WorldWideScience

Sample records for magnetic field generation

  1. Magnetic field generator

    Science.gov (United States)

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  2. Magnetic field generation in astrophysics

    International Nuclear Information System (INIS)

    A study of the generation and maintenance of magnetic fields due to hydrodynamic motions was carried out. The physical system studied was a hydrodynamic shock wave. Under certain conditions the shock front is subject to a rippling instability. This instability can drive the generation of a magnetic field if the fluid is partially ionized. The generation of a magnetic field by such an instability was analyzed. Solutions were found for the evolution of the field, and for its spatial structure. For a spherical shock, the field was found to be a sum of spherical harmonics. It was found that the dominate scale for the magnetic field was the same as for the shock. Analysis by Vishniac and Ryu show that the fastest growing scale is approximately twice the minimal unstable scale, and that the minimal unstable scale is roughly the thickness of the shell. The maximum amplitude of the field B(sub max) was found to be approximately 10(exp -15) gauss. This however, is only the amplitude up to the time of fragmentation. The properties of a fragmenting shock were then analyzed in the weak nonlinear limit. The results were applied to the maintenance and/or amplification of the magnetic field found in the linear analysis. The induction equation for the magnetic field was analyzed. The nonlinear analysis of the shock was carried out by averaging over the thin shell of the shock. While necessary to make the problem tractable, the resulting velocities do not drive a magnetic dynamo

  3. Magnetic Field Generation in Stars

    Science.gov (United States)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  4. Magnetic Field Generation in Stars

    CERN Document Server

    Ferrario, Lilia; Zrake, Jonathan

    2015-01-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...

  5. Primordial Generation of Magnetic Fields

    CERN Document Server

    Pandey, Arun Kumar

    2015-01-01

    We reexamine generation of the primordial magnetic fields, at temperature $T>80$TeV, by applying a consistent kinetic theory framework which is suitably modified to take the quantum anomaly into account. The modified kinetic equation can reproduce the known quantum field theoretic results upto the leading orders. We show that our results qualitatively matches with the earlier results obtained using heuristic arguments. The modified kinetic theory can give the instabilities responsible for generation of the magnetic field due to chiral imbalance in two distinct regimes: a) when the collisions play a dominant role and b) when the primordial plasma can be regarded as collisionless. We argue that the instability developing in the collisional regime can dominate over the instability in the collisionless regime.

  6. Generation of helical magnetic fields from inflation

    OpenAIRE

    Jain, Rajeev Kumar; Durrer, Ruth; Hollenstein, Lukas

    2012-01-01

    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed fi...

  7. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  8. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  9. Generation of Magnetic Fields in Cosmology

    OpenAIRE

    Dolgov, A. D.

    2001-01-01

    Mechanisms of generation of magnetic fields in the early universe which could seed the present-day large scale galactic magnetic fields, are briefly reviewed. Three possible ways to create large scale magnetic fields are discussed: breaking of conformal invariance of electromagnetic interactions and inflationary stretching of the field wave length, first order cosmological phase transitions, and chaotic electric currents generated by turbulent flows in the primeval plasma.

  10. The magnetic field gradients generation for magnetic resonance tomography

    International Nuclear Information System (INIS)

    To obtain three-dimensional images in the computerized tomography a gradient of magnetic field should be generated. In this paper the analytical as well as computerized calculations of magnetic coils for such purposes are presented

  11. Generation of intense transient magnetic fields

    International Nuclear Information System (INIS)

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  12. Magnetic field generation in curved spacetimes

    CERN Document Server

    Mahajan, Swadesh M

    2011-01-01

    Using the generally covariant magnetofluid formalism for a hot plasma, a new curvature (of space time) driven mechanism for generating seed vorticity/magnetic field is presented. The "battery" owes its origin to the interaction between gravity (epitomized in the spatial variation of the metric tensor) and the inhomogeneous plasma thermodynamics. The general relativistic drive for the seed field is evaluated in a simplified model of a hot plasma accreting around a Schwarzschild black hole. Some astrophysical applications are suggested.

  13. Induction MHD generator using alternating magnetic field

    International Nuclear Information System (INIS)

    The induction MHD generator using an alternating magnetic field is proposed. The characteristics of the machine are analyzed theoretically and also compared with those of the induction MHD generator using a traveling magnetic field. Following conclusions are obtained for the fundamental characteristics of the present machine: (1) This type of the machine is possibly operated not only as the generator but also as the pump or as the damper. (2) The optimum condition for the maximum generator efficiency exists among the relations of the frequency, the fluid velocity and the inner core radius because of the eddy current loss due to an alternating magnetic field. (3) The power ratio of the reactive power of the machine to the gross output power can be reduced to a much smaller value than that of the traveling wave MHD generator. Therefore, even in the case of the working fluid with a relative low electrical conductivity such as two-phase liquid metal flow with high void fraction, the acceptable power ratio can be expected. (4) For the working fluid with higher electrical conductivity the skin effect is also able to be reduced to the acceptable level in the present machine, while it is a serious problem in the traveling wave MHD generator. (author)

  14. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10-4, the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  15. RESISTIVE MAGNETIC FIELD GENERATION AT COSMIC DAWN

    International Nuclear Information System (INIS)

    Relativistic charged particles (CRs for cosmic rays) produced by supernova explosion of the first generation of massive stars that are responsible for the reionization of the universe escape into the intergalactic medium, carrying an electric current. Charge imbalance and induction give rise to a return current, j-vectort, carried by the cold thermal plasma which tends to cancel the CR current. The electric field, E-vector =? j-vectort, required to draw the collisional return current opposes the outflow of low-energy CRs and ohmically heats the cold plasma. Owing to inhomogeneities in the resistivity, ?(T), caused by a structure in the temperature, T, of the intergalactic plasma, the electric field possesses a rotational component which sustains Faraday's induction. It is found that a magnetic field is robustly generated throughout intergalactic space at a rate of 10-17 to 10-16 G Gyr-1, until the temperature of the intergalactic medium is raised by cosmic reionization. The magnetic field may seed the subsequent growth of magnetic fields in the intergalactic environment. The role of CR-driven instabilities is discussed, and nonlinear effects are briefly considered.

  16. Primordial magnetic field generated in natural inflation

    Science.gov (United States)

    AlMuhammad, Anwar S.; Lopez-Mobilia, Rafael

    2015-11-01

    We study the simple gauge invariant model {f^2}FF as a way to generate primordial magnetic fields (PMF) in natural inflation (NI). We compute both magnetic and electric spectra generated by the {f^2}FF model in NI for different values of model parameters and find that both de Sitter and power law expansion lead to the same results at sufficiently large number of e-foldings. We also find that the necessary scale invariance property of the PMF cannot be obtained in NI in first order of slow roll limits under the constraint of inflationary potential, V( 0 ) ˜eq 0. Furthermore, if this constraint is relaxed to achieve scale invariance, then the model suffers from the backreaction problem for the co-moving wave number, k ? 8.0× 10^{-7} {Mpc^{-1}} and Hubble parameter, H_i ? 1.25× 10^{-3} {M_{Pl}}. The former can be considered as a lower bound of k and the later as an upper bound of H_i for a model which is free from the backreaction problem. Further, we show that there is a narrow range of the height of the potential ? around {? _{min}} ? 0.00874{M_{{Pl}}} and of k around {k_{min}} ˜ 0.0173{Mp}{{c}^{ - 1}}, at which the energy of the electric field can fall below the energy of the magnetic field. The range of k lies within some observable scales. However, the relatively short range of k presents a challenge to the viability of this model.

  17. Fast ignition studies and magnetic field generation

    International Nuclear Information System (INIS)

    Experiments, theory and simulation have been carried out to describe intense, relativistic short pulse laser interaction with dense plasmas. Magnetic fields of up to 0.7 GGauss have been measured through polarization measurements of high order laser harmonics. Simulation and analytic theory show that these fields are associated with photon momentum deposition. The same mechanism can cause weaker fields in the speckle of long pulse laser in underdense plasmas, leading to termination of SBS. Other magnetic fields in gas-filled hohlraums lead to steep temperature gradients in regions where linear transport fails. A Vlasov-Fokker-Planck code has been developed to study these effects more accurately. (author)

  18. Design of CHWHG Type Low Frequency Magnetic Fields Generator

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2007-01-01

    Full Text Available Highly considering the invariability of magnetic field strength in the Magnetic Field Generators, which used to stimulate rat's nerve cell, surely improve the stimulation performance outcome. A new technique to get an invariable magnetic field strength within Magnetic Field Generator has been proposed, Furthermore it had implemented on microcontroller-based system providing an Alternating Magnetic Field Generator (AMFG with a high performance. The performance of the system is evaluated using two different methods. The results show that the errors are well and acceptable.

  19. High Magnetic Field Generator of Sub-Microsecond Duration

    Directory of Open Access Journals (Sweden)

    Audrius Grainys

    2012-04-01

    Full Text Available The article describes the possibility of generating a micro and sub-microsecond magnetic impulse reaching 1–10 T, investigates various configurations of microcoils and discusses the principal circuit of a magnetic field impulse generator of microsecond duration. The transient processes of current, temperature and magnetic field are calculated applying the finite element method.Article in Lithuanian

  20. High magnetic field MHD generator program

    Science.gov (United States)

    1980-10-01

    The MHD channel phenomena which are important at high magnetic fields are investigated. Nonuniformity effects, boundary layers, Hall field breakdown, the effects on electrode configuration and current concentrations, and studies of steady state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions are discussed. In the study of the effects of nonuniformities and instabilities, theoretical models were developed and tested against available data. Boundary layer measurements and calculations of velocity, temperature, and electron density were systematically assessed; by accounting for the effect of free stream turbulence, good agreement is obtained between measurement and theory. An improved laser Doppler anemometer was developed for turbulence damping and velocity profile measurements.

  1. Visualisation of Magnetic Fields Generated by Helmholtz Coils

    Directory of Open Access Journals (Sweden)

    Jozef Suriansky

    2006-01-01

    Full Text Available This article deals with a method of a homogenous magnetic field generation using Helmholtz coils. There is also an experiment of a magnetic field visualisation with a digital image processing performed with a magneto-resistive sensor described. At the end of this article, there is a possibility of permeability measurement using digital images of a magnetic field shown.

  2. Improved Magnetic Field Generation Efficiency and Higher Temperature Spheromak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R D; Hill, D N; McLean, H S; Hooper, E B; Hudson, B F; Moller, J M; Romero-Talamas, C A

    2008-09-15

    New understanding of the mechanisms governing the observed magnetic field generation limits on the sustained spheromak physics experiment has been obtained. Extending the duration of magnetic helicity injection during the formation of a spheromak and optimizing the ratio of injected current to bias flux produce higher magnetic field plasmas with record spheromak electron temperatures. To explore magnetic field buildup efficiency limits, the confinement region geometry was varied resulting in improved field buildup efficiencies.

  3. The Generation of Magnetic Fields Through Driven Turbulence

    OpenAIRE

    Cho, Jungyeon; Vishniac, Ethan T.

    2000-01-01

    We have tested the ability of driven turbulence to generate magnetic field structure from a weak uniform field using three dimensional numerical simulations of incompressible turbulence. We used a pseudo-spectral code with a numerical resolution of up to $144^3$ collocation points. We find that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipar...

  4. Evolution of inflation-generated magnetic field through phase transitions

    OpenAIRE

    Kahniashvili, Tina; Brandenburg, Axel; Campanelli, Leonardo; Ratra, Bharat; Tevzadze, Alexander G.

    2012-01-01

    We study the evolution of an inflation-generated magnetic field, due to its coupling to fluid motions, during cosmological phase transitions. We find that the magnetic field stays almost unchanged on large scales, while on small scales the spectrum is modified in such a way that power at small scales becomes progressively suppressed. We also show that the magnetic field generates turbulent motions in the initially turbulence-free plasma. On large scales, the slope of the res...

  5. The Generation of Magnetic Fields and X-ray Observations

    OpenAIRE

    Fujita, Yutaka; Kato, Tsunehiko N.

    2006-01-01

    We show that strong magnetic fields can be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The estimated strength of the magnetic field generated through this mechanism is close to the order of values observed in galaxies or clusters of galaxies at present, which indicates that strong amplification of magnetic fields after formation of galaxies or clusters of galaxies is not required. Th...

  6. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  7. RESISTIVE MAGNETIC FIELD GENERATION AT COSMIC DAWN

    OpenAIRE

    Francesco Miniati; Bell, A. R.

    2011-01-01

    Relativistic charged particles (CRs for cosmic rays) produced by supernova explosion of the first generation of massive stars that are responsible for the reionization of the universe escape into the intergalactic medium, carrying an electric current. Charge imbalance and induction give rise to a return current, ? jt , carried by the cold thermal plasma which tends to cancel the CR current. The electric field, ?E = n? jt , required to draw the collisional return current opposes the outflow of...

  8. Magnetic field simulation and research of plasma generator

    International Nuclear Information System (INIS)

    In laser plasma beat wave accelerator, the strong magnetic field higher than 1500 Guass, which can confine the behavior of plasma, is needed. The distribution of magnetic field on plasma generator is obtained using OPERA-3D procedure. The simulation agrees with the experimental data well. While adjusting some parameters, some factors, which cause the actual magnetic field lower than the designed one, are found. Based on this simulation, modification has been given

  9. Evolution of Primordial Magnetic Fields: From Generation Till Today

    OpenAIRE

    Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.

    2015-01-01

    In this presentation we summarize our previous results concerning the evolution of primordial magnetic fields with and without helicity during the expansion of the Universe. We address different magnetogenesis scenarios such as inflation, electroweak and QCD phase transitions magnetogenesis. A high Reynolds number in the early Universe ensures strong coupling between magnetic field and fluid motions. After generation the subsequent dynamics of the magnetic field is governed ...

  10. The Model of Magnetic-Field Generation with Screw Dynamo

    CERN Document Server

    Tlatov, Andrey G

    2013-01-01

    This paper considers a possibility of magnetic-field generation by local turbulent flows at the bottom of convective zone. The cycle of magnetic-field generation in this model can be represented in the form of sequency of processes. There are vortexes with azimuth axis, similar with Taylor vortex, close to the bottom of convection zone. This leads to the generation of twisted flux tubes because of screw dynamo. The growth of magnetic field causes emersion of U- loops. During the process of emersion and extraction azimuthal field of flux tubes converts to axial field, and reaches the surface as bipolar of sunspots with U-shaped configuration. Due to differential rotation residual bipolar fields stretch out to the surface toroidal field and are shifted to the bottom of the convective zone by means of meridional flow at high latitudes. The direction of the toroidal field within the generation zone reverses its sign, and the cycle is repeated.

  11. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that $Z \\alpha < 2/\\pi$, where $\\alpha$ denotes the fine structure...... unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self-generated...... magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  12. Active screening of magnetic field near power stations generator buses

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2013-12-01

    Full Text Available An experimental study technique for a prototyping system of active screening of power-frequency magnetic field distortions near power station generator buses via controllable magnetic field sources is presented. Results of experimental research on a proto-typing active screening system with different control algorithms are given.

  13. Second order semiclassics with self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider the semiclassical asymptotics of the sum of negative eigenvalues of the three-dimensional Pauli operator with an external potential and a self-generated magnetic field $B$. We also add the field energy $\\beta \\int B^2$ and we minimize over all magnetic fields. The parameter $\\beta......$ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order with an...

  14. Magnetic field generation by the stationary accretion shock instability

    CERN Document Server

    Endeve, E; Budiardja, R D; Mezzacappa, A

    2008-01-01

    By adding a weak magnetic field to a spherically symmetric fluid configuration that caricatures a stalled shock in the post-bounce supernova environment, we explore the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields. The SASI develops upon perturbation of the initial condition, and the ensuing flow generates--{\\em in the absence of rotation}--dynamically significant magnetic fields ($\\sim 10^{15}$ G) on a time scale that is relevant for the explosion mechanism of core-collapse supernovae. We describe our model, present some recent results, and discuss their potential relevance for supernova models.

  15. The Generation of Magnetic Fields and X-ray Observations

    CERN Document Server

    Fujita, Y; Fujita, Yutaka; Kato, Tsunehiko N.

    2006-01-01

    We show that strong magnetic fields can be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The estimated strength of the magnetic field generated through this mechanism is close to the order of values observed in galaxies or clusters of galaxies at present, which indicates that strong amplification of magnetic fields after formation of galaxies or clusters of galaxies is not required. This mechanism could have worked even at a redshift of ~10, and therefore the generated magnetic fields may have affected the formation of stars at the early universe. This model will be confirmed by future observations of nearby clusters of galaxies. In this context, we also present the Japanese X-ray missions.

  16. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    Energy Technology Data Exchange (ETDEWEB)

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  17. Generation of Magnetic Fields by a Gravitomagnetic Plasma Battery

    OpenAIRE

    Khanna, Ramon

    1998-01-01

    The generation of magnetic fields by a battery, operating in an ion-electron plasma around a Kerr black hole, is studied in the 3+1 split of the Kerr metric. It is found that the gravitomagnetic contributions to the electron partial pressure are able to drive currents. The strength of the equilibrium magnetic field should be higher than for the classical Biermann battery, which is found to operate in this relativistic context as well, since the gravitomagnetic driving terms ...

  18. Spontaneous generation of magnetic fields in astrophysical dusty plasmas

    International Nuclear Information System (INIS)

    Two novel mechanisms for spontaneous generation of magnetic fields in dusty plasmas are presented. These are a new dust-plasma battery involving the cross product of the gradient of the dust charge density and the electron-ion pressures, as well as a new Weibel-like instability involving ion pressure anisotropy and resistive electron motions. The relevance of the present investigation to magnetic fields in astrophysical objects is discussed

  19. Energy confinement and magnetic field generation in the SSPX spheromak

    International Nuclear Information System (INIS)

    The Sustained Spheromak Physics Experiment (SSPX) [Hooper et al., Nuclear Fusion 39, 863 (1999)] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (Te) recorded for a spheromak with Te>500 eV, toroidal magnetic field ?1 T, and toroidal current (?1 MA) [Wood et al., 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', Phys. Rev. Lett. (submitted)]. Extending the sustainment phase to >8 ms extends the period of low magnetic fluctuations (pol/?gun. Successive gun pulses are demonstrated to maintain the magnetic field in a quasisteady state against resistive decay. Initial measurements of neutral particle flux in multipulse operation show charge-exchange power loss e(r) associated with q?1/2

  20. Magnetic field generation from non-equilibrium phase transitions

    OpenAIRE

    Boyanovsky, D.; De Vega, H. J.; Simionato, M.

    2002-01-01

    We study the generation of magnetic fields during the stage of particle production resulting from spinodal instabilities during phase transitions out of equilibrium. The main premise is that long-wavelength instabilities that drive the phase transition lead to strong non-equilibrium charge and current fluctuations which generate electromagnetic fields. We present a formulation based on the non-equilibrium Schwinger-Dyson equations that leads to an exact expression for the sp...

  1. Early Starbursts and Magnetic Field Generation in Galaxy Clusters

    CERN Document Server

    Völk, H J; Völk, Heinrich J.

    2000-01-01

    We propose a mechanism for the early generation of the mean Intracluster magnetic field in terms of magnetized galactic winds. These winds are the result of starburst phases of the cluster galaxies, assumed to produce the predominant population of early type galaxies in mergers of gas-rich progenitors. After further cluster contraction typical field strengths are $10^{-7}$ Gauss. This estimate may increase to the level of $10^{-6}$ Gauss if more extreme galactic parameters, and subsequent shear amplification of the field are considered. The topology of the field is one of almost unconnected Wind Bubbles with Parker-type spiral field configurations over scales of the distance between galaxies. Further cluster accretion, that continues chaotically in space and time up to the present, will perturb these "large-scale" mean fields on smaller or at best comparable spatial scales. The small scale fields in the resulting turbulent fluctuation spectrum should be able to confine relativistic particles over times longer...

  2. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays. PMID:23683185

  3. Highly Stable and Finely Tuned Magnetic Fields Generated by Permanent Magnet Assemblies

    Science.gov (United States)

    Danieli, E.; Perlo, J.; Blümich, B.; Casanova, F.

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  4. Computational Models for Creating Homogeneous Magnetic Field Generation Systems

    Directory of Open Access Journals (Sweden)

    Gerlys M. Villalobos-Fontalvo

    2013-11-01

    Full Text Available It is increasingly common to use magnetic fields at the cellular level to assess their interaction with biological tissues. The stimulation is usually done with Helmholtz coils which generate a uniform magnetic field in the center of the system. However, assessing cellular behavior with different magnetic field characteristics can be a long and expensive process. For this, it can be used computational models to previously estimate the cellular behavior due to variety of field characteristics prior to in-vitro stimulation in a laboratory. In this paper, we present a methodology for the development of three computational models of homogeneous magnetic field generation systems for possible application in cell stimulation. The models were developed in the Ansys Workbench environment and it was evaluated the magnetic flux density behavior at different configurations. The results were validated with theoretical calculations from the Biot-Savart law. Validated models will be coupled to Ansys APDL environment in order to assess the harmonic response of the system.

  5. Gravitational radiation generated by cosmological phase transition magnetic fields

    International Nuclear Information System (INIS)

    We study gravitational waves generated by the cosmological magnetic fields induced via bubble collisions during the electroweak (EW) and QCD phase transitions. The magnetic field generation mechanisms considered here are based on the use of the fundamental EW minimal supersymmetric and QCD Lagrangians. The gravitational waves spectrum is computed using a magnetohydrodynamic turbulence model. We find that the gravitational wave spectrum amplitude generated by the EW phase transition peaks at a frequency of approximately 1-2 mHz, and is of the order of 10-20-10-21; thus this signal is possibly detectable by the Laser Interferometer Space Antenna (LISA). The gravitational waves generated during the QCD phase transition, however, are outside the LISA sensitivity bands.

  6. Energy confinement and magnetic field generation in the SSPX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; McLean, H S; Wood, R D; Hooper, E B; Hill, D N; Jayakumar, J; Moller, J; Romero-Talamas, C; Casper, T A; LoDestro, L L; Pearlstein, L D; Johnson, III, J A; Mezonlin, E

    2008-02-11

    The Sustained Spheromak Physics Experiment (SSPX) [E.B. Hooper, et. al., Nuclear Fusion, Vol. 39, No. 7] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (T{sub e}) recorded for a spheromak with T{sub e} > 500 eV, toroidal magnetic field {approx}1 T and toroidal current ({approx}1 MA) [R.D. Wood, D.N. Hill, H.S. McLean, E.B. Hooper, B.F. Hudson, J.M. Moller, 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', submitted to Physical Review Letters]. Extending the sustainment phase to > 8 ms extends the period of low magnetic fluctuations (< 1 %) by 50%. The NIMROD 3-D resistive MHD code [C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger and D.D. Schnack, The NIMROD Team, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification {Psi}{sub pol}/{Psi}{sub gun}. Successive gun pulses are demonstrated to maintain the magnetic field in a quasi-steady state against resistive decay. Initial measurements of neutral particle flux in multi-pulse operation show charge-exchange power loss < 1% of gun input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: a hollow-to-peaked T{sub e}(r) associated with q {approx} 1/2.

  7. Generation of magnetic fields in Einstein-Aether gravity

    CERN Document Server

    Saga, Shohei; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2013-01-01

    Recently the lower bounds of the intergalactic magnetic fields $10^{-16} \\sim 10^{-20}$ Gauss are set by gamma-ray observations while it is unlikely to generate such large scale magnetic fields through astrophysical processes. It is known that large scale magnetic fields could be generated if there exist cosmological vector mode perturbations in the primordial plasma. The vector mode, however, has only a decaying solution in General Relativity if the plasma consists of perfect fluids. In order to investigate a possible mechanism of magnetogenesis in the primordial plasma, here we consider cosmological perturbations in the Einstein-Aether gravity model, in which the aether field can act as a new source of vector metric perturbations and thus of magnetic fields. We estimate the angular power spectra of temperature and B-mode polarization of the Cosmic Microwave Background (CMB) Anisotropies in this model and put a rough constraint on the aether field parameters from latest observations. We then estimate the pow...

  8. Generation and measurement of pulsed high magnetic field

    CERN Document Server

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  9. Entropy Generation in Natural Convection Under an Evanescent Magnetic Field

    International Nuclear Information System (INIS)

    We numerically study the effect of an externally-evanescent magnetic field on total entropy generation in conducting and non-reactive fluid enclosed in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of entropy generation in natural convection. The total entropy generation was calculated for fixed value of irreversibility distribution ratio, different relaxation time varying from 0 to 1/5 and Grashof number equal to 105

  10. FORMING CAPABILITIES OF A PULSE MAGNETIC FIELD GENERATOR

    Directory of Open Access Journals (Sweden)

    A. A. Petkov

    2015-04-01

    Full Text Available Purpose. Determination of areas ratio of the parameters of the discharge circuit elements of the generator, which ensure the formation of magnetic field pulses of different shapes. Methodology. Numerical simulation using dimensionless variables that determine the nature of the transition process in the discharge circuit of the generator, and use the procedure for determining the pulse points of meeting the conditions of extremum and the transition through zero. Results. Obtained a description of the formation of the three specific areas of waveforms: oscillatory weakly damped oscillatory strongly damped and unipolar pulse with a monotonic rise and fall values. A relation to the choice of parameters of elements of the discharge circuit of the generator, which formed unipolar pulses with a monotonic rise and fall values. Originality. A completed and extended database that implements the mapping of the formal description of the pulse shape with a description of areas ratio parameters for high-voltage pulse discharge circuit test units, with respect to the pulses of current flowing in the formation of the magnetic field. Practical value. The relations obtained allow to select the parameters of the discharge circuit elements of the generator designed to generate test pulses of magnetic field.

  11. Generation of scale invariant magnetic fields in bouncing universes

    Science.gov (United States)

    Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar

    2015-09-01

    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for the Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-Script N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.

  12. On the electric and magnetic field generation in expanding plasmas

    International Nuclear Information System (INIS)

    This thesis deals with the generation of electric and magnetic fields in expanding plasmas. The theoretical model used to calculate the different field quantities in such plasmas is discussed in part 1 and is in fact an analysis of Ohm's law. A general method is given that decomposes each of the forces terms in Ohm's law in a component that induces a charge separation in the plasma and in a component that can drive current. This decomposition is unambiguous and depends upon the boundary conditions for the electric potential. It is shown that in calculating the electromagnetic field quantities in a plasma that is located in the vicinity of a boundary that imposes constraints on the electric potential, Ohm's law should be analyzed instead of the so-called induction equation. Three applications of the model are presented. A description is given of the unipolar arc discharge where both plasma and sheath effects have been taken into account. Secondly a description is presented of the plasma effects of a cathode spot. The third application of the model deals with the generation of magnetic fields in laser-produced plasmas. The second part of this thesis describes the experiments on a magnetized argon plasma expanding from a cascaded arc. With the use of spectroscopic techniques the electron density, ion temperature and the rotation velocity profiles of the ion gas have been determined. The magnetic field generated by the plasma has been measured with the use of the Zeeman effect. Depending on the channel diameter of the nozzle of the cascaded arc, self-generated magnetic fields with axial components of the order of 1% of the externally applied mangetic field have been observed. From the measured ion rotation it has been concluded that this magnetic field is mainly generated by azimuthal electron currents. The corresponding azimuthal current density is of the order of 15% of the axial current density. The observed ion rotation is caused by electron-ion friction. (author). 77 refs.; 69 figs.; 1 tab

  13. High-magnetic-field MHD-generator program

    Science.gov (United States)

    Kruger, C. H.; Eustis, R. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1982-04-01

    Progress in an experimental and theoretical program designed to investigate a number of important problems in the development of MHD generator channels is summarized. The areas of research include nonuniformity and stability effects, boundary layers, Hall field breakdown, the effects of electrode configuration and current concentrations, and studies of steady-state combustion disk and linear channels in a 6-Tesla magnet of small dimensions.

  14. High magnetic field generation using single-turn coils

    Science.gov (United States)

    Werst, M. D.; Ingram, S. K.; Wehrlen, D. J.; Weldon, W. F.

    1994-07-01

    The advent of the homopolar generator has recently permitted the demonstration of a 20 T on-axis, single turn toroidal magnet. Homopolar generators are inherently high current, low-voltage machines which ideally match the requirements of single-turn coils. Magnetic field levels previously limited by the insulation's thermal and voltage breakdown capability have been surpassed. The entire coil volume is essentially occupied by high strength, high conductivity conductor. A current density of 840 MA/m(sup 2) has been achieved in a 9 cm major radius, toroidal coil with a 9.14 MA, 56 V open-current discharge (sinusoidal pulse, 150 ms). Experimental test results are presented, as well as discussion of the potential for applying this technology to solenoid-type coils. This research is funded by the Texas Atomic Energy Research Foundation.

  15. Glutathione production using magnetic fields generated by magnets

    Scientific Electronic Library Online (English)

    Lucielen Oliveira dos, Santos; Tatiane Araujo, Gonzales; Beatriz Torsani, Úbeda; Ranulfo Monte, Alegre.

    2012-12-01

    Full Text Available The objective of this work was to study the production of GSH by Saccharomyces cerevisiae ATCC 7754 in a fermentor (5 L) using a cell recycle system with magnets. The fermentation conditions were 20°C, 500 rpm, 5% (v/v) of inoculum, pHinitial 5, 1.1 vvm aeration and total fermentation time of 72 h. [...] The time of application of MF ranged from 24, 48 or 72 h. In comparison to the control experiment, the best results were obtained with 72 h of application of MF. The cell concentration reached 19.5 g/L and GSH concentration was 271.9 mg/L that corresponded to an increase of 2.63 and 32.1% compared to the control experiment, respectively.

  16. Glutathione production using magnetic fields generated by magnets

    Directory of Open Access Journals (Sweden)

    Lucielen Oliveira dos Santos

    2012-12-01

    Full Text Available The objective of this work was to study the production of GSH by Saccharomyces cerevisiae ATCC 7754 in a fermentor (5 L using a cell recycle system with magnets. The fermentation conditions were 20°C, 500 rpm, 5% (v/v of inoculum, pHinitial 5, 1.1 vvm aeration and total fermentation time of 72 h. The time of application of MF ranged from 24, 48 or 72 h. In comparison to the control experiment, the best results were obtained with 72 h of application of MF. The cell concentration reached 19.5 g/L and GSH concentration was 271.9 mg/L that corresponded to an increase of 2.63 and 32.1% compared to the control experiment, respectively.

  17. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    International Nuclear Information System (INIS)

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (?230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field. (inertially confined plasma)

  18. Generation of the Primordial Magnetic Fields during Cosmological Reionization

    CERN Document Server

    Gnedin, N Yu; Zweibel, E G; Gnedin, Nickolay Y.; Ferrara, Andrea; Zweibel, Ellen G.

    2000-01-01

    We investigate the generation of magnetic field by the Biermann battery in cosmological ionization fronts, using new simulations of the reionization of the universe by stars in protogalaxies. Two mechanisms are primarily responsible for magnetogenesis: i) the breakout of I-fronts from protogalaxies, and ii) the propagation of I-fronts through the high density neutral filaments which are part of the cosmic web. The first mechanism is dominant prior to overlapping of ionized regions (z ~ 7), whereas the second continues to operate even after that epoch. However, after overlap the field strength increase is largely due to the gas compression occurring as cosmic structures form. As a consequence, the magnetic field at z ~ 5 closely traces the gas density, and it is highly ordered on megaparsec scales. The mean mass-weighted field strength is B_0 ~ 10^{-19} G in the simulation box. There is a relatively well-defined, nearly linear correlation between B_0 and the baryonic mass of virialized objects, with B_0 ~ 10^{...

