEL and HOMER/- VISIGARP, are presented that support learners by constructing conceptual models of systems and their behavior using qualitative formalisms. Both environments use diagrammatic representations to facilitate knowledge articulation. Preliminary evaluations in educational settings provide support for the hypothesis that qualitative modeling tools can be valuable aids...

  4. Hierarchical Models of Attitude.

    Science.gov (United States)

    Reddy, Srinivas K.; LaBarbera, Priscilla A.

    1985-01-01

    The application and use of hierarchical models is illustrated, using the example of the structure of attitudes toward a new product and a print advertisement. Subjects were college students who responded to seven-point bipolar scales. Hierarchical models were better than nonhierarchical models in conceptualizing attitude but not intention. (GDC)

  5. Model Breaking Points Conceptualized

    Science.gov (United States)

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  6. Dynamic factor models

    OpenAIRE

    BREITUNG, Jörg; Eickmeier, Sandra

    2005-01-01

    Factor models can cope with many variables without running into scarce degrees of freedom problems often faced in a regression-based analysis. In this article we review recent work on dynamic factor models that have become popular in macroeconomic policy analysis and forecasting. By means of an empirical application we demonstrate that these models turn out to be useful in investigating macroeconomic problems.

  7. Markovian demand inventory models

    CERN Document Server

    Beyer, Dirk; Sethi, Suresh P; Taksar, Michael

    2009-01-01

    With a particular focus on inventory models where these world events are modeled by Markov processes, the authors present their research on Markovian demand inventory models, which was carried out over a period of ten years beginning in the early nineties..

  8. ECOMOD: Ecological model

    International Nuclear Information System (INIS)

    The main purpose of the model is a more detailed description of the radionuclide transfer in food chains, including the dynamics in the early period after accidental release. Detailed modelling of the dynamics of radioactive depositions is beyond the purpose of the model. Standard procedures are used for assessing inhalation and external doses. 3 figs, 2 tabs

  9. Controlling Modelling Artifacts

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew; Nielson, Flemming

    2011-01-01

    When analysing the performance of a complex system, we typically build abstract models that are small enough to analyse, but still capture the relevant details of the system. But it is difficult to know whether the model accurately describes the real system, or if its behaviour is due to modelling artifacts that were inadvertently introduced. In this paper, we propose a novel methodology to reason about modelling artifacts, given a detailed model and a highlevel (more abstract) model of the same system. By a series of automated abstraction steps, we lift the detailed model to the same state space as the high-level model, so that they can be directly compared. There are two key ideas in our approach — a temporal abstraction, where we only look at the state of the system at certain observable points in time, and a spatial abstraction, where we project onto a smaller state space that summarises the possible configurations of the system (for example, by counting the number of components in a certain state). We motivate our methodology with a case study of the LMAC protocol for wireless sensor networks. In particular, we investigate the accuracy of a recently proposed high-level model of LMAC, and identify some modelling artifacts in the model. Since we can apply our abstractions on-the-fly, while exploring the state space of the detailed model, we can analyse larger networks than are possible with existing techniques.

  10. Rock Properties Model

    International Nuclear Information System (INIS)

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process

  11. Two Cognitive Modeling Frontiers

    Science.gov (United States)

    Ritter, Frank E.

    This paper reviews three hybrid cognitive architectures (Soar, ACT-R, and CoJACK) and how they can support including models of emotions. There remain problems creating models in these architectures, which is a research and engineering problem. Thus, the term cognitive science engineering is introduced as an area that would support making models easier to create, understand, and re-use.

  12. Modeling EERE Deployment Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  13. Model Rockets and Microchips.

    Science.gov (United States)

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  14. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  15. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  16. What Is a Model?

    Science.gov (United States)

    McNamara, James F.

    1996-01-01

    Uses R.A. Ackoff's connotations to define "model" as noun, adjective, and verb. Researchers should use various types of models (iconic, analogue, or symbolic) for three purposes: to reveal reality, to explain the past and present, and to predict and control the future. Herbert Simon's process model for administrative decision making has widespread…

  17. Modeling agriculture in the Community Land Model

    OpenAIRE

    B. Drewniak; Song, J; Prell, J; Kotamarthi, V. R.; Jacob, R.

    2012-01-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types – maize, soybean, and spring wheat – into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the...

  18. To model or not to model?

    OpenAIRE

    Fletcher, Daniel A.

    2011-01-01

    In theory, the combination of mathematical modeling with experimental studies can be a powerful and compelling approach to understanding cell biology. In practice, choosing appropriate problems, identifying willing and able collaborators, and publishing the resulting research can be remarkably challenging. To provide perspective on the question of whether and when to combine modeling and experiments, a panel of experts at the 2010 ASCB Annual Meeting shared their personal experiences and advi...

  19. Model composition in model-checking

    OpenAIRE

    Felscher, Ingo

    2014-01-01

    Model-checking allows one to formally check properties of systems: these properties are modeled as logic formulas and the systems as structures like transition systems. These transition systems are often composed, i.e., they arise in form of products or sums. The composition technique allows us to deduce the truth of a formula in the composed system from "interface information": the truth of formulas for the component systems and information in which components which of these formulas hold. W...

  20. Environmental sub models for a macroeconomic model

    DEFF Research Database (Denmark)

    Jensen, Trine S.; Jensen, Jørgen Dejgård; Hasler, Berit; Illerup, Jytte B.; Andersen, Frits M.

    2006-01-01

    Integrated modelling of the interaction between environmental pressure and economic development is a useful tool for evaluating the progress towards sustainable development by analysing the effects on sustainability indicators of the general economic growth and implementation of national action plans, etc. In this article an integrated model system is extended to include emissions of the greenhouse gasses, CH4 and N2O and the acidifying substance, NH3, from the Danish agricultural production. Th...

  1. OPEC model : adjustment or new model

    International Nuclear Information System (INIS)

    Since the early eighties, the international oil industry went through major changes : new financial markets, reintegration, opening of the upstream, liberalization of investments, privatization. This article provides answers to two major questions : what are the reasons for these changes ? ; do these changes announce the replacement of OPEC model by a new model in which state intervention is weaker and national companies more autonomous. This would imply a profound change of political and institutional systems of oil producing countries. (Author)

  2. Using Model Types to Support Contract-Aware Model Substitutability

    OpenAIRE

    Wuliang, Sun; Combemale, Benoit; Derrien, Steven; France, Robert

    2013-01-01

    Model typing brings the benefit associated with well-defined type systems to model-driven development (MDD) through the assignment of specific types to models. In particular, model type systems enable reuse of model manipulation operations (e.g., model transformations), where manipulations defined for models of a supertype can be used to manipulate models of subtypes. Existing model typing approaches are limited to structural typing defined in terms of object-oriented metamodels (e.g., MOF) i...

  3. Solar information process model

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, R.; Spewak, P.

    1978-12-01

    The MITRE Solar Information Process Model (SIP) is a computerized model that simulates information processes in solar markets. As such, it represents a useful tool in the formulation of solar information outreach programs. For each market investigated, SIP model outputs include prioritized listings of the information needs of key decision makers and other strategically important market participants, and related information flow paths. This report provides macro-descriptions of the model and its logic together with a detailed illustrative example of its application. It also presents the findings and conclusions resulting from utilization of the model in the analysis of information processes in eight solar markets within the residential, commercial and agricultural sectors.

  4. Model-independent differences

    OpenAIRE

    Könemann, Patrick

    2010-01-01

    Computing differences (diffs) and merging different versions is well-known for text files, but for models it is a very young field - especially patches for models are still matter of research. Text-based and model-based diffs have different starting points because the semantics of their structure is fundamentally different. This paper reports on our ongoing work on model-independent diffs, i.e. a diff that does not directly refer to the models it was created from. Based on that, we present an...

  5. Reconstruction of inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo [Eurasian National University, Department of General and Theoretical Physics and Eurasian Center for Theoretical Physics, Astana (Kazakhstan); Zerbini, Sergio [Universita di Trento, Dipartimento di Fisica, Trento (Italy); TIFPA, Istituto Nazionale di Fisica Nucleare, Trento (Italy)

    2015-05-15

    In this paper, we reconstruct viable inflationary models by starting from spectral index and tensor-to-scalar ratio from Planck observations. We analyze three different kinds of models: scalar field theories, fluid cosmology, and f(R)-modified gravity. We recover the well-known R{sup 2} inflation in Jordan-frame and Einstein-frame representation, the massive scalar inflaton models and two models of inhomogeneous fluid. A model of R{sup 2} correction to Einstein's gravity plus a ''cosmological constant'' with an exact solution for early-time acceleration is reconstructed. (orig.)

  6. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  7. Complex matrix model duality

    International Nuclear Information System (INIS)

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  8. Intersection carbon monoxide modeling

    International Nuclear Information System (INIS)

    In this note the author discusses the need for better air quality mobile source models near roadways and intersections. To develop the improved models, a better understanding of emissions and their relation to ambient concentrations is necessary. The database for the modal model indicates that vehicles do have different emission levels for different engine operating modes. If the modal approach is used information is needed on traffic signal phasing, queue lengths, delay times, acceleration rates, deceleration rates, capacity, etc. Dispersion estimates using current air quality models may be inaccurate because the models do not take into account intersecting traffic streams, multiple buildings of varying setbacks, height, and spacing

  9. Reconstruction of inflation models

    International Nuclear Information System (INIS)

    In this paper, we reconstruct viable inflationary models by starting from spectral index and tensor-to-scalar ratio from Planck observations. We analyze three different kinds of models: scalar field theories, fluid cosmology, and f(R)-modified gravity. We recover the well-known R2 inflation in Jordan-frame and Einstein-frame representation, the massive scalar inflaton models and two models of inhomogeneous fluid. A model of R2 correction to Einstein's gravity plus a ''cosmological constant'' with an exact solution for early-time acceleration is reconstructed. (orig.)

  10. A Generalized Higgs Model

    OpenAIRE

    Roberts, Mark D.

    1999-01-01

    The Higgs model is generalized so that in addition to the radial Higgs field there are fields which correspond to the themasy and entropy. The model is further generalized to include state and sign parameters. A reduction to the standard Higgs model is given and how to break symmetry using a non-zero VEV (vacuum expectation value) is shown. A 'fluid rotation' can be performed on the standard Higgs model to give a model dependant on the entropy and themasy and with a constant...

  11. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  12. UZ Colloid Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  13. The inflation models 2015

    CERN Document Server

    Huang, Qing-Guo; Wang, Sai

    2015-01-01

    We provide the latest constraints on the power spectra of both scalar and tensor perturbations from the CMB data (including \\textit{Planck}~2015, BICEP2 \\& \\textit{Keck Array} experiments) and the new BAO scales from SDSS-III BOSS observation. We find that the inflation model with a concave potential is preferred and both the inflation model with a monomial potential and the natural inflation model are marginally disfavored at around $95\\%$ confidence level. But both the Brane inflation model and the Starobinsky inflation model fit the data quite well.

  14. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  15. CRAC2 model description

    International Nuclear Information System (INIS)

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions

  16. Dependence modeling with copulas

    CERN Document Server

    Joe, Harry

    2014-01-01

    Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to a

  17. Mind Sized World Models

    OpenAIRE

    Ugo Bardi

    2013-01-01

    One of the factors that led to the wide rejection of the 1972 “Limits to Growth” report was the inability for most people to understand the model used in the study. In the present paper, the author builds simple “mind sized” world models designed to convey to readers the main qualitative features of world modeling. These models turn out to provide results comparable to real-world historical cases and are similar to those generated by the more complex “World3” model used for the “Limits to Gro...

  18. Model description and evaluation of model performance: DOSDIM model

    International Nuclear Information System (INIS)

    DOSDIM was developed to assess the impact to man from routine and accidental atmospheric releases. It is a compartmental, deterministic, radiological model. For an accidental release, dynamic transfer are used in opposition to a routine release for which equilibrium transfer factors are used. Parameters values were chosen to be conservative. Transfer between compartments are described by first-order differential equations. 2 figs

  19. Assessing model uncertainties

    International Nuclear Information System (INIS)

    The authors have examined, by Monte Carlo methods, the uncertainties of a variety of models of different mathematical forms, including an atmospheric carbon dioxide model, a marsh hydrology model, a model of plutonium movement in a forested watershed, and a model of food chain transport of iodine. When the uncertainties affecting the predictions of these models are partitioned into the sources of error we find that: (1) the relative contribution of a parameter to model uncertainty may not be reflected by sensitivity analysis; (2) the mathematical formulation of the model is critical with simpler models often having lower uncertainties; (3) deterministic solutions often give biased predictions, especially when stochastic effects are present; and (4) assumptions regarding statistical frequency distributions are often unimportant. Results indicate that little information may be needed to reflect the error propagation properties of a model, and identify the critical portions of the model (e.g., parameters and/or mathematical structure) and make reasonable estimates of uncertainties associated with predictions

  20. Dayside magnetopause models

    International Nuclear Information System (INIS)

    A review of empirical data-based models of the magnetopause and a comparative analysis are given with special attention to the dynamics of the dayside boundary. Recently different research groups have presented new magnetopause models as an alternative to the model of J. Geophys. Res. 94, 15, 125). All models have a greater parametric extent than the model of Roelof and Sibeck and allow prediction of the magnetopause location during extreme solar wind and IMF conditions. The models of J. Geophys. Res. 102, 9497-9511) and , developed using classic multi-factor regression analysis are two-dimensional and bivariate. The model of created using artificial neural networks (ANNs) is three-dimensional and contains multiple parameters. A statistical study of Kuznetsov et al. confirmed by the ANN modeling of Dmitriev et al. has shown that the shape of dayside magnetopause has dawn-dusk asymmetry. The uncertainty in the determination of the dayside magnetopause position is practically the same for these models in spite of some discrepancies of the model results caused by different data sets, different assumptions and functional forms, different treatment methods of the models