WorldWideScience

Sample records for magnetic field generation

  1. Transformer generated magnetic fields

    Magnetic fields produced by both small and large apparatus are being investigated for their possible relation to human health effects. A number of studies have been done in characterizing the magnetic field generated by transmission lines, household wiring and appliances. Two other major sources of magnetic fields are motors and transformers. The magnetic field generated by power transformers has not been studied extensively. The purpose of this paper is to experimentally quantify the magnetic field of a power transformer and compare it with calculated results obtained using one of the numerical techniques

  2. Magnetic field generator

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  3. Magnetic field generation in astrophysics

    A study of the generation and maintenance of magnetic fields due to hydrodynamic motions was carried out. The physical system studied was a hydrodynamic shock wave. Under certain conditions the shock front is subject to a rippling instability. This instability can drive the generation of a magnetic field if the fluid is partially ionized. The generation of a magnetic field by such an instability was analyzed. Solutions were found for the evolution of the field, and for its spatial structure. For a spherical shock, the field was found to be a sum of spherical harmonics. It was found that the dominate scale for the magnetic field was the same as for the shock. Analysis by Vishniac and Ryu show that the fastest growing scale is approximately twice the minimal unstable scale, and that the minimal unstable scale is roughly the thickness of the shell. The maximum amplitude of the field B(sub max) was found to be approximately 10(exp -15) gauss. This however, is only the amplitude up to the time of fragmentation. The properties of a fragmenting shock were then analyzed in the weak nonlinear limit. The results were applied to the maintenance and/or amplification of the magnetic field found in the linear analysis. The induction equation for the magnetic field was analyzed. The nonlinear analysis of the shock was carried out by averaging over the thin shell of the shock. While necessary to make the problem tractable, the resulting velocities do not drive a magnetic dynamo

  4. Primordial Generation of Magnetic Fields

    Pandey, Arun Kumar

    2015-01-01

    We reexamine generation of the primordial magnetic fields, at temperature $T>80$TeV, by applying a consistent kinetic theory framework which is suitably modified to take the quantum anomaly into account. The modified kinetic equation can reproduce the known quantum field theoretic results upto the leading orders. We show that our results qualitatively matches with the earlier results obtained using heuristic arguments. The modified kinetic theory can give the instabilities responsible for generation of the magnetic field due to chiral imbalance in two distinct regimes: a) when the collisions play a dominant role and b) when the primordial plasma can be regarded as collisionless. We argue that the instability developing in the collisional regime can dominate over the instability in the collisionless regime.

  5. Generation of helical magnetic fields from inflation

    Jain, Rajeev Kumar; Hollenstein, Lukas

    2012-01-01

    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.

  6. Self-generation of magnetic fields

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  7. Strong and superstrong pulsed magnetic fields generation

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  8. Magnetic field generation from nonequilibrium phase transitions

    We study the generation of magnetic fields during the stage of particle production resulting from spinodal instabilities during phase transitions out of equilibrium. The main premise is that long-wavelength instabilities that drive the phase transition lead to strong nonequilibrium charge and current fluctuations which generate electromagnetic fields. We present a formulation based on the nonequilibrium Schwinger-Dyson equations that leads to an exact expression for the spectrum of electromagnetic fields valid for general theories and cosmological backgrounds and whose main ingredient is the transverse photon polarization out of equilibrium. This formulation includes the dissipative effects of the conductivity in the medium. As a prelude to cosmology, we study magnetogenesis in Minkowski spacetime in a theory of N charged scalar fields to lowest order in the gauge coupling and to leading order in the large N within two scenarios of cosmological relevance. The long-wavelength power spectrum for electric and magnetic fields at the end of the phase transition is obtained explicitly. It follows that equipartition between electric and magnetic fields does not hold out of equilibrium. In the case of a transition from a high-temperature phase, the conductivity of the medium severely hinders the generation of magnetic fields; however, the magnetic fields generated are correlated on scales of the order of the domain size, which is much larger than the magnetic diffusion length. The implications of the results to cosmological phase transitions driven by spinodal instabilities are discussed

  9. The magnetic field gradients generation for magnetic resonance tomography

    To obtain three-dimensional images in the computerized tomography a gradient of magnetic field should be generated. In this paper the analytical as well as computerized calculations of magnetic coils for such purposes are presented

  10. Generation of intense transient magnetic fields

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  11. Induction MHD generator using alternating magnetic field

    The induction MHD generator using an alternating magnetic field is proposed. The characteristics of the machine are analyzed theoretically and also compared with those of the induction MHD generator using a traveling magnetic field. Following conclusions are obtained for the fundamental characteristics of the present machine: (1) This type of the machine is possibly operated not only as the generator but also as the pump or as the damper. (2) The optimum condition for the maximum generator efficiency exists among the relations of the frequency, the fluid velocity and the inner core radius because of the eddy current loss due to an alternating magnetic field. (3) The power ratio of the reactive power of the machine to the gross output power can be reduced to a much smaller value than that of the traveling wave MHD generator. Therefore, even in the case of the working fluid with a relative low electrical conductivity such as two-phase liquid metal flow with high void fraction, the acceptable power ratio can be expected. (4) For the working fluid with higher electrical conductivity the skin effect is also able to be reduced to the acceptable level in the present machine, while it is a serious problem in the traveling wave MHD generator. (author)

  12. Magnetic field generation in curved spacetimes

    Mahajan, Swadesh M

    2011-01-01

    Using the generally covariant magnetofluid formalism for a hot plasma, a new curvature (of space time) driven mechanism for generating seed vorticity/magnetic field is presented. The "battery" owes its origin to the interaction between gravity (epitomized in the spatial variation of the metric tensor) and the inhomogeneous plasma thermodynamics. The general relativistic drive for the seed field is evaluated in a simplified model of a hot plasma accreting around a Schwarzschild black hole. Some astrophysical applications are suggested.

  13. Error field generation of solenoid magnets

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10-4, the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  14. Primordial magnetic field generated in natural inflation

    AlMuhammad, Anwar S.; Lopez-Mobilia, Rafael

    2015-11-01

    We study the simple gauge invariant model {f^2}FF as a way to generate primordial magnetic fields (PMF) in natural inflation (NI). We compute both magnetic and electric spectra generated by the {f^2}FF model in NI for different values of model parameters and find that both de Sitter and power law expansion lead to the same results at sufficiently large number of e-foldings. We also find that the necessary scale invariance property of the PMF cannot be obtained in NI in first order of slow roll limits under the constraint of inflationary potential, V( 0 ) ˜eq 0. Furthermore, if this constraint is relaxed to achieve scale invariance, then the model suffers from the backreaction problem for the co-moving wave number, k ≲ 8.0× 10^{-7} {Mpc^{-1}} and Hubble parameter, H_i ≳ 1.25× 10^{-3} {M_{Pl}}. The former can be considered as a lower bound of k and the later as an upper bound of H_i for a model which is free from the backreaction problem. Further, we show that there is a narrow range of the height of the potential Λ around {Λ _{min}} ≈ 0.00874{M_{{Pl}}} and of k around {k_{min}} ˜ 0.0173{Mp}{{c}^{ - 1}}, at which the energy of the electric field can fall below the energy of the magnetic field. The range of k lies within some observable scales. However, the relatively short range of k presents a challenge to the viability of this model.

  15. Strong magnetic field generation in laser plasma

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  16. Evolution of Primordial Magnetic Fields: From Generation Till Today

    Kahniashvili, Tina; Tevzadze, Alexander G

    2015-01-01

    In this presentation we summarize our previous results concerning the evolution of primordial magnetic fields with and without helicity during the expansion of the Universe. We address different magnetogenesis scenarios such as inflation, electroweak and QCD phase transitions magnetogenesis. A high Reynolds number in the early Universe ensures strong coupling between magnetic field and fluid motions. After generation the subsequent dynamics of the magnetic field is governed by decaying hydromagnetic turbulence. We claim that primordial magnetic fields can be considered as a seeds for observed magnetic fields in galaxies and clusters. Magnetic field strength bounds obtained in our analysis are consistent with the upper and lower limits of extragalactic magnetic fields.

  17. Design of CHWHG Type Low Frequency Magnetic Fields Generator

    Bo Cheng

    2007-01-01

    Full Text Available Highly considering the invariability of magnetic field strength in the Magnetic Field Generators, which used to stimulate rat's nerve cell, surely improve the stimulation performance outcome. A new technique to get an invariable magnetic field strength within Magnetic Field Generator has been proposed, Furthermore it had implemented on microcontroller-based system providing an Alternating Magnetic Field Generator (AMFG with a high performance. The performance of the system is evaluated using two different methods. The results show that the errors are well and acceptable.

  18. High Magnetic Field Generator of Sub-Microsecond Duration

    Audrius Grainys

    2012-04-01

    Full Text Available The article describes the possibility of generating a micro and sub-microsecond magnetic impulse reaching 110 T, investigates various configurations of microcoils and discusses the principal circuit of a magnetic field impulse generator of microsecond duration. The transient processes of current, temperature and magnetic field are calculated applying the finite element method.Article in Lithuanian

  19. High magnetic field MHD generator program

    1980-10-01

    The MHD channel phenomena which are important at high magnetic fields are investigated. Nonuniformity effects, boundary layers, Hall field breakdown, the effects on electrode configuration and current concentrations, and studies of steady state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions are discussed. In the study of the effects of nonuniformities and instabilities, theoretical models were developed and tested against available data. Boundary layer measurements and calculations of velocity, temperature, and electron density were systematically assessed; by accounting for the effect of free stream turbulence, good agreement is obtained between measurement and theory. An improved laser Doppler anemometer was developed for turbulence damping and velocity profile measurements.

  20. The Generation of Magnetic Fields and X-ray Observations

    Fujita, Yutaka; Kato, Tsunehiko N.

    2006-01-01

    We show that strong magnetic fields can be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The estimated strength of the magnetic field generated through this mechanism is close to the order of values observed in galaxies or clusters of galaxies at present, which indicates that strong amplification of magnetic fields after formation of galaxies or clusters of galaxies is not required. Th...

  1. Dynamical mass generation in QED with weak magnetic fields

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  2. Toroidal field generation and magnetic field relaxation in a conical-theta-pinch-generated configuration

    The configurations generated by conical theta pinches (CθP's) of angles 10 degree and 18 degree were studied experimentally. The hydrogen plasma density and temperature were approximately 1--3x1015 cm-3 and 5 eV, respectively. The magnetic field structure was measured by four three-dimensional magnetic probes. The magnetic helicity and energy of the configuration were calculated directly from the measured magnetic field through algorithms that were independent of the chosen coordinate and configuration axis. The magnetic fluxes were calculated after the axis was located. Single-fluid model equations predict that the toroidal field can be generated by effects that are normally neglected in the simple Ohm's law, of which the Hall effect is the most important. The average toroidal field generation was measured to vary quadratically with the cone angle of the CθP, and this field could be accounted for by the Hall effect alone. The time histories of the magnetic helicity and energy decay and poloidal to toroidal flux conversion indicated that the relaxation of the configuration had occurred in agreement with the Taylor hypothesis. The relaxation time history indicated that the relaxation behaved like a turbulent relaxation process. Therefore a spheromaklike configuration could either be generated directly by the CθP (if the generated toroidal and poloidal field had an appropriate distribution) or through relaxation (if only small amount of toroidal field was generated)

  3. Evolution of Primordial Magnetic Fields: From Generation Till Today

    Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.

    2015-01-01

    In this presentation we summarize our previous results concerning the evolution of primordial magnetic fields with and without helicity during the expansion of the Universe. We address different magnetogenesis scenarios such as inflation, electroweak and QCD phase transitions magnetogenesis. A high Reynolds number in the early Universe ensures strong coupling between magnetic field and fluid motions. After generation the subsequent dynamics of the magnetic field is governed by decaying hydrom...

  4. Magnetic field simulation and research of plasma generator

    In laser plasma beat wave accelerator, the strong magnetic field higher than 1500 Guass, which can confine the behavior of plasma, is needed. The distribution of magnetic field on plasma generator is obtained using OPERA-3D procedure. The simulation agrees with the experimental data well. While adjusting some parameters, some factors, which cause the actual magnetic field lower than the designed one, are found. Based on this simulation, modification has been given

  5. The Model of Magnetic-Field Generation with Screw Dynamo

    Tlatov, Andrey G

    2013-01-01

    This paper considers a possibility of magnetic-field generation by local turbulent flows at the bottom of convective zone. The cycle of magnetic-field generation in this model can be represented in the form of sequency of processes. There are vortexes with azimuth axis, similar with Taylor vortex, close to the bottom of convection zone. This leads to the generation of twisted flux tubes because of screw dynamo. The growth of magnetic field causes emersion of U- loops. During the process of emersion and extraction azimuthal field of flux tubes converts to axial field, and reaches the surface as bipolar of sunspots with U-shaped configuration. Due to differential rotation residual bipolar fields stretch out to the surface toroidal field and are shifted to the bottom of the convective zone by means of meridional flow at high latitudes. The direction of the toroidal field within the generation zone reverses its sign, and the cycle is repeated.

  6. Magnetic field generation at high magnetic Reynolds number

    Levy, E. H.

    1978-01-01

    The lowest-order contribution of finite electrical resistivity to the process of magnetic-field regeneration at high magnetic Reynolds number is calculated. It is found that finite resistivity changes the calculated regeneration rate by less than a factor of 2.

  7. Active screening of magnetic field near power stations generator buses

    B.I. Kuznetsov

    2013-12-01

    Full Text Available An experimental study technique for a prototyping system of active screening of power-frequency magnetic field distortions near power station generator buses via controllable magnetic field sources is presented. Results of experimental research on a proto-typing active screening system with different control algorithms are given.

  8. Second order semiclassics with self-generated magnetic fields

    Erds, Laszlo; Fournais, Sren; Solovej, Jan Philip

    2012-01-01

    We consider the semiclassical asymptotics of the sum of negative eigenvalues of the three-dimensional Pauli operator with an external potential and a self-generated magnetic field $B$. We also add the field energy $\\beta \\int B^2$ and we minimize over all magnetic fields. The parameter $\\beta......$ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order with an...

  9. Magnetic field generation by the stationary accretion shock instability

    Endeve, E; Budiardja, R D; Mezzacappa, A

    2008-01-01

    By adding a weak magnetic field to a spherically symmetric fluid configuration that caricatures a stalled shock in the post-bounce supernova environment, we explore the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields. The SASI develops upon perturbation of the initial condition, and the ensuing flow generates--{\\em in the absence of rotation}--dynamically significant magnetic fields ($\\sim 10^{15}$ G) on a time scale that is relevant for the explosion mechanism of core-collapse supernovae. We describe our model, present some recent results, and discuss their potential relevance for supernova models.

  10. The Generation of Magnetic Fields and X-ray Observations

    Fujita, Y; Fujita, Yutaka; Kato, Tsunehiko N.

    2006-01-01

    We show that strong magnetic fields can be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The estimated strength of the magnetic field generated through this mechanism is close to the order of values observed in galaxies or clusters of galaxies at present, which indicates that strong amplification of magnetic fields after formation of galaxies or clusters of galaxies is not required. This mechanism could have worked even at a redshift of ~10, and therefore the generated magnetic fields may have affected the formation of stars at the early universe. This model will be confirmed by future observations of nearby clusters of galaxies. In this context, we also present the Japanese X-ray missions.

  11. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  12. Spontaneous generation of magnetic fields in astrophysical dusty plasmas

    Two novel mechanisms for spontaneous generation of magnetic fields in dusty plasmas are presented. These are a new dust-plasma battery involving the cross product of the gradient of the dust charge density and the electron-ion pressures, as well as a new Weibel-like instability involving ion pressure anisotropy and resistive electron motions. The relevance of the present investigation to magnetic fields in astrophysical objects is discussed

  13. Energy confinement and magnetic field generation in the SSPX spheromak

    The Sustained Spheromak Physics Experiment (SSPX) [Hooper et al., Nuclear Fusion 39, 863 (1999)] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (Te) recorded for a spheromak with Te>500 eV, toroidal magnetic field ?1 T, and toroidal current (?1 MA) [Wood et al., 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', Phys. Rev. Lett. (submitted)]. Extending the sustainment phase to >8 ms extends the period of low magnetic fluctuations (pol/?gun. Successive gun pulses are demonstrated to maintain the magnetic field in a quasisteady state against resistive decay. Initial measurements of neutral particle flux in multipulse operation show charge-exchange power loss e(r) associated with q?1/2

  14. Effects of non-linearities on magnetic field generation

    Nalson, Ellie; Malik, Karim A. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Christopherson, Adam J., E-mail: e.nalson@qmul.ac.uk, E-mail: achristopherson@gmail.com, E-mail: k.malik@qmul.ac.uk [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2014-09-01

    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.

  15. Highly Stable and Finely Tuned Magnetic Fields Generated by Permanent Magnet Assemblies

    Danieli, E.; Perlo, J.; Blmich, B.; Casanova, F.

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  16. Laser light absorption due to self-generated magnetic fields

    Kruer, W.L.; Estabrook, K.G.

    1976-04-20

    It is shown that even normally incident laser light will be resonantly absorbed near the critical density surface when there are self-generated DC magnetic fields. Theoretical estimates for the coupling mechanism, saturation amplitudes, and absorption are given and tested in computer simulations for parameters characteristic of some recent laser-plasma experiments.

  17. Magnetic field generation in fully convective rotating spheres

    Dobler, W; Brandenburg, A

    2004-01-01

    Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and cooling at the surface are presented. The dynamo-generated magnetic field saturates at equipartition field strength near the surface. In the interior, the field is dominated by small-scale structures, but outside the sphere by the global scale. Azimuthal averages of the field reveal a large-scale field of smaller amplitude also inside the star. The internal angular velocity shows some tendency to be constant along cylinders and is ``anti-solar'' (fastest at the poles and slowest at the equator).

  18. Gravitational radiation generated by cosmological phase transition magnetic fields

    We study gravitational waves generated by the cosmological magnetic fields induced via bubble collisions during the electroweak (EW) and QCD phase transitions. The magnetic field generation mechanisms considered here are based on the use of the fundamental EW minimal supersymmetric and QCD Lagrangians. The gravitational waves spectrum is computed using a magnetohydrodynamic turbulence model. We find that the gravitational wave spectrum amplitude generated by the EW phase transition peaks at a frequency of approximately 1-2 mHz, and is of the order of 10-20-10-21; thus this signal is possibly detectable by the Laser Interferometer Space Antenna (LISA). The gravitational waves generated during the QCD phase transition, however, are outside the LISA sensitivity bands.

  19. Generation of magnetic fields in Einstein-Aether gravity

    Saga, Shohei; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2013-01-01

    Recently the lower bounds of the intergalactic magnetic fields $10^{-16} \\sim 10^{-20}$ Gauss are set by gamma-ray observations while it is unlikely to generate such large scale magnetic fields through astrophysical processes. It is known that large scale magnetic fields could be generated if there exist cosmological vector mode perturbations in the primordial plasma. The vector mode, however, has only a decaying solution in General Relativity if the plasma consists of perfect fluids. In order to investigate a possible mechanism of magnetogenesis in the primordial plasma, here we consider cosmological perturbations in the Einstein-Aether gravity model, in which the aether field can act as a new source of vector metric perturbations and thus of magnetic fields. We estimate the angular power spectra of temperature and B-mode polarization of the Cosmic Microwave Background (CMB) Anisotropies in this model and put a rough constraint on the aether field parameters from latest observations. We then estimate the pow...

  20. Generation of bisymmetric magnetic fields in galaxies with tidal interaction

    Vögler, A.; D. Schmitt

    2001-01-01

    Tidal interactions between neighbouring galaxies are expected to induce significant nonaxisymmetric velocities in their disks. It has been suggested that these velocities play an important role in the generation of bisymmetric magnetic fields observed in interacting galaxies. We investigate the effect of a nonaxisymmetric radial outflow on a three-dimensional linear mean field dynamo. We find that the usually dominant axisymmetric quadrupole is effectively damped by the outflow. For sufficien...

  1. Generation of quasi-stationary magnetic fields in turbulent plasmas

    We investigate quasi-stationary magnetic field generation by h.f. electromagnetic wave in inhomogeneous plasma using kinetic theory. The general expression for the nonlinear current is calculated which contains previous results as special cases in collisional, cold and warm plasma regimes. In addition, the contribution of the nonlinear Landau damping is studied which appear to be significant for Langmuir turbulence. The space-time evolution of the quasistationary magnetic field is calculated analytically in different regimes in laser-plasma interaction. (author). 10 refs

  2. Generation and measurement of pulsed high magnetic field

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  3. Entropy Generation in Natural Convection Under an Evanescent Magnetic Field

    We numerically study the effect of an externally-evanescent magnetic field on total entropy generation in conducting and non-reactive fluid enclosed in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of entropy generation in natural convection. The total entropy generation was calculated for fixed value of irreversibility distribution ratio, different relaxation time varying from 0 to 1/5 and Grashof number equal to 105

  4. FORMING CAPABILITIES OF A PULSE MAGNETIC FIELD GENERATOR

    A. A. Petkov

    2015-04-01

    Full Text Available Purpose. Determination of areas ratio of the parameters of the discharge circuit elements of the generator, which ensure the formation of magnetic field pulses of different shapes. Methodology. Numerical simulation using dimensionless variables that determine the nature of the transition process in the discharge circuit of the generator, and use the procedure for determining the pulse points of meeting the conditions of extremum and the transition through zero. Results. Obtained a description of the formation of the three specific areas of waveforms: oscillatory weakly damped oscillatory strongly damped and unipolar pulse with a monotonic rise and fall values. A relation to the choice of parameters of elements of the discharge circuit of the generator, which formed unipolar pulses with a monotonic rise and fall values. Originality. A completed and extended database that implements the mapping of the formal description of the pulse shape with a description of areas ratio parameters for high-voltage pulse discharge circuit test units, with respect to the pulses of current flowing in the formation of the magnetic field. Practical value. The relations obtained allow to select the parameters of the discharge circuit elements of the generator designed to generate test pulses of magnetic field.