  19. Dynamical quark mass generation in a strong external magnetic field

    International Nuclear Information System (INIS)

    We investigate the effect of a strong magnetic field on dynamical chiral symmetry breaking in quenched and unquenched QCD. To this end we apply the Ritus formalism to the coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagator under the presence of an external constant Abelian magnetic field. We discuss the effect of the magnetic field onto the quark condensate and extract the chiral susceptibility.

  20. On Generation of magnetic field in astrophysical bodies

    CERN Document Server

    Verma, M K

    2001-01-01

    In this letter we compute energy transfer rates from velocity field to magnetic field in MHD turbulence using field-theoretic method. The striking result of our field theoretic calculation is that there is a large energy transfer rate from the large-scale velocity field to the large-scale magnetic field. We claim that the growth of large-scale magnetic energy is primarily due to this transfer. We reached the above conclusion without any linear approximation like that in $\\alpha$-dynamo.

  1. Proposal for generating synthetic magnetic fields in hexagonal optical lattices

    Science.gov (United States)

    Tian, Binbin; Endres, Manuel; Pekker, David

    2015-05-01

    We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.

  2. Internal split field generator

    Science.gov (United States)

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  3. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    International Nuclear Information System (INIS)

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/?20?V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  4. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/?20?V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  5. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  6. Consistent generation of magnetic fields in axion inflation models

    CERN Document Server

    Fujita, Tomohiro; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki

    2015-01-01

    There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton $\\phi$ through the characteristic term $\\phi F\\tilde F$, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. Th...

  7. The use of mirror image symmetry in coil winding, applications and advantages in magnetic field generation

    International Nuclear Information System (INIS)

    In this paper, an improved method of winding inductors, transformers and motors is discovered. This invention greatly enhances the ability to generate magnetic fields with a given amount of wire. This invention may be as fundamental to the use of magnetic fields as was Nikola Tesla's use of rotating magnetic fields for the generation of alternating current

  8. Dynamo-generated magnetic fields in fast rotating single giants

    CERN Document Server

    Konstantinova-Antova, Renada; Schröder, Klaus-Peter; Petit, Pascal

    2009-01-01

    Red giants offer a good opportunity to study the interplay of magnetic fields and stellar evolution. Using the spectro-polarimeter NARVAL of the Telescope Bernard Lyot (TBL), Pic du Midi, France and the LSD technique, we began a survey of magnetic fields in single G-K-M giants. Early results include 6 MF-detections with fast rotating giants, and for the first time a magnetic field was detected directly in an evolved M-giant: EK Boo. Our results could be explained in the terms of $\\alpha$--$\\omega$ dynamo operating in these giants.

  9. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  10. CMB spectral distortions from the decay of causally generated magnetic fields

    OpenAIRE

    Wagstaff, Jacques M.; Banerjee, Robi

    2015-01-01

    We improve previous calculations of the CMB spectral distortions due to the decay of primordial magnetic fields. We focus our studies on causally generated magnetic fields at the electroweak and QCD phase transitions. We also consider the decay of helical magnetic fields. We show that the decay of non-helical magnetic fields generated at either the electroweak or QCD scale produce $\\mu$ and $y$-type distortions below $10^{-8}$ which are probably not detectable by a future PI...

  11. Consistent generation of magnetic fields in axion inflation models

    Science.gov (United States)

    Fujita, Tomohiro; Namba, Ryo; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki

    2015-05-01

    There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton phi through the characteristic term phi tilde F F, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. The EM field is subsequently amplified by parametric resonance during the period of inflaton oscillation. Once the thermal plasma is formed (reheating), the produced helical magnetic fields undergo a turbulent process called inverse cascade, which shifts their peak correlation scales from smaller to larger scales. We consistently take all these effects into account within the regime where the perturbation of phi is negligible and obtain Beff ~ 10?19 G, indicating the necessity of additional mechanisms to accommodate the observations.

  12. New magnetooptic head with a built-in generator for a bias magnetic field.

    Science.gov (United States)

    Kobori, H; Murakami, T; Mori, M

    1988-02-15

    A high performance magnetooptic head, which generates a bias magnetic field itself, has been developed. It has a moving magnet actuator to drive an objective lens. The moving magnets have two functions. One is to apply a constant magnetic field on the recording medium. The other is to comprise a magnetic circuit for focusing and tracking control. This magnetooptic head is suitable for use in the two-head erase and write method, in which it is not necessary to change the polarity of the bias magnetic field. Moreover, it enables designing a small-sized magnetooptic disk drive, because a bias magnetic field generator is built into the optical head. PMID:20523664

  13. Generation of a North/South Magnetic Field Component from Variations in the Photospheric Magnetic Field

    CERN Document Server

    Ulrich, Roger K

    2016-01-01

    We address the problem of calculating the transverse magnetic field in the solar wind outside of the hypothetical sphere called the source surface where the solar wind originates. This calculation must overcome a widely used fundamental assumption about the source surface -- the field is normally required to purely radial at the source surface. Our model rests on the fact that a change in the radial field strength at the source surface is a change in the field line density. Surrounding field lines must move laterally in order to accommodate this field line density change. As the outward wind velocity drags field lines past the source surface this lateral component of motion produces a tilt implying there is a transverse component to the field. An analytic method of calculating the lateral translation speed of the field lines is developed. We apply the technique to an interval of approximately two Carrington rotations at the beginning of 2011 using 2-h averages of data from the Helioseismic Magnetic Imager ins...

  14. Geometrical generation of cosmic magnetic fields within standard electromagnetism

    Scientific Electronic Library Online (English)

    Christos G., Tsagas; Alejandra, Kandus.

    2005-12-01

    Full Text Available We study the evolution of cosmological magnetic fields in FRW models with curved spatial sections and outline a geometrical mechanism for their superadiabatic amplification on large scales. The mechanism operates within standard electromagnetic theory and applies to FRW universes with open spatial s [...] ections. We discuss the general relativistic nature of the effect and show how it modifies the adiabatic magnetic evolution by reducing the depletion rate of the field. Assuming a universe that is only marginally open today (i.e. for 1-omega0 ~ 10-2), we estimate the main features of the superadiabatically amplified residual field and find that is of astrophysical interest.

  15. Higher magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Correction elements in colliding beam accelerators such as the Superconducting Super Collider (SSC) can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. Multipole magnetization field components have been measured within the HERA storage ring dipole magnets. Calculations of these components using the SCMAG04 code, which agree substantially with the measured multipoles, are presented in the report. As a result, in the proposed continuous correction winding for the SSC, dipoles have been replaced with lumped correction elements every six dipole magnets (about 120 meters apart). Nested lumped correction elements will also produce undesirable higher magnetization multipoles. This report shows a method by which the higher multipole generated by nested correction elements can be identified. (author)

  16. Design of four-conductor system for gradient magnetic field generation for magnetic resonance tomography

    International Nuclear Information System (INIS)

    The design is presented and an analysis made of a four-conductor system as a source of constant magnetic field gradients in a homogeneous stationary magnetic field. The analysis aims at determining the optimal conductor position for obtaining maximal homogeneity of the generated gradients in the plane of section of the specimen being imaged, at minimal currents through the conductors. The analysis showed that a parallel configuration of conductors symmetrical relative to the coordinate system origin with centres forming the apeces of a square (a:b=1), produced a nonlinear change in the real component of the magnetic field in the plane of section. It was derived from theory that conductors whose spacing ratio was a:b=2.2 acceptably generated a constant gradient of the magnetic field. The volume of gradient constant within the range of ±1% consisted of a cylinder of a radius of r = 0.9 b with b equal to the x-coordinate of the conductor position. (J.B.)

  17. Primordial magnetic fields generated by the non-adiabatic fluctuations at pre-recombination era

    CERN Document Server

    Maeda, Satoshi; Ichiki, Kiyotomo

    2011-01-01

    In the pre-recombination era, cosmological density fluctuations can naturally generate magnetic fields through Thomson scatterings. In previous studies, only the magnetic field generation from the initially-adiabatic fluctuations has been considered. Here we investigate the generation of cosmological magnetic fields sourced by the primordial non-adiabatic fluctuations based on the cosmological perturbation theory, using the tight-coupling approximations between photon and baryon fluids. It is found that the magnetic fields from the non-adiabatic fluctuations can arise at the first-order expansion of the tight coupling approximation. This result is in contrast to the case of adiabatic initial fluctuations, where the magnetic fields can be generated only at the second-order. In a general case where the primordial density perturbations contain small non-adiabatic fluctuations on the top of the dominant adiabatic ones, we show that the leading source of magnetic fields is given by the second-order coupling of the...

  18. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­?energy-­? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­?energy-­? density plasma the ideas for steady-­?state current drive developed for low-­?energy-­? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­?energy-­?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  19. Magnetic field generation and amplification in an expanding plasma

    CERN Document Server

    Schoeffler, K M; Fonseca, R A; Silva, L O

    2013-01-01

    Particle-in-cell simulations are used to investigate the formation of magnetic fields, B, in plasmas with perpendicular electron density and temperature gradients. For system sizes, L, comparable to the ion skin depth, d_i, it is shown that B ~ d_i/L, consistent with the Biermann battery effect. However, for large L/d_i, it is found that the Weibel instability (due to electron temperature anisotropy) supersedes the Biermann battery as the main producer of B. The Weibel-produced fields saturate at a finite amplitude (plasma \\beta \\approx 100), independent of L. The magnetic energy spectra below the electron Larmor radius scale is well fitted by power law with slope -16/3, as predicted in Schekochihin et al., Astrophys. J. Suppl. Ser 182, 310 (2009).

  20. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets

    OpenAIRE

    Ching-Yu Chou; Fabien Ferrage; Guy Aubert; Dimitris Sakellariou

    2015-01-01

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were...

  1. Self-generation mechanisms of intense magnetic fields in laser produced plasmas on solid targets

    International Nuclear Information System (INIS)

    Mechanisms of magnetic field self-generation in laser produced plasma are presented. Magnetic field generation due to the thermoelectric sources (Vnsub(e) x VTsub(e)), resonance absorption, ponderomotive forces, some kind of instabilities (modulational, Weibel, Rayleigh-Taylor instabilities) is considered. Estimates or scaling laws for parameters typical for current experiments are given. (author)

  2. Nature of Planetary Matter and Magnetic Field Generation in the Solar System

    OpenAIRE

    Herndon, J. Marvin

    2009-01-01

    Understanding the nature of the matter comprising the Solar System is crucial for understanding the mechanism that generates the Earth's geomagnetic field and the magnetic fields of other planets and satellites. The commonality in the Solar System of matter like that of the inside of the Earth, together with common nuclear reactor operating conditions,forms the basis for generalizing the author's concept of nuclear geomagnetic field generation to planetary magnetic field gen...

  3. Magnetic Field Generation and Zonal Flows in the Gas Giants

    Science.gov (United States)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (???55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets observed on Jupiter and Saturn are a relatively shallow phenomenon remaining confined to the outer few percent in radius.

  4. Conventional field generated by permanent magnet for ECR ion source of 18 GHz

    International Nuclear Information System (INIS)

    A conventional magnetic field is robust in achieving plasma confinement due to minimum B or tandem mirror field configuration. The French group led by Geller pioneered constructing ECR ion source (ECRIS) like MAFIOS and its variants in 1970's and later. Conventional ECRIS have the big advantage that nowhere magnetic field is null and so electrons have constant magnetic moment and execute adiabatic motion throughout the plasma chamber. But ECRIS has some problems too like i) the plasma generated is not axially symmetric, ii) the magnet system is complicated for generating axial and radial field and iii) injection and extraction regions are congested

  5. External split field generator

    Science.gov (United States)

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  6. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets

    Science.gov (United States)

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-07-01

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

  7. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    International Nuclear Information System (INIS)

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the ?ne×?Te term in the generalized Ohm’s law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  8. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    CERN Document Server

    Huntington, C M; Ross, J S; Zylstra, A B; Drake, R P; Froula, D H; Gregori, G; Kugland, N L; Kuranz, C C; Levy, M C; Li, C K; Meinecke, J; Morita, T; Petrasso, R; Plechaty, C; Remington, B A; Ryutov, D D; Sakawa, Y; Spitkovsky, A; Takabe, H; Park, H -S

    2013-01-01

    As the ejecta from supernovae or other energetic astrophysical events stream through the interstellar media, this plasma is shaped by instabilities that generate electric and magnetic fields. Among these instabilities, the Weibel filamentation instability plays a particularly important role, as it can generate significant magnetic fields in an initially un-magnetized medium. It is theorized that these Weibel fields are responsible for the observed gamma-ray burst light curve, particle acceleration in shock waves, and for providing seed fields for larger-scale cosmological magnetic structures. While the presence of these instability-generated fields has been inferred from astrophysical observation and predicted in simulation, observation in experiments is challenging. Here we report direct observation of well-organized, large-amplitude, filamentary magnetic fields associated with the Weibel instability in a scaled laboratory experiment. The experimental images, captured with proton radiography, are shown to be...

  9. Generation of large scale magnetic fields in single-field inflation

    International Nuclear Information System (INIS)

    We consider the generation of large scale magnetic fields in slow-roll inflation. The inflaton field is described in a supergravity framework where the conformal invariance of the electromagnetic field is generically and naturally broken. For each class of inflationary scenarios, we determine the functional dependence of the gauge coupling that is consistent with the observations on the magnetic field strength at various astrophysical scales and, at the same time, avoid a back-reaction problem. Then, we study whether the required coupling functions can naturally emerge in well motivated, possibly string inspired, models. We argue that this is non-trivial and can be realized only for a restricted class of scenarios. This includes power-law inflation where the inflaton field is interpreted as a modulus. However, this scenario seems to be consistent only if the energy scale of inflation is low and the reheating stage prolonged. Another reasonable possibility appears to be small field models since no back-reaction problem is present in this case but, unfortunately, the corresponding scenario cannot be justified in a stringy framework. Finally, large field models do not lead to sensible model building

  10. Generation of a quasistationary magnetic field by intense electromagnetic radiation in a l;mited plasma

    International Nuclear Information System (INIS)

    The effect of plasma formation limitedness on space-time evolution of the generated quasi-stationary magnetic field in a plasma is discussed. The analysis is performed using the simplest two-dimensional case of uniform circular cylinder irradiated by a converging cylindrical wave. The magnetic field generation mechanism is related to electrons trapped by the HF-field of azimuthal harmonic excited in a plasma. It is shown that space-time evolution of magnetic field and its stationary value depend essentially on electric dimensions of a plasma formation and structure of incident HF-field

  11. Generation of magnetic field on the accretion disk around a proto-first-star

    Energy Technology Data Exchange (ETDEWEB)

    Shiromoto, Yuki; Susa, Hajime [Department of Physics, Konan University, Kobe 658-8501 (Japan); Hosokawa, Takashi, E-mail: susa@konan-u.ac.jp [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-02-20

    The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ?10{sup –9} G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ?10{sup –14}-10{sup –13} G at n {sub H} = 10{sup 3} cm{sup –3}, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

  12. Generation of Large-Scale Magnetic Fields from Dilaton Inflation in Noncommutative Spacetime

    OpenAIRE

    Bamba, Kazuharu; Yokoyama, J.

    2005-01-01

    Generation of large-scale magnetic fields is studied in dilaton electromagnetism in noncommutative inflationary cosmology, taking into account the effects of the spacetime uncertainty principle motivated by string theory. We show that it is possible to generate large-scale magnetic fields with sufficient strength to account for the observed fields in galaxies and clusters of galaxies through only adiabatic compression without dynamo amplification mechanism in models of power...

  13. Generation of Primordial Magnetic Fields on Linear Over-density Scales

    CERN Document Server

    Naoz, Smadar

    2013-01-01

    Magnetic fields appear to be present in all galaxies and galaxy clusters. Recent measurements indicate that a weak magnetic field may be present even in the smooth low density intergalactic medium. One explanation for these observations is that a seed magnetic field was generated by some unknown mechanism early in the life of the Universe, and was later amplified by various dynamos in nonlinear objects like galaxies and clusters. We show that a primordial magnetic field is expected to be generated in the early Universe on purely linear scales through vorticity induced by scale-dependent temperature fluctuations or equivalently, a spatially varying speed of sound of the gas. Residual free electrons left over after recombination tap into this vorticity to generate magnetic field via the Biermann battery process. Although the battery operates even in the absence of any relative velocity between dark matter and gas at the time of recombination, the presence of such a relative velocity modifies the predicted spati...

  14. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    CERN Document Server

    Squire, Jonathan

    2015-01-01

    We propose a new mechanism for turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects.

  15. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows

    Science.gov (United States)

    Squire, J.; Bhattacharjee, A.

    2015-10-01

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  16. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    Science.gov (United States)

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects. PMID:26551120

  17. A Calculation of Required Magnetic Field Strength in a Magnetohydrodynamic Supersonic Generator and Accelerator

    Science.gov (United States)

    Lang, Amy W.; Czysz, Paul

    2001-11-01

    A one-dimensional supersonic CFD code was utilized to solve for the required magnetic field strength, as a function of conductivity, for fixed length and constant static enthalpy magnetohydrodynamic generator and accelerator. The inlet velocity and pressure to the generator were varied, while requiring the exit Mach number of the generator to remain at 2.0. The flow after the generator proceeded through a simple supersonic combustion process, and the bypassed energy was then used in the accelerator to increase the flow velocity. Results show that varying the conductivity between 7 and 70 mho/m and inlet velocity between 5000 and 14000 ft/s, require magnetic fields in the generator between 1 and 12 Tesla with greater magnetic field strength required at lower conductivities. It was also calculated that for the same energy and conductivity used in the accelerator, a lower magnetic field was needed.

  18. Magnetic Field Generation in Core-Sheath Jets via the Kinetic Kelvin-Helmholtz Instability

    CERN Document Server

    Nishikawa, K -I; Dutan, I; Niemiec, J; Medvedev, M; Mizuno, Y; Meli, A; Sol, H; Zhang, B; Pohl, M; Hartmann, D H

    2014-01-01

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas we find generation of strong large-scale DC currents and magnetic fields which extend over the entire shear-surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates transverse structure similar to that produced by the Weibel instability.

  19. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    International Nuclear Information System (INIS)

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  20. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, K.-I. [Department of Physics, University of Alabama in Huntsville, ZP12, Huntsville, AL 35899 (United States); Hardee, P. E. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487 (United States); Du?an, I. [Institute of Space Science, Atomistilor 409, Bucharest-Magurele RO-077125 (Romania); Niemiec, J. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Medvedev, M. [Department of Physics and Astronomy, University of Kansas, KS 66045 (United States); Mizuno, Y. [Institute of Astronomy, National Tsing-Hua University, Hsinchu, Taiwan 30013 (China); Meli, A. [Department of Physics and Astronomy, University of Gent, Proeftuinstraat 86 B-9000, Gent (Belgium); Sol, H. [LUTH, Observatore de Paris-Meudon, 5 place Jules Jansen, F-92195 Meudon Cedex (France); Zhang, B. [Department of Physics, University of Nevada, Las Vegas, NV 89154 (United States); Pohl, M. [Institut fur Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm (Germany); Hartmann, D. H., E-mail: ken-ichi.nishikawa@nasa.gov [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  1. Spatiotemporal structure of magnetic field and convection vortices generated in a rotating spherical shell

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Norio [Nagoya Univ., Faculty of Science, Nagoya, Aichi (Japan); Kida, Shigeo [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-07-01

    Intensification mechanisms of magnetic field by thermal convection in a rotating spherical shell are investigated by the direct numerical simulation analysis of the MHD Boussinesq equation. It is found that an axial magnetic dipole field whose energy is 15 times as large as kinetic energy is generated. Anticyclonic vortices play a key role in sustaining the structure. (author)

  2. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium

    International Nuclear Information System (INIS)

    We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number Rm?30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows

  3. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  4. The role of rotation on the evolution of dynamo generated magnetic fields in Super Earths

    CERN Document Server

    Zuluaga, Jorge I

    2011-01-01

    Planetary magnetic fields could have a role on the evolution of planetary atmospheres and the required conditions for the emergence and evolution of life (habitability). After briefly review the current efforts to study the evolution of dynamo generated magnetic fields in massive earth-like rocky planets (Super Earths), we take the results from thermal evolution models and updated scaling laws for convection driven magnetodynamos to predict the evolution of the local Rossby number, the basic indicator of core magnetic field geometry and regime. We study the dependence of this property on planetary mass and rotation rate. Previous works have paid Attention only to the evolution of dipolar dominant core magnetic fields assuming rapid rotating planets. Here we extend these results including consistently the effects of rotation on the evolution of planetary magnetic field properties and obtain global constraints to the existence of intense protective magnetic fields in rapidly and slowly rotating Super Earths. We...

  5. Open Circuit Field Distribution and Induced Voltage of a Cylindrical Permanent Magnet Linear Generator

    OpenAIRE

    Wijono; Arof, H.

    2007-01-01

    This paper deals with the analytical computation of the magnetic field of a cylindrical permanent magnet linear generator. It offers an alternative solution to the magnetic field problem. A new approach to solve Poisson equation using Struve function is introduced and it offers a simple but accurate analytical estimation to the calculation of the open circuit flux density and induced voltage. The finite element analysis simulation is performed to validate the analytical calculation.

  6. Open Circuit Field Distribution and Induced Voltage of a Cylindrical Permanent Magnet Linear Generator

    Directory of Open Access Journals (Sweden)

    Wijono

    2007-01-01

    Full Text Available This paper deals with the analytical computation of the magnetic field of a cylindrical permanent magnet linear generator. It offers an alternative solution to the magnetic field problem. A new approach to solve Poisson equation using Struve function is introduced and it offers a simple but accurate analytical estimation to the calculation of the open circuit flux density and induced voltage. The finite element analysis simulation is performed to validate the analytical calculation.

  7. Rayleigh-Taylor instability with self-generated magnetic field and thermal conduction in 2D

    International Nuclear Information System (INIS)

    High energy density laboratory experiments on Rayleigh-Taylor instability in nonlinear regime show the plasma behavior significantly different from classical simulation results. We include the effects of self-generated magnetic field and heat conduction in simulations aiming to improve agreement with experiments. We find maximum magnetic fields generated ?11MG (?=0.091) without heat conduction (k=0), field growth saturated by t=20ns; and ?1.7 MG with heat conduction taken into account. Strong magnetic fields in k=0 simulations affect flow dynamics, new modes are generated. Effect of weaker magnetic fields in simulations with physical values of k is insignificant; the main difference with classical RTI simulations is suppressed small scale features. In none of the simulations are mass extensions observed.

  8. Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection

    OpenAIRE

    Atef El Jery; Nejib Hidouri; Mourad Magherbi; Ammar Ben Brahim

    2010-01-01

    The influence of an external oriented magnetic field on entropy generation in natural convection for air and liquid gallium is numerically studied in steady-unsteady states by solving the mass, the momentum and the energy conservation equations. Entropy generation depends on five parameters which are: the Prandtl number, the irreversibility coefficients, the inclination angle of the magnetic field, the thermal Grashof and the Hartmann numbers. Effects of these parameters on total and local ir...

  9. Evaluation of Human Exposure to Magnetic Fields Generated by Electric Power Systems in Complex Configurations

    OpenAIRE

    Kandia, Effrosyni

    2013-01-01

    The international growing concern for the human exposure to magnetic fields generated by electric power lines has unavoidably led to imposing legal limits. Respecting these limits, implies being able to calculate easily and accurately the generated magnetic field also in complex configurations. Twisting of phase conductors is such a case. The consolidated exact and approximated theory regarding a single-circuit twisted three-phase power cable line has been reported along with the proposal of ...

  10. Dynamical Generation of the Primordial Magnetic Field by Ferromagnetic Domain Walls

    OpenAIRE

    Cea, Paolo; Tedesco, Luigi

    1998-01-01

    The spontaneous generation of uniform magnetic condensate in $QED_3$ gives rise to ferromagnetic domain walls at the electroweak phase transition. These ferromagnetic domain walls are caracterized by vanishing effective surface energy density avoiding, thus, the domain wall problem. Moreover we find that the domain walls generate a magnetic field $B \\simeq 10^{24} Gauss$ at the electroweak scale which account for the seed field in the so called dynamo mechanism for the cosmological primordial...

  11. Formulation of the spherical harmonic coefficients of the entire magnetic field components generated by magnetic moment and current for shimming

    Science.gov (United States)

    Noguchi, So

    2014-04-01

    For MRI and NMR magnet design, a highly homogeneous and high magnetic field has to be achieved by active and/or passive shimming. The active and passive shimming commonly homogenize the magnetic field around the magnet center by cancellation of the higher terms of a spherical harmonic series than the 0th term. So far, the spherical harmonic expression in the cylindrical coordinate system is well known for a circular coil, a solenoid coil, and magnetization of ferromagnetic material with/without its volume. In a shimming design, only the z-component of an inhomogeneous magnetic field is compensated because it is dominant to the performance of MRI/NMR. However, various kinds of MRI and NMR systems have recently been developed, and these magnets sometimes have an axially asymmetric configuration or generate a tilted magnetic field. Therefore, the entire x-, y-, and z-components have to be homogenized for such magnets. I derive the spherical harmonic expression of the entire components of magnetic field generated by a circular coil, a dipole coil, and a straight line current. In addition, since the entire magnetization components of the ferromagnetic material having the volume contribute the entire components of the magnetic field around the magnet center, I also derive the equations of the spherical harmonic coefficients of the magnetic field generated by ferromagnetic material. Since these equations need a numerical integration, such as the Gauss quadrature integration, the computation accuracy of the spherical harmonic coefficients is investigated against the number of the evaluation points. We can calculate the highly accurate spherical harmonic coefficients with the small number of the evaluation points.

  12. Generation of Magnetic Field on the Accretion Disk around a Proto-First-Star

    CERN Document Server

    Shiromoto, Yuki; Hosokawa, Takashi

    2014-01-01

    The generation process of magnetic field around a proto-first-star is studied. Utilizing the recent numerical result of proto-first-star formation based upon the radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that magnetic field of \\sim 10^{-9} G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low density regions ...

  13. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  14. A precise numerical estimation of the magnetic field generated around recombination

    CERN Document Server

    Fidler, Christian; Pitrou, Cyril

    2015-01-01

    We investigate the generation of magnetic fields from non-linear effects around recombination. As tight-coupling is gradually lost when approaching $z\\simeq 1100$, the velocity difference between photons and baryons starts to increase, leading to an increasing Compton drag of the photons on the electrons. The protons are then forced to follow the electrons due to the electric field created by the charge displacement; the same field, following Maxwell's laws, eventually induces a magnetic field on cosmological scales. Since scalar perturbations do not generate any magnetic field as they are curl-free, one has to resort to second-order perturbation theory to compute the magnetic field generated by this effect. We reinvestigate this problem numerically using the powerful second-order Boltzmann code SONG. We show that: i) all previous studies do not have a high enough angular resolution to reach a precise and consistent estimation of the magnetic field spectrum; ii) the magnetic field is generated up to $z\\simeq ...

  15. The generation of magnetic fields in astrophysical bodies. X. Magnetic buoyancy and the solar dynamo

    International Nuclear Information System (INIS)

    The magnetic field appearing as bipolar magnetic regions at the surface of the Sun represents the lines of force from a general azimuthal field of the order of 102 gauss somewhere beneath the surface. The amplification time, as a consequence of the nonuniform rotation, is of the order of 10 years. But magnetic buoyancy brings the azimuthal field up through much of the convective zone in a time rather less than 10 years, raising the question of where the azimuthal field can be retained long enough to be amplified

  16. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  17. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

  18. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    OpenAIRE

    Huntington, C. M.; Fiuza, F.; Ross, J. S.; Zylstra, A. B.; Drake, R. P.; Froula, D. H.; Gregori, G.; Kugland, N. L.; Kuranz, C.C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.

    2013-01-01

    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fie...

  19. Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.; Raeder, J.

    2006-01-01

    Solar wind generated magnetic disturbances are currently one of the major obstacles for improving the accuracy in the determination of the magnetic field due to sources internal to the Earth. In the present study a global MHD model of solar wind magnetosphere interaction is used to obtain a...... physically consistent, divergence-free model of ionospheric, field-aligned and magnetospheric currents in a realistic magnetospheric geometry. The magnetic field near the Earth due to these currents is analyzed by estimating and comparing the contributions from the various parts of the system, with the aim...... more than 90% of the field-aligned disturbance. The magnetic disturbance field from field-aligned currents (FACs) is basically transverse to the main field, and they therefore contribute with less than 2% to the disturbance in total field intensity. Inhomogeneity in ionospheric conductance is...

  20. Control of whistler radiation efficiency of a loop antenna by generation of ambient magnetic field irregularities

    International Nuclear Information System (INIS)

    Electrodynamic means for the control of loop antenna radiation efficiency in plasma is proposed, which can be used in the whistler frequency band. The method is based on the generation, without perturbing the plasma density, of localized ambient magnetic field irregularities in the vicinity of the antenna. In order to produce such irregularities, it is suggested to feed the antenna with additional dc current along with the rf current. Experiments performed in a large laboratory magnetoplasma showed that the generation of localized magnetic field enhancements provides the possibility of increasing the amplitude of the whistlers emitted by the loop antenna. Moreover, experiments have shown that the amplification of the whistlers' signals from the receiving loop antenna fed with additional dc current is observed when a static magnetic field enhancement is generated in the vicinity of the receiver. The experimental data are in good agreement with the theoretical results obtained for comparatively weak ambient magnetic field perturbations

  1. Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection

    Directory of Open Access Journals (Sweden)

    Atef El Jery

    2010-05-01

    Full Text Available The influence of an external oriented magnetic field on entropy generation in natural convection for air and liquid gallium is numerically studied in steady-unsteady states by solving the mass, the momentum and the energy conservation equations. Entropy generation depends on five parameters which are: the Prandtl number, the irreversibility coefficients, the inclination angle of the magnetic field, the thermal Grashof and the Hartmann numbers. Effects of these parameters on total and local irreversibilities as well as on heat transfer and fluid flow are studied. It was found that the magnetic field tends to decrease the convection currents, the heat transfer and entropy generation inside the enclosure. Influence of inclination angle of the magnetic field on local irreversibility is then studied.

  2. Laser generated wake fields as a new diagnostic tool for magnetized plasmas

    CERN Document Server

    Servin, M; Servin, Martin; Brodin, Gert

    2000-01-01

    In the presence of an external magnetic field, wake fields generated by a short laser pulse can propagate out of the plasma, and thereby provide information about the electron density profile. A method for reconstructing the density profile from a measured wake field spectrum is proposed and a numerical example is given. Finally, we compare our proposal with existing plasma density diagnostic techniques.

  3. Chiral imbalance evolution in dense matter and the generation of magnetic fields in magnetars

    CERN Document Server

    Dvornikov, Maxim

    2015-01-01

    We study the model for the magnetic field generation in a magnetar based on the magnetic field instability driven by the parity violating electroweak interaction between electrons and nucleons in the neutron star matter. Using the quantum field theory methods, we calculate the helicity flip of an electron scattering off protons in dense matter of a neutron star. The influence of the electroweak interaction between electrons and background nucleons on the helicity flip is examined. We also derive the kinetic equation for the chiral imbalance. The evolution of the magnetic field in a magnetar accounting for the correct value of the helicity flip rate is studied.

  4. Evolution of magnetic field generated by the Kelvin-Helmholtz instability

    CERN Document Server

    Modestov, Mikhail; Brodin, Gert; Marklund, Mattias; Brandenburg, Axel

    2014-01-01

    The Kelvin-Helmholtz instability in an ionized plasma is considered with a focus on the generation of magnetic field via the Biermann battery mechanisms. The problem is studied through direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction resulting in a large single vortex. At early stages, the generated magnetic field evolves due to the baroclinic term in the induction equation, revealing significantly different structures from the vorticity field, despite the fact that magnetic field and vorticity obey identical equations. At later times, the magnetic field exhibits complex behavior and continues to grow even after a hydrodynamic vortex has developed.

  5. Magnetic field seed generation in plasmas around charged and rotating black holes

    International Nuclear Information System (INIS)

    Previous work by the authors introduced the possibility of generating seed magnetic fields by spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed out that it would be worthwhile to consider the effect in other background geometries and particularly in the vicinity of a rotating black hole, which is generically to be expected, astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic field seed due to Reissner–Nördstrom and Kerr spacetimes. The conditions for the drive for the seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive vanishes. Also, the ψN-force produced by the Kerr black hole is obtained and its relation with the magnetic field seed is discussed, producing a more effective drive. (paper)

  6. Design of pulsed guiding magnetic field for high power microwave generators

    International Nuclear Information System (INIS)

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields

  7. Design of pulsed guiding magnetic field for high power microwave generators.

    Science.gov (United States)

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields. PMID:25273750

  8. Attosecond Magnetic Field Pulse Generation by Intense Few Cycle Circularly Polarized UV Pulses

    CERN Document Server

    Yuan, Kai-Jun

    2013-01-01

    Intense attosecond magnetic field pulses are predicted to be produced by intense few cycle circularly polarized UV pulses. Numerical solutions of the time dependent Schr\\"{o}dinger equation for H$_2^+$ are used to study the dynamical process. Spiralling attosecond circular electron wave packets are created with nanometer molecular dimensions, thus generating magnetic fields of several tens of Teslas ($10^5$ Gauss). Simulations show that the induced magnetic field is critically dependent on the pulse wavelength $\\lambda$ and pulse duration $n\\tau$ ($n$ number of cycle) as predicted by a classical model. For ultrashort few cycle circularly polarized attosecond pulses, molecular orientation influences the generation of the induced magnetic fields as a result of preferential ionization perpendicular to the molecular axis.

  9. Generation and Properties of Large-Scale Non-axisymmetric Magnetic Fields by Solar Dynamo

    Science.gov (United States)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    Large-scale non-axisymmetric magnetic fields generated by the solar dynamo, and presumably responsible for the phenomenon of "active longitudes", play an important role in the distribution of solar activity and flares. By calculating 3D mean-field dynamo models, we show that nonlinear coupling between axisymmetric and non-axisymmetric modes, e.g. due to the magnetic feedback on the alpha-effect (see, e.g., [1]), can maintain a large-scale non-axisymmetric dynamo process. Non-axisymmetric random fluctuations of dynamo parameters can be another source for the non-axisymmetric magnetic fields on the Sun. Such fluctuations can provide a mechanism of the magnetic energy transfer from the global field to the non-axisymmetric modes. It is shown that the rotational periods of the non-axisymmetric field correspond to the dynamo process operating in the subsurface shear layer which is located in the range of depths 0.85-0.95R. We find that the magnetic helicity conservation quenches generation of the non-axisymmetric dynamo modes as well as it does for the axisymmetric dynamo. It is concluded that the 3D mean-field non-axisymmetric dynamo models can potentially explain the observed distribution of the solar magnetic activity.1. Moss, D.,Non-axisymmetric solar magnetic fields, 1999, MNRAS, 306, 300On 3/18/2015 2:29 PM, Valery Pipin wrote:

  10. Generation of Strong Magnetic Fields in Axisymmetry by the Stationary Accretion Shock Instability

    CERN Document Server

    Endeve, Eirik; Budiardja, Reuben D; Mezzacappa, Anthony

    2008-01-01

    We begin an exploration of the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields by adding a weak, stationary, and radial (but bipolar) magnetic field to a spherically symmetric fluid configuration that models a stalled shock in the post-bounce supernova environment. Upon perturbation the SASI develops, and its lateral flows alternately advect the initially radial magnetic field towards and away from the polar regions. Lateral flows into the polar regions result in partially radial outflows along the symmetry axis, and over several SASI cycles the magnetic field parallel to the axis grows--{\\em even in the absence of rotation}--to dynamical significance ($\\gtrsim 10^{15}$ G), finally saturating upon local equipartition in the polar regions. While the resulting field configuration creates low-density `funnels' and enables energy transport along the field through MHD waves, it does not induce qualitatively new features in the global evolution of the shock.

  11. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    OpenAIRE

    Squire, Jonathan; Bhattacharjee, Amitava

    2015-01-01

    We propose a new mechanism for turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity ten...

  12. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  13. High magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Correction elements in colliding beam accelerators such as the SSC can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. 6 refs., 2 figs., 2 tabs

  14. Can the turbulent galactic dynamo generate large-scale magnetic fields?

    OpenAIRE

    K.Subramanian

    1997-01-01

    Large-scale magnetic fields in galaxies are thought to be generated by a turbulent dynamo. However the same turbulence also leads to a small-scale dynamo which generates magnetic noise at a more rapid rate. The efficiency of the large-scale dynamo depends on how this noise saturates. We examine this issue taking into account ambipolar drift, which obtains in a galaxy with significant neutral gas. We argue that, (1) the small-scale dynamo generated field does not fill the vol...

  15. Studies of HED Plasmas with Self-Generated Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Mikhail [Univ. of Kansas, Lawrence, KS (United States)

    2016-02-08

    High-amplitude sub-Larmor-scale electromagnetic turbulence is ubiquitous in high-energy density environments, such as laboratory plasmas produced by high-intensity lasers, e.g., NIF, Omega-EP, Trident, and others, and in astrophysical and space plasmas, e.g., at high-Mach-number collisionless shocks in weakly magnetized plasmas upstream regions of quasi-parallel shocks, sites of magnetic reconnection and others. Studies of plasmas and turbulence in these environments are important for fusion energy sciences and the inertial confinement concept, in particular, as well as to numerous astrophysical systems such as gamma-ray bursts, supernovae blast waves, jets of quasars and active galactic nuclei, shocks in the interplanetary medium, solar flares and many more. Such turbulence can be of various origin and thus have rather different properties, from being purely magnetic (Weibel) turbulence to various types of electromagnetic turbulence (for example, whistler wave turbulence or turbulence produced by filamentation or Weibel-type streaming instability), to purely electrostatic Langmuir turbulence. In this project we use analytical and numerical tools to study the transport, radiative, and magneto-optical properties of plasmas with sub-Larmor-scale turbulence. We discovered the connection of transport/diffusion properties to certain spectral benchmark features of (jitter) radiation produced by the plasma and radiation propagation through it. All regimes, from the relativistic to non-relativistic, were thoroughly investigated and predictions were made for laboratory plasmas and astrophysical plasmas. Thus, all the tasks outlined in the proposal were fully and successfully accomplished.

  16. Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow

    International Nuclear Information System (INIS)

    We present models related to the results of a recent experiment (the 'VKS experiment') showing the generation of a magnetic field by a fully turbulent flow of liquid sodium. We first discuss the geometry of the mean magnetic field when the two coaxial impellers driving the flow counter-rotate at the same frequency. We then show how we expect this geometry to be modified when the impellers rotate at different frequencies. We also show that, in the latter case, dynamical regimes of the magnetic field can be easily understood from the interaction of modes with dipolar (respectively quadrupolar) symmetry. In particular, this interaction generates magnetic field reversals that have been observed in the experiment and display a hierarchy of timescales similar to the Earth's magnetic field: the duration of the steady phases is widely distributed, but is always much longer than the time needed to switch polarity. In addition to reversals, several other large scale features of the generated magnetic field are obtained when varying the governing parameters of the flow. These results are also understood in the framework of the same model.

  17. Generation of Seed Magnetic Field around First Stars: the Biermann Battery Effect

    CERN Document Server

    Doi, Kentaro

    2011-01-01

    We investigate generation processes of magnetic fields around first stars. Since the first stars are expected to form anisotropic ionization fronts in the surrounding clumpy media, magnetic fields are generated by effects of radiation force as well as the Biermann battery effect. We have calculated the amplitude of magnetic field generated by the effects of radiation force around the first stars in the preceding paper, in which the Biermann battery effects are not taken into account.In this paper, we calculate the generation of magnetic fields by the Biermann battery effect as well as the effects of radiation force, utilizing the radiation hydrodynamics simulations. As a result, we find that the generated magnetic field strengths are ~ 10^{-19}G-10^{-17}G at ~ 100pc-1kpc scale mainly by the Biermann battery, which is an order of magnitude larger than the results of our previous study. We also find that this result is insensitive to various physical parameters including the mass of the source star, distance be...

  18. GENERATION OF A SEED MAGNETIC FIELD AROUND FIRST STARS: THE BIERMANN BATTERY EFFECT

    International Nuclear Information System (INIS)

    We investigate the generation processes of magnetic fields around first stars. Since first stars are expected to form anisotropic ionization fronts in the surrounding clumpy media, magnetic fields are generated by the effects of radiation force, as well as the Biermann battery effect. We calculated the amplitude of the magnetic field generated by the effects of radiation force around the first stars in a preceding paper but the Biermann battery effects were not taken into account. In this paper, we calculate the generation of magnetic fields by the Biermann battery effect as well as the effects of radiation force, utilizing radiation hydrodynamics simulations. As a result, we find that the generated magnetic field strengths are ?10–19 G – 10–17 G at ?100 pc-1 kpc scale, an order of magnitude larger than the results of our previous study mainly as a result of the Biermann battery effect. We also find that this result is insensitive to various physical parameters including the mass of the source star and the distance between the source and the dense clump, unless we take unlikely values of these parameters.

  19. Self-generated magnetic fields in blast-wave driven Rayleigh-Taylor experiments

    Science.gov (United States)

    Flaig, Markus; Plewa, Tomasz

    2015-12-01

    We study the effect of self-generated magnetic fields in two-dimensional computer models of blast-wave driven high-energy density Rayleigh-Taylor instability (RTI) experiments. Previous works [1,2] suggested that such fields have the potential to influence the RTI morphology and mixing. When neglecting the friction force between electrons and ions, we do indeed find that dynamically important (??103) magnetic fields are generated. However, in the more realistic case where the friction force is accounted for, the resulting fields are much weaker, ??105 , and can no longer influence the dynamics of the system. Although we find no evidence for dynamically important magnetic fields being created in the two-dimensional case studied here, the situation might be different in a three-dimensional setup, which will be addressed in a future study.

  20. Spontaneous generation of toroidal magnetic field during spheromak formation in a conical Theta-pinch

    International Nuclear Information System (INIS)

    Spheromaks have been generated in conical Theta-pinches in a similar manner to FRC generation in straight reversed-field Theta-pinches. The essential difference is that when a conical Theta-pinch coil is used, a toroidal component to the magnetic field spontaneously appears. The poloidal component is generated by quickly reversing the current in the coil after an initial bias field is embedded in the preionized plasma. The toroidal component is generated through a much more subtle physical process. Numerical calculations have shown that the Hall term can lead to the generation of toroidal magnetic fields during the formation of an FRC; however for a straight coil, symmetry demands equal and opposite fields at each end, so no net toroidal flux or helicity can be generated. A simple analysis shows that even for a conical coil, the Hall term by itself cannot generate significant toroidal magnetic flux or helicity. They will show that a combination of the Hall term with the plasma resistivity can result in toroidal fields of comparable magnitude to experimental observation

  1. Analysis of the Magnetic Field Effect on Entropy Generation at Thermosolutal Convection in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2011-05-01

    Full Text Available Thermosolutal convection in a square cavity filled with air and submitted to an inclined magnetic field is investigated numerically. The cavity is heated and cooled along the active walls with a mass gradient whereas the two other walls of the cavity are adiabatic and insulated. Entropy generation due to heat and mass transfer, fluid friction and magnetic effect has been determined in transient state for laminar flow by solving numerically the continuity, momentum energy and mass balance equations, using a Control Volume Finite—Element Method. The structure of the studied flows depends on four dimensionless parameters which are the Grashof number, the buoyancy ratio, the Hartman number and the inclination angle. The results show that the magnetic field parameter has a retarding effect on the flow in the cavity and this lead to a decrease of entropy generation, Temperature and concentration decrease with increasing value of the magnetic field parameter.

  2. Measurements of Self-Generated Magnetic Fields Influence on Electron Heat Conduction in Dense Plasmas

    International Nuclear Information System (INIS)

    Proton radiography measurements of self generated magnetic fields developing in long pulse (ns), high-power laser plasma interactions were employed to investigate the influence of these fields on the propagation of heat flow in dense plasmas. During the experiments, the heat wave propagation speed was measured simultaneously with the fields. These two coupled measurements could give an insight on the limitations of current numerical models of heat transport. They suggest that non locality of heat transport and diffusion of magnetic fields are important to model correctly the interaction.

  3. Generation of strong magnetic field using 60 mm circle superconducting bulk magnet and its application to magnetron sputtering device

    International Nuclear Information System (INIS)

    To make a practical application of a superconducting bulk magnet (SBM), it is necessary that the SBM generates a strong and stable magnetic field in a working space and the magnet can be handled without any special care that would be needed because of the use of a superconductor. To satisfy these requirements, we have designed a portable and user-friendly magnet system consisting of a small air-cooled type refrigerator and a bulk superconductor. By using the stress-controlling magnetization technique, we could achieve a magnetic flux density of 8.0 T on the bulk surface and 6.5 T over the vacuum chamber surface of the refrigerator, when a 60 mm circle Gd-Ba-Cu-O bulk superconductor reinforced with a 5 mm thick stainless steel ring was magnetized by field cooling in 8.5 T to 27 K. We have confirmed that the bulk magnet system coupled with a battery is quite portable and can be delivered to any location by using a car with an electric power outlet in the cabin. We have constructed a magnetron sputtering device that employs a bulk magnet system delivered from the place of magnetization by this method. This sputtering device exhibits several unique features such as deposition at a very low Ar gas pressure because the magnetic field is 20 times stronger than that obtained by a conventional device in the working space

  4. Generation of a spin-polarized electron beam by multipole magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Grillo, Vincenzo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Institute of Optics, University of Rochester, Rochester, NY 14627 (United States); Santamato, Enrico [Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, 80126 Napoli (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli (Italy)

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin–magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. - Highlights: • Theory of generating spin-polarized electron beams. • Interacting electron vortex beams with space-variant magnetic fields. • Bohr–Pauli impossibility of generating spin-polarized free electrons.

  5. Effect of transverse magnetic field on generation of electron beam in gas diode

    International Nuclear Information System (INIS)

    One studied experimentally the effect of the transverse magnetic field (0.08 and 0.016 T) on the generation of an electron beam within a gas diode. At U=25 kV gas diode voltage and helium low pressure (45 Torr) the transverse magnetic field is shown to affect the beam current amplitude outside the foil and on its foil cross section distribution. Under the increased pressure values and at generation of an ultra short-time avalanche electron beam (UAEB) in helium, nitrogen and in air the transverse magnetic field is shown to affect negligibly the UAEB amplitude and duration outside the foil. At the generator voltage equal to hundreds of kilovolts a portion of the escaping electrons was found to arrive to the gas diode lateral walls including those from the discharge plasma in the vicinity of a cathode

  6. Development of FEMAG. Calculation code of magnetic field generated by ferritic plates in the tokamak devices

    International Nuclear Information System (INIS)

    In design of the future fusion devises in which low activation ferritic steel is planned to use as the plasma facing material and/or the inserts for ripple reduction, the appreciation of the error field effect against the plasma as well as the optimization of ferritic plate arrangement to reduce the toroidal field ripple require calculation of magnetic field generated by ferritic steel. However iterative calculations concerning the non-linearity in B-H curve of ferritic steel disturbs high-speed calculation required as the design tool. In the strong toroidal magnetic field that is characteristic in the tokamak fusion devices, fully magnetic saturation of ferritic steel occurs. Hence a distribution of magnetic charges as magnetic field source is determined straightforward and any iteration calculation are unnecessary. Additionally objective ferritic steel geometry is limited to the thin plate and ferritic plates are installed along the toroidal magnetic field. Taking these special conditions into account, high-speed calculation code ''FEMAG'' has been developed. In this report, the formalization of 'FEMAG' code, how to use 'FEMAG', and the validity check of 'FEMAG' in comparison with a 3D FEM code, with the measurements of the magnetic field in JFT-2M are described. The presented examples are numerical results of design studies for JT-60 modification. (author)

  7. Development of FEMAG. Calculation code of magnetic field generated by ferritic plates in the tokamak devices

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Kazuhiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    In design of the future fusion devises in which low activation ferritic steel is planned to use as the plasma facing material and/or the inserts for ripple reduction, the appreciation of the error field effect against the plasma as well as the optimization of ferritic plate arrangement to reduce the toroidal field ripple require calculation of magnetic field generated by ferritic steel. However iterative calculations concerning the non-linearity in B-H curve of ferritic steel disturbs high-speed calculation required as the design tool. In the strong toroidal magnetic field that is characteristic in the tokamak fusion devices, fully magnetic saturation of ferritic steel occurs. Hence a distribution of magnetic charges as magnetic field source is determined straightforward and any iteration calculation are unnecessary. Additionally objective ferritic steel geometry is limited to the thin plate and ferritic plates are installed along the toroidal magnetic field. Taking these special conditions into account, high-speed calculation code ''FEMAG'' has been developed. In this report, the formalization of 'FEMAG' code, how to use 'FEMAG', and the validity check of 'FEMAG' in comparison with a 3D FEM code, with the measurements of the magnetic field in JFT-2M are described. The presented examples are numerical results of design studies for JT-60 modification. (author)

  8. Generation of Electric and Magnetic Fields During Detonation of High Explosive Charges in Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, S; Sweeney, J

    2004-06-04

    We present experimental results of a study of electromagnetic field generation during underground detonation of high explosive charges in holes bored in sandy loam and granite. Test conditions and physico-mechanical properties of the soil exert significant influence on the parameters of electromagnetic signals generated by underground TNT charges with masses of 2 - 200 kg. The electric and magnetic field experimental data are satisfactorily described by an electric dipole model with the source embedded in a layered media.

  9. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  10. Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    CERN Document Server

    Alves, E P; Fonseca, R A; Silva, L O

    2014-01-01

    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergen...

  11. Magnetic field generation by the Weibel instability at temperature gradients in collisionless plasmas

    OpenAIRE

    Fujita, Yutaka; Kato, Tsunehiko N.; Okabe, Nobuhiro

    2006-01-01

    The Weibel instability could be responsible for the generation of magnetic fields in various objects such as gamma-ray bursts, jets from active galactic nuclei, and clusters of galaxies. Using numerical simulations, the development of the Weibel instability at a temperature gradient is studied. It is found that current sheets are first generated at the gradient, and then they are rounded off and turn into current filaments. During this process, return currents are generated ...

  12. Magnetic field generation and evolution in high-energy-density plasmas

    Science.gov (United States)

    Moissard, C.; Deng, W.; Fox, W.; Bhattacharjee, A.

    2014-10-01

    Magnetic reconnection has been proposed to account for many astrophysical phenomena and is inferred to play an important role in fusion. Recent experiments have studied magnetic reconnection in high-energy-density (HED) plasmas at the Vulcan, Omega and Shenguang laser facilities. Plasma bubbles are created by laser irradiation of solid targets. These bubbles self-generate MG-scale magnetic fields, and the collision of pairs of bubbles drives reconnection of this magnetic field. 2D first principles particle-in-cell (PIC) simulations with a collision operator have been used to study the evolution of the magnetic field in these experiments. The ablation of the target is modeled by a Gaussian heating function acting on an initially cold, high density plasma. It is shown that the Biermann battery effect (?T × ?n in generalized Ohm's law) can account quantitatively for the magnetic field produced. However, special attention must be given to the temperature, which can no longer be considered as a scalar in the regime of the experiments. In simulations with a collision operator, the evolution of the magnetic field is compared to Braginskii's transport theory. Results of 3D simulations of magnetic reconnection with the self-consistent Biermann effect will be reported.

  13. The new TORPEX in-vessel toroidal conductor for the generation of a poloidal magnetic field

    International Nuclear Information System (INIS)

    TORoidal Plasma EXperiment (TORPEX) is a Simple Magnetized Torus featuring open helical magnetic field lines obtained from the superposition of a small vertical component on the main toroidal field. This work introduces the experimental setup developed to include a poloidal magnetic field. The toroidal and poloidal fields generate a rotational transform, making the magnetic geometry of TORPEX closer to that of a tokamak. This upgrade opens the possibility to deal with closed and open flux surfaces, as well as with the transition region across the last closed flux surface. The main technical solutions are discussed together with the physical considerations at the basis of the system design. Selected examples of the magnetic configurations accessible with the set of magnetic field coils available on TORPEX are discussed, ranging from single-null X-points to magnetic snowflakes. The simplest magnetic configuration of quasi-circular concentric flux surfaces is tested experimentally. Measurements of the two-dimensional electron plasma density profiles and the particle confinement time are presented, together with the first steps towards the understanding of plasma production mechanisms

  14. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    International Nuclear Information System (INIS)

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity

  15. Generation of magnetic field and electrostatic shock wave driven by counterstreaming pair plasmas

    International Nuclear Information System (INIS)

    By using a two-dimensional (2D) relativistic fully electromagnetic particle-in-cell code, the interaction process of counterstreaming pair (electron-positron) plasmas is investigated. The counterstreaming plasmas become unstable against the collisionless electromagnetic counterstreaming instability, similar to the Weibel instability. In the linear phase, magnetic and electric fields with the scale of skin depth size are generated through the electromagnetic counterstreaming instability. The behavior of plasma in the nonlinear phase is also made clear. The small-scale magnetic fields coalesce with each other, merging through the inverse cascade process which occurs characteristically in 2D dynamics, and change into larger unit. The large-scale magnetic fields propagate more slowly than the initial plasma flow as a low-frequency wave. Behind the magnetic fields, plasmas are isotropically heated by the mixing of counterstreaming plasmas. On the other hand, the electric fields propagate the same as the initial plasma flow. Ahead of the generated magnetic fields, the electric field component along the stream is amplified through the electrostatic counterstreaming instability and the electrostatic shock waves are formed. High-energy particles are also produced from the electrostatic shocks. These simulation results may be applied to the synchrotron gamma-ray burst model

  16. High Magnetic Field Superconducting Magnets Fabricated In Budker Inp For Sr Generation

    CERN Document Server

    Zolotarev, K V; Khruschev, S V; Krämer, Dietrich; Kulipanov, G N; Lev, V H; Mezentsev, N A; Miginsky, E G; Shkaruba, V A; Syrovatin, V M; Tsukanov, V M; Zjurba, V K

    2004-01-01

    BESSY operates a 3-rd generation synchrotron light source in VUV to XUV region at Berlin-Adlershof. The main radiation sources in storage ring are special magnetic elements as undulators and wigglers. 3 superconducting shifters and one multipole superconducting wiggler are operating giving enhanced photon flux for 10-25 keV X-ray region. As the superconducting elements presently are located in straight sections, BESSY intends to exchange 4 of conventional room-temperature bending magnets by superconducting ones.The report contains brief description of 9 Tesla superbend prototype as a candidate for replacing of conventional magnets of BESSY-2, which was designed, fabricated and tested at Budker INP and was commissioned at BESSY in June 2004.Main parameters of 9 Tesla superconducting bending magnet prototype as well as testing results are presented.

  17. Device for generating toroidal magnetic fields in torus type thermonuclear device

    International Nuclear Information System (INIS)

    Purpose: To obtain a toroidal magnetic field generation device which is simple in structure, capable of accurately mounting toroidal coils and in excellent in durability. Constitution: In a device for generating toroidal magnetic field of tokamak type thermonuclear device, each of the magnet coils support frames made of non-magnetic copper or the like is firmly assembled with a lower support and an upper support and a connection member so as to support the coils withstanding the own weight of the coils, thermal stress and centripetal force, and the both of the inner sides of each support frame at the center is formed with wedge surfaces. Retention rings are firmly fitted to the projections at the lower and the upper portions of the support frames and accurately assembled into the support frames to thereby transmit the centripetal force to the wedge surfaces to receive the withstanding force. (Horiuchi, T.)

  18. Magnetic fields in cosmology

    OpenAIRE

    Dolgov, A. D.

    2003-01-01

    Different mechanisms which may possibly explain existence of magnetic fields on astronomically large scales are described. A recently suggested model of magnetic fields generation slightly before hydrogen recombination is discussed in more detail.

  19. Magnetic field generation from self-consistent collective neutrino-plasma interactions

    International Nuclear Information System (INIS)

    A Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions. (c) 2000 The American Physical Society

  20. Control of generation regimes of ring chip laser under the action of the stationary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N; Firsov, V V [D.V. Skobel' tsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2013-05-31

    We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime of beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found. (control of laser radiation parameters)

  1. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kaethner, Christian, E-mail: kaethner@imt.uni-luebeck.de; Ahlborg, Mandy; Buzug, Thorsten M., E-mail: buzug@imt.uni-luebeck.de [Institute of Medical Engineering, Universität zu Lübeck, 23562 Lübeck (Germany); Knopp, Tobias [Thorlabs GmbH, 23562 Lübeck (Germany); Sattel, Timo F. [Philips Medical Systems DMC GmbH, 22335 Hamburg (Germany)

    2014-01-28

    Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

  2. Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA

    Science.gov (United States)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.

    2013-10-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Study of two medium size 'C' core electromagnets generating low magnetic fields

    International Nuclear Information System (INIS)

    Magnetic field requirements of laboratories may impose constraints that often call for a variety of non-standard designs. The designer has to fulfil these demands without letting the design to become too inefficient. Since no ready design procedures are available he has to resort to intuition calculation and modelling. In spite of this there may be wide discrepancy between the design values and the actual results. This report describes the experience gained on two 'C' core electromagnets being used by authors. These magnets generate low magnetic fields over reasonably large volumes, a requirement that runs opposite to that of most other magnets. The study reveals the dependence of overall performance efficiency, field uniformity etc. on the design parameters. 31 figures. (author)

  4. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    International Nuclear Information System (INIS)

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed

  5. Field generated within the SSC magnets due to persistant currents in the superconductor

    International Nuclear Information System (INIS)

    This report presents the results of a number of computer studies of the magnetic fields generated by persistent circulating currents in the superconductor of superconducting dipoles. These magnetic fields are referred to as residual fields throughout this report. Since the field generated by persistent currents have a hysteric behavior, they are analagous to the residual filed found in iron bound conventional solenoids. The residual field calculations presented in this report were done using the LBL SCMAG4 computer code. This code has not been well tested against measured data, but a comparison with measured CBA data given in this report suggests that good agreement is possible. The residual fields generated by persistent superconducting currents are rich in higher multipoles. This is of concern to the accelerator designer for SSC. This report shows the effect of various superconductor parameters and coil parameters on the magnitude and structure of the residual fields. The effect of the magnet charging history on residual fields is aldo discussed. 14 references

  6. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  7. Toroidal magnetic field generation during compact toroid formation in a field-reversed theta pinch and a conical theta pinch

    International Nuclear Information System (INIS)

    The influence that the Hall and delP/sub e/ terms, in a generalized Ohm's law, have on the formation of a compact toroid in a field-reversed theta pinch and a conical theta pinch has been examined. The inclusion of these terms leads to the spontaneous generation of toroidal magnetic fields and toroidal velocities. The toroidal fields in the end regions reach peak values of almost 50% of the external poloidal field during the early stages of formation. When the coil geometry is the same at each end of the theta pinch, equal and opposite toroidal fields are generated by the Hall effect, so that no net toroidal flux is generated. When the geometry is not the same at each end, the Hall effect can lead to a net toroidal flux. Calculations for both a conical theta pinch experiment and a field-reversed configuration translation experiment demonstrate the generation of net toroidal flux, as observed experimentally

  8. Effect of Superstrong Magnetic Fields on Nuclear Energy Generation Rate in the Crust of Neutron Stars

    International Nuclear Information System (INIS)

    This paper shows that superstrong magnetic fields (such as those of magnetars) can increase the energy generation rate many times in the crust of neutron stars. This result undoubtedly not only influences the cooling of neutron stars and the X-ray luminosity observed of neutron stars but also the evolution of neutron stars

  9. Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability

    CERN Document Server

    Nishikawa, K -I; Zhang, B; Dutan, I; Medvedev, M; Choi, E J; Min, K W; Niemiec, J; Mizuno, Y; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D H

    2013-01-01

    We have investigated generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of KKHI of our jet-sheath configuration is slightly different even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field $E_{\\rm z}$ and the magnetic field $B_{\\rm y}$. After the $B_{\\rm y}$ component is excited, an induced electric field $E_{\\rm x}$ becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios $m_{\\rm i}/m_{\\rm e} = 1836$ and $m_{\\rm i}/m_{\\rm e} = 20$ are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The g...

  10. Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip

    Science.gov (United States)

    Ploss, Daniel; Kriesch, Arian; Pfeifer, Hannes; Banzer, Peter; Peschel, Ulf

    2014-06-01

    We demonstrate experimentally and numerically that in fiber tips as they are used in NSOMs azimuthally polarized electrical fields (|E$_{\\text{azi}}$|$^2$/|E$_{\\text{tot}}$|$^2$ $\\approx$ 55% $\\pm $ 5% for 1.4\\mu m tip aperture diameter and \\lambda$_0$ = 1550nm), respectively subwavelength confined (FWHM $\\approx$ 450nm $\\approx$ \\lambda$_0$/3.5) magnetic fields, are generated for a certain tip aperture diameter (d = 1.4\\mu m). We attribute the generation of this field distribution in metal-coated fiber tips to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper.

  11. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field observations.

  12. Interpenetrating plasma shells: near-equipartition magnetic field generation and non-thermal particle acceleration

    OpenAIRE

    Silva, L.O.; Fonseca, R. A.; Tonge, J.; Dawson, J. M.; Mori, W. B.; Medvedev, M.V.

    2003-01-01

    We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic "particle-in-cell" (with the total of $10^8$ particles) parallel code OSIRIS has been used. Our simulations show: (i) the generation of long-lived near-equipartition (electro)magnetic fields, (ii) non-thermal particle acceleration, and (iii) short-scale to long-scale magnetic field evolution, i...

  13. Comparison of the dipolar magnetic field generated by two Ising-like models

    Science.gov (United States)

    Peqini, Klaudio; Duka, Bejo

    2015-04-01

    We consider two Ising-like models named respectively the "domino" model and the Rikitake disk dynamo model. Both models are based on some collective interactions that can generate a dipolar magnetic field which reproduces the well-known features of the geomagnetic field: the reversals and secular variation (SV). The first model considers the resultant dipolar magnetic field as formed by the superposition of the magnetic fields generated by the dynamo elements called macrospins, while the second one, starting from the two-disk dynamo action, takes in consideration the collective interactions of several disk dynamo elements. We will apply two versions of each model: the short-range and the long-range coupled dynamo elements. We will study the statistical properties of the time series generated by the simulation of all models. The comparison of these results with the paleomagnetic data series and long series of SV enables us to conclude which of these Ising-like models better match with the geomagnetic field time series. Key words: geomagnetic field, domino model, Rikitake disk dynamo, dipolar moment

  14. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  15. The generation of magnetic fields by the Biermann battery and the interplay with the Weibel instability

    CERN Document Server

    Schoeffler, K M; Fonseca, R A; Silva, L O

    2015-01-01

    An investigation of magnetic fields generated in an expanding bubble of plasma with misaligned temperature and density gradients (driving the Biermann battery mechanism) is performed. With gradient scales $L$, large-scale magnetic fields are generated by the Biermann battery mechanism with plasma $\\beta \\sim 1$, as long as $L$ is comparable to the ion inertial length $d_i$. For larger system sizes, $L/d_e > 100$ (where $d_e$ is the electron inertial length), the Weibel instability generates magnetic fields of similar magnitude but with wavenumber $k d_e \\sim 0.2$. In both cases, the growth and saturation of these fields have a weak dependence on mass ratio $m_i/m_e$, indicating electron mediated physics. A scan in system size is performed at $m_i/m_e = 2000$, showing agreement with previous results with $m_i/m_e = 25$. In addition, the instability found at large system sizes is quantitatively demonstrated to be the Weibel instability. Furthermore, magnetic and electric energy spectra at scales below the elect...

  16. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  17. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    Science.gov (United States)

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.

  18. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  19. Optical diagnostics in turbulent, laser-driven shockwave experiments with self-generated magnetic fields

    Science.gov (United States)

    Wan, W. C.; MacDonald, M. J.; Kuranz, C. C.; Krauland, C. M.; Gamboa, E. J.; di Stefano, C. A.; Drake, R. P.

    2012-10-01

    The existence of magnetic fields on a cosmological scale is still poorly understood. Magnetic fields as large as a few ?G have been observed in galaxy clusters, filaments, and voids. Recent experiments at the Vulcan and Titan laser facilities produced scaled models to investigate the generation and amplification of seed magnetic fields through induced turbulence. The study of magnetogenesis and amplification due to turbulence will contribute to our understanding of the dynamics of the early universe. These experiments were performed by focusing lasers on carbon rods and foils, resulting in a blast wave propagating through argon gas. Several grids with varied mesh spacing provided control over the level of turbulence. Here we discuss the results of the Schlieren and interferometry optical diagnostics obtained in these recent campaigns. This work was supported by many sponsors to be acknowledged in the presentation.

  20. The BGS magnetic field candidate models for the 12th generation IGRF

    Science.gov (United States)

    Hamilton, Brian; Ridley, Victoria A.; Beggan, Ciarán D.; Macmillan, Susan

    2015-12-01

    We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic `parent model' derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model's internal field time dependence for degrees 1 to 13 is represented by order 6 B-splines with knots at yearly intervals. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals and by dependence on the 20-min Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterized. Satellite data are weighted by spatial density and by two different noise estimators: (a) by standard deviation along segments of the satellite track and (b) a larger-scale noise estimator defined in terms of a measure of vector activity at the geographically closest magnetic observatories to the sample point. Forecasting of the magnetic field secular variation beyond the span of data is by advection of the main field using core surface flows.

  1. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars

    CERN Document Server

    Stello, D; Fuller, J; Huber, D; Garcia, R A; Bedding, T R; Bildsten, L; Aguirre, V Silva

    2016-01-01

    Magnetic fields play a role in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10% exhibit strong surface fields that are presumed to be residuals from the stellar formation process. These stars do have convective cores that might produce internal magnetic fields, and these might even survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we use asteroseismology to study the occurrence of strong magnetic fields in the cores of low- and intermediate-mass stars. We have measured the strength of dipolar oscillation modes, which can be suppressed by a strong magnetic field in the core, in over 3600 red giant stars observed by Kepler. About 20% of our sample show mode suppression but this fraction is a strong function of mass. S...

  2. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    International Nuclear Information System (INIS)

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B?1% on the midplane edge) yields Te profiles peaked at > 200eV. Trends indicate a limiting beta (?e ? 4-6%), and so we have been motivated to increase Te by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ?2% and large voltage fluctuations ((delta)V ? 1kV), giving a 50% increase in current amplification, Itor/Igun. (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (?0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  3. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    International Nuclear Information System (INIS)

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (?B/B?1% on the midplane edge) yields Te profiles peaked at >200 eV. Trends indicate a limiting beta (?e?4%-6%), and so we have been motivated to increase Te by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with ?B/B?2% and large voltage fluctuations (?V?1 kV), giving a 50% increase in current amplification, Itor/Igun. (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (?0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  4. Analytical analysis of magnetic field and back electromotive force calculation of an axial-flux permanent magnet synchronous generator with coreless stator

    OpenAIRE

    Virti?, Peter; Pišek, Peter; Mar?i?, Tine; Hadžiselimovi?, Miralem; Štumberger, Bojan

    2012-01-01

    This paper presents the analytical analysis of magnetic field and back electromotive force (back EMF) calculation in an axial flux permanent magnet synchronous generator (AFPMSG) without stator core. For the verification, the numerical analysis [finite element method (FEM)] of magnetic field is accomplished and comparison between analytical and numerical solution of magnetic field is presented. Both analytical and numerical solutions are obtained via magnetic vector potential, respectively. T...

  5. Photon mass new limits from strong photon-torsion coupling generation of primordial magnetic fields

    CERN Document Server

    de Andrade, Garcia

    2011-01-01

    Recently Adelberger et al [Phys Rev Lett 98: 010402, (2007)] have placed a limit to photon mass by investigating the primordial magnetic fields. Earlier Bertolami et al [Phys Lett \\textbf{B} 455, 96(1999)] showed that massive photons in a spontaneous Lorentz breaking may generate primordial magnetic fields consistent with galactic dynamo seeds. Torsion coupling constant of order $10^{-5}$, much higher than the previously obtained by de Sabbata and Sivaram of $10^{-24}$, leads to strong amplification of magnetic field able to seed galactic dynamo at recombination era contrary to what happens in general relativistic dynamos. This results in $B\\sim{10^{-5}{\\beta}G}$ where ${\\beta}$ is the massive photon-torsion coupling. Thus in order to obtain the observed galaxy field of $B_{G}\\sim{{\\mu}G}$ one should have a coupling $\\beta\\sim{10^{-1}}$, never observed in the universe. Thus we may conclude that the weaker couplings for torsion to e.m fields shall only produce magnetic fields without dynamos starting from extr...

  6. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.

    Science.gov (United States)

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva

    2016-01-21

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars. PMID:26727160

  7. Cosmological Magnetic Fields

    CERN Document Server

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  8. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  9. Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction

    International Nuclear Information System (INIS)

    Based on the ten-moment Grad system of hydrodynamic equations, a self-consistent fluid model is presented for the generation of quasistatic magnetic fields in relativistic intense laser plasma interaction. In this model, the nondiagonal stress tensor is taken into account and the generalized vorticity is proved to be not conserved, which are different from previous ideal fluid models. In the quasistatic approximation, where the low-frequency phase speed vp is much smaller than the electron thermal speed vte, the axial magnetic field Bz and the azimuthal one B? are derived. It is found that the condition vp>>vte used as the cold fluid approximation by previous papers is improper, where the derived Bz is incomplete and one magnetization current for Bz associated with the electron thermal motion does not appear. The profiles of both Bz and B? are analyzed. Their dependence on the laser intensity is discussed

  10. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.; Luhr, H.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean c...

  11. The interrelation between the generation of large-scale electric fields and that of large-scale magnetic fields during inflation

    OpenAIRE

    Bamba, Kazuharu

    2007-01-01

    The interrelation between the generation of large-scale electric fields and that of large-scale magnetic fields due to the breaking of the conformal invariance of the electromagnetic field in inflationary cosmology is studied. It is shown that if large-scale magnetic fields with a sufficiently large amplitude are generated during inflation, the generation of large-scale electric fields is suppressed, and vice versa. Furthermore, a physical interpretation of the result and it...

  12. Magnetic field generation and electrostatic shock wave formation driven by counter-streaming pair plasmas

    International Nuclear Information System (INIS)

    By using two-Dimensional (2-D) and 3-D fully electromagnetic and relativistic Particle-In-Cell (PIC) codes, we investigated a collision process of the counter-streaming electron-positron pair plasmas. The collisionless counter-streaming plasmas become unstable against the counter-streaming instability similar to Weibel instability. This instability plays important role in conversion process from particle flow energy to magnetic field energy. We found two kinds of instability in counter-streaming plasmas. The magnetic fields are generated by the electromagnetic counter-streaming instability and the electric fields are formed by the electrostatic two-stream instability. High-energy particles are also produced due to the generated electric fields. In astrophysical plasmas, Gamma-Ray Burst (GRB) can release huge energy over a few seconds in a small volume. It is widely believed that GRB afterglows are observed by synchrotron emission. However, this emission mechanism must require strong magnetic fields in the background. Our simulation results are useful for understanding synchrotron GRB model

  13. Nonlinear second harmonic generation by light wave-plasma interaction in oscillating magnetic field

    International Nuclear Information System (INIS)

    The nonlinear generation of second harmonic electromagnetic waves in a thin inhomogeneous (dense and rarefied) plasma layer (of length d) by obliquely and normal incidence of light wave is analyzed. We consider the effect of external time- dependent magnetic field on the generation and amplification of waves. Two cases are considered, when the magnetic field oscillates at frequency: (i) equal, and (ii) double of that of the incident wave. For normal incidence, waves are not radiated in case (i), while in case (ii) the second harmonics are radiated equally from the plasma boundaries at x = o and x = d. For rarefied plasma, the second harmonics are radiated with equal amplitudes in both cases. (author). 3 refs

  14. Study on magnetic field generation and electron collimation in overdense plasmas

    Directory of Open Access Journals (Sweden)

    Cai Hongbo

    2013-11-01

    Full Text Available An analytical fluid model is proposed for artificially collimating fast electron beams produced in interaction of ultraintense laser pulses with specially engineered sandwich structure targets. The theory reveals that in low-density-core structure targets, the magnetic field is generated by the rapid change of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity caused by the density jump. It is found that the spontaneously generated magnetic field reaches as high as 100?MG, which is large enough to collimate fast electron transport in overdense plasmas. This theory is also supported by numerical simulations performed using a two-dimensional particle-in-cell code. It is found that the simulation results agree well with the theoretical analysis.

  15. Apparatus for generation of magnetic field gradient waveforms for NMR imaging

    International Nuclear Information System (INIS)

    An apparatus is described for generating and controlling magnetic field gradients. It is used in conjunction with standard high-resolution NMR spectrometers to perform NMR imaging experiments. Profiles for gradients are digitally stored in separate memories which are loaded via a simple personal computer and are strobed out under spectrometer control. The system is versatile, low cost, simple to interface and use, and does not interfere with normal spectrometer operation. (author)

  16. Electromotive Force Generation with Hydrogen Release by Salt Water Flow under a Transverse Magnetic Field

    OpenAIRE

    Roberto De Luca

    2011-01-01

    By considering an electrolyte solution in motion in a duct under a transverse magnetic field, we notice that a so called Faraday voltage arises because of the Lorentz force acting on anions and cations in the fluid. When salt water is considered, hydrogen production takes place at one of the electrodes if an electric current, generated by Faraday voltage, flows in an external circuit. The maximum amount of hydrogen production rate is calculated by basic electrochemical concepts.

  17. Performance results of a 300 MWth generator at high magnetic field

    Science.gov (United States)

    Christensen, L. S.; Whitehead, G. L.; Felderman, E. J.

    1983-01-01

    The High Performance Demonstration Experiment (HPDE) in progress at AEDC has as its objective a 300 MW thermal input open-cycle MHD system has been assembled. Testing with the channel configured in the Faraday mode was initiated in late 1979. Experimental results have been obtained at a magnetic field strength from 1.5 to 3.8 Tesla (T). A maximum Faraday power of 35.5 MW has been generated, which represents an enthalpy extraction of 11.6 percent.

  18. Generating vorticity and magnetic fields in plasmas in general relativity: spacetime curvature drive

    CERN Document Server

    Asenjo, Felipe A; Qadir, Asghar

    2012-01-01

    Using the generally covariant magnetofluid formalism for a hot plasma, a new spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The ``battery'' owes its origin to the interaction between gravity and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole, and for particles in free fall near the horizon. Some astrophysical applications are suggested.

  19. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    International Nuclear Information System (INIS)

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via the Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient ? and thus discuss our results within the context of mean field electrodynamics.

  20. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  1. Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses

    Science.gov (United States)

    Zhu, B. J.; Li, Y. T.; Yuan, D. W.; Li, Y. F.; Li, F.; Liao, G. Q.; Zhao, J. R.; Zhong, J. Y.; Xue, F. B.; He, S. K.; Wang, W. W.; Lu, F.; Zhang, F. Q.; Yang, L.; Zhou, K. N.; Xie, N.; Hong, W.; Wei, H. G.; Zhang, K.; Han, B.; Pei, X. X.; Liu, C.; Zhang, Z.; Wang, W. M.; Zhu, J. Q.; Gu, Y. Q.; Zhao, Z. Q.; Zhang, B. H.; Zhao, G.; Zhang, J.

    2015-12-01

    A simple scheme to produce strong magnetic fields due to cold electron flow in an open-ended coil heated by high power laser pulses is proposed. It differs from previous generation of magnetic fields driven by fast electron current in a capacitor-coil target [S. Fujioka et al., Sci. Rep. 3, 1170 (2013)]. The fields in our experiments are measured by B-dot detectors and proton radiography, respectively. A 205 T strong magnetic field at the center of the coil target is generated in the free space at I?2 of 6.85 × 1014 W cm-2 ?m2, where I is the laser intensity, and ? is the laser wavelength. The magnetic field strength is proportional to I?2. Compared with the capacitor-coil target, the generation mechanism of the magnetic field is straightforward and the coil is easy to be fabricated.

  2. Non-thermal Plasmas Around Massive Black Holes: Collective Modes, Ring Configurations and Magnetic Field Generation

    Science.gov (United States)

    Coppi, B.

    2013-10-01

    The discovered gamma-ray bubbles emanating from the center of Our Galaxy are a new motivation to develop theories for large scale structures in the Universe in terms of plasmas for which electromagnetic interactions are no less important than the relevant (e.g. density wave theory of spirals) gravitational interactions. Moreover, considering the observed emission spectra, the particle distributions in phase space cannot be represented by isotropic Maxwellian in significant cases. The consequent theory of plasmas surrounding rotating massive black holes has led to identify new stationary plasma and field configurations (in particular Solitary Rings) and modes, emerging from conventional (currentless) disks, that depend on the existence of temperature anisotropies. These modes, which produce outward transport of angular momentum at a significant rate, involve large amplifications of a seed magnetic field. In the related (by the envisioned non-linear mode evolution) stationary configurations, without a seed magnetic field, the field energy densities are of the order of the particle thermal energy densities. Thus a clear sequence of processes for the generation of magnetic fields in the Universe is identified. US DOE partly sponsored.

  3. Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments

    International Nuclear Information System (INIS)

    Laser wakefield acceleration experiments were performed using a 30 fs, 1 J laser pulse interacting with an underdense helium plasma. Temporally resolved polarimetry measurements demonstrate the presence of magnetic fields at the ionization front within the plasma which had a peak strength of ∼2.8 MG and a radial extent of approximately 200 μm. The field was seen to vary in strength over picosecond time-scales. The field is likely generated by return current generated in the plasma at the interface between plasma and neutral gas and which is caused by hot electrons produced in the wakefield during formation of a plasma ‘bubble’ and prior to the time of wave-breaking (beam injection). These effects are confirmed using particle-in-cell simulations. Such measurements can be useful as a diagnostic of bubble formation in laser wakefield accelerators. (paper)

  4. Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets

    International Nuclear Information System (INIS)

    Magnetic stray fields for systems of permanent magnets with high magnetic anisotropy are calculated and measured. It is shown that intensity of these fields exceeds value of an induction of a material of magnets in some time. Besides, these fields are characterized by high gradients, and size H-bar H can reach values up to1010-1011Oe2/cm. Estimations of extremely achievable fields and their gradients are made

  5. Primordial magnetic field constrained from CMB anisotropies,and its generation and evolution before, during and after the BBN

    OpenAIRE

    Dai G. Yamazaki; Ichiki, Kiyotomo; Kajino, Toshitaka; Grant J. Mathews

    2006-01-01

    The primordial magnetic field (PMF) can strongly affect the cosmic microwave background (CMB) power spectrum and the formation of large scale structure. In this presentation, we calculate the CMB temperature anisotropies generated by including a power-law magnetic field at the photon last scattering surface (PLSS). We then deduce an upper limit on the primordial magnetic field based upon our theoretical analysis of the power excess on small angular scales. We have taken into...

  6. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  7. Significance of self magnetic field in long-distance collimation of laser-generated electron beams

    CERN Document Server

    Chen, Shi; Niu, Yifei; Dan, Jiakun; Chen, Ziyu; Li, Jianfeng

    2014-01-01

    Long-distance collimation of fast electron beams generated by laser-metallic-wire targets has been observed in recent experiments, while the mechanism behind this phenomenon remains unclear. In this work, we investigate in detail the laser-wire interaction processes with a simplified model and Classical Trajectory Monte Carlo simulations, and demonstrate the significance of the self magnetic fields of the beams in the long-distance collimation. Good agreements of simulated image plate patterns with various experiments and detailed analysis of electron trajectories show that the self magnetic fields provide restoring force that is critical for the beam collimation. By studying the wire-length dependence of beam divergence in certain experiments, we clarify that the role of the metallic wire is to balance the space-charge effect and thus maintain the collimation.

  8. Generation of a spin-polarized electron beam by multipoles magnetic fields

    CERN Document Server

    Karimi, Ebrahim; Boyd, Robert W; Santamato, Enrico

    2013-01-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin--magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of these analysis could prove useful in the design of improved electron microscope.

  9. Generation of a spin-polarized electron beam by multipole magnetic fields.

    Science.gov (United States)

    Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. PMID:24440895

  10. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

    Science.gov (United States)

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F

    2012-01-26

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21)?gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution. PMID:22281596

  11. Effect of a wiggler magnetic field and the ponderomotive force on the second harmonic generation in laser-plasma interactions

    OpenAIRE

    NOROOZI, Hassan Ranjbar ASKARI and Maryam

    2009-01-01

    In this paper, we consider second harmonic generation and its phase-matching in an underdense plasma in the presence of a wiggler magnetic field. Wiggler magnetic field plays both a dynamic role in producing the traverse harmonic current and a kinematical role in ensuring phase-matching. The inertial ponderomotive force r (\\vec{u} . \\vec \

  12. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Microwave generation from a cusptron device with a rotating electron beam through a magnetic cusp field

    International Nuclear Information System (INIS)

    At the University of Maryland, high-power microwave generation experiments have been conducted with a relativistic rotating electron beam of 2 MeV, 12 kA, and 10 ns. Radiation is produced via the negative mass instability at various harmonics of the electron cyclotron frequency determined by the interaction of the rotating beam cyclotron modes and the modes of the conducting boundary system. Using a magnetron-type conducting boundary in the beam-wave interaction region, we are able to exercise effective mode control. This kind of device holds promise as a tunable, high-frequency microwave tube with low magnetic fields. A table-top experiment with a non-relativistic electron beam (-6 (I/V /sup 3/2/ ). Passing through a magnetic cusp field, the beam becomes a welldefined rotating hollow beam with 3 cm diameter and 0.2 cm thickness. The name ''cusptron'' is originated from the cusp and the magnetron. The beam dimensions are independent of the beam energy and also of the magnetic field strength

  14. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    Science.gov (United States)

    Lopatin, I. V.; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments ˜0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa).

  15. Magnetic fields in galaxies

    CERN Document Server

    Beck, Rainer

    2013-01-01

    Most of the visible matter in the Universe is ionized, so that cosmic magnetic fields are quite easy to generate and due to the lack of magnetic monopoles hard to destroy. Magnetic fields have been measured in or around practically all celestial objects, either by in-situ measurements of spacecrafts or by the electromagnetic radiation of embedded cosmic rays, gas or dust. The Earth, the Sun, solar planets, stars, pulsars, the Milky Way, nearby galaxies, more distant (radio) galaxies, quasars and even intergalactic space in clusters of galaxies have significant magnetic fields, and even larger volumes of the Universe may be permeated by "dark" magnetic fields. Information on cosmic magnetic fields has increased enormously as the result of the rapid development of observational methods, especially in radio astronomy. In the Milky Way, a wealth of magnetic phenomena was discovered, which are only partly related to objects visible in other spectral ranges. The large-scale structure of the Milky Way's magnetic fie...

  16. Generating vorticity and magnetic fields in plasmas in general relativity: Spacetime curvature drive

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A.; Mahajan, Swadesh M. [Institute for Fusion Studies, University of Texas at Austin, Texas 78712 (United States); Qadir, Asghar [Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H12, Islamabad 4400 (Pakistan)

    2013-02-15

    Using the generally covariant magnetofluid formalism for a hot plasma, a spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The 'battery' owes its origin to the interaction between the gravity modified Lorentz factor of the fluid element and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole and for particles in free fall near the horizon. Some astrophysical applications are suggested.

  17. Preliminary Faraday performance of a large MHD generator at high magnetic field

    Science.gov (United States)

    Starr, R. F.; Christensen, L. S.; Garrison, G. W.; Whitehead, G. L.

    1981-01-01

    The High Performance Demonstration Experiment showed that an MHD generator simulating a commercial scale device can convert 16 to 18% of the available thermal energy into electrical power. Results have been obtained with the channel in the Faraday configuration and magnetic field strengths ranging from 1.5 to 3.5 Tesla; a maximum Faraday power of 23 MW was produced representing an enthalpy extraction of 9%. An analysis is presented of the electrical and aerodynamic characteristics of the channel including the voltage drop in the cold plasma layers near the electrode walls.

  18. Generation and oscillation amplification when interacting a relativistic electron beam with a spatially periodic magnetic field

    International Nuclear Information System (INIS)

    Vacuum relativistic generator and 3 centimeter range amplifier based on the use of instability of relativistic electron beam (REB) interacting with spatially periodic magnetic field is studied. 1.35 DB/cm amplification is achieved at 9450 MHz frequency at the input signal power of 105 W. The output power contitutes 3 MW at pulse duration of 1x10-6 s and irradiation line width of no more than 100 MHz. H01 mode is a working mode of amplifier. Spectral characteristics of irradiation are studied experimentally and theoretically

  19. Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)

    Science.gov (United States)

    Christensen, U. R.

    2009-04-01

    Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts correctly not only the magnetic field strength of planets with sufficiently simple dynamos (Earth and Jupiter), but also that of rapidly rotating stars.

  20. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, II, Rex E. (Brookfield, IL); Vukovic, Lela (Westchester, IL); Rathke, Jerome W. (Homer Glenn, IL)

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  1. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    International Nuclear Information System (INIS)

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible far particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times of Weibel instability are proportional to the Lorentz factors of jets. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small-scale magnetic field structure generated by the Weibel instability is appropriate to the generation of jitter radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting tram small scale magnetic field structures may be important far understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks

  2. Generation of flat-top pulsed magnetic fields with feedback control approach

    CERN Document Server

    Kohama, Yoshimitsu

    2015-01-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet, and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of +-0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  3. Microwave generation in interaction of intense electron beam with plasma in mirror magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolyada, Y.E.; Kornilov, E.A.; Fainberg, Y.B.; Ognivenko, V.V.; Kiyashko, V.A.; Pedenko, N.S.

    1976-09-01

    The generation of intense microwaves in an interaction of a high-current electron beam with a plasma in a mirror magnetic field is studied experimentally. The plasma is in an open cavity consisting of two mirrors. A microwave power of 60 MW is achieved at a wavelength of 2.5 cm when the electron beam has an energy of 150 keV, a current of 12 kA, and a pulse length of 0.7..mu..sec. The microwave intensity increases with increasing transverse velocity of the beam electrons. The incorporation of feedback in the system consisting of the electron beam, the plasma, and the open cavity results in a contraction of the spectrum and an increase in the generation efficiency.

  4. Plasma circuit breaker in a magnetic field as a high-power ion flux generator

    International Nuclear Information System (INIS)

    It is ascertained that plasma circuit breaker (PCB) in the external magnetic field of acute-anguled geometry in the mode when PCB serves as inductive storage loading is a natural magnetoizolated diode. Using PCB as an ion emitter and as a high-voltage generator it proved possible in case of full electron magnetiuzation to attain the maximum efficiency of the storage. The density of ion current evaluated by the measured energy density for 30 J/cm2 thermocouple and by the energy of 1.5 MeV constitutes 100 A/cm2. The given method of ion generation is very effective when high ion currents with a high energy are required

  5. Shock Structure and Magnetic Fields Generation Associated with Relativistic Jets Unmagnetized Pair Plasma

    Science.gov (United States)

    Niemiec, J.; Nishikawa, K.-I.; Hardee, P.; Pohl, M.; Medvedev, M.; Mizuno, Y.; Zhang, B.; Oka, M.; Sol, H.; Hartmann, D.

    2009-01-01

    Using 3D and 2D particle-in-cell simulations we investigate a shock structure, magnetic field generation, and particle acceleration associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized pair plasma. The simulations use long computational grids which allow to study the formation and dynamics of the system in a spatial and temporal way. We find for the first time a relativistic shock system comparable to a predicted magnetohydrodynamic shock structure consisting of leading and trailing shocks separated by a contact discontinuity. Strong electromagnetic fields resulting from the Weibel two-stream instability are generated in the trailing shock where jet matter is thermalized and decelerated. We analyze the formation and nonlinear development through saturation and dissipation of those fields and associated particle acceleration. In the AGN context the trailing shock corresponds to the jet shock at the head of a relativistic astrophysical jet. In the GRB context this trailing shock can be identified with the bow shock driven by relativistic ejecta. The strong electromagnetic field region in the trailing shock provides the emission site for the hot spot at the leading edge of AGN jets and for afterglow emission from GRBs.

  6. Effect of the plasma-generated magnetic field on relativistic electron transport.

    Science.gov (United States)

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver. PMID:21867317

  7. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovaiton and Fusion Research (Russian Federation); Krauz, V. I., E-mail: krauz_vi@nrcki.ru; Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  8. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.; Luhr, H.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of...... magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  9. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T

    Science.gov (United States)

    Larbalestier, D. C.; Jiang, J.; Trociewitz, U. P.; Kametani, F.; Scheuerlein, C.; Dalban-Canassy, M.; Matras, M.; Chen, P.; Craig, N. C.; Lee, P. J.; Hellstrom, E. E.

    2014-04-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, Jc. To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O7-x and (Bi, Pb)2Sr2Ca2Cu3O10-x are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O8-x (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high Jc of 2,500 A mm-2 at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries.

  10. Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel

    International Nuclear Information System (INIS)

    The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. (paper)

  11. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Djidjou, T. K.; Basel, Tek; Rogachev, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States); Chen, Ying; Shinar, J. [Ames Laboratory-USDOE, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2?-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  12. Generation of excited coherent states for a charged particle in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mojaveri, B., E-mail: bmojaveri@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, P.O. Box 51745-406, Tabriz (Iran, Islamic Republic of); Dehghani, A., E-mail: a-dehghani@tabrizu.ac.ir, E-mail: alireza.dehghani@gmail.com [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We introduce excited coherent states, |?,?;nгЂ‰?a{sup †n}|?,?гЂ‰, where n is an integer and states |?,?гЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |?,?гЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |?,?,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |?|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, B{sub ext}, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |?,?;nгЂ‰ in cavities.?.

  13. Generation of excited coherent states for a charged particle in a uniform magnetic field

    International Nuclear Information System (INIS)

    We introduce excited coherent states, |?,?;nгЂ‰?a†n|?,?гЂ‰, where n is an integer and states |?,?гЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |?,?гЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |?,?,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |?|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, Bext, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |?,?;nгЂ‰ in cavities.?

  14. Magnetic fields generated by an induction heating (IH) cook top do not cause genotoxicity in vitro.

    Science.gov (United States)

    Miyakoshi, Junji; Horiuchi, Emi; Nakahara, Takehisa; Sakurai, Tomonori

    2007-10-01

    The use of induction heater (IH) cook tops in homes has become widespread, especially in Japan, but there are concerns about the safety of intermediate frequency (IF) electromagnetic fields associated with these cooking appliances. Since the cellular genotoxicity of IF magnetic fields has not been examined in cultured cells, we examined the effects of these fields at a magnetic flux density of 532 +/- 20 microT at 23 kHz, using an exposure unit with a built-in CO2 incubator. Exposure to the IF magnetic field at 532 microT for 2 h did not affect the growth of CHO-K1 cells and caused no mutagenic effects in bacterial mutation assays. Exposure to the IF magnetic field for 2 h induced neither single nor double DNA strand breaks in comet assays, and caused no significant change in the mutation frequency at the HPRT locus compared to sham exposure. The magnetic field used in this study is more than 80 times higher than the level recommended as safe in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines. From these results, we suggest that exposure to an IF magnetic field for 2 h does not cause cellular genotoxicity in bacteria and in Chinese hamster cells. However, the possibility of effects on other cellular functions remains, and further studies on the cellular effects of IF magnetic fields are required. PMID:17492656

  15. Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface

    International Nuclear Information System (INIS)

    We investigate the effects of magnetic field on the entropy generation during fluid flow and heat transfer due to the radially stretching surface. The partial differential equations governing the flow and heat transfer phenomenon are transformed into nonlinear ordinary differential equations by using suitable similarity transformations. These equations are then solved by the homotopy analysis method and the shooting technique. The effects of the magnetic field parameter M and the Prandtl number Pr on velocity and the temperature profiles are presented. Moreover, influence of the magnetic field parameter M and the group parameter Br/? on the local entropy generation number Ns as well as the Bejan number Be are inspected. It is observed that the magnetic field is a strong source of entropy production in the considered problem

  16. Dynamics of radiation losses in Z-pinch plasma with taking into account generation of turbulent magnetic fields

    International Nuclear Information System (INIS)

    We estimated the total radiation losses from argon Z-pinches. Radiation losses due to excitation, di-electronic recombination, Bremsstrahlung, radiative recombination and also ionization, were considered. Each separate ion is analyzed in detail and the influence of density is taken into account. Our pinch dynamics includes Joule heating, anomalous plasma resistance, plasma outflow in Z-direction, electron beam generation, magnetic field pressure, radiation losses. Main novelty of the given model is generation of chaotic/turbulent magnetic fields. It is shown, that turbulent magnetic fields affect the dynamics of plasma parameters. The influence of turbulent magnetic field is analyzed on the dynamics of plasma temperature, density, radiation losses, line emission. (author)

  17. Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas

    International Nuclear Information System (INIS)

    We report measurements of ultrahigh magnetic fields produced during intense (∼1020 Wcm-2 μm2) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7±0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities

  18. An Impulse Induction MHD Generator Having a Magnetic Field with a Radial Component

    International Nuclear Information System (INIS)

    An impulse induction MHD generator with a cylindrical channel has been theoretically and experimentally investigated. Given certain assumptions, it is possible to write the general system of the partial differential equations, which describes the behaviour of the generator. The mean spatial values of the physical quantities are calculated under certain simplifying conditions and a system of the common differential equations is obtained. After separation the common differential equations of the third order for the velocity and the current are found. These equations are homogeneous with constant and identical coefficients. The solution of these equations is not too complicated and information about their time dependence is obtained. The expressions for the power generated and the generator efficiency are found in the usual way. The equation of the volt-ampere characteristic is also obtained and the characteristic of the generator is found not to be, in general, linear. The equations for the case of open-circuit current and short-circuit voltage are derived. These equations are the common differential equations of the second order and their solutions give the possibility of determining two of the parameters of the plasma clusters. The theoretical conclusions are verified experimentally. A plasma gun is the source of the plasma clusters. The pressure is varied over 1.4 x 10-2 to 2 x 10-1 Torr. The magnetic field is 2 x 10-2 T. The electrical conductivity and the mass of the clusters is calculated from the expressions for the open-circuit voltage and short-circuit current. The results of the theoretical and experimental calculations are in acceptable agreement. It is possible to say that the generator will operate and could, after refinement, be used for diagnostics of plasma clusters. (author)

  19. Nonlinear development of the Weibel instability and magnetic field generation in collisionless plasmas

    International Nuclear Information System (INIS)

    The Weibel instability is expected to be one of the mechanisms at play in the generation of quasi-static magnetic fields by high-intensity laser pulses propagating with relativistic amplitudes in underdense plasmas. This instability can be excited in a plasma with two electron populations: the background cold electrons and the high energy electrons accelerated by the laser radiation. Here we investigate the nonlinear stage of the evolution of this instability both analytically and numerically. We consider both the non-relativistic and the relativistic regimes within the frame-work of a cold two-electron fluid plasma description, where ions are assumed to be at rest and to provide a uniform neutralizing background. (orig.)

  20. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  1. Self-generated magnetic field measurements in TEA-CO2 laser produced plasmas on different targets

    International Nuclear Information System (INIS)

    Results of self-generated magnetic field measurements using differential inductive probes in TEA-CO2 laser produced plasmas on different metallic targets are presented. Dependences of the magnetic field strengths on the incident laser energy, the target material, the target-focus distance and the coordinates of probe position are investigated. The results are correlated to those of some other complementary X-ray emission and ion collection measurements perfopmed in the same reproducible experimental conditions. (authors)

  2. New performance in harmonic analysis device generation used for magnetic fields measurements

    International Nuclear Information System (INIS)

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10-4, we have to know the field quality to 10-5 through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10-5 and a sensitivity up to 10-8 Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 ?m. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors)

  3. New performance in harmonic analysis device generation used for magnetic fields measurements

    Energy Technology Data Exchange (ETDEWEB)

    Evesque, C.; Tkatchenko, M.

    1996-12-31

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10{sup -4}, we have to know the field quality to 10{sup -5} through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10{sup -5} and a sensitivity up to 10{sup -8} Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 {mu}m. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors).

  4. Splitting of generated atomic levels in the external electromagnetic and static magnetic fields

    International Nuclear Information System (INIS)

    Splitting of the degenerated 3d- and 4p-levels of the Na atom states is studied in the external linearly-polarized strong electromagnetic and static magnetic fields. It is shown that only in the case when the electromagnetic field is parallel to the magnetic one, splitting is additionally summing from Stark and Zeeman parts. In other cases this phenomenon does not occur

  5. Dynamical Feedback of Self-generated Magnetic Fields in Cosmic Ray Modified Shocks

    OpenAIRE

    Caprioli, D.; Blasi, P.; Amato, E.; Vietri, M.

    2008-01-01

    We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes the magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. The approach is specialized to parallel shock waves and the parameters we chose are the ones appropriate to forward shocks in Supernova Remnants. Our calculation allows us to show tha...

  6. Transmittal properties of a superconductor-ferromagnetic metamaterial subjected to magnetic fields generated by the permanent magnets

    Science.gov (United States)

    Liu, H.; Li, X. T.; Zhou, P. B.; Zhang, H.; Yang, C.; Ma, G. T.; Wang, R.; Chen, H.; Wang, Z.; Li, N.; Zhang, L.

    2015-09-01

    Superconductor-ferromagnetic (FN) metamaterial with effective magnetic shielding and transmittal properties that allow the cloaking and transferring of static magnetic fields has been introduced. Most metamaterials consist of different arrangements of superconducting and ferromagnetic materials whose performance and feasibility mainly depend on the involved materials, their geometrical distribution and the permeability of each. In this paper, combining the method of transformation optics with the design of metamaterials, we experimentally demonstrated a superconductor-FM metamaterial system, composed of two coaxial cylinders of different lengths, to investigate the influence of the length and the properties of superconducting material on the magnetic transferring properties of the magnetic field produced by the permanent magnets. By comparing the transmittal magnetic field of different cases, the optimal structure has been ultimately achieved in terms of calculating the transmitted magnetic field ratios. The insights attained by the present study are aimed to provide useful implications for the design of wireless energy transmission and increasing the efficiency of magnetic transmittal devices.

  7. Hamilton flow generated by field lines near a toroidal magnetic surface

    International Nuclear Information System (INIS)

    A method is described for obtaining the Hamiltonian of a vacuum magnetic field in a given 3D toroidal magnetic surface (superconducting shell). This method is used to derive the expression for the integrable surface Hamiltonian in the form of the expansion of a rotational transform of field lines on embedded near-boundary magnetic surfaces into a Taylor series in the distance from the boundary. This expansion contains the value of the rotational transform and its shear at the boundary surface. It is shown that these quantities are related to the components of the first and second quadratic forms of the boundary surface

  8. Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel

    Science.gov (United States)

    Zibold, A. F.

    2015-02-01

    The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. This article was accepted for publication in Fluid Dynamics Research 2014 Vol 46, No 4; which was a special issue consisting of papers from the 5th International Symposium on Bifurcations in Fluid Dynamics. Due to an unfortunate error on the part of the journal, this article was not published with the other articles from this issue.

  9. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T.

    Science.gov (United States)

    Larbalestier, D C; Jiang, J; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-04-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J(c). To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O(7-x) and (Bi, Pb)2Sr2Ca2Cu3O(10-x) are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O(8-x) (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high J(c) of 2,500 A mm(-2) at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries. PMID:24608141

  10. Effects of self-generated electric and magnetic fields in laser-generated fast electron propagation in solid materials: Electric inhibition and beam pinching

    OpenAIRE

    Bernardinello, A; Batani, D; Antonicci, A; Pisani, F; Koenig, M.; Gremillet, L; Amiranoff, F.; Baton, S.; Martinolli, E; Rousseaux, C.; Hall, TA; Norreys, P.; Djaoui, A

    2001-01-01

    We present some experimental results which demonstrate the presence of electric inhibition in the propagation of relativistic electrons generated by intense laser pulses, depending on target conductivity. The use of transparent targets and shadowgraphic techniques has made it possible to evidence electron jets moving at the speed of light, an indication of the presence of self-generated strong magnetic fields.

  11. Magnetization dynamics using ultrashort magnetic field pulses

    CERN Document Server

    Tudosa, I

    2005-01-01

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession.

  12. Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Spix, George J.

    2006-01-01

    We propose a simple relativistic derivation of the electric and the magnetic fields generated by an electric point charge moving with constant velocity. Our approach is based on the radar detection of the point space coordinates where the fields are measured. The same equations were previously derived in a relatively complicated way2 based exclusively on general electromagnetic field equations and without making use of retarded potentials or relativistic equations

  13. Three-magnetic fields

    OpenAIRE

    Koivisto, Tomi S.; Urban, Federico R.

    2011-01-01

    A completely new mechanism to generate the observed amount of large-scale cosmological magnetic fields is introduced in the context of three-form inflation. The amplification of the fields occurs via fourth order dynamics of the vector perturbations and avoids the backreaction problem that plagues most previously introduced mechanisms.

  14. THE EFFECT OF LOWER MANTLE METALLIZATION ON MAGNETIC FIELD GENERATION IN ROCKY EXOPLANETS

    International Nuclear Information System (INIS)

    Recent theoretical and experimental evidence indicates that many of the materials that are thought to exist in the mantles of terrestrial exoplanets will metallize and become good conductors of electricity at mantle pressures. This allows for strong electromagnetic coupling of the core and the mantle in these planets. We use a numerical dynamo model to study the effect of a metallized lower mantle on the dynamos of terrestrial exoplanets using several inner core sizes and mantle conductivities. We find that the addition of an electrically conducting mantle results in stronger core-mantle boundary fields because of the increase in magnetic field stretching. We also find that a metallized mantle destabilizes the dynamo resulting in less dipolar, less axisymmetric poloidal magnetic fields at the core-mantle boundary. The conducting mantle efficiently screens these fields to produce weaker surface fields. We conclude that a conducting mantle will make the detection of extrasolar terrestrial magnetic fields more difficult while making the magnetic fields in the dynamo region stronger.

  15. Software for evaluating magnetic induction field generated by power lines: implementation of a new algorithm

    International Nuclear Information System (INIS)

    The Regional Environment Protection Agency of Friuli Venezia Giulia (A.R.P.A. F.V.G., Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Furthermore, none of them is preset for cyclic calculus to determine the time evolution of induction in a certain exposure area. Finally, the output data are not immediately importable by ArcView, the G.I.S. used by A.R.P.A. F.V.G., and it is not always possible to implement the territory orography to determine the field at specified heights above the ground. P.h.i.d.e.l., an innovative software, tackles and works out al l the above mentioned problems. The power line wires interested in its implementation are represented by poly lines, and the field is analytically calculated, with no further approximation, not even when more power lines are concerned. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in G.I.S. and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 ?T bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003. (authors)

  16. Analysis of the magnetic field distribution in an homopolar generator as a pulse power source of electromagnetic launchers

    Science.gov (United States)

    Azzerboni, B.; Cardelli, E.; Tellini, A.

    1988-01-01

    A circuit-method approach is presented for evaluating the distribution of the current density and the magnetic field following a sudden short circuit in a homopolar generator. The method is applied to analyze the transient armature reaction in a counterrotating homopolar generator placed in a high magnetic field. The machine is divided into a finite number of volume elements, the centers of which are linked to produce a three-dimensional mesh. The branches of the mesh are characterized, like circuit branches, by resistors, capacitors, inductors, magnetic couplings, and independent voltage generators. The symmetries of the machine are used to obtain a reduced two-dimensional plane net. The behavior of the net can be analyzed by conventional analytical or numerical methods.

  17. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    Science.gov (United States)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  18. Primordial magnetic fields at preheating

    OpenAIRE

    Diaz-Gil, A.; Garcia-Bellido, J; Perez, M. Garcia; Gonzalez-Arroyo, A

    2007-01-01

    Using lattice techniques we investigate the generation of long range cosmological magnetic fields during a cold electroweak transition. We will show how magnetic fields arise, during bubble collisions, in the form of magnetic strings. We conjecture that these magnetic strings originate from the alignment of magnetic dipoles associated with EW sphaleron-like configurations. We also discuss the early thermalisation of photons and the turbulent behaviour of the scalar fields af...

  19. Photon echoes generated by reversing magnetic field gradients in a rubidium vapour

    CERN Document Server

    Hétet, G; Sparkes, B; Oblak, D; Lam, P K; Buchler, B C

    2008-01-01

    We propose a photon echo quantum memory scheme using detuned Raman coupling to long lived ground states. In contrast to previous 3-level schemes based on controlled reversible inhomogeneous broadening that use sequences of $\\pi$-pulses, the scheme does not require accurate control of the coupling dynamics to the ground states. We present a proof of principle experimental realization of our proposal using rubidium atoms in a warm vapour cell. The Raman resonance line is broadened using a magnetic field that varies linearly along the direction of light propagation. Inverting the magnetic field gradient rephases the atomic dipoles and re-emits the light pulse in the forward direction.

  20. Dynamo generation of magnetic field in the white dwarf GD 358

    Science.gov (United States)

    Markiel, J. Andrew; Thomas, John H.; Van Horn, H. M.

    1994-01-01

    On the basis of Whole Earth Telescope observations of the g-mode oscillation spectrum of the white dwarf GD 358, Winget et al. find evidence for significant differential rotation and for a time-varying magnetic field concentrated in the surface layers of this star. Here we argue on theoretical grounds that this magnetic field is produced by an alpha omega dynamo operating in the lower part of a surface convection zone in GD 358. Our argument is based on numerical solutions of the nonlinear, local dynamo equations of Robinson & Durney, with specific parameters based on our detailed models of white-dwarf convective envelopes, and universal constants determined by a calibration with the the Sun's dynamo. The calculations suggest a dynamo cycle period of about 6 years for the fundamental mode, and periods as short as 1 year for the higher-order modes that are expected to dominate in view of the large dynamo number we estimate for GD 358. These dynamo periods are consistent with the changes in the magnetic field of GD 358 over the span of 1 month inferred by Winget et. al. from their observations. Our calculations also suggest a peak dynamo magnetic field strength at the base of the surface convection zone of about 1800 G, which is consistent with the field strength inferred from the observations.

  1. The magnetic field effect on electron beam generation in magnetron injection guns with secondary-emission cathodes

    International Nuclear Information System (INIS)

    The experiments have shown that a variation in the magnetic field can give rise to space charge oscillations in the interelectrode (anode-cathode) gap of the magnetron gun.These effects observed during beam generation and transport must be taken into account when using a magnetron gun in high-power microwave devices

  2. Entropy Generation and Natural Convection of CuO-Water Nanofluid in C-Shaped Cavity under Magnetic Field

    Directory of Open Access Journals (Sweden)

    Ali Chamkha

    2016-02-01

    Full Text Available This paper investigates the entropy generation and natural convection inside a C-shaped cavity filled with CuO-water nanofluid and subjected to a uniform magnetic field. The Brownian motion effect is considered in predicting the nanofluid properties. The governing equations are solved using the finite volume method with the SIMPLE (Semi-Implicit Method for Pressure Linked Equations algorithm. The studied parameters are the Rayleigh number (1000 ? Ra ? 15,000, Hartman number (0 ? Ha ? 45, nanofluid volume fraction (0 ? ? ? 0.06, and the cavity aspect ratio (0.1 ? AR ? 0.7. The results have shown that the nanoparticles volume fraction enhances the natural convection but undesirably increases the entropy generation rate. It is also found that the applied magnetic field can suppress both the natural convection and the entropy generation rate, where for Ra = 1000 and ? = 0.04, the percentage reductions in total entropy generation decreases from 96.27% to 48.17% for Ha = 45 compared to zero magnetic field when the aspect ratio is increased from 0.1 to 0.7. The results of performance criterion have shown that the nanoparticles addition can be useful if a compromised magnetic field value represented by a Hartman number of 30 is applied.

  3. Diode with magnetic insulation and Br field as a generator of power microsecond ion beam

    International Nuclear Information System (INIS)

    Results of investigations into the generation of microsecond duration high-power ion beam in a plane magnetoisolated diode with an external isolating field with radial distribution are presented. The investigations are conducted using a microsecond generator operating in the regime of generating positive high-voltage ?600 kV amplitude pulses. Ring-type cross section ion beam consisting mainly of H+ and C+ ions is studied. The energy range occupied by the major part of the ions generated makes up 300-500 keV. The complete energy store of the beam extracted from the diode makes up 10 kJ, the generation efficiency is 60%

  4. Heat generation ability in AC magnetic field and their computer simulation for Ti tube filled with ferrite powder

    International Nuclear Information System (INIS)

    The heat generation ability of needle-type materials was studied for the application of thermal coagulation therapy in an AC magnetic field. Although the Ti tube without the MgFe2O4 powder or Ti rod showed poor heat generation abilities in an AC magnetic field, the temperature was significantly increased by the presence of ferrite powder in the Ti tube. We confirmed using a computer simulation that the eddy loss of the Ti tube was increased by the enhanced magnetic flux density due to the ferrite powder in the Ti tube. The heat generation of the ferrite filled Ti tube was increased by utilization of the quenched MgFe2O4 powder from elevated temperature. The relative magnetic permeability of the quenched ferrite was enhanced with the decrease in the inverse ratio of the cubic spinel structure. The heat generation ability was increased with the increase in the relative magnetic permeability of the Ti tube with ferrite powder. The calculated joule loss based on the experimental results showed an agreement with those using the computer simulation.

  5. Magnetic field dependence of the harmonic generation in sintered pellets of YBaCuO. The history effects

    International Nuclear Information System (INIS)

    Results are presented for a detailed study of harmonic generation in the magnetization of a sintered YBa2Cu3O7 pellet subjected to various combinations of AC and DC magnetic field. On cooling the sample below Tc in zero field, a large hysteresis is observed between HDC increasing and decreasing cases. General features of this observation can be understood in terms of the hysteretic properties of the weak-linked intergrain region mediated by trapped flux inside the grains. However, there remain some finer aspects which do not have a simple explanation within this model. (orig.)

  6. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  7. Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn

    Science.gov (United States)

    Christensen, Ulrich R.; Wicht, Johannes

    2008-07-01

    A substantial part of Mercury's iron core may be stably stratified because the temperature gradient is subadiabatic. A dynamo would operate only in a deep sublayer. We show that such a situation arises for a wide range of values for the heat flow and the sulfur content in the core. In Saturn the upper part of the metallic hydrogen core could be stably stratified because of helium depletion. The magnetic field is unusually weak in the case of Mercury and unusually axisymmetric at Saturn. We study numerical dynamo models in rotating spherical shells with a stable outer region. The control parameters are chosen such that the magnetic Reynolds number is in the range of expected Mercury values. Because of its slow rotation, Mercury may be in a regime where the dipole contribution to the internal magnetic field is weak. Most of our models are in this regime, where the dynamo field consists mainly of rapidly varying higher multipole components. They can hardly pass the stable conducting layer because of the skin effect. The weak low-degree components vary more slowly and control the structure of the field outside the core, whose strength matches the observed field strength at Mercury. In some models the axial dipole dominates at the planet's surface and in others the axial quadrupole is dominant. Differential rotation in the stable layer, representing a thermal wind, is important for attenuating non-axisymmetric components in the exterior field. In some models that we relate to Saturn the axial dipole is intrinsically strong inside the dynamo. The surface field strength is much larger than in the other cases, but the stable layer eliminates non-axisymmetric modes. The Messenger and Bepi Colombo space missions can test our predictions that Mercury's field is large-scaled, fairly axisymmetric, and shows no secular variations on the decadal time scale.

  8. Study and realization of a power circuit of a superconducting dipole generator of a magnetic field

    International Nuclear Information System (INIS)

    The project of experimental reactor building on controlled fusion (I.T.E.R) needed the development of a superconducting cable made of niobium-tin. Tested with a current of fifty kilo amperes under a twelve tesla constant field, this cable has to be tested under a variable field. The installation of the power circuit of the dipole field generator, consisted to the study and realization of the four following points: an important power cable; a tension protection organ of the dipole, under a seventeen milli Henrys inductance and four kilo amperes; a current regulating system given by the generator; a complete pilot system of the test station

  9. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    Science.gov (United States)

    Akou, H.; Hamedi, M.

    2015-10-01

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 ?m electron bunch with about MeV initial energy becomes a 20 ?m electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  10. Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field

    International Nuclear Information System (INIS)

    An overmoded slow wave type Ka band generator is investigated experimentally to produce high power millimeter waves in this paper. The experiments were carried out at the TORCH-01 accelerator. The produced microwave frequency was measured by dispersive line method, and the power was estimated by integrating over the radiation pattern at far field. With relatively low guiding magnetic field of 0.8 T and diode voltage and beam current of 590 kV and 5.2 kA, respectively, a 33.56 GHz millimeter wave with an output power of 320 MW was generated, and the microwave mode was quasi-TM01 mode.

  11. Magnetic field generation in a plasma in the presence of an ultrashort laser pulse

    International Nuclear Information System (INIS)

    The description of the Weibel instability linear stage for a plasma interacting with an ultrashort laser pulse is given. Pulse durations both smaller and larger than the inverse collision frequency of the thermal electrons are considered. In the latter case the pulse duration is smaller than the thermal electron heating time. The growth rate of the instability is derived and the possibility of a considerable quasistationary magnetic field amplification demonstrated

  12. A magnetically isolated diode with B?-field as a generator of high-power microsecond ion beam

    International Nuclear Information System (INIS)

    The results of a study of the generation of a high-power microsecond ion beam in a planar magnetically isolated diode with external radially distributed isolating field are presented. A ring cross-section ion beam consisting mainly of H+ and C+ ions was studied. The energy range of most of the generated ions is 300-500 keV. The total energy stored in the beam extracted from the diode is 10 kJ and the generation efficiency reaches 60%. 5 refs., 4 figs

  13. The magnetic shear-current effect: generation of large-scale magnetic fields by the small-scale dynamo

    CERN Document Server

    Squire, Jonathan

    2015-01-01

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo -- in some sense the inverse of dynamo quenching. The dynamo is nonhelical, with the mean-field $\\alpha$ coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack...

  14. Cosmological magnetic fields

    OpenAIRE

    Olinto, Angela V.

    2000-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field w...

  15. Magnetic Field Generation and Energy Confinement with Te> 500 eV in the SSPX Spheromak

    Science.gov (United States)

    Hudson, B.

    2007-11-01

    The understanding of confinement and energy transport in spheromaks is key the understanding the physics of spheromak formation and self-organization as well as addressing the feasibility of the concept as a reactor scenario. In the Sustained Spheromak Physics eXperiment (SSPX), increased understanding of the physics in building and sustaining self-organized magnetic equilibria has resulted in record electron temperatures Te> 500 eV and plasma currents of ˜ 1 MA on the magnetic axis. We find that the highest edge magnetic field magnitudes (and correspondingly high Te) is achieved when ?=?0Igun ?gun is near (but slightly below) the Kruskal-Shafranov instability limit ?KS2?L12.6,-1 where L is the length of the flux-conserver (0.5 m). Building on previously reported results, power-balance analysis has shown levels of electron thermal transport ?ebank we are able to highly tailor the gun current to take advantage of the sensitive dependence of spheromak performance on the plasma ?. When in this optimum operating range we also find that the efficiency of field build-up (defined as the ratio of edge poloidal magnetic field to gun current) is increased 20% over prior results, to ˜1.0 T/MA. Additionally this brings the efficiency of spheromak formation into numerical agreement with results from the NIMROD 3-D MHD code. Plasma energy evolution has been studied by taking time-resolved measurements of Te(r) and ne(r) indicating a distinct and robust feature of spheromak formation; a hollow-to-peaked temperature transition with an inverse relationship to the electron density. This feature, as well as sub-microsecond transport, is being studied with the upgrade of the Thomson scattering diagnostic to double-pulse operation. We also present recent results of the impact of charge-exchange losses on overall power balance and estimates of the plasma ion temperature as measured with a neutral particle analyzer.

  16. Generation of enhanced-scalelength plasmas and Zeeman study of magnetic fields

    International Nuclear Information System (INIS)

    Using nonuniform laser illumination on flat targets, with moderate laser energies (200 J), we have produced enhanced density scalelengths; e.g., in excess of 0.5 mm at 0.1 of critical density. These enhanced scalelengths are of interest in simulating large, high-gain pellets, and investigating the potential impact of longer scalelengths on a variety of convective plasma instabilities. The nonuniform laser irradiation also affects the spontaneous magnetic fields. These fields were measured for the first time using the Zeeman effect. Space-and-time-resolved measurements, for both polarizations, were made of the 2271-2278 A CV triplets (2s3S1 - 2p3P2,1,0) emission. A comparison with theory gave fields around 200 kG

  17. Effect of self-generated magnetic field on the two-plasmon decay instability in a laser-produced plasma

    International Nuclear Information System (INIS)

    In this paper we have made a theoretical investigation on the two-plasmon decay instability of laser radiation in the presence of the self-generated magnetic field at the quarter-critical density region in a laser-produced plasma. The Vlasov equation in terms of guiding centre coordinates has been employed to obtain the non-linear response of electrons in the plasma. The threshold power density of the incident laser radiation for the two-plasmon decay instability is always exceeded in currently employed power densities in laser-target experiments and above the threshold the growth rate of the instability is quite large. It is also noticed that the self-generated magnetic field enhances the threshold to a large extent, thus drastically reducing the growth rate of the instability. (author)

  18. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*1021 cm-3 and confinement time ?= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  19. On the problem of large-scale magnetic field generation in rotating compressible convection

    CERN Document Server

    Favier, Benjamin

    2013-01-01

    Mean-field dynamo theory suggests that turbulent convection in a rotating layer of electrically-conducting fluid produces a significant alpha-effect, which is one of the key ingredients in any mean-field dynamo model. Provided that this alpha-effect operates more efficiently than (turbulent) magnetic diffusion, such a system should be capable of sustaining a large-scale dynamo. However, in the Boussinesq model that was considered by Cattaneo&Hughes (2006) the dynamo produced small-scale, intermittent magnetic fields with no significant large-scale component. In this paper, we consider the compressible analogue of the rotating convective layer that was considered by Cattaneo&Hughes (2006). Varying the horizontal scale of the computational domain, we investigate the dependence of the dynamo upon the rotation rate. Our simulations indicate that these turbulent compressible flows can drive a small-scale dynamo but, even when the layer is rotating very rapidly (with a mid-layer Taylor number of Ta=10^8), w...

  20. Generation of a quasisteady electromagnetic field by a distributed magnetic dipole moving in a collisionless plasma

    International Nuclear Information System (INIS)

    The problem of the excitation of quasisteady electromagnetic fields by a moving dipole with a moment directed perpendicularly to its velocity is solved using the linear theory of particle emission based on the kinetic equation for a collisionless plasma. A multipole representation is derived for the fields at large and small distances from the dipole. The quasisteady electromagnetic fields excited by the dipole are squeezed against it. The currents in the plasma screen the field of the dipole, and an anomalous skin region with a typical size r/sub G/ = (?/sub ?/ ??/2 ?/sub p//sub ?/ 2v'/c2v/sub ?/)/sup -1/2/ forms (?/sub p//sub ?/ is the plasma frequency, v' is the velocity of the dipole, v/sub ?/ is the thermal velocity, and c is the velocity of light). In this anomalous skin region, the energy of the dipole is dissipated resonantly and converted into plasma particle energy through the excited quasisteady electromagnetic field. The rate of this process, the radiation resistance, and the stopping force exerted on the dipole are all calculated. An anomalous collisionless magnetic Reynolds number is defined. This Reynolds number characterizes the role played by conductivity effects in a collisionless plasma

  1. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    Moh'd A. Al-Nimr

    2004-06-01

    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  2. Simulation Study of Magnetic Fields Generated by the Electromagnetic Filamentation Instability

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C. B.; Mizuno, Y.; Fishman, G. J.

    2007-01-01

    We have investigated the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of the original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.

  3. Containment of an adiabatic plasma on magnetic lines of force by a self-generated electrostatic field

    International Nuclear Information System (INIS)

    One component of a three-fluid adiabatic plasma is under certain conditions contained in a restricted region of space by a large-scale electrostatic field generated within the plasma. The containment is discussed here for plasma consisting of ions and two populations of electrons characterized by different pitch angle distribution functions. The 'bouncing' motion of electrons along 'open' fieldlines between a magnetic mirror and an 'electrostatic' mirror produces a velocity distribution function similar to that generated by 'bouncing' particles on 'closed' fieldlines. (Auth.)

  4. ANALYSIS OF LOW TEMPERATURE PLASMA FLOW IN DISC-TYPE MHD GENERATOR IN STRONG MAGNETIC FIELD WITH EXTRATHERMAL IONIZATION

    Directory of Open Access Journals (Sweden)

    Józef Kunc

    1971-01-01

    Full Text Available Basing on the given flow model, low temperature plasma flow equations in disc-type MHD Generator in strong magnetic field are educed, taking into consideration the Hall's Component of Electrical Current. The He-Cs plasma ionization is considered as extrathermal ("electron heating" according to Kerrbrock's Model.The solutions of flow equations for low Mach numbers and numeral calculations based on the given parameters are presented also.The most typical functions for the MHD Generator theory are shown in the form of diagrams.

  5. Ultrafast Generation of Pseudo-magnetic Field for Valley Excitons in WSe2 Monolayers

    OpenAIRE

    Kim, Jonghwan; Hong, Xiaoping; Jin, Chenhao; Shi, Su-Fei; Chang, Chih-Yuan S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, Feng

    2014-01-01

    A new degree of freedom, the valley pseudospin, emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2) and has attracted great scientific interest. The capability to manipulate the valley pseudospin, in analogy to the control of spin in spintronics, can open up exciting opportunities in valleytronics. Here we demonstrate that an ultrafast and ultrahigh valley pseudomagnetic field can be generated using circularly polarized femtosecond pulses to sel...

  6. Evaluation of human exposure to complex waveform magnetic fields generated by arc-welding equipment according to european safety standards

    International Nuclear Information System (INIS)

    In this paper, a procedure is described for the assessment of human exposure to magnetic fields with complex waveforms generated by arc-welding equipment. The work moves from the analysis of relevant guidelines and technical standards, underlining their strengths and their limits. Then, the procedure is described with particular attention to the techniques used to treat complex waveform fields. Finally, the procedure is applied to concrete cases encountered in the workplace. The discussion of the results highlights the critical points in the procedure, as well as those related to the evolution of the technical and exposure standards. (authors)

  7. Magnetic field line Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined.

  8. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  9. Mercury's Magnetic Field

    Science.gov (United States)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  10. Study of self-generated magnetic fields in laser produced plasmas using a three-channel polaro-interferometer

    Science.gov (United States)

    Prasad, Y. B. S. R.; Barnwal, S.; Bolkhovitinov, E. A.; Naik, P. A.; Kamath, M. P.; Joshi, A. S.; Kumbhare, S. R.; Rupasov, A. A.; Gupta, P. D.

    2011-12-01

    Self-generated magnetic fields produced in laser plasmas at moderate laser intensities have been measured using a three-channel polaro-interferometer. The main elements of this device are two birefringent calcite wedges placed between two crossed polarizers. Using this device, the spatial profiles of (a) the rotation angle (polarometry), (b) the electron density (interferometry), and (c) the transmitted probe beam intensity (shadowgraphy) are recorded simultaneously using a digital camera with a large format CCD in a single laser shot. Magnetic fields of 2-4 MG had been estimated in aluminum plasma at laser intensities ˜1013 W/cm2. It is also possible to use this device in other configurations to get time resolved information.

  11. Study of self-generated magnetic fields in laser produced plasmas using a three-channel polaro-interferometer

    International Nuclear Information System (INIS)

    Self-generated magnetic fields produced in laser plasmas at moderate laser intensities have been measured using a three-channel polaro-interferometer. The main elements of this device are two birefringent calcite wedges placed between two crossed polarizers. Using this device, the spatial profiles of (a) the rotation angle (polarometry), (b) the electron density (interferometry), and (c) the transmitted probe beam intensity (shadowgraphy) are recorded simultaneously using a digital camera with a large format CCD in a single laser shot. Magnetic fields of 2-4 MG had been estimated in aluminum plasma at laser intensities ?1013 W/cm2. It is also possible to use this device in other configurations to get time resolved information.

  12. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T

    CERN Document Server

    Larbalestier, D C; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-01-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J$_c$. To minimize such grain boundary obstacles, HTS conductors such as REBa$_2$Cu$_3$O$_{7−x}$ and (Bi, Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10−x}$ are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi$_2$2Sr$_2$CaCu$_2$O$_{8−x}$ (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb$_3$Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very hi...

  13. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume an Earth's conductivity model with a surface thin shell of variable conductance with a realistic ID mantle underneath. Simulations using both models predict an amplitude range of +/-2 nT at Swarm altitude (430 km). However at sea level, the higher resolution simulation predicts a higher strength of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals.

  14. Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

    Science.gov (United States)

    Dieckmann, M. E.; Bock, A.; Ahmed, H.; Doria, D.; Sarri, G.; Ynnerman, A.; Borghesi, M.

    2015-07-01

    A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.

  15. Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

    CERN Document Server

    Dieckmann, M E; Ahmed, H; Doria, D; Sarri, G; Ynnerman, A; Borghesi, M

    2015-01-01

    A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell (PIC) simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that a...

  16. Effect of an azimuthal magnetic field on neutron generation from a z-pinch

    International Nuclear Information System (INIS)

    An experimental study has been made on neutron emission from a Z-pinch device (with the energ of 15 kJ, minimum current approximately 3.5x105 A, initial current approximately 3x1011 A/s, a porcelain chamber, 28 cm in diameter and 50 cm long), the electrodes of which are short-circuited along the axis of the chamber by a conducting bus. It is shown that, when the azimuthal magnetic field, opposite to the field of the discharge current, is entrapped by plasma, the neutron yield increases 10-30 times. The yield grows with a rod diameter decrease; the dependence of emission on the current density in a pinch is of a threshold nature. The neutron radiation intensity is promoted by a growth of the e. m. f., accelerating deuterons, up to > or approximately 100 kV and by a possible elongation of the current filaments (and lines with H approximately O, respectively). The e. m. f. is excited along a pinch in the process of a deflecting repeated breakdown

  17. Geometrical Design of a Scalable Overlapping Planar Spiral Coil Array to Generate a Homogeneous Magnetic Field.

    Science.gov (United States)

    Jow, Uei-Ming; Ghovanloo, Maysam

    2012-12-21

    We present a design methodology for an overlapping hexagonal planar spiral coil (hex-PSC) array, optimized for creation of a homogenous magnetic field for wireless power transmission to randomly moving objects. The modular hex-PSC array has been implemented in the form of three parallel conductive layers, for which an iterative optimization procedure defines the PSC geometries. Since the overlapping hex-PSCs in different layers have different characteristics, the worst case coil-coupling condition should be designed to provide the maximum power transfer efficiency (PTE) in order to minimize the spatial received power fluctuations. In the worst case, the transmitter (Tx) hex-PSC is overlapped by six PSCs and surrounded by six other adjacent PSCs. Using a receiver (Rx) coil, 20 mm in radius, at the coupling distance of 78 mm and maximum lateral misalignment of 49.1 mm (1/?3 of the PSC radius) we can receive power at a PTE of 19.6% from the worst case PSC. Furthermore, we have studied the effects of Rx coil tilting and concluded that the PTE degrades significantly when ? > 60°. Solutions are: 1) activating two adjacent overlapping hex-PSCs simultaneously with out-of-phase excitations to create horizontal magnetic flux and 2) inclusion of a small energy storage element in the Rx module to maintain power in the worst case scenarios. In order to verify the proposed design methodology, we have developed the EnerCage system, which aims to power up biological instruments attached to or implanted in freely behaving small animal subjects' bodies in long-term electrophysiology experiments within large experimental arenas. PMID:24782576

  18. Permanent magnet devices for generation of initial current in spiral explosion-magnetic generators

    International Nuclear Information System (INIS)

    Principles are considered of operation of explosion-magnetic generators for generation of superstrong currents and magnetic fields. Different designs are described of magnetic systems on the base of permanent magnets, which produce high magnetic fluxes and initial currents within spirals of the explosion-magnetic generators. The magnetic flux from 1.3 to 1.8 mWb were obtained by means of the developed magnetic systems on the base of permanent magnets for the spiral explosion-magnetic generators with the diameter of 40 mm and winding step of 2.1 mm. 6 refs., 8 figs

  19. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  20. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  1. Neutron Emission Generated in the Collision of Plasma Flows in the Presence of an External Magnetic Field

    International Nuclear Information System (INIS)

    Results are presented from experimental studies of the neutron emission generated in the collision of deuterium plasma flows produced in discharges in crossed E x H fields and propagating in opposite directions in a neutral gas across an external magnetic field. It is shown that the interaction of oppositely propagating deuterium plasma flows gives rise to the generation of soft X-ray emission and neutron emission from the dd reaction (dd ? 3He + n) and is accompanied by an almost complete depolarization of the flows and rapid variations in the magnetic field (at a rate of ?1011 G/s). The measurements were performed at energies and velocities of the flows of up to 600 J and 3.5 x 107 cm/s, respectively. The plasma density in each flow was ?1015 cm-3. The upper estimates for the astrophysical S factor and the effective cross sections of the dd reaction obtained from our measurements are compared to theoretical calculations and to the results of experiments performed in the MIG high-current accelerator (Institute of High-Current Electronics, Russian Academy of Sciences, Tomsk)

  2. Energy transfer from a homopolar generator to a single turn coil toroidal field magnet

    International Nuclear Information System (INIS)

    The designs of busbars and switches to efficiently transfer energy to the IGNITEX (Texas Fusion Ignition Experiment), single-turn tokamak and to the IGNITEX Technology Demonstrator (ITD) are presented. The IGNITEX machine should produce and control an ignited plasma with ohmic heating alone. A proposed homopolar generator (HPG) power supply formed by 12, 1-GJ HPGs will power the toroidal field (TF) of the full-scale IGNITEX device. The objective of the ITD is to test the design, fabrication procedures, and operation of a single turn, 20 T, TF coil. The ITD will be driven by an existing 60 MJ, 9 MA power supply consisting of six, 10-MJ HPGs located at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). Busbsar design considerations include physical integration, thermal and electromechanical stresses, material properties in liquid nitrogen, effects on circuit response, and resistive and inductive energy dissipation

  3. The earth's magnetic field

    International Nuclear Information System (INIS)

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  4. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    Science.gov (United States)

    Kim, Jonghwan; Hong, Xiaoping; Jin, Chenhao; Shi, Su-Fei; Chang, Chih-Yuan S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, Feng

    2015-03-01

    The valley pseudospin emerges as a new degree of freedom in atomically thin two-dimensional transition metal dichalcogenides (MX2). In analogy to the control of spin in spintronics, the capability to manipulate the valley pseudospin can provide exciting opportunities in valleytronics. Here we present that femtosecond pulses with circular polarization can generate ultrafast and ultrahigh valley pseudomagnetic field in a monolayer MX2. Our polarization-resolved transient absorption measurement shows that the degeneracy of valley exciton transitions at K and K' valley in WSe2 monolayers can be lifted by optical Stark effect from the non-resonant pump. Energy splitting due to the optical Stark effect is linear with both the pump intensity and the inverse of pump detuning. We observe that valley-selective optical Stark effect can create an energy splitting more than 10 meV which corresponds to a pseudomagnetic field over 60 Tesla. Our study demonstrates efficient and ultrafast control of the valley excitons with optical light which can open up the possibility of coherent manipulation of the valley polarization in MX2.

  5. Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth's magnetic field

    CERN Document Server

    Garai, Jozsef

    2007-01-01

    The presence of low viscosity layers in the mantle is supported by line of geological and geophysical observations. Recent high pressure and temperature investigations indicated that partial carbonate melt should exist at the bottom of the lithosphere and at 660 km. The presence of few percent carbonate melt reduces the viscosity by several order of magnitude. The globally existing 660 km very low viscosity layer allows the development of differential rotation between the upper and lower mantle. This differential rotation between the 660 km outer shell and the rest of the earth offers a plausible explanation for plate tectonics and for the generation of the earth's magnetic field. Simple dynamo model is proposed, which able to reproduce all of the features of the contemporary and, within reasonable uncertainty, the paleomagnetic field. The model is also consistent with geological and geophysical observations.

  6. Generation of magnetic field by the current-driven instability near cosmic-ray modified shocks

    International Nuclear Information System (INIS)

    We study the non-linear properties of the current-driven instability predicted by Bell (2004). In the first part, we combine an analytical modeling plus particle-in-cell (PIC) simulations to make a one-dimensional study of the waves as they were isolated plane waves subject to a constant cosmic ray (CR) current. In the second part, we relax these conditions by including multidimensional effects and also the back-reaction on the CRs. In the idealistic case, we find that the current-driven waves can grow exponentially until the Alfven velocity of the plasma, Va, becomes comparable to the drift velocity of the CRs, Vcr. We also find that, in the exponential growth regime, the current-driven waves will move the plasma along the direction of propagation of the CRs at a speed ?Va2/Vcr. Also, they will induce transversal plasma motions of about the '' transversal Alfven speed '', which is the Alfven speed calculated only with the fields perpendicular to the CR current. The multidimensional evolution of the instability is studied making use of two- and three-dimensional simulations. First, we find that a condition for the growth of the instability is that Vcr(Ncr/Ni) << Vai, where Ncr and Ni are the density of CR and background ions, respectively, and Vai is the initial Alfven velocity of the plasma. If this condition is not met, the instability will be suppressed by the formation of strong plasma filaments of the scale of the ions skin depth. We also find that, even if the current-driven waves can grow, they will produce significant density fluctuations in the plasma shortly after they become non-linear, which confirm previous numerical MHD studies. The formation of these fluctuations will decrease the growth rate of the instability and will enlarge its dominant wavelengths. We also study the effect of the back-reaction on CR. We find that, if the Larmor radii of the CR become comparable to the size of the magnetic fluctuations, the deflection of the CR can saturate the instability before the regime Va ? Vcr is reached. We discuss applications of this instability to both relativistic and non-relativistic shock environments. (author)

  7. Generation of a large swelling in the spatial magnetic field profile near the coil axis of a theta pinch

    International Nuclear Information System (INIS)

    A large magnetic field swelling near the coil axis in a theta pinch with low discharge energy was investigated in detail by changing the gas-fill pressure, the kind of gas and the intensity of the applied magnetic field. Under the experimental conditions, the maximum magnetic field around the axis amounted to more than three times the applied field. It was experimentally clarified that the shifting of the plowed plasma to the back of the current sheath in the implosion phase is essential for the phenomenon and that the amplitude of the field around the axis can be explained by the flux trapped by the shifted plasma. (author)

  8. Time-reversal violating generation of static magnetic and electric fields and a problem of electric dipole moment measurement

    OpenAIRE

    Baryshevsky, Vladimir G.

    2003-01-01

    It is shown that in the experiments for search of the EDM of an electron (atom, molecule) the T-odd magnetic moment induced by an electric field and the T-odd electric dipole moment induced by a magnetic field will be also measured. It is discussed how to distinguish these contributions.

  9. Ab initio study of the enantio-selective magnetic-field-induced second harmonic generation in chiral molecules.

    Science.gov (United States)

    Rizzo, Antonio; Rikken, G L J A; Mathevet, R

    2016-01-21

    We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-?-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup. PMID:26682613

  10. Applications of the computer codes FLUX2D and PHI3D for the electromagnetic analysis of compressed magnetic field generators and power flow channels

    International Nuclear Information System (INIS)

    The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations

  11. Superhorizon magnetic fields

    Science.gov (United States)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  12. Cosmic Magnetic Fields

    OpenAIRE

    Pino, E. M. Gouveia Dal

    1999-01-01

    Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources and the structuring of the Universe. In this lecture, I will briefly review the importance of the cosmic magnetic fields b...

  13. Primordial magnetic fields

    OpenAIRE

    Giovannini, Massimo

    2002-01-01

    The explanation of the observed galactic magnetic fields may require the existence of a primordial magnetic field. Such a field may arise during the early cosmological phase transitions, or because of other particle physics related phenomena in the very early universe reviewed here. The turbulent evolution of the initial, randomly fluctuating microscopic field to a large-scale macroscopic field can be described in terms of a shell model, which provides an approximation to th...

  14. Pre-ionization and spectroscopic diagnostic of plasma generated and confined by magnetic fields

    International Nuclear Information System (INIS)

    A ?-pinch system has been constructed with pre-heating devices with a total energy of 2 kJ. During this experiment a He Plasma was studied using the following three different diagnostics. a) Magnetic Probes b) Visible Spectroscopy using the Optical Multichannel Analyser - OMA c) Image Converter Camera. The experimental results have been checked with existing theoretical models. The electrical characteristics of the system were determined with the magnetic probe. The Doppler and Stark broadening effects of the ?o = 4686 (angstrom) (HeII) have been used to determine the ionic temperature and electronic density respectively. The time evolution of these parameters was obtained using the OMA. The dynamics of the plasma were observed by high speed photography. Instabilities in the plasma columm have been observed. Good agreement between the experimental and theoretical values was obtained. (author)

  15. Scott Correction for Large Atoms and Molecules in a Self-Generated Magnetic Field

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    constant. We show that, in the simultaneous limit $Z\\to\\infty$, $\\al\\to 0$ such that $\\kappa =Z\\al^2$ is fixed, the ground state energy of the system is given by a two term expansion $c_1Z^{7/3} + c_2(\\kappa) Z^2 + o(Z^2)$. The leading term is given by the non-magnetic Thomas-Fermi theory. Our result shows...

  16. Miniature linear permanent magnet generators

    International Nuclear Information System (INIS)

    This paper discusses the advantages of linear permanent magnet generators for many applications which require the provision of relatively low levels of electrical power. The utility of linear generators, and a number of salient features of their design synthesis are illustrated by means of two design studies. In both cases, the design studies encompass the development of field calculation techniques for the accurate prediction of the complex field distributions within the devices, the design optimisation of the devices including considerations such as bearings and power conditioning electronics, and the construction and experimental characterisation of prototype devices. (orig.)

  17. Numerical simulation on the energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on diode impedance

    International Nuclear Information System (INIS)

    The energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on the impedance of diode are studied numerically in this paper. The results show that the beam generated by the diode has an energy spread, even with constant applied voltage. Additionally, external magnetic field has great but reverse influence on the impedance of low-impedance diode, which is, according to the author's analysis, the result of the change of the electron's track due to external magnetic field. If the beam current is less than the critical one for self-pinch, the impedance will be constant with the variation of external magnetic field

  18. A technical note about Phidel: A new software for evaluating magnetic induction field generated by power lines

    International Nuclear Information System (INIS)

    The Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG, Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency's requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Phidel, an innovative software, tackles and works out all the above-mentioned problems. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in the GIS and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 ?T bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003. (authors)

  19. The Effect of Magnetic Field Inhomogeneity on the Flow of a Conducting Fluid in the Duct of a Hall-Type MHD Generator

    International Nuclear Information System (INIS)

    The author considers the flow of a conducting, non-viscous, incompressible fluid in the duct of a co-axial Hall-type MHD generator, and the effects of magnetic field inhomogeneity on electric current flow, potential distribution and the outlet characteristics of the MHD generator. (author)

  20. Magnetic Field Created by Tile Permanent Magnets

    OpenAIRE

    Ravaud, Romain; Lemarquand, Guy; Lemarquand, Valérie

    2009-01-01

    This paper presents the analytical calculation of the three components of the magnetic field created by tile permanent magnets whose magnetization is either radial or axial. The calculations are based on the coulombian model of permanent magnets. The magnetic field is directly calculated, without the magnetic potential. Both axial and radial magnetization of the tiles are considered. The expressions obtained give the magnetic field in all the space. Such analytical expressions are very useful...

  1. Magnetic fields of Sun-like stars

    OpenAIRE

    Fares, R

    2013-01-01

    Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-...

  2. Electroweak Origin of Cosmological Magnetic Fields

    OpenAIRE

    Tornkvist, Ola

    1997-01-01

    Magnetic fields may have been generated in the electroweak phase transition through spontaneous symmetry breaking or through the subsequent dynamical evolution of semiclassical field configurations. Here I demonstrate explicitly how magnetic fields emerge spontaneously in the phase transition also when no gradients of the Higgs field are present. Using a simple model, I show that no magnetic fields are generated, at least initially, from classical two-bubble collisions in a ...

  3. Heat Generation Ability in AC Magnetic Field for Y3Fe5O12-based Garnet Ferrite

    International Nuclear Information System (INIS)

    The Y3Fe5O12-based ferrite, i.e., Y3-XGdXFe5O12 system was synthesized using a reverse coprecipitation method for application of new thermal coagulation therapy using an AC magnetic field for the treatment of cancerous tissues. The mixed phase of the Y3Fe5O12-type orthorhombic and cubic materials without any impurities were obtained for this systems calcined at low temperature in XRD results. However the orthorhombic phase almost disappeared by the calcination at 1150 deg. C or higher temperature for all the X samples. The calcination temperature strongly influenced the heat generation ability. The maximum heat generation ability (?T = 40-63deg. C, 370kHz, 1.77kA/m) was obtained for the powder materials sintered at 1100 deg. C for the Y3-XGdXFe5O12 system. The particle growth with the formation of the cubic single phase strongly influenced to the heat generation.

  4. Computer code for generating a magnetic field free region in an OHMIC heating coil system

    International Nuclear Information System (INIS)

    A computer code was developed which allows the user to specify any arbitrary straight or curved line along which the ohmic heating coils will be placed. This line is chosen so as to avoid interference with TF coils, vacuum vessels, structural supports, etc. The number of equal turns or groups of turns to be used in the ohmic heating system is then read into the program. The computer code returns the exact location of each turn along the specified line so as to minimize the stray field within the volume bounded by the line. As an example of the efficacy of this code to produce a field free region the PDX device required a flux value of approximately 10 KG. As the coil boundary is traversed at 61 cm the stray field value falls sharply to give values of approximately 8 gauss at the plasma edge located at 100 cm and a complete null at 140 cm

  5. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  6. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field

    Science.gov (United States)

    Shehzad, S. A.; Abdullah, Z.; Alsaedi, A.; Abbasi, F. M.; Hayat, T.

    2016-01-01

    This research work addresses the three-dimensional hydromagnetic flow of Jeffrey fluid with nanoparticles. Flow is generated by a bidirectional stretching surface. The effects of thermal radiation and internal heat generation are encountered in energy expressions. More realistic convective boundary conditions at the surface are employed instead of constant surface temperature and mass species conditions. Boundary layer assumptions lead to the governing non-linear mathematical model. Resulting equations through momentum, energy and mass species are made dimensionless using suitable variables. The solution expressions of dimensionless velocities, temperature and nanoparticle concentration have been computed for the convergent series solutions. The impacts of interesting parameters on the dimensionless quantities are displayed and interpreted. The values of physical quantities are computed and analyzed.

  7. Magnetic field on board

    International Nuclear Information System (INIS)

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  8. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  9. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  10. The Primordial Magnetic Field (PMF) Generated in Large Field Inflation (LFI), Natural Inflation (NI) and $R^2$-Inflation by $f^{2}FF$ Model

    CERN Document Server

    AlMuhammad, Anwar Saleh

    2016-01-01

    Large scale magnetic fields seem to be present in almost all astrophysical systems and scales from planets to superclusters of galaxies and in very low density intergalactic media. The upper limit of primordial magnetic fields (PMF) has been set by recent observations by the Planck observatory (2015) to be of the order of a few nG. The simple model ${f^2}FF$ used to generate the PMF during the inflation era. It is based on the breaking of conformal symmetry of electromagnetism during inflation. It is attractive because it is stable under perturbations and leads to a scale invariant PMF. However, it may suffer from two problems: Backreaction and strong coupling. In the first case, the electromagnetic energy may exceed the energy of inflation, ${\\rho _{{\\rm{Inf}}}}$. In the second case, the effective electric charges become excessively large if we want to retrieve the standard electromagnetism at the end of inflation. In this research, we investigate the generation of PMF under three different models of inflati...

  11. Large-Scale Filamentary Structures in Laser-Produced Plasmas as a Sign of Strong Magnetic Field Generation

    Science.gov (United States)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1998-11-01

    The method [1] of multilevel dynamical contrasting is applied to available database from experiments on interaction of a powerful short-pulsed laser beam with a flat target. It was found from processing the soft X-ray images that the expanding plasma produces a dynamical filamentary structures, a long-living ones as compared to inertial lifetimes of plasma inhomogeneities in laser-produced plasmas. Such a structuring appears to be similar to the networking of filamented electric currents in high-current gaseous discharges (dense Z-pinch [1] and plasma focus [2]). The structuring disclosed suggests a view into the role of electric current filamentation in the following phenomena in laser-produced plasmas: (i) generation of a strong magnetic field by the strong filamentary electric currents; (ii) formation of closed electric currents and large-scale closed magnetic configurations; (iii) axial stratification of the emerging dense Z-pinch; (iv) formation of long-range bonds between the core and the periphery of expanding plasma. [1] Kukushkin A.B., Rantsev-Kartinov V.A., Laser and Particle Beams, 16(3) 1998 (to be published). [2] Kukushkin A.B., Rantsev-Kartinov V.A., Terentiev A.R., Fusion Technology, 32 (1997) 83.

  12. Primordial magnetic field limits from cosmological data

    International Nuclear Information System (INIS)

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  13. Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

    International Nuclear Information System (INIS)

    In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author)

  14. Stability of Magnetic Fluids in Magnetic Fields

    OpenAIRE

    I.M. Arefyev; T.A. Arefyeva

    2014-01-01

    Stability of magnetic fluids in magnetic fields is one of the major factors determining the possibility of their practical use and resource of their exploitation. This paper examines the stability of magnetic fluids based on kerosene in constant and variable magnetic fields. It is shown that the synthesized magnetic fluids are stable during long-term exposure to magnetic fields and can be used as the working fluid in a number of magnetic fluid devices.

  15. A high-field superferric NMR magnet.

    Science.gov (United States)

    Huson, F R; Bryan, R N; MacKay, W W; Herrick, R C; Colvin, J; Ford, J J; Pissanetzky, S; Plishker, G A; Rocha, R; Schmidt, W

    1993-01-01

    Strong, extensive magnetic fringe fields are a significant problem with magnetic resonance imaging magnets. This is particularly acute with 4-T, whole-body research magnets. To date this problem has been addressed by restricting an extensive zone around the unshielded magnet or by placing external unsaturated iron shielding around the magnet. This paper describes a solution to this problem which uses superconducting coils closely integrated with fully saturated iron elements. A 4-T, 30-cm-bore prototype, based on this design principle, was built and tested. The 5 G fringe field is contained within 1 meter of the magnet bore along the z axis. Homogeneity of the raw magnetic field is 10 ppm over 30% of the magnet's diameter after passive shimming. Compared with an unshielded magnet, 20% less superconductor is required to generate the magnetic field. Images and spectra are presented to demonstrate the magnet's viability for magnetic resonance imaging and spectroscopy. PMID:8419740

  16. Physics of semiconductors in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ortenberg, M von [Chair for Magnetotransport in Solids, Institute of Physics of the Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

    2006-11-15

    A review of experiments on semiconductors in high magnetic fields is presented with special emphasis on transient megagauss fields generated by the singleturn coil and explosive flux-compression. Both, techniques of field generation and the special consequences of transient magnetic fields on the sample system will be discussed thoroughly. In detail several magneto-transmission experiments using 10.6 im wavelength radiation on bulk and nanostructured semiconductors will be presented in addition to special features of magnetization behavior.

  17. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  18. Electric & Magnetic Fields

    Science.gov (United States)

    ... Contents Description Electric and magnetic fields (EMFs) are invisible areas of energy, often referred to as radiation ... Freedom of Information Act Office of Inspector General Web Policies & Notices Contact Us Department of Health & Human ...

  19. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  20. The generation of magnetic field via convective motions in the photosphere, Alvén waves, and the origin of chromospheric spicules

    Science.gov (United States)

    Kropotkin, A. P.

    2011-12-01

    The basis is laid out for a theory relating various phenomena in the solar atmosphere, including localized concentrations of magnetic field at the bases of coronal magnetic arches, chromospheric spicules, twisted coronal magnetic flux tubes, and flows of energy carried by Alfvén waves propagating upward into the corona. The structure of photospheric currents localized in the vicinity of supergranule boundaries and excited by convective motions is studied. These currents exist primarily in a "dynamo layer" of sharply enhanced transverse conductivity, which forms in the weakly ionized thermal photospheric plasma located in the solar gravitational field. The motions of the electrons and ions in this layer have appreciably different characters: the ions are collisionly driven by the flows of neutral atoms, while the electrons drift in the crossed electric and magnetic fields. The electric field supporting the current arises due to the polarization of the electrons and ions. This field also gives rise to Alfvén perturbations that propagate upward into the corona, together with their associated longitudinal currents. The character of this "loading" makes the system of fields and currents uniquely defined. Moreover, the momentum flux carried by these Alfvén waves should be transferred to the cool chromospheric gas, facilitating the vertical ejection of this gas in the form of spicules, as was first proposed in 1992 by Haerendel.

  1. Magnetic fields in the early universe

    OpenAIRE

    Subramanian, Kandaswamy

    2009-01-01

    The observed galactic magnetic fields may have a primordial origin. I briefly review the observations, their interpretation in terms of the dynamo theory, and the current limits on cosmological magnetic fields. Several possible mechanisms for generating a primordial magnetic field are then discussed. Turbulence and the evolution of the microscopic fields to macroscopic fields is described in terms of a shell model, which provides an approximation to the full magnetohydrodyna...

  2. The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition

    International Nuclear Information System (INIS)

    We analytically derive the spectrum of gravitational waves due to magneto-hydrodynamical turbulence generated by bubble collisions in a first-order phase transition. In contrast to previous studies, we take into account the fact that turbulence and magnetic fields act as sources of gravitational waves for many Hubble times after the phase transition is completed. This modifies the gravitational wave spectrum at large scales. We also model the initial stirring phase preceding the Kolmogorov cascade, while earlier works assume that the Kolmogorov spectrum sets in instantaneously. The continuity in time of the source is relevant for a correct determination of the peak position of the gravitational wave spectrum. We discuss how the results depend on assumptions about the unequal-time correlation of the source and motivate a realistic choice for it. Our treatment gives a similar peak frequency as previous analyses but the amplitude of the signal is reduced due to the use of a more realistic power spectrum for the magneto-hydrodynamical turbulence. For a strongly first-order electroweak phase transition, the signal is observable with the space interferometer LISA

  3. Energy transfer and magnetic field generation via ion-beam driven instabilities in an electron-ion plasma

    International Nuclear Information System (INIS)

    Whether an efficient collisionless temperature equilibration mechanism exists for a two-temperature ion-electron plasma, with Ti>Te, is important for understanding astrophysical phenomena such as two-temperature accretion flows and collisionless shocks in supernova remnants or gamma-ray bursts. In this paper, counter-streaming ion beam-driven two-stream, Weibel (or filamentation), and oblique instabilities are studied using two-dimensional (2D) particle-in-cell (PIC) simulations as a possible plasma instability that could operate in such astrophysical objects. The PIC simulations show interplay among these instabilities and that distinct stages with different dominant modes occur during the nonlinear evolution period. Although the 2D results show stronger electron-ion coupling than the one-dimensional (1D) instabilities, it is still too weak to rule out existing two-temperature accretion solutions. The nonrelativistic quasilinear equations for the 1D Weibel plus 1D two-stream modes are numerically solved to compare the results with the 2D PIC simulations and qualitative similarities were found. The equations also show that the magnetic fields generated by the Weibel instability decay to zero in the end.

  4. Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

    Directory of Open Access Journals (Sweden)

    Imbert-Gérard Lise-Marie

    2011-11-01

    Full Text Available We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas semi-implicit diffusion operators have been developed for the thermal and resistive conduction equations. Source terms are treated explictly. Numerical results on the deceleration phase of an ICF implosion test problem are proposed, a benchmark which was initially proposed in [2]. Nous proposons dans cet article des méthodes numériques pour les équations de la magnétohydrodynamique résistive à deux températures avec champ magnétique auto-généré et relations de fermeture de Braginskii [1] en géométrie 2-D axisymétrique sur maillage cartésien. Celles-ci sont basées sur une décomposition du système complet selon la nature des opérateurs mathématiques sous-jacents. La partie hyperbolique est résolue par des schémas conservatifs Lagrange-projection d’ordre élevé en directions alternées tandis que des opérateurs de diffusion semi-implicites ont été développés pour les équations de conduction thermique et résistive. Les termes sources sont traités de manière explicite. Des résultats numériques sur un cas-test simulant la phase de décélération d’une implosion de capsule FCI sont proposés, ce benchmark ayant été initialement présenté dans [2].

  5. On the possibility of generating and/or sustaining the reversed field pinch configurations by means of a transverse rotating magnetic field

    International Nuclear Information System (INIS)

    The generation of plasma currents using rotating fields is examined. Numerical studies show that, provided the amplitude of the applied rotating field exceeds some value, it completely penetrates the plasma and sets the electrons rotating. An experiment is described which uses this technique to generate a reversed field configuration. Attention is drawn to the usefulness of the technique in generating the equilibrium currents appropriate to a variety of plasma-field configurations

  6. The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions

    Science.gov (United States)

    Modica, Frank; Plewa, Tomasz; Zhiglo, Andrey

    2013-12-01

    There exists a substantial disagreement between computer simulation results and high-energy density laboratory experiments of the Rayleigh-Taylor instability [1]. Motivated by the observed discrepancies in morphology and growth rates, we attempt to bring simulations and experiments into better agreement by extending the classic purely hydrodynamic model to include self-generation of magnetic fields and anisotropic thermal conduction.

  7. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  8. The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions

    CERN Document Server

    Modica, Frank; Zhiglo, Andrey

    2013-01-01

    (abridged) There exists a substantial disagreement between computer simulation results and high-energy density laboratory experiments of the Rayleigh-Taylor instability Kuranz et al. (2010). We adopt the Braginskii formulation for transport in hot, dense plasma, implement and verify the additional physics modules, and conduct a computational study of a single-mode RTI in two dimensions with various combinations of the newly implemented modules. We find that magnetic fields reach levels on the order of 11 MG in the absence of thermal conduction. We observe denting of the RT spike tip and generation of additional higher order modes as a result of these fields. Contrary to interpretation presented in earlier work Nishiguchi (2002), the additional mode is not generated due to modified anisotropic heat transport effects but due to dynamical effect of self-generated magnetic fields. The main effects of thermal conduction are a reduction of the RT instability growth rate (by about 20% for conditions considered here)...

  9. A Possible Origin of Magnetic Fields in Galaxies and Clusters: Strong Magnetic fields at z~10?

    OpenAIRE

    Fujita, Yutaka; Kato, Tsunehiko N.

    2005-01-01

    We propose that strong magnetic fields should be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The strength of the magnetic fields generated through this mechanism is close to the order of those observed in galaxies or clusters of galaxies at present. If the generated fields do not decay rapidly, this indicates that strong amplification of magnetic fields after formation of galaxies or...

  10. Magnetic fields in the early universe

    CERN Document Server

    Subramanian, Kandaswamy

    2009-01-01

    We give a pedagogical introduction to two aspects of magnetic fields in the early universe. We first focus on how to formulate electrodynamics in curved space time, defining appropriate magnetic and electric fields and writing Maxwell equations in terms of these fields. We then specialize to the case of magnetohydrodynamics in the expanding universe. We emphasize the usefulness of tetrads in this context. We then review the generation of magnetic fields during the inflationary era, deriving in detail the predicted magnetic and electric spectra for some models. We discuss potential problems arising from back reaction effects and from the large variation of the coupling constants required for such field generation.

  11. Magnetic field structure effect on the spatial flow in a supersonic MHD generator with boundary layer separation

    International Nuclear Information System (INIS)

    Calculational experiment for evaluating the role of the inhomogeneous two-component magnetic field constants in the MHD-channel is carried out. Difference of the medium-integral magnetic induction from the values on the axis is within the range of 2 up 4%. It is shown that availability of additional component of the magnetic field in the electrode direction in the channel cross sections intensifies the secondary flows and thereby increases the danger of the boundary layers break-off. The negative effect of the additional component by the beginning of the break-off regime is surpassed by stabilizing effect from decrease in the basic component to electrodes. By developed break-off flow the effects related to the availability of the additional component are prevailing

  12. On the influence of the plasma generated by comet Shoemaker-Levy 9 on Jupiter`s magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stabile, F.; Zimbardo, G. [Arcavacata di Rende, Cosenza, Univ. della Calabria (Italy). Dipt. di Fisica

    1997-11-01

    The impact of comet Shoemaker-Levy 9 with Jupiter has created a variety of magnetospheric plasmas which were detected by their electromagnetic emissions. By means of the Dessler-Parker-Sckopke relation we estimate the perturbation of Jupiter`s magnetic field. It appears that the produced plasma may explain the observed decrease of UV lines in Io`s torus.

  13. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with forthcoming radio telescopes like the Square Kilometre Array.

  14. Magnetic field control device

    International Nuclear Information System (INIS)

    The device of the present invention enables PID control to provide high speed response upon conducting feedback control of magnetic fields for confining plasmas of a thermonuclear device. That is, the device of the present invention receives a detection signal VB from a detection coil which is in proportion to a differentiated value of magnetic fields, together with a measured value Bdf for magnetic fields as an input. A signal prepared by intaking VB in the form of negative feedback control to a PI control signal obtained by proportionating/integration of a deviation between the Bdf and an aimed magnetic field value Brf, is defined as a control signal. The control signal is outputted to an electromagnet coil power source. D control, which has not be realized in the existent device, can be attained in the present invention, in addition to PI control. As a result, response speed of the magnetic field device can be improved compared with the prior art. (I.S.)

  15. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  16. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    Directory of Open Access Journals (Sweden)

    Serena Fiocchi

    2015-04-01

    Full Text Available During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.

  17. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    Science.gov (United States)

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-01-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level. PMID:25837346

  18. Assessment of foetal exposure to the homogeneous magnetic field harmonic spectrum generated by electricity transmission and distribution networks.

    Science.gov (United States)

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-04-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level. PMID:25837346

  19. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comparison of the rare earth usage in different topologies of permanent magnet generators and superconducting generators is also presented.

  20. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  1. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

  2. Sunquake Generation by Coronal Magnetic Restructuring

    CERN Document Server

    Russell, Alexander J B; Leake, James E; Hudson, Hugh S

    2016-01-01

    Sunquakes are the surface signatures of acoustic waves in the Sun's interior that are produced by some but not all flares and coronal mass ejections (CMEs). This letter explores a mechanism for sunquake generation by the magnetic field changes that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfv\\'en-sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes by the order of 10 degrees in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the tilt change are of secondary importance.

  3. Permanent magnet edge-field quadrupole

    International Nuclear Information System (INIS)

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs

  4. Permanent magnet edge-field quadrupole

    Science.gov (United States)

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  5. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  6. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  7. Dissipation of the sectored heliospheric magnetic field near the heliopause: a mechanism for the generation of anomalous cosmic rays

    OpenAIRE

    Drake, J. F.; Opher, M.; Swisdak, M.; Chamoun, J. N.

    2009-01-01

    The recent observations of the anomalous cosmic ray (ACR) energy spectrum as Voyagers 1 and 2 crossed the heliospheric termination shock have called into question the conventional shock source of these energetic particles. We suggest that the sectored heliospheric magnetic field, which results from the flapping of the heliospheric current sheet, piles up as it approaches the heliopause, narrowing the current sheets that separate the sectors and triggering the onset of collis...

  8. Magnetic Resonance Imaging of time-varying magnetic fields from therapeutic devices

    OpenAIRE

    Hernandez-Garcia, Luis; Bhatia, Vivek; Prem-Kumar, Krishan; Ulfarsson, Magnus

    2013-01-01

    While magnetic resonance imaging of static magnetic fields generated by external probes has been previously demonstrated, there is an unmet need to image time-varying magnetic fields, such as those generated by transcranial magnetic stimulators or radiofrequency hyperthermia probes. A method to image such time-varying magnetic fields is introduced in this work. This article presents the theory behind the method and provides proof of concept by imaging time-varying magnetic fields generated by...

  9. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 1022G cm3 in the same direction as the earth's dipole), approx.-113 γR/sub M/4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  10. Dynamically Generated Anomalous Magnetic Moment in Massless QED

    OpenAIRE

    Ferrer, Efrain J.; de la Incera, Vivian

    2009-01-01

    In this paper we investigate the non-perturbative generation of an anomalous magnetic moment for massless fermions in the presence of an external magnetic field. In the context of massless QED in a magnetic field, we prove that the phenomenon of magnetic catalysis of chiral symmetry breaking, which has been associated in the literature with dynamical mass generation, is also responsible for the generation of a dynamical anomalous magnetic moment. As a consequence, the degene...

  11. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  12. Observations of Mercury's magnetic field

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  13. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  14. Optimum Magnets for MHD Generators

    International Nuclear Information System (INIS)

    One of the more critical aspects in the design of MHD power generation systems for specific applications concerns the proper selection of a magnet for the generator. The advent of superconducting (low weight, zero power) magnets will allow of the realization of MHD systems which are competitive with conventional power generators. Nevertheless, resistive or permanent magnets may prove superior to superconducting magnets for certain types of MHD generation systems. The purpose of this study is to define the areas of applicability for permanent, conventionally cooled resistive, cryogenically cooled resistive, and superconducting magnets to open cycle MHD power generation systems. Combustion driven MHD generators utilizing continuous electrode Faraday and Hall configurations are investigated. In all cases, typical values of gas scalar conductivity, gas velocity, and Hall coefficient are used. Operation of such generators is considered over the range of net power output 100 kW to 1000 MW for durations of 1 ms to one year. For each generator case considered, magnet characteristics are calculated for systems optimized on the basis of either total system cost or total system weight by computer analysis. Magnets and refrigerator systems are assumed to be operated with power generated by the MHD process. The cost, weight, and power requirements of magnet cooling systems are calculated and included in the magnet design criteria. The net power produced by the generator must be computed taking into consideration the proper efficiency factors and losses represented by Joule heating in the resistive magnets and refrigeration losses in superconducting magnets. Coolant tankage weights are also considered for aerospace systems. The type or types of magnets most applicable to the given operating situation for the two types of generators are then selected. The selection of magnet types for stationary and mobile systems as well as for short and long duration systems is made. The results of the investigation are presented in summary form for two types of MHD generators. These results are plotted on power duration and net power output co-ordinates to show the economical operating regimes of the various types of magnets. Both a weight and cost optimum regime are shown for the entire MHD generator operating range. The most significant result of the analysis is that high-purity aluminium magnets cooled with liquid hydrogen exhibit a wide range of application from both a cost and weight standpoint. (author)

  15. Surface magnetic field measurement with magnetic shielding.

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Ro?. 61, ?. 7 (2010), 66-68. ISSN 1335-3632 Grant ostatní: AV?R(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  16. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.

    Science.gov (United States)

    Nakashima, Koji; Nakajo, Takato; Kawamo, Michiari; Kato, Akihito; Ishigaki, Seiichiro; Murakami, Hidetomo; Imaizumi, Yohichi; Izumiyama, Hitoshi

    2011-01-01

    Cerebrospinal fluid (CSF) shunts are frequently used to treat hydrocephalus. The use of a programmable shunt valve allows physicians to easily change the opening pressure. Since patients with adjustable CSF shunt valves may use portable game machines, the permanent magnets in these machines may alter the shunt valve programmed settings or permanently damage the device. This study investigated the risk of unintentional valve adjustment associated with the use of game machines in patients with programmable CSF shunt valves. Four adjustable valves from 4 different manufacturers, Sophysa Polaris model SPV (Polaris valve), Miethke proGAV (proGAV), Codman Hakim programmable valve (CHPV), and Strata II small valve (Strata valve), were evaluated. Magnetic field interactions were determined using the portable game machine, Nintendo DS Lite (DS). The maximum distance between the valve and the DS that affected the valve pressure setting was measured by x-ray cinematography. The Polaris valve and proGAV were immune to unintentional reprogramming by the DS. However, the settings of the CHPV and Strata valves were randomly altered by the DS. Patients with an implanted shunt valve should be made aware of the risks posed by the magnetic fields associated with portable game machines and commonly used home electronics. PMID:21946726

  17. Generation of 24 T at 4.2 K using a layer-wound GdBCO insert coil with Nb3Sn and Nb–Ti external magnetic field coils

    International Nuclear Information System (INIS)

    High-temperature superconducting (HTS) magnets are believed to be a practical option in the development of high field nuclear magnetic resonance (NMR) systems. The development of a 600 MHz NMR system that uses an HTS magnet and a probe with an HTS radio frequency coil is underway. The HTS NMR magnet is expected to reduce the volume occupied by the magnet and to encourage users to install higher field NMR systems. The tolerance to high tensile stress is expected for HTS conductors in order to reduce the magnet in volume. A layer-wound Gd–Ba–Cu–O (GdBCO) insert coil was fabricated in order to investigate its properties under a high electromagnetic force in a high magnetic field. The GdBCO insert coil was successfully operated at a current of up to 321 A and an electromagnetic force BJR of 408 MPa in an external magnetic field generated by Nb3Sn and Nb–Ti low-temperature superconducting coils. The GdBCO insert coil also managed to generate a magnetic field of 6.8 T at the center of the coil in an external magnetic field of 17.2 T. The superconducting magnet consisting of GdBCO, Nb3Sn and Nb–Ti coils successfully generated a magnetic field of 24.0 T at 4.2 K, which represents a new record for a superconducting magnet. (paper)

  18. Non-destructive evaluation of stream generator tubes and pressure tubes from the PHWR reactors, using the rotating magnetic field method

    International Nuclear Information System (INIS)

    This work presents a new type of eddy current transducer with a rotating magnetic field devoted to the inspection of steam generator tubes and pressure tubes from the PHWR reactors. A theoretical model has been developed that permits the calculations of the emf induced in the reception coils in the presence of the copper or magnetite deposits, anti-vibration railing and garter springs. (authors)

  19. Magnetic fields in the sun

    Science.gov (United States)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  20. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  1. Generation of magnetic-field aligned currents, parallel electric fields, and inverted-V structures by plasma pressure inhomogeneities in the magnetosphere

    International Nuclear Information System (INIS)

    Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than approx. 3g0Bsub(i)/B0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0(Bsub(i) denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEsub(p) + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Esub(p) in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (approx. 1 km) auroral arc. (author)

  2. Distributed generation induction and permanent magnet generators

    CERN Document Server

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  3. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    Science.gov (United States)

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  4. A Fiber Magnetic Field Sensor

    International Nuclear Information System (INIS)

    A Fabry-Perot interferometer-based fiber optic sensor that uses magnetostrictive Terfenol-D (Tb0,3Dy0,7Fe1,92) rod as a sensor gauge for measuring DC magnetic fields was designed. A single mode fiber was placed in front of the one of the polished circular face of Terfenol-D rod with 48 mm long and 6 mm in diameter, acts as a reflector, thereby creating an air gap that acts as a Fabry-Perot cavity. A solenoid was used to generate magnetic field and the sensor was inserted inside the coil. The detectable minimum magnetic field level is 8 kA/m (?100 Oe). Up to 45 kA/m magnetic field was measured by using the sensor. Also the obtained results were compared with the theoretical results. A single mode diode laser was used as a light source with 660 nm wavelength and the data acquisition was made with ADC with a simple program written in Labview 8.0

  5. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Henriksen, Matthew Lee

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comp...... comparison of the rare earth usage in different topologies of permanent magnet generators and superconducting generators is also presented.......This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A...

  6. Magnetic field optimization of permanent magnet undulators for arbitrary polarization

    Science.gov (United States)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Englisch, U.

    2004-01-01

    Techniques for improving the magnetic field quality of APPLE II undulators are discussed. Individual block characterization including the inhomogeneities of the magnetization permits a precise prediction of field integrals as required for sorting. Specific shimming procedures adapted to the magnetic design of APPLE II undulators have to be employed in order to meet the stringent requirements of insertion devices in third generation synchrotron radiation sources as demonstrated for BESSY.

  7. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  8. Sensor-less Field Oriented Control of Wind Turbine Driven Permanent Magnet Synchronous Generator Using Flux Linkage and Back EMF Estimation Methods

    OpenAIRE

    Porselvi Thayumanavan; Ranganath Muthu; Jeyasudha Sankararaman

    2014-01-01

    The study aims at the speed control of the wind turbine driven Permanent Magnet Synchronous Generator (PMSG) by sensor-less Field Oriented Control (FOC) method. Two methods of sensor-less FOC are proposed to control the speed and torque of the PMSG. The PMSG and the full-scale converter have an increasing market share in variable speed Wind Energy Conversion System (WECS). When compared to the Induction Generators (IGs), the PMSGs are smaller, easier to control and more efficient. In addition...

  9. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    The extension of the theory of relaxed plasmas to external magnetic fields whose field lines intersect the wall is concisely formulated and then applied to the Extrap experiment [J. R. Drake, Plasma Phys. Controlled Fusion 26, 387 (1984)]. It is found that the external octupole field, though not affecting the phenomenon of current saturation, inhibits field reversal at parts of the wall if it is sufficiently strong to generate magnetic x points within the plasma

  10. An example of utilization of the superconductivity for the generation of high magnetic fields: the LHC at CERN; Un exemple d'application de la supraconductivite pour la generation d'inductions magnetiques intenses: le LHC du CERN

    Energy Technology Data Exchange (ETDEWEB)

    Savary, F.; Vlogaert, J. [Conseil Europeen pour la recherche nucleaire, Dept. AT, Geneve (Switzerland)

    2006-09-15

    The Large Hadron Collider, LHC, under construction at CERN (European Organization for Nuclear Research) in Geneva makes use of the low temperature superconductivity of the Nb-Ti alloy to generate high magnetic fields in order to guide and to focus high energy proton beams in a double ring of 27-km circumference; aiming at studying the matter in the sub-nuclear field. In this paper, we will present the main parameters of the collider and the constraints which led to the choice of the low temperature superconductor technology for two of the main components of the LHC: the bending magnet and the focussing quadrupole. Then, the conceptual principles and the main parameters of the bending magnets will be described. To conclude, the results obtained at half of the fabrication of the 1232 superconducting magnets necessary to guide the protons in the accelerator ring will be shown. (authors)

  11. Magnetic fields in the cosmos

    International Nuclear Information System (INIS)

    Although only a small part of available energy in the universe is invested in magnetic fields, they are responsible for most of the continual violent activity in the cosmos. There is a single, generic explanation for the ability of bodies as different as a dense, cold planet and a tenuous hot galactic disk to generate a magnetic field. The explanation, first worked out for the earth, comes from the discipline of magnetohydrodynamics. The cosmos is filled with fluids capable of carrying electric currents. The magnetic fields entrained in these fluids are stretched and folded by the fluid motion, gaining energy in the process. In other words, the turbulent fluids function as dynamos. However, the dynamo mechanism by itself cannot account for the exceptionally strong field of some stars. Because of such gaps in information, the rival hypothesis that there are primordial fields cannot be disproved. The balance of evidence, however, indicates that the planets, sun, most stars and the galaxy function as colossal dynamos. (SC)

  12. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    Science.gov (United States)

    Ye, Hu; Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Wu, Ping; Song, Zhimin; Cao, Yibing; Du, Zhaoyu

    2015-12-01

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.

  13. Radial magnetic field in magnetic confinement device

    Science.gov (United States)

    Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei

    2015-09-01

    The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).

  14. The Galactic Magnetic Field

    Science.gov (United States)

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-01

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  15. THE GALACTIC MAGNETIC FIELD

    International Nuclear Information System (INIS)

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  16. The Galactic Magnetic Field

    CERN Document Server

    Jansson, Ronnie

    2012-01-01

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than forty thousand extragalactic Faraday Rotation Measures (RMs) and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data calls for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ~20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  17. THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  18. Skewed magnetic field lines reconnection

    International Nuclear Information System (INIS)

    Three-dimensional time-dependent reconnection of skewed magnetic field lines is studied. Reconnection is shown to be possible only in the limited oval-shaped part of the current sheet, which was called the reconnection zone. The size of the reconnection zone is defined by the reconnection line length, the behaviour of the electric field in the diffusion region as well as by the angle between the reconnecting fields. Reconnected magnetic flux has the same direction as it has in the Petschek's model near the reconnection line (normal flux), but it changes its sign in the rest of the reconnection zone (anomalous flux). The magnetic energy is converted into the kinetic one in the normal flux region, and the reverse process occurs in the anomalous flux region, so the energy balance is fulfilled within the reconnection region. An electric double layer emerges along the reconnection zone, which emits Alfven waves, these carryin away the energy released in the reconnection process. The solution obtained may be useful in various problems of cosmic plasma physics, e.g. MHD waves generation on the Sun, carrying magnetic flux away from its surface, origin of solar cosmic rays, etc

  19. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  20. Magnetic Field Issues in Magnetic Resonance Imaging.

    Science.gov (United States)

    Petropoulos, Labros Spiridon

    Advances in Magnetic Resonance Imaging depend on the capability of the available hardware. Specifically, for the main magnet configuration, using derivative constraints, we can create a static magnetic field with reduced levels of inhomogeneity over a prescribed imaging volume. In the gradient coil, the entire design for the axial elliptical coil, and the mathematical foundation for the transverse elliptical coil have been presented. Also, the design of a self-shielded cylindrical gradient coil with a restricted length has been presented. In order to generate gradient coils adequate for head imaging without including the human shoulders in the design, asymmetric cylindrical coils in which the gradient center is shifted axially towards the end of a finite cylinder have been introduced and theoretical as well as experimental results have been presented. In order to eliminate eddy current effects in the design of the non-shielded asymmetric gradient coils, the self-shielded asymmetric cylindrical gradient coil geometry has been introduced. Continuing the development of novel geometries for the gradient coils, the complete set of self-shielded cylindrical gradient coils, which are designed such that the x component of the magnetic field varies linearly along the three traditional gradient axes, has been presented. In order to understand the behavior of the rf field inside a dielectric object, a mathematical model is briefly presented. Although specific methods can provide an indication of the rf behavior inside a loosely dielectric object, finite element methodology is the ultimate approach for modeling the human torso and generating an accurate picture for the shape of the rf field inside this dielectric object. For this purpose we have developed a 3D finite element model, using the Coulomb gauge condition as a constraint. Agreement with the heterogeneous multilayer planar model has been established, while agreement with theoretical results from the spherical model and experimental results from the cylindrical model at 170 M H z is very good and provides an encouraging sign for using this finite element approach for modeling the rf inside the human body. (Abstract shortened by UMI.).

  1. A Possible Origin of Magnetic Fields in Galaxies and Clusters: Strong Magnetic fields at z~10?

    CERN Document Server

    Fujita, Y; Fujita, Yutaka; Kato, Tsunehiko N.

    2005-01-01

    We propose that strong magnetic fields should be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The strength of the magnetic fields generated through this mechanism is close to the order of those observed in galaxies or clusters of galaxies at present. If the generated fields do not decay rapidly, this indicates that strong amplification of magnetic fields after formation of galaxies or clusters of galaxies is not required. This mechanism could have worked even at a redshift of ~10, and therefore the generated magnetic fields may have affected the formation of stars in protogalaxies. This model will partially be confirmed by future observations of nearby clusters of galaxies. Mechanisms that preserve the magnetic fields for a long time without considerable decay are discussed.

  2. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  3. Optimization of superconductivity properties in MgB2 Wires and tapes to generate high magnetic fields

    International Nuclear Information System (INIS)

    We present, in this work, a study of the effects of doping, heat treatments and mechanisms of deformation, over the microstructure and superconducting properties of powder in tube (PIT) MgB2 wires and tapes.We observed that nano-SiC doping improves the critical current density (Jc) and the upper critical field (Hc2).The combined use of doping and Hot Isostatic Pressing (HIPing), produces samples with high density and improves Jc s.We studied the influence of number and temperature of intermediate heat treatments (TTI), during the fabrication of wires and tapes.We observed that TTI made at low temperature (oC), results in wires and tapes with better microstructure than those made at high temperature.Moreover, the increment of the heat treatments numbers at high temperature, decreases the quality of microstructure and Jc.In the study of sheaths materials, we observed that the Jc values measured by magnetization in Ti sheath samples are two order of magnitude larger than the values measured by transport, which indicates macroscopic fracture problems.On other hand, we fabricated tapes with excellent Jc values (104A/cm2 at 4K and 7T), which are similar to those of samples made with HIPing.This tape presents some degree of grains alignment, as a consequence of rolling.We observed Jc anisotropy in both transport and magnetization measurements in a range between 4 and 26K, and the same effect in Hc2.The anisotropy factor in Jc increase with applied field, while the anisotropy in Hc2 is constant with temperature (Hc2 parallel Hc2 perpendicular ∼1.2).Finally, we observed that carbon nanotubes doping improves Hc2 and this effects is most important at temperatures below 5K.This increase in Hc2 was predicted by Gurevich [45], as an effect of modification in scattering coefficient between electronics bands of MgB2 by doping

  4. Focus on Materials Analysis and Processing in Magnetic Fields

    OpenAIRE

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in...

  5. Highly-efficient source of collimated multi-MeV photons driven by radiation reaction of an electron beam in a self-generated magnetic field

    CERN Document Server

    Stark, D J; Arefiev, A V

    2015-01-01

    The rapid development of high brilliance X-ray radiation sources is revolutionizing physics, chemistry, and biology research through their novel applications. Another breakthrough is anticipated with the construction of next-generation laser facilities which will operate at intensities beyond $10^{23}$ $\\mathrm{W/cm^2}$, leading to higher yield, shorter wavelength radiation sources. We use numerical simulations to demonstrate that a source of collimated multi-MeV photons with conversion efficiency comparable to the one expected for these facilities is achievable at an order of magnitude lower in intensity, within reach of the existing facilities. In the optimal setup, the laser pulse irradiates a bulk solid-density target, heating the target electrons and inducing relativistic transparency. As the pulse then propagates, it generates a beam of energetic electrons which in turn drives a strong azimuthal magnetic field. This field significantly enhances the radiation reaction for the electrons, yielding tens of ...

  6. Five years of magnetic field management

    International Nuclear Information System (INIS)

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  7. Magnetic field evolution in interacting galaxies

    Science.gov (United States)

    Drzazga, R. T.; Chy?y, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 ?G, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 ?G) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 ?G), and decreases again, down to 5-6 ?G, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to morphological distortions induced by tidal interactions than are the random fields. As a result the polarized emission could be yet another indicator of an ongoing merging process. The found evolution of magnetic field with advancing interaction would definitely imply a stronger effect of magnetic fields on the galaxy surroundings in the earlier cosmological epochs. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23°), and make an association of the observed UHECRs with the sites of their origin very uncertain.

  8. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  9. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    Content-Type text/plain; charset=UTF-8 184 Study of Marine Magnetic field G. C. Bhattacharya National Institute of Oceanography, Dona Paula, Goa-403 004 gcb@nio.org Measurement of the Earth’s magnetic field in the marine areas (marine... magnetic field) is one of the most widely used marine geophysical techniques. Data about the variation of the marine magnetic field has various applications. The conventional uses are to determine depth of burial and trend of magnetized basement rocks...

  10. Magnetic field evolution of accreting neutron stars

    Science.gov (United States)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ?, r ? ?-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B??1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/?)-1. The characteristic time of decreasing of the magnetic field ? is equal to ? ? 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  11. The National High Magnetic Field Laboratory

    Science.gov (United States)

    Jaime, M.; Lacerda, A.; Takano, Y.; Boebinger, G. S.

    2006-11-01

    The National High Magnetic Field Laboratory, established in 1990 with support from the National Science Foundation, the State of Florida, and the US Department of Energy, is a facility open to external users around the world. The experimental capabilities are distributed in three campuses. In Tallahassee, Florida, continuous magnetic fields are produced by means of superconducting and resistive magnets reaching fields of up to 33T (resistive), and 45T (hybrid). EMR, ICR, and a 900MHz wide bore NMR magnet are also available. The facility in Gainesville, Florida, is devoted to generating extremely low temperatures in the presence of external magnetic fields (15T, down to 0.4mK), and large MRI imaging capabilities. In Los Alamos, New Mexico, a 9 kV-capable capacitor bank and a number of different liquid Nitrogen-cooled resistive magnets produce repetitive pulses up to 75 T and now a single-shot pulsed up to 300T.

  12. Manifestations of Magnetic Field Inhomogeneities

    Indian Academy of Sciences (India)

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  13. A low-power magnetic-field-assisted plasma jet generated by dielectric-barrier discharge enhanced direct-current glow discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weiman; Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Wang, Yishan; Zhao, Wei [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Duan, Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2014-01-06

    A magnetic field is introduced to the dielectric-barrier discharge enhanced direct-current glow discharge for efficient plasma generation, with the discharge power of 2.7?W and total energy consumption reduced to 34% of the original. By spatially examining the emission spectra and plasma temperature, it is found that their peaks shift from edges to the center and the negative and anode glows merge into the positive column and disappear, accompanied by improvement of uniformity and chemical activity of the enlarged plasma. This lies in the enhancement of ionization in the curved and lengthened electron path and the dispersion of discharge domains.

  14. A low-power magnetic-field-assisted plasma jet generated by dielectric-barrier discharge enhanced direct-current glow discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    A magnetic field is introduced to the dielectric-barrier discharge enhanced direct-current glow discharge for efficient plasma generation, with the discharge power of 2.7?W and total energy consumption reduced to 34% of the original. By spatially examining the emission spectra and plasma temperature, it is found that their peaks shift from edges to the center and the negative and anode glows merge into the positive column and disappear, accompanied by improvement of uniformity and chemical activity of the enlarged plasma. This lies in the enhancement of ionization in the curved and lengthened electron path and the dispersion of discharge domains

  15. Magnetic field reversal and magnetic circuit in a thermally driven MHD dynamo

    International Nuclear Information System (INIS)

    Mechanism of magnetic field generation in a celestial body is investigated numerically. As a minimal model we study the dynamics of a Boussinesq MHD fluid confined between two rotating concentric spheres of uniform temperature. Five pairs of thermally driven convection columns are formed, which are robust against magnetic field generation. The activity of the magnetic field changes randomly in time. The global structure of the magnetic field outside the outer sphere is reversed rather periodically. It is also observed that closed bundles of strong magnetic field lines connecting two nearest anticyclonic convection columns are generated synchronously with the magnetic field reversal. (author)

  16. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... Explore » Pollution Print this page Share What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part ... is something we take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) ...

  17. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  18. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  19. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    BjØrk, Rasmus; Bahl, Christian Robert Haffenden

    2010-01-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  20. Comparison of adjustable permanent magnetic field sources

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Smith, A.; Pryds, N.

    2010-11-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  1. Comparison of adjustable permanent magnetic field sources

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agreement is found.

  2. Comparison of adjustable permanent magnetic field sources

    International Nuclear Information System (INIS)

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  3. Comparison of adjustable permanent magnetic field sources

    Energy Technology Data Exchange (ETDEWEB)

    Bjork, R., E-mail: rabj@risoe.dtu.d [Fuel Cells and Solid State Chemistry Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark - DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Bahl, C.R.H.; Smith, A.; Pryds, N. [Fuel Cells and Solid State Chemistry Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark - DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2010-11-15

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  4. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  5. Evolution of twisted magnetic fields

    International Nuclear Information System (INIS)

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length

  6. The origin of large scale magnetic fields

    OpenAIRE

    K.Subramanian

    1996-01-01

    Magnetic fields correlated on several kiloparsec scales are seen in spiral galaxies. Their origin could be due to the winding up of a primordial cosmological field or due to amplification of a small seed field by a turbulent galactic dynamo. Both options have difficulties: There is no known battery mechanism for producing the required primordial field. Equally the turbulent dynamo may self destruct before being able to produce the large scale field, due to excess generation ...

  7. Antimagnets: Controlling magnetic fields with superconductor-metamaterial hybrids

    OpenAIRE

    Sanchez, Alvaro; Navau, Carles; Prat, Jordi; Chen, Du-Xing

    2011-01-01

    Magnetism is very important in science and technology, from magnetic recording to energy generation to trapping cold atoms. Physicists have managed to master magnetism - to create and manipulate magnetic fields- almost at will. Surprisingly, there is at least one property which until now has been elusive: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design to conc...

  8. Magnetic fields in massive stars

    OpenAIRE

    Hubrig, S.

    2007-01-01

    Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

  9. Observations of magnetic fields in hot stars

    OpenAIRE

    Petit, V.

    2010-01-01

    The presence of magnetic fields at the surfaces of many massive stars has been suspected for decades, to explain the observed properties and activity of OB stars. However, very few genuine high-mass stars had been identified as magnetic before the advent of a new generation of powerful spectropolarimeters that has resulted in a rapid burst of precise information about the magnetic properties of massive stars. During this talk, I will briefly review modern methods used to dia...

  10. Galactic Magnetic Fields as a consequence of Inflation

    OpenAIRE

    Dimopoulos, Konstantinos

    2001-01-01

    The generation of a magnetic field in the Early Universe is considered, due to the gravitational production of the Z-boson field during inflation. Scaled to the epoch of galaxy formation this magnetic field suffices to trigger the galactic dynamo and explain the observed galactic magnetic fields. The mechanism is independent of the inflationary model.

  11. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  12. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  13. Helical magnetic fields via baryon asymmetry

    CERN Document Server

    Piratova, Eduard F; Hortúa, Héctor J

    2014-01-01

    There is strong observational evidence for the presence of large-scale magnetic fields MF in galaxies and clusters, with strength $\\sim \\mu$G and coherence lenght on the order of Kpc. However its origin remains as an outstanding problem. One of the possible explanations is that they have been generated in the early universe. Recently, it has been proposed that helical primordial magnetic fields PMFs, could be generated during the EW or QCD phase transitions, parity-violating processes and predicted by GUT or string theory. Here we concentrate on the study of two mechanisms to generate PMFs, the first one is the $\

  14. Evolution of primordial magnetic fields in mean-field approximation

    OpenAIRE

    Campanelli, LeonardoDipartimento di Fisica, Università di Bari, 70126, Bari, Italy

    2014-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier–Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann unive...

  15. Plasma diffusion through multi dipole magnetic fields

    International Nuclear Information System (INIS)

    The diffusion of a cold plasma through multi dipole fields of a magnetic picket fence is presented. The ion diffusion and trapping is determined by electric potentials inside the multi dipole fields. The electron diffusion is regulated by an anomalous transport process driven by low frequency fluctuations inside the magnetic sheath. Particles drifting with velocities above the ion acoustic speed generates high amplitude turbulent waves responsible for an anomalous diffusion process. (author)

  16. Nonlinear diffusion waves in high magnetic fields

    Science.gov (United States)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  17. Anomalous Global Strings and Primordial Magnetic Fields

    OpenAIRE

    Brandenberger, Robert H.; Zhang, Xinmin

    1998-01-01

    We propose a new mechanism for the generation of primordial magnetic fields, making use of the magnetic fields which are induced by anomalous global strings which couple to electromagnetism via Wess-Zumino type interactions. This mechanism can be realized in QCD by utilizing pion strings, global vortices which appear in the linear sigma model which describes physics below the QCD confinement scale. During the chiral symmetry breaking phase transition, pion strings can be pro...

  18. Generation of magnetic fields over 21 T in a 61 mm clear bore using low copper ratio (Nb,Ti)3Sn conductors

    International Nuclear Information System (INIS)

    A 21 T superconducting magnet system has been developed and improved at the National Research Institute for Metals in Japan. As the steady progress of high-Tc superconducting coils required a larger bore for testing their performance, a new innermost coil has been developed. The authors increased the available bore from 50 mm to 61 mm. The new coil employed three kinds of rectangular (Nb,Ti)3Sn conductors. External copper stabilized these conductors, with a Cu:SC ratio of only 0.25. The new coil operated in a 160 mm diameter clear bore with a background field of 18 T in saturated superfluid helium, generating a central field of 21.5 T without any training behavior. A double walled dewar, the outer diameter of which was 60 mm, was also developed. With this dewar, the new system provides a temperature-variable bore of 50 mm

  19. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  20. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  1. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  2. The magnetic field structure of Rotamak discharges

    International Nuclear Information System (INIS)

    This thesis describes an experimental study of a field-reversed compact torus configuration which is generated and sustained by a rotating magnetic field. Earlier studies of this so-called 'rotamak' concept used rotating magnetic fields of limited duration (?15 ?s). The present work extends these studies to a longer timescale (?60 ?s). The rotating magnetic field is produced by feeding RF currents, dephased by 90 deg., through two orthogonal Helmholtz coils which are wound around the outside of a spherical Pyrex vacuum vessel. Line generators are used to supply the RF current pulses. The experiments are performed using an argon plasma. From measurements of the driven toroidal current, two rotamak operating modes are identified. Detailed poloidal flux contour measurements prove that these modes are associated with either a closed magnetic field line, compact torus configuration or an open magnetic field line, mirror-like structure. In the compact torus configuration the driven toroidal current is shown to vary linearly with the magnitude of the externally applied equilibrium field. For the same initial conditions of filling pressure and externally applied equilibrium field, the plasma discharges are highly reproducible. The magnetic structures of the discharges are studied in detail for three such sets of initial conditions. In particular, poloidal flux contours are derived for each of the three conditions. Although no toroidal magnetic field is externally imposed in these experiments, under certain conditions a toroidal field is observed to be present. The toroidal field is in opposite directions in the upper and lower halves of the minor cross section. Measurements of the input power into the plasma show that this power is largely determined by the characteristics of the line-generators. The variation of this input power with time can explain all the features observed in the plasma discharges. The effects of a conducting 'shell' around the vacuum vessel are also investigated. 97 refs., 72 figs., ills

  3. Cosmic Magnetic Fields - An Overview

    Science.gov (United States)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  4. Non-spot magnetic fields

    International Nuclear Information System (INIS)

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: general, polar and large-scale magnetic fields; sector structure; unipolar magnetic region; magnetic puka; network field; magnetic hills; magnetic element or fluxule; magnetic rope; magnetic filament; magnetic microturbulence; crossover effect; magnetograph; Stokesmeter; and lambdameter or recording Doppler comparator. (B.R.H.)

  5. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  6. Magnetic-field-controlled reconfigurable semiconductor logic.

    Science.gov (United States)

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-01

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

  7. Magnetic fields in O stars

    OpenAIRE

    Nazé, Yaël

    2013-01-01

    Over the last decade, large-scale, organized (generally dipolar) magnetic fields with a strength between 0.1 and 20 kG were detected in dozens of OB stars. This contribution reviews the impact of such magnetic fields on the stellar winds of O-stars, with emphasis on variability and X-ray emission.

  8. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  9. Biological effects of magnetic fields

    International Nuclear Information System (INIS)

    The principal focus of the LBL program is the analysis of magnetic field effects on physiological functions in experimental animals and selected organ and tissue systems. A major research effort has used electrical recording techniques to detect functional alterations in the cardiovascular, neural, and visual systems during the application of stationary magnetic fields

  10. Nonlocal pseudopotentials and magnetic fields

    CERN Document Server

    Pickard, C J; Pickard, Chris J.; Mauri, Francesco

    2003-01-01

    We show how to describe the coupling of electrons to non-uniform magnetic fields in the framework of the widely used norm-conserving pseudopotential appro ximation for electronic structure calculations. Our derivation applies to magnetic fields that are smooth on the scale of the core region. The method is validated by application to the calculation of the magnetic susceptibility of molecules. Our results are compared with high quality all electron quantum chemical results, and another recently proposed formalism.

  11. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  12. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  13. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-06-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  14. Dynamically generated anomalous magnetic moment in massless QED

    International Nuclear Information System (INIS)

    In this paper we investigate the non-perturbative generation of an anomalous magnetic moment for massless fermions in the presence of an external magnetic field. In the context of massless QED in a magnetic field, we prove that the phenomenon of magnetic catalysis of chiral symmetry breaking, which has been associated in the literature with dynamical mass generation, is also responsible for the generation of a dynamical anomalous magnetic moment. As a consequence, the degenerate energy of electrons in Landau levels higher than zero exhibits Zeeman splitting. We explicitly report the splitting for the first Landau level and find the non-perturbative Lande g-factor and Bohr magneton. We anticipate that a dynamically generated anomalous magnetic moment will be a universal feature of theories with magnetic catalysis. Our findings can be important for condensed planar systems as graphene, as well as for highly magnetized dense systems as those forming the core of compact stars.

  15. Space applications of superconductivity - High field magnets

    Science.gov (United States)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  16. Review: Magnetic fields of O stars

    CERN Document Server

    Wade, G A

    2014-01-01

    Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars, as well as the overall population. I will discuss the extension of the 'magnetic desert', first inferred among the A-type stars, to O stars up to 60 solar masses. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex 'dynamical magnetosphere' structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extra-Galactic magnetic stars.

  17. Magnetic field of pulsating stars

    International Nuclear Information System (INIS)

    The relation between the amplitude of magnetic field intensity, semiamplitude of radial velocity variation and the effective temperature of envelope in the form R??Be/(VrT-bare3/2)=const is obtained using dimension analysis of physical values determining the process of variation of magnetic field intensity in pulsating stars. It is shown, that magnitude R calculated for the pulsating stars of DCEP, DCEPS, CEP and RRAB-types with the magnetic field measured takes close values. This fact permits to estimate a probable amplitude of variation of the field intensity for the stars with the known parameters Vr and Te but the unknown value ?Be

  18. On a Babcock-Leighton Solar Dynamo Model with a Deep-seated Generating Layer for the Toroidal Magnetic Field. IV.

    Science.gov (United States)

    Durney, Bernard R.

    1997-09-01

    The study is continued of a dynamo model of the Babcock-Leighton type (i.e., the surface eruptions of toroidal magnetic field are the source for the poloidal field) with a thin, deep seated layer (GL), for the generation of the toroidal field, B?. The partial differential equations satisfied by B? and by the vector potential for the poloidal field are integrated in time with the help of a second order time- and space-centered finite different scheme. Axial symmetry is assumed; the gradient of the angular velocity in the GL is such that within this layer a transition to uniform rotation takes place; the meridional motion, transporting the poloidal field to the GL, is poleward and about 3 m s-1 at the surface; the radial diffusivity ?r equals 5 × 109 cm2 s-1, and the horizontal diffusivity ?? is adjusted to achieve marginal stability. The initial conditions are: a negligible poloidal field, and a maximum value of |B?| in the GL equal to 1.5 × Bcr, where Bcr is a prescribed field. For every time step the maximum value of |B?| in the GL is computed. If this value exceeds Bcr, then there is eruption of a flux tube (at the latitude corresponding to this maximum) that rises radially to the surface. Only one eruption is allowed per time step (?t) and B? in the GL is unchanged as a consequence of the eruption. The ensemble of eruptions is the source for the poloidal field, i.e., no use is made of a mean field equation relating the poloidal with the toroidal field. For a given value of ?t, and since the problem is linear, the solutions scale with Bcr. Therefore, the equations need to be solved for one value of Bcr only. Since only one eruption is allowed per time step, the dependence of the solutions on ?t needs to be studied. Let Ft be an arbitrary numerical factor (= 3 for example) and compare the solutions of the equations for (Bcr, ?t) and (Bcr, ?t/3). It is clear that there will be 3 times as many eruptions in the second case (with the shorter time step) than in the first case. However, if the erupted flux in case one is multiplied by 3, then the solutions for this case become nearly identical to those of case two (?t is shorter than any typical time of the system, and the difference due to the unequal time steps is negligible). Therefore, varying the time step is equivalent to keeping ?t fixed while multiplying the erupted flux by an appropriate factor. In the numerical calculations ?t was set equal to 105 s. The factor Ft can then be interpreted as the number of eruptions per 105 s. The integration of the equations shows that there is a transition in the nature of the solutions for Ft ~ 2.5. For Ft 2.5, the eruptions occur for ? greater than ~ ?/4, where ? is the polar angle. Furthermore, for Ft 2.5. The factor Ft is an arbitrary parameter in the model and an appeal to observations is necessary. We set Bcr = 103 G. In the model, the magnetic flux of erupting magnetic tubes, is then about 3 × 1021 G, of the order of the solar values. For this value of Bcr and for the value of Ft (~2.5) at which the transition takes place, the total erupted flux in 10 years is about 0.85 × 1025 Mx in remarkable agreement with the total erupted flux during a solar cycle. Concerning the dynamo models studied here, a major drawback encountered in previous papers has been the eruptions at high latitudes, which entail unrealistically large values for the radial magnetic field at the poles. The results of this paper provide a major step forward in the resolution of this difficulty.

  19. Wuhan pulsed high magnetic field center

    OpenAIRE

    Liang LI; PENG, TAO; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  20. Improved efficiency of heat generation in magnetic nanoparticle hyperthermia

    OpenAIRE

    Racz, J.; Chatel, P.F. de; Szabo, I. A.; Szunyogh, L.; Nandori, I.

    2015-01-01

    The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We show that a more efficient heat generation by magnetic nanoparticles is possible if the direction of the rotating external field changes periodically and we suggest its possible experimental realization in cancer therapy which requires the ...

  1. Magnetic Field Amplification via Protostellar Disc Dynamos

    CERN Document Server

    Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira

    2015-01-01

    We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.

  2. New circumstellar magnetic field diagnostics

    OpenAIRE

    Nordsieck, K. H.

    2001-01-01

    In this paper I will discuss new magnetic field diagnostics and instrumentation for an area of astrophysics where magnetic field observations have been difficult - circumstellar material. Such diagnostics would be particularly relevant to star formation and evolution. Stellar photosphere diagnostics include the Zeeman effect and atomic scattering diagnostics like the Hanle Effect and atomic alignment. The Zeeman Effect is in general not sensitive enough for the field strengt...

  3. Fully relativistic self-consistent field under a magnetic field.

    Science.gov (United States)

    Reynolds, Ryan D; Shiozaki, Toru

    2015-06-14

    We present a gauge-invariant implementation of the four-component Dirac-Hartree-Fock method for simulating the electronic structure of heavy element complexes in magnetic fields. The additional cost associated with the magnetic field is shown to be only 10-13% of that at zero field. The Dirac-Hartree-Fock wave function is constructed from gauge-including atomic orbitals. The so-called restricted magnetic balance is used to generate 2-spinor basis functions for the small component. The molecular integrals for the Coulomb and Gaunt interactions are computed using density fitting. Our efficient, parallel implementation allows for simulating the electronic structure of molecules containing more than 100 atoms with a few heavy elements under magnetic fields. PMID:25310527

  4. Discontinuities in the Magnetic Field near Enceladus

    Science.gov (United States)

    Simon, S.; Saur, J.; van Treeck, S.; Kriegel, H.; Dougherty, M. K.

    2014-12-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus fluxtube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A Minimum Variance Analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus fluxtube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  5. Conformal anomaly and primordial magnetic fields

    CERN Document Server

    Agullo, Ivan

    2013-01-01

    The conformal symmetry of the quantized electromagnetic field breaks down in curved space-time. We point out that this conformal anomaly is able to generate a sizable magnetic field during a phase of slow-roll inflation. Such primordial magnetism is characterized by the expectation value of the squared of the magnetic field for comoving observers, which at leading order in slow-roll takes the value $\\ =\\frac{8}{15(4\\pi)^2}\\, H^4\\epsilon$, where $\\epsilon$ is the standard slow-roll parameter. This result is insensitive to the intrinsic ambiguities of renormalization in curved space-times. The information in the quantum state gets diluted during inflation and does not affect the prediction. A primordial field of this strength is able to seed the observed cosmic magnetism.

  6. Advanced magnetic calculations for high magnetic field compact ion source

    International Nuclear Information System (INIS)

    The design of the advanced electronic cyclotronic resonance ion source (ECRIS) requires relatively high axial and radial magnetic inductions to allow the ECR frequency increase and to take advantage of the subsequent density increase (scaling laws). The last improvements of the commercial rare-earth magnet characteristics open new opportunities for ECRIS and enable the design of very high hexapolar magnetic fields for next generation compact ECRIS. Moreover, the high temperature superconducting (HTS) wires allow designing reliable and compact axial field coils (30 K cooled) at a very effective cost. It is thus very relevant to study a compact hybrid ECRIS using high remanence magnet and HTS technologies. In such a design, the volume of the plasma chamber is a free parameter that can be adjusted to the user requirement. It can be dedicated to very high ionic current production or high charge state production, pulsed, or cw operations. This paper presents the three-dimensional overall simulation of a 3 T axial magnetic field compact ECRIS with a high radial field sextupole composed with several magnet types and reaching ?1.9 T in front of the radially magnetized magnets. This design study will lead to the building of the 28-40 GHz A-PHOENIX source at the laboratory which will deliver its first beam by the end of 2004

  7. Venus magnetic field and magnetosphere

    International Nuclear Information System (INIS)

    Magnetic field investigations have been conducted in the distance of 1500-3000 km and 1-6Rsub(?) from the Venus, where Rsub(?) - is the Venus radius. Magnetic field complex topology, observed at the Venus night side form ''Venera-9,10'' satellites is explained by the Venus having its own weak magnetic field and the action of outer source fields. There is a magnetic stub on the planet night side, in which 2 bunches of lines of force, devided by neutral layer, are directed from the planet (to the north of equator) and to the planet (to the south of equator). The magnetic stub narrows at approaching to the planet and is located inside the planet geometric shade near the planet. The planet magnetic field effects but slightly the character of the planet flow-around by the sun wind. The stub topology depends on the polarity mark and force of field in the planet transfer zone. The ''overuniting'' processes of magnetospheric field and fields of outer sources present permanent process in the Venus magnetosphere. Notwithstanding the weakness of the Venus field, it is similar to geomagnetic one in a model way, provided the planet rotation peculiarities are taken into account

  8. Generation of non-equilibrium thermal quantum discord and entanglement in a three-spin XX chain by multi-spin interaction and an external magnetic field

    International Nuclear Information System (INIS)

    The generation of non-equilibrium thermal quantum discord and entanglement is investigated in a three-spin chain whose two end spins are respectively coupled to two thermal reservoirs at different temperatures. We show that the spin chain can be decoupled from the thermal reservoirs by homogeneously applying a magnetic field and including a strong three-spin interaction, and then the maximal steady-state quantum discord and entanglement in the two end spins can always be created. In addition, the present investigation may provide a useful approach to control coupling between a quantum system and its environment. -- Highlights: ? Spin chain decoupled from thermal reservoirs. ? Thermal excitation depressed. ? Maximal quantum correlations created.

  9. Dynamo generated field emergence through recurrent plasmoid ejections

    CERN Document Server

    Warnecke, Jörn

    2010-01-01

    Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress--and--relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space--time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.

  10. Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    OpenAIRE

    Hanayama, Hidekazu; Takahashi, Keitaro; Kotake, Kei; Oguri, Masamune; Ichiki, Kiyotomo; Ohno, Hiroshi

    2005-01-01

    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that ma...

  11. Magnetic Fields Induced in the Solid Earth and Oceans

    DEFF Research Database (Denmark)

    Kuvshinov, Alexei; Olsen, Nils

    2005-01-01

    Electromagnetic induction in the Earth's interior is an important contributor to the near-Earth magnetic field. Oceans play a special role in the induction, due to their relatively high conductance of large lateral variability. Electric currents that generate secondary magnetic fields are induced in the oceans by two different sources: by time varying external magnetic fields, and by motion of the conducting ocean water through the Earth's main magnetic field. Significant progress in the accurat...

  12. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    OpenAIRE

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-01-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity qua...

  13. PERMANENT-MAGNET INDUCTION GENERATORS: AN OVERVIEW

    OpenAIRE

    K. S. S. RAMAKRISHNAN; PAWAN SHARMA; T. S. BHATTI

    2011-01-01

    The advantage of using a permanent-magnet induction generator (PMIG) instead of a conventional induction generator is its ability to suppress inrush current during system linking when synchronous input is performed. Induction machines excited with permanent-magnet (PM) are called permanent-magnet induction generators. This paper presents an exhaustive survey of the literature discussing the classification of permanent-magnet machines, process of permanent-magnet excitation and voltage build-u...

  14. Magnetic field homogeneity perturbations in finite Halbach dipole magnets

    Science.gov (United States)

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z) - Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  15. STUDY INTO THE MAGNETIC FIELD FOR A MAGNETOCALORIC COOLING SYSTEM WITH THE USE OF MAGNETOVISION

    OpenAIRE

    Czernuszewicz, Agata; Kaleta, Jerzy; Lewandowski, Daniel; Wiewiórski, Przemys?aw

    2014-01-01

    The paper presents measurements of the magnetic field intensity of a magnet used to generate a magnetic field in a magnetocaloric cooling system. The magnet – a Halbach array consisting of several permanent magnets – is cylindrical with a hole in the centre. The special arrangement of these magnets concentrates the magnetic field in the inner gap. The generated magnetic field was examined with the aid of a magnetovision system designed in our laboratory. The investigations confirmed that a ma...

  16. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  17. Neutron scattering in magnetic fields

    International Nuclear Information System (INIS)

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references

  18. LOCAL MAGNETIC FIELD DATA PROCESSING

    Directory of Open Access Journals (Sweden)

    Ivan Ostroumov

    2015-04-01

    Full Text Available The article represents the methodology for estimation of the Earth’s magnetic field characteristics for a particular area. It is proposed to use a group of sensors inside of a tablet or a cell phone as a measurement device. We used typical sensors raw data like pitch, roll, yaw (from gyros; components of magnetic field intensity vectors (from magnetometers; latitude, longitude, altitude (from global positioning sensor. We represent the result of intensity vector components estimation for particular area. It is stated that the most important characteristics of magnetic fieldare horizontal and vertical components of intensity vector and inclination and declination angles. In addition, we compared the received results with magnetic field forecast, according to the world magnetic model.

  19. Optimization of Cryogenic and Superconducting Magnetic Systems for MHD Generators

    International Nuclear Information System (INIS)

    Increasing the strength of the magnetic field within the working volume of an MHD generator results in a considerable increase in the power density and consequently a reduction in the weight of the generator and in the unit power cost. Strong magnetic fields can be obtained by means of iron-free magnetic systems in which either super pure metals or superconducting alloys cooled by liquid gases are used in the windings. The best windings cross-section for producing a uniform magnetic field in the rectangular working region is chosen. With an iron-free magnetic system incorporating windings of such configuration the weight can be reduced to a minimum. The authors present the calculations for producing uniform magnetic fields of high intensity in the working volume of the MHD duct by means of iron-free magnetic systems. The properties of these systems are compared in the paper. (author)

  20. Comparison of alignment tensors generated for native tRNAVal using magnetic fields and liquid crystalline media

    International Nuclear Information System (INIS)

    Residual dipolar couplings (RDCs) complement standard NOE distance and J-coupling torsion angle data to improve the local and global structure of biomolecules in solution. One powerful application of RDCs is for domain orientation studies, which are especially valuable for structural studies of nucleic acids, where the local structure of a double helix is readily modeled and the orientations of the helical domains can then be determined from RDC data. However, RDCs obtained from only one alignment media generally result in degenerate solutions for the orientation of multiple domains. In protein systems, different alignment media are typically used to eliminate this orientational degeneracy, where the combination of RDCs from two (or more) independent alignment tensors can be used to overcome this degeneracy. It is demonstrated here for native E. coli tRNAVal that many of the commonly used liquid crystalline alignment media result in very similar alignment tensors, which do not eliminate the 4-fold degeneracy for orienting the two helical domains in tRNA. The intrinsic magnetic susceptibility anisotropy (MSA) of the nucleobases in tRNAVal was also used to obtain RDCs for magnetic alignment at 800 and 900 MHz. While these RDCs yield a different alignment tensor, the specific orientation of this tensor combined with the high rhombicity for the tensors in the liquid crystalline media only eliminates two of the four degenerate orientations for tRNAVal. Simulations are used to show that, in optimal cases, the combination of RDCs obtained from liquid crystalline medium and MSA-induced alignment can be used to obtain a unique orientation for the two helical domains in tRNAVal

  1. Solenoid magnet with homogeneous magnet field

    International Nuclear Information System (INIS)

    This is preferably used in NMR imaging. It includes several attached coils, preferably Bitter coils, and some parameters such as coil length, coil spire thickness and outer diameter are chosen to get the field homogeneity and to optimize the product power-mass of the magnet

  2. Magnetic Field Amplification in Young Galaxies

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  3. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  4. Transport in ergodic magnetic fields

    International Nuclear Information System (INIS)

    Solution of a 3D problem based on a numerical treatment of macroscopic fluid equations is shown to be necessary to describe a stochastic scrape-off layer in the framework of the theory of transport in an ergodic magnetic field. The transport of a stochastic magnetic field within the bulk plasma is also considered. Here the drift kinetic equation is solved with the ansatz for the distribution function to deviate only a little from the Maxwellian. A local fluctuating stochastic magnetic field and electric field are considered and transport is found by averaging over the unperturbed magnetic surfaces. Due to collisions the diffusion coefficient is much larger than given by the Rosenbluth, Rechester formula

  5. Hyperthermia generated with ferucarbotran (Resovist®) in an alternating magnetic field enhances cisplatin-induced apoptosis of cultured human oral cancer cells.

    Science.gov (United States)

    Sato, Itaru; Umemura, Masanari; Mitsudo, Kenji; Kioi, Mitomu; Nakashima, Hideyuki; Iwai, Toshinori; Feng, Xianfeng; Oda, Kayoko; Miyajima, Akiyoshi; Makino, Ayako; Iwai, Maki; Fujita, Takayuki; Yokoyama, Utako; Okumura, Satoshi; Sato, Motohiko; Eguchi, Haruki; Tohnai, Iwai; Ishikawa, Yoshihiro

    2014-05-01

    Hyperthermia is a promising anti-cancer treatment in which the tissue temperature is increased to 42-45 °C, and which is often used in combination with chemotherapy or radiation therapy. Our aim in the present work was to examine the feasibility of combination therapy for oral cancer with cisplatin and hyperthermia generated with ferucarbotran (Resovist(®); superparamagnetic iron oxide) in an alternating magnetic field (AMF). First, we established that administration of ferucarbotran at the approved dosage for magnetic resonance imaging provides an iron concentration sufficient to increase the temperature to 42.5 °C upon exposure to AMF. Then, we examined the effect of cisplatin combined with ferucarbotran/AMF-induced hyperthermia on cultured human oral cancer cells (HSC-3 and OSC-19). Cisplatin alone induced apoptosis of cancer cells in a dose-dependent manner, as is well known. However, the combination of cisplatin with ferucarbotran/AMF was significantly more effective than cisplatin alone. This result suggests that it might be possible to reduce the clinically effective dosage of cisplatin by administering it in combination with ferucarbotran/AMF-induced hyperthermia, thereby potentially reducing the incidence of serious cisplatin-related side effects. Further work seems justified to evaluate simultaneous thermo-chemotherapy as a new approach to anticancer therapy. PMID:24619404

  6. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    International Nuclear Information System (INIS)

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  7. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    Science.gov (United States)

    Sanchez, Alvaro; Navau, Carles; Prat-Camps, Jordi; Chen, Du-Xing

    2011-09-01

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism—to create and manipulate magnetic fields—almost at will. Surprisingly, there is at least one property that has been elusive until now: how to ‘switch off’ the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  8. Black Holes and Magnetic Fields

    OpenAIRE

    Hejda, Filip; Bi?ák, Ji?í

    2015-01-01

    We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by finding simpler spacetimes that exhibit their geometries near degenerate horizons. Employing the simpler geometries obtained by near-horizon limiting description we analyse the Meissner effect of magnetic field expulsion fr...

  9. Magnetic fields on the Sun

    Science.gov (United States)

    Howard, R.

    1982-02-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  10. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (bn) and skew (an) multipoles, By + iBx = summation(bn + ian)(x + iy)n, where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ? ? B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar an, bar bn, bar Bx, and bar By defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |?p?|, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |?p0|, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field Bx from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  11. Magnetic field near the center on the baby cyclotron

    International Nuclear Information System (INIS)

    With the AVF cyclotron, the relative distribution of magnetic field changes when the magnitude of the field varies for a wide range. This change is large in the central region. The change of the relative magnetic field, however, may be suppressed in magnitude by employing a physical configuration that alleviates local saturations of iron at the magnetic pole surfaces. This paper covers a recently generated magnetic field featuring the relative field distribution in the central region of a type 3015 baby cyclotron that has successfully been held more or less steady from a 1.5 Tsl below 1.0 Tsl in average magnetic field. (author)

  12. Magnetic Fields in Spiral Galaxies

    OpenAIRE

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbule...

  13. The effects of self-generated and applied magnetic fields on the computation of flow over a Mars return aerobrake

    Science.gov (United States)

    Palmer, Grant

    1991-01-01

    A CFD technique is developed to calculate the electromagnetic phenomena simultaneously with the fluid flow in the shock layer over an axisymmetric blunt body in a thermal-equilibrium chemical-nonequilibrium environment. The flowfield is solved using an explicit time-marching, first-order spatially accurate scheme. The electromagnetic phenomena are coupled to the real-gas flow solver through an iterative procedure. The electromagnetic terms introduce a strong stiffness, which was overcome by using significantly smaller time steps for the electromagnetic conservation equation. The technique is applied in calculating the flow over a Mars return aerobrake vehicle entering the Earth's atmosphere. For the case where no external field is applied, the electromagnetic effects have little impact on the flowfield.

  14. Sensor-less Field Oriented Control of Wind Turbine Driven Permanent Magnet Synchronous Generator Using Flux Linkage and Back EMF Estimation Methods

    Directory of Open Access Journals (Sweden)

    Porselvi Thayumanavan

    2014-05-01

    Full Text Available The study aims at the speed control of the wind turbine driven Permanent Magnet Synchronous Generator (PMSG by sensor-less Field Oriented Control (FOC method. Two methods of sensor-less FOC are proposed to control the speed and torque of the PMSG. The PMSG and the full-scale converter have an increasing market share in variable speed Wind Energy Conversion System (WECS. When compared to the Induction Generators (IGs, the PMSGs are smaller, easier to control and more efficient. In addition, the PMSG can operate at variable speeds, so that the maximum power can be extracted even at low or medium wind speeds. Wind turbines generally employ speed sensors or shaft position encoders to determine the speed and the position of the rotor. In order to reduce the cost, maintenance and complexity concerned with the sensor, the sensor-less approach has been developed. This study presents the sensor-less control techniques using the flux-linkage and the back EMF estimation methods. Simulations for both the methods are carried out in MATLAB/SIMULINK. The simulated waveforms of the reference speed, the measured speed, the reference torque, the measured torque and rotor position are shown for both the methods.

  15. Magnetic field effect on hemin

    Science.gov (United States)

    Bartoszek, Mariola; Balanda, Maria; Skrzypek, Danuta; Drzazga, Zofia

    2001-12-01

    Magnetic behaviour of hemin has been investigated by means of magnetostatic methods, AC-susceptibility measurements and EPR spectroscopy. The measurements were made using polycrystalline and oriented samples of hemin in the temperature range 2.3-292 K and in magnetic fields up to 6 T. In the paramagnetic region, the susceptibility obeys the Curie-Weiss law with positive Curie-Weiss temperature. At low temperature, a rapid increase of the susceptibility is noticed but up to 2 K no long-range correlations are observed. The studies show that the iron ion in hemin exists in two spin states ( S= {5}/{2} and {1}/{2}). The applied magnetic field increases the occupation of the low-spin state. Hemin shows high-field-induced magnetic anisotropy which, similar to the susceptibility, increases with decreasing temperature.

  16. The origin, evolution and signatures of primordial magnetic fields

    CERN Document Server

    Subramanian, Kandaswamy

    2015-01-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak $\\sim 10^{-16}$ Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and other phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, ...

  17. Matter in Strong Magnetic Fields

    CERN Document Server

    Lai, D

    2001-01-01

    The properties of matter are significantly modified by strong magnetic fields, $B>>2.35\\times 10^9$ Gauss ($1 G =10^{-4} Tesla$), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, with $10^9G << B < 10^{16}G$. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also di...

  18. Magnetic fields in O stars

    OpenAIRE

    Nazé, Yaël

    2014-01-01

    During the last decade, large-scale, organized (generally dipolar) magnetic fields with strengths between 0.1 and 20 kG have been detected in dozens of OB stars. This contribution reviews the impact of such fields on the stellar winds of O-type stars, with emphasis on variability and X-ray emission.

  19. Nuclear Disintegration in Magnetic Fields

    OpenAIRE

    Loveridge, Lee C.

    2002-01-01

    We employ the Weizsaecker-Williams method of virtual quanta to study disintegration of nuclei in magnetic field. We explore a variety of field configurations and conclude that for the energy range of interest for applications to cosmic rays (10^{18}-10^{21} eV) such disintegrations are not a significant source of energy or flux loss for any realistic acceleration mechanism.

  20. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation