WorldWideScience

Sample records for magnetoencephalography multipolar modeling

  1. MEG (Magnetoencephalography) multipolar modeling of distributed sources using RAP-MUSIC (Recursively Applied and Projected Multiple Signal Characterization)

    Mosher, J. C. (John C.); Baillet, S. (Sylvain); Jerbi, K. (Karim); Leahy, R. M. (Richard M.)

    2001-01-01

    We describe the use of truncated multipolar expansions for producing dynamic images of cortical neural activation from measurements of the magnetoencephalogram. We use a signal-subspace method to find the locations of a set of multipolar sources, each of which represents a region of activity in the cerebral cortex. Our method builds up an estimate of the sources in a recursive manner, i.e. we first search for point current dipoles, then magnetic dipoles, and finally first order multipoles. The dynamic behavior of these sources is then computed using a linear fit to the spatiotemporal data. The final step in the procedure is to map each of the multipolar sources into an equivalent distributed source on the cortical surface. The method is illustrated through an application to epileptic interictal MEG data.

  2. Magnetoencephalography

    Schwartz, Erin Simon [Children' s Hospital of Philadelphia, Lurie Family Foundations MEG Imaging Center, Department of Radiology, Philadelphia, PA (United States); Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Edgar, J.C.; Gaetz, William C.; Roberts, Timothy P.L. [Children' s Hospital of Philadelphia, Lurie Family Foundations MEG Imaging Center, Department of Radiology, Philadelphia, PA (United States)

    2010-01-15

    Although magnetoencephalography (MEG) may not be familiar to many pediatric radiologists, it is an increasingly available neuroimaging technique both for evaluating normal and abnormal intracranial neural activity and for functional mapping. By providing spatial, temporal, and time-frequency spectral information, MEG affords patients with epilepsy, intracranial neoplasia, and vascular malformations an opportunity for a sensitive and accurate non-invasive preoperative evaluation. This technique can optimize selection of surgical candidates as well as increase confidence in preoperative counseling and prognosis. Research applications that appear promising for near-future clinical translation include the evaluation of children with autism spectrum disorder, traumatic brain injury, and schizophrenia. (orig.)

  3. Magnetoencephalography

    Although magnetoencephalography (MEG) may not be familiar to many pediatric radiologists, it is an increasingly available neuroimaging technique both for evaluating normal and abnormal intracranial neural activity and for functional mapping. By providing spatial, temporal, and time-frequency spectral information, MEG affords patients with epilepsy, intracranial neoplasia, and vascular malformations an opportunity for a sensitive and accurate non-invasive preoperative evaluation. This technique can optimize selection of surgical candidates as well as increase confidence in preoperative counseling and prognosis. Research applications that appear promising for near-future clinical translation include the evaluation of children with autism spectrum disorder, traumatic brain injury, and schizophrenia. (orig.)

  4. Bremsstrahlung during $\\alpha$-decay: quantum multipolar model

    Maydanyuk, Sergei P

    2008-01-01

    In this paper the improved multipolar model of bremsstrahlung accompanied the $\\alpha$-decay is presented. The angular formalism of calculations of the matrix elements, being enough complicated component of the model, is stated in details. A new definition of the angular (differential) probability of the photon emission in the $\\alpha$-decay is proposed where direction of motion of the $\\alpha$-particle outside (with its tunneling inside barrier) is defined on the basis of angular distribution of its spacial wave function. In such approach, the model gives values of the angular probability of the photons emission in absolute scale, without its normalization on experimental data. Effectiveness of the proposed definition and accuracy of the spectra calculations of the bremsstrahlung spectra are analyzed in their comparison with experimental data for the $^{210}{\\rm Po}$, $^{214}{\\rm Po}$, $^{226}{\\rm Ra}$ and $^{244}{\\rm Cm}$ nuclei, and for some other nuclei predictions are performed (in absolute scale). With ...

  5. A wind-shell interaction model for multipolar planetary nebulae

    Steffen, W; Esquivel, A; Garcia-Segura, G; Garcia-Diaz, Ma T; Lopez, J A; Magnor, M

    2013-01-01

    We explore the formation of multipolar structures in planetary and pre-planetary nebulae from the interaction of a fast post-AGB wind with a highly inhomogeneous and filamentary shell structure assumed to form during the final phase of the high density wind. The simulations were performed with a new hydrodynamics code integrated in the interactive framework of the astrophysical modeling package SHAPE. In contrast to conventional astrophysical hydrodynamics software, the new code does not require any programming intervention by the user for setting up or controlling the code. Visualization and analysis of the simulation data has been done in SHAPE without external software. The key conclusion from the simulations is that secondary lobes in planetary nebulae, such as Hubble 5 and K3-17, can be formed through the interaction of a fast low-density wind with a complex high density environment, such as a filamentary circumstellar shell. The more complicated alternative explanation of intermittent collimated outflow...

  6. Error bounds in MEG (Magnetoencephalography) multipole localization

    Jerbi, K. (Karim); Mosher, J. C. (John C.); Baillet, S. (Sylvain); Leahy, R. M. (Richard M.)

    2001-01-01

    Magnetoencephalography (MEG) is a non-invasive method that enables the measurement of the magnetic field produced by neural current sources within the human brain. Unfortunately, MEG source estimation is a severely ill-posed inverse problem. The two major approaches used to tackle this problem are 'imaging' and 'model-based' methods. The first class of methods relies on a tessellation of the cortex, assigning an elemental current source to each area element and solving the linear inverse problem. Accurate tessellations lead to a highly underdetermined problem, and regularized linear methods lead to very smooth current distributions. An alternative approach widely used is a parametric representation of the neural source. Such model-based methods include the classic equivalent current dipole (ECD) and its multiple current dipole extension [1]. The definition of such models has been based on the assumption that the underlying sources are focal and small in number. An alternative approach reviewed in [4], [5] is to extend the parametric source representations within the model-based framework to allow for distributed sources. The multipolar expansion of the magnetic field about the centroid of a distributed source readily offers an elegant parametric model, which collapses to a dipole model in the limiting case and includes higher order terms in the case of a spatially extended source. While multipolar expansions have been applied to magnetocardiography (MCG) source modeling [2], their use in MEG has been restricted to simplified models [7]. The physiological interpretation of these higher-order components in non-intuitive, therefore limiting their application in this community (cf. [8]). In this study we investigate both the applicability of dipolar and multipolar models to cortical patches, and the accuracy with which we can locate these sources. We use a combination of Monte Carlo analyses and Cramer-Rao lower bounds (CRLBs), paralleling the work

  7. Practical and Simple Wireless Channel Models for Use in Multipolarized Antenna Systems

    KwangHyun Jeon

    2014-01-01

    Full Text Available The next-generation wireless systems are expected to support data rates of more than 100 Mbps in outdoor environments. In order to support such large payloads, a polarized antenna may be employed as one of the candidate technologies. Recently, the third generation partnership standards bodies (3GPP/3GPP2 have defined a cross-polarized channel model in SCM-E for MIMO systems; however, this model is quite complex since it considers a great many channel-related parameters. Furthermore, the SCM-E channel model combines the channel coefficients of all the polarization links into one complex output, making it impossible to exploit the MIMO spatial multiplexing or diversity gains in the case of employing polarized antenna at transmitter and receiver side. In this paper, we present practical and simple 2D and 3D multipolarized multipath channel models, which take into account both the cross-polarization discrimination (XPD and the Rician factor. After verifying the proposed channel models, the BER and PER performances and throughput using the EGC and MRC combining techniques are evaluated in multipolarized antenna systems.

  8. Libration driven multipolar instabilities

    Cébron, David; Herreman, Wietze

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that...

  9. Evaluation of the solid state dipole moment and pyroelectric coefficient of phosphangulene by multipolar modeling of X-ray structure factors

    Madsen, G.K.H.; Krebs, Frederik C; Lebech, B.;

    2000-01-01

    The electron density distribution of the molecular pyroelectric material phosphangulene has been studied by multipolar modeling of X-ray diffraction data. The "in-crystal" molecular dipole moment has been evaluated to 4.7 D corresponding to a 42% dipole moment enhancement compared with the dipole...

  10. Magnetoencephalography recording and analysis

    Jayabal Velmurugan

    2014-01-01

    Full Text Available Magnetoencephalography (MEG non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID inside the magnetically shielded room (MSR. The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coils, electroencephalography (EEG electrodes (if measured simultaneously, and fiducials are digitized using a 3D digitizer, which aids in movement correction and also in transferring the MEG data from the head coordinates to the device and voxel coordinates, thereby enabling more accurate co-registration and localization. MEG data pre-processing involves filtering the data for environmental and subject interferences, artefact identification, and rejection. Magnetic resonance Imaging (MRI is processed for correction and identifying fiducials. After choosing and computing for the appropriate head models (spherical or realistic; boundary/finite element model, the interictal/ictal epileptiform discharges are selected and modeled by an appropriate source modeling technique (clinically and commonly used - single equivalent current dipole - ECD model. The equivalent current dipole (ECD source localization of the modeled interictal epileptiform discharge (IED is considered physiologically valid or acceptable based on waveform morphology, isofield pattern, and dipole parameters (localization, dipole moment, confidence volume, goodness of fit. Thus, MEG source localization can aid clinicians in sublobar localization, lateralization, and grid placement, by evoking the irritative/seizure onset zone. It also accurately localizes the eloquent cortex-like visual, language areas. MEG also aids in diagnosing and delineating multiple novel findings in other neuropsychiatric

  11. Multipolar nonlinear nanophotonics

    Smirnova, Daria

    2016-01-01

    Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...

  12. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  13. Radiative capture reactions and spectroscopy of multipolar anions in the framework of Gamow Shell Model

    Small open quantum systems, whose properties are profoundly affected by the environment of continuum states, are intensely studied in various fields of Physics: nuclear physics, atomic and molecular physics, quantum optics, etc. These different many-body systems, in spite of their specific features, have generic properties which are common to all weakly bound or unbound systems close to the threshold. Coupling to the continuum is essential to describe the low-energy nuclear reactions of astrophysical interest, the formation of halo states in nuclei, atomic clusters and dipolar anions, or the near-threshold two neutron and alpha particle correlations (clustering). Recently, the open quantum system extension of the nuclear shell model, the Gamow shell model (GSM), based on the Berggren ensemble, has been applied successfully for the description of resonant states spectra in atomic nuclei. The coupled-channel formulation of the GSM (GSM-CC) allows to describe various low-energy nuclear reactions. In this work, the GSM-CC is formulated and applied for the description of proton/neutron radiative capture reactions of astrophysical interest, such as: 17F(p, γ)18Ne, 7Be(p, γ)8B and 7Li(n, γ)8Li. Moreover, for the first time, the GSM has been applied in atomic physics for the description of spectra of dipolar anions. Systematic investigation of the hydrogen cyanide dipolar anion (HCN-) allowed to identify the collective bands of states both in the strong coupling regime, for weakly bound halo states, and in the weak coupling regime above the dissociation threshold. In the strong coupling regime, KJ = 0 anion a rotational band has been found. Above the threshold, KJ quantum number is not conserved. Resonances in this regime form rotational bands according to the angular momentum of the rotating molecule, whereas the band head energies and the lifetimes depend predominantly on the external electron wave function. (author)

  14. Transferred multipolar atom model for 10β,17β-dihydroxy-17α-methylestr-4-en-3-one dihydrate obtained from the biotransformation of methyloestrenolone.

    Faroque, Muhammad Umer; Yousuf, Sammer; Zafar, Salman; Choudhary, M Iqbal; Ahmed, Maqsood

    2016-05-01

    Biotransformation is the structural modification of compounds using enzymes as the catalysts and it plays a key role in the synthesis of pharmaceutically important compounds. 10β,17β-Dihydroxy-17α-methylestr-4-en-3-one dihydrate, C19H28O3·2H2O, was obtained from the fungal biotransformation of methyloestrenolone. The structure was refined using the classical independent atom model (IAM) and a transferred multipolar atom model using the ELMAM2 database. The results from the two refinements have been compared. The ELMAM2 refinement has been found to be superior in terms of the refinement statistics. It has been shown that certain electron-density-derived properties can be calculated on the basis of the transferred parameters for crystals which diffract to ordinary resolution. PMID:27146568

  15. The economy of Russia in multipolar world

    Lapo, Valentina

    2013-01-01

    There have been several poles of development: USA, Europe, and China are formatted in the world economy. How does the multipolar world economy influence the Russian economy’s development? The studies based on the main results of new economic geography and gravity theory concerning the spatial concentration of production in the economy of countries and large regions. We propose the econometric model of industrial production, employment, investment, and income under expectation about the multip...

  16. The role of multipolar magnetic fields in pulsar magnetospheres

    Asséo, E; Asseo, Estelle; Khechinashvili, David

    2002-01-01

    We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centered multipolar fields. In configurations involving axially symmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high order multipoles. Consequently, such configurations are unable to provide an efficient pair creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axially symmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow sub-regions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair production p...

  17. Strategies for Business Schools in a Multi-Polar World

    Dameron, Stephanie; Durand, Thomas

    2013-01-01

    Purpose: The purpose of this paper is to examine the contours of the emerging business education and institutions in a multi-polar world and to identify the causes of the strategic convergence of management education, to explore the limitations of the dominant models of management education and to propose a range of strategic alternatives for…

  18. Multipolar interference effects in nanophotonics

    Liu, Wei

    2016-01-01

    Scattering of electromagnetic waves by an arbitrary nanoscale object can be characterized by a multipole decomposition of the electromagnetic field that allows to describe the scattering intensity and radiation pattern through interferences of dominating excited multipole modes. In modern nanophotonics, both generation and interference of multipole modes start to play an indispensable role, and they enable nanoscale manipulation of light with many related applications. Here we review the multipolar interference effects in metallic, metal-dielectric, and dielectric nanostructures, and suggest a comprehensive view on many phenomena involving the interferences of electric, magnetic and toroidal multipoles, which drive a number of recently discussed effects in nanophotonics such as unidirectional scattering, effective optical antiferromagnetism, generalized Kerker scattering with controlled angular patterns, generalized Brewster angle, and nonradiating optical anapoles. We further discuss other types of possible ...

  19. Multipolar representation of protein structure

    Bourne Philip E

    2006-05-01

    Full Text Available Abstract Background That the structure determines the function of proteins is a central paradigm in biology. However, protein functions are more directly related to cooperative effects at the residue and multi-residue scales. As such, current representations based on atomic coordinates can be considered inadequate. Bridging the gap between atomic-level structure and overall protein-level functionality requires parameterizations of the protein structure (and other physicochemical properties in a quasi-continuous range, from a simple collection of unrelated amino acids coordinates to the highly synergistic organization of the whole protein entity, from a microscopic view in which each atom is completely resolved to a "macroscopic" description such as the one encoded in the three-dimensional protein shape. Results Here we propose such a parameterization and study its relationship to the standard Euclidian description based on amino acid representative coordinates. The representation uses multipoles associated with residue Cα coordinates as shape descriptors. We demonstrate that the multipoles can be used for the quantitative description of the protein shape and for the comparison of protein structures at various levels of detail. Specifically, we construct a (dissimilarity measure in multipolar configuration space, and show how such a function can be used for the comparison of a pair of proteins. We then test the parameterization on a benchmark set of the protein kinase-like superfamily. We prove that, when the biologically relevant portions of the proteins are retained, it can robustly discriminate between the various families in the set in a way not possible through sequence or conventional structural representations alone. We then compare our representation with the Cartesian coordinate description and show that, as expected, the correlation with that representation increases as the level of detail, measured by the highest rank of multipoles

  20. Multipolar expansion of orbital angular momentum modes

    Molina-Terriza, Gabriel

    2008-01-01

    In this letter a general method for expanding paraxial beams into multipolar electromagnetic fields is presented. This method is applied to the expansion of paraxial modes with orbital angular momentum (OAM), showing how the paraxial OAM is related to the general angular momentum of an electromagnetic wave. This method can be extended to quasi-paraxial beams, i.e. highly focused laser beams. Some applications to the control of electronic transitions in atoms are discussed.

  1. Polarizable multipolar electrostatics for cholesterol

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  2. SQUID-based multichannel system for Magnetoencephalography

    Rombetto, S; Vettoliere, A; Trebeschi, A; Rossi, R; Russo, M

    2013-01-01

    Here we present a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG) measurements, developed and installed at Istituto di Cibernetica (ICIB) in Naples. This MEG system, consists of 163 full integrated SQUID magnetometers, 154 channels and 9 references, and has been designed to meet specifications concerning noise, dynamic range, slew rate and linearity through optimized design. The control electronics is located at room temperature and all the operations are performed inside a Magnetically Shielded Room (MSR). The system exhibits a magnetic white noise level of approximatively 5 fT/Hz1=2. This MEG system will be employed for both clinical and routine use. PACS numbers: 74.81.Fa, 85.25.Hv, 07.20.Mc, 85.25.Dq, 87.19.le, 87.85.Ng

  3. Magnetoencephalography from signals to dynamic cortical networks

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  4. Optical multipolar spread functions of an aplanatic imaging system

    Rouxel, Jérémy R.; Toury, Timothée

    2016-07-01

    The electromagnetic field near the focus of a perfect imaging system is calculated for different multipolar sources that play an important role in the radiation of nanostructures. Those multipoles are the exact and extended multipoles occurring in electrodynamics. The theory of diffraction of vector waves is reviewed rigorously for a dipolar radiation and applied to the imaging of multipolar sources. Different geometries are considered in order to connect with experiments and the multipolar spread functions are given in a ready-to-use format up to the octupolar order, in the general case and in the paraxial approximation. Defocus imaging is finally considered to provide a first step toward multipolar imaging.

  5. Classification of spin and multipolar squeezing

    Yukawa, Emi; Nemoto, Kae

    2016-06-01

    We investigate various types of squeezing in a collective su(2J+1) system consisting of spin-J particles (J\\gt 1/2). We show that squeezing in the collective su(2J+1) system can be classified into unitary equivalence classes, each of which is characterized by a set of squeezed and anti-squeezed observables forming an su(2) subalgebra in the su(2J+1) algebra. The dimensionality of the unitary equivalence class is found to be fundamentally related to its squeezing limit. We also demonstrate the classification of squeezing among the spin and multipolar observables in a collective su(4) system.

  6. Magnetoencephalography (MEG) and other neurophysiological investigations.

    Paetau, Ritva; Mohamed, Ismail S

    2013-01-01

    Cortical generators of epileptic and certain physiological activity can be localized noninvasively by magnetoencephalography (MEG). MEG detects weak magnetic fields produced by the postsynaptic currents of pyramidal cortical cells in sulcal walls. Unlike EEG, MEG signals are not distorted by edema or bone defects, and unlike fMRI, abnormal hemodynamics do not alter the MEG. The patient's head is centered inside a helmet housing over a hundred magnetic field sensors. Cortical generators of MEG signals are determined with a useful spatial resolution and an excellent time resolution, which enable tracking of brain activity in successive points of, for example, an epileptic network. MEG sources can be co-registered and visualized on magnetic resonance images (MRI). MEG is highly sensitive for the detection of interictal epileptic discharges, and present techniques allow some degree of head movements enabling ictal recordings also. MEG is also useful for localizing the somatosensory, visual, and language areas before tailored surgery in the vicinity of eloquent cortex. In conjunction with other noninvasive modalities MEG provides nonredundant data in one-third of epilepsy surgery patients. Clinical MEG utilization is mainly focused on presurgical localization of the epileptogenic zone and eloquent cortex in epilepsy surgery candidates, including patients with Landau-Kleffner syndrome. However, MEG is also an excellent noninvasive tool to study the source distribution in childhood epilepsy syndromes and epileptic encephalopathies. PMID:23622195

  7. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells.

    William T Silkworth

    Full Text Available Many cancer cells display a CIN (Chromosome Instability phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed gamma-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells.

  8. Measuring cerebral hemodynamics with a modified magnetoencephalography system

    Magnetoencephalography (MEG) systems are designed to noninvasively measure magnetic fields produced by neural electrical currents. This project examines the possibility of measuring hemodynamics with an MEG system that has been modified with dc electromagnets to measure magnetic susceptibility while maintaining the capability of measuring neural dynamics. A forward model is presented that simulates the interaction of an applied magnetic field with changes in magnetic susceptibility in the brain associated with hemodynamics. Model predictions are compared with an experiment where deionized water was pumped into an inverted flask under the MEG sensor array of superconducting quantum interference device (SQUID) gradiometers (R2 = 0.98, p < 0.001). The forward model was used to simulate the SQUID readouts from hemodynamics in the scalp and brain induced by performing the Valsalva maneuver. Experimental human subject recordings (N = 10) were made from the prefrontal region during Valsalva using concurrent measurement with the modified MEG system and near-infrared spectroscopy (NIRS). The NIRS deoxyhemoglobin signal was found to correlate significantly with the SQUID readouts (R2 = 0.84, p < 0.01). SQUID noise was found to increase with the applied field, which will need to be mitigated in future work. These results demonstrate the potential and technical challenges of measuring cerebral hemodynamics with a modified MEG system. (paper)

  9. Magnetoencephalography in studies of human cognitive brain function.

    Näätänen, R; Ilmoniemi, R J; Alho, K

    1994-09-01

    Magnetoencephalography provides a new dimension to the functional imaging of the brain. The cerebral magnetic fields recorded noninvasively enable the accurate determination of locations of cerebral activity with an uncompromized time resolution. The first whole-scalp sensor arrays have just recently come into operation, and significant advances are to be expected in both neurophysiological and cognitive studies, as well as in clinical practice. However, although the accuracy of locating isolated sources of brain activity has improved, identification of multiple simultaneous sources can still be a problem. Therefore, attempts are being made to combine magnetoencephalography with other brain-imaging methods to improve spatial localization of multiple sources and, simultaneously, to achieve a more complete characterization of different aspects of brain activity during cognitive processing. Owing to its good time resolution and considerably better spatial accuracy than that provided by EEG, magnetoencephalography holds great promise as a tool for revealing information-processing sequences of the human brain. PMID:7529443

  10. Magnetoencephalography: From first steps to clinical applications

    Ilmoniemi, Risto

    2014-03-01

    Magnetoencephalography (MEG), the study of femtotesla-range magnetic fields produced by neuronal currents in the brain, originated in the 1960's. After Baule and McFee's (Am Heart J 66:95-6,1963) measurement of the cardiac magnetic field using induction-coil sensors, Cohen (Science 16:784-6, 1968) used a similar multi-turn coil to detect the brain's alpha rhythm. The introduction of the superconducting quantum interference device (SQUID) by Zimmerman et al. (J Appl Phys 41: 1572-80) improved the sensitivity of magnetic sensing by several orders of magnitude, making MEG practical. The SQUID enabled the unaveraged recording of spontaneous brain rhythms (D. Cohen, Science 175:664-6, 1972) as well as evoked magnetic fields (Brenner et al., Science 190:480-2, 1975; Teyler et al., Life Sci 17:683-91, 1975). Subsequently, a large number of evoked-field variants were demonstrated. The main benefit of MEG is its ability to locate electrical activity in the brain at high temporal resolution. For practical work, we need large arrays of highly sensitive SQUIDs; such arrays were first built in the 1990's (Knuutila et al., IEEE Trans Magn 29:3315-20, 1993). While the intrinsic spatial accuracy of locating sources with well-calibrated large sensor arrays is better than one millimeter, uncertainties in determining the location and geometry of the cortex with respect to the array may lead to source-location errors of 5-10 mm or more. These errors could be reduced to 1 mm if one could obtain the structural image of the brain with the same sensors that are used for MEG and if the conductivity geometry of the head would be accurately known. This may indeed be possible if MRI is recorded with SQUIDs (McDermott et al., PNAS 21:7857-61, 2004) concurrently with MEG (Zotev et al., J Magn Reson 194:115-20, 2008), especially if large arrays are developed (Vesanen et al., Magn Reson Med 69:1795-1804, 2013); the conductivity distribution of the head might be possible to determine with current

  11. The precise ICC measurement of the high multipolarity transitions

    The methods of γ-spectroscopy are used to measure internal conversion coefficients (ICC) on the K-shell and total ICC for M4,E4,E5-multipolarity transitions. The research is carried out using the 202,204Pb, 197Pt,114In isomers. The data obtained prove that the observed systematic excess of theoretical ICC for M4-multipolarity transitions as compared with the experimental values is most probably connected with the contribution of ''intranuclear'' conversion

  12. Nesting-driven multipolar order in CeB6 from photoemission tomography

    Koitzsch, A,; Heming, N.; Knupfer, M.; Büchner, B.; Portnichenko, P. Y.; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Lev, L. L.; Strocov, V. N.; Ollivier, J.; Inosov, D. S.

    2016-01-01

    Some heavy fermion materials show so-called hidden-order phases which are invisible to many characterization techniques and whose microscopic origin remained controversial for decades. Among such hidden-order compounds, CeB6 is of model character due to its simple electronic configuration and crystal structure. Apart from more conventional antiferromagnetism, it shows an elusive phase at low temperatures, which is commonly associated with multipolar order. Here we show that this phase roots i...

  13. Scattering from bare soils: C-band multipolarization scatterometer measurements

    Casarano, Domenico; Buono, G.; Paparella, F.; Posa, Francesco; Sabatelli, Vincenzo

    1998-11-01

    Multi-angle, multi-polarization C-band backscattering measurements were performed over selected bare soil areas. To perform these measurements, an FM-CW radar has been designed and assembled. This device has the capability of resolving independent samples within the antenna footprint area, thus allowing range discrimination and improving the signal statistics. Two areas with different degrees of roughness and dielectric constants were selected and set up. Co-polarized backscattering coefficients were measured for incidence angles between 23 degrees and 60 degrees. To perform a model analysis of the backscattering properties, 'ground truth' data, including surface roughness profiles and soil moisture values (directly related to dielectric constant) were also collected. The 'classical' parameters, used to describe surface roughness, showed a wide spreading. This evidence and the data resulting from ground truth campaigns over many European test sites suggested an alternative description of surface roughness, based on the self-similarity (fractal) properties. The surfaces have therefore been described as fBm (Fractional Brownian Motion) processes, and their backscattering response has been theoretically modeled by a numerical simulation (in 3-D in order to also take into account anisotropy effects) in Kirchhoff approximation. The experimental data have been analyzed with both asymptotic models (IEM) considering a classical statistical description, and with the numerical simulation applied to fBm surfaces.

  14. Smoother thrust on multi-polar type linear DC motor

    Wakiwaka, H.; Senoh, S.; Yajima, H; Yamada, H. [Shinshu Univ., Wakasato, Nagano (Japan). Faculty of Engineering; Oda, J. [Ohkura Electric Co., Ltd., Shirako, Wakou (Japan)

    1997-09-01

    A LDM has the merits of a high response and a direct linear motion. Therefore, a LDM is used widely in the fields of Factory Automation (FA). As compared with a mono-polar type Linear DC Motor (LDM), it is possible for a multi-polar type LDM to have a longer stroke and more thrust with thin shape. However, there are thrust ripple on multi-polar type one. In this paper, a design to prevent thrust ripple is discussed. In order to make a smoother thrust on multi-polar type LDM, the structure of the LDM is set as a 2-phase coil type. This paper clarifies that the thrust ripple of the LDM has the minimum value of 1.68%, the pole pitch of 15 mm, the coil width of 12 mm and the permanent magnet width of 10 mm.

  15. Magnetoencephalography as a Putative Biomarker for Alzheimer's Disease

    Edward Zamrini

    2011-01-01

    Full Text Available Alzheimer's Disease (AD is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease, the loss of dendritic spines and of synapses predate such changes. Popular preclinical detection strategies mainly involve cerebrospinal fluid biomarkers, magnetic resonance imaging, metabolic PET scans, and amyloid imaging. One strategy missing from this list involves neurophysiological measures, which might be more sensitive to detect alterations in brain function. The Magnetoencephalography International Consortium of Alzheimer's Disease arose out of the need to advance the use of Magnetoencephalography (MEG, as a tool in AD and pre-AD research. This paper presents a framework for using MEG in dementia research, and for short-term research priorities.

  16. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles.

    Butet, Jérémy; Russier-Antoine, Isabelle; Jonin, Christian; Lascoux, Noëlle; Benichou, Emmanuel; Brevet, Pierre-François

    2012-03-14

    We show that sensing in the nonlinear optical regime using multipolar surface plasmon resonances is more sensitive in comparison to sensing in the linear optical regime. Mie theory, and its extension to the second harmonic generation from a metallic nanosphere, is used to describe multipolar second harmonic generation from silver metallic nanoparticles. The standard figure of merit of a potential plasmonic sensor based on this principle is then calculated. We finally demonstrate that such a sensor is more sensitive to optical refraction index changes occurring in the vicinity of the metallic nanoparticle than its linear counterpart. PMID:22375818

  17. Neural Signatures of Phonetic Learning in Adulthood: A Magnetoencephalography Study

    Zhang, Yang; Kuhl, Patricia K.; Imada, Toshiaki; Iverson, Paul; Pruitt, John; Stevens, Erica B.; Kawakatsu, Masaki; Tohkura, Yoh'ichi; Nemoto, Iku

    2009-01-01

    The present study used magnetoencephalography (MEG) to examine perceptual learning of American English /r/ and /l/ categories by Japanese adults who had limited English exposure. A training software program was developed based on the principles of infant phonetic learning, featuring systematic acoustic exaggeration, multi-talker variability, visible articulation, and adaptive listening. The program was designed to help Japanese listeners utilize an acoustic dimension relevant for phonemic cat...

  18. Design of outer-rotor type multipolar SR motor for electric vehicle

    In this paper, we design an outer-rotor type multipolar switched reluctance (SR) motor, and examine an application of the SR motor to an electric vehicle (EV). The design is based on a nonlinear magnetic circuit model proposed by the authors. Using the model, we can calculate dynamic characteristics of a SR motor accurately. Furthermore, by combining the nonlinear magnetic circuit model with a motor drive circuit and motion equation of an EV, we can predict dynamic characteristics such as the maximum speed, acceleration torque, and a battery current of the EV

  19. Design of outer-rotor type multipolar SR motor for electric vehicle

    Nakamura, Kenji; Suzuki, Yosuke; Goto, Hiroki; Ichinokura, Osamu

    2005-04-01

    In this paper, we design an outer-rotor type multipolar switched reluctance (SR) motor, and examine an application of the SR motor to an electric vehicle (EV). The design is based on a nonlinear magnetic circuit model proposed by the authors. Using the model, we can calculate dynamic characteristics of a SR motor accurately. Furthermore, by combining the nonlinear magnetic circuit model with a motor drive circuit and motion equation of an EV, we can predict dynamic characteristics such as the maximum speed, acceleration torque, and a battery current of the EV.

  20. Beam engineering for selective and enhanced coupling to multipolar resonances

    Das, Tanya; Schuller, Jon A

    2015-01-01

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. In this letter, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique, we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. This work enhances the understanding of fundamental light-matter interactions in metamaterials, and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  1. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  2. Beam engineering for selective and enhanced coupling to multipolar resonances

    Das, Tanya; Iyer, Prasad P.; DeCrescent, Ryan A.; Schuller, Jon A.

    2015-12-01

    Multipolar electromagnetic phenomena in subwavelength resonators are at the heart of metamaterial science and technology. In this Rapid Communication, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique, we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. This work enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  3. First-Strike Stability in a Multipolar World

    Melvin Best; Jerome Bracken

    1995-01-01

    First-strike stability in a multipolar world measures the incentives of all major nuclear weapon countries, in all possible coalitions, to refrain from preemptive attack. The analysis integrates the interactions of offensive weapon arsenals, vulnerable offensive weapons within these arsenals, defensive weapons, and value targets reflecting the national assets at stake. In the previously-dominant bipolar paradigm, when the United States and the Soviet Union possessed almost all of the strategi...

  4. THE EU-US RELATIONS IN AN EMERGING MULTIPOLAR WORLD

    Roxana Hincu

    2014-01-01

    In the context of an emerging multipolar world, the transatlantic partnership faces various challenges in the attempt to maintain the Western-shaped and dominated liberal order. This article aims to synthesize and rationalize the central argumentative positions on the ever-evolving transatlantic relationship provided by the following theories of international relations: neorealism, neoliberalism and constructivism. A combination of the main assumptions of the three approaches brings useful in...

  5. Impact of polydispersity on multipolar resonant scattering in emulsions.

    Mascaro, Benoit; Brunet, Thomas; Poncelet, Olivier; Aristégui, Christophe; Raffy, Simon; Mondain-Monval, Olivier; Leng, Jacques

    2013-04-01

    The influence of size polydispersity on the resonant acoustic properties of dilute emulsions, made of fluorinated-oil droplets, is quantitatively investigated. Ultrasound attenuation and dispersion measurements on various samples with controlled size polydispersities, ranging from 1% to 13%, are found to be in excellent agreement with predictions based on the independent scattering approximation. By relating the particle-size distribution of the synthesized emulsions to the quality factor of the predicted multipolar resonances, the number of observable acoustic resonances is shown to be imposed by the sample polydispersity. These results are briefly discussed into the context of metamaterials for which scattering resonances are central to their effective properties. PMID:23556570

  6. A multipolar SR motor and its application in EV

    In order to bring out the advanced features of EVs, a direct-drive (DD) with in-wheel (IW) layout has been considered, but it requires more motors than the conventional layout and the motors will be used in a hard environment. Because switched reluctance motors (SRMs) are simple and strong, we have developed a new outer-rotor-type multipolar SRM suitable for DD-IW EVs through simulations and experiments. We have implemented the developed SRMs into a prototype EV. This is the first-ever in-vehicle research to our knowledge; the developing process and the road test results will bring many useful guidelines for future developments

  7. Multipolar localized resonances for multi-band metamaterial perfect absorbers

    A metamaterial structure, comprising of metallic circular micro-discs (gold or aluminum) separated from a metallic thin film by a dielectric zinc sulphide film, behaves as a multi-band perfect absorber at infra red wavelengths due to the excitation of multipole resonances. With micro-discs of 3.2 μm diameter, the fabricated metamaterial absorber shows peak absorbance of over 90% in multiple selected bands spanning the 3–14 μm wavelengths. Absorption bands corresponding to the different resonance modes have been measured and computational simulations show these resonances originate from the higher order multipolar resonances of the disk. (special issue article)

  8. Multichannel System Based on a High Sensitivity Superconductive Sensor for Magnetoencephalography

    Sara Rombetto

    2014-07-01

    Full Text Available We developed a multichannel system based on superconducting quantum interference devices (SQUIDs for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz1=2. The presented magnetoencephalography is the first system working in a clinical environment in Italy.

  9. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  10. Investigating the neural correlates of the Stroop effect with magnetoencephalography.

    Galer, Sophie; Op De Beeck, Marc; Urbain, Charline; Bourguignon, Mathieu; Ligot, Noémie; Wens, Vincent; Marty, Brice; Van Bogaert, Patrick; Peigneux, Philippe; De Tiège, Xavier

    2015-01-01

    Reporting the ink color of a written word when it is itself a color name incongruent with the ink color (e.g. "red" printed in blue) induces a robust interference known as the Stroop effect. Although this effect has been the subject of numerous functional neuroimaging studies, its neuronal substrate is still a matter of debate. Here, we investigated the spatiotemporal dynamics of interference-related neural events using magnetoencephalography (MEG) and voxel-based analyses (SPM8). Evoked magnetic fields (EMFs) were acquired in 12 right-handed healthy subjects performing a color-word Stroop task. Behavioral results disclosed a classic interference effect with longer mean reaction times for incongruent than congruent stimuli. At the group level, EMFs' differences between incongruent and congruent trials spanned from 380 to 700 ms post-stimulus onset. Underlying neural sources were identified in the left pre-supplementary motor area (pre-SMA) and in the left posterior parietal cortex (PPC) confirming the role of these regions in conflict processing. PMID:24752907

  11. Noise-free magnetoencephalography recordings of brain function

    Perhaps the greatest impediment to acquiring high-quality magnetoencephalography (MEG) recordings is the ubiquitous ambient magnetic field noise. We have designed and built a whole-head MEG system using a helmet-like superconducting imaging surface (SIS) surrounding the array of superconducting quantum interference device (SQUID) magnetometers used to measure the MEG signal. We previously demonstrated that the SIS passively shields the SQUID array from ambient magnetic field noise, independent of frequency, by 25-60 dB depending on sensor location. SQUID 'reference sensors' located on the outside of the SIS helmet measure ambient magnetic fields in very close proximity to the MEG magnetometers while being nearly perfectly shielded from all sources in the brain. The fact that the reference sensors measure no brain signal yet are located in close proximity to the MEG sensors enables very accurate estimation and subtraction of the ambient field noise contribution to the MEG sensors using an adaptive algorithm. We have demonstrated total ambient noise reduction factors in excess of 106 (>120 dB). The residual noise for most MEG SQUID channels is at or near the intrinsic SQUID noise floor, typically 2-3 f T Hz-1/2. We are recording MEG signals with greater signal-to-noise than equivalent EEG measurements

  12. Noise-free magnetoencephalography recordings of brain function

    Volegov, P.; Matlachov, A.; Mosher, J.; Espy, M. A.; Kraus, R. H., Jr.

    2004-05-01

    Perhaps the greatest impediment to acquiring high-quality magnetoencephalography (MEG) recordings is the ubiquitous ambient magnetic field noise. We have designed and built a whole-head MEG system using a helmet-like superconducting imaging surface (SIS) surrounding the array of superconducting quantum interference device (SQUID) magnetometers used to measure the MEG signal. We previously demonstrated that the SIS passively shields the SQUID array from ambient magnetic field noise, independent of frequency, by 25-60 dB depending on sensor location. SQUID 'reference sensors' located on the outside of the SIS helmet measure ambient magnetic fields in very close proximity to the MEG magnetometers while being nearly perfectly shielded from all sources in the brain. The fact that the reference sensors measure no brain signal yet are located in close proximity to the MEG sensors enables very accurate estimation and subtraction of the ambient field noise contribution to the MEG sensors using an adaptive algorithm. We have demonstrated total ambient noise reduction factors in excess of 106 (>120 dB). The residual noise for most MEG SQUID channels is at or near the intrinsic SQUID noise floor, typically 2-3 f T Hz-1/2. We are recording MEG signals with greater signal-to-noise than equivalent EEG measurements.

  13. Noise-free magnetoencephalography recordings of brain function

    Volegov, P; Matlachov, A; Mosher, J; Espy, M A; Kraus, R H Jr. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-05-21

    Perhaps the greatest impediment to acquiring high-quality magnetoencephalography (MEG) recordings is the ubiquitous ambient magnetic field noise. We have designed and built a whole-head MEG system using a helmet-like superconducting imaging surface (SIS) surrounding the array of superconducting quantum interference device (SQUID) magnetometers used to measure the MEG signal. We previously demonstrated that the SIS passively shields the SQUID array from ambient magnetic field noise, independent of frequency, by 25-60 dB depending on sensor location. SQUID 'reference sensors' located on the outside of the SIS helmet measure ambient magnetic fields in very close proximity to the MEG magnetometers while being nearly perfectly shielded from all sources in the brain. The fact that the reference sensors measure no brain signal yet are located in close proximity to the MEG sensors enables very accurate estimation and subtraction of the ambient field noise contribution to the MEG sensors using an adaptive algorithm. We have demonstrated total ambient noise reduction factors in excess of 10{sup 6} (>120 dB). The residual noise for most MEG SQUID channels is at or near the intrinsic SQUID noise floor, typically 2-3 f T Hz{sup -1/2}. We are recording MEG signals with greater signal-to-noise than equivalent EEG measurements.

  14. Issues on Multi-polarization of GNSS-R for Passive Radar Detection

    Wan Wei

    2015-01-01

    Full Text Available GNSS Reflectometry (GNSS-R is a currently developed remote sensing technology which belongs to the passive radar domain. This paper aims to deal with some issues on multi-polarization of GNSS-R technology. Four different polarization patterns of the received GNSS-R signal are discussed, including rl, rr, rv, rh. For each polarization, formulas for calculating the surface reflectivity (Γ using dielectric constant (ε and satellite elevation angle (θ are derivated. The rationality of these formulas is validated using data from a ground-based GNSS-R soil moisture experiment. The results of this research can provide references for further GNSS-R research, including simulation, experiment design, model development and data processing.

  15. Multipolar interference for non-reciprocal nonlinear generation

    Poutrina, Ekaterina

    2015-01-01

    We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the nonlinearly produced light decoupled from that of at least one or several of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. The described phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters.

  16. Anatomy of the binary black hole recoil: A multipolar analysis

    Schnittman, Jeremy D; van Meter, James R; Baker, John G; Boggs, William D; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T

    2007-01-01

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressin...

  17. Multipolar interference for non-reciprocal nonlinear generation

    Poutrina, Ekaterina; Urbas, Augustine

    2016-01-01

    We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the produced light decoupled from the direction of at least one of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. These general phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters. PMID:27126209

  18. Transition between viscous dipolar and inertial multipolar dynamos

    Oruba, Ludivine

    2014-01-01

    We show that the transition between steady dipolar and fluctuating multipolar dynamos is characterized by a three terms balance between the non-gradient parts of inertial, viscous and Coriolis forces. We derive from this equilibrium the sole parameter Ro E$^{-1/3} \\equiv$ Re E$^{2/3}$, which accurately describes the transition for a wide database of 132 fully three dimensional direct numerical simulations of spherical rotating dynamos (courtesy of U. Christensen). This transition can be equivalently described by Ro/l$^\\star_u$ (resp. Re l$^{\\star\\, 2}_u$), which correspond to the two terms balance between the non-gradient part of the Coriolis force and of inertial (resp. viscous) forces. An appropriate definition of the non-dimensional dissipation length scale l$^\\star_u$ (as introduced in Oruba and Dormy, 2014) provides a critical value of this parameter of order unity at the transition.

  19. Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells.

    Telentschak, Sergej; Soliwoda, Mark; Nohroudi, Klaus; Addicks, Klaus; Klinz, Franz-Josef

    2015-04-01

    Glioblastoma (GB) is the most frequent human brain tumor and is associated with a poor prognosis. Multipolar mitosis and spindles have occasionally been observed in cultured glioblastoma cells and in glioblastoma tissues, but their mode of origin and relevance have remained unclear. In the present study, we investigated a novel GB cell line (SGB4) exhibiting mitotic aberrations and established a functional link between cytokinesis failure, centrosome amplification, multipolar mitosis and aneuploidy in glioblastoma. Long-term live cell imaging showed that >3% of mitotic SGB4 cells underwent multipolar mitosis (tripolar>tetrapolar>pentapolar). A significant amount of daugther cells generated by multipolar mitosis were viable and completed several rounds of mitosis. Pedigree analysis of mitotic events revealed that in many cases a bipolar mitosis with failed cytokinesis occurred prior to a multipolar mitosis. Additionally, we observed that SGB4 cells were also able to undergo a bipolar mitosis after failed cytokinesis. Colchicine-induced mitotic arrest and metaphase spreads demonstrated that SGB4 cells had a modal chromosome number of 58 ranging from 23 to 170. Approximately 82% of SGB4 cells were hyperdiploid (47-57 chromosomes) or hypotriploid (58-68 chromosomes). In conclusion, SGB4 cells passed through multipolar cell divisions and generated viable progeny by reductive mitoses. Our results identified cytokinesis failure occurring before and after multipolar or bipolar mitoses as important mechanisms to generate chromosomal heterogeneity in glioblastoma cells. PMID:25625503

  20. Simulated multipolarized MAPSAR images to distinguish agricultural crops

    Wagner Fernando Silva

    2012-06-01

    Full Text Available Many researchers have shown the potential of Synthetic Aperture Radar (SAR images for agricultural applications, particularly for monitoring regions with limitations in terms of acquiring cloud free optical images. Recently, Brazil and Germany began a feasibility study on the construction of an orbital L-band SAR sensor referred to as MAPSAR (Multi-Application Purpose SAR. This sensor provides L-band images in three spatial resolutions and polarimetric, interferometric and stereoscopic capabilities. Thus, studies are needed to evaluate the potential of future MAPSAR images. The objective of this study was to evaluate multipolarized MAPSAR images simulated by the airborne SAR-R99B sensor to distinguish coffee, cotton and pasture fields in Brazil. Discrimination among crops was evaluated through graphical and cluster analysis of mean backscatter values, considering single, dual and triple polarizations. Planting row direction of coffee influenced the backscatter and was divided into two classes: parallel and perpendicular to the sensor look direction. Single polarizations had poor ability to discriminate the crops. The overall accuracies were less than 59 %, but the understanding of the microwave interaction with the crops could be explored. Combinations of two polarizations could differentiate various fields of crops, highlighting the combination VV-HV that reached 78 % overall accuracy. The use of three polarizations resulted in 85.4 % overall accuracy, indicating that the classes pasture and parallel coffee were fully discriminated from the other classes. These results confirmed the potential of multipolarized MAPSAR images to distinguish the studied crops and showed considerable improvement in the accuracy of the results when the number of polarizations was increased.

  1. Binary black hole merger in the extreme-mass-ratio limit: A multipolar analysis

    Building up on previous work, we present a new calculation of the gravitational wave emission generated during the transition from quasicircular inspiral to plunge, merger, and ringdown by a binary system of nonspinning black holes, of masses m1 and m2, in the extreme mass ratio limit, m1m21+m2)2. The relative dynamics of the system is computed without making any adiabatic approximation by using an effective one body (EOB) description, namely, by representing the binary by an effective particle of mass μ=m1m2/(m1+m2) moving in a (quasi-)Schwarzschild background of mass M=m1+m2 and submitted to an O(ν) 5PN-resummed analytical radiation reaction force, with ν=μ/M. The gravitational wave emission is calculated via a multipolar Regge-Wheeler-Zerilli-type perturbative approach (valid in the limit ν-2,10-3,10-4}, and we compute the multipolar waveform up to l=8. We estimate energy and angular momentum losses during the quasiuniversal and quasigeodesic part of the plunge phase and we analyze the structure of the ringdown. We calculate the gravitational recoil, or 'kick', imparted to the merger remnant by the gravitational wave emission and we emphasize the importance of higher multipoles to get a final value of the recoil v/(cν2)=0.0446. We finally show that there is an excellent fractional agreement (∼10-3) (even during the plunge) between the 5PN EOB analytically resummed radiation reaction flux and the numerically computed gravitational wave angular momentum flux. This is a further confirmation of the aptitude of the EOB formalism to accurately model extreme-mass-ratio inspirals, as needed for the future space-based LISA gravitational wave detector.

  2. Short exposure to paclitaxel induces multipolar spindle formation and aneuploidy through promotion of acentrosomal pole assembly

    2010-01-01

    Paclitaxel is a widely used microtubule drug and cancer medicine. Here we report that by short exposure to paclitaxel at a low dose, multipolar spindles were induced in mitotic cells without centrosome amplification. Both TPX2 depletion and Aurora-A overexpression antagonized the multipolarity. Live cell imaging showed that some paclitaxel-treated cells accomplished multipolar cell division and a portion of the daughter cells went on to the next round of mitosis. The surviving cells grew into clones with varied genome content. The results indicated that an aneuploidy population could be induced by short exposure to paclitaxel at a low dose, implicating potential side effects of paclitaxel.

  3. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study

    Naeije, Gilles; Vaulet, Thibaut; Wens, Vincent; Marty, Brice; Goldman, Serge; De Tiège, Xavier

    2016-01-01

    Using magnetoencephalography (MEG), this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of 16 healthy adult subjects (7 females and 9 males, mean age 29 ± 3 years) were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation) and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation) stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local vs. global) levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31, 6 ± 2 years) also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped. Local deviations led to a somatosensory mismatch response peaking at 55–130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory (cSII) cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ) and supplementary motor area (SMA). The posterior parietal cortex (PPC) and the SMA were found to generate a contingent magnetic variation (CMV) attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing. PMID:27313523

  4. Multilevel cortical processing of somatosensory novelty: a magnetoencephalography study

    Gilles eNaeije

    2016-06-01

    Full Text Available Using magnetoencephalography (MEG, this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of sixteen healthy adult subjects (7 females and 9 males, mean age 29 +/-3 y were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local versus global levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31,6 +/-2 y also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped.Local deviations led to a somatosensory mismatch response peaking at 55-130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ and supplementary motor area (SMA. The posterior parietal cortex (PPC and the SMA were found to generate a contingent magnetic variation (CMV attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing.

  5. Functional characterisation of letter-specific responses in time, space and current polarity using magnetoencephalography.

    Gwilliams, L; Lewis, G A; Marantz, A

    2016-05-15

    Recent neurophysiological evidence suggests that a hierarchical neural network of low-to-high level processing subserves written language comprehension. While a considerable amount of research has identified distinct regions and stages of processing, the relations between them and to this hierarchical model remain unclear. Magnetoencephalography (MEG) is a technique frequently employed in such investigations; however, no studies have sought to test whether the conventional method of reconstructing currents at the source of the magnetic field is best suited for such across-subject designs. The present study details the results of three MEG experiments addressing these issues. Neuronal populations supporting responses to low-level orthographic properties were housed posteriorly near the primary visual cortex. More anterior regions along the fusiform gyrus encoded higher-level processes and became active ~80ms later. A functional localiser of these early letter-specific responses was developed for the production of functional regions of interest in future studies. Previously established response components were successfully grouped based on proximity to the localiser, which characterised location, latency and functional sensitivity. Unconventional anatomically constrained signed minimum norm estimates of MEG data were most sensitive to the primary experimental manipulation, suggesting that the conventional unsigned unconstrained method is sub-optimal for studying written word processing. PMID:26926792

  6. The spatial structure of the Russian economy and the multipolar world

    Valentina Lapo

    2012-01-01

    There have been several poles of development USA, Europe, and China are formatted in the world economy. How does the multipolar world economy influence the Russian region‘s development? How does the spatial structure of Russian economy develop under the multipolar world economy? The studies based on the main results of new economic geography and gravity theory concerning the spatial concentration of production, the core and periphery formation in the economy of countries and large regions. We...

  7. The Multiple Functions of T Stellate/Multipolar/Chopper Cells in the Ventral Cochlear Nucleus

    Oertel, Donata; Wright, Samantha; Cao, Xiao-Jie; Ferragamo, Michael; Bal, Ramazan

    2010-01-01

    Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brain stem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons...

  8. Ion energy distribution function in a multipolar confinement plasma system

    Experimental results are presented on the ion distribution function measured in a multipolar confinement plasma system used for generation of low energy ion beam. The ion beam is produced in argon plasma at a pressure of about 10-4 mbar using dc discharges similar to so called DP machine. Plasma parameters in the source chamber were: electron density in the range 108 to 1010 cm-3 and electron temperature in the range 0.5 to 6.0 eV. The target chamber was used as a technological one in which plasma density ranges between zero and 107 cm-3 but electron temperature was similar to that in the source chamber. The ion energy distribution function was measured with two types of electrostatic analyzers, one with a diameter of 10 cm made of a mesh grid with 70% transparency and a plane collector, and the other one with a diameter of 8 mm made of two mesh grids both with 48% transparency. Energy distribution function of the ions in the target plasma has been measured versus plasma density, beam density and energy. (authors)

  9. Transverse multipolar light-matter couplings in evanescent waves

    Fernandez-Corbaton, Ivan; Bonod, Nicolas; Rockstuhl, Carsten

    2016-01-01

    We present an approach to study the interaction between matter and evanescent fields. The approach is based on the decomposition of evanescent plane waves into multipoles of well-defined angular momentum transverse to both decay and propagation directions. We use the approach to identify the origin of the recently observed directional coupling of emitters into guided modes, and of the opposite Zeeman state excitation of atoms near a fiber. We explain how to rigorously quantify both effects, and show that the directionality and the difference in excitation rates grow exponentially with the multipolar order of the light-matter interaction. We also use the approach to study and maximize the transverse torque exerted by an evanescent plane wave onto a given spherical absorbing particle. The maximum occurs at the quadrupolar order of the particle, and for a particular polarization of the plane wave. All the obtained physical insights can be traced back to the two main features of the decomposition of evanescent pl...

  10. Relationships between multipolarized radar backscatter and slash pine stand parameters

    Hussin, Yousif Ali; Hoffer, Roger M.

    1989-01-01

    Multipolarized L-band (24.5 cm) aircraft radar data was obtained for a primarily forested area in northern Florida. Based on the results of previous studies by Hoffer and Hussin (1989), a swath of medium incidence angle (35-25 deg) data was defined. Three groups of slash pine stands were located in the data: 4- to 17-year-old plantations, 18- to 48-year-old plantations, and 16- to 53-year-old natural stands. Stand data obtained from the forest-products companies operating in the area include age, tree height, diameter-at-breast height, basal area, volume (cords/acre), and density (trees/acre). Each of these stand parameters were compared to each of the four polarizations (HH, VV, VH, and HV) of the radar data for each group of stands. Statistically significant relationships were found between the radar backscatter and the forest stand parameters only for the 4- to 17-year-old slash pine plantation stands. In general, the cross-polarized radar backscatter was more highly correlated with the various stand parameters than the like-polarized backscatter, and the VV-polarized data were more highly correlated than the HH-polarized data.

  11. 抑郁症患者执行控制脑皮质网络损害的脑磁源性研究%The primary explore of the damage of the executive control network in major depressive disorder:a dynamic causal model on magnetoencephalography

    花玲玲; 姚志剑; 汤浩; 阎锐; 陈建淮; 韩颖琳; 卢青

    2015-01-01

    Objective To investigate the interconnection of the executive control network in major depressive disorder when they recognized the sad facial stimuli,and to discuss the aberrant mechanism of emotion processing.Methods Twenty major depressive patients and 20 well-matched healthy volunteers participated in the experiment.The brain actions of all subjects were recorded by the magnetoencephalography (MEG) when they were required to distinguish the emotion face.Based on prior knowledge,the interested brain area consisted of the primary visual cortex (V1),the orbitofrontal cortex(OFC),the dorsolateral prefrontal cortex (DLPFC),the anterior cingulated cortex (ACC).Then constructing three competing models to select an optimal model by the method of dynamic causal model(DCM),finally the differences of the effective connections of the optimal model between the depressed patients and healthy controls were analyzed.Results According to the results of Bayesian model selection (BMS),model 1 had the most exceedance probability of 0.80 with the features that there were bidirectional modulatory connections between the OFC,ACC and DLPFC.Given the best model,the parameters of effective connectivity of the optimal model were extracted,and then two-sample t-test over the model 1 was adopted.The modulatory effective connectivity from the OFC to the DLPFC in both hemisphere(t=-2.73,P=0.0096;t=-3.01,P=0.0046) and the OFC to the ACC (t=-2.93,P=0.0057) in the left hemisphere were significantly reduced in MDD.Conclusion There exists abnormal function of executive control network in depressed patients,the decreased effective connections between the OFC and the DLPFC,as well as the OFC and the ACC,may have correlation with the negative%目的 探究抑郁症患者在识别悲伤表情时执行控制网络中脑区的相互作用机制,并以此探讨抑郁症患者悲伤情绪处理异常的可能机制.方法 利用脑磁图(MEG)检测20例抑郁症患者及20例相匹配的健康对照者

  12. Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.

    Fletcher, Timothy L; Popelier, Paul L A

    2016-06-14

    A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry only. These models then predict molecular electrostatic interaction energies. On the basis of 200 unseen test geometries for each amino acid, no amino acid shows a mean prediction error above 5.3 kJ mol(-1), while the lowest error observed is 2.8 kJ mol(-1). The mean error across the entire set is only 4.2 kJ mol(-1) (or 1 kcal mol(-1)). Charged systems are created by protonating or deprotonating selected amino acids, and these show no significant deviation in prediction error over their neutral counterparts. Similarly, the proposed methodology can also handle amino acids with aromatic side chains, without the need for modification. Thus, we present a generic method capable of accurately capturing multipolar polarizable electrostatics in amino acids. PMID:27224739

  13. Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG)

    The aim of this study was to use the technique of magnetoencephalography (MEG) to determine the effects of strabismic amblyopia on the processing of spatial information within the occipital cortex of humans. We recorded evoked magnetic responses to the onset of a chromatic (red/green) sinusoidal grating of periodicity 0.5-4.0 c deg-1 using a 19-channel SQUID-based neuromagnetometer. Evoked responses were recorded monocularly on six amblyopes and six normally-sighted controls, the stimuli being positioned near the fovea in the lower right visual field of each observer. For comparison, the spatial contrast sensitivity function (CSF) for the detection of chromatic gratings was measured for one amblyope and one control using a two alternate forced-choice psychophysical procedure. We chose red/green sinusoids as our stimuli because they evoke strong magnetic responses from the occipital cortex in adult humans (Fylan, Holliday, Singh, Anderson and Harding. (1997). Neuroimage, 6, 47-57). Magnetic field strength was plotted as a function of stimulus spatial frequency for each eye of each subject. Interocular differences were only evident within the amblyopic group: for stimuli of 1-2 c deg-1, the evoked responses had significantly longer latencies and reduced amplitudes through the amblyopic eye (P<0.05). Importantly, the extent of the deficit was uncorrelated with either Snellen acuity or contrast sensitivity. Localization of the evoked responses was performed using a single equivalent current dipole model. Source localizations, for both normal and amblyopic subjects, were consistent with neural activity at the occipital pole near the V1/V2 border. We conclude that MEG is sensitive to the deficit in cortical processing associated with human amblyopia, and can be used to make quantitative neurophysiological measurements. The nature of the cortical deficit is discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Observational Characteristics of Radio Emission Related to Multi-polar Magnetic Configuration

    Min Wang; Rui-Xiang Xie; Chun Xu; Shuo-Biao Shi; Yi-Hua Yan

    2005-01-01

    We present a large complex radio burst and its associated fast time structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a biposuggests that the radio burst is generated from a very complicated loop structure.According to the spectral and image observations, we assume that the beginning connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type Ⅲ bursts, and slowly drifting and no-drift structures.ture, which is an important source of the various types of fast time structures.The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively.Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the lar).

  15. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry.

    La Fata, Giorgio; Gärtner, Annette; Domínguez-Iturza, Nuria; Dresselaers, Tom; Dawitz, Julia; Poorthuis, Rogier B; Averna, Michele; Himmelreich, Uwe; Meredith, Rhiannon M; Achsel, Tilmann; Dotti, Carlos G; Bagni, Claudia

    2014-12-01

    Deficiencies in fragile X mental retardation protein (FMRP) are the most common cause of inherited intellectual disability, fragile X syndrome (FXS), with symptoms manifesting during infancy and early childhood. Using a mouse model for FXS, we found that Fmrp regulates the positioning of neurons in the cortical plate during embryonic development, affecting their multipolar-to-bipolar transition (MBT). We identified N-cadherin, which is crucial for MBT, as an Fmrp-regulated target in embryonic brain. Furthermore, spontaneous network activity and high-resolution brain imaging revealed defects in the establishment of neuronal networks at very early developmental stages, further confirmed by an unbalanced excitatory and inhibitory network. Finally, reintroduction of Fmrp or N-cadherin in the embryo normalized early postnatal neuron activity. Our findings highlight the critical role of Fmrp in the developing cerebral cortex and might explain some of the clinical features observed in patients with FXS, such as alterations in synaptic communication and neuronal network connectivity. PMID:25402856

  16. Post fall-back evolution of multipolar magnetic fields and radio pulsar activation

    Igoshev, A P; Popov, S B

    2016-01-01

    It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade (Cumming, Arras and Zweibel 2004; Wareing and Hollerbach 2009) hinted that energy in small scales structures should dissipate on short timescales. Our new 2D magneto-thermal simulations suggest the opposite. For the first $\\sim$10 kyrs after the fall-back episode with accreted mass $10^{-3} M_\\odot$, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland (1975) vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time the initial (i.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can ...

  17. The Shaping of the Multipolar Pre-Planetary Nebula CRL 618 by Multi-directional Bullets

    Huang, Po-Sheng; Moraghan, Anthony; Smith, Michael

    2016-01-01

    In order to understand the formation of the multipolar structures of the pre-planetary nebula (PPN) CRL 618, we perform 3D simulations using a multi-directional bullet model. The optical lobes of CRL 618 and fast molecular outflows at the tips of the lobes have been found to have similar expansion ages of ~ 100 yr. Additional fast molecular outflows were found near the source along the outflow axes with ages of ~ 45 yr, suggesting a second episode of bullet ejections. Thus, in our simulations, two episodes of bullet ejections are assumed. The shaping process is simulated using the ZEUS-3D hydrodynamics code that includes molecular and atomic cooling. In addition, molecular chemistry is also included to calculate the CO intensity maps. Our results show the following: (1) Multi-epoch bullets interacting with the toroidal dense core can produce the collimated multiple lobes as seen in CRL 618. The total mass of the bullets is ~ 0.034 solar mass, consistent with the observed high-velocity CO emission in fast mole...

  18. Organizing for Spaces and Dynamics of Multipolar Learning in Multinational Corporations

    Hull Kristensen, Peer; Lotz, Maja

    Limited research has been conducted on how MNCs organize conditions and spaces for recursive learning to facilitate the practice of innovation across dispersed units as well as how organizational members at all levels may become involved in innovations through the engagement in ongoing multipolar...... learning dynamics. Based on longitudinal case studies in two MNCs this paper contributes with insights into how spaces and dynamics of multipolar learning are organized and governed across dispersed MNC units at the micro level of everyday work practices. The paper shows that it is possible to organize...... spaces and dynamics that can organize recursiveness and continuity in multipolar learning by way of experimentation with new coordination components and governance architectures. Against the previous literature, however, it becomes evident that these are not the outcome of spontaneous interactions in a...

  19. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography

    Crowe, David A.; Leuthold, Arthur C.; Georgopoulos, Apostolos P.

    2010-01-01

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermor...

  20. Age-related sex differences in language lateralization: a magnetoencephalography (MEG) study in children

    Yu, Vickie Y.; MacDonald, Matt J.; Oh, Anna; Hua, Gordon N.; De Nil, Luc F.; Elizabeth W Pang

    2014-01-01

    It is well supported by behavioral and neuroimaging studies that typical language function is lateralized to the left hemisphere in the adult brain and this laterality is less well defined in children. The behavioral literature suggests there maybe be sex differences in language development but this has not been examined systematically using neuroimaging. In this study, magnetoencephalography (MEG) was used to investigate the spatiotemporal patterns of language lateralization as a function of...

  1. Magnetoencephalography study of brain dynamics in young children born extremely preterm

    Cepeda, I.L.; Grunau, R.E.; Weinberg, H.; Herdman, A.T.; Cheung, T; Liotti, M.; Amir, A; Synnes, A.; Whitfield, M

    2007-01-01

    Magnetoencephalography (MEG) was recorded while 5–7 year-old children were performing a visual–spatial memory recognition task. Full-term children showed greater gamma-band (30–50 Hz) amplitude in the right temporal region during the task, than children who were born extremely preterm. These results may represent altered brain processing in extremely preterm children who escape major impairment.

  2. A study of the multipolar composition of the electrofission cross section of 237Np

    The electrofission cross section for 237Np was measured over the energy range from 0,6 to 60,0 MeV. The multipolar composition of this cross section was investigated using the virtual photons formalism with three different techniques of analysis: unfolding and two versions of multiple parameter regression. (A.C.A.S.)

  3. Connexin 43 controls the multipolar phase of neuronal migration to the cerebral cortex.

    Liu, Xiuxin; Sun, Lin; Torii, Masaaki; Rakic, Pasko

    2012-05-22

    The prospective pyramidal neurons, migrating from the proliferative ventricular zone to the overlaying cortical plate, assume multipolar morphology while passing through the transient subventricular zone. Here, we show that this morphogenetic transformation, from the bipolar to the mutipolar and then back to bipolar again, is associated with expression of connexin 43 (Cx43) and, that knockdown of Cx43 retards, whereas its overexpression enhances, this morphogenetic process. In addition, we have observed that knockdown of Cx43 reduces expression of p27, whereas overexpression of p27 rescues the effect of Cx43 knockdown in the multipolar neurons. Furthermore, functional gap junction/hemichannel domain, and the C-terminal domain of Cx43, independently enhance the expression of p27 and promote the morphological transformation and migration of the multipolar neurons in the SVZ/IZ. Collectively, these results indicate that Cx43 regulates the passage of migrating neurons through their multipolar stage via p27 signaling and that interference with this process, by either genetic and/or environmental factors, may cause cortical malformations. PMID:22566616

  4. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear. PMID:22714524

  5. Multipolar radiofrequency ablation using internally cooled electrodes in ex vivo bovine liver: Correlation between volume of coagulation and amount of applied energy

    Purpose: To evaluate the relationship between applied energy and volume of coagulation induced by multipolar radiofrequency (RF) ablation. Methods and materials: Multipolar RF ablations (n = 80) were performed in ex vivo bovine liver. Three bipolar applicators with two electrodes located on each applicator shaft were placed in a triangular array. The power-output (75–225 W) and the distance between the different applicators (2, 3, 4, 5 cm) were systematically varied. The volume of confluent white coagulation and the amount of applied energy were assessed. Based on our experimental data the relationship between the volume of coagulation and applied energy was assessed by nonlinear regression analysis. The variability explained by the model was determined by the parameter r2. Results: The volume of coagulation increases with higher amounts of applied energy. The maximum amount of energy was applied at a power-output of 75 W and an applicator distance of 5 cm. The corresponding maximum volume of coagulation was 324 cm3 and required an application of 453 kJ. The relationship between amount of applied energy (E) and volume (V) of coagulation can be described by the function, V = 4.39E0.7 (r2 = 0.88). By approximation the volume of coagulation can be calculated by the linear function V = 0.61E + 40.7 (r2 = 0.87). Conclusion: Ex vivo the relationship between volume of coagulation and amount of applied energy can be described by mathematical modeling. The amount of applied energy correlates to the volume of coagulation and may be a useful parameter to monitor multipolar RF ablation.

  6. The emerging multi-polar world and China's grand game

    Gupta, Rajan [Los Alamos National Laboratory

    2011-01-19

    This talk outlines a scenario describing an emerging multipolar world that is aligned with geographical regions. The stability and security of this multipolar world is examined with respect to demographics, trade (economics), resource constraints, and development. In particular I focus on Asia which has two large countries, China and India, competing for resources and markets and examine the emerging regional relations, opportunities and threats. These relationships must overcome many hurdles - the Subcontinent is in a weak position politically and strategically and faces many threats, and China's growing power could help stabilize it or create new threats. Since the fate of 1.5 billion (2.4 billion by 2050) people depends on how the Subcontinent evolves, this talk is meant to initiates a discussion of what China and India can do to help the region develop and stabilize.

  7. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development. PMID:25732825

  8. Multipolare Rhetorik vs. unilaterale Ambitionen : die Grenzen russischer Außenpolitik

    Meister, Stefan

    2009-01-01

    "Das Eintreten für eine multipolare Weltordnung und gegen einen US-amerikanischen Unilateralismus ist eine Konstante russischer Außenpolitik seit dem Ende des Ost-West-Konflikts. Dabei gelten die Vereinten Nationen als die wichtigste internationale Organisation, um dieses Ziel zu erreichen. Jedoch führt Russlands Bekenntnis zu einer multipolaren Weltordnung nicht zu der Schlussfolgerung, multilateral zu handeln. Im Gegenteil, Moskau verfolgt eine klare Interessenpolitik, die weniger auf Konse...

  9. Analysis and Planning of 802.11n MIMO wireless network using Multi-Polarized Antenna

    Wu, Haotian; Nayyeri, Atefeh Dehghan

    2011-01-01

    MIMO (Multi Input Multi Output) technology is widely used in current wireless communication standard. Compared with SISO (Single Input Single Output) technology, MIMO can provide higher data rate and better communication quality. This thesis mainly focus on improving the communication quality of wireless local area network(WLAN) using wireless communication device with MIMO technology and Multi-polarized antenna. Meanwhile, an WLAN indoor plan example will be studied. The original WLAN indoor...

  10. POWER-SHIFTS IN THE GLOBAL ECONOMY. TRANSITION TOWARDS A MULTIPOLAR WORLD ORDER

    Ion IGNAT

    2013-12-01

    Full Text Available The paper aims to analyze the new realities and trends related to the new polarity of the global economy, and thus the reconfiguration of global power centers, a process characterized by two simultaneous trends: the rise of new powers and the relative decline of traditional powers. At the beginning of 21st century, global power is suffering two major changes: on the one hand it manifests a transition from West to East, from Atlantic to the Asia-Pacific, and on the other hand, a diffusion from state to non-state actors. Current global economic power has a multipolar distribution, shared between the United States, European Union, Japan and BRICs, with no balance of power between these poles, opposed by the strong ambition of rising countries, China especially, China that rivals the traditional powers represented by the developed countries. The evolution of the main macroeconomic indicators given by the most important global organizations, shows a gradual transition towards a multipolar world. Therefore, the United States is and will remain for a long period of time the global economic leader. However, as China, India and Brazil are growing rapidly, and Russia is looking for lost status, the world is becoming multipolar.

  11. Image-guided multipolar radiofrequency ablation of liver tumours: initial clinical results

    Terraz, Sylvain; Constantin, Christophe; Becker, Christoph D. [Geneva University Hospital, Department of Radiology, Geneva 14 (Switzerland); Majno, Pietro Edoardo; Mentha, Gilles [Geneva University Hospital, Department of Surgery, Geneva 14 (Switzerland); Spahr, Laurent [Geneva University Hospital, Department of Gastroenterology, Geneva 14 (Switzerland)

    2007-09-15

    The local effectiveness and clinical usefulness of multipolar radiofrequency (RF) ablation of liver tumours was evaluated. Sixty-eight image-guided RF sessions were performed using a multipolar device with bipolar electrodes in 53 patients. There were 45 hepatocellular carcinomas (HCC) and 42 metastases with a diameter {<=}3 cm (n = 55), 3.1-5 cm (n = 29) and >5 cm (n = 3); 26 nodules were within 5 mm from large vessels. Local effectiveness and complications were evaluated after RF procedures. Mean follow-up was 17 {+-} 10 months. Recurrence and survival rates were analysed by the Kaplan-Meier method. The primary and secondary technical effectiveness rate was 82% and 95%, respectively. The major and minor complication rate was 2.9%, respectively. The local tumour progression at 1- and 2-years was 5% and 9% for HCC nodules and 17% and 31% for metastases, respectively; four of 26 nodules (15%) close to vessels showed local progression. The survival at 1 year and 2 years was 97% and 90% for HCC and 84% and 68% for metastases, respectively. Multipolar RF technique creates ablation zones of adequate size and tailored shape and is effective to treat most liver tumours, including those close to major hepatic vessels. (orig.)

  12. RP58 Regulates the Multipolar-Bipolar Transition of Newborn Neurons in the Developing Cerebral Cortex

    Chiaki Ohtaka-Maruyama

    2013-02-01

    Full Text Available Accumulating evidence suggests that many brain diseases are associated with defects in neuronal migration, suggesting that this step of neurogenesis is critical for brain organization. However, the molecular mechanisms underlying neuronal migration remain largely unknown. Here, we identified the zinc-finger transcriptional repressor RP58 as a key regulator of neuronal migration via multipolar-to-bipolar transition. RP58−/− neurons exhibited severe defects in the formation of leading processes and never shifted to the locomotion mode. Cre-mediated deletion of RP58 using in utero electroporation in RP58flox/flox mice revealed that RP58 functions in cell-autonomous multipolar-to-bipolar transition, independent of cell-cycle exit. Finally, we found that RP58 represses Ngn2 transcription to regulate the Ngn2-Rnd2 pathway; Ngn2 knockdown rescued migration defects of the RP58−/− neurons. Our findings highlight the critical role of RP58 in multipolar-to-bipolar transition via suppression of the Ngn2-Rnd2 pathway in the developing cerebral cortex.

  13. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging.

    George, J S; Aine, C J; Mosher, J C; Schmidt, D M; Ranken, D M; Schlitt, H A; Wood, C C; Lewine, J D; Sanders, J A; Belliveau, J W

    1995-09-01

    Integrated analyses of human anatomical and functional measurements offer a powerful paradigm for human brain mapping. Magnetoencephalography (MEG) and EEG provide excellent temporal resolution of neural population dynamics as well as capabilities for source localization. Anatomical magnetic resonance imaging (MRI) provides excellent spatial resolution of head and brain anatomy, whereas functional MRI (fMRI) techniques provide an alternative measure of neural activation based on associated hemodynamic changes. These methodologies constrain and complement each other and can thereby improve our interpretation of functional neural organization. We have developed a number of computational tools and techniques for the visualization, comparison, and integrated analysis of multiple neuroimaging techniques. Construction of geometric anatomical models from volumetric MRI data allows improved models of the head volume conductor and can provide powerful constraints for neural electromagnetic source modeling. These approaches, coupled to enhanced algorithmic strategies for the inverse problem, can significantly enhance the accuracy of source-localization procedures. We have begun to apply these techniques for studies of the functional organization of the human visual system. Such studies have demonstrated multiple, functionally distinct visual areas that can be resolved on the basis of their locations, temporal dynamics, and differential sensitivity to stimulus parameters. Our studies have also produced evidence of internal retinotopic organization in both striate and extrastriate visual areas but have disclosed organizational departures from classical models. Comparative studies of MEG and fMRI suggest a reasonable but imperfect correlation between electrophysiological and hemodynamic responses. We have demonstrated a method for the integrated analysis of fMRI and MEG, and we outline strategies for improvement of these methods. By combining multiple measurement techniques, we

  14. rtMEG: A Real-Time Software Interface for Magnetoencephalography

    Sudre, Gustavo; Parkkonen, Lauri; Bock, Elizabeth; Baillet, Sylvain; Wang, Wei; Weber, Douglas J.

    2011-01-01

    To date, the majority of studies using magnetoencephalography (MEG) rely on off-line analysis of the spatiotemporal properties of brain activity. Real-time MEG feedback could potentially benefit multiple areas of basic and clinical research: brain-machine interfaces, neurofeedback rehabilitation of stroke and spinal cord injury, and new adaptive paradigm designs, among others. We have developed a software interface to stream MEG signals in real time from the 306-channel Elekta Neuromag MEG system to an external workstation. The signals can be accessed with a minimal delay (≤45 ms) when data are sampled at 1000 Hz, which is sufficient for most real-time studies. We also show here that real-time source imaging is possible by demonstrating real-time monitoring and feedback of alpha-band power fluctuations over parieto-occipital and frontal areas. The interface is made available to the academic community as an open-source resource. PMID:21687573

  15. Epistemics for Learning Disabilities: Contributions from Magnetoencephalography, a Functional Neuroimaging Tool

    VÍCTOR SANTIUSTE-BERMEJO

    2008-01-01

    Full Text Available The syndrome known as Learning Disabilities (LD was described by S. Kirk in 1963. From that point on, institutions from the US, Canada and Spain have engaged in refining the concept and classification of LDs. The Complutense University in Spain, has proposed a descriptive and all-embracing definition, and has studied the different manifestations of LD, pursuing the description of biological markers and neurological features of LD’s main expressions: dyslexia, dyscalculia, dysorthographia, Attention Deficit and Hyperactivity Disorder –ADHD, and so forth. Findings in LD using functional neuroimaging techniques, namely Magnetoencephalography (MEG, are described. MEG is a non-invasive technique, which records magnetic fields naturally generated by the brain and their spatial distribution. It allows simultaneous functional and structural information. MEG is therefore used in the study of primary and superior cognitive functions, in surveillance of patterns of normal cognitive function and those specific to the different LD clinical manifestations.

  16. Denoising and Frequency Analysis of Noninvasive Magnetoencephalography Sensor Signals for Functional Brain Mapping

    Ukil, A

    2015-01-01

    Magnetoencephalography (MEG) is an important noninvasive, nonhazardous technology for functional brain mapping, measuring the magnetic fields due to the intracellular neuronal current flow in the brain. However, most often, the inherent level of noise in the MEG sensor data collection process is large enough to obscure the signal(s) of interest. In this paper, a denoising technique based on the wavelet transform and the multiresolution signal decomposition technique along with thresholding is presented, substantiated by application results. Thereafter, different frequency analysis are performed on the denoised MEG signals to identify the major frequencies of the brain oscillations present in the denoised signals. Time-frequency plots (spectrograms) of the denoised signals are also provided.

  17. Role of higher-multipolarity deformations in the potential energy of heaviest nuclei

    Potential energy of the superheavy nucleus 284114 is analyzed in a 6-dimensional deformation space. This space includes two quadrupole, three hexadecapole and one multipolarity-6 deformation parameter. The energy is minimized simultaneously in all 6 degrees of freedom. The analysis is done within a macroscopic-microscopic approach. As in the studies of other superheavy nuclei, the result is found to be very individual for a given nucleus. A more general feature is a small effect of one (γ4) of the hexadecapole deformation parameters on the energy of the nucleus. (author)

  18. Multipolar third-harmonic generation driven by optically-induced magnetic resonances

    Smirnova, Daria A; Smirnov, Lev A; Kivshar, Yuri S

    2016-01-01

    We analyze the third-harmonic generation from high-index dielectric nanoparticles and discuss the basic features and multipolar nature of the parametrically generated electromagnetic fields near the Mie-type optical resonances in silicon particles. By combining both analytical and numerical methods, we study the nonlinear scattering from simple nanoparticle geometries such as spheres and disks driven by the magnetic dipole resonance. We reveal the approaches for manipulating and directing the resonantly enhanced nonlinear emission with subwavelength all-dielectric structures that can be of a particular interest for a design of nonlinear optical antennas and engineering the magnetic optical nonlinear response at nanoscale.

  19. Role of the multipolar black-body radiation shifts in the atomic clocks at the 10-18 uncertainty level

    B K Sahoo

    2014-08-01

    We present here an overview of the role of the multipolar black-body radiation (BBR) shifts in the single ion atomic clocks to appraise the anticipated 10-18 uncertainty level. With an attempt to use the advanced technologies for reducing the instrumental uncertainties at the unprecedented low, it is essential to investigate contributions from the higher-order systematics to achieve the ambitious goal of securing the most precise clock frequency standard. In this context, we have analysed contributions to the BBR shifts from the multipolar polarizabilities in a few ion clocks.

  20. Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential

    Shaik, Majeed S.; Liem, Steven Y.; Popelier, Paul L. A.

    2010-05-01

    We build on previous work [S. Y. Liem and P. L. A. Popelier, J. Chem. Theory Comput. 4, 353 (2008)], where for the first time, a high-rank multipolar electrostatic potential was used in molecular dynamics simulations of liquid water at a wide range of pressures and temperatures, and using a multipolar Ewald summation. Water is represented as a rigid body, with atomic multipole moments defined by quantum chemical topology partitioning its gas phase electron density. The effect of the level of theory on the local structure of liquid water is systematically addressed. Values for Lennard-Jones (LJ) parameters are optimized, for both oxygen and hydrogen atoms, against bulk properties. The best LJ parameters were then used in a set of simulations at 30 different temperatures (1 atm) and another set at 11 different pressures (at 298 K). Inclusion of the hydrogen LJ parameters significantly increases the self-diffusion coefficient. The behavior of bulk properties was studied and the local water structure analyzed by both radial and spatial distribution functions. Comparisons with familiar point-charge potentials, such as TIP3P, TIP4P, TIP5P, and simple point charge, show the benefits of multipole moments.

  1. Dependence of the probabilities of the electric-multipole electron transitions in W24+ on multipolarity

    Usually it is accepted that the probabilities of the electric-multipole electron transitions are rapidly decreasing functions of their multipolarity. Therefore while calculating the probabilities of electronic transitions between the configurations of certain chosen parities, it seems sufficient to take into account the first nonzero term, i.e., to consider the electron transitions of lowest multipolarity permitted by the exact selection rules. This paper aims at verifying this assumption on the example of electric-octupole transitions in W24+ ion. For this purpose the large-scale multiconfiguration Hartree-Fock and Dirac-Fock calculations have been performed for the configurations [Kr]4d104f4 and [Kr]4d104f35s energy levels of W24+ ion. The relativistic corrections were taken into account in the quasirelativistic Breit-Pauli and fully relativistic Breit (taking into account QED effects) approximations. The role of correlation, relativistic, and QED corrections is discussed. Line strengths, oscillator strengths, and transition probabilities in Coulomb and Babushkin gauges are presented for E1 and E3 transitions among these levels.

  2. An analysis of the electromagnetic field in multi-polar linear induction system

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  3. Wnt Signaling Regulates Multipolar-to-Bipolar Transition of Migrating Neurons in the Cerebral Cortex

    Michael Boitard

    2015-03-01

    Full Text Available The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  4. Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties

    Petri, Jerome

    2015-01-01

    The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order $l$ and apply them to the retarded point quadrupole ($l=2$), hexapole ($l=3$) and octopole ($l=4$), a generalization of the retarded point dipole ($l=1$). We also compare the Poynting flux from each multipole and show that the spin down luminosity depends on the ratio $R/r_{\\rm L}$, $R$ being the neutron star radius and $r_{\\rm L}$ the light-cylinder radius. Therefore the braking index also depends on $R/r_{\\rm L}$. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field...

  5. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al2O3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  6. When the genome plays dice: circumvention of the spindle assembly checkpoint and near-random chromosome segregation in multipolar cancer cell mitoses.

    David Gisselsson

    Full Text Available BACKGROUND: Normal cell division is coordinated by a bipolar mitotic spindle, ensuring symmetrical segregation of chromosomes. Cancer cells, however, occasionally divide into three or more directions. Such multipolar mitoses have been proposed to generate genetic diversity and thereby contribute to clonal evolution. However, this notion has been little validated experimentally. PRINCIPAL FINDINGS: Chromosome segregation and DNA content in daughter cells from multipolar mitoses were assessed by multiphoton cross sectioning and fluorescence in situ hybridization in cancer cells and non-neoplastic transformed cells. The DNA distribution resulting from multipolar cell division was found to be highly variable, with frequent nullisomies in the daughter cells. Time-lapse imaging of H2B/GFP-labelled multipolar mitoses revealed that the time from the initiation of metaphase to the beginning of anaphase was prolonged and that the metaphase plates often switched polarity several times before metaphase-anaphase transition. The multipolar metaphase-anaphase transition was accompanied by a normal reduction of cellular cyclin B levels, but typically occurred before completion of the normal separase activity cycle. Centromeric AURKB and MAD2 foci were observed frequently to remain on the centromeres of multipolar ana-telophase chromosomes, indicating that multipolar mitoses were able to circumvent the spindle assembly checkpoint with some sister chromatids remaining unseparated after anaphase. Accordingly, scoring the distribution of individual chromosomes in multipolar daughter nuclei revealed a high frequency of nondisjunction events, resulting in a near-binomial allotment of sister chromatids to the daughter cells. CONCLUSION: The capability of multipolar mitoses to circumvent the spindle assembly checkpoint system typically results in a near-random distribution of chromosomes to daughter cells. Spindle multipolarity could thus be a highly efficient

  7. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study

    Simos, Panagiotis G.; Fletcher, Jack M.; Andrew C. Papanicolaou

    2014-01-01

    The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n=29) or did not (n=36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-I...

  8. Resting-state magnetoencephalography study of “small world” characteristics and cognitive dysfunction in patients with glioma

    Hu X; Lei T; Xu HZ; Zou YJ; Liu HY

    2013-01-01

    Xin-Hua Hu, Ting Lei, Hua-Zhong Xu, Yuan-Jie Zou, Hong-Yi Liu Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China Background: The purpose of this study was to analyze “small world” characteristics in glioma patients in order to understand the relationship between cognitive dysfunction and brain functional connectivity network in the resting state. Methods: Resting-state magnetoencephalography was performed in...

  9. Resting-state magnetoencephalography study of “small world” characteristics and cognitive dysfunction in patients with glioma

    Hu, Xin-Hua

    2013-01-01

    Xin-Hua Hu, Ting Lei, Hua-Zhong Xu, Yuan-Jie Zou, Hong-Yi Liu Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China Background: The purpose of this study was to analyze “small world” characteristics in glioma patients in order to understand the relationship between cognitive dysfunction and brain functional connectivity network in the resting state. Methods: Resting-state magnetoencephalography was...

  10. Characterizing global statistical significance of spatiotemporal hot spots in magnetoencephalography/electroencephalography source space via excursion algorithms

    Xu, Yang; Sudre, Gustavo P.; Wang, Wei; Weber, Douglas J; Kass, Robert E.

    2011-01-01

    Identifying brain regions with high differential response under multiple experimental conditions is a fundamental goal of functional imaging. In many studies, regions of interest (ROIs) are not determined a priori but are instead discovered from the data, a process that requires care because of the great potential for false discovery. An additional challenge is that magnetoencephalography/electroencephalography sensor signals are very noisy, and brain source images are usually produced by ave...

  11. Enhanced Early Neuronal Processing of Food Pictures in Anorexia Nervosa: A Magnetoencephalography Study.

    Godier, Lauren R; Scaife, Jessica C; Braeutigam, Sven; Park, Rebecca J

    2016-01-01

    Neuroimaging studies in Anorexia Nervosa (AN) have shown increased activation in reward and cognitive control regions in response to food, and a behavioral attentional bias (AB) towards food stimuli is reported. This study aimed to further investigate the neural processing of food using magnetoencephalography (MEG). Participants were 13 females with restricting-type AN, 14 females recovered from restricting-type AN, and 15 female healthy controls. MEG data was acquired whilst participants viewed high- and low-calorie food pictures. Attention was assessed with a reaction time task and eye tracking. Time-series analysis suggested increased neural activity in response to both calorie conditions in the AN groups, consistent with an early AB. Increased activity was observed at 150 ms in the current AN group. Neuronal activity at this latency was at normal level in the recovered group; however, this group exhibited enhanced activity at 320 ms after stimulus. Consistent with previous studies, analysis in source space and behavioral data suggested enhanced attention and cognitive control processes in response to food stimuli in AN. This may enable avoidance of salient food stimuli and maintenance of dietary restraint in AN. A later latency of increased activity in the recovered group may reflect a reversal of this avoidance, with source space and behavioral data indicating increased visual and cognitive processing of food stimuli. PMID:27525258

  12. Magnetoencephalography based on high-Tc superconductivity: a closer look into the brain?

    Öisjöen, F; Figueras, G A; Chukharkin, M L; Kalabukhov, A; Hedström, A; Elam, M; Winkler, D

    2011-01-01

    Magnetoencephalography (MEG) enables the study of brain activity by recording the magnetic fields generated by neural currents and has become an important technique for neuroscientists in research and clinical settings. Unlike the liquid-helium cooled low-Tc superconducting quantum interference devices (SQUIDs) that have been at the heart of modern MEG systems since their invention, high-Tc SQUIDs can operate with liquid nitrogen cooling. The relaxation of thermal insulation requirements allows for a reduction in the stand-off distance between the sensor and the room-temperature environment from a few centimeters to less than a millimeter, where MEG signal strength is significantly higher. Despite this advantage, high-Tc SQUIDs have only been used for proof-of-principle MEG recordings of well-understood evoked activity. Here we show high-Tc SQUID-based MEG may be capable of providing novel information about brain activity due to the close proximity of the sensor to the head. We have performed single- and two-...

  13. Enhanced Early Neuronal Processing of Food Pictures in Anorexia Nervosa: A Magnetoencephalography Study

    Scaife, Jessica C.; Park, Rebecca J.

    2016-01-01

    Neuroimaging studies in Anorexia Nervosa (AN) have shown increased activation in reward and cognitive control regions in response to food, and a behavioral attentional bias (AB) towards food stimuli is reported. This study aimed to further investigate the neural processing of food using magnetoencephalography (MEG). Participants were 13 females with restricting-type AN, 14 females recovered from restricting-type AN, and 15 female healthy controls. MEG data was acquired whilst participants viewed high- and low-calorie food pictures. Attention was assessed with a reaction time task and eye tracking. Time-series analysis suggested increased neural activity in response to both calorie conditions in the AN groups, consistent with an early AB. Increased activity was observed at 150 ms in the current AN group. Neuronal activity at this latency was at normal level in the recovered group; however, this group exhibited enhanced activity at 320 ms after stimulus. Consistent with previous studies, analysis in source space and behavioral data suggested enhanced attention and cognitive control processes in response to food stimuli in AN. This may enable avoidance of salient food stimuli and maintenance of dietary restraint in AN. A later latency of increased activity in the recovered group may reflect a reversal of this avoidance, with source space and behavioral data indicating increased visual and cognitive processing of food stimuli. PMID:27525258

  14. Examining Neural Synchrony in Autism During Resting State With Magnetoencephalography (MEG

    Smith Tyronda D.

    2014-09-01

    Full Text Available Autism Spectrum Disorder (ASD comprises a group of neurodevelopmental disorders associated with the functioning of the central nervous system (American Psychiatric Association, 2013. The symptoms experienced by individuals with this disorder include social impairment, communication difficulties, and repetitive and stereotyped behaviors. The etiology of ASD has yet to be determined, and it is typically diagnosed based on behavioral criteria of the Diagnostic and Statistical Manual- 5th Edition (DSM-5; APA, 2013 and confirmed with “gold standard” assessment tools such as the Autism Diagnostic Observation Schedule (ADOS and Autism Diagnostic Interview- Revised (ADI-R; Johnson Center for Child Health Development, 2014. Abnormalities in synchronous neural activity have been hypothesized to be a core pathophysiological mechanism (Cornew et al., 2012. Magnetoencephalography (MEG can measure synchronous neural activity during resting state, when the brain is not consciously engaged in cognitive processing. Coherence is a measure of the synchronicity. We examined differences in coherence during resting state in ASD, compared to neurotypical developing individuals (NT, in an attempt to identify potential biomarkers and illuminate a core etiological mechanism.

  15. Magnetoencephalography shows atypical sensitivity to linguistic sound sequences in autism spectrum disorder.

    Brennan, Jonathan R; Wagley, Neelima; Kovelman, Ioulia; Bowyer, Susan M; Richard, Annette E; Lajiness-O'Neill, Renee

    2016-09-01

    Neuroscientific evidence points toward atypical auditory processing in individuals with autism spectrum disorders (ASD), and yet, the consequences of this for receptive language remain unclear. Using magnetoencephalography and a passive listening task, we test for cascading effects on speech sound processing. Children with ASD and age-matched control participants (8-12 years old) listened to nonce linguistic stimuli that either did or did not conform to the phonological rules that govern consonant sequences in English (e.g. legal 'vimp' vs. illegal 'vimk'). Beamformer source analysis was used to isolate evoked responses (0.1-30 Hz) to these stimuli in the left and the right auditory cortex. Right auditory responses from participants with ASD, but not control participants, showed an attenuated response to illegal sequences relative to legal sequences that emerged around 330 ms after the onset of the critical phoneme. These results suggest that phonological processing is impacted in ASD, perhaps because of cascading effects from disrupted initial acoustic processing. PMID:27468112

  16. First results for a superconducting imaging-surface sensor array for magnetoencephalography

    Kraus, R.H. Jr.; Flynn, E.R.; Overton, W.; Espy, M.A.; George, J.S.; Matlachov, A.; Peters, M.V.; Ruminer, P.

    1998-12-31

    Magnetoencephalography (MEG) follows from the initial fundamental work of Cohen in 1968 and development by several groups, most notably at MIT and at NYU, based on the development of the Superconducting QUantum Interference Device (SQUID) using the Josephson effect. The SQUID`s incredible sensitivity to magnetic fields permits the measurement of the very weak magnetic fields emitted from the human brain due to intracellular neuronal currents. Current growth in MEG is dominated by multiple sensor arrays covering much of the head. These new large devices have primarily been developed and made commercially available by several companies including BTI in the US, CTF in Canada, and Neuromag in Finland. Large projects are also in place in Japan. These systems contain more than 100 sensors spaced at various intervals over the head using various configurations of magnetometers and gradiometers. The different designs available on the market are driven by factors such as detection efficiency, cost, and application. They now present a completely novel whole-head SQUID array system using a superconducting imaging-surface gradiometer concept derived at Los Alamos. Preliminary tests have demonstrated higher performance, lower noise, and additional shielding of background fields while using simpler fabrication techniques than existing whole-head MEG systems, which should reduce production costs.

  17. Neural correlation of successful cognitive behaviour therapy for spider phobia: a magnetoencephalography study.

    Wright, Barry; Alderson-Day, Ben; Prendergast, Garreth; Kennedy, Juliette; Bennett, Sophie; Docherty, Mary; Whitton, Clare; Manea, Laura; Gouws, Andre; Tomlinson, Heather; Green, Gary

    2013-12-30

    Cognitive behavioural therapy (CBT) can be an effective treatment for spider phobia, but the underlying neural correlates of therapeutic change are yet to be specified. The present study used magnetoencephalography (MEG) to study responses within the first half second, to phobogenic stimuli in a group of individuals with spider phobia prior to treatment (n=12) and then in nine of them following successful CBT (where they could touch and manage live large common house spiders) at least 9 months later. We also compared responses to a group of age-matched healthy control participants (n=11). Participants viewed static photographs of real spiders, other fear-inducing images (e.g. snakes, sharks) and neutral stimuli (e.g. kittens). Beamforming methods were used to localise sources of significant power changes in response to stimuli. Prior to treatment, participants with spider phobia showed a significant maximum response in the right frontal pole when viewing images of real spiders specifically. No significant frontal response was observed for either control participants or participants with spider phobia post-treatment. In addition, participants' subjective ratings of spider stimuli significantly predicted peak responses in right frontal regions. The implications for understanding brain-based effects of cognitive therapies are discussed. PMID:24139305

  18. Enhanced Early Neuronal Processing of Food Pictures in Anorexia Nervosa: A Magnetoencephalography Study

    Lauren R. Godier

    2016-01-01

    Full Text Available Neuroimaging studies in Anorexia Nervosa (AN have shown increased activation in reward and cognitive control regions in response to food, and a behavioral attentional bias (AB towards food stimuli is reported. This study aimed to further investigate the neural processing of food using magnetoencephalography (MEG. Participants were 13 females with restricting-type AN, 14 females recovered from restricting-type AN, and 15 female healthy controls. MEG data was acquired whilst participants viewed high- and low-calorie food pictures. Attention was assessed with a reaction time task and eye tracking. Time-series analysis suggested increased neural activity in response to both calorie conditions in the AN groups, consistent with an early AB. Increased activity was observed at 150 ms in the current AN group. Neuronal activity at this latency was at normal level in the recovered group; however, this group exhibited enhanced activity at 320 ms after stimulus. Consistent with previous studies, analysis in source space and behavioral data suggested enhanced attention and cognitive control processes in response to food stimuli in AN. This may enable avoidance of salient food stimuli and maintenance of dietary restraint in AN. A later latency of increased activity in the recovered group may reflect a reversal of this avoidance, with source space and behavioral data indicating increased visual and cognitive processing of food stimuli.

  19. The neural processing of musical instrument size information in the brain investigated by magnetoencephalography

    Rupp, Andre; van Dinther, Ralph; Patterson, Roy D.

    2005-04-01

    The specific cortical representation of size was investigated by recording auditory evoked fields (AEFs) elicited by changes of instrument size and pitch. In Experiment 1, a French horn and one scaled to double the size played a three note melody around F3 or its octave, F4. Many copies of these four melodies were played in random order and the AEF was measured continuously. A similar procedure was applied to saxophone sounds in a separate run. In Experiment 2, the size and type of instrument (French horn and saxophone) were varied without changing the octave. AEFs were recorded in five subjects using magnetoencephalography and evaluated by spatio-temporal source analysis with one equivalent dipole in each hemisphere. The morphology of the source waveforms revealed that each note within the melody elicits a well-defined P1-N1-P2 AEF-complex with adaptation for the 2nd and 3rd note. At the transition of size, pitch, or both, a larger AEF-complex was evoked. However, size changes elicited a stronger N1 than pitch changes. Furthermore, this size-related N1 enhancement was larger for French horn than saxophone. The results indicate that the N1 plays an important role in the specific representation of instrument size.

  20. The fate of chrysotile-induced multipolar mitosis and aneuploid population in cultured lung cancer cells.

    Beatriz de Araujo Cortez

    Full Text Available Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged α-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.

  1. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Akira Ishii

    Full Text Available There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  2. Neural effects of mental fatigue caused by continuous attention load: a magnetoencephalography study.

    Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2014-05-01

    Mental fatigue can be defined as a psychobiological state caused by prolonged periods of demanding cognitive activity and manifests as a reduced efficiency in cognitive performance. Mental fatigue is one of the most significant causes of accidents in modern society. Therefore, understanding the neural mechanisms of mental fatigue is important. However, the neural mechanisms of mental fatigue are not fully understood. In this study, we investigated the neural activity that results from mental fatigue caused by a continuous attention load. We used magnetoencephalography (MEG) to evaluate the neural activities during the attention task. Ten healthy male volunteers participated in this study. They performed a continuous attention task lasting 10 min. Subjective ratings of mental fatigue, mental stress, boredom, and sleepiness were performed just after the task trial. MEG data were analyzed using narrow-band adaptive spatial filtering methods. An increase in the beta-frequency band (13-25 Hz) power in the right inferior and middle frontal gyri (Brodmann׳s areas 44 and 9 respectively) was caused by the mental fatigue. The increase in the beta-frequency band power in the right middle frontal gyrus was negatively associated with the self-reported level of mental stress and was positively associated with those of boredom and sleepiness. These results demonstrate that performing a continuous mental fatigue-inducing task causes changes in the activation of the prefrontal cortex, and manifests as an increased beta-frequency power in this brain area as well as sleepiness. Our results contribute to greater understanding of the neural mechanisms of mental fatigue. PMID:24642273

  3. Neural mechanisms of phonemic restoration for speech comprehension revealed by magnetoencephalography.

    Sunami, Kishiko; Ishii, Akira; Takano, Sakurako; Yamamoto, Hidefumi; Sakashita, Tetsushi; Tanaka, Masaaki; Watanabe, Yasuyoshi; Yamane, Hideo

    2013-11-01

    In daily communication, we can usually still hear the spoken words as if they had not been masked and can comprehend the speech when spoken words are masked by background noise. This phenomenon is known as phonemic restoration. Since little is known about the neural mechanisms underlying phonemic restoration for speech comprehension, we aimed to identify the neural mechanisms using magnetoencephalography (MEG). Twelve healthy male volunteers with normal hearing participated in the study. Participants were requested to carefully listen to and understand recorded spoken Japanese stories, which were either played forward (forward condition) or in reverse (reverse condition), with their eyes closed. Several syllables of spoken words were replaced by 300-ms white-noise stimuli with an inter-stimulus interval of 1.6-20.3s. We compared MEG responses to white-noise stimuli during the forward condition with those during the reverse condition using time-frequency analyses. Increased 3-5 Hz band power in the forward condition compared with the reverse condition was continuously observed in the left inferior frontal gyrus [Brodmann's areas (BAs) 45, 46, and 47] and decreased 18-22 Hz band powers caused by white-noise stimuli were seen in the left transverse temporal gyrus (BA 42) and superior temporal gyrus (BA 22). These results suggest that the left inferior frontal gyrus and left transverse and superior temporal gyri are involved in phonemic restoration for speech comprehension. Our findings may help clarify the neural mechanisms of phonemic restoration as well as develop innovative treatment methods for individuals suffering from impaired speech comprehension, particularly in noisy environments. PMID:24055105

  4. Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform

    Bernuzzi, Sebastiano; Zenginoglu, Anil

    2010-01-01

    We discuss the properties of the effective-one-body (EOB) multipolar gravitational waveform emitted by nonspinning black-hole binaries of masses $\\mu$ and $M$ in the extreme-mass-ratio limit, $\\mu/M=\

  5. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography

    ZHANG Yun-ting; GENG Zuo-jun; ZHANG Quan; LI Wei; ZHANG Jing

    2006-01-01

    Background Blood oxygen level dependent functional magnetic resonance imaging (fMRI) and magnetoencephalography are new techniques of brain functional imaging which can provide the information of excitation of neurons by measure the changes of hemodynamics and electrophysiological data of local brain tissue. The purpose of this study was to study functional brain areas evoked by pure tones in healthy and sensorineural hearing loss subjects with these techniques and to compare the differences between the two groups.Methods Thirty healthy and 30 sensorineural hearing loss subjects were included in this study. In fMRI,block-design paradigm was used. During the active epoch the participants listened to 1000 Hz, sound pressure level 140 dB pure tones at duration 500 ms, interstimulus interval 1000 ms, which presented continuously via a magnetic resonance-compatible audio system. None stimulus was executed in control epoch. In magnetoencephalography study, every subject received stimuli of 1000 Hz tone bursts delivered to the bilateral ear at duration 8 ms, interstimulus intervals 1000 ms. Sound pressure level in healthy subjects was 30 dB; in sensorineural hearing loss subjects was 20 dB above everyone' s hearing threshold respectively. All subjects were examined with 306-channel whole-scalp neuromagnetometer.Results In fMRI, all subjects showed significant activations in bilateral Heschl's gyri, anterior pole of planum temporale, planum temporale, precentral gyri, postcentral gyri, supramarginal gyri, superior temporal gyri,inferior frontal gyri, occipital lobes and cerebellums. The healthy subjects had more intensive activation in bilateral Heschl's gyri, anterior pole of planum temporale, inferior frontal gyri, left superior temporal gyri and fight planum temporale than the hearing loss subjects. But in precentral gyri, postcentral gyri and occipital lobes,the activation is more intensive in the hearing loss subjects. In magnetoencephalography study, both in the

  6. Self-assembly characteristics of a multipolar donor-acceptor-based bis-pyrene integrated molecular tweezer

    Deepak Asthana; Geeta Hundal; Pritam Mukhopadhyay

    2014-09-01

    A modular design of a molecular tweezer is presented that integrates a multipolar D--A [D: Donor, A: Acceptor] scaffold, 1-aminopyrene-based fluorophore units and L-alanine-based linkers. The synthesis of the molecule is based on two-fold aromatic nucleophilic reactions (ArSN) and coupling reactions of the acid and amino functionalities. This molecule crystallizes in a non-centrosymmteric (P21) space group.We present its rich self-assembly characteristics that involves an array of -stacking interactions. In addition, the molecular tweezer within its cleft forms H-bonding with two dimethylformamide molecules. Such multipolar D--A systems containing chiral and fluorophore units are potential candidatesfor a number of electronic and photonic applications.

  7. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex.

    Qingyu Li

    Full Text Available The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17 is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5 in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ. Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs to neuronal intermediate progenitor cells (nIPCs but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice.

  8. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex.

    Li, Qingyu; Zhang, Zhengyu; Li, Zengmin; Zhou, Mei; Liu, Bin; Pan, Le; Ma, Zhixing; Zheng, Yufang

    2013-01-01

    The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17) is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5) in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ). Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP) layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs) to neuronal intermediate progenitor cells (nIPCs) but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice. PMID:23755270

  9. Multipolarity analysis for 14C high-energy resonance populated by (18O,16O) two-neutron transfer reaction

    The 12C(18O,16O)14C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition

  10. BabySQUID: A mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment

    Okada, Yoshio; Pratt, Kevin; Atwood, Christopher; Mascarenas, Anthony; Reineman, Richard; Nurminen, Jussi; Paulson, Douglas

    2006-02-01

    We developed a prototype of a mobile, high-resolution, multichannel magnetoencephalography (MEG) system, called babySQUID, for assessing brain functions in newborns and infants. Unlike electroencephalography, MEG signals are not distorted by the scalp or the fontanels and sutures in the skull. Thus, brain activity can be measured and localized with MEG as if the sensors were above an exposed brain. The babySQUID is housed in a moveable cart small enough to be transported from one room to another. To assess brain functions, one places the baby on the bed of the cart and the head on its headrest with MEG sensors just below. The sensor array consists of 76 first-order axial gradiometers, each with a pickup coil diameter of 6mm and a baseline of 30mm, in a high-density array with a spacing of 12-14mm center-to-center. The pickup coils are 6±1mm below the outer surface of the headrest. The short gap provides unprecedented sensitivity since the scalp and skull are thin (as little as 3-4mm altogether) in babies. In an electromagnetically unshielded room in a hospital, the field sensitivity at 1kHz was ˜17fT/√Hz. The noise was reduced from ˜400to200fT/√Hz at 1Hz using a reference cancellation technique and further to ˜40fT/√Hz using a gradient common mode rejection technique. Although the residual environmental magnetic noise interfered with the operation of the babySQUID, the instrument functioned sufficiently well to detect spontaneous brain signals from babies with a signal to noise ratio (SNR) of as much as 7.6:1. In a magnetically shielded room, the field sensitivity was 17fT/√Hz at 20Hz and 30fT/√Hz at 1Hz without implementation of reference or gradient cancellation. The sensitivity was sufficiently high to detect spontaneous brain activity from a 7month old baby with a SNR as much as 40:1 and evoked somatosensory responses with a 50Hz bandwidth after as little as four averages. We expect that both the noise and the sensor gap can be reduced further by

  11. Low threshold tunable spaser based on multipolar Fano resonances in disk-ring plasmonic nanostructures

    Zheng, Chunjie; Jia, Tianqing; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2016-01-01

    In this paper, we study theoretically spasers based on multipolar Fano resonances in disk-ring nanostructures covered with a silica layer doped with Yb3+:Er3+ used as the gain material. The electric field amplitudes at the quadrupolar mode (lasing wavelength) and the octupolar mode (pumping wavelength) are simultaneously enhanced by tens of times. Moreover, the spaser operates in a dark mode, which can reduce the radiation loss and enhance the confinement effectively. These factors work together to decrease greatly the critical gain coefficient and threshold. By adjusting the elliptic partial degrees of the nano-ring, the spasers can be tuned in the range of 1550 to 1650 nm, while the pumping light remains at the 980 nm absorption band of Yb3+ ions. Moreover, the spasers at three Fano resonance wavelengths of the disk-ring nanostructures appear in sequence with increasing the gain coefficient. The effects of the extinction coefficient on the electric field amplitudes of the pump light are also studied.

  12. Strong orbital fluctuations in multipolar ordered states of PrV2Al20

    Matsumoto, Yosuke; Tsujimoto, Masaki; Tomita, Takahiro; Sakai, Akito; Nakatsuji, Satoru

    2016-02-01

    PrT2Al20 (T=Ti, V) are ideal systems to study the quadrupole Kondo effect and quantum criticality arising from orbital degrees of freedom. The both systems have the nonmagnetic cubic Γ3 crystal electric field ground doublet with the well separated excited state. In particular, PrV2Al20 exhibits anomalous metallic behavior above and below the multipolar ordering temperatures, reflecting the even stronger hybridization between f and conduction electrons possibly due to a proximity to an orbital quantum critical point. Here we report the anomalous metallic behaviors found in a pure single crystal of PrV2Al20. Our detailed analyses revealed that the resistivity indicates power law temperature dependence proportional to T3. Furthermore, we pointed out that the 4f electron contribution to the specific heat also exhibits power law behavior proportional to T4. Both observations are in a sharp contrast to the gapped behavior found in PrTi2Al20 and indicate the strong c-f hybridization and strong orbital fluctuations in PrV2Al20. In addition, the 4f electron contribution to the entropy in PrV2Al20 reaches only 50% of R ln 2 at an orbital ordering at T=0.75 K, suggesting another 50% of R ln 2 expected for Γ3 doublet is already released at higher temperature possibly due to quadrupole Kondo effect.

  13. Neutron star deformation due to arbitrary-order multipolar magnetic fields

    Mastrano, Alpha; Melatos, Andrew

    2013-01-01

    Certain multi-wavelength observations of neutron stars, such as intermittent radio emissions from rotation-powered pulsars beyond the pair-cascade death line, the pulse profile of the magnetar SGR 1900+14 after its 1998 August 27 giant flare, and X-ray spectral features of PSR J0821-4300 and SGR 0418+5729, suggest that the magnetic fields of non-accreting neutron stars are not purely dipolar and may contain higher-order multipoles. Here, we calculate the ellipticity of a non-barotropic neutron star with (i) a quadrupole poloidal-toroidal field, and (ii) a purely poloidal field containing arbitrary multipoles, deriving the relation between the ellipticity and the multipole amplitudes. We present, as a worked example, a purely poloidal field comprising dipole, quadrupole, and octupole components. We show the correlation between field energy and ellipticity for each multipole, that the l=4 multipole has the lowest energy, and that l=5 has the lowest ellipticity. We show how a mixed multipolar field creates an ob...

  14. Resting-state magnetoencephalography study of “small world” characteristics and cognitive dysfunction in patients with glioma

    Hu X

    2013-04-01

    Full Text Available Xin-Hua Hu, Ting Lei, Hua-Zhong Xu, Yuan-Jie Zou, Hong-Yi Liu Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China Background: The purpose of this study was to analyze “small world” characteristics in glioma patients in order to understand the relationship between cognitive dysfunction and brain functional connectivity network in the resting state. Methods: Resting-state magnetoencephalography was performed in 20 patients with glioma and 20 healthy subjects. The clustering coefficient of the resting functional connectivity network in the brain, average path length, and “small world” index (SWI were calculated. Cognitive function was estimated by testing of attention, verbal fluency, memory, athletic ability, visual-spatial ability, and intelligence. Results: Compared with healthy controls, patients with glioma showed decreased cognitive function, and diminished low and high gamma band “small world” characteristics in the resting functional connectivity network. Conclusion: The SWI is associated with cognitive function and is diminished in patients with glioma, and is therefore correlated with cognition dysfunction. Keywords: glioma, cognitive dysfunction, “small world”, functional connectivity network, magnetoencephalography

  15. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m2 before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m2 after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  16. Selective control of muscle activation with a multipolar nerve cuff electrode.

    Veraart, C; Grill, W M; Mortimer, J T

    1993-07-01

    Acute experiments were performed on adult cats to study selective activation of medial gastrocnemius, soleus, tibialis anterior, and extensor digitorum longus with a cuff electrode. A spiral nerve cuff containing twelve "dot" electrodes was implanted around the sciatic nerve and evoked muscle twitch forces were recorded in six experiments. Spatially isolated "dot" electrodes in four geometries: monopolar, longitudinal tripolar, tripolar with four common anodes, and two parallel tripoles, were combined with transverse field steering current(s) from an anode(s) located 180 degrees around from the cathode(s) to activate different regions of the nerve trunk. To quantify the degree of selectivity, a selectivity index was defined as the ratio of the force in one muscle to the force in all four muscles in response to a particular stimulus. The selectivity index was used to construct recruitment curves for a muscle with the optimal degree of selectivity. Physiological responses were correlated with the anatomical structure of the sciatic nerve by identifying the nerve fascicles innervating the four muscles, and by determining the relative positions of the electrodes and the nerve fascicles. The results indicated that the use of transverse field steering current improved selectivity. We also found that tripoles with individual dot anodes were more selective than tripoles with four common dot anodes. Stimulation with two parallel tripoles was effective in activating selectively fascicles that could not be activated selectively with only a single tripole. The multipolar cuff proved an effective method to control selectively and progressively the force in muscles innervated by fascicles that were well defined at the level of the cuff. PMID:8244425

  17. Two-Step Coronal Transport of Solar Flare Particles from Magnetic Multipolarity Sources in a Flare Region

    HUANG Yong-Nian; WANG Shi-Jin

    2001-01-01

    The transport of solar flare particles in the corona is studied. Considering the problems in terms of the character istics of a sunspot group producing solar cosmic rays and solar flare processes, we find that formation of the fast propagation process is associated with annihilation of sunspots in the group with magnetic multipolarity. The slower propagation process depends on magnetic irregularities in the corona, and the evolution of the transport is related to the flare processes. Equations for the coronal transport are proposed and their initial and boundary conditions are given. The predicted results agree with the main observational features.

  18. [Morphometry of giant multipolar neurons of the brain stem reticular formation in rats on board the Kosmos-1667 biosatellite].

    Belichenko, P V; Leontovich, T A

    1989-05-01

    Giant multipolar neurons of nucleus reticularis gigantocellularis of rats which had been kept on board the biosatellite "Kosmos-1667" were morphometrically studied. There was a trend towards the increase in the cellular surface, the maximum diameter of dendritic field, the volume of the whole dendritic territory in the test group ad in the control experimental group kept on the earth. A reliable decrease in dendritic mass oriented to nucleus vestibularis and an increase in dendritic mass oriented to the midline were also found in test group, as compared to 3 control groups. Our data were discussed in the light of nervous tissue plasticity in adult mammals. PMID:2736303

  19. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  20. Excitatory cortical neurons with multipolar shape establish neuronal polarity by forming a tangentially oriented axon in the intermediate zone.

    Hatanaka, Yumiko; Yamauchi, Kenta

    2013-01-01

    The formation of axon-dendrite polarity is crucial for neuron to make the proper information flow within the brain. Although the processes of neuronal polarity formation have been extensively studied using neurons in dissociated culture, the corresponding developmental processes in vivo are still unclear. Here, we illuminate the initial steps of morphological polarization of excitatory cortical neurons in situ, by sparsely labeling their neuroepithelial progenitors using in utero electroporation and then examining their neuronal progeny in brain sections and in slice cultures. Morphological analysis showed that an axon-like long tangential process formed in progeny cells in the intermediate zone (IZ). Time-lapse imaging analysis using slice culture revealed that progeny cells with multipolar shape, after alternately extending and retracting their short processes for several hours, suddenly elongated a long process tangentially. These cells then transformed into a bipolar shape, extending a pia-directed leading process, and migrated radially leaving the tangential process behind, which gave rise to an "L-shaped" axon. Our findings suggest that neuronal polarity in these cells is established de novo from a nonpolarized stage in vivo and indicate that excitatory cortical neurons with multipolar shape in the IZ initiate axon outgrowth before radial migration into the cortical plate. PMID:22267309

  1. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles

    Badia, Jordi; Boretius, Tim; Andreu, David; Azevedo-Coste, Christine; Stieglitz, Thomas; Navarro, Xavier

    2011-06-01

    The selection of a suitable nerve electrode for neuroprosthetic applications implies a trade-off between invasiveness and selectivity, wherein the ultimate goal is achieving the highest selectivity for a high number of nerve fascicles by the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME) is intended to be transversally inserted into the peripheral nerve and to be useful to selectively activate subsets of axons in different fascicles within the same nerve. We present a comparative study of TIME, LIFE and multipolar cuff electrodes for the selective stimulation of small nerves. The electrodes were implanted on the rat sciatic nerve, and the activation of gastrocnemius, plantar and tibialis anterior muscles was recorded by EMG signals. Thus, the study allowed us to ascertain the selectivity of stimulation at the interfascicular and also at the intrafascicular level. The results of this study indicate that (1) intrafascicular electrodes (LIFE and TIME) provide excitation circumscribed to the implanted fascicle, whereas extraneural electrodes (cuffs) predominantly excite nerve fascicles located superficially; (2) the minimum threshold for muscle activation with TIME and LIFE was significantly lower than with cuff electrodes; (3) TIME allowed us to selectively activate the three tested muscles when stimulating through different active sites of one device, both at inter- and intrafascicular levels, whereas selective activation using multipolar cuff (with a longitudinal tripolar stimulation configuration) was only possible for two muscles, at the interfascicular level, and LIFE did not activate selectively more than one muscle in the implanted nerve fascicle.

  2. Evidence for an All-Or-None Perceptual Response: Single-Trial Analyses of Magnetoencephalography Signals Indicate an Abrupt Transition Between Visual Perception and Its Absence

    Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.

    2011-01-01

    Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus ident...

  3. Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models

    Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.

    2010-01-01

    In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the curr...

  4. Properties of highly electronegative plasmas produced in a multipolar magnetic-confined device with a transversal magnetic filter

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    Highly electronegative plasmas were produced in Ar/SF6 gas mixtures in a dc discharge with multipolar magnetic confinement and transversal magnetic filter. Langmuir probe and mass spectrometry were used for plasma diagnostics. Plasma potential drift, the influence of small or large area biased...... electrodes on plasma parameters, the formation of the negative ion sheath and etching rates by positive and negative ions have been investigated for different experimental conditions. When the electron temperature was reduced below 1 eV the density ratio of negative ion to electron exceeded 100 even for very...... low amounts of SF6 gas. The plasma potential drift could be controlled by proper wall conditioning. A large electrode biased positively had no effect on plasma potential for density ratios of negative ions to electrons larger than 50. For similar electronegativities or higher a negative ion sheath...

  5. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study

    Simos, Panagiotis G.; Rezaie, Roozbeh; Papanicolaou, Andrew C.; Fletcher, Jack M.

    2014-01-01

    The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n = 29) or did not (n = 36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n = 18) or a higher IQ (n = 44) subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal, and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ-discrepancy criteria in the diagnosis of dyslexia. PMID:24409136

  6. A multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using Magnetoencephalography-derived functional connectivity

    Fernando Maestú, PhD

    2015-01-01

    Full Text Available Synaptic disruption is an early pathological sign of the neurodegeneration of Dementia of the Alzheimer's type (DAT. The changes in network synchronization are evident in patients with Mild Cognitive Impairment (MCI at the group level, but there are very few Magnetoencephalography (MEG studies regarding discrimination at the individual level. In an international multicenter study, we used MEG and functional connectivity metrics to discriminate MCI from normal aging at the individual person level. A labeled sample of features (links that distinguished MCI patients from controls in a training dataset was used to classify MCI subjects in two testing datasets from four other MEG centers. We identified a pattern of neuronal hypersynchronization in MCI, in which the features that best discriminated MCI were fronto-parietal and interhemispheric links. The hypersynchronization pattern found in the MCI patients was stable across the five different centers, and may be considered an early sign of synaptic disruption and a possible preclinical biomarker for MCI/DAT.

  7. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. PMID:20145717

  8. Cross-Correlation of Motor Activity Signals from dc-Magnetoencephalography, Near-Infrared Spectroscopy, and Electromyography

    Tilmann H. Sander

    2010-01-01

    Full Text Available Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG and time-resolved near-infrared spectroscopy (trNIRS. The finger movements were monitored with electromyography (EMG. Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF, which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  9. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study.

    Simos, Panagiotis G; Rezaie, Roozbeh; Papanicolaou, Andrew C; Fletcher, Jack M

    2014-01-01

    The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n = 29) or did not (n = 36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n = 18) or a higher IQ (n = 44) subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal, and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ-discrepancy criteria in the diagnosis of dyslexia. PMID:24409136

  10. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study

    Panagiotis G Simos

    2014-01-01

    Full Text Available The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n=29 or did not (n=36 meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n=18 or a higher IQ (n=44 subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ measures and IQ-discrepancy criteria in the diagnosis of dyslexia.

  11. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Teppo Särkämö

    Full Text Available Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm recordings. Fifty-three patients with a left (n = 24 or right (n = 29 hemisphere MCA stroke (MRI verified were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA. We found that amusia caused by right hemisphere damage (RHD, especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD. Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  12. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja; Pihko, Elina

    2010-01-01

    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits. PMID:21152040

  13. 治理语境下的多元行政法%Multipolar Administrative Law Under Context of Governance

    王瑞雪

    2014-01-01

    治理理论给行政法治模式带来了深刻变革,治理机制全方位激励治理主体的普遍参与,尽可能地拓展、开放公共过程,多元行政法由此勃兴。与传统行政法关注行政主体与相对人权利义务关系的视角不同,治理语境下的多元行政法将视野扩展到了跨国治理机构、企业、社会组织等其他治理主体,关注治理网络中不同主体之间的协商与合作。行政法基本原则并未伴随着国家角色的回退而限缩,而是在拘束行政机关的行政行为之外,扩展到了更多承担公共治理任务的主体。治理工具也从过去政府“控制—命令”的传统方式,转向了软硬结合的多元化态势。%The governance theory brings profound changes to the administrative law. The governance mechanism encourages universal participation of different governance bodies in order to expand to more public procedures, leading to the lfourish of the multipolar administrative law. Compared to the perspective focusing on the right-obligation relationship between administrative bodies and the third party of the traditional administrative law, this multipolar administrative law under the governance context turns to pay attention to other governance bodies such as transnational governance organizations, enterprises and social organizations, etc., as well as the negotiation and cooperation among them in the governance network. Nevertheless, the administrative law basic principle does not retreat back with the role of state’s going back and it even acts on more publicgovernance bodies besides the administrative authorities. Moreover, governance tools also comprise the hybrid of soft and hard instruments, rather than the before way of single ‘common-and –control’.

  14. Study on the 143Nd(n, γα)140Ce reaction on resonance neutrons and multipolarity of γ-transitions between compound states

    The 143Nd(n, γa)140Ce reaction on resonance neutrons was investigated by the time-of-flight method at the IBR-30 pulse reactor. The width of the resonance with spin 4- at E0=55 eV was GITAsub(γa)=0.089+-0.017 μeV and at E0=159 eV was GITAsub(γa)=0.087+-0.024 μeV. The ratio of widths of resonances with spin 4- and 3- (on thermal neutrons) gave the radiative strength functions for the γ-transitions between compound states with multipolarity E1 and M1 to be equal to Ssub(γ)sup(cc)(E1)=(8+-3)x10sup(-9) MeV-3 and Ssub(γ)sup(cc) (M1)=(7+-3)x10sup(-9) Mev-3. This confirms the earlier extablished fact of the large contribution of M1 multipolarities into γ-transitions between the compound states. But still one cannot neglect the contribution of E1 multipolarity

  15. Numerical simulation and performance improvement of a multi-polar concentric Halbach cylindrical magnet for magnetic refrigeration

    You, Yonghua; Guo, Yue; Xiao, Shuifang; Yu, Shen; Ji, Hu; Luo, Xiaobing

    2016-05-01

    Multi-polar concentric Halbach cylinders of magnets could generate the magnetic field varying considerably in the annular gaps, thus were applied in the rotary magnetic refrigerators. In the current investigation, a six-polar concentric Halbach cylinder is developed based on the ideal concentric one by the numerical simulation with COMSOL Multiphysics. Cylinder radii are optimized and magnet material profiles are adjusted for a better overall performance (Λcool). Moreover, the segmentation on the concentric cylinder is conducted for an easy fabrication, and the edge effect of finite-length device is studied. With the present investigation, it is found that a larger external radius of external cylinder facilitates a larger flux density in the high field region (| B | bar high), while Λcool could be worse. Meanwhile, with the removal of magnet materials enclosed by the equipotential lines of magnetic vector potential, the magnetic flux density in low field region (| B | bar low) drops from 0.271 to 0.0136 T, and Λcool rises from 1.36 to 1.85 T0.7. Moreover, a proper segmentation would not degrade the difference between | B | bar high and | B | bar low, on the contrary, Λcool rises by about 20.2% due to magnet materials lack for efficiency replaced by soft irons. Finally, current 3D simulation indicates the edge effect on Λcool could be trivial.

  16. Automated Wetland Delineation from Multi-Frequency and Multi-Polarized SAR Images in High Temporal and Spatial Resolution

    Moser, L.; Schmitt, A.; Wendleder, A.

    2016-06-01

    Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks) and a high spatial sampling (about five meters). The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  17. Occurrence of multipolar mitoses and association with Aurora-A/-B kinases and p53 mutations in aneuploid esophageal carcinoma cells

    Münch Claudia

    2011-04-01

    Full Text Available Abstract Background Aurora kinases and loss of p53 function are implicated in the carcinogenesis of aneuploid esophageal cancers. Their association with occurrence of multipolar mitoses in the two main histotypes of aneuploid esophageal squamous cell carcinoma (ESCC and Barrett's adenocarcinoma (BAC remains unclear. Here, we investigated the occurrence of multipolar mitoses, Aurora-A/-B gene copy numbers and expression/activation as well as p53 alterations in aneuploid ESCC and BAC cancer cell lines. Results A control esophageal epithelial cell line (EPC-hTERT had normal Aurora-A and -B gene copy numbers and expression, was p53 wild type and displayed bipolar mitoses. In contrast, both ESCC (OE21, Kyse-410 and BAC (OE33, OE19 cell lines were aneuploid and displayed elevated gene copy numbers of Aurora-A (chromosome 20 polysomy: OE21, OE33, OE19; gene amplification: Kyse-410 and Aurora-B (chromosome 17 polysomy: OE21, Kyse-410. Aurora-B gene copy numbers were not elevated in OE19 and OE33 cells despite chromosome 17 polysomy. Aurora-A expression and activity (Aurora-A/phosphoT288 was not directly linked to gene copy numbers and was highest in Kyse-410 and OE33 cells. Aurora-B expression and activity (Aurora-B/phosphoT232 was higher in OE21 and Kyse-410 than in OE33 and OE19 cells. The mitotic index was highest in OE21, followed by OE33 > OE19 > Kyse-410 and EPC-hTERT cells. Multipolar mitoses occurred with high frequency in OE33 (13.8 ± 4.2%, followed by OE21 (7.7 ± 5.0% and Kyse-410 (6.3 ± 2.0% cells. Single multipolar mitoses occurred in OE19 (1.0 ± 1.0% cells. Distinct p53 mutations and p53 protein expression patterns were found in all esophageal cancer cell lines, but complete functional p53 inactivation occurred in OE21 and OE33 only. Conclusions High Aurora-A expression alone is not associated with overt multipolar mitoses in aneuploid ESCC and BAC cancer cells, as specifically shown here for OE21 and OE33 cells, respectively

  18. The Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL): A Pathfinder for the LIDAR Surface Topography (LIST) Mission

    Dabney, P.; Harding, D.; Abshire, J.; Seas, A.; Sun, X.; Shuman, C.; Scambos, T.

    2007-12-01

    The Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne prototype in development to demonstrate laser altimetry measurement methods and components that enable efficient, high-resolution, swath mapping of topography and surface properties from space. This demonstration is advancing technologies that are applicable to the global elevation mapping objectives (5 m spatial resolution, 10 cm vertical precision) of the LIDAR Surface Topography (LIST) mission recommended by the National Research Council in the Earth Science Decadal Survey report to NASA and NOAA. The main focus of this instrument development, sponsored by the NASA Earth Science and Technology Office Instrument Incubator Program, is to demonstrate an approach for detailed monitoring of ice sheet, sea ice and glacier change from a spacecraft in low Earth orbit. Although it currently emphasizes polar-region cryosphere objectives, the SIMPL approach is also applicable in other applications including measuring changes in land topography, forest height and structure, and inland water and snow cover height and extent. SIMPL employs a short-pulse (1 nsec) fiber laser transmitters operating at 1064 nm and 532 nm, a beam splitter to divide the energy into four parallel beams displaced cross-track, single photon counting modules (SPCM) detectors, and high precision timing electronics to achieve < 15 cm range precision per single detected photon. Measurement of the backscatter energy with polarization parallel and perpendicular to the laser transmit pulse provides the depolarization ratio of the surface returns at 532 and 1064 nm, in order to differentiate surface types based on their scattering properties. Results of laboratory testing of a single beam breadboard and the design and implementation of the four-beam flight instrument will be described.

  19. BRICS AND ITS ROLE IN THE SHAPING OF A MULTIPOLAR WORLD

    A. V. Vinogradov

    2014-01-01

    Full Text Available Unlike other dialogue format — G7 — BRICS countries represent not only different social and economic systems, but also different civilizations. Civilizations are the basic actors of history because they exist longer than other social subjects, and have a greater influence on world history than any other historical entity. Until today the basis of the international relations was formed by principles of inter-European relations. But the model of relations within one civilization inevitably has the limited value. Moreover, it is not the only model possible. Growing threat to Euro-Atlantic’s main advantage — economic superiority, has opened prospects to other trends. BRICS will inevitably develop from economic group into international political and intercivilizational consortium.

  20. BRICS AND ITS ROLE IN THE SHAPING OF A MULTIPOLAR WORLD

    Vinogradov, A. V.

    2015-01-01

    Unlike other dialogue format — G7 — BRICS countries represent not only different social and economic systems, but also different civilizations. Civilizations are the basic actors of history because they exist longer than other social subjects, and have a greater influence on world history than any other historical entity. Until today the basis of the international relations was formed by principles of inter-European relations. But the model of relations within one civilization inevitably has ...

  1. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus

    2015-01-01

    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential......, quantities are affected by the quality of the electrostatic model. The alteration of the first solvation shell in MTP simulations is validated by comparing with lifetimes and correlation times of solute–solvent interactions from experiment. The improved dynamical behavior found in the MTP simulations......—observed for molecules parametrized using very different protocols—suggests that a systematic improvement of both equilibrium and dynamical quantities when using MTP electrostatics is possible....

  2. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga 816-8580 (Japan)

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understanding the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.

  3. Multipolarity analysis for {sup 14}C high-energy resonance populated by ({sup 18}O,{sup 16}O) two-neutron transfer reaction

    Carbone, D., E-mail: carboned@lns.infn.it; Cavallaro, M.; Bondì, M.; Agodi, C.; Cunsolo, A. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Azaiez, F.; Franchoo, S.; Khan, E. [Institut de Physique Nucleaire, Universitè Paris-Sud, Orsay (France); Bonaccorso, A. [INFN-Sezione di Pisa, Pisa (Italy); Fortunato, L. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN-Sezione di Padova, Padova (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN-Sezione di Catania, Catania (Italy); Linares, R.; Lubian, J. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi (Brazil); Scarpaci, J. A. [Centre de Sciences Nucleaires et de Sciences de Matieres, Universitè Paris-Sud, Orsay (France); Vitturi, A. [INFN-Sezione di Padova, Padova (Italy); INFN-Sezione di Catania, Catania (Italy)

    2015-10-15

    The {sup 12}C({sup 18}O,{sup 16}O){sup 14}C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition.

  4. The Fate of Sub-micron Circumplanetary Dust Grains II: Multipolar Fields

    Jontof-Hutter, Daniel

    2012-01-01

    We study the radial and vertical stability of dust grains launched with all charge-to-mass ratios at arbitrary distances from rotating planets with complex magnetic fields. We show that the aligned dipole magnetic field model analyzed by Jontof-Hutter and Hamilton (2012) is an excellent approximation in most cases, but that fundamentally new physics arises with the inclusion of non-axisymmetric magnetic field terms. In particular, large numbers of distant negatively-charged dust grains, stable in a magnetic dipole, can be driven to escape by a more complex field. We trace the origin of the instability to overlapping Lorentz resonances which are extremely powerful when the gravitational and electromagnetic forces on a dust grain are comparable. These resonances enable a dust grain to tap the spin energy of the planet to power its escape. We also explore the relatively minor influence of different launch speeds and the far more important effects of variable grain charge. Only the latter are capable of significa...

  5. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development.

    Bhavin Shah

    Full Text Available The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ from radial glia cells (RGCs and leave the VZ to generate the cortical plate (CP. During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ and lower intermediate zone (IZ. Subsequently, they undergo a multi-to-bipolar (MTB transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF C3G (encoded by the Rapgef1 gene is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.

  6. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development.

    Shah, Bhavin; Lutter, Daniela; Bochenek, Magdalena L; Kato, Katsuhiro; Tsytsyura, Yaroslav; Glyvuk, Natalia; Sakakibara, Akira; Klingauf, Jürgen; Adams, Ralf H; Püschel, Andreas W

    2016-01-01

    The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process. PMID:27111087

  7. Multipolarity or cosmopolitanism?

    Hansen, Allan Dreyer

    of hegemony – as developed by herself and Laclau in Hegemony and Socialist Strategy, (Laclau and Mouffe,1985), precisely allows us to see the distance between universal values, such as freedom and equality for all, and their actual interpretation and use. The fact that the West are using democracy and human......In a series of publications Chantal Mouffe (2004, 2005a, 2005b, 2008, 2009, 2013) has criticized cosmopolitanism for its lack of conceptualization of power, conflict and struggle, in short of politics. Even though this critique is largely well placed, the conclusions drawn from the analysis...... by Mouffe are flawed. As she puts it, if a cosmopolitan democracy “was ever realized, it could only signify the world hegemony of a dominant power that would have been able to impose its conception of the world on the entire planet and which, identifying its interests with those of humanity, would treat any...

  8. A MULTIPOLAR COLD WAR

    GAGIK HARUTYUNYAN

    2007-01-01

    The present article draws parallels between existing political realities and the onesthat occurred during the Cold War in the second half of the 20th century. Similarto the previous one, the new Cold War is consistent with the logic of «the policy ofdeterrence» which nowadays is directed against the United States. «Cold War-1»reflected stiff competition between the two opposite ideological and geopoliticalprograms. Meanwhile, today we have several poles of power and, therefore, «ColdWar-2» is...

  9. Moving Toward Multipolarity

    KERRY; BROWN

    2009-01-01

    Prospects of an improved relationship between China and Europe are brightening but expectations may have to be reined in Since 2003, the European Union (EU) and China have described their relationship as one of "strategic partnership." But the term is one that

  10. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  11. Reduction of Fluoroscopic Exposure Using a New Fluoroscopy Integrating Technology in a 3D-Mapping System During Pulmonary Vein Isolation With a Circular Multipolar Irrigated Catheter.

    Blockhaus, Christian; Schmidt, Jan; Kurt, Muhammed; Clasen, Lukas; Brinkmeyer, Christoph; Katsianos, Efstratios; Müller, Patrick; Gerguri, Shqipe; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2016-05-25

    Pulmonary vein isolation (PVI) is a cornerstone therapy in patients with atrial fibrillation (AF). With increasing numbers of PVI procedures, demand arises to reduce the cumulative fluoroscopic radiation exposure for both the physician and the patient. New technologies are emerging to address this issue. Here, we report our first experiences with a new fluoroscopy integrating technology in addition to a current 3D-mapping system. The new fluoroscopy integrating system (FIS) with 3D-mapping was used prospectively in 15 patients with AF. Control PVI cases (n = 37) were collected retrospectively as a complete series. Total procedure time (skin to skin), fluoroscopic time, and dose-area-product (DAP) data were analyzed. All PVI procedures were performed by one experienced physician using a commercially available circular multipolar irrigated ablation catheter. All PVI procedures were successfully undertaken without major complications. Baseline characteristics of the two groups showed no significant differences. In the group using the FIS, the fluoroscopic time and DAP were significantly reduced from 571 ± 187 seconds versus 1011 ± 527 seconds (P = 0.0029) and 4342 ± 2073 cGycm(2) versus 6208 ± 3314 cGycm(2) (P = 0.049), respectively. Mean procedure time was not significantly affected and was 114 ± 31 minutes versus 104 ± 24 minutes (P = 0.23) by the FIS.The use of the new FIS with the current 3D-mapping system enables a significant reduction of the total fluoroscopy time and DAP compared to the previous combination of 3D-mapping system plus normal fluoroscopy during PVI utilizing a circular multipolar irrigated ablation catheter. However, the concomitant total procedure time is not affected. Thus, the new system reduces the radiation exposure for both the physicians and patients. PMID:27181037

  12. Anti-Stress, Behavioural and Magnetoencephalography Effects of an L-Theanine-Based Nutrient Drink: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial.

    White, David J; de Klerk, Suzanne; Woods, William; Gondalia, Shakuntla; Noonan, Chris; Scholey, Andrew B

    2016-01-01

    L-theanine (γ-glutamylethylamide) is an amino acid found primarily in the green tea plant. This study explored the effects of an L-theanine-based nutrient drink on mood responses to a cognitive stressor. Additional measures included an assessment of cognitive performance and resting state alpha oscillatory activity using magnetoencephalography (MEG). Thirty-four healthy adults aged 18-40 participated in this double-blind, placebo-controlled, balanced crossover study. The primary outcome measure, subjective stress response to a multitasking cognitive stressor, was significantly reduced one hour after administration of the L-theanine drink when compared to placebo. The salivary cortisol response to the stressor was reduced three hours post-dose following active treatment. No treatment-related cognitive performance changes were observed. Resting state alpha oscillatory activity was significantly greater in posterior MEG sensors after active treatment compared to placebo two hours post-dose; however, this effect was only apparent for those higher in trait anxiety. This change in resting state alpha oscillatory activity was not correlated with the change in subjective stress response or the cortisol response, suggesting further research is required to assess the functional relevance of these treatment-related changes in resting alpha activity. These findings further support the anti-stress effects of L-theanine. PMID:26797633

  13. Anti-Stress, Behavioural and Magnetoencephalography Effects of an l-Theanine-Based Nutrient Drink: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial

    David J. White

    2016-01-01

    Full Text Available l-theanine (γ-glutamylethylamide is an amino acid found primarily in the green tea plant. This study explored the effects of an l-theanine-based nutrient drink on mood responses to a cognitive stressor. Additional measures included an assessment of cognitive performance and resting state alpha oscillatory activity using magnetoencephalography (MEG. Thirty-four healthy adults aged 18–40 participated in this double-blind, placebo-controlled, balanced crossover study. The primary outcome measure, subjective stress response to a multitasking cognitive stressor, was significantly reduced one hour after administration of the l-theanine drink when compared to placebo. The salivary cortisol response to the stressor was reduced three hours post-dose following active treatment. No treatment-related cognitive performance changes were observed. Resting state alpha oscillatory activity was significantly greater in posterior MEG sensors after active treatment compared to placebo two hours post-dose; however, this effect was only apparent for those higher in trait anxiety. This change in resting state alpha oscillatory activity was not correlated with the change in subjective stress response or the cortisol response, suggesting further research is required to assess the functional relevance of these treatment-related changes in resting alpha activity. These findings further support the anti-stress effects of l-theanine.

  14. Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem

    along with the law of relativistic precession of its spatial axes. These transformations depend on the PPN parameters β and γ, generalize general relativistic transformations of the IAU 2000 resolutions, and should be used in the data processing of the solar system gravitational experiments aimed to detect the presence of the scalar field. These PPN transformations are also applicable in the precise time-keeping metrology, celestial mechanics, astrometry, geodesy and navigation.We consider a multipolar post-Newtonian expansion of the gravitational and scalar fields and construct a set of internal and external gravitational multipoles depending on the parameters β and γ. These PPN multipoles generalize the Thorne-Blanchet-Damour multipoles defined in harmonic coordinates of general theory of relativity. The PPN multipoles of the scalar-tensor theory of gravity are split in three classes-active, conformal, and scalar multipoles. Only two of them are algebraically independent and we chose to work with the conformal and active multipoles. We derive the laws of conservations of the multipole moments and show that they must be formulated in terms of the conformal multipoles. We focus then on the law of conservation of body's linear momentum which is defined as a time derivative of the conformal dipole moment of the body in the local coordinates. We prove that the local force violating the law of conservation of the body's linear momentum depends exclusively on the active multipole moments of the body along with a few other terms which depend on the internal structure of the body and are responsible for the violation of the strong principle of equivalence (the Nordtvedt effect).The PPN translational equations of motion of extended bodies in the global coordinate frame and with all gravitational multipoles taken into account are derived from the law of conservation of the body's linear momentum supplemented by the law of motion of the origin of the local frame derived from

  15. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  16. Crisis del lóbulo temporal registrada mediante magnetoencefalografía: caso clínico Temporal lobe seizure recorded by magnetoencephalography: case report

    Carlos Amo

    2004-09-01

    Full Text Available La localización del inicio de las crisis es un factor importante para la evaluación prequirúrgica de la epilepsia. En este trabajo se describe la localización del inicio de una crisis registrada mediante magnetoencefalografía (MEG en un niño de 12 años que presenta crisis parciales complejas farmacorresistentes. La RM muestra una lesión de 20mm de diámetro en el hipocampo izquierdo. EEG de superficie con ondas theta temporales izquierdas. Registro MEG interictal con punta-onda aislada posterior e inferior a la lesión de la RM. Registro MEG ictal con punta-onda (2 Hz. La localización de los dipolos indica el inicio de la crisis en la circunvolución temporal inferior en la misma localización que la actividad interictal MEG. Esta actividad ictal se propaga bilateralmente a áreas frontales. El registro corticográfico intraquirúrgico confirma los resultados de la localización interictal mediante MEG.Ictal onset localization is a important factor in presurgical evaluation of epilepsy. This paper describes the localization of a seizure onset recorded by magnetoencephalography (MEG from a 12-year-old male patient who suffered from complex partial drug-resistant seizures. MRI revealed a 20mm diameter lesion located in left hippocampus. Scalp EEG showed left temporal theta waves. Interictal MEG registrations detected isolated spike-wave activity posterior and inferior to the MRI lesion. Ictal MEG showed continuous spike-wave activity (2 Hz. Dipole localization sited seizure onset in the inferior left temporal gyrus, the same localization of the interictal MEG activity. This ictal activity spreads bilaterally to frontal areas. Intrasurgical electrocorticography recording confirmed interictal MEG results.

  17. Detection and Magnetic Source Imaging of Fast Oscillations (40-160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients.

    von Ellenrieder, Nicolás; Pellegrino, Giovanni; Hedrich, Tanguy; Gotman, Jean; Lina, Jean-Marc; Grova, Christophe; Kobayashi, Eliane

    2016-03-01

    We present a framework to detect fast oscillations (FOs) in magnetoencephalography (MEG) and to perform magnetic source imaging (MSI) to determine the location and extent of their generators in the cortex. FOs can be of physiologic origin associated to sensory processing and memory consolidation. In epilepsy, FOs are of pathologic origin and biomarkers of the epileptogenic zone. Seventeen patients with focal epilepsy previously confirmed with identified FOs in scalp electroencephalography (EEG) were evaluated. To handle data deriving from large number of sensors (275 axial gradiometers) we used an automatic detector with high sensitivity. False positives were discarded by two human experts. MSI of the FOs was performed with the wavelet based maximum entropy on the mean method. We found FOs in 11/17 patients, in only one patient the channel with highest FO rate was not concordant with the epileptogenic region and might correspond to physiologic oscillations. MEG FOs rates were very low: 0.02-4.55 per minute. Compared to scalp EEG, detection sensitivity was lower, but the specificity higher in MEG. MSI of FOs showed concordance or partial concordance with proven generators of seizures and epileptiform activity in 10/11 patients. We have validated the proposed framework for the non-invasive study of FOs with MEG. The excellent overall concordance with other clinical gold standard evaluation tools indicates that MEG FOs can provide relevant information to guide implantation for intracranial EEG pre-surgical evaluation and for surgical treatment, and demonstrates the important added value of choosing appropriate FOs detection and source localization methods. PMID:26830767

  18. Spectral power and functional connectivity changes during mindfulness meditation with eyes open: A magnetoencephalography (MEG) study in long-term meditators.

    Wong, W P; Camfield, D A; Woods, W; Sarris, J; Pipingas, A

    2015-10-01

    Whilst a number of previous studies have been conducted in order to investigate functional brain changes associated with eyes-closed meditation techniques, there is a relative scarcity in the literature with regards to changes occurring during eyes-open meditation. The current project used magnetoencephalography (MEG) to investigate differences in spectral power and functional connectivity between 11 long-term mindfulness meditators (LTMMs) with >5 years of experience and 12 meditation-naïve control participants both during baseline eyes-open rest and eyes-open open-monitoring (OM) mindfulness meditation. During resting with eyes-open, prior to meditating, greater mean alpha power was observed for LTMMs in comparison to controls. However, during the course of OM meditation, a significantly greater increase in theta power was observed over a broad fronto-centro-parietal region for control participants in comparison to LTMMs. In contrast, whole-head mean connectivity was found to be significantly greater for long-term meditators in comparison to controls in the theta band both during rest as well as during meditation. Additionally, mean connectivity was significantly lower for long-term meditators in the low gamma band during rest and significantly lower in both low and high gamma bands during meditation; and the variance of low-gamma connectivity scores for long-term meditators was significantly decreased compared to the control group. The current study provides important new information as to the trait functional changes in brain activity associated with long-term mindfulness meditation, as well as the state changes specifically associated with eyes-open open monitoring meditation techniques. PMID:26166440

  19. Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images

    Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.

    2016-03-01

    A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.

  20. Multipolar phases and magnetically hidden order: review of the heavy-fermion compound Ce1‑x La x B6

    Cameron, Alistair S.; Friemel, Gerd; Inosov, Dmytro S.

    2016-06-01

    Cerium hexaboride is a cubic f-electron heavy-fermion compound that displays a rich array of low-temperature magnetic ordering phenomena which have been the subject of investigation for more than 50 years. Its complex behaviour is the result of competing interactions, with both itinerant and local electrons playing important roles. Investigating this material has proven to be a substantial challenge, in particular because of the appearance of a ‘magnetically hidden order’ phase, which remained elusive to neutron-scattering investigations for many years. It was not until the development of modern x-ray scattering techniques that the long suspected multipolar origin of this phase was confirmed. Doping with non-magnetic lanthanum dilutes the magnetic cerium sublattice and reduces the f-electron count, bringing about substantial changes to the ground state with the emergence of new phases and quantum critical phenomena. To this day, Ce1‑x La x B6 and its related compounds remain a subject of intense interest. Despite the substantial progress in understanding their behaviour, they continue to reveal new and unexplained physical phenomena. Here we present a review of the accumulated body of knowledge on this family of materials in order to provide a firm standpoint for future investigations.

  1. Binary black hole coalescence in the extreme-mass-ratio limit: Testing and improving the effective-one-body multipolar waveform

    We discuss the properties of the effective-one-body (EOB) multipolar gravitational waveform emitted by nonspinning black-hole binaries of masses μ and M in the extreme-mass-ratio limit μ/M=ν-4 rad and maintain then a remarkably accurate phase coherence during the long inspiral (∼33 orbits), accumulating only about -2x10-3 rad until the last stable orbit, i.e. Δφ/φ∼-5.95x10-6. We obtain such accuracy without calibrating the analytically resummed EOB waveform to numerical data, which indicates the aptitude of the EOB waveform for studies concerning the Laser Interferometer Space Antenna. We then improve the behavior of the EOB waveform around merger by introducing and tuning next-to-quasicircular corrections in both the gravitational wave amplitude and phase. For each multipole we tune only four next-to-quasicircular parameters by requiring compatibility between EOB and Regge-Wheeler-Zerilli waveforms at the light ring. The resulting phase difference around the merger time is as small as ±0.015 rad, with a fractional amplitude agreement of 2.5%. This suggest that next-to-quasicircular corrections to the phase can be a useful ingredient in comparisons between EOB and numerical-relativity waveforms.

  2. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  3. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  4. Spatiotemporal Accuracy of Gradient Magnetic-Field Topography (GMFT) Confirmed by Simultaneous Magnetoencephalography and Intracranial Electroencephalography Recordings in Patients with Intractable Epilepsy.

    Shirozu, Hiroshi; Hashizume, Akira; Masuda, Hiroshi; Fukuda, Masafumi; Ito, Yosuke; Nakayama, Yoko; Higashijima, Takefumi; Kameyama, Shigeki

    2016-01-01

    Gradient magnetic-field topography (GMFT) is one method for analyzing magnetoencephalography (MEG) and representing the spatiotemporal dynamics of activity on the brain surface. In contrast to spatial filters, GMFT does not include a process reconstructing sources by mixing sensor signals with adequate weighting. Consequently, noisy sensors have localized and limited effects on the results, and GMFT can handle MEG recordings with low signal-to-noise ratio. This property is derived from the principle of the planar-type gradiometer, which obtains maximum gradient magnetic-field signals just above the electrical current source. We assumed that this characteristic allows GMFT to represent even faint changes in brain activities that cannot be achieved with conventional equivalent current dipole analysis or spatial filters. GMFT is thus hypothesized to represent brain surface activities from onset to propagation of epileptic discharges. This study aimed to validate the spatiotemporal accuracy of GMFT by analyzing epileptic activities using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. Participants in this study comprised 12 patients with intractable epilepsy. Epileptic spikes simultaneously detected on both MEG and iEEG were analyzed by GMFT and voltage topography (VT), respectively. Discrepancies in spatial distribution between GMFT and VT were evaluated for each epileptic spike. On the lateral cortices, areas of GMFT activity onset were almost concordant with VT activities arising at the gyral unit level (concordance rate, 66.7-100%). Median time lag between GMFT and VT at onset in each patient was 11.0-42.0 ms. On the temporal base, VT represented basal activities, whereas GMFT failed but instead represented propagated activities of the lateral temporal cortices. Activities limited to within the basal temporal or deep brain region were not reflected on GMFT. In conclusion, GMFT appears to accurately represent brain activities of the

  5. Multi-polarization Antenna for Mobile Communication%一种适用于移动通信的多极化天线

    刘宗全; 钱祖平; 韩振平; 倪为民

    2011-01-01

    为满足移动通信系统极化复用的需求,文章设计了一种新型多极化天线。该天线有两个独立端口,分别工作在圆极化和线极化,可以接收空间三个互相正交的电场分量。实测结果表明,线极化和圆极化端口回波损耗S_(11)小于-10 dB的工作频带分别为1.69 GHz~1.84 GHz和1.66 GHz~2.32GHz,圆极化轴比(AR)小于3dB的工作频带为1.77 GHz~1.97 GHz,端口间隔离度均在-15 dB以下,满足了移动通信系统天线设计小型化的要求。%To meet the polarization multiplexing demand of the mobile communication system, a new multi-polarization antenna was designed.The antenna contains two independent ports working with linear and circular polarization respectively,so that it can receive three orthogonal components of electric field in space.The measured results show that the impedance bandwidth whose S_(11) is less than -10 dB is 1.69 GHz~l.84 GHz and 1.66 GHz~2.32 GHz for linear-polarization and circular-polarization ports respectively.The bandwidth for AR3 dB is 1.77 GHz~1.97 GHz.The isolation between the two ports is below -15 dB.The antenna can meet the miniaturization demand of the mobile communication system antenna design.

  6. Increased doublecortin (DCX expression and incidence of DCX-immunoreactive multipolar cells in the subventricular zone-olfactory bulb system of suicides

    Marissa E Maheu

    2015-06-01

    Full Text Available Postmortem studies have confirmed the occurrence of adult hippocampal neurogenesis in humans and implicated this process in antidepressant response, yet neurogenesis in other regions remains to be examined in the context of depression. Here we assess the extent of subventricular zone-olfactory bulb (SVZ-OB neurogenesis in adult humans having died by suicide. Protein expression of proliferative and neurogenic markers Sox2, proliferating cell nuclear antigen, and doublecortin (DCX were examined in postmortem SVZ and OB samples from depressed suicides and matched sudden-death controls. In the SVZ, DCX-immunoreactive (IR cells displayed phenotypes typical of progenitors, whereas in the olfactory tract (OT, they were multipolar with variable size and morphologies suggestive of differentiating cells. DCX expression was significantly increased in the OB of suicides, whereas SVZ DCX expression was higher among unmedicated, but not antidepressant-treated, suicides. Although very few DCX-IR cells were present in the control OT, they were considerably more common in suicides and correlated with OB DCX levels. Suicides also displayed higher DCX-IR process volumes. These results support the notion that OB neurogenesis is minimal in adult humans. They further indicate that the differentiation and migration of SVZ-derived neuroblasts may be altered in unmedicated suicides, leading to an accumulation of ectopically-differentiating cells in the OT. Normal SVZ DCX expression among suicides receiving antidepressants suggests a potentially novel mode of action of antidepressant medication. Given the modest group sizes and rarity of DCX-IR cells assessed here, a larger-scale characterization will be required before firm conclusions can be made regarding the identity of these cells.

  7. A Rússia na ordem mundial: com o Ocidente, com o Oriente ou um pólo autônomo em um mundo multipolar?

    Alexander Zhebit

    2003-06-01

    Full Text Available O artigo persegue o objetivo de definir o lugar e o papel da Rússia nas relações internacionais contemporâneas nos últimos anos. Ao se debruçar sobre o dilema tradicional da política externa russa - Ocidentalismo versus Orientalismo - o autor analisa o cenário de multipolaridade defendido pela nova concepção da política externa russa e o relaciona com a fase do pragmatismo e do multilateralismo que caracteriza a atuação internacional da Rússia de Putin, fazendo considerações, decorrentes do impacto dos ataques terroristas aos Estados Unidos em 11 de setembro de 2001 sobre a política externa russa. A atitude pragmática e a natureza multivetorial da política externa russa contribuem, segundo o autor, para o fortalecimento das posições internacionais da Rússia em comparação com a perda ou a natureza incerta das alianças e dos relacionamentos do período da transição pós-soviética.The article pursues the purpose to place Russia and its politics within the context of today's international relations. While discussing the traditional dilemma of the Russian foreign politics - Occidentalism versus Orientalism - the author analyses the scenario of multipolarity, backed up by the new Russian foreign policy concept. Hence it is related to the pragmatism and the multilateralism of the international posture of Putin's Russia, the author makes several considerations, which follow from the impact of the September 11th, 2001, terrorist attacks on the United States of America with regard to Russia's foreign policy. The pragmatic attitude and the multi-axis nature of the Russian foreign policy nowadays contribute, according to the author, to strengthen Russia's international background in comparison with the loss or the uncertain nature of alliances and relationships of the post-Soviet transition period.

  8. Mental Imagery of Speech and Movement Implicates the Dynamics of Internal Forward Models

    DavidPoeppel

    2010-01-01

    The classical concept of efference copies in the context of internal forward models has stimulated productive research in cognitive science and neuroscience. There are compelling reasons to argue for such a mechanism, but finding direct evidence in the human brain remains difficult. Here we investigate the dynamics of internal forward models from an unconventional angle: mental imagery, assessed while recording high temporal resolution neuronal activity using magnetoencephalography (MEG). We ...

  9. Quantifying the dynamics of water bodies, wetlands and biomass in the Poyang Lake region: A multi-polarization SAR remote sensing approach

    Sang, Huiyong

    Field measurements were combined with synthetic aperture radar (SAR) images to evaluate the use of C-band multi-polarized radar remote sensing for estimating plant parameters (plant height, fresh biomass, dry biomass and vegetation water content) of wetland vegetation, and mapping the dynamics of water bodies, wetlands (natural wetlands and rice paddies) and flooding extents in the Poyang Lake region. The capacity of L-band SAR in land cover mapping was also investigated by integrating with optical imagery. Hydrological patterns in Poyang Lake are the dominant factor controlling the spatial and temporal variations of wetland species in Poyang Lake. Water levels in this region are primarily governed by five rivers (Ganjiang river, Xiushui river, Raohe river, Fuhe river, and Xinjiang river). Its northern region is also influenced by the backflow from Yangtze River. The above-ground total biomass increased steadily from March following the hydrological cycle. Wetland species colonizing at different altitudes were gradually flooded from late spring to summer. Carex spp. died during flooding periods and started another growth cycle in autumn after flooding receded. Canopy volume dominates the radar backscattering mechanism in Carex spp. wetlands during their growth period, but the temporal variation of radar backscatter from these wetlands is mainly influenced by flooding. Tall wetland species (Miscanthus sacchariflorus, Phragmites communis Trin., and others) still emerged above water surfaces during flooding peaks and started to senesce in autumn. Surface backscattering mechanism is dominant during the early growing stage and the senescent period of tall vegetation. Plant canopy variation controlled the temporal dynamics of radar backscatters from Phragmites communis Min. Radar backscattering mechanisms from Miscanthus sacchariflorus wetlands were more complicated during the flooding periods. The variations of ground water depth and plant structure of Miscanthus

  10. Sustainability in a multipolar world

    Basha i Novosejt, A.; Weterings, R.; Ridder, M. de; Frinking, E.

    2010-01-01

    In its 30-Year Update of the well-known publication ‘The Limits to growth’ the Club of Rome stressed that the once debated notion of a physically limited world growth is becoming apparent in many well-documented studies. Three decades ago, the Brundtland Commission on Development and Environment ini

  11. Sustainability in a multipolar world

    Basha i Novosejt, A.; R. Weterings; de Ridder, M.; Frinking, E.

    2010-01-01

    In its 30-Year Update of the well-known publication ‘The Limits to growth’ the Club of Rome stressed that the once debated notion of a physically limited world growth is becoming apparent in many well-documented studies. Three decades ago, the Brundtland Commission on Development and Environment initiated an international momentum to secure the needs of both present and future generations through a joint policy agenda for sustainable development. Institutions such as the United Nations played...

  12. On World Multi-Polarization

    YuSui

    2004-01-01

    After the end of the Cold War, especially after the Bush Jr. government assuming power, the U.S. has actively pursued unilateralism and strengthened the momentum of unipolarity, relying on its position of strength as the only superpower and taking advantage of the fight against terrorism. However, the re-

  13. Functions and structure of nuclear deterrence in the post-cold war world. More for less - an arms control strategy for the 1990s. A SIOP for Perestroika. Theater nuclear forces and extended deterrence in a multipolar world. Special series report

    Snow, D.M.; Wooten, R.E.; Sundberg, E.E.; Szafranski, R.; Booker, D.L.

    1992-06-01

    This Publication includes: Essay (1). The Function and Structure of Nuclear Deterrence in the Post-Cold War World. Essay (2). More for Less-An Arms Control Strategy for the 1990s. Essay (3). A SIOP for Perestroika. Essay (4). Theater Nuclear Forces and Extended Deterrence in a Multipolar World.

  14. Evaluation of the solid state dipole moment and pyroelectric coefficient of phosphangulene by multipolar modeling of X-ray structure factors

    Madsen, G.K.H.; Krebs, Frederik C; Lebech, B.; Larsen, F.K.

    2000-01-01

    moment measured in a chloroform solution. It is substantiated that the estimated standard deviation of the dipole moment is about 0.8 D. The standard uncertainty (s.u.) of the derived dipole moment has been derived by splitting the dataset into three independent datasets. A novel method for obtaining...

  15. An intertemporal, multi-region general equilibrium model of agricultural trade liberalization in the South Mediterranean NICs, Turkey, and the European Union

    Bayar, Ali; DIAO, Xinshen; Yeldan, A. Erinc

    2000-01-01

    With the aid of an intertemporal, multi-region general equilibrium model, the authors study issues of agricultural trade liberalization, growth and capital accumulation in the context of a world economy moving towards a multi-polar structure. They specifically focus on Turkey, the European Union, the Middle East, and the Economies in Transition; and study alternative scenarios of formation of customs unions and increased trade orientation. The model is based on intertemporal general equilibri...

  16. Experimental Study on Multi-Band and Multi-Polarization Characteristics of Sea Clutter%多波段多极化海杂波特性的实验研究

    康士峰; 葛德彪; 罗贤云; 张忠治

    2000-01-01

    It is well known that the study of sea clutter characteristics is very important for radar and microwave remote sensing. The multi-band (S, C, X, Ku ) and multi-polarization characteristics of sea clutter measured based on the vector metwork analyzer HP8720C are described in this paper. The measureing system, experimental description and methods of data processing are included. The relationship between clutter characteristics (scatter coefficent, doppler spectrum) and frequency, polarization incident angle (including low-grazing angle) are obtained and some typical results are given.%长期以来,海杂波特性研究一直是雷达和微波遥感界普遍关心的问题。本文讨论基于矢量网络分析仪组建的波谱计对海杂波特性所进行的多波段(S,C,X,Ku)多极化测量,包括测量系统、实验描述和数据处理方法,通过数据分析得到不同海态下杂波特性(散射系数、多普勒谱等)随频率、极化和人射角(含小擦地角)的变化关系并给出一些典型结果。

  17. Clinical applications of magnetoencephalography in epilepsy

    Ray Amit

    2010-01-01

    Full Text Available Magnetoencehalography (MEG is being used with increased frequency in the pre-surgical evaluation of patients with epilepsy. One of the major advantages of this technique over the EEG is the lack of distortion of MEG signals by the skull and intervening soft tissue. In addition, the MEG preferentially records activity from tangential sources thus recording activity predominantly from sulci, which is not contaminated by activity from apical gyral (radial sources. While the MEG is probably more sensitive than the EEG in detecting inter-ictal spikes, especially in the some locations such as the superficial frontal cortex and the lateral temporal neocortex, both techniques are usually complementary to each other. The diagnostic accuracy of MEG source localization is usually better as compared to scalp EEG localization. Functional localization of eloquent cortex is another major application of the MEG. The combination of high spatial and temporal resolution of this technique makes it an extremely helpful tool for accurate localization of visual, somatosensory and auditory cortices as well as complex cognitive functions like language. Potential future applications include lateralization of memory function.

  18. The african protoproverbial in a multipolar world

    Taiwo, Ọlọruntọba-Oju

    2014-01-01

    The proverb is a rhetorical universal and as such shares features across linguistic, ethnic and culture boundaries, thus making typological distinctions along ethnic or regional lines a daunting task. Further complicating this scenario within the African context is the relentless hybridization and subversion of the African proverb consequent on colonial contact and sundry postcolonial interventions. This twin trajectory, the conceptual universalism of the proverb and the relent...

  19. Asian century or multi-polar century ?

    Dollar, David

    2007-01-01

    The "rise of Asia" is something of a myth. During 1990-2005 China accounted for 28 percent of global growth, measured at purchasing power parity (PPP). India accounted for 9 percent. The rest of developing Asia, with nearly a billion people, accounted for only 7 percent, the same as Latin America. Hence there is no general success of Asian developing economies. China has grown better than ...

  20. Latin American regionalism in a multipolar world

    Garzón, Jorge F.

    2015-01-01

    The landscape of Latin American regionalism has experienced profound transformations in a relatively short period of time. Regional organizations have proliferated; the open regionalism of the 1990s has gone into decay; new organizations, often referred to as belonging to a new wave of a more political “posthegemonic regionalism,” took center stage; only to be displaced in the attention of observers by newer trade-oriented organizations such as the Pacific Alliance. These developments have be...

  1. 抑郁症住院患者静息态的脑磁频谱分析%A magnetoencephalography analysis of resting state power spectrum of inpatients with major depressive disorder

    汤浩; 卢青; 韩莉; 江海腾; 罗国平; 姚志剑

    2012-01-01

    Objective To explore the discrepancies of magnetoencephalography (MEG) spectral power between female patients with major depressive disorder and nondepressed subjects in resting state.Methods Whole head MEG recordings were obtained in 12 female patients with major depressive disorder and 12 age-and education-matched nondepressed control subjects in resting state condition with eyes closed.Each region's mean power in delta,theta,alpha,beta frequency bands was calculated through power normalization.Discrepancies between groups were obtained by two sample t-test using MATLAB 7.8.Results The power of alpha and beta frequency bands in patients was increased relative to controls,the abnormal brain regions were separately shown as follows:the alpha frequency band in the right parietal lobe (0.031 vs.0.017; t =1.911,P =0.035),the beta frequency band in the left parietal lobe (0.025vs.0.015;t =2.504,P=0.010),the right parietal lobe(0.026 vs.0.016;t =2.063,P =0.026),the left occipital lobe(0.054 vs.0.029 ; t =3.000,P =0.003) and the right occipital lobe (0.046 vs.0.032 ; t =2.035,P =0.027).The power of delta and theta frequency bands was decreased in patients relative to controls,the abnormal brain regions were separately shown as follows:the delta frequency band in the left occipital lobe (0.029 vs.0.049 ; t =-1.788,P =0.044) ; the theta frequency band in the right central region(0.005 vs.0.012;t =-1.820,P =0.041) and the right temporal lobe(0.015 vs.0.023;t =-1.934,P =0.033).Conclusions The discrepancies of spectral power show a prevalence in posterior brain areas involving delta,theta,alpha and beta frequency bands in depressed patients in comparison with nondepressed comparison subjects.%目的 探讨抑郁症患者与正常对照静息态脑磁频谱分布特征的差异.方法 12例女性抑郁症患者(患者组)和12名年龄、受教育程度相匹配的女性健康对照者(对照组)接受脑磁图静息态扫描,通过频谱分析计算delta、theta、alpha

  2. Nuclear transition matrix elements for Majoron-accompanied neutrinoless double-β decay within a projected-Hartree-Fock-Bogoliubov model

    Rath, P. K.; Chandra, R.; Chaturvedi, K.; Lohani, P.; Raina, P. K.

    2016-02-01

    The model-dependent uncertainties in the nuclear transition matrix elements for the Majoron-accompanied neutrinoless double-β decay (0+→0+transition) of Zr,9694, 100Mo, Te,130128, and 150Nd isotopes are calculated by employing the projected-Hartree-Fock-Bogoliubov formalism with four different parametrizations of the pairing plus multipolar two-body interactions and three different parametrizations of the Jastrow short-range correlations. Uncertainties in the nuclear transition matrix elements turn out to be less than 15% and 21% for decays involving the emission of single and double Majorons, respectively.

  3. Detailed magnetic model simulations of the H- injection chicane magnets for the CERN PS Booster Upgrade, including eddy currents and influence on beam dynamics

    Benedetto, E; Borburgh, J; Carli, C; Martini, M; Forte, V

    2014-01-01

    The CERN PS Booster will be upgraded with an H- injection system. The chicanemagnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The -beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and correction on beam dynamics.

  4. Transfer entropy--a model-free measure of effective connectivity for the neurosciences.

    Vicente, Raul; Wibral, Michael; Lindner, Michael; Pipa, Gordon

    2011-02-01

    Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain's activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction. PMID:20706781

  5. Modelling the dispersion energy for Van der Waals complexes

    Sanz-Garcia, A

    2002-01-01

    Strictly ab initio calculations of the dispersion energy are unfeasible in practice but for the smallest systems. A sensible alternative is to model the dispersion contribution through a damped multipolar expansion. This thesis proposes to represent the dispersion energy by means of a non-empirical, atom-atom model using damping functions scaled from 'exact' results for one electron-one electron systems. We start by investigating the scalability of ab initio calculated damping functions for closed-shell atom-atom dimers. Ab initio scaling parameters are employed to assess the quality of the damping functions yielded by a predictor scheme based on the charge overlap between the interacting monomers. The investigation of the scaling properties is extended to atom-linear molecule systems, focusing on the dependence on orientation of the short-range dispersion energy and how to account for it using isotropic damping parameters. We study the possibilities of an 'atomic' (multicentre) representation of the dispersi...

  6. Giant resonance of electrical multipole from droplet model

    The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author)

  7. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  8. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions

  9. Pitfalls in the dipolar model for the neocortical EEG sources.

    Riera, Jorge J; Ogawa, Takeshi; Goto, Takakuni; Sumiyoshi, Akira; Nonaka, Hiroi; Evans, Alan; Miyakawa, Hiroyoshi; Kawashima, Ryuta

    2012-08-01

    For about six decades, primary current sources of the electroencephalogram (EEG) have been assumed dipolar in nature. In this study, we used electrophysiological recordings from anesthetized Wistar rats undergoing repeated whisker deflections to revise the biophysical foundations of the EEG dipolar model. In a first experiment, we performed three-dimensional recordings of extracellular potentials from a large portion of the barrel field to estimate intracortical multipolar moments generated either by single spiking neurons (i.e., pyramidal cells, PC; spiny stellate cells, SS) or by populations of them while experiencing synchronized postsynaptic potentials. As expected, backpropagating spikes along PC dendrites caused dipolar field components larger in the direction perpendicular to the cortical surface (49.7 ± 22.0 nA·mm). In agreement with the fact that SS cells have "close-field" configurations, their dipolar moment at any direction was negligible. Surprisingly, monopolar field components were detectable both at the level of single units (i.e., -11.7 ± 3.4 nA for PC) and at the mesoscopic level of mixed neuronal populations receiving extended synaptic inputs within either a cortical column (-0.44 ± 0.20 μA) or a 2.5-m(3)-voxel volume (-3.32 ± 1.20 μA). To evaluate the relationship between the macroscopically defined EEG equivalent dipole and the mesoscopic intracortical multipolar moments, we performed concurrent recordings of high-resolution skull EEG and laminar local field potentials. From this second experiment, we estimated the time-varying EEG equivalent dipole for the entire barrel field using either a multiple dipole fitting or a distributed type of EEG inverse solution. We demonstrated that mesoscopic multipolar components are altogether absorbed by any equivalent dipole in both types of inverse solutions. We conclude that the primary current sources of the EEG in the neocortex of rodents are not precisely represented by a single equivalent

  10. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors

    Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr

    2010-06-01

    An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.

  11. Distorted cortical networks in dislexia: findings using Magnetoencephalography (MEG

    Eduardo M. Catillo

    2008-04-01

    Full Text Available In dyslexic children a functional deficit in the brain circuitry supporting some of the cognitive operations taking place while they learn how the printed words maps onto spoken language is suspected. Until recently, however, no information existed regarding the functional status of this circuit during the early stages of reading acquisition. In the context of three studies we sought to address key issues in the pathophysiology of this condition using Magnetoencephalograhy (MEG at the University of Texas-Houston. The first study, including 30 kindergarten children at risk for developing reading problems and 15 not-at-risk controls, ascertained that the aberrant neural circuit that underlies reading problems appears to be present in the initial stages of reading acquisition. A subset of these children were retested a year later using identical procedures in a second study. Children in the at-risk group showed the most prominent changes in brain activation profiles and successfully predicted individual differences in the growth of reading skill measures. The results of a third study showed clearly that the aberrant activation profile can be normalized following intensive behavioral instruction. These findings are consistent with the view that dyslexia represents a functional deficit in the neural network that mediates the conversion of print to sound, which is amenable to change given adequate instruction.

  12. Phase-compensated averaging for analyzing electroencephalography and magnetoencephalography epochs.

    Matani, Ayumu; Naruse, Yasushi; Terazono, Yasushi; Iwasaki, Taro; Fujimaki, Norio; Murata, Tsutomu

    2010-05-01

    Stimulus-locked averaging for electroencephalography and/or megnetoencephalography (EEG/MEG) epochs cancels out ongoing spontaneous activities by treating them as noise. However, such spontaneous activities are the object of interest for EEG/MEG researchers who study phase-related phenomena, e.g., long-distance synchronization, phase-reset, and event-related synchronization/desynchronization (ERD/ERS). We propose a complex-weighted averaging method, called phase-compensated averaging, to investigate phase-related phenomena. In this method, any EEG/MEG channel is used as a trigger for averaging by setting the instantaneous phases at the trigger timings to 0 so that cross-channel averages are obtained. First, we evaluated the fundamental characteristics of this method by performing simulations. The results showed that this method could selectively average ongoing spontaneous activity phase-locked in each channel; that is, it evaluates the directional phase-synchronizing relationship between channels. We then analyzed flash evoked potentials. This method clarified the directional phase-synchronizing relationship from the frontal to occipital channels and recovered another piece of information, perhaps regarding the sequence of experiments, which is lost when using only conventional averaging. This method can also be used to reconstruct EEG/MEG time series to visualize long-distance synchronization and phase-reset directly, and on the basis of the potentials, ERS/ERD can be explained as a side effect of phase-reset. PMID:20172813

  13. Low frequency overactivation in dyslexia: Evidence from resting state Magnetoencephalography.

    Pagnotta, Mattia F; Zouridakis, George; Lianyang Li; Lizarazu, Mikel; Lallier, Marie; Molinaro, Nicola; Carreiras, Manuel

    2015-08-01

    In this study, we compared the brain activation profiles obtained from resting state Magnetoencephalographic (MEG) activity in 15 dyslexic patients with the profiles of 15 normal controls, using power spectral density (PSD) analysis. We first estimated intracranial dipolar MEG sources on a dense grid on the cortical surface and then projected these sources on a standardized atlas with 68 regions of interest (ROIs). Averaging the PSD values of all sources in each ROI across all control subjects resulted in a normative database that was used to convert the PSD values of dyslexic patients into z-scores in eight distinct frequency bands. We found that dyslexic patients exhibited statistically significant overactivation in the delta band (0.1-4 Hz) in the right temporal (entorhinal and insula), left inferior frontal (Broca's area), and right inferior frontal regions. Overactivation may be interpreted as a compensatory mechanism for reading characterizing dyslexic patients. These findings suggest that resting-state MEG activation maps may be used as specific biomarkers that can help with the diagnosis of and assess the efficacy of intervention in dyslexia. PMID:26737893

  14. Magnetoencephalography evidence for different brain subregions serving two musical cultures

    MATSUNAGA, Rie; Yokosawa, Koichi; Abe, Jun-ichi

    2012-01-01

    Individuals who have been exposed to two different musical cultures (bimusicals) can be differentiated from those exposed to only one musical culture (monomusicals). Just as bilingual speakers handle the distinct language-syntactic rules of each of two languages, bimusical listeners handle two distinct musical-syntactic rules (e.g., tonal schemas) in each musical culture. This study sought to determine specific brain activities that contribute to differentiating two culture-specific tonal str...

  15. New modes of nuclear excitations in microscopic and collective model description

    A microscopic approach based on density functional theory and multi-phonon QRPA methods is successfully applied for investigations of pygmy resonances and other excitations of different multipolarities and energies in stable and exotic nuclei. From systematic studies of nuclear response functions a clear indication of close connection between low-energy excited states related to pygmy resonances and nuclear skin oscillations is observed. This is confirmed also in analyses of transition densities and currents. A useful link to collective model approaches is used for distinction of pygmy resonance from other modes of excitations related low-energy multi-phonon vibrations, twist modes or giant resonances observed in response functions and data. Furthermore, nuclear skins are found to affect M1 strength distributions in nuclei, as confirmed by recent experiments. The fine structure of the spin-flip M1 resonance is discussed and compared to experimental data.

  16. New modes of nuclear excitations in microscopic and collective model description

    Tsoneva, Nadia [Institut fuer Theoretische Physik, Universitaet Giessen (Germany); INRNE, BAS, Sofia (Bulgaria); Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2013-07-01

    A microscopic approach based on density functional theory and multi-phonon QRPA methods is successfully applied for investigations of pygmy resonances and other excitations of different multipolarities and energies in stable and exotic nuclei. From systematic studies of nuclear response functions a clear indication of close connection between low-energy excited states related to pygmy resonances and nuclear skin oscillations is observed. This is confirmed also in analyses of transition densities and currents. A useful link to collective model approaches is used for distinction of pygmy resonance from other modes of excitations related low-energy multi-phonon vibrations, twist modes or giant resonances observed in response functions and data. Furthermore, nuclear skins are found to affect M1 strength distributions in nuclei, as confirmed by recent experiments. The fine structure of the spin-flip M1 resonance is discussed and compared to experimental data.

  17. GEOPOLITICAL STRATEGIES AND MODERNITY: MULTIPOLAR WORLD OF NOWADAYS

    Radenko Scekic

    2016-01-01

    Full Text Available The political map of the planet has transformed substantially during the last century. Former colonial powers had to be satisfied with the perfidious forms of political and economic control. The last decades were marked by the global dominance of the US and its allies, as well as the military superiority of the NATO pact. The beginning of the new millennium was filled with military and financial crises. On the global stage have appeared new economic and military powers and organizations such as the BRICS, the Eurasian Union, the economic power of China, and Russia's comeback in the geopolitical games. The former geopolitical theories become topical again.

  18. Towards a multipolar science world: Trends and impact

    Veugelers, Reinhilde

    2010-01-01

    This paper brings together recent statistical evidence on international (co-)publications and (foreign) PhD-students and scholars to document shifts in geographic sources of scientific production and their impact. The evidence demonstrates that despite the continued dominance of the US and the increasing importance of the EU, the TRIAD is in relative decline. Other geographic sources of science outside the TRIAD are rising, both in quantity, but also, although still to a lesser extent, in qua...

  19. The filamentary Multi-Polar Planetary Nebula NGC 5189

    Sabin, L; López, J A; García-Díaz, Ma T; Ramos-Larios, G

    2012-01-01

    We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN) NGC 5189. The complex morphology of this PN is puzzling and has not been studied in detail so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined the complex morphology.

  20. THE FILAMENTARY MULTI-POLAR PLANETARY NEBULA NGC5189

    L. Sabin

    2012-01-01

    Full Text Available We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN NGC5189. The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.

  1. Controversies over the US Hegemony in the Multipolar World

    Gwiazda, Adam

    2010-01-01

    Since the end of the Cold War, American hegemony continues to characterize the international system. This hegemony has met with a considerably higher acceptance by other states and other actors of the international system than a world of competing superpowers and political blocs. The main argument developed in this paper is that American primacy may not last forever, but as there is no effective global security mechanism for coping with the growing threat of extremist religious and political ...

  2. Models

    Juel-Christiansen, Carsten

    2005-01-01

    Artiklen fremhæver den visuelle rotation - billeder, tegninger, modeller, værker - som det privilligerede medium i kommunikationen af ideer imellem skabende arkitekter......Artiklen fremhæver den visuelle rotation - billeder, tegninger, modeller, værker - som det privilligerede medium i kommunikationen af ideer imellem skabende arkitekter...

  3. Modelling

    Spädtke, P

    2013-01-01

    Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.

  4. Modelling

    This last volume in the series of textbooks on environmental isotopes in the hydrological cycle provides an overview of the basic principles of existing conceptual formulations of modelling approaches. While some of the concepts provided in Chapter 2 and Chapter 3 are of general validity for quantitative interpretation of isotope data; the modelling methodologies commonly employed for incorporating isotope data into evaluations specifically related to groundwater systems are given in this volume together with some illustrative examples. Development of conceptual models for quantitative interpretations of isotope data in hydrogeology and the assessment of their limitations and field verification has been given priority in the research and development efforts of the IAEA during the last decade. Several Co-ordinated Research Projects on this specific topic were implemented and results published by the IAEA. Based on these efforts and contributions made by a number of scientists involved in this specific field, the IAEA has published two Technical Documents entitled ''Mathematical models and their applications to isotope studies in groundwater studies -- IAEA TECDOC-777, 1994'' and ''Manual on Mathematical models in isotope hydrogeology -- IAEA TECDOC-910, 1996''. Results of a recently completed Co-ordinated Research Project by the IAEA entitled ''Use of isotopes for analysis of flow and transport dynamics in groundwater systems'' will also soon be published by the IAEA. This is the reason why the IAEA was involved in the co-ordination required for preparation of this volume; the material presented is a condensed overview prepared by some of the scientists that were involved in the above cited IAEA activities. This volume VI providing such an overview was included into the series to make this series self-sufficient in its coverage of the field of Isotope Hydrology. A special chapter on the methodologies and concepts related to geochemical modelling in groundwater

  5. Mental imagery of speech and movement implicates the dynamics of internal forward models

    Xing eTian

    2010-10-01

    Full Text Available The classical concept of efference copies in the context of internal forward models has stimulated productive research in cognitive science and neuroscience. There are compelling reasons to argue for such a mechanism, but finding direct evidence in the human brain remains difficult. Here we investigate the dynamics of internal forward models from an unconventional angle: mental imagery, assessed while recording high temporal resolution neuronal activity using magnetoencephalography (MEG. We compare two overt and covert tasks; our covert, mental imagery tasks are unconfounded by overt input/output demands – but in turn necessitate the development of appropriate multi-dimensional topographic analyses. Finger tapping (studies 1-2 and speech experiments (studies 3-5 provide temporally constrained results that implicate the estimation of an efference copy. We suggest that one internal forward model over parietal cortex subserves the kinesthetic feeling in motor imagery. Secondly, observed auditory neural activity ~170 ms after motor estimation in speech experiments (studies 3-5 demonstrates the anticipated auditory consequences of planned motor commands in a second internal forward model in imagery of speech production. Our results provide neurophysiological evidence from the human brain in favor of internal forward models deploying efference copies in somatosensory and auditory cortex, in finger tapping and speech production tasks, respectively, and also suggest the dynamics and sequential updating structure of internal forward models.

  6. Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease

    Xiaoling Qin; Wang Han; Zhigang Yu

    2012-01-01

    A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.

  7. Analysis of slow-onset neurite formation in NG108-15 cells: implications for a unified model of neurite elongation.

    Smalheiser, N R

    1989-01-01

    When undifferentiated NG108-15 cells are plated onto polylysine coated Petri dishes in serum-free medium, they form neurites within 1-4 h if plated in the presence of laminin or 5'-deoxy-5'-methylthioadenosine (rapid-onset neurites). In the absence of such agents, serum-deprived NG108-15 cells extend axon-like neurites onto polylysine over several days; here we characterize the dynamic behavior of this slow-onset outgrowth pattern in detail. Individual cells plated on laminin expressed a gradual multipolar-to-unipolar transition due to rapid-onset neurites becoming remodelled into the appearance of slow-onset neurites. This phenomenon reflected the selective stabilization of certain rapid-onset neurites, along with the restriction of motility to their distal tips. Based upon the properties and interactions of both rapid- and slow-onset neurites in NG108-15 cells, a unified model for neurite formation is presented. PMID:2917412

  8. A Novel Method for Integrating MEG and BOLD fMRI Signals With the Linear Convolution Model in Human Primary Somatosensory Cortex

    Nangini, Cathy; Tam, Fred; Graham, Simon J.

    2016-01-01

    Characterizing the neurovascular coupling between hemodynamic signals and their neural origins is crucial to functional neuroimaging research, even more so as new methods become available for integrating results from different functional neuroimaging modalities. We present a novel method to relate magnetoencephalography (MEG) and BOLD fMRI data from primary somatosensory cortex within the context of the linear convolution model. This model, which relates neural activity to BOLD signal change, has been widely used to predict BOLD signals but typically lacks experimentally derived measurements of neural activity. In this study, an fMRI experiment is performed using variable-duration (≤1 s) vibrotactile stimuli applied at 22 Hz, analogous to a previously published MEG study (Nangini et al., [2006]: Neuroimage 33:252–262), testing whether MEG source waveforms from the previous study can inform the convolution model and improve BOLD signal estimates across all stimulus durations. The typical formulation of the convolution model in which the input is given by the stimulus profile is referred to as Model 1. Model 2 is based on an energy argument relating metabolic demand to the postsynaptic currents largely responsible for the MEG current dipoles, and uses the energy density of the estimated MEG source waveforms as input to the convolution model. It is shown that Model 2 improves the BOLD signal estimates compared to Model 1 under the experimental conditions implemented, suggesting that MEG energy density can be a useful index of hemodynamic activity. PMID:17290370

  9. A simple model of the chaotic eccentricity of Mercury

    Boué, Gwenaël; Farago, François

    2012-01-01

    Mercury's eccentricity is chaotic and can increase so much that collisions with Venus or the Sun become possible (Laskar, 1989, 1990, 1994, 2008, Batygin & Laughlin, 2008, Laskar & Gastineau, 2009). This chaotic behavior results from an intricate network of secular resonances, but in this paper, we show that a simple integrable model with only one degree of freedom is actually able to reproduce the large variations in Mercury's eccentricity, with the correct amplitude and timescale. We show that this behavior occurs in the vicinity of the separatrices of the resonance g1-g5 between the precession frequencies of Mercury and Jupiter. However, the main contribution does not come from the direct interaction between these two planets. It is due to the excitation of Venus' orbit at Jupiter's precession frequency g5. We use a multipolar model that is not expanded with respect to Mercury's eccentricity, but because of the proximity of Mercury and Venus, the Hamiltonian is expanded up to order 20 and more in t...

  10. Multi-area neural mass modeling of EEG and MEG signals.

    Babajani-Feremi, Abbas; Soltanian-Zadeh, Hamid

    2010-09-01

    We previously proposed an integrated electroencephalography (EEG), magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI) model based on an extended neural mass model (ENMM) within a single cortical area. In the ENMM, a cortical area contains several minicolumns where strengths of their connections diminish exponentially with their distances. The ENMM was derived based on the physiological principles of the cortical minicolumns and their connections within a single cortical area to generate EEG, MEG, and fMRI signals. The purpose of this paper is to further extend the ENMM model from a single-area to a multi-area model to develop a neural mass model of the entire brain that generates EEG and MEG signals. For multi-area modeling, two connection types are considered: short-range connections (SRCs) and long-range connections (LRCs). The intra-area SRCs among the minicolumns within the areas were previously modeled in the ENMM. To define inter-area LRCs among the cortical areas, we consider that the cell populations of all minicolumns in the destination area are affected by the excitatory afferent of the pyramidal cells of all minicolumns in the source area. The state-space representation of the multi-area model is derived considering the intra-minicolumn, SRCs', and LRCs' parameters. Using simulations, we evaluate effects of parameters of the model on its dynamics and, based on stability analysis, find valid ranges for parameters of the model. In addition, we evaluate reducing redundancy of the model parameters using simulation results and conclude that the parameters of the model can be limited to the LRCs and SRCs while the intra-minicolumn parameters stay at their physiological mean values. The proposed multi-area integrated E/MEG model provides an efficient neuroimaging technique for effective connectivity analysis in healthy subjects as well as neurological and psychiatric patients. PMID:20080193

  11. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences. PMID:22614763

  12. Modeling Modeling

    Muller, Pierre-Alain; Fondement, Frédéric; Baudry, Benoit

    2009-01-01

    Model-driven engineering and model-based approaches have permeated all branches of software engineering; to the point that it seems that we are using models, as Molière's Monsieur Jourdain was using prose, without knowing it. At the heart of modeling, there is a relation that we establish to represent something by something else. In this paper we review various definitions of models and relations between them. Then, we define a canonical set of relations that can be used to express various ki...

  13. Bayesian multi-dipole modelling of a single topography in MEG by adaptive sequential Monte Carlo samplers

    In this paper, we develop a novel Bayesian approach to the problem of estimating neural currents in the brain from a fixed distribution of magnetic field (called topography), measured by magnetoencephalography. Differently from recent studies that describe inversion techniques, such as spatio-temporal regularization/filtering, in which neural dynamics always plays a role, we face here a purely static inverse problem. Neural currents are modelled as an unknown number of current dipoles, whose state space is described in terms of a variable-dimension model. Within the resulting Bayesian framework, we set up a sequential Monte Carlo sampler to explore the posterior distribution. An adaptation technique is employed in order to effectively balance the computational cost and the quality of the sample approximation. Then, both the number and the parameters of the unknown current dipoles are simultaneously estimated. The performance of the method is assessed by means of synthetic data, generated by source configurations containing up to four dipoles. Eventually, we describe the results obtained by analysing data from a real experiment, involving somatosensory evoked fields, and compare them to those provided by three other methods. (paper)

  14. Modeling Modeling Modeling

    Muller, Pierre-Alain; Fondement, Frédéric; Baudry, Benoit; Combemale, Benoit

    2012-01-01

    Model-driven engineering and model-based approaches have permeated all branches of software engineering to the point that it seems that we are using models, as Molière's Monsieur Jourdain was using prose, without knowing it. At the heart of modeling, there is a relation that we establish to represent something by something else. In this paper we review various definitions of models and relations between them. Then, we define a canonical set of relations that can be used to express various kin...

  15. The structure of 193Au within the Interacting Boson Fermion Model

    A γγ angular correlation experiment investigating the nucleus 193Au is presented. In this work the level scheme of 193Au is extended by new level information on spins, multipolarities and newly observed states. The new results are compared with theoretical predictions from a general Interacting Boson Fermion Model (IBFM) calculation for the positive-parity states. The experimental data is in good agreement with an IBFM calculation using all proton orbitals between the shell closures at Z=50 and Z=126. As a dominant contribution of the d3/2 orbital to the wave function of the lowest excited states is observed, a truncated model of the IBFM using a Bose–Fermi symmetry is applied to the describe 193Au. Using the parameters of a fit performed for 193Au, the level scheme of 192Pt, the supersymmetric partner of 193Au, is predicted but shows a too small boson seniority splitting. We obtained a common fit by including states observed in 192Pt. With the new parameters a supersymmetric description of both nuclei is established

  16. Nuclear liquid-drop model and surface-curvature effects

    Nuclear liquid-drop model is revisited and an explicit introduction of the surface-curvature terms is presented. The corresponding parameters of the extended classical energy formula are adjusted to the contemporarily known nuclear binding energies and fission-barrier heights. Using 2766 binding energies of nuclei with Z≥8 and N≥8 it is shown that the performance of the new approach is improved by a factor of about 6, compared to the previously published liquid-drop model results, in terms of the masses (new rms deviation =0.698 MeV) and the fission barriers by a factor of about 3.5 (new rms deviation of the fission barriers of isotopes with Z>70 is B>=0.88 MeV). The role of the nuclear surface-curvature terms and their effects on the description of the experimental quantities are discussed in detail. For comparison, the parameters of the more 'traditional' classical energy expressions are refitted, taking into account the nuclear masses known today and the performances of several variants of the model are compared. The isospin dependence in the new description of the barriers is in a good agreement with the extended Thomas-Fermi approach. It also demonstrates a good qualitative agreement with the fission lifetime systematics tested on the long chain of Fermium isotopes known experimentally. The new approach offers a very high stability in terms of the extrapolation from the narrower range of nuclides to a more extended one--a property of particular interest for the contemporary exotic beam projects: the corresponding properties are illustrated and discussed. The new description of the fission barriers being significantly improved, in particular, the new calculated barriers being lower, flatter, but stiffer against high-multipolarity deformations. The chances for 'extra' stabilization of the hyperdeformed minima at high spin increase, thus calling for the new total energy Strutinsky-type calculations

  17. Modelling the dispersion energy for Van der Waals complexes

    Strictly ab initio calculations of the dispersion energy are unfeasible in practice but for the smallest systems. A sensible alternative is to model the dispersion contribution through a damped multipolar expansion. This thesis proposes to represent the dispersion energy by means of a non-empirical, atom-atom model using damping functions scaled from 'exact' results for one electron-one electron systems. We start by investigating the scalability of ab initio calculated damping functions for closed-shell atom-atom dimers. Ab initio scaling parameters are employed to assess the quality of the damping functions yielded by a predictor scheme based on the charge overlap between the interacting monomers. The investigation of the scaling properties is extended to atom-linear molecule systems, focusing on the dependence on orientation of the short-range dispersion energy and how to account for it using isotropic damping parameters. We study the possibilities of an 'atomic' (multicentre) representation of the dispersion energy, in contrast to the conventional 'molecular' (single-centre) picture, devising a well-defined method to obtain 'atomic' dispersion coefficients from the computed molecular ones, as well as 'atomic' damping parameters. In all the studied cases, the 'atomic' approach describes more adequately the anisotropy of the interaction, through a localisation process of the charge overlap effects. The CO2/CO case, in particular, encourages to believe in the transferability of 'atomic' dispersion coefficients and damping parameters, which being confirmed by further work, the present results can be regarded as the basis of an universal and affordable model to estimate the dispersion contribution in intermolecular potentials. (author)

  18. GNSS-Reflectometry: Forest canopies polarization scattering properties and modeling

    Wu, Xuerui; Jin, Shuanggen

    2014-09-01

    Nowadays, GNSS-Reflectometry (GNSS-R) can be a new promising remote sensing tool in the ocean, snow/ice and land surfaces, e.g., vegetation biomass monitoring. Although GNSS-R provides a potentially special L-band multi-angular and multi-polarization measurement, the theoretical vegetation scattering properties and mechanisms for GNSS-R are not understood clearly. In this paper, the GNSS-R vegetation polarization scattering properties are studied and modeled at different incidence angles (specular direction). The bistatic scattering model Bi-mimics is employed, which is the first-order radiative transfer equation. As a kind of forest stand, the Aspen’s crown layer is composed of entire leaves, and its parameters in Mimics handbook are used as model input. The specular circular polarizations (co-polarization RR and cross-polarization LR) are simulated. For cross-polarization, the received polarization is assumed as a linear (horizontal and vertical) polarizations and ±45° linear polarizations. Therefore, the HR VR, +45R and -45R polarizations are simulated here. Contributions from different scattering components at RR, LR and VR polarization are also presented. For co-polarization, it is large in the whole specular angles (10-80°). The scattering trends of the other cross polarization (HR, LR, +45R and -45R) are a little similar when compared to the RR and RV. Therefore, the RHCP and V polarizations are more favorable to collect the reflected signals. The trunk heights and crown depths do not affect the scattering trends of RR, RV and RL, while the trunk height has some effect on the scattering amplitude of different polarizations. The azimuth angle has more effects on RR, RL and RV scattering, especially in lower than 50°. The observation angles and polarization combinations are extremely important for GNSS-R remote sensing.

  19. Ordering and Fluctuation of Quantum Multipoles in CeB6

    The effect of multipolar fluctuations on the quadrupolar phase transition in CeB6 is investigated theoretically. It is shown that the fluctuations become strong and field-dependent, reflecting the competition of coupled multipolar interactions. Some unusual phenomena around the transition in CeB6 are shown to be reasonably explained within the RKKY model. (author)

  20. An asymmetric jet launching model for the protoplanetary nebula CRL 618

    Velazquez, P F; Raga, A C; Toledo-Roy, J C

    2014-01-01

    We propose an asymmetrical jet ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNe), such as the pPN CRL 618. 3D hydrodynamical simulations of a precessing jet launched from an orbiting source were carried out including an alternation in the ejections of the two outflow lobes, depending on which side of the precessing accretion disk is hit by the accretion column from a Roche lobe-filling binary companion. Both synthetic optical emission maps and position-velocity (PV) diagrams were obtained from the numerical results with the purpose of carrying out a direct comparison with observations. Depending on the observer's point of view, multipolar morphologies are obtained which exhibit a mirror symmetry at large distances from the central source. The obtained lobe sizes and their spatial distribution are in good agreement with the observed morphology of the pPN CRL 618. We also obtain that the kinematic ages of the fingers are similar to t...

  1. Triphenylphosphonium Cations of the Diterpenoid Isosteviol: Synthesis and Antimitotic Activity in a Sea Urchin Embryo Model.

    Strobykina, Irina Yu; Belenok, Mayya G; Semenova, Marina N; Semenov, Victor V; Babaev, Vasiliy M; Rizvanov, Ildar Kh; Mironov, Vladimir F; Kataev, Vladimir E

    2015-06-26

    A series of novel triphenylphosphonium (TPP) cations of the diterpenoid isosteviol (1, 16-oxo-ent-beyeran-19-oic acid) have been synthesized and evaluated in an in vivo phenotypic sea urchin embryo assay for antimitotic activity. The TPP moiety was applied as a carrier to provide selective accumulation of a connected compound into mitochondria. When applied to fertilized eggs, the targeted isosteviol TPP conjugates induced mitotic arrest with the formation of aberrant multipolar mitotic spindles, whereas both isosteviol and the methyltriphenylphosphonium cation were inactive. The structure-activity relationship study revealed the essential role of the TPP group for the realization of the isosteviol effect, while the chemical structure and the length of the linker only slightly influenced the antimitotic potency. The results obtained using the sea urchin embryo model suggested that TPP conjugates of isosteviol induced mitotic spindle defects and mitotic arrest presumably by affecting mitochondrial DNA. Since targeting mitochondria is considered as an encouraging strategy for cancer therapy, TPP-isosteviol conjugates may represent promising candidates for further design as anticancer agents. PMID:26042548

  2. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification

    Spinnato, J.; Roubaud, M.-C.; Burle, B.; Torrésani, B.

    2015-06-01

    Objective. The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. Approach. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Main results. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. Significance. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.

  3. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  4. Temporal processing of audiovisual stimuli is enhanced in musicians: evidence from magnetoencephalography (MEG.

    Yao Lu

    Full Text Available Numerous studies have demonstrated that the structural and functional differences between professional musicians and non-musicians are not only found within a single modality, but also with regard to multisensory integration. In this study we have combined psychophysical with neurophysiological measurements investigating the processing of non-musical, synchronous or various levels of asynchronous audiovisual events. We hypothesize that long-term multisensory experience alters temporal audiovisual processing already at a non-musical stage. Behaviorally, musicians scored significantly better than non-musicians in judging whether the auditory and visual stimuli were synchronous or asynchronous. At the neural level, the statistical analysis for the audiovisual asynchronous response revealed three clusters of activations including the ACC and the SFG and two bilaterally located activations in IFG and STG in both groups. Musicians, in comparison to the non-musicians, responded to synchronous audiovisual events with enhanced neuronal activity in a broad left posterior temporal region that covers the STG, the insula and the Postcentral Gyrus. Musicians also showed significantly greater activation in the left Cerebellum, when confronted with an audiovisual asynchrony. Taken together, our MEG results form a strong indication that long-term musical training alters the basic audiovisual temporal processing already in an early stage (direct after the auditory N1 wave, while the psychophysical results indicate that musical training may also provide behavioral benefits in the accuracy of the estimates regarding the timing of audiovisual events.

  5. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG).

    Amezquita-Sanchez, Juan P; Adeli, Anahita; Adeli, Hojjat

    2016-05-15

    Mild cognitive impairment (MCI) is a cognitive disorder characterized by memory impairment, greater than expected by age. A new methodology is presented to identify MCI patients during a working memory task using MEG signals. The methodology consists of four steps: In step 1, the complete ensemble empirical mode decomposition (CEEMD) is used to decompose the MEG signal into a set of adaptive sub-bands according to its contained frequency information. In step 2, a nonlinear dynamics measure based on permutation entropy (PE) analysis is employed to analyze the sub-bands and detect features to be used for MCI detection. In step 3, an analysis of variation (ANOVA) is used for feature selection. In step 4, the enhanced probabilistic neural network (EPNN) classifier is applied to the selected features to distinguish between MCI and healthy patients. The usefulness and effectiveness of the proposed methodology are validated using the sensed MEG data obtained experimentally from 18 MCI and 19 control patients. PMID:26940603

  6. Deficits of magnetoencephalography regional power in patients with major depressive disorder:an individual spectral analysis

    汤浩

    2014-01-01

    Objective To explore the discrepancies of individualized frequency and band power between major depressive disorder(MDD)and controls in resting state,and the association of abnormal spectral power with clinical severity of MDD.Methods Whole-head MEG recordings were collected in 19 patients with MDD and 19 non-depressed controls in eye-closed resting state.Individual spectral power of each subject was calculated based on

  7. A magnetoencephalography analysis of resting state power spectrum of inpatients with major depressive disorder

    汤浩

    2013-01-01

    Objective To explore the discrepancies of magne-toencephalography(MEG) spectral power between female patients with major depressive disorder and nondepressed subjects in resting state. Methods Whole head MEG recordings were obtained in 12 female patients with major

  8. A magnetoencephalography study of functional brain connectivity in childhood, adolescence and adulthood

    Smith, Helen Joanna Fabienne

    2015-01-01

    Functional brain networks are interconnected brain regions that flexibly coordinate their activity to support cognitive demands (Fair et al., 2009). Functional brain connectivity describes a statistical dependency between the activities recorded at spatially distinct brain regions (Friston, 2009). Changes in the pattern of connections and level of activation in functional brain networks are thought to occur across development (Taylor, Donner, & Pang, 2012) but the nature of these changes and ...

  9. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; van Dijk; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Patient and methods Resting state MEG recordings were obtained from 17 LGG patients...

  10. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    2016-02-01

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.