  5. Generation of scale invariant magnetic fields in bouncing universes

    Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar

    2015-09-01

    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for the Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-Script N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.

  6. On the electric and magnetic field generation in expanding plasmas

    This thesis deals with the generation of electric and magnetic fields in expanding plasmas. The theoretical model used to calculate the different field quantities in such plasmas is discussed in part 1 and is in fact an analysis of Ohm's law. A general method is given that decomposes each of the forces terms in Ohm's law in a component that induces a charge separation in the plasma and in a component that can drive current. This decomposition is unambiguous and depends upon the boundary conditions for the electric potential. It is shown that in calculating the electromagnetic field quantities in a plasma that is located in the vicinity of a boundary that imposes constraints on the electric potential, Ohm's law should be analyzed instead of the so-called induction equation. Three applications of the model are presented. A description is given of the unipolar arc discharge where both plasma and sheath effects have been taken into account. Secondly a description is presented of the plasma effects of a cathode spot. The third application of the model deals with the generation of magnetic fields in laser-produced plasmas. The second part of this thesis describes the experiments on a magnetized argon plasma expanding from a cascaded arc. With the use of spectroscopic techniques the electron density, ion temperature and the rotation velocity profiles of the ion gas have been determined. The magnetic field generated by the plasma has been measured with the use of the Zeeman effect. Depending on the channel diameter of the nozzle of the cascaded arc, self-generated magnetic fields with axial components of the order of 1% of the externally applied mangetic field have been observed. From the measured ion rotation it has been concluded that this magnetic field is mainly generated by azimuthal electron currents. The corresponding azimuthal current density is of the order of 15% of the axial current density. The observed ion rotation is caused by electron-ion friction. (author). 77 refs.; 69 figs.; 1 tab

  7. Dark matter and generation of galactic magnetic fields

    Berezhiani, Zurab; Tkachev, I I

    2013-01-01

    A mechanism for creation of galactic and intergalactic magnetic fields at a recent cosmological epoch is proposed. We show that in rotating protogalaxies circular electric currents are generated by the interactions of free electrons with dark matter particles while the impact of such interactions on galactic protons is considerably weaker. Light dark matter particles can be efficient for generation of such currents if these particles have some long range interactions. In particular, millicharged warm dark matter particles or light mirror particles with the photon kinetic mixing to the usual matter are considered. The induced currents may be strong enough to create the observed magnetic fields on the galaxy scales without need for a strong dynamo amplification. On the other hand, the angular momentum transfer from the rotating gas to dark matter component could change the dark matter profile and formation of cusps at galactic centers would be inhibited. We also discuss how the global motion of the ionized gas ...

  8. High-magnetic-field MHD-generator program

    Kruger, C. H.; Eustis, R. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1982-04-01

    Progress in an experimental and theoretical program designed to investigate a number of important problems in the development of MHD generator channels is summarized. The areas of research include nonuniformity and stability effects, boundary layers, Hall field breakdown, the effects of electrode configuration and current concentrations, and studies of steady-state combustion disk and linear channels in a 6-Tesla magnet of small dimensions.

  9. Electric charge asymmetry of the Universe and magnetic field generation

    If at an early stage of the evolution of the Universe the gauge symmetry of electromagnetism was spontaneously broken, an electric charge asymmetry would develop. After restoration of gauge invariance, the asymmetry should disappear so that the net electric charge density must vanish, the compensating charge being produced from the Higgs vacuum in the form of heavy charged particles. Energetic products of their decay would create an electric current and a local charge asymmetry. Alternatively, such an asymmetry could be created even if the electric current was always conserved but an asymmetry in another nonconserved charge existed. The primary currents which created the asymmetry as well as those damping it via plasma discharge could generate chaotic magnetic fields on astronomically interesting scales. These fields might be large enough to seed the observed magnetic fields in galaxies via a protogalactic dynamo

  10. Modeling and Measurement of Ocean Generated Magnetic Fields

    Liang, R.; Avera, W. E.; Nelson, J.; Brozena, J. M.

    2011-12-01

    Motion of conductive seawater through the earth's magnetic field will produce magnetic fields. Magnetic fields from motions such as ocean waves and swells are detectable near the ocean's surface but decay rapidly with distance. Non-linear internal waves (NLIWs) generated by mechanisms such as tides over bathymetric features have been predicted to produce magnetic anomalies of .1-1 nT at altitudes of ~ 100 m above the surface (Chave, 1986) due to the large volumes of coherently moving water. An experiment was performed in 2009 by the Defense Research and Development Canada (DRDC) and the US Naval Research Laboratory (NRL) to see if magnetic signatures predicted from oceanographic measurements could be detected by airborne and ocean bottom mounted magnetometers. The test was conducted near the shelf-break off the coast of New Jersey where NLIWs have been observed. Oceanographic measurements were collected by a set of bottom-mounted ADCPs, towed C-T sensors mounted on a "SCANFISH" tow-body, and a hull-mounted ADCP. Magnetic measurements consisted of total-field magnetometers co-located with the bottom mounted ADCPs, three magnetic base-stations (total field and vector) in New Jersey for geomagnetic noise cancellation, and magnetometers aboard two aircraft ( a Canadian National Research Council Convair 580 and the NRL P-3) flown simultaneously with a 20-30 second separation ( corresponding to 2-3 km) along a repeat track over the bottom-mounted sensors. The multiple aircraft and repeat tracks were intended to remove the spatially stationary geologic component. The time-varying geomagnetic signal was extrapolated from the magnetic base-stations to the aircraft measurements. Both aircraft had high quality magnetometers and magnetic-field compensation systems based on co-located vector magnetometers and kinematic GPS. The Convair had two magnetometer and compensation systems mounted in wing-pods with a base-line of ~ 32 m that allowed the calculation of a cross-track gradient. Total-field compensated and edited data from each aircraft and the magnetic base-station data were low-pass filtered and sub-sampled to 4Hz for analysis. Data from the magnetic base-stations exhibit good coherence, as do the data from the ocean-bottom magnetometers. After correction for the geomagnetic component, the two aircraft residuals matched quite closely in both amplitude and phase in many places, but in other places the phase match was poor. This produced an overall poor coherence between the two residuals. However, cross-spectral analysis showed that there was a statistical correlation between the two aircraft residuals in the frequency band 0.02-0.05 Hz (5000-2000 m wavelength for an aircraft flying at 100 m/s). Both the amplitude (0.1-0.2 nT) and wavelength were consistent with predictions computed from the 3-D water velocities and conductivity from the ADCP using a simple model. The predicted undersea magnetic fields correlated well with the measured undersea magnetometer fields at times, but they rarely matched at the "wiggle-for-wiggle" level. More often, it was the statistics that correlated well.

  11. Magnetic energy dissipation and mean magnetic field generation in planar convection driven dynamos

    Tilgner, A.

    2014-01-01

    A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates, and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and wi...

  12. Glutathione production using magnetic fields generated by magnets

    Lucielen Oliveira dos Santos

    2012-12-01

    Full Text Available The objective of this work was to study the production of GSH by Saccharomyces cerevisiae ATCC 7754 in a fermentor (5 L using a cell recycle system with magnets. The fermentation conditions were 20C, 500 rpm, 5% (v/v of inoculum, pHinitial 5, 1.1 vvm aeration and total fermentation time of 72 h. The time of application of MF ranged from 24, 48 or 72 h. In comparison to the control experiment, the best results were obtained with 72 h of application of MF. The cell concentration reached 19.5 g/L and GSH concentration was 271.9 mg/L that corresponded to an increase of 2.63 and 32.1% compared to the control experiment, respectively.

  13. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (?230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field. (inertially confined plasma)

  14. Generation of local magnetic field; application to VCSEL

    Gaiffe, O.; Euphrasie, S.; Cretin, B.; Vairac, P.

    2009-01-01

    Abstract In this article, we report on the simulation and realization of a magnetic circuit allowing to apply an axial magnetic field higher than 1 T. The proposed electromagnet is used to investigate the influence of a magnetic field on the polarization behavior of a vertical-cavity-surface-emitting laser (VCSEL). A non-linear polarization behavior can be experimentally observed for currents as low as the threshold current, provided that the magnetic field is strong enough.

  15. Dark matter and generation of galactic magnetic fields

    A new scenario for creation of galactic magnetic fields is proposed which is operative at the cosmological epoch of the galaxy formation, and which relies on unconventional properties of dark matter. Namely, it requires existence of feeble but long range interaction between the dark matter particles and electrons. In particular, millicharged dark matter particles or mirror particles with the photon kinetic mixing to the usual photon can be considered. We show that in rotating protogalaxies circular electric currents can be generated by the interactions of free electrons with dark matter particles in the halo, while the impact of such interactions on galactic protons is considerably weaker. The induced currents may be strong enough to create the observed magnetic fields on the galaxy scales with the help of moderate dynamo amplification. In addition, the angular momentum transfer from the rotating gas to dark matter component could change the dark matter profile and formation of cusps at galactic centers would be inhibited. The global motion of the ionized gas could produce sufficiently large magnetic fields also in filaments and galaxy clusters. (orig.)

  16. Relativistic Scott correction in self-generated magnetic fields

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that $Z \\alpha < 2/\\pi$, where $\\alpha$ denotes the fine structure...... constant. We are interested in the ground state energy in the simultaneous limit $Z \\rightarrow \\infty$, $\\alpha \\rightarrow 0$ such that $\\kappa=Z \\alpha$ is fixed. The leading term in the energy asymptotics is independent of $\\kappa$, it is given by the Thomas-Fermi energy of order $Z^{7/3}$ and it is...

  17. Generation of the Primordial Magnetic Fields during Cosmological Reionization

    Gnedin, N Yu; Zweibel, E G; Gnedin, Nickolay Y.; Ferrara, Andrea; Zweibel, Ellen G.

    2000-01-01

    We investigate the generation of magnetic field by the Biermann battery in cosmological ionization fronts, using new simulations of the reionization of the universe by stars in protogalaxies. Two mechanisms are primarily responsible for magnetogenesis: i) the breakout of I-fronts from protogalaxies, and ii) the propagation of I-fronts through the high density neutral filaments which are part of the cosmic web. The first mechanism is dominant prior to overlapping of ionized regions (z ~ 7), whereas the second continues to operate even after that epoch. However, after overlap the field strength increase is largely due to the gas compression occurring as cosmic structures form. As a consequence, the magnetic field at z ~ 5 closely traces the gas density, and it is highly ordered on megaparsec scales. The mean mass-weighted field strength is B_0 ~ 10^{-19} G in the simulation box. There is a relatively well-defined, nearly linear correlation between B_0 and the baryonic mass of virialized objects, with B_0 ~ 10^{...

  18. Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.

    Tilgner, A

    2014-07-01

    A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers. PMID:25122366

  19. Magnetic energy dissipation and mean magnetic field generation in planar convection driven dynamos

    Tilgner, A

    2014-01-01

    A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates, and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers.

  20. Proposal for generating synthetic magnetic fields in hexagonal optical lattices

    Tian, Binbin; Endres, Manuel; Pekker, David

    2015-05-01

    We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.

  1. Internal split field generator

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  2. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  3. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  4. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as 1200 A can be generated with inputs of +/?20?V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  5. Attosecond-magnetic-field-pulse generation by electronic currents in bichromatic circularly polarized UV laser fields

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-12-01

    Attosecond-magnetic-field-pulse generation is simulated from numerical solutions of time-dependent Schrödinger equations for oriented H2 +. Two schemes with high frequency co- and counter-rotating bichromatic ω2=2 ω1 circularly polarized UV laser pulses are investigated. Results show that comparing to single color processes, stronger induced localized magnetic fields B at the molecular center O (r =0 ) are obtained with attosecond duration. This is attributed to frequent recollision and to interference effects of two pathways in photoionization. The induced magnetic fields are shown to be sensitive to (i) the helicity of the combined laser pulses due to different recollision laser-induced electron trajectories and currents, and (ii) also the carrier envelope phases of the combined attosecond laser pulses. The sensitivity of recollision to bichromatic pulses thus allows one to control the induced magnetic-field-pulse generation.

  6. Consistent generation of magnetic fields in axion inflation models

    Fujita, Tomohiro; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki

    2015-01-01

    There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton $\\phi$ through the characteristic term $\\phi F\\tilde F$, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. Th...

  7. The use of mirror image symmetry in coil winding, applications and advantages in magnetic field generation

    In this paper, an improved method of winding inductors, transformers and motors is discovered. This invention greatly enhances the ability to generate magnetic fields with a given amount of wire. This invention may be as fundamental to the use of magnetic fields as was Nikola Tesla's use of rotating magnetic fields for the generation of alternating current

  8. Dynamo-generated magnetic fields in fast rotating single giants

    Konstantinova-Antova, Renada; Schröder, Klaus-Peter; Petit, Pascal

    2009-01-01

    Red giants offer a good opportunity to study the interplay of magnetic fields and stellar evolution. Using the spectro-polarimeter NARVAL of the Telescope Bernard Lyot (TBL), Pic du Midi, France and the LSD technique, we began a survey of magnetic fields in single G-K-M giants. Early results include 6 MF-detections with fast rotating giants, and for the first time a magnetic field was detected directly in an evolved M-giant: EK Boo. Our results could be explained in the terms of $\\alpha$--$\\omega$ dynamo operating in these giants.

  9. MHD turbulence developed and generation of magnetic field

    Turbulence in a conducting medium presents a critical magnetic Reynolds number, as do the linear dynamos with a given velocity field. Results obtained with the EDQNM model in non linear MHD turbulence (helical or non helical) are given

  10. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  11. Magnetic field geometry of the Earth magnetosphere and generation of longitudinal generation of longitudinal currents

    Problem of longitudinal currents in asymmetrical plasma trap is considered. Analysis of isoline configuration of equal volume of magnetic force tubes and current lines in equatorial plane was conducted on the basis of Tsyganenko-87 and Tsyganenko-87 W geomagnetic field distribution in asymmetrical part of Earth magnetosphere corresponds to generation of magneto statistically equilibrium longitudinal currents of current system 1 of

  12. Consistent generation of magnetic fields in axion inflation models

    Fujita, Tomohiro; Namba, Ryo; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki

    2015-05-01

    There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton phi through the characteristic term phi tilde F F, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. The EM field is subsequently amplified by parametric resonance during the period of inflaton oscillation. Once the thermal plasma is formed (reheating), the produced helical magnetic fields undergo a turbulent process called inverse cascade, which shifts their peak correlation scales from smaller to larger scales. We consistently take all these effects into account within the regime where the perturbation of phi is negligible and obtain Beff ~ 10-19 G, indicating the necessity of additional mechanisms to accommodate the observations.

  13. New magnetooptic head with a built-in generator for a bias magnetic field.

    Kobori, H; Murakami, T; Mori, M

    1988-02-15

    A high performance magnetooptic head, which generates a bias magnetic field itself, has been developed. It has a moving magnet actuator to drive an objective lens. The moving magnets have two functions. One is to apply a constant magnetic field on the recording medium. The other is to comprise a magnetic circuit for focusing and tracking control. This magnetooptic head is suitable for use in the two-head erase and write method, in which it is not necessary to change the polarity of the bias magnetic field. Moreover, it enables designing a small-sized magnetooptic disk drive, because a bias magnetic field generator is built into the optical head. PMID:20523664

  14. Generation of a North/South Magnetic Field Component from Variations in the Photospheric Magnetic Field

    Ulrich, Roger K

    2016-01-01

    We address the problem of calculating the transverse magnetic field in the solar wind outside of the hypothetical sphere called the source surface where the solar wind originates. This calculation must overcome a widely used fundamental assumption about the source surface -- the field is normally required to purely radial at the source surface. Our model rests on the fact that a change in the radial field strength at the source surface is a change in the field line density. Surrounding field lines must move laterally in order to accommodate this field line density change. As the outward wind velocity drags field lines past the source surface this lateral component of motion produces a tilt implying there is a transverse component to the field. An analytic method of calculating the lateral translation speed of the field lines is developed. We apply the technique to an interval of approximately two Carrington rotations at the beginning of 2011 using 2-h averages of data from the Helioseismic Magnetic Imager ins...

  15. Turbulent Generation of Flows and Magnetic Field at the Rational Magnetic Surfaces of a Tokamak

    Full text: Comparative analysis of generation of large-scale structures, zonal flows and streamers, by drift wave turbulence is conducted for periodic systems with magnetic shear such as a tokamak. In a strong magnetic field dynamics of quasi two-dimensional perturbations strongly depends on the value of the wave vector along the magnetic field. When the parallel wave vector is significantly large, so that the parallel phase velocity of perturbation is small compared to electron thermal velocity, the parallel electron motion results in a finite electron density perturbation. It follows the Boltzmann distribution. However, for large-scale structures with poloidal and toroidal symmetry m = n = 0, and the parallel wave vector is zero. This results in strong reduction of density perturbation for m = n = 0. This difference has profound consequences for generation of large-scale zonal flows and streamers due to different structure of the nonlinear interaction matrix. The interaction term has a structure similar to the standard convective nonlinearity for zonal flows, while for streamers it has the structure of the Hasegawa-Mima nonlinearity (which is the higher order due to a small parameter associated with a finite ion Larmor radius). Respectively, zonal flows have the larger growth rate gamma(ZF) compared to that of the streamers. It is shown that 3D electromagnetic helical perturbations will have the growth rate comparable to that of zonal flows if their symmetry coincides with the symmetry of rational magnetic surface, m = nq. The field line bending provides a stabilizing effect and thus determines the radial localization of such structures. Therefore, it is expected that three-dimensional structures of flows and magnetic field will be preferentially generated at the rational magnetic surfaces of a tokamak with a growth rate of order gamma(ZF). This theoretical result may corroborate existing experimental correlations of large-scale shear flow structures with rational magnetic surfaces of a tokamak. (author)

  16. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  17. Higher magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    Correction elements in colliding beam accelerators such as the Superconducting Super Collider (SSC) can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. Multipole magnetization field components have been measured within the HERA storage ring dipole magnets. Calculations of these components using the SCMAG04 code, which agree substantially with the measured multipoles, are presented in the report. As a result, in the proposed continuous correction winding for the SSC, dipoles have been replaced with lumped correction elements every six dipole magnets (about 120 meters apart). Nested lumped correction elements will also produce undesirable higher magnetization multipoles. This report shows a method by which the higher multipole generated by nested correction elements can be identified. (author)

  18. Design of four-conductor system for gradient magnetic field generation for magnetic resonance tomography

    The design is presented and an analysis made of a four-conductor system as a source of constant magnetic field gradients in a homogeneous stationary magnetic field. The analysis aims at determining the optimal conductor position for obtaining maximal homogeneity of the generated gradients in the plane of section of the specimen being imaged, at minimal currents through the conductors. The analysis showed that a parallel configuration of conductors symmetrical relative to the coordinate system origin with centres forming the apeces of a square (a:b=1), produced a nonlinear change in the real component of the magnetic field in the plane of section. It was derived from theory that conductors whose spacing ratio was a:b=2.2 acceptably generated a constant gradient of the magnetic field. The volume of gradient constant within the range of 1% consisted of a cylinder of a radius of r = 0.9 b with b equal to the x-coordinate of the conductor position. (J.B.)

  19. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­‐energy-­‐ density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­‐energy-­‐ density plasma the ideas for steady-­‐state current drive developed for low-­‐energy-­‐ density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­‐energy-­‐density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  20. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets

    Ching-Yu Chou; Fabien Ferrage; Guy Aubert; Dimitris Sakellariou

    2015-01-01

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were...

  1. Self-generation mechanisms of intense magnetic fields in laser produced plasmas on solid targets

    Mechanisms of magnetic field self-generation in laser produced plasma are presented. Magnetic field generation due to the thermoelectric sources (Vnsub(e) x VTsub(e)), resonance absorption, ponderomotive forces, some kind of instabilities (modulational, Weibel, Rayleigh-Taylor instabilities) is considered. Estimates or scaling laws for parameters typical for current experiments are given. (author)

  2. Study of second-generation high-temperature superconducting magnets: the self-field screening effect

    Second-generation high-temperature superconductors (2G HTS) have high current density in very high magnetic fields. They are good candidates for high field magnets, especially when the magnetic field exceeds the critical fields of low-temperature superconductors. However, the thin and flat geometry of these conductors allows persistent screening currents (or shielding currents) to flow in the conductors. The screening currents caused by the ramping of applied current to the coil is identified as the self-field screening effect. The screening-current-induced magnetic field changes the magnetic field distribution of the magnet, and it also generates drift. This paper employs both experimental and numerical methods to study the mechanism of self-field screening currents for 2G HTS magnets. A 2G HTS magnet was constructed and tested, and a finite element model was built based on the magnet. The comparison between calculation and measurement is presented with detailed analysis. Current distributions inside the HTS magnet are calculated to illustrate the effects of screening. The screening-current-induced magnetic field is quantified by comparing the magnetic field distribution with a baseline copper model. The model is also used to explain the mechanism of the current sweep strategy, which can be used to effectively eliminate screening currents. (paper)

  3. Magnetic Field Generation and Zonal Flows in the Gas Giants

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets observed on Jupiter and Saturn are a relatively shallow phenomenon remaining confined to the outer few percent in radius.

  4. Conventional field generated by permanent magnet for ECR ion source of 18 GHz

    A conventional magnetic field is robust in achieving plasma confinement due to minimum B or tandem mirror field configuration. The French group led by Geller pioneered constructing ECR ion source (ECRIS) like MAFIOS and its variants in 1970's and later. Conventional ECRIS have the big advantage that nowhere magnetic field is null and so electrons have constant magnetic moment and execute adiabatic motion throughout the plasma chamber. But ECRIS has some problems too like i) the plasma generated is not axially symmetric, ii) the magnet system is complicated for generating axial and radial field and iii) injection and extraction regions are congested

  5. External split field generator

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  6. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the ∇ne×∇Te term in the generalized Ohm’s law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  7. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2012-08-01

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the ∇ne×∇Te term in the generalized Ohm's law. Srinivasan et al. [Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al. [Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  8. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    Huntington, C M; Ross, J S; Zylstra, A B; Drake, R P; Froula, D H; Gregori, G; Kugland, N L; Kuranz, C C; Levy, M C; Li, C K; Meinecke, J; Morita, T; Petrasso, R; Plechaty, C; Remington, B A; Ryutov, D D; Sakawa, Y; Spitkovsky, A; Takabe, H; Park, H -S

    2013-01-01

    As the ejecta from supernovae or other energetic astrophysical events stream through the interstellar media, this plasma is shaped by instabilities that generate electric and magnetic fields. Among these instabilities, the Weibel filamentation instability plays a particularly important role, as it can generate significant magnetic fields in an initially un-magnetized medium. It is theorized that these Weibel fields are responsible for the observed gamma-ray burst light curve, particle acceleration in shock waves, and for providing seed fields for larger-scale cosmological magnetic structures. While the presence of these instability-generated fields has been inferred from astrophysical observation and predicted in simulation, observation in experiments is challenging. Here we report direct observation of well-organized, large-amplitude, filamentary magnetic fields associated with the Weibel instability in a scaled laboratory experiment. The experimental images, captured with proton radiography, are shown to be...

  9. Generation of large scale magnetic fields in single-field inflation

    We consider the generation of large scale magnetic fields in slow-roll inflation. The inflaton field is described in a supergravity framework where the conformal invariance of the electromagnetic field is generically and naturally broken. For each class of inflationary scenarios, we determine the functional dependence of the gauge coupling that is consistent with the observations on the magnetic field strength at various astrophysical scales and, at the same time, avoid a back-reaction problem. Then, we study whether the required coupling functions can naturally emerge in well motivated, possibly string inspired, models. We argue that this is non-trivial and can be realized only for a restricted class of scenarios. This includes power-law inflation where the inflaton field is interpreted as a modulus. However, this scenario seems to be consistent only if the energy scale of inflation is low and the reheating stage prolonged. Another reasonable possibility appears to be small field models since no back-reaction problem is present in this case but, unfortunately, the corresponding scenario cannot be justified in a stringy framework. Finally, large field models do not lead to sensible model building

  10. Attosecond Magnetic Field Pulse Generation by Intense Few Cycle Circularly Polarized UV Pulses

    Yuan, Kai-Jun; Bandrauk, Andre. D.

    2013-01-01

    Intense attosecond magnetic field pulses are predicted to be produced by intense few cycle circularly polarized UV pulses. Numerical solutions of the time dependent Schr\\"{o}dinger equation for H$_2^+$ are used to study the dynamical process. Spiralling attosecond circular electron wave packets are created with nanometer molecular dimensions, thus generating magnetic fields of several tens of Teslas ($10^5$ Gauss). Simulations show that the induced magnetic field is critically dependent on th...

  11. Generation of magnetic fields by large-scale vortices in rotating convection

    Guervilly, Celine; Jones, Chris A

    2015-01-01

    We propose a new self-consistent dynamo mechanism for the generation of large-scale magnetic fields in natural objects. Recent computational studies have described the formation of large-scale vortices (LSVs) in rotating turbulent convection. Here we demonstrate that for magnetic Reynolds numbers below the threshold for small-scale dynamo action, such turbulent flows can sustain large-scale magnetic fields --- i.e. fields with a significant component on the scale of the system.

  12. Generation of magnetic fields by large-scale vortices in rotating convection

    Guervilly, Céline; Hughes, David W.; Jones, Chris A.

    2015-04-01

    We propose a self-consistent dynamo mechanism for the generation of large-scale magnetic fields in natural objects. Recent computational studies have described the formation of large-scale vortices in rotating turbulent convection. Here we demonstrate that for magnetic Reynolds numbers below the threshold for small-scale dynamo action, such turbulent flows can sustain large-scale magnetic fields, i.e., fields with a significant component on the scale of the system.

  13. Generation of magnetic field on the accretion disk around a proto-first-star

    The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10–9 G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10–14-10–13 G at n H = 103 cm–3, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

  14. Attosecond-magnetic-field-pulse generation by intense few-cycle circularly polarized UV laser pulses

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-07-01

    Intense attosecond-magnetic-field pulses are predicted to be produced by intense few-cycle attosecond circularly polarized UV pulses. Numerical solutions of the time-dependent Schrödinger equation for H2+ are used to study the electronic dynamical process. Spinning attosecond circular electron wave packets are created on subnanometer molecular dimensions, thus generating attosecond magnetic fields of several tens of Teslas (105 G). Simulations show that the induced magnetic field is critically dependent on the pulse wavelength λ and pulse duration nτ (n is number of cycles) as predicted by a classical model. For ultrashort few-cycle circularly polarized attosecond pulses, molecular orientation influences the generation of the induced magnetic fields as a result of preferential ionization perpendicular to the molecular axis. The nonspherical asymmetry of molecules allows for efficient attosecond-magnetic-field-pulse generation.

  15. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects. PMID:26551120

  16. The alpha effect with imposed and dynamo-generated magnetic fields

    Hubbard, A; Käpylä, P J; Brandenburg, A

    2009-01-01

    Estimates for the nonlinear alpha effect in helical turbulence are presented using two different approaches where a uniform magnetic field is applied either to the actual field, or where separate evolution equations are solved for a set of different test fields. Both approaches agree for stronger fields, but there are apparent discrepancies for weaker fields that can be explained by the influence of dynamo-generated magnetic fields on the scale of the domain that are referred to as meso-scale magnetic fields. Examples are discussed where with an imposed magnetic field the alpha effect is either drastically overestimated, or drastically underestimated compared with the kinematic value. It is demonstrated that the kinematic value can be estimated correctly by resetting the magnetic field in regular time intervals.

  17. Magnetic field simulation of magnetic phase detection sensor for steam generator tube in nuclear power plants

    Ryu, Kwon-sang; Son, Derac; Park, Duck-gun; Kim, Yong-il

    2010-05-01

    Magnetic phases and defects are partly produced in steam generator tubes by stress and heat, because steam generator tubes in nuclear power plants are used under high temperature, high pressure, and radioactivity. The magnetic phases induce an error in the detection of the defects in steam generator tubes by the conventional eddy current method. So a new method is needed for detecting the magnetic phases in the steam generator tubes. We designed a new U-type yoke which has two kinds of coils and simulated the signal by the magnetic phases and defects in the Inconnel 600 tube.

  18. Magnetic Field Generation in Core-Sheath Jets via the Kinetic Kelvin-Helmholtz Instability

    Nishikawa, K -I; Dutan, I; Niemiec, J; Medvedev, M; Mizuno, Y; Meli, A; Sol, H; Zhang, B; Pohl, M; Hartmann, D H

    2014-01-01

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas we find generation of strong large-scale DC currents and magnetic fields which extend over the entire shear-surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates transverse structure similar to that produced by the Weibel instability.

  19. A Calculation of Required Magnetic Field Strength in a Magnetohydrodynamic Supersonic Generator and Accelerator

    Lang, Amy W.; Czysz, Paul

    2001-11-01

    A one-dimensional supersonic CFD code was utilized to solve for the required magnetic field strength, as a function of conductivity, for fixed length and constant static enthalpy magnetohydrodynamic generator and accelerator. The inlet velocity and pressure to the generator were varied, while requiring the exit Mach number of the generator to remain at 2.0. The flow after the generator proceeded through a simple supersonic combustion process, and the bypassed energy was then used in the accelerator to increase the flow velocity. Results show that varying the conductivity between 7 and 70 mho/m and inlet velocity between 5000 and 14000 ft/s, require magnetic fields in the generator between 1 and 12 Tesla with greater magnetic field strength required at lower conductivities. It was also calculated that for the same energy and conductivity used in the accelerator, a lower magnetic field was needed.

  20. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  1. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    Nishikawa, K.-I. [Department of Physics, University of Alabama in Huntsville, ZP12, Huntsville, AL 35899 (United States); Hardee, P. E. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487 (United States); Du?an, I. [Institute of Space Science, Atomistilor 409, Bucharest-Magurele RO-077125 (Romania); Niemiec, J. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Krakw (Poland); Medvedev, M. [Department of Physics and Astronomy, University of Kansas, KS 66045 (United States); Mizuno, Y. [Institute of Astronomy, National Tsing-Hua University, Hsinchu, Taiwan 30013 (China); Meli, A. [Department of Physics and Astronomy, University of Gent, Proeftuinstraat 86 B-9000, Gent (Belgium); Sol, H. [LUTH, Observatore de Paris-Meudon, 5 place Jules Jansen, F-92195 Meudon Cedex (France); Zhang, B. [Department of Physics, University of Nevada, Las Vegas, NV 89154 (United States); Pohl, M. [Institut fur Physik und Astronomie, Universitt Potsdam, D-14476 Potsdam-Golm (Germany); Hartmann, D. H., E-mail: ken-ichi.nishikawa@nasa.gov [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  2. Spatiotemporal structure of magnetic field and convection vortices generated in a rotating spherical shell

    Ishihara, Norio [Nagoya Univ., Faculty of Science, Nagoya, Aichi (Japan); Kida, Shigeo [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-07-01

    Intensification mechanisms of magnetic field by thermal convection in a rotating spherical shell are investigated by the direct numerical simulation analysis of the MHD Boussinesq equation. It is found that an axial magnetic dipole field whose energy is 15 times as large as kinetic energy is generated. Anticyclonic vortices play a key role in sustaining the structure. (author)

  3. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium

    We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number Rm∼30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows

  4. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  5. Precise Measurement of a Magnetic Field Generated by the Electromagnetic Flux Compression Technique

    Nakamura, D; Matsuda, Y H; Takeyama, S

    2013-01-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure an extremely high magnetic fields.

  6. Open Circuit Field Distribution and Induced Voltage of a Cylindrical Permanent Magnet Linear Generator

    Wijono

    2007-01-01

    Full Text Available This paper deals with the analytical computation of the magnetic field of a cylindrical permanent magnet linear generator. It offers an alternative solution to the magnetic field problem. A new approach to solve Poisson equation using Struve function is introduced and it offers a simple but accurate analytical estimation to the calculation of the open circuit flux density and induced voltage. The finite element analysis simulation is performed to validate the analytical calculation.

  7. Open Circuit Field Distribution and Induced Voltage of a Cylindrical Permanent Magnet Linear Generator

    Wijono; Arof, H.

    2007-01-01

    This paper deals with the analytical computation of the magnetic field of a cylindrical permanent magnet linear generator. It offers an alternative solution to the magnetic field problem. A new approach to solve Poisson equation using Struve function is introduced and it offers a simple but accurate analytical estimation to the calculation of the open circuit flux density and induced voltage. The finite element analysis simulation is performed to validate the analytical calculation.

  8. Dynamical Generation of the Primordial Magnetic Field by Ferromagnetic Domain Walls

    Cea, Paolo; Tedesco, Luigi

    1998-01-01

    The spontaneous generation of uniform magnetic condensate in $QED_3$ gives rise to ferromagnetic domain walls at the electroweak phase transition. These ferromagnetic domain walls are caracterized by vanishing effective surface energy density avoiding, thus, the domain wall problem. Moreover we find that the domain walls generate a magnetic field $B \\simeq 10^{24} Gauss$ at the electroweak scale which account for the seed field in the so called dynamo mechanism for the cosmological primordial...

  9. Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection

    Atef El Jery; Nejib Hidouri; Mourad Magherbi; Ammar Ben Brahim

    2010-01-01

    The influence of an external oriented magnetic field on entropy generation in natural convection for air and liquid gallium is numerically studied in steady-unsteady states by solving the mass, the momentum and the energy conservation equations. Entropy generation depends on five parameters which are: the Prandtl number, the irreversibility coefficients, the inclination angle of the magnetic field, the thermal Grashof and the Hartmann numbers. Effects of these parameters on total and local ir...

  10. Generation of Magnetic Field on the Accretion Disk around a Proto-First-Star

    Shiromoto, Yuki; Hosokawa, Takashi

    2014-01-01

    The generation process of magnetic field around a proto-first-star is studied. Utilizing the recent numerical result of proto-first-star formation based upon the radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that magnetic field of \\sim 10^{-9} G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low density regions ...

  11. Study of magnetic field expansion using a plasma generator for space radiation active protection

    Jia, Xiang-Hong; Jia, Shao-Xia; Xu, Feng; Bai, Yan-Qiang; Wan, Jun; Liu, Hong-Tao; Jiang, Rui; Ma, Hong-Bo; Wang, Shou-Guo

    2013-09-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  12. Study of magnetic field expansion using a plasma generator for space radiation active protection

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  13. A precise numerical estimation of the magnetic field generated around recombination

    Fidler, Christian; Pitrou, Cyril

    2015-01-01

    We investigate the generation of magnetic fields from non-linear effects around recombination. As tight-coupling is gradually lost when approaching $z\\simeq 1100$, the velocity difference between photons and baryons starts to increase, leading to an increasing Compton drag of the photons on the electrons. The protons are then forced to follow the electrons due to the electric field created by the charge displacement; the same field, following Maxwell's laws, eventually induces a magnetic field on cosmological scales. Since scalar perturbations do not generate any magnetic field as they are curl-free, one has to resort to second-order perturbation theory to compute the magnetic field generated by this effect. We reinvestigate this problem numerically using the powerful second-order Boltzmann code SONG. We show that: i) all previous studies do not have a high enough angular resolution to reach a precise and consistent estimation of the magnetic field spectrum; ii) the magnetic field is generated up to $z\\simeq ...

  14. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  15. Generation of uniform synthetic magnetic fields by split driving of an optical lattice

    Creffield, Charles; Sols Lucía, Fernando

    2014-01-01

    We describe a method to generate a synthetic gauge potential for ultracold atoms held in an optical lattice. Our approach uses a time-periodic driving potential based on two quickly alternating signals to engineer the appropriate Aharonov-Bohm phases, and permits the simulation of a uniform tunable magnetic field. We explicitly demonstrate that our split driving scheme reproduces the behavior of a charged quantum particle in a magnetic field over the complete range of field strengths, and obt...

  16. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    Huntington, C. M.; Fiuza, F.; Ross, J. S.; Zylstra, A. B.; Drake, R. P.; Froula, D. H.; Gregori, G.; Kugland, N. L.; Kuranz, C.C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.

    2013-01-01

    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fie...

  17. Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field

    Vennerstrm, Susanne; Moretto, T.; Rastatter, L.; Raeder, J.

    2006-01-01

    Solar wind generated magnetic disturbances are currently one of the major obstacles for improving the accuracy in the determination of the magnetic field due to sources internal to the Earth. In the present study a global MHD model of solar wind magnetosphere interaction is used to obtain a...... physically consistent, divergence-free model of ionospheric, field-aligned and magnetospheric currents in a realistic magnetospheric geometry. The magnetic field near the Earth due to these currents is analyzed by estimating and comparing the contributions from the various parts of the system, with the aim...... more than 90% of the field-aligned disturbance. The magnetic disturbance field from field-aligned currents (FACs) is basically transverse to the main field, and they therefore contribute with less than 2% to the disturbance in total field intensity. Inhomogeneity in ionospheric conductance is...

  18. Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection

    Atef El Jery

    2010-05-01

    Full Text Available The influence of an external oriented magnetic field on entropy generation in natural convection for air and liquid gallium is numerically studied in steady-unsteady states by solving the mass, the momentum and the energy conservation equations. Entropy generation depends on five parameters which are: the Prandtl number, the irreversibility coefficients, the inclination angle of the magnetic field, the thermal Grashof and the Hartmann numbers. Effects of these parameters on total and local irreversibilities as well as on heat transfer and fluid flow are studied. It was found that the magnetic field tends to decrease the convection currents, the heat transfer and entropy generation inside the enclosure. Influence of inclination angle of the magnetic field on local irreversibility is then studied.

  19. Chiral imbalance evolution in dense matter and the generation of magnetic fields in magnetars

    Dvornikov, Maxim

    2015-01-01

    We study the model for the magnetic field generation in a magnetar based on the magnetic field instability driven by the parity violating electroweak interaction between electrons and nucleons in the neutron star matter. Using the quantum field theory methods, we calculate the helicity flip of an electron scattering off protons in dense matter of a neutron star. The influence of the electroweak interaction between electrons and background nucleons on the helicity flip is examined. We also derive the kinetic equation for the chiral imbalance. The evolution of the magnetic field in a magnetar accounting for the correct value of the helicity flip rate is studied.

  20. Evolution of the magnetic field generated by the Kelvin-Helmholtz instability

    Modestov, M.; Bychkov, V.; Brodin, G.; Marklund, M.; Brandenburg, A.

    2014-07-01

    The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instability development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.

  1. Effect of Magnetic Field on Entropy Generation in a Microchannel Heat Sink with Offset Fan Shaped

    Mohammad Nasiri

    2015-12-01

    Full Text Available In this study, convection flow in microchannel heat sink with offset fan-shaped reentrant cavities in sidewall filled with Fe3O4-water is numerically investigated. The effects of changing some parameters such as Reynolds number and magnetic field are considered. The nanofluid flow is laminar, steady and incompressible, while the thermo-physical properties of nanoparticles were assumed constant. A finite volume method and two phase mixture models were used to simulate the flow. The obtained results show that the frictional entropy generation increases as Reynolds number increases, while a reverse trend is observed for thermal entropy generation. By applying a non-uniform magnetic field, the entropy generation due to heat transfer decreases at first and then increases. When using the uniform magnetic field, the frictional entropy generation and thermal entropy generation is negligible. For all studied cases, the total entropy generation decreases using non-uniform magnetic fields. The results indicate that by increasing the magnetic field power, the total entropy generation decreases.

  2. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    Woodruff, S; Cohen, B. I.; Hooper, E. B.; Mclean, H. S.; Stallard, B. W.; Hill, D. N.; Holcomb, C. T.; Romero-Talamás, C.; Wood, R D; Cone, G.; Sovinec, C. R.

    2005-01-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (delta B/B similar to 1% on the midplane edge) yields T-e profiles peaked at > 200 eV. Trends indic...

  3. MHD waves and shocks generated during magnetic field reconnection

    Bárta, Miroslav; Karlický, Marian; Vršnak, B.; Goossens, M.

    2007-01-01

    Roč. 31, č. 1 (2007), s. 165-179. ISSN 1845-8319. [Dynamical processes in the solar atmosphere. Hvar, 24.09.2006-29.09.2006] R&D Projects: GA AV ČR IAA3003202; GA ČR GA205/04/0358 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetohydrodynamics * magnetic reconnection * solar flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Attosecond Magnetic Field Pulse Generation by Intense Few Cycle Circularly Polarized UV Pulses

    Yuan, Kai-Jun

    2013-01-01

    Intense attosecond magnetic field pulses are predicted to be produced by intense few cycle circularly polarized UV pulses. Numerical solutions of the time dependent Schr\\"{o}dinger equation for H$_2^+$ are used to study the dynamical process. Spiralling attosecond circular electron wave packets are created with nanometer molecular dimensions, thus generating magnetic fields of several tens of Teslas ($10^5$ Gauss). Simulations show that the induced magnetic field is critically dependent on the pulse wavelength $\\lambda$ and pulse duration $n\\tau$ ($n$ number of cycle) as predicted by a classical model. For ultrashort few cycle circularly polarized attosecond pulses, molecular orientation influences the generation of the induced magnetic fields as a result of preferential ionization perpendicular to the molecular axis.

  5. Design of pulsed guiding magnetic field for high power microwave generators.

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields. PMID:25273750

  6. Magnetic field seed generation in plasmas around charged and rotating black holes

    Previous work by the authors introduced the possibility of generating seed magnetic fields by spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed out that it would be worthwhile to consider the effect in other background geometries and particularly in the vicinity of a rotating black hole, which is generically to be expected, astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic field seed due to Reissner–Nördstrom and Kerr spacetimes. The conditions for the drive for the seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive vanishes. Also, the ψN-force produced by the Kerr black hole is obtained and its relation with the magnetic field seed is discussed, producing a more effective drive. (paper)

  7. Design of pulsed guiding magnetic field for high power microwave generators

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields

  8. Magnetic-assisted rapid aptamer selection (MARAS) for generating high-affinity DNA aptamer using rotating magnetic fields.

    Lai, Ji-Ching; Hong, Chin-Yih

    2014-07-14

    A new SELEX protocol for the development of DNA aptamers has been demonstrated, referred to as magnetic-assisted rapid aptamer selection (MARAS). This method uses magnetic beads and an externally applied rotating magnetic field to provide the competitive mechanism for the selection aptamers with different affinities to the molecular target. The MARAS protocol efficiently generated aptamers with high affinity and specificity for C-reactive protein, a common cardiovascular disease indicator. The binding affinities of the selected aptamers could be varied by changing the frequency of the externally applied rotating magnetic field and optimal cases bound with low-nanomolar dissociation constants. PMID:24814701

  9. Generation of Strong Magnetic Fields in Axisymmetry by the Stationary Accretion Shock Instability

    Endeve, Eirik; Budiardja, Reuben D; Mezzacappa, Anthony

    2008-01-01

    We begin an exploration of the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields by adding a weak, stationary, and radial (but bipolar) magnetic field to a spherically symmetric fluid configuration that models a stalled shock in the post-bounce supernova environment. Upon perturbation the SASI develops, and its lateral flows alternately advect the initially radial magnetic field towards and away from the polar regions. Lateral flows into the polar regions result in partially radial outflows along the symmetry axis, and over several SASI cycles the magnetic field parallel to the axis grows--{\\em even in the absence of rotation}--to dynamical significance ($\\gtrsim 10^{15}$ G), finally saturating upon local equipartition in the polar regions. While the resulting field configuration creates low-density `funnels' and enables energy transport along the field through MHD waves, it does not induce qualitatively new features in the global evolution of the shock.

  10. On the theory of magnetic field generation by relativistically strong laser radiation

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields ∼ 100 Mg and greater

  11. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium

    Monchaux, Romain; Berhanu, Michaël; Bourgoin, Mickaël; Moulin, Marc; Odier, Philippe; Pinton, Jean-François; Volk, Romain; Fauve, Stéphan; Mordant, Nicolas; Pétrélis, François; Chiffaudel, Arnaud; Daviaud, François; Dubrulle, Bérengère; Gasquet, Cécile; Marié, Louis

    2007-01-01

    We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R-m similar to 30. A mean magnetic field of the order of 40 G is observed 30\\% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two ...

  12. Magneto-modulational instability in Kappa distributed plasmas with self-generated magnetic fields

    Liu Sanqiu [Department of Physics and School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); Chen Hui [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); Li Xiaoqing [Department of Physics, Nanjing Normal University, Nanjing 210097 (China)

    2012-09-15

    The behavior of magnetic fields generated by high-frequency transverse plasmons in Kappa distributed plasmas can be described by generalized Zakharov equations, which have considered the nonlinear wave-wave, wave-particle interactions in the kinetic regime and the effects of superthermal electrons. Modulational instability of the spontaneous magnetic fields is investigated on the basis of the equations. The effect of the superthermal electrons on the modulational instability is discussed and a comparison with previous results is presented. It is shown that the characteristic scale and maximum growth rate of the magnetic fields depend on the energy density of transverse plasmons and the superthermal index {kappa}.

  13. Generation of quasi static magnetic field in the relativistic laser-plasma interactions

    The magnetic field generation by a relativistic laser light impinging on a thin target at oblique incidence is investigated using a two dimensional particle-in-cell simulation. We have found that the surface magnetic field inhibits the electron transport into the plasma and restricts the electron motion of the low energies at the surface for θ = 75 degrees. When the incident angle is larger than a certain critical angle, a magnetic field will restrict electron motion strongly. The existence of the critical angle, which restricts the electron transport, is well consistent with the theory. (authors)

  14. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  15. High magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    Correction elements in colliding beam accelerators such as the SSC can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. 6 refs., 2 figs., 2 tabs

  16. Studies of HED Plasmas with Self-Generated Magnetic Field

    Medvedev, Mikhail [Univ. of Kansas, Lawrence, KS (United States)

    2016-02-08

    High-amplitude sub-Larmor-scale electromagnetic turbulence is ubiquitous in high-energy density environments, such as laboratory plasmas produced by high-intensity lasers, e.g., NIF, Omega-EP, Trident, and others, and in astrophysical and space plasmas, e.g., at high-Mach-number collisionless shocks in weakly magnetized plasmas upstream regions of quasi-parallel shocks, sites of magnetic reconnection and others. Studies of plasmas and turbulence in these environments are important for fusion energy sciences and the inertial confinement concept, in particular, as well as to numerous astrophysical systems such as gamma-ray bursts, supernovae blast waves, jets of quasars and active galactic nuclei, shocks in the interplanetary medium, solar flares and many more. Such turbulence can be of various origin and thus have rather different properties, from being purely magnetic (Weibel) turbulence to various types of electromagnetic turbulence (for example, whistler wave turbulence or turbulence produced by filamentation or Weibel-type streaming instability), to purely electrostatic Langmuir turbulence. In this project we use analytical and numerical tools to study the transport, radiative, and magneto-optical properties of plasmas with sub-Larmor-scale turbulence. We discovered the connection of transport/diffusion properties to certain spectral benchmark features of (jitter) radiation produced by the plasma and radiation propagation through it. All regimes, from the relativistic to non-relativistic, were thoroughly investigated and predictions were made for laboratory plasmas and astrophysical plasmas. Thus, all the tasks outlined in the proposal were fully and successfully accomplished.

  17. The magnetic field generated by an electron bound in angular-momentum eigenstates

    The magnetic field generated by an electron bound in a spherically symmetric potential is calculated for eigenstates of the orbital and total angular momentum. General expressions are presented for the current density in such states and the magnetic field is calculated through the vector potential, which is obtained from the current density by direct integration. The method is applied to the hydrogen atom, for which we reproduce and extend known results. (author)

  18. Some remarks on spontaneous magnetic field generation and the nonlinear dynamics of a Langmuir plasma

    It is shown that, in the hydrodynamic approximation, the spontaneous generated magnetic field does not act directly on the development of Langmuir plasma turbulence and also that besides the magneto-modulational effects, it is necessary to take into account the purely relativistic effect, i.e. the dependence of the electron mass on velocity. In most cases the contribution of this relativistic effect prevails over the spontaneous magnetic field contribution to the development of the modulational instability of HF waves. (author)

  19. Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields"

    E. D. Schmitter

    2010-02-01

    Full Text Available Recent observations endorse earlier measurements of time varying electric and magnetic fields generated by tornadoes and dust devils. These signals may provide a means for early warning but together with a proper modeling approach can also provide insight into geometry and dynamics of the vortices. Our model calculations show the existence of pressure resonances characterized as acoustic duct modes with well defined frequencies. These resonances not only generate infrasound but also modulate the charge density and the velocity field and in this way lead to electric and magnetic field oscillations in the 0.5–20-Hz range that can be monitored from a distance of several kilometers.

  20. Generation of Seed Magnetic Field around First Stars: the Biermann Battery Effect

    Doi, Kentaro

    2011-01-01

    We investigate generation processes of magnetic fields around first stars. Since the first stars are expected to form anisotropic ionization fronts in the surrounding clumpy media, magnetic fields are generated by effects of radiation force as well as the Biermann battery effect. We have calculated the amplitude of magnetic field generated by the effects of radiation force around the first stars in the preceding paper, in which the Biermann battery effects are not taken into account.In this paper, we calculate the generation of magnetic fields by the Biermann battery effect as well as the effects of radiation force, utilizing the radiation hydrodynamics simulations. As a result, we find that the generated magnetic field strengths are ~ 10^{-19}G-10^{-17}G at ~ 100pc-1kpc scale mainly by the Biermann battery, which is an order of magnitude larger than the results of our previous study. We also find that this result is insensitive to various physical parameters including the mass of the source star, distance be...

  1. Self-generated magnetic fields in blast-wave driven Rayleigh-Taylor experiments

    Flaig, Markus; Plewa, Tomasz

    2015-12-01

    We study the effect of self-generated magnetic fields in two-dimensional computer models of blast-wave driven high-energy density Rayleigh-Taylor instability (RTI) experiments. Previous works [1,2] suggested that such fields have the potential to influence the RTI morphology and mixing. When neglecting the friction force between electrons and ions, we do indeed find that dynamically important (??103) magnetic fields are generated. However, in the more realistic case where the friction force is accounted for, the resulting fields are much weaker, ??105 , and can no longer influence the dynamics of the system. Although we find no evidence for dynamically important magnetic fields being created in the two-dimensional case studied here, the situation might be different in a three-dimensional setup, which will be addressed in a future study.

  2. Large-scale magnetic field generation by asymmetric laser-pulse interactions with a plasma in low-intensity regime

    Gopal, K.; Gupta, D. N.; Kim, Y. K.; Hur, M. S.; Suk, H.

    2016-03-01

    We propose a way to enhance the strength of self-generated magnetic field from laser-plasma interactions by incorporating the combined role of pulse asymmetricity and plasma inhomogeneity. The pulse asymmetry combined with the plasma inhomogeneity contributes for strong nonlinear current within the pulse body; consequently, a stronger magnetic field can be produced. The nature of self-generated magnetic field is "Quasistatic" that means the self-generated magnetic field varies on the time scale of the period of laser radiation. Our results show that the magnetic-field generated by a temporally asymmetric laser pulse is many-folds higher than the magnetic-field generated by a symmetric laser pulse in plasmas. The present study predicts the generation of magnetic field of the order of 15 T for the laser intensity of ˜ 10 14 cm-2. Our study might be applicable to improve the accelerated bunch quality in laser wakefield acceleration mechanism.

  3. Analysis of the Magnetic Field Effect on Entropy Generation at Thermosolutal Convection in a Square Cavity

    Ammar Ben Brahim

    2011-05-01

    Full Text Available Thermosolutal convection in a square cavity filled with air and submitted to an inclined magnetic field is investigated numerically. The cavity is heated and cooled along the active walls with a mass gradient whereas the two other walls of the cavity are adiabatic and insulated. Entropy generation due to heat and mass transfer, fluid friction and magnetic effect has been determined in transient state for laminar flow by solving numerically the continuity, momentum energy and mass balance equations, using a Control Volume Finite—Element Method. The structure of the studied flows depends on four dimensionless parameters which are the Grashof number, the buoyancy ratio, the Hartman number and the inclination angle. The results show that the magnetic field parameter has a retarding effect on the flow in the cavity and this lead to a decrease of entropy generation, Temperature and concentration decrease with increasing value of the magnetic field parameter.

  4. Modeling of High Density and Strong Magnetic Field Generation by Plasma Jet Compression

    Full text: The main topic is the generation of dense magnetized plasmas and ultra-strong magnetic field for fusion. The principal theoretical result is a demonstration of the feasibility of electromagnetic-driven spherical liner implosions in the cm/μs regime. The field reversed configuration (FRC) and the cusp geometry of the magnetic field (antiprobkotron) are alternate systems with attractive prospects. Preferable choice of plasma confinement in magnetic device may be combined with properties of inertial confinement. The main aim of this work is physical analysis of high temperature plasma (target) confined by magnetic field with taking into account plasma guns (liner) to push and compress plasma of compact configuration. This study points to solution of problem connected with theoretical investigation of methods supplying with magneto inertial fusion (MIF). We consider the value corresponding to the equality of the plasma pressure to the magnetic pressure as the effective magnetic field. Numerical calculation of temporal evolution of the particle balance and plasma power balance were performed to define the minimal requirements for magnetic field on the final stage of the compression. The results show for most prospective regimes minimum effective values B ∼ 300 T are needed. Results of numerical simulation are presented. This work was supported by Russian Foundation for Basic Research (Project 09-08-00137a) and the U.S. Civilian Research and Development Foundation (CRDF) and the Russian Foundation for Basic Research (RFBR) Cooperative Grants Program (Project 10-08-92500IK). (author)

  5. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    Squire, Jonathan; Bhattacharjee, Amitava

    2015-11-01

    A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.

  6. Generation of strong magnetic field using 60 mm circle superconducting bulk magnet and its application to magnetron sputtering device

    To make a practical application of a superconducting bulk magnet (SBM), it is necessary that the SBM generates a strong and stable magnetic field in a working space and the magnet can be handled without any special care that would be needed because of the use of a superconductor. To satisfy these requirements, we have designed a portable and user-friendly magnet system consisting of a small air-cooled type refrigerator and a bulk superconductor. By using the stress-controlling magnetization technique, we could achieve a magnetic flux density of 8.0 T on the bulk surface and 6.5 T over the vacuum chamber surface of the refrigerator, when a 60 mm circle Gd-Ba-Cu-O bulk superconductor reinforced with a 5 mm thick stainless steel ring was magnetized by field cooling in 8.5 T to 27 K. We have confirmed that the bulk magnet system coupled with a battery is quite portable and can be delivered to any location by using a car with an electric power outlet in the cabin. We have constructed a magnetron sputtering device that employs a bulk magnet system delivered from the place of magnetization by this method. This sputtering device exhibits several unique features such as deposition at a very low Ar gas pressure because the magnetic field is 20 times stronger than that obtained by a conventional device in the working space

  7. Effect of transverse magnetic field on generation of electron beam in gas diode

    One studied experimentally the effect of the transverse magnetic field (0.08 and 0.016 T) on the generation of an electron beam within a gas diode. At U=25 kV gas diode voltage and helium low pressure (45 Torr) the transverse magnetic field is shown to affect the beam current amplitude outside the foil and on its foil cross section distribution. Under the increased pressure values and at generation of an ultra short-time avalanche electron beam (UAEB) in helium, nitrogen and in air the transverse magnetic field is shown to affect negligibly the UAEB amplitude and duration outside the foil. At the generator voltage equal to hundreds of kilovolts a portion of the escaping electrons was found to arrive to the gas diode lateral walls including those from the discharge plasma in the vicinity of a cathode

  8. Generation of a spin-polarized electron beam by multipole magnetic fields

    Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Grillo, Vincenzo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Institute of Optics, University of Rochester, Rochester, NY 14627 (United States); Santamato, Enrico [Dipartimento di Scienze Fisiche, Universit di Napoli Federico II, Compl. Univ. di Monte S. Angelo, 80126 Napoli (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli (Italy)

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spinmagnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. - Highlights: Theory of generating spin-polarized electron beams. Interacting electron vortex beams with space-variant magnetic fields. BohrPauli impossibility of generating spin-polarized free electrons.

  9. Generation of Electric and Magnetic Fields During Detonation of High Explosive Charges in Boreholes

    Soloviev, S; Sweeney, J

    2004-06-04

    We present experimental results of a study of electromagnetic field generation during underground detonation of high explosive charges in holes bored in sandy loam and granite. Test conditions and physico-mechanical properties of the soil exert significant influence on the parameters of electromagnetic signals generated by underground TNT charges with masses of 2 - 200 kg. The electric and magnetic field experimental data are satisfactorily described by an electric dipole model with the source embedded in a layered media.

  10. Development of FEMAG. Calculation code of magnetic field generated by ferritic plates in the tokamak devices

    In design of the future fusion devises in which low activation ferritic steel is planned to use as the plasma facing material and/or the inserts for ripple reduction, the appreciation of the error field effect against the plasma as well as the optimization of ferritic plate arrangement to reduce the toroidal field ripple require calculation of magnetic field generated by ferritic steel. However iterative calculations concerning the non-linearity in B-H curve of ferritic steel disturbs high-speed calculation required as the design tool. In the strong toroidal magnetic field that is characteristic in the tokamak fusion devices, fully magnetic saturation of ferritic steel occurs. Hence a distribution of magnetic charges as magnetic field source is determined straightforward and any iteration calculation are unnecessary. Additionally objective ferritic steel geometry is limited to the thin plate and ferritic plates are installed along the toroidal magnetic field. Taking these special conditions into account, high-speed calculation code ''FEMAG'' has been developed. In this report, the formalization of 'FEMAG' code, how to use 'FEMAG', and the validity check of 'FEMAG' in comparison with a 3D FEM code, with the measurements of the magnetic field in JFT-2M are described. The presented examples are numerical results of design studies for JT-60 modification. (author)

  11. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  12. Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    Alves, E P; Fonseca, R A; Silva, L O

    2014-01-01

    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergen...

  13. New mechanism of generation of large-scale magnetic field in a sheared turbulent plasma

    Kleeorin, N.; Rogachevskii, I.

    2007-01-01

    A review of recent studies on a new mechanism of generation of large-scale magnetic field in a sheared turbulent plasma is presented. This mechanism is associated with the shear-current effect which is related to the W x J-term in the mean electromotive force. This effect causes the generation of the large-scale magnetic field even in a nonrotating and nonhelical homogeneous sheared turbulent convection whereby the alpha effect vanishes. It is found that turbulent convection promotes the shea...

  14. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity

  15. High Magnetic Field Superconducting Magnets Fabricated In Budker Inp For Sr Generation

    Zolotarev, K V; Khruschev, S V; Krmer, Dietrich; Kulipanov, G N; Lev, V H; Mezentsev, N A; Miginsky, E G; Shkaruba, V A; Syrovatin, V M; Tsukanov, V M; Zjurba, V K

    2004-01-01

    BESSY operates a 3-rd generation synchrotron light source in VUV to XUV region at Berlin-Adlershof. The main radiation sources in storage ring are special magnetic elements as undulators and wigglers. 3 superconducting shifters and one multipole superconducting wiggler are operating giving enhanced photon flux for 10-25 keV X-ray region. As the superconducting elements presently are located in straight sections, BESSY intends to exchange 4 of conventional room-temperature bending magnets by superconducting ones.The report contains brief description of 9 Tesla superbend prototype as a candidate for replacing of conventional magnets of BESSY-2, which was designed, fabricated and tested at Budker INP and was commissioned at BESSY in June 2004.Main parameters of 9 Tesla superconducting bending magnet prototype as well as testing results are presented.

  16. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1–47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. - Highlights: • Heating was tested in seven iron oxide nanoparticles for different magnetic fields. • Confirms an optimal nanoparticle size for heating that agrees with the literature. • Verifies Rosenweig's equation to predict the effect of field frequency on heating. • Reports reduced heating in high viscosity environments

  17. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    Shah, Rhythm R. [Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL (United States); Davis, Todd P.; Glover, Amanda L.; Nikles, David E. [Department of Chemistry, The University of Alabama, Tuscaloosa, AL (United States); Brazel, Christopher S., E-mail: cbrazel@eng.ua.edu [Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL (United States)

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe{sub 3}O{sub 4}) and maghemite (γ-Fe{sub 2}O{sub 3}) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1–47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. - Highlights: • Heating was tested in seven iron oxide nanoparticles for different magnetic fields. • Confirms an optimal nanoparticle size for heating that agrees with the literature. • Verifies Rosenweig's equation to predict the effect of field frequency on heating. • Reports reduced heating in high viscosity environments.

  18. Magnetic field generation from self-consistent collective neutrino-plasma interactions

    A Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions. (c) 2000 The American Physical Society

  19. Control of generation regimes of ring chip laser under the action of the stationary magnetic field

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N; Firsov, V V [D.V. Skobel' tsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2013-05-31

    We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime of beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found. (control of laser radiation parameters)

  20. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-01

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ˜1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ˜3 × 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ˜40-50 T magnetic fields at the center of the coil ˜3-4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  1. Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.

    2013-10-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

    Kaethner, Christian, E-mail: kaethner@imt.uni-luebeck.de; Ahlborg, Mandy; Buzug, Thorsten M., E-mail: buzug@imt.uni-luebeck.de [Institute of Medical Engineering, Universität zu Lübeck, 23562 Lübeck (Germany); Knopp, Tobias [Thorlabs GmbH, 23562 Lübeck (Germany); Sattel, Timo F. [Philips Medical Systems DMC GmbH, 22335 Hamburg (Germany)

    2014-01-28

    Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

  3. Study of two medium size 'C' core electromagnets generating low magnetic fields

    Magnetic field requirements of laboratories may impose constraints that often call for a variety of non-standard designs. The designer has to fulfil these demands without letting the design to become too inefficient. Since no ready design procedures are available he has to resort to intuition calculation and modelling. In spite of this there may be wide discrepancy between the design values and the actual results. This report describes the experience gained on two 'C' core electromagnets being used by authors. These magnets generate low magnetic fields over reasonably large volumes, a requirement that runs opposite to that of most other magnets. The study reveals the dependence of overall performance efficiency, field uniformity etc. on the design parameters. 31 figures. (author)

  4. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed

  5. Field generated within the SSC magnets due to persistant currents in the superconductor

    This report presents the results of a number of computer studies of the magnetic fields generated by persistent circulating currents in the superconductor of superconducting dipoles. These magnetic fields are referred to as residual fields throughout this report. Since the field generated by persistent currents have a hysteric behavior, they are analagous to the residual filed found in iron bound conventional solenoids. The residual field calculations presented in this report were done using the LBL SCMAG4 computer code. This code has not been well tested against measured data, but a comparison with measured CBA data given in this report suggests that good agreement is possible. The residual fields generated by persistent superconducting currents are rich in higher multipoles. This is of concern to the accelerator designer for SSC. This report shows the effect of various superconductor parameters and coil parameters on the magnitude and structure of the residual fields. The effect of the magnet charging history on residual fields is aldo discussed. 14 references

  6. Impact of continuous particle injection on generation and decay of the magnetic field in collisionless shocks

    Garasev, Mikhail

    2016-01-01

    We present numerical simulations of the magnetic field turbulence in collisionless electron-positron plasma with continuous injection of new pairs, which maintains anisotropy in the particle distribution over long time. With these simulations we model generation and decay of the magnetic field in shocks, where the upstream is modified by two-photon pair production due to self-absorption of the shock's high-energy radiation. We find that the overall picture of magnetic field build-up is consistent with development of Weibel instability. However, the long-term injection of anisotropic pairs in the upstream leads to formation of large-scale structures in the magnetic field, while the small-scale structures are almost absent. Furthermore, we find that being amplified at the shock front this magnetic field mostly preserves its large spatial scale and then slowly decays in the downstream on a timescale approximately equal to duration of the injection phase. We observe that the decay of the magnetic field is in exce...

  7. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  8. Effect of Superstrong Magnetic Fields on Nuclear Energy Generation Rate in the Crust of Neutron Stars

    This paper shows that superstrong magnetic fields (such as those of magnetars) can increase the energy generation rate many times in the crust of neutron stars. This result undoubtedly not only influences the cooling of neutron stars and the X-ray luminosity observed of neutron stars but also the evolution of neutron stars

  9. Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability

    Nishikawa, K -I; Zhang, B; Dutan, I; Medvedev, M; Choi, E J; Min, K W; Niemiec, J; Mizuno, Y; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D H

    2013-01-01

    We have investigated generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of KKHI of our jet-sheath configuration is slightly different even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field $E_{\\rm z}$ and the magnetic field $B_{\\rm y}$. After the $B_{\\rm y}$ component is excited, an induced electric field $E_{\\rm x}$ becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios $m_{\\rm i}/m_{\\rm e} = 1836$ and $m_{\\rm i}/m_{\\rm e} = 20$ are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The g...

  10. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Santos, J J; Giuffrida, L; Forestier-Colleoni, P; Fujioka, S; Zhang, Z; Korneev, Ph; Bouillaud, R; Dorard, S; Batani, D; Chevrot, M; Cross, J; Crowston, R; Dubois, J -L; Gazave, J; Gregori, G; d'Humières, E; Hulin, S; Ishihara, K; Kojima, S; Loyez, E; Marquès, J -R; Morace, A; Nicolaï, Ph; Peyrusse, O; Poyé, A; Raffestin, D; Ribolzi, J; Roth, M; Schaumann, G; Serres, F; Tikhonchuk, V T; Vacar, Ph; Woolsey, N

    2015-01-01

    Quasi-static magnetic-fields up to $800\\,$T are generated in the interaction of intense laser pulses (500J, 1ns, 10^{17}W/cm^2) with capacitor-coil targets of different materials. The reproducible magnetic-field was consistently measured by three independent diagnostics: GHz-bandwidth inductor pickup coils (B-dot probes), Faraday rotation of polarized optical laser light and proton beam-deflectometry. The field rise time is consistent with the laser pulse duration, and it has a dipole-like distribution over a characteristic volume of 1mm^3, which is coherent with theoretical expectations. These results demonstrate a very efficient conversion of the laser energy into magnetic fields, thus establishing a robust laser-driven platform for reproducible, well characterized, generation of quasi-static magnetic fields at the kT-level, as well as for magnetization and accurate probing of high-energy-density samples driven by secondary powerful laser or particle beams.

  11. Magnetic field measurements of a superconducting undulator for a Harmonic Generation FEL experiment at the NSLS

    Solomon, L.; Ingold, G.; Ben-Zvi, I.; Krinsky, S.; Yu, L.H.; Sampson, W.; Robins, K.

    1993-07-01

    An 18mm period, 0.54 Tesla, 8mm gap superconducting undulator with both horizontal and vertical focusing has been built and tested. This magnet, which is fabricated in 25 cm length sections, is being tested for use in the radiator section (total magnet length of 1.5 m) of the Harmonic Generation Free Electron Laser experiment at the National Synchrotron Light Source - Accelerator Test Facility at Brookhaven National Lab., in collaboration with Grumman Corp. The measurement system is outlined, sources and estimates of errors are described, and some magnetic field data are presented and discussed.

  12. Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields"

    E. D. Schmitter

    2010-01-01

    Recent observations endorse earlier measurements of time varying electric and magnetic fields generated by tornadoes and dust devils. These signals may provide a means for early warning but together with a proper modeling approach can also provide insight into geometry and dynamics of the vortices. Our model calculations show the existence of pressure resonances characterized as acoustic duct modes with well defined frequencies. These resonances not only generate infrasound ...

  13. Magnetic Field

    Olsen, Nils

    fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced in the...... Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics of the...

  14. Interpenetrating plasma shells: near-equipartition magnetic field generation and non-thermal particle acceleration

    Silva, L.O.; Fonseca, R. A.; Tonge, J.; Dawson, J. M.; Mori, W. B.; Medvedev, M.V.

    2003-01-01

    We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic "particle-in-cell" (with the total of $10^8$ particles) parallel code OSIRIS has been used. Our simulations show: (i) the generation of long-lived near-equipartition (electro)magnetic fields, (ii) non-thermal particle acceleration, and (iii) short-scale to long-scale magnetic field evolution, i...

  15. Comparison of the dipolar magnetic field generated by two Ising-like models

    Peqini, Klaudio; Duka, Bejo

    2015-04-01

    We consider two Ising-like models named respectively the "domino" model and the Rikitake disk dynamo model. Both models are based on some collective interactions that can generate a dipolar magnetic field which reproduces the well-known features of the geomagnetic field: the reversals and secular variation (SV). The first model considers the resultant dipolar magnetic field as formed by the superposition of the magnetic fields generated by the dynamo elements called macrospins, while the second one, starting from the two-disk dynamo action, takes in consideration the collective interactions of several disk dynamo elements. We will apply two versions of each model: the short-range and the long-range coupled dynamo elements. We will study the statistical properties of the time series generated by the simulation of all models. The comparison of these results with the paleomagnetic data series and long series of SV enables us to conclude which of these Ising-like models better match with the geomagnetic field time series. Key words: geomagnetic field, domino model, Rikitake disk dynamo, dipolar moment

  16. Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    Alves, E. P.; Grismayer, T.; Fonseca, R. A.; Silva, L. O.

    2014-03-01

    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy flow is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields makes shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized electron-scale Kelvin-Helmholtz instability (ESKHI) and a large-scale DC magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outbursts of active galactic nuclei and gamma-ray bursters. We show that the ESKHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the ESKHI, performed with OSIRIS, reveal the emergence of a strong and large-scale DC magnetic field component, which is not captured by the standard linear fluid theory. This DC component arises from kinetic effects associated with the thermal expansion of electrons of one flow into the other across the shear layer, whilst ions remain unperturbed due to their inertia. The electron expansion forms DC current sheets, which induce a DC magnetic field. Our results indicate that most of the electromagnetic energy developed in the ESKHI is stored in the DC component, reaching values of equipartition on the order of 10-3 in the electron time-scale, and persists longer than the proton time-scale. Particle scattering/acceleration in the self-generated fields of these shear flow instabilities is also analyzed.

  17. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  18. The generation of magnetic fields by the Biermann battery and the interplay with the Weibel instability

    Schoeffler, K M; Fonseca, R A; Silva, L O

    2015-01-01

    An investigation of magnetic fields generated in an expanding bubble of plasma with misaligned temperature and density gradients (driving the Biermann battery mechanism) is performed. With gradient scales $L$, large-scale magnetic fields are generated by the Biermann battery mechanism with plasma $\\beta \\sim 1$, as long as $L$ is comparable to the ion inertial length $d_i$. For larger system sizes, $L/d_e > 100$ (where $d_e$ is the electron inertial length), the Weibel instability generates magnetic fields of similar magnitude but with wavenumber $k d_e \\sim 0.2$. In both cases, the growth and saturation of these fields have a weak dependence on mass ratio $m_i/m_e$, indicating electron mediated physics. A scan in system size is performed at $m_i/m_e = 2000$, showing agreement with previous results with $m_i/m_e = 25$. In addition, the instability found at large system sizes is quantitatively demonstrated to be the Weibel instability. Furthermore, magnetic and electric energy spectra at scales below the elect...

  19. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.

  20. Flux generation and sustainment of a field reversed configuration with rotating magnetic field current drive

    A new experimental device has been constructed to study the flux build-up and sustainment of a field reversed configuration (FRC) with a rotating magnetic field (RMF). Even though complete penetration was expected from RMF theory, the RMF field was observed to penetrate only a few centimeters inside the FRC separatrix. Despite the limited penetration, significantly larger toroidal currents (40 kA) were driven than in previous experiments (∼2 kA) with the same RMF field. The high currents and lack of deep penetration allowed the axial field to be the dominant field throughout the FRC. The radially inward pondermotive force arising from axial screening currents at the FRC edge had a significant influence on energy and particle confinement, reducing convective losses to the limit of observability. With only ohmic heating, the measured low ion temperatures (2 eV) left the ions unmagnetized while the electrons (∼40 eV) were well magnetized. No destructive instability was observed for the RMF driven FRC despite the lack of a strong kinetic ion component. (c) 2000 American Institute of Physics

  1. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  2. Optical diagnostics in turbulent, laser-driven shockwave experiments with self-generated magnetic fields

    Wan, W. C.; MacDonald, M. J.; Kuranz, C. C.; Krauland, C. M.; Gamboa, E. J.; di Stefano, C. A.; Drake, R. P.

    2012-10-01

    The existence of magnetic fields on a cosmological scale is still poorly understood. Magnetic fields as large as a few ?G have been observed in galaxy clusters, filaments, and voids. Recent experiments at the Vulcan and Titan laser facilities produced scaled models to investigate the generation and amplification of seed magnetic fields through induced turbulence. The study of magnetogenesis and amplification due to turbulence will contribute to our understanding of the dynamics of the early universe. These experiments were performed by focusing lasers on carbon rods and foils, resulting in a blast wave propagating through argon gas. Several grids with varied mesh spacing provided control over the level of turbulence. Here we discuss the results of the Schlieren and interferometry optical diagnostics obtained in these recent campaigns. This work was supported by many sponsors to be acknowledged in the presentation.

  3. Generation of a symmetric magnetic field by thermal convection in a plane rotating layer

    Zheligovsky, V

    2010-01-01

    We investigate numerically magnetic field generation by thermal convection with square periodicity cells in a rotating horizontal layer of electrically-conducting fluid with stress-free electrically perfectly conducting boundaries for Rayleigh numbers in the interval 5100\\le R\\le 5800. Dynamos of three kinds, apparently not encountered before, are presented: 1) Steady and time-periodic regimes, where the flow and magnetic field are symmetric about a vertical axis. In regimes with this symmetry, the global alpha-effect is insignificant, and the complex structure of the system of amplitude equations controlling weakly nonlinear stability of the system to perturbations with large spatial and temporal scales suggests that the perturbations are likely to exhibit uncommon complex patterns of behaviour, to be studied in the future work. 2) Periodic in time regimes, where magnetic field is always concentrated in the interior of the convective layer, in contrast to the behaviour first observed by St Pierre (1993) and ...

  4. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars

    Stello, D; Fuller, J; Huber, D; Garcia, R A; Bedding, T R; Bildsten, L; Aguirre, V Silva

    2016-01-01

    Magnetic fields play a role in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10% exhibit strong surface fields that are presumed to be residuals from the stellar formation process. These stars do have convective cores that might produce internal magnetic fields, and these might even survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we use asteroseismology to study the occurrence of strong magnetic fields in the cores of low- and intermediate-mass stars. We have measured the strength of dipolar oscillation modes, which can be suppressed by a strong magnetic field in the core, in over 3600 red giant stars observed by Kepler. About 20% of our sample show mode suppression but this fraction is a strong function of mass. S...

  5. The BGS magnetic field candidate models for the 12th generation IGRF

    Hamilton, Brian; Ridley, Victoria A.; Beggan, Ciarn D.; Macmillan, Susan

    2015-12-01

    We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic `parent model' derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model's internal field time dependence for degrees 1 to 13 is represented by order 6 B-splines with knots at yearly intervals. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals and by dependence on the 20-min Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterized. Satellite data are weighted by spatial density and by two different noise estimators: (a) by standard deviation along segments of the satellite track and (b) a larger-scale noise estimator defined in terms of a measure of vector activity at the geographically closest magnetic observatories to the sample point. Forecasting of the magnetic field secular variation beyond the span of data is by advection of the main field using core surface flows.

  6. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B?1% on the midplane edge) yields Te profiles peaked at > 200eV. Trends indicate a limiting beta (?e ? 4-6%), and so we have been motivated to increase Te by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ?2% and large voltage fluctuations ((delta)V ? 1kV), giving a 50% increase in current amplification, Itor/Igun. (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (?0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  7. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (?B/B?1% on the midplane edge) yields Te profiles peaked at >200 eV. Trends indicate a limiting beta (?e?4%-6%), and so we have been motivated to increase Te by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with ?B/B?2% and large voltage fluctuations (?V?1 kV), giving a 50% increase in current amplification, Itor/Igun. (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (?0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  8. Photon mass new limits from strong photon-torsion coupling generation of primordial magnetic fields

    de Andrade, Garcia

    2011-01-01

    Recently Adelberger et al [Phys Rev Lett 98: 010402, (2007)] have placed a limit to photon mass by investigating the primordial magnetic fields. Earlier Bertolami et al [Phys Lett \\textbf{B} 455, 96(1999)] showed that massive photons in a spontaneous Lorentz breaking may generate primordial magnetic fields consistent with galactic dynamo seeds. Torsion coupling constant of order $10^{-5}$, much higher than the previously obtained by de Sabbata and Sivaram of $10^{-24}$, leads to strong amplification of magnetic field able to seed galactic dynamo at recombination era contrary to what happens in general relativistic dynamos. This results in $B\\sim{10^{-5}{\\beta}G}$ where ${\\beta}$ is the massive photon-torsion coupling. Thus in order to obtain the observed galaxy field of $B_{G}\\sim{{\\mu}G}$ one should have a coupling $\\beta\\sim{10^{-1}}$, never observed in the universe. Thus we may conclude that the weaker couplings for torsion to e.m fields shall only produce magnetic fields without dynamos starting from extr...

  9. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; Garca, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva

    2016-01-21

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars. PMID:26727160

  10. Generating synthetic magnetic field intermittency using a Minimal Multiscale Lagrangian Mapping approach

    The Minimal Multiscale Lagrangian Mapping procedure developed in the context of neutral fluid turbulence is a simple method for generating synthetic vector fields. Using a sequence of low-pass filtered fields, fluid particles are displaced at their rms speed for some scale-dependent time interval, and then interpolated back to a regular grid. Fields produced in this way are seen to possess certain properties of real turbulence. This paper extends the technique to plasmas by taking into account the coupling between the velocity and magnetic fields. We examine several possible applications to plasma systems. One use is as initial conditions for simulations, wherein these synthetic fields may efficiently produce a strongly intermittent cascade. The intermittency properties of the synthetic fields are also compared with those of the solar wind. Finally, studies of cosmic ray transport and modulation in the test particle approximation may benefit from improved realism in synthetic fields produced in this way.

  11. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  12. Cosmological Magnetic Fields

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  13. Study on magnetic field generation and electron collimation in overdense plasmas

    Cai Hongbo

    2013-11-01

    Full Text Available An analytical fluid model is proposed for artificially collimating fast electron beams produced in interaction of ultraintense laser pulses with specially engineered sandwich structure targets. The theory reveals that in low-density-core structure targets, the magnetic field is generated by the rapid change of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity caused by the density jump. It is found that the spontaneously generated magnetic field reaches as high as 100?MG, which is large enough to collimate fast electron transport in overdense plasmas. This theory is also supported by numerical simulations performed using a two-dimensional particle-in-cell code. It is found that the simulation results agree well with the theoretical analysis.

  14. Nonlinear second harmonic generation by light wave-plasma interaction in oscillating magnetic field

    The nonlinear generation of second harmonic electromagnetic waves in a thin inhomogeneous (dense and rarefied) plasma layer (of length d) by obliquely and normal incidence of light wave is analyzed. We consider the effect of external time- dependent magnetic field on the generation and amplification of waves. Two cases are considered, when the magnetic field oscillates at frequency: (i) equal, and (ii) double of that of the incident wave. For normal incidence, waves are not radiated in case (i), while in case (ii) the second harmonics are radiated equally from the plasma boundaries at x = o and x = d. For rarefied plasma, the second harmonics are radiated with equal amplitudes in both cases. (author). 3 refs

  15. Apparatus for generation of magnetic field gradient waveforms for NMR imaging

    An apparatus is described for generating and controlling magnetic field gradients. It is used in conjunction with standard high-resolution NMR spectrometers to perform NMR imaging experiments. Profiles for gradients are digitally stored in separate memories which are loaded via a simple personal computer and are strobed out under spectrometer control. The system is versatile, low cost, simple to interface and use, and does not interfere with normal spectrometer operation. (author)

  16. Dependence of magnetic field generation by thermal convection on the rotation rate: a case study

    Chertovskih, R.; Gama, S. M. A.; Podvigina, O.; Zheligovsky, V.

    2009-01-01

    Dependence of magnetic field generation on the rotation rate is explored by direct numerical simulation of magnetohydrodynamic convective attractors in a plane layer of conducting fluid with square periodicity cells for the Taylor number varied from zero to 2000, for which the convective fluid motion halts (other parameters of the system are fixed). We observe 5 types of hydrodynamic (amagnetic) attractors: two families of two-dimensional (i.e. depending on two spatial variables) rolls parall...

  17. Performance results of a 300 MWth generator at high magnetic field

    Christensen, L. S.; Whitehead, G. L.; Felderman, E. J.

    1983-01-01

    The High Performance Demonstration Experiment (HPDE) in progress at AEDC has as its objective a 300 MW thermal input open-cycle MHD system has been assembled. Testing with the channel configured in the Faraday mode was initiated in late 1979. Experimental results have been obtained at a magnetic field strength from 1.5 to 3.8 Tesla (T). A maximum Faraday power of 35.5 MW has been generated, which represents an enthalpy extraction of 11.6 percent.

  18. Generating vorticity and magnetic fields in plasmas in general relativity: spacetime curvature drive

    Asenjo, Felipe A; Qadir, Asghar

    2012-01-01

    Using the generally covariant magnetofluid formalism for a hot plasma, a new spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The ``battery'' owes its origin to the interaction between gravity and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole, and for particles in free fall near the horizon. Some astrophysical applications are suggested.

  19. The mitigating effect of self-generated magnetic field on Rayleigh-Taylor unstable inertial confinement fusion plasmas

    Srinivasan, Bhuvana

    2012-10-01

    It has long been expected that Rayleigh-Taylor instabilities (RTI) in ICF can generate magnetic fields at the gas-ice interface and at the ice-ablator interface during the deceleration phase of target implosion. The focus here is on the gas-ice interface where the temperature gradient is the largest. Nonlinear evolution of RTI leads to undesirable mixing of hot and cold plasmas and enhances target energy loss. RTI is also expected to generate magnetic fields via the Biermann battery effect, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. The generated magnetic field can then be further amplified via the MHD dynamo effect. While the planar 2-D simulations only generate out-of-plane magnetic fields, 3-D simulations will result in further amplification of the complex magnetic field structures via the MHD dynamo. This is studied by including a seed in-plane magnetic field in 2-D and examining the resulting magnetic field structure and magnitude. The self-generated out-of-plane magnetic fields depend on ICF parameters via the scaling law, mi√A g/λ where mi is the ion mass, A is the Atwood number, g is the acceleration, and λ is the wavelength. These magnetic fields grow to magnitudes of 10^2-10^3 T for ICF relevant parameter regimes. While this is dynamically insignificant due to the plasma pressure far exceeding the magnetic pressure, it can significantly reduce perpendicular electron thermal conductivity by a factor of 2-10. Such a reduction in thermal conductivity perpendicular to the magnetic field contributes to lowering of radial energy transport in the implosion target.

  20. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via the Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient α and thus discuss our results within the context of mean field electrodynamics.

  1. The First Magnetic Fields

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  2. Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic field terms

    This work is devoted to the construction of numerical methods that allow the accurate simulation of inertial confinement fusion (ICF) implosion processes by taking self-generated magnetic field terms into account. In the sequel, we first derive a two-temperature resistive magnetohydrodynamics model and describe the considered closure relations. The resulting system of equations is then split in several subsystems according to the nature of the underlying mathematical operator. Adequate numerical methods are then proposed for each of these subsystems. Particular attention is paid to the development of finite volume schemes for the hyperbolic operator which actually is the hydrodynamics or ideal magnetohydrodynamics system depending on whether magnetic fields are considered or not. More precisely, a new class of high-order accurate dimensionally split schemes for structured meshes is proposed using the Lagrange re-map formalism. One of these schemes' most innovative features is that they have been designed in order to take advantage of modern massively parallel computer architectures. This property can for example be illustrated by the dimensionally split approach or the use of artificial viscosity techniques and is practically highlighted by sequential performance and parallel efficiency figures. Hyperbolic schemes are then combined with finite volume methods for dealing with the thermal and resistive conduction operators and taking magnetic field generation into account. In order to study the characteristics and effects of self-generated magnetic field terms, simulation results are finally proposed with the complete two-temperature resistive magnetohydrodynamics model on a test problem that represents the state of an ICF capsule at the beginning of the deceleration phase. (author)

  3. Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses

    Zhu, B. J.; Li, Y. T.; Yuan, D. W.; Li, Y. F.; Li, F.; Liao, G. Q.; Zhao, J. R.; Zhong, J. Y.; Xue, F. B.; He, S. K.; Wang, W. W.; Lu, F.; Zhang, F. Q.; Yang, L.; Zhou, K. N.; Xie, N.; Hong, W.; Wei, H. G.; Zhang, K.; Han, B.; Pei, X. X.; Liu, C.; Zhang, Z.; Wang, W. M.; Zhu, J. Q.; Gu, Y. Q.; Zhao, Z. Q.; Zhang, B. H.; Zhao, G.; Zhang, J.

    2015-12-01

    A simple scheme to produce strong magnetic fields due to cold electron flow in an open-ended coil heated by high power laser pulses is proposed. It differs from previous generation of magnetic fields driven by fast electron current in a capacitor-coil target [S. Fujioka et al., Sci. Rep. 3, 1170 (2013)]. The fields in our experiments are measured by B-dot detectors and proton radiography, respectively. A 205 T strong magnetic field at the center of the coil target is generated in the free space at I?2 of 6.85 1014 W cm-2 ?m2, where I is the laser intensity, and ? is the laser wavelength. The magnetic field strength is proportional to I?2. Compared with the capacitor-coil target, the generation mechanism of the magnetic field is straightforward and the coil is easy to be fabricated.

  4. Non-thermal Plasmas Around Massive Black Holes: Collective Modes, Ring Configurations and Magnetic Field Generation

    Coppi, B.

    2013-10-01

    The discovered gamma-ray bubbles emanating from the center of Our Galaxy are a new motivation to develop theories for large scale structures in the Universe in terms of plasmas for which electromagnetic interactions are no less important than the relevant (e.g. density wave theory of spirals) gravitational interactions. Moreover, considering the observed emission spectra, the particle distributions in phase space cannot be represented by isotropic Maxwellian in significant cases. The consequent theory of plasmas surrounding rotating massive black holes has led to identify new stationary plasma and field configurations (in particular Solitary Rings) and modes, emerging from conventional (currentless) disks, that depend on the existence of temperature anisotropies. These modes, which produce outward transport of angular momentum at a significant rate, involve large amplifications of a seed magnetic field. In the related (by the envisioned non-linear mode evolution) stationary configurations, without a seed magnetic field, the field energy densities are of the order of the particle thermal energy densities. Thus a clear sequence of processes for the generation of magnetic fields in the Universe is identified. US DOE partly sponsored.

  5. Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments

    Laser wakefield acceleration experiments were performed using a 30 fs, 1 J laser pulse interacting with an underdense helium plasma. Temporally resolved polarimetry measurements demonstrate the presence of magnetic fields at the ionization front within the plasma which had a peak strength of ∼2.8 MG and a radial extent of approximately 200 μm. The field was seen to vary in strength over picosecond time-scales. The field is likely generated by return current generated in the plasma at the interface between plasma and neutral gas and which is caused by hot electrons produced in the wakefield during formation of a plasma ‘bubble’ and prior to the time of wave-breaking (beam injection). These effects are confirmed using particle-in-cell simulations. Such measurements can be useful as a diagnostic of bubble formation in laser wakefield accelerators. (paper)

  6. Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets

    Magnetic stray fields for systems of permanent magnets with high magnetic anisotropy are calculated and measured. It is shown that intensity of these fields exceeds value of an induction of a material of magnets in some time. Besides, these fields are characterized by high gradients, and size H-bar H can reach values up to1010-1011Oe2/cm. Estimations of extremely achievable fields and their gradients are made

  7. Simulation of the magnetic field generated by wires with stationary current and magnets with constant magnetization applied to the mirror trap, minimum-B and zero-B

    Murillo, M. T.; Otero, O.

    2016-02-01

    As a contribution to the computational simulation of magnetic confinement and heating of plasmas ECR (Electron Cyclotron Resonance), this work is dedicated to the calculation and subsequent analysis of the magnetic fields generated by permanent magnets and coils required in magnetic traps between which we can mention the mirror trap, minimum- B and zero-B. To do this, we solved numerically the Biot-Savart law in the case of the coils with stationary current and the Ampere law in the case of the permanent magnets. The study includes the characterization of the ECR areas as well as the display of the vector field all of this applied to the magnetic traps mentioned above. Additionally, in the case of the mirror type trap and minimum-B trap, it is determined the ratio of the mirror, because it is important in the description of confinement.

  8. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  9. Generation of a spin-polarized electron beam by multipole magnetic fields.

    Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. PMID:24440895

  10. Generation of a spin-polarized electron beam by multipoles magnetic fields

    Karimi, Ebrahim; Boyd, Robert W; Santamato, Enrico

    2013-01-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin--magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of these analysis could prove useful in the design of improved electron microscope.

  11. Angular momentum transfer of Laguerre - Gaussian laser pulses and quasi-static magnetic field generation in plasma channels

    To generate a strong axial and azimuthal quasi-static magnetic field, we propose to study the interaction of Laguerre-Gaussian laser beams in a parabolic plasma channel. Our study shows that the higher-order modes with orbital angular momentum generate a stronger magnetic field in comparison to the lower-order modes of the laser beam. The contribution of the effective mass of photon on the orbital angular momentum and the polarization state of the beam are analyzed analytically and with 2D Particle in Cell (PIC) simulation. These effects have been put forwarded in analyzing the magnetic field generation. (author)

  12. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F

    2012-01-26

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21)?gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution. PMID:22281596

  13. Magnetic Field Generation in High-Intensity-Laser endash Matter Interactions

    A multifluid implicit plasma simulation code has been used to study the transport of hot electrons generated by an intense (≥3x1018 W/cm 2) short-pulse 1.06μm laser into plasma targets over a broad range of densities [(0.35-200)ncrit], as arising in the Fast Ignitor approach to inertial confinement fusion. The most intense (16-250MG) magnetic fields generated in this interaction are traced to the ponderomotive push on background electrons, and tardy electron shielding. These fields can focus the heated electrons toward the axis of the beam, while impeding the direct return flow of background electrons. copyright 1998 The American Physical Society

  14. Microwave generation from a cusptron device with a rotating electron beam through a magnetic cusp field

    At the University of Maryland, high-power microwave generation experiments have been conducted with a relativistic rotating electron beam of 2 MeV, 12 kA, and 10 ns. Radiation is produced via the negative mass instability at various harmonics of the electron cyclotron frequency determined by the interaction of the rotating beam cyclotron modes and the modes of the conducting boundary system. Using a magnetron-type conducting boundary in the beam-wave interaction region, we are able to exercise effective mode control. This kind of device holds promise as a tunable, high-frequency microwave tube with low magnetic fields. A table-top experiment with a non-relativistic electron beam (-6 (I/V /sup 3/2/ ). Passing through a magnetic cusp field, the beam becomes a welldefined rotating hollow beam with 3 cm diameter and 0.2 cm thickness. The name ''cusptron'' is originated from the cusp and the magnetron. The beam dimensions are independent of the beam energy and also of the magnetic field strength

  15. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  16. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics.

    Lopatin, I V; Akhmadeev, Yu H; Koval, N N

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa). PMID:26520947

  17. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)

  18. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    Lopatin, I. V.; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments 0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa).

  19. Generation and oscillation amplification when interacting a relativistic electron beam with a spatially periodic magnetic field

    Vacuum relativistic generator and 3 centimeter range amplifier based on the use of instability of relativistic electron beam (REB) interacting with spatially periodic magnetic field is studied. 1.35 DB/cm amplification is achieved at 9450 MHz frequency at the input signal power of 105 W. The output power contitutes 3 MW at pulse duration of 1x10-6 s and irradiation line width of no more than 100 MHz. H01 mode is a working mode of amplifier. Spectral characteristics of irradiation are studied experimentally and theoretically

  20. Preliminary Faraday performance of a large MHD generator at high magnetic field

    Starr, R. F.; Christensen, L. S.; Garrison, G. W.; Whitehead, G. L.

    1981-01-01

    The High Performance Demonstration Experiment showed that an MHD generator simulating a commercial scale device can convert 16 to 18% of the available thermal energy into electrical power. Results have been obtained with the channel in the Faraday configuration and magnetic field strengths ranging from 1.5 to 3.5 Tesla; a maximum Faraday power of 23 MW was produced representing an enthalpy extraction of 9%. An analysis is presented of the electrical and aerodynamic characteristics of the channel including the voltage drop in the cold plasma layers near the electrode walls.

  1. Generating vorticity and magnetic fields in plasmas in general relativity: Spacetime curvature drive

    Asenjo, Felipe A.; Mahajan, Swadesh M. [Institute for Fusion Studies, University of Texas at Austin, Texas 78712 (United States); Qadir, Asghar [Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H12, Islamabad 4400 (Pakistan)

    2013-02-15

    Using the generally covariant magnetofluid formalism for a hot plasma, a spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The 'battery' owes its origin to the interaction between the gravity modified Lorentz factor of the fluid element and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole and for particles in free fall near the horizon. Some astrophysical applications are suggested.

  2. Large-scale magnetic field generation by randomly forced shearing waves.

    Heinemann, T; McWilliams, J C; Schekochihin, A A

    2011-12-16

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence. PMID:22243085

  3. Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)

    Christensen, U. R.

    2009-04-01

    Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts correctly not only the magnetic field strength of planets with sufficiently simple dynamos (Earth and Jupiter), but also that of rapidly rotating stars.

  4. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Gerald, II, Rex E. (Brookfield, IL); Vukovic, Lela (Westchester, IL); Rathke, Jerome W. (Homer Glenn, IL)

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  5. A Magnetic Alpha-Omega Dynamo in Active Galactic Nuclei Disks: II. Magnetic Field Generation, Theories and Simulations

    Pariev, V I; Finn, J M; Pariev, Vladimir I.; Colgate, Stirling A.; Finn, John M.

    2006-01-01

    It is shown that a dynamo can operate in an Active Galactic Nuclei accretion disk due to the Keplerian shear and due to the helical motions of expanding and twisting plumes of plasma heated by many star passages through the disk. Each plume rotates a fraction of the toroidal flux into poloidal flux, always in the same direction, through a finite angle, and proportional to its diameter. The predicted growth rate of poloidal magnetic flux, based upon two analytic approaches and numerical simulations, leads to a rapid exponentiation of a seed field, \\sim 0.1 to \\sim 0.01 per Keplerian period of the inner part of the disk. The initial value of the seed field may therefore be arbitrarily small yet reach, through dynamo gain, saturation very early in the disk history. Because of tidal disruption of stars close to the black hole, the maximum growth rate occurs at a radius of about 100 gravitational radii from the central object. The generated mean magnetic field, a quadrupole field, has predominantly even parity so ...

  6. Plasma circuit breaker in a magnetic field as a high-power ion flux generator

    It is ascertained that plasma circuit breaker (PCB) in the external magnetic field of acute-anguled geometry in the mode when PCB serves as inductive storage loading is a natural magnetoizolated diode. Using PCB as an ion emitter and as a high-voltage generator it proved possible in case of full electron magnetiuzation to attain the maximum efficiency of the storage. The density of ion current evaluated by the measured energy density for 30 J/cm2 thermocouple and by the energy of 1.5 MeV constitutes 100 A/cm2. The given method of ion generation is very effective when high ion currents with a high energy are required

  7. Generation of flat-top pulsed magnetic fields with feedback control approach

    Kohama, Yoshimitsu

    2015-01-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet, and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of +-0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  8. Effect of the plasma-generated magnetic field on relativistic electron transport.

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver. PMID:21867317

  9. Design and implementation of a dc-based magnetic field controller with electronic temperature stabilized Hall generator

    The document provides information on a dc-based magnetic field controller and Hall generator temperature-stabilization circuitry used as integral part of mass spectrometer magnet systems at the Idaho Chemical processing Plant. Sections are divided into general operation, theory of operation, calibration and service

  10. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments.

  11. Generation of RF plasma assisted high power pulsed sputtering glow discharge without using a magnetic field

    High power pulsed sputtering plasma is an emerging technology used to modify the surfaces of industrial components and biomedical parts. The characteristic feature of the plasma is that metallic species are highly ionized and charged particles are magnetized. In order to use the plasma source in a variety of material processing applications, it is desirable that the glow is generated without a magnetic field. In this paper, a sputtering of metallic species is enhanced by a pulsed dc voltage applied to a pair of electrodes immersed in an RF plasma. Sputtered metallic species are ionized as follows: first, a 200 kHz-RF (radio frequency, output voltage: 3 kV and duration: 200 μs) argon plasma is generated. Then, a pulsed dc (direct current) voltage is applied to a pair of electrodes (of 60 mm diameter and 75 mm long) set in the RF plasma to accelerate argon ions toward the cathode (sputter target). The applied voltage ranges from 0.8 to 1.4 kV with negative polarity. The argon gas pressure is 2.7 Pa. The pulse width is 60 μs. In a typical example, the induced current through the electrode is 45 A with a voltage of 1000 V. The instantaneous consumed power of 45 kW and the energy consumed per pulse is 2.7 J, corresponding to an average power of 216 W at a repetition rate of 80 Hz.

  12. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    Djidjou, T. K.; Basel, Tek; Rogachev, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States); Chen, Ying; Shinar, J. [Ames Laboratory-USDOE, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2?-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.250.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  13. Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel

    The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. (paper)

  14. Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface

    We investigate the effects of magnetic field on the entropy generation during fluid flow and heat transfer due to the radially stretching surface. The partial differential equations governing the flow and heat transfer phenomenon are transformed into nonlinear ordinary differential equations by using suitable similarity transformations. These equations are then solved by the homotopy analysis method and the shooting technique. The effects of the magnetic field parameter M and the Prandtl number Pr on velocity and the temperature profiles are presented. Moreover, influence of the magnetic field parameter M and the group parameter Br/? on the local entropy generation number Ns as well as the Bejan number Be are inspected. It is observed that the magnetic field is a strong source of entropy production in the considered problem

  15. Dynamics of radiation losses in Z-pinch plasma with taking into account generation of turbulent magnetic fields

    We estimated the total radiation losses from argon Z-pinches. Radiation losses due to excitation, di-electronic recombination, Bremsstrahlung, radiative recombination and also ionization, were considered. Each separate ion is analyzed in detail and the influence of density is taken into account. Our pinch dynamics includes Joule heating, anomalous plasma resistance, plasma outflow in Z-direction, electron beam generation, magnetic field pressure, radiation losses. Main novelty of the given model is generation of chaotic/turbulent magnetic fields. It is shown, that turbulent magnetic fields affect the dynamics of plasma parameters. The influence of turbulent magnetic field is analyzed on the dynamics of plasma temperature, density, radiation losses, line emission. (author)

  16. An Impulse Induction MHD Generator Having a Magnetic Field with a Radial Component

    An impulse induction MHD generator with a cylindrical channel has been theoretically and experimentally investigated. Given certain assumptions, it is possible to write the general system of the partial differential equations, which describes the behaviour of the generator. The mean spatial values of the physical quantities are calculated under certain simplifying conditions and a system of the common differential equations is obtained. After separation the common differential equations of the third order for the velocity and the current are found. These equations are homogeneous with constant and identical coefficients. The solution of these equations is not too complicated and information about their time dependence is obtained. The expressions for the power generated and the generator efficiency are found in the usual way. The equation of the volt-ampere characteristic is also obtained and the characteristic of the generator is found not to be, in general, linear. The equations for the case of open-circuit current and short-circuit voltage are derived. These equations are the common differential equations of the second order and their solutions give the possibility of determining two of the parameters of the plasma clusters. The theoretical conclusions are verified experimentally. A plasma gun is the source of the plasma clusters. The pressure is varied over 1.4 x 10-2 to 2 x 10-1 Torr. The magnetic field is 2 x 10-2 T. The electrical conductivity and the mass of the clusters is calculated from the expressions for the open-circuit voltage and short-circuit current. The results of the theoretical and experimental calculations are in acceptable agreement. It is possible to say that the generator will operate and could, after refinement, be used for diagnostics of plasma clusters. (author)

  17. Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas

    We report measurements of ultrahigh magnetic fields produced during intense (∼1020 Wcm-2 μm2) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7±0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities

  18. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  19. Nonlinear development of the Weibel instability and magnetic field generation in collisionless plasmas

    The Weibel instability is expected to be one of the mechanisms at play in the generation of quasi-static magnetic fields by high-intensity laser pulses propagating with relativistic amplitudes in underdense plasmas. This instability can be excited in a plasma with two electron populations: the background cold electrons and the high energy electrons accelerated by the laser radiation. Here we investigate the nonlinear stage of the evolution of this instability both analytically and numerically. We consider both the non-relativistic and the relativistic regimes within the frame-work of a cold two-electron fluid plasma description, where ions are assumed to be at rest and to provide a uniform neutralizing background. (orig.)

  20. Scott Correction for Large Atoms and Molecules in a Self-Generated Magnetic Field

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...... constant. We show that, in the simultaneous limit $Z\\to\\infty$, $\\al\\to 0$ such that $\\kappa =Z\\al^2$ is fixed, the ground state energy of the system is given by a two term expansion $c_1Z^{7/3} + c_2(\\kappa) Z^2 + o(Z^2)$. The leading term is given by the non-magnetic Thomas-Fermi theory. Our result shows...

  1. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling

    Aono, Hiromichi; Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Watanabe, Yuji

    2012-06-01

    Nano-sized magnetic Y3Fe5O12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y3Fe5O12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y3Fe5O12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mmϕ beads). The heat generation ability of the excessively milled Y3Fe5O12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mmϕ beads, the heat generation ability (W g-1) was estimated using a 3.58×10-4 fH2 frequency (f/kHz) and the magnetic field (H/kA m-1), which is the highest reported value of superparamagnetic materials.

  2. New performance in harmonic analysis device generation used for magnetic fields measurements

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10-4, we have to know the field quality to 10-5 through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10-5 and a sensitivity up to 10-8 Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 μm. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors)

  3. New performance in harmonic analysis device generation used for magnetic fields measurements

    Evesque, C.; Tkatchenko, M.

    1996-12-31

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10{sup -4}, we have to know the field quality to 10{sup -5} through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10{sup -5} and a sensitivity up to 10{sup -8} Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 {mu}m. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors).

  4. Dynamical Feedback of Self-generated Magnetic Fields in Cosmic Ray Modified Shocks

    Caprioli, D.; P. Blasi(INAF Arcetri); Amato, E.; Vietri, M.

    2008-01-01

    We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes the magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. The approach is specialized to parallel shock waves and the parameters we chose are the ones appropriate to forward shocks in Supernova Remnants. Our calculation allows us to show tha...

  5. Steady magnetic-field generation via surface-plasma-wave excitation

    The possibility of inducing a magnetic field via surface plasma-wave excitation is investigated with a simple nonrelativistic hydrodynamic model. A static magnetic field is predicted at the plasma surface, scaling with the square of the surface-wave field amplitude, and the influence of the electron plasma density is studied. In the case of resonant surface-wave excitation by laser this result can be applied to low intensities such that the electron quiver velocity in the field of the surface wave is less than its thermal velocity.

  6. Transmittal properties of a superconductor-ferromagnetic metamaterial subjected to magnetic fields generated by the permanent magnets

    Liu, H.; Li, X. T.; Zhou, P. B.; Zhang, H.; Yang, C.; Ma, G. T.; Wang, R.; Chen, H.; Wang, Z.; Li, N.; Zhang, L.

    2015-09-01

    Superconductor-ferromagnetic (FN) metamaterial with effective magnetic shielding and transmittal properties that allow the cloaking and transferring of static magnetic fields has been introduced. Most metamaterials consist of different arrangements of superconducting and ferromagnetic materials whose performance and feasibility mainly depend on the involved materials, their geometrical distribution and the permeability of each. In this paper, combining the method of transformation optics with the design of metamaterials, we experimentally demonstrated a superconductor-FM metamaterial system, composed of two coaxial cylinders of different lengths, to investigate the influence of the length and the properties of superconducting material on the magnetic transferring properties of the magnetic field produced by the permanent magnets. By comparing the transmittal magnetic field of different cases, the optimal structure has been ultimately achieved in terms of calculating the transmitted magnetic field ratios. The insights attained by the present study are aimed to provide useful implications for the design of wireless energy transmission and increasing the efficiency of magnetic transmittal devices.

  7. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T.

    Larbalestier, D C; Jiang, J; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-04-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J(c). To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O(7-x) and (Bi, Pb)2Sr2Ca2Cu3O(10-x) are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O(8-x) (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high J(c) of 2,500 A mm(-2) at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries. PMID:24608141

  8. NUMERICAL RESEARCH TECHNIQUES OF MAGNETIC FIELDS GENERATED BY INDUCTION CURRENTS IN A MASSIVE CONDUCTOR

    Tchernykh A. G.

    2015-10-01

    Full Text Available We consider the technology of application of numerical methods in the educational process in physics on the example of a study of the magnetic field induced by induction currents in a cylindrical conductor in a quasi-stationary magnetic field. Here is given the numerical calculation of the real and imaginary parts of the Bessel functions of complex argument. The listing of the program of drawing the graphs of the radial dependence of the amplitude and phase shift of the inductive currents field is cited. The graphs of the dependence of the parameters of the field on the radial coordinate for different values of the control parameter are drawn. The control parameter z is proportional to the frequency of the external magnetic field, the conductivity of the material and the square of the radius of the cylinder. When z is less than 1, the amplitude of the field of currents increases in proportion to z, and decreases quadratically with the increasing radial coordinate h. For a larger z the amplitude and the phase shift relative to the external field change nonlinearly with the increase of h. It is concluded that there exists a significant difference between the inductive currents field and the total field in the cylinder equal to the sum of the external field and the currents field. The nonlinear connection between these fields is explained. The use of this method in the educational process of pedagogical (physics and technical institutes of higher education is recommended

  9. Stochastic magnetic field generation in MHD resistive instabilities: validity limits of linear stability analysis

    The validity limits of a linear analysis for a resistive instability are determined. The effects of mode-coupling on the magnetic field structure are investigated in the reconnecting layer. Given an equilibrium magnetic field and a perturbation field, the conditions are found under which the equations for the magnetic field lines of force can be expressed in Hamiltonian form. These conditions can be fulfilled by a resistive instability. Consequently, in a simple equilibrium magnetic field the resistive eigenmodes have been analytically derived. This result is used to give an explicit expression of the Hamiltonian for field-line equations when two resistive eigenmodes are taken into account. The analytical form of the resulting Hamiltonian coincides with the so-called paradigm Hamiltonian (1.5 degrees of freedom) for which the Escande-Doveil renormalization procedure leads to an explicit expression for the global stochasticity threshold. Thus it can be shown that any pair of modes - in a suitable range of parameters - yields spatial stochasticity of magnetic field lines when the perturbation amplitude is still very low. Hence a limit of validity of the linear theory can be found. The linear phase of the resistive instability turns out to be relevant only to describe the onset of the instability itself. (author)

  10. Ocean circulation generated magnetic signals

    Manoj, C.; Kuvshinov, A.; Maus, S.; Luhr, H.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of...... ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume an...... magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  11. Solar Magnetic Fields

    Hood, Alan W.; Hughes, David W.

    2011-01-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions o...

  12. Magnetization dynamics using ultrashort magnetic field pulses

    Tudosa, I

    2005-01-01

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession.

  13. THE EFFECT OF LOWER MANTLE METALLIZATION ON MAGNETIC FIELD GENERATION IN ROCKY EXOPLANETS

    Recent theoretical and experimental evidence indicates that many of the materials that are thought to exist in the mantles of terrestrial exoplanets will metallize and become good conductors of electricity at mantle pressures. This allows for strong electromagnetic coupling of the core and the mantle in these planets. We use a numerical dynamo model to study the effect of a metallized lower mantle on the dynamos of terrestrial exoplanets using several inner core sizes and mantle conductivities. We find that the addition of an electrically conducting mantle results in stronger core-mantle boundary fields because of the increase in magnetic field stretching. We also find that a metallized mantle destabilizes the dynamo resulting in less dipolar, less axisymmetric poloidal magnetic fields at the core-mantle boundary. The conducting mantle efficiently screens these fields to produce weaker surface fields. We conclude that a conducting mantle will make the detection of extrasolar terrestrial magnetic fields more difficult while making the magnetic fields in the dynamo region stronger.

  14. Ambipolar radial electric field generated by anomalous transport induced by magnetic perturbations

    Chen, Dunqiang; Zhu, Siqiang; Zhang, Debing; Wang, Shaojie

    2016-05-01

    The anomalous particle transport induced by magnetic perturbations in a tokamak is investigated. The correlation between the radial position and the kinetic energy of electrons, Dr K=-e ErDr r , is predicted theoretically and is verified by simulations in the presence of a mean radial electric field. This correlation leads to a radial particle flux produced by the radial electric field. The ambipolar radial electric field can thus be predicted by using the ambipolarity condition Γri=Γre .

  15. Dynamical Feedback of Self-generated Magnetic Fields in Cosmic Rays Modified Shocks

    Caprioli, D.; /Pisa, Scuola Normale Superiore; Blasi, P.; /Arcetri Observ. /Fermilab; Amato, E.; /Arcetri Observ.; Vietri, M.; /Pisa, Scuola Normale Superiore

    2008-07-01

    We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. This kinetic calculation allows us to show that the net effect of the amplified magnetic field is to enhance the maximum momentum of accelerated particles while reducing the concavity of the spectra, with respect to the standard predictions of NLDSA. This is mainly due to the dynamical reaction of the amplified field on the shock, which smoothens the shock precursor. The total compression factors which are obtained for parameters typical of supernova remnants are R{sub tot} {approx} 7-10, in good agreement with the values inferred from observations. The strength of the magnetic field produced through excitation of streaming instability is found in good agreement with the values inferred for several remnants if the thickness of the X-ray rims are interpreted as due to severe synchrotron losses of high energy electrons. We also discuss the relative role of turbulent heating and magnetic dynamical reaction in smoothening the shock precursor.

  16. Software for evaluating magnetic induction field generated by power lines: implementation of a new algorithm

    The Regional Environment Protection Agency of Friuli Venezia Giulia (A.R.P.A. F.V.G., Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Furthermore, none of them is preset for cyclic calculus to determine the time evolution of induction in a certain exposure area. Finally, the output data are not immediately importable by ArcView, the G.I.S. used by A.R.P.A. F.V.G., and it is not always possible to implement the territory orography to determine the field at specified heights above the ground. P.h.i.d.e.l., an innovative software, tackles and works out al l the above mentioned problems. The power line wires interested in its implementation are represented by poly lines, and the field is analytically calculated, with no further approximation, not even when more power lines are concerned. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in G.I.S. and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 μT bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003. (authors)

  17. Software for evaluating magnetic induction field generated by power lines: implementation of a new algorithm

    Comelli, M.; Benes, M.; Bampo, A.; Villalta, R. [Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG), Environmental Physics, Udine (Italy)

    2006-07-01

    The Regional Environment Protection Agency of Friuli Venezia Giulia (A.R.P.A. F.V.G., Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Furthermore, none of them is preset for cyclic calculus to determine the time evolution of induction in a certain exposure area. Finally, the output data are not immediately importable by ArcView, the G.I.S. used by A.R.P.A. F.V.G., and it is not always possible to implement the territory orography to determine the field at specified heights above the ground. P.h.i.d.e.l., an innovative software, tackles and works out al l the above mentioned problems. The power line wires interested in its implementation are represented by poly lines, and the field is analytically calculated, with no further approximation, not even when more power lines are concerned. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in G.I.S. and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 {mu}T bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003. (authors)

  18. Nonlinear generation of sheared flows and zonal magnetic fields by electron whistlers in plasmas

    Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064 (India); Shukla, Padma K., E-mail: profshukla@yahoo.de [Institute for Theoretical Physics, International Centre for Advanced Studies in Physical Sciences, Ruhr University Bochum, D-44780 Bochum (Germany)

    2011-10-24

    The nonlinear generation of shear field and flow in whistler waves is considered. It is shown that a coherent parametric process leads to modulational instability of four waves whistler interaction. Growth rates for the flow/field are compared with published simulation results. -- Highlights: → The mechanisms of self-generated flow and field has been done in EMHD plasma. → A parametric process leads to modulational instability. → The growth rate matches with simulation results.

  19. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  20. Photon echoes generated by reversing magnetic field gradients in a rubidium vapour

    Htet, G; Sparkes, B; Oblak, D; Lam, P K; Buchler, B C

    2008-01-01

    We propose a photon echo quantum memory scheme using detuned Raman coupling to long lived ground states. In contrast to previous 3-level schemes based on controlled reversible inhomogeneous broadening that use sequences of $\\pi$-pulses, the scheme does not require accurate control of the coupling dynamics to the ground states. We present a proof of principle experimental realization of our proposal using rubidium atoms in a warm vapour cell. The Raman resonance line is broadened using a magnetic field that varies linearly along the direction of light propagation. Inverting the magnetic field gradient rephases the atomic dipoles and re-emits the light pulse in the forward direction.

  1. Entropy Generation and Natural Convection of CuO-Water Nanofluid in C-Shaped Cavity under Magnetic Field

    Ali Chamkha

    2016-02-01

    Full Text Available This paper investigates the entropy generation and natural convection inside a C-shaped cavity filled with CuO-water nanofluid and subjected to a uniform magnetic field. The Brownian motion effect is considered in predicting the nanofluid properties. The governing equations are solved using the finite volume method with the SIMPLE (Semi-Implicit Method for Pressure Linked Equations algorithm. The studied parameters are the Rayleigh number (1000 ? Ra ? 15,000, Hartman number (0 ? Ha ? 45, nanofluid volume fraction (0 ? ? ? 0.06, and the cavity aspect ratio (0.1 ? AR ? 0.7. The results have shown that the nanoparticles volume fraction enhances the natural convection but undesirably increases the entropy generation rate. It is also found that the applied magnetic field can suppress both the natural convection and the entropy generation rate, where for Ra = 1000 and ? = 0.04, the percentage reductions in total entropy generation decreases from 96.27% to 48.17% for Ha = 45 compared to zero magnetic field when the aspect ratio is increased from 0.1 to 0.7. The results of performance criterion have shown that the nanoparticles addition can be useful if a compromised magnetic field value represented by a Hartman number of 30 is applied.

  2. The magnetic field effect on electron beam generation in magnetron injection guns with secondary-emission cathodes

    The experiments have shown that a variation in the magnetic field can give rise to space charge oscillations in the interelectrode (anode-cathode) gap of the magnetron gun.These effects observed during beam generation and transport must be taken into account when using a magnetron gun in high-power microwave devices

  3. Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields"

    E. D. Schmitter

    2010-01-01

    Recent observations endorse earlier measurements of time varying electric and magnetic fields generated by tornadoes and dust devils. These signals may provide a means for early warning but together with a proper modeling approach can also provide insight into geometry and dynamics of the vortices. Our model calculations show the existence of pressure resonances characterized as acoustic duct modes with well defined frequencies. These resonances not only generate infrasound but also modulate ...

  4. Diode with magnetic insulation and Br field as a generator of power microsecond ion beam

    Results of investigations into the generation of microsecond duration high-power ion beam in a plane magnetoisolated diode with an external isolating field with radial distribution are presented. The investigations are conducted using a microsecond generator operating in the regime of generating positive high-voltage ≤600 kV amplitude pulses. Ring-type cross section ion beam consisting mainly of H+ and C+ ions is studied. The energy range occupied by the major part of the ions generated makes up 300-500 keV. The complete energy store of the beam extracted from the diode makes up 10 kJ, the generation efficiency is 60%

  5. Magnetic field dependence of the harmonic generation in sintered pellets of YBaCuO. The history effects

    Results are presented for a detailed study of harmonic generation in the magnetization of a sintered YBa2Cu3O7 pellet subjected to various combinations of AC and DC magnetic field. On cooling the sample below Tc in zero field, a large hysteresis is observed between HDC increasing and decreasing cases. General features of this observation can be understood in terms of the hysteretic properties of the weak-linked intergrain region mediated by trapped flux inside the grains. However, there remain some finer aspects which do not have a simple explanation within this model. (orig.)

  6. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Bghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  7. Study and realization of a power circuit of a superconducting dipole generator of a magnetic field

    The project of experimental reactor building on controlled fusion (I.T.E.R) needed the development of a superconducting cable made of niobium-tin. Tested with a current of fifty kilo amperes under a twelve tesla constant field, this cable has to be tested under a variable field. The installation of the power circuit of the dipole field generator, consisted to the study and realization of the four following points: an important power cable; a tension protection organ of the dipole, under a seventeen milli Henrys inductance and four kilo amperes; a current regulating system given by the generator; a complete pilot system of the test station

  8. Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn

    Christensen, Ulrich R.; Wicht, Johannes

    2008-07-01

    A substantial part of Mercury's iron core may be stably stratified because the temperature gradient is subadiabatic. A dynamo would operate only in a deep sublayer. We show that such a situation arises for a wide range of values for the heat flow and the sulfur content in the core. In Saturn the upper part of the metallic hydrogen core could be stably stratified because of helium depletion. The magnetic field is unusually weak in the case of Mercury and unusually axisymmetric at Saturn. We study numerical dynamo models in rotating spherical shells with a stable outer region. The control parameters are chosen such that the magnetic Reynolds number is in the range of expected Mercury values. Because of its slow rotation, Mercury may be in a regime where the dipole contribution to the internal magnetic field is weak. Most of our models are in this regime, where the dynamo field consists mainly of rapidly varying higher multipole components. They can hardly pass the stable conducting layer because of the skin effect. The weak low-degree components vary more slowly and control the structure of the field outside the core, whose strength matches the observed field strength at Mercury. In some models the axial dipole dominates at the planet's surface and in others the axial quadrupole is dominant. Differential rotation in the stable layer, representing a thermal wind, is important for attenuating non-axisymmetric components in the exterior field. In some models that we relate to Saturn the axial dipole is intrinsically strong inside the dynamo. The surface field strength is much larger than in the other cases, but the stable layer eliminates non-axisymmetric modes. The Messenger and Bepi Colombo space missions can test our predictions that Mercury's field is large-scaled, fairly axisymmetric, and shows no secular variations on the decadal time scale.

  9. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field

  10. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    Akou, H.; Hamedi, M.

    2015-10-01

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 ?m electron bunch with about MeV initial energy becomes a 20 ?m electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  11. Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field

    Fatih Selimefendigil

    2016-01-01

    Full Text Available In this article, entropy generation due to natural convection in entrapped trapezoidal cavities filled with nanofluid under the influence of magnetic field was numerically investigated. The upper (lower enclosure is filled with CuO-water (Al2O3-water nanofluid. The top and bottom horizontal walls of the trapezoidal enclosures are maintained at constant hot temperature while other inclined walls of the enclosures are at constant cold temperature. Different combinations of Hartmann numbers are imposed on the upper and lower trapezoidal cavities. Numerical simulations are conducted for different values of Rayleigh numbers, Hartmann number and solid volume fraction of the nanofluid by using the finite element method. In the upper and lower trapezoidal cavities magnetic fields with different combinations of Hartmann numbers are imposed. It is observed that the averaged heat transfer reduction with magnetic field is more pronounced at the highest value of the Rayleigh number. When there is no magnetic field in the lower cavity, the averaged Nusselt number enhances as the value of the Hartmann number of the upper cavity increases. The heat transfer enhancement rates with nanofluids which are in the range of 10% and 12% are not affected by the presence of the magnetic field. Second law analysis of the system for various values of Hartmann number and nanoparticle volume fractions of upper and lower trapezoidal domains is performed.

  12. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    Akou, H., E-mail: h.akou@nit.ac.ir; Hamedi, M. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

    2015-10-15

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  13. The magnetic shear-current effect: generation of large-scale magnetic fields by the small-scale dynamo

    Squire, Jonathan; Bhattacharjee, Amitava

    2015-01-01

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo -- in some sense the inverse of dynamo quenching. The dynamo is nonhelical, with the mean-field $\\alpha$ coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the...

  14. Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field

    An overmoded slow wave type Ka band generator is investigated experimentally to produce high power millimeter waves in this paper. The experiments were carried out at the TORCH-01 accelerator. The produced microwave frequency was measured by dispersive line method, and the power was estimated by integrating over the radiation pattern at far field. With relatively low guiding magnetic field of 0.8 T and diode voltage and beam current of 590 kV and 5.2 kA, respectively, a 33.56 GHz millimeter wave with an output power of 320 MW was generated, and the microwave mode was quasi-TM01 mode.

  15. Effect of Magnetic Field on Entropy Generation in a Microchannel Heat Sink with Offset Fan Shaped

    Mohammad Nasiri; Mohammad Mehdi Rashidi; Giulio Lorenzini

    2015-01-01

    In this study, convection flow in microchannel heat sink with offset fan-shaped reentrant cavities in sidewall filled with Fe3O4-water is numerically investigated. The effects of changing some parameters such as Reynolds number and magnetic field are considered. The nanofluid flow is laminar, steady and incompressible, while the thermo-physical properties of nanoparticles were assumed constant. A finite volume method and two phase mixture models were used to simulate the flow. The obtained re...

  16. Magnetic field generation in a plasma in the presence of an ultrashort laser pulse

    The description of the Weibel instability linear stage for a plasma interacting with an ultrashort laser pulse is given. Pulse durations both smaller and larger than the inverse collision frequency of the thermal electrons are considered. In the latter case the pulse duration is smaller than the thermal electron heating time. The growth rate of the instability is derived and the possibility of a considerable quasistationary magnetic field amplification demonstrated

  17. A magnetically isolated diode with Bτ-field as a generator of high-power microsecond ion beam

    The results of a study of the generation of a high-power microsecond ion beam in a planar magnetically isolated diode with external radially distributed isolating field are presented. A ring cross-section ion beam consisting mainly of H+ and C+ ions was studied. The energy range of most of the generated ions is 300-500 keV. The total energy stored in the beam extracted from the diode is 10 kJ and the generation efficiency reaches 60%. 5 refs., 4 figs

  18. Super ferromagnetic field generation device

    In a super ferromagnetic field generation device, initial magnetic fields are generated and highly electroconductive liquid metals are atomized into spray-like fluidized particles and jetted in the initial magnetic fields for freezing magnetic fluxes. The frozen spray-like fluidized particles are shrinked by optical pressure of pulse laser beams and explosive shrinkage caused by molten plasma on the surface of the particles upon laser irradiation. Further, the device comprises a liquid metal containing vessel, a blanket as a ferromagnetic field generation vessel, superconductive magnets, a nozzle for jetting the liquid metals as spray-like fluidized particles in the blacket and a pair of laser beam sources for irradiating pulsed laser beams to the fluidized particles which freeze the magnetic fluxes. Then, super ferromagnetic fields of several 105 teslas to several 1010 teslas can be obtained as continuous pulses. (N.H.)

  19. The magnetic shear-current effect: generation of large-scale magnetic fields by the small-scale dynamo

    Squire, Jonathan

    2015-01-01

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo -- in some sense the inverse of dynamo quenching. The dynamo is nonhelical, with the mean-field $\\alpha$ coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack...

  20. The saturation of the electron beam filamentation instability by the self-generated magnetic field and magnetic pressure gradient-driven electric field

    Dieckmann, M E; Kourakis, I; Borghesi, M

    2008-01-01

    Two counter-propagating cool and equally dense electron beams are modelled with particle-in-cell (PIC) simulations. The electron beam filamentation instability is examined in one spatial dimension. The box length resolves one pair of current filaments. A small, a medium-sized and a large filament are considered and compared. The magnetic field amplitude at the saturation time of the filamentation instability is proportional to the filament size. It is demonstrated, that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away. The confining potential is not sinusoidal, as assumed by the magnetic trapping model, and it permits an...

  1. Magnetic field measuring device

    The device of the present invention can measure magnetic fields accurately under irradiation of radiation rays during long time operation of a thermonuclear device, an accelerator or the like. Namely, the device of the present invention has a structure in which an electron gun for generating electron beams and an electrode for detecting electron beams are disposed in a vacuum tube. When there are external magnetic fields, the beam spot position of the electron beams is changed. Deflected electric fields or deflected magnetic fields are applied so that the position of the beam spot is set to a position of the electron beam detecting electrode. The external magnetic fields are determined based on the amount applied in this case. A less radiation ray resistant portion such as an electron beam control circuit using semiconductors is situated to a place away from the vacuum tube where radiation rays are weak. The device of the present invention can directly measure magnetic fields, does not require an integrator, and is radiation resistant. Accordingly, thermonuclear plasmas, for example, can be controlled at high efficiency. (I.S.)

  2. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadovnikov, A. V.; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Grishin, S. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-10-19

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.

  3. Generation of enhanced-scalelength plasmas and Zeeman study of magnetic fields

    Using nonuniform laser illumination on flat targets, with moderate laser energies (200 J), we have produced enhanced density scalelengths; e.g., in excess of 0.5 mm at 0.1 of critical density. These enhanced scalelengths are of interest in simulating large, high-gain pellets, and investigating the potential impact of longer scalelengths on a variety of convective plasma instabilities. The nonuniform laser irradiation also affects the spontaneous magnetic fields. These fields were measured for the first time using the Zeeman effect. Space-and-time-resolved measurements, for both polarizations, were made of the 2271-2278 A CV triplets (2s3S1 - 2p3P2,1,0) emission. A comparison with theory gave fields around 200 kG

  4. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*1021 cm-3 and confinement time ?= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  5. On the problem of large-scale magnetic field generation in rotating compressible convection

    Favier, Benjamin

    2013-01-01

    Mean-field dynamo theory suggests that turbulent convection in a rotating layer of electrically-conducting fluid produces a significant alpha-effect, which is one of the key ingredients in any mean-field dynamo model. Provided that this alpha-effect operates more efficiently than (turbulent) magnetic diffusion, such a system should be capable of sustaining a large-scale dynamo. However, in the Boussinesq model that was considered by Cattaneo&Hughes (2006) the dynamo produced small-scale, intermittent magnetic fields with no significant large-scale component. In this paper, we consider the compressible analogue of the rotating convective layer that was considered by Cattaneo&Hughes (2006). Varying the horizontal scale of the computational domain, we investigate the dependence of the dynamo upon the rotation rate. Our simulations indicate that these turbulent compressible flows can drive a small-scale dynamo but, even when the layer is rotating very rapidly (with a mid-layer Taylor number of Ta=10^8), w...

  6. Generation of a quasisteady electromagnetic field by a distributed magnetic dipole moving in a collisionless plasma

    The problem of the excitation of quasisteady electromagnetic fields by a moving dipole with a moment directed perpendicularly to its velocity is solved using the linear theory of particle emission based on the kinetic equation for a collisionless plasma. A multipole representation is derived for the fields at large and small distances from the dipole. The quasisteady electromagnetic fields excited by the dipole are squeezed against it. The currents in the plasma screen the field of the dipole, and an anomalous skin region with a typical size r/sub G/ = (Σ/sub α/ √π/2 ω/sub p//sub α/ 2v'/c2v/sub α/)/sup -1/2/ forms (ω/sub p//sub α/ is the plasma frequency, v' is the velocity of the dipole, v/sub α/ is the thermal velocity, and c is the velocity of light). In this anomalous skin region, the energy of the dipole is dissipated resonantly and converted into plasma particle energy through the excited quasisteady electromagnetic field. The rate of this process, the radiation resistance, and the stopping force exerted on the dipole are all calculated. An anomalous collisionless magnetic Reynolds number is defined. This Reynolds number characterizes the role played by conductivity effects in a collisionless plasma

  7. Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure

    Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud

    2016-04-01

    The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu-water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 104, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect.

  8. ANALYSIS OF LOW TEMPERATURE PLASMA FLOW IN DISC-TYPE MHD GENERATOR IN STRONG MAGNETIC FIELD WITH EXTRATHERMAL IONIZATION

    Jzef Kunc

    1971-01-01

    Full Text Available Basing on the given flow model, low temperature plasma flow equations in disc-type MHD Generator in strong magnetic field are educed, taking into consideration the Hall's Component of Electrical Current. The He-Cs plasma ionization is considered as extrathermal ("electron heating" according to Kerrbrock's Model.The solutions of flow equations for low Mach numbers and numeral calculations based on the given parameters are presented also.The most typical functions for the MHD Generator theory are shown in the form of diagrams.

  9. Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Universite Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilee 94200, Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Universite Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilee 94200, Ivry-sur-Seine (France); Heron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Macchi, A. [Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR/INO), Dipartimento di Fisica ' ' E. Fermi' ' , Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2011-10-15

    The efficiency of laser overdense plasma coupling via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed over a wide range of laser pulse intensity from 10{sup 15} to 10{sup 20} W cm{sup -2}{mu}m{sup 2} with electron density ranging from 25 to 100n{sub c} to describe the laser interaction with a grating target where a surface plasma wave excitation condition is fulfilled. The numerical studies confirm an efficient coupling with an enhancement of the laser absorption up to 75%. The simulations also show the presence of a localized, quasi-static magnetic field at the plasma surface. Two interaction regimes are identified for low (I{lambda}{sup 2} < 10{sup 17} W cm{sup -2}{mu}m{sup 2}) and high (I{lambda}{sup 2} > 10{sup 17} W cm{sup -2}{mu}m{sup 2}) laser pulse intensities. At ''relativistic'' laser intensity, steady magnetic fields as high as {approx}580 MG {mu}m/{lambda}{sub 0} at 7 x 10{sup 19} W cm{sup -2}{mu}m{sup 2} are obtained in the simulations.

  10. Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation

    The efficiency of laser overdense plasma coupling via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed over a wide range of laser pulse intensity from 1015 to 1020 W cm-2μm2 with electron density ranging from 25 to 100nc to describe the laser interaction with a grating target where a surface plasma wave excitation condition is fulfilled. The numerical studies confirm an efficient coupling with an enhancement of the laser absorption up to 75%. The simulations also show the presence of a localized, quasi-static magnetic field at the plasma surface. Two interaction regimes are identified for low (Iλ2 17 W cm-2μm2) and high (Iλ2 > 1017 W cm-2μm2) laser pulse intensities. At ''relativistic'' laser intensity, steady magnetic fields as high as ∼580 MG μm/λ0 at 7 x 1019 W cm-2μm2 are obtained in the simulations.

  11. Evaluation of human exposure to complex waveform magnetic fields generated by arc-welding equipment according to european safety standards

    In this paper, a procedure is described for the assessment of human exposure to magnetic fields with complex waveforms generated by arc-welding equipment. The work moves from the analysis of relevant guidelines and technical standards, underlining their strengths and their limits. Then, the procedure is described with particular attention to the techniques used to treat complex waveform fields. Finally, the procedure is applied to concrete cases encountered in the workplace. The discussion of the results highlights the critical points in the procedure, as well as those related to the evolution of the technical and exposure standards. (authors)

  12. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 1019 W cm−2) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure

  13. Magnetic field line Hamiltonian

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined.

  14. Magnetic field line Hamiltonian

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  15. Generation and focusing of high power ion beam in magnetically insulated diode with applied b - field

    The results of high power ion beam (HPIB) generation and plasma formation processes in the magnetically insulated diode (MID) installed at 3.1010W nanosecond accelerator are given. The possibility of efficient HPIB ballistic focusing using the preformed plasma in the HPIB transport region is demonstrated. Several new diagnostics (spring pendulum and acoustic probe) were used to measure the plasma ablation pressure during the impact of the HPIB with the target. The plasma formation and its behavior in the diode gap were studied by high voltage probe, array of collimated Faradey cups, streak image converter. The dominant role in the MID impedance behavior played the electron losses at the anode. The application of the active plasma source provided the control on the HPIB characteristics and MID impedance behavior

  16. Solar Magnetic Fields

    Hood, Alan W

    2011-01-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulation...

  17. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T

    Larbalestier, D C; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-01-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J$_c$. To minimize such grain boundary obstacles, HTS conductors such as REBa$_2$Cu$_3$O$_{7−x}$ and (Bi, Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10−x}$ are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi$_2$2Sr$_2$CaCu$_2$O$_{8−x}$ (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb$_3$Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very hi...

  18. Mercury's Magnetic Field

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  19. Wide-angle optics with strong magnetic fields for efficient generation of secondary-particle beams

    Optimization of the conditions for producing beams of secondary particles (positrons, antiproton, π-mesons) has led to the development of projects at the Institute of Nuclear Physics of the Siberian Branch of the USSR Academy of Sciences aimed at creating optical devices with strong (50 to 300 kOE) pulsed magnetic fields and with a wide range of parameters determined by the type of secondary particles, their energy and the requirements for the beam characteristics. This theme encompasses two areas: the development of so-called parabolic lenses consisting of thin-walled shells of revolution about which current flows and which, by assigning the appropriate shape, facilitate aberration-free focusing of the particles for practically any collection angles, and of cylindrical lenses made of light metal (lithium, sodium) with cross-sectionally uniform current-density distribution for short focusing of beams

  20. Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

    Dieckmann, M E; Ahmed, H; Doria, D; Sarri, G; Ynnerman, A; Borghesi, M

    2015-01-01

    A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell (PIC) simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that a...

  1. Resonant magnetic fields from inflation

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of O(10−15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing

  2. Permanent magnet devices for generation of initial current in spiral explosion-magnetic generators

    Principles are considered of operation of explosion-magnetic generators for generation of superstrong currents and magnetic fields. Different designs are described of magnetic systems on the base of permanent magnets, which produce high magnetic fluxes and initial currents within spirals of the explosion-magnetic generators. The magnetic flux from 1.3 to 1.8 mWb were obtained by means of the developed magnetic systems on the base of permanent magnets for the spiral explosion-magnetic generators with the diameter of 40 mm and winding step of 2.1 mm. 6 refs., 8 figs

  3. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    Third order susceptibility of third order harmonic generation is investigated in a Zn0.1Mg0.9Se/Zn0.8Mg0.2Se/Zn0.1Mg0.9Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems

  4. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  5. Neutron Emission Generated in the Collision of Plasma Flows in the Presence of an External Magnetic Field

    Results are presented from experimental studies of the neutron emission generated in the collision of deuterium plasma flows produced in discharges in crossed E x H fields and propagating in opposite directions in a neutral gas across an external magnetic field. It is shown that the interaction of oppositely propagating deuterium plasma flows gives rise to the generation of soft X-ray emission and neutron emission from the dd reaction (dd ? 3He + n) and is accompanied by an almost complete depolarization of the flows and rapid variations in the magnetic field (at a rate of ?1011 G/s). The measurements were performed at energies and velocities of the flows of up to 600 J and 3.5 x 107 cm/s, respectively. The plasma density in each flow was ?1015 cm-3. The upper estimates for the astrophysical S factor and the effective cross sections of the dd reaction obtained from our measurements are compared to theoretical calculations and to the results of experiments performed in the MIG high-current accelerator (Institute of High-Current Electronics, Russian Academy of Sciences, Tomsk)

  6. The Earth's Magnetic Field

    Edda Lna Gunnarsdttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  7. The earth's magnetic field

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  8. Exposure to a 50-Hz magnetic field induced ceramide generation in cultured cells.

    Qiu, Liping; Feng, Baihuan; Ni, Zuowei; Wu, Xiaodan; Sun, Wenjun

    2016-04-01

    Purpose To investigate the effects of a 50-Hz magnetic field (MF) exposure on ceramide metabolism, as well as the cascade downstream signaling pathways in human amniotic (FL) cells. Materials and methods FL cells were exposed to MF at 0.4 mT for different durations (from 5-60 min). The ceramides levels were analyzed with high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The activity of cathepsin D was assayed using a fluorometric assay kit, and the activity of protein phosphatase 2A (PP2A) was examined by Western blotting. After exposing to MF at 0.4 mT for 60 min with sequential culture for different durations (0, 3, 6, 12 or 36 h), the rate of cell apoptosis was assessed by flow cytometry. Results Exposing cells to MF at 0.4 mT for different durations caused a significant increase in ceramide production via de novo synthesis and hydrolysis of sphingomyelin (SM), and the effect was different according to the exposure time. However, no significant change in cell apoptosis was detected after MF exposure for 60 min with sequentially culturing for up to 36 h. In addition, increase in ceramide did not activate its downstream signal molecules, cathepsin D and PP2A, which are usually closely related to apoptosis of cells. Conclusions Exposure to a 50-Hz MF could raise ceramide levels but had no significant effect on apoptosis in cultured cells. PMID:26887861

  9. Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth's magnetic field

    Garai, Jozsef

    2007-01-01

    The presence of low viscosity layers in the mantle is supported by line of geological and geophysical observations. Recent high pressure and temperature investigations indicated that partial carbonate melt should exist at the bottom of the lithosphere and at 660 km. The presence of few percent carbonate melt reduces the viscosity by several order of magnitude. The globally existing 660 km very low viscosity layer allows the development of differential rotation between the upper and lower mantle. This differential rotation between the 660 km outer shell and the rest of the earth offers a plausible explanation for plate tectonics and for the generation of the earth's magnetic field. Simple dynamo model is proposed, which able to reproduce all of the features of the contemporary and, within reasonable uncertainty, the paleomagnetic field. The model is also consistent with geological and geophysical observations.

  10. Generation of magnetic field by the current-driven instability near cosmic-ray modified shocks

    We study the non-linear properties of the current-driven instability predicted by Bell (2004). In the first part, we combine an analytical modeling plus particle-in-cell (PIC) simulations to make a one-dimensional study of the waves as they were isolated plane waves subject to a constant cosmic ray (CR) current. In the second part, we relax these conditions by including multidimensional effects and also the back-reaction on the CRs. In the idealistic case, we find that the current-driven waves can grow exponentially until the Alfven velocity of the plasma, Va, becomes comparable to the drift velocity of the CRs, Vcr. We also find that, in the exponential growth regime, the current-driven waves will move the plasma along the direction of propagation of the CRs at a speed ?Va2/Vcr. Also, they will induce transversal plasma motions of about the '' transversal Alfven speed '', which is the Alfven speed calculated only with the fields perpendicular to the CR current. The multidimensional evolution of the instability is studied making use of two- and three-dimensional simulations. First, we find that a condition for the growth of the instability is that Vcr(Ncr/Ni) << Vai, where Ncr and Ni are the density of CR and background ions, respectively, and Vai is the initial Alfven velocity of the plasma. If this condition is not met, the instability will be suppressed by the formation of strong plasma filaments of the scale of the ions skin depth. We also find that, even if the current-driven waves can grow, they will produce significant density fluctuations in the plasma shortly after they become non-linear, which confirm previous numerical MHD studies. The formation of these fluctuations will decrease the growth rate of the instability and will enlarge its dominant wavelengths. We also study the effect of the back-reaction on CR. We find that, if the Larmor radii of the CR become comparable to the size of the magnetic fluctuations, the deflection of the CR can saturate the instability before the regime Va ? Vcr is reached. We discuss applications of this instability to both relativistic and non-relativistic shock environments. (author)

  11. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Moh'd A. Al-Nimr

    2004-06-01

    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  12. Time-reversal violating generation of static magnetic and electric fields and a problem of electric dipole moment measurement

    Baryshevsky, Vladimir G.

    2003-01-01

    It is shown that in the experiments for search of the EDM of an electron (atom, molecule) the T-odd magnetic moment induced by an electric field and the T-odd electric dipole moment induced by a magnetic field will be also measured. It is discussed how to distinguish these contributions.

  13. Superhorizon magnetic fields

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  14. Pre-ionization and spectroscopic diagnostic of plasma generated and confined by magnetic fields

    A θ-pinch system has been constructed with pre-heating devices with a total energy of 2 kJ. During this experiment a He Plasma was studied using the following three different diagnostics. a) Magnetic Probes b) Visible Spectroscopy using the Optical Multichannel Analyser - OMA c) Image Converter Camera. The experimental results have been checked with existing theoretical models. The electrical characteristics of the system were determined with the magnetic probe. The Doppler and Stark broadening effects of the λo = 4686 (angstrom) (HeII) have been used to determine the ionic temperature and electronic density respectively. The time evolution of these parameters was obtained using the OMA. The dynamics of the plasma were observed by high speed photography. Instabilities in the plasma columm have been observed. Good agreement between the experimental and theoretical values was obtained. (author)

  15. Miniature linear permanent magnet generators

    This paper discusses the advantages of linear permanent magnet generators for many applications which require the provision of relatively low levels of electrical power. The utility of linear generators, and a number of salient features of their design synthesis are illustrated by means of two design studies. In both cases, the design studies encompass the development of field calculation techniques for the accurate prediction of the complex field distributions within the devices, the design optimisation of the devices including considerations such as bearings and power conditioning electronics, and the construction and experimental characterisation of prototype devices. (orig.)

  16. Numerical simulation on the energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on diode impedance

    The energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on the impedance of diode are studied numerically in this paper. The results show that the beam generated by the diode has an energy spread, even with constant applied voltage. Additionally, external magnetic field has great but reverse influence on the impedance of low-impedance diode, which is, according to the author's analysis, the result of the change of the electron's track due to external magnetic field. If the beam current is less than the critical one for self-pinch, the impedance will be constant with the variation of external magnetic field

  17. A technical note about Phidel: A new software for evaluating magnetic induction field generated by power lines

    The Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG, Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency's requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Phidel, an innovative software, tackles and works out all the above-mentioned problems. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in the GIS and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 μT bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003. (authors)

  18. The Effect of Magnetic Field Inhomogeneity on the Flow of a Conducting Fluid in the Duct of a Hall-Type MHD Generator

    The author considers the flow of a conducting, non-viscous, incompressible fluid in the duct of a co-axial Hall-type MHD generator, and the effects of magnetic field inhomogeneity on electric current flow, potential distribution and the outlet characteristics of the MHD generator. (author)

  19. Heat Generation Ability in AC Magnetic Field for Y3Fe5O12-based Garnet Ferrite

    The Y3Fe5O12-based ferrite, i.e., Y3-XGdXFe5O12 system was synthesized using a reverse coprecipitation method for application of new thermal coagulation therapy using an AC magnetic field for the treatment of cancerous tissues. The mixed phase of the Y3Fe5O12-type orthorhombic and cubic materials without any impurities were obtained for this systems calcined at low temperature in XRD results. However the orthorhombic phase almost disappeared by the calcination at 1150 deg. C or higher temperature for all the X samples. The calcination temperature strongly influenced the heat generation ability. The maximum heat generation ability (?T = 40-63deg. C, 370kHz, 1.77kA/m) was obtained for the powder materials sintered at 1100 deg. C for the Y3-XGdXFe5O12 system. The particle growth with the formation of the cubic single phase strongly influenced to the heat generation.

  20. Magnetic Field Created by Tile Permanent Magnets

    Ravaud, Romain; Lemarquand, Guy; Lemarquand, Valérie

    2009-01-01

    This paper presents the analytical calculation of the three components of the magnetic field created by tile permanent magnets whose magnetization is either radial or axial. The calculations are based on the coulombian model of permanent magnets. The magnetic field is directly calculated, without the magnetic potential. Both axial and radial magnetization of the tiles are considered. The expressions obtained give the magnetic field in all the space. Such analytical expressions are very useful...

  1. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field

    Shehzad, S. A.; Abdullah, Z.; Alsaedi, A.; Abbasi, F. M.; Hayat, T.

    2016-01-01

    This research work addresses the three-dimensional hydromagnetic flow of Jeffrey fluid with nanoparticles. Flow is generated by a bidirectional stretching surface. The effects of thermal radiation and internal heat generation are encountered in energy expressions. More realistic convective boundary conditions at the surface are employed instead of constant surface temperature and mass species conditions. Boundary layer assumptions lead to the governing non-linear mathematical model. Resulting equations through momentum, energy and mass species are made dimensionless using suitable variables. The solution expressions of dimensionless velocities, temperature and nanoparticle concentration have been computed for the convergent series solutions. The impacts of interesting parameters on the dimensionless quantities are displayed and interpreted. The values of physical quantities are computed and analyzed.

  2. Magnetic field detector

    Magnetic field detector, particularly intended for monitoring the movement of a mobile component inside a leak proof vessel withstanding the pressure of a high temperature fluid. It includes a core shaped magnetic circuit with a ferromagnetic core placed on a non-magnetic base and a conducting winding around the core, means for feeding a periodic current to the winding so that in the absence of this field the core is not saturated and instruments for measuring the drop in potential at the winding terminals created by this field. The invention also concerns a device for measuring the displacement velocity of a mobile component carrying a number of permanent magnets

  3. Static magnetic fields enhance turbulence

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  4. The Primordial Magnetic Field (PMF) Generated in Large Field Inflation (LFI), Natural Inflation (NI) and $R^2$-Inflation by $f^{2}FF$ Model

    AlMuhammad, Anwar Saleh

    2016-01-01

    Large scale magnetic fields seem to be present in almost all astrophysical systems and scales from planets to superclusters of galaxies and in very low density intergalactic media. The upper limit of primordial magnetic fields (PMF) has been set by recent observations by the Planck observatory (2015) to be of the order of a few nG. The simple model ${f^2}FF$ used to generate the PMF during the inflation era. It is based on the breaking of conformal symmetry of electromagnetism during inflation. It is attractive because it is stable under perturbations and leads to a scale invariant PMF. However, it may suffer from two problems: Backreaction and strong coupling. In the first case, the electromagnetic energy may exceed the energy of inflation, ${\\rho _{{\\rm{Inf}}}}$. In the second case, the effective electric charges become excessively large if we want to retrieve the standard electromagnetism at the end of inflation. In this research, we investigate the generation of PMF under three different models of inflati...

  5. Large-Scale Filamentary Structures in Laser-Produced Plasmas as a Sign of Strong Magnetic Field Generation

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1998-11-01

    The method [1] of multilevel dynamical contrasting is applied to available database from experiments on interaction of a powerful short-pulsed laser beam with a flat target. It was found from processing the soft X-ray images that the expanding plasma produces a dynamical filamentary structures, a long-living ones as compared to inertial lifetimes of plasma inhomogeneities in laser-produced plasmas. Such a structuring appears to be similar to the networking of filamented electric currents in high-current gaseous discharges (dense Z-pinch [1] and plasma focus [2]). The structuring disclosed suggests a view into the role of electric current filamentation in the following phenomena in laser-produced plasmas: (i) generation of a strong magnetic field by the strong filamentary electric currents; (ii) formation of closed electric currents and large-scale closed magnetic configurations; (iii) axial stratification of the emerging dense Z-pinch; (iv) formation of long-range bonds between the core and the periphery of expanding plasma. [1] Kukushkin A.B., Rantsev-Kartinov V.A., Laser and Particle Beams, 16(3) 1998 (to be published). [2] Kukushkin A.B., Rantsev-Kartinov V.A., Terentiev A.R., Fusion Technology, 32 (1997) 83.

  6. Magnetic field line Hamiltonian

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  7. Magnetic field on board

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  8. Controlling magnetic field profiles

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  9. Superhorizon magnetic fields

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  10. Primordial magnetic field limits from cosmological data

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  11. Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

    In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author)

  12. Design and modelling of a silicon optical MEMS switch controlled by magnetic field generated by a plain coil

    Optical switches can be made as a silicon cantilever with a magnetic layer. Such a structure is placed in a magnetic field of a planar coil. There is a torque deflecting the silicon beam with NiFe layer depending on a flux density of the magnetic field. The study shows an analysis of ferromagnetic layer parameters, beam's dimensions on optical switch characteristics. Different constructions of the beams were simulated for a range of values of magnetic field strength from 100 to 1000 A/m. An influence of the actuators parameters on characteristics was analysed. The loss of stiffness of the beam caused by specific constructions effected in displacements reaching 85 nm. Comsol Multiphysics 4.3b was used for the simulations.

  13. A high-field superferric NMR magnet.

    Huson, F R; Bryan, R N; MacKay, W W; Herrick, R C; Colvin, J; Ford, J J; Pissanetzky, S; Plishker, G A; Rocha, R; Schmidt, W

    1993-01-01

    Strong, extensive magnetic fringe fields are a significant problem with magnetic resonance imaging magnets. This is particularly acute with 4-T, whole-body research magnets. To date this problem has been addressed by restricting an extensive zone around the unshielded magnet or by placing external unsaturated iron shielding around the magnet. This paper describes a solution to this problem which uses superconducting coils closely integrated with fully saturated iron elements. A 4-T, 30-cm-bore prototype, based on this design principle, was built and tested. The 5 G fringe field is contained within 1 meter of the magnet bore along the z axis. Homogeneity of the raw magnetic field is 10 ppm over 30% of the magnet's diameter after passive shimming. Compared with an unshielded magnet, 20% less superconductor is required to generate the magnetic field. Images and spectra are presented to demonstrate the magnet's viability for magnetic resonance imaging and spectroscopy. PMID:8419740

  14. Field free line magnetic particle imaging

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  15. Magnetic field dosimeter development

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  16. Energy transfer and magnetic field generation via ion-beam driven instabilities in an electron-ion plasma

    Whether an efficient collisionless temperature equilibration mechanism exists for a two-temperature ion-electron plasma, with Ti>Te, is important for understanding astrophysical phenomena such as two-temperature accretion flows and collisionless shocks in supernova remnants or gamma-ray bursts. In this paper, counter-streaming ion beam-driven two-stream, Weibel (or filamentation), and oblique instabilities are studied using two-dimensional (2D) particle-in-cell (PIC) simulations as a possible plasma instability that could operate in such astrophysical objects. The PIC simulations show interplay among these instabilities and that distinct stages with different dominant modes occur during the nonlinear evolution period. Although the 2D results show stronger electron-ion coupling than the one-dimensional (1D) instabilities, it is still too weak to rule out existing two-temperature accretion solutions. The nonrelativistic quasilinear equations for the 1D Weibel plus 1D two-stream modes are numerically solved to compare the results with the 2D PIC simulations and qualitative similarities were found. The equations also show that the magnetic fields generated by the Weibel instability decay to zero in the end.

  17. The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition

    We analytically derive the spectrum of gravitational waves due to magneto-hydrodynamical turbulence generated by bubble collisions in a first-order phase transition. In contrast to previous studies, we take into account the fact that turbulence and magnetic fields act as sources of gravitational waves for many Hubble times after the phase transition is completed. This modifies the gravitational wave spectrum at large scales. We also model the initial stirring phase preceding the Kolmogorov cascade, while earlier works assume that the Kolmogorov spectrum sets in instantaneously. The continuity in time of the source is relevant for a correct determination of the peak position of the gravitational wave spectrum. We discuss how the results depend on assumptions about the unequal-time correlation of the source and motivate a realistic choice for it. Our treatment gives a similar peak frequency as previous analyses but the amplitude of the signal is reduced due to the use of a more realistic power spectrum for the magneto-hydrodynamical turbulence. For a strongly first-order electroweak phase transition, the signal is observable with the space interferometer LISA

  18. Science behind the Magnetic Field Therapy

    Prof. Dr. D.B.Thombre,; Ku. Megha D. Thombre

    2015-01-01

    Magnetic therapy is the use of magnets to relieve pain in various areas of the body. It is the simplest, cheapest and entirely painless system of treatment with no side effects. In present article, discussion of fundamental aspect about the application of magnetic field (Natural and artificial) and how it apply to the human body with suggestions. Magnetic field is produce by magnet or electromagnetic generating devices are able to penetrate the human body because human bo...

  19. Passive Magnetic Shielding in Gradient Fields

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  20. A Possible Origin of Magnetic Fields in Galaxies and Clusters: Strong Magnetic fields at z~10?

    Fujita, Yutaka; Kato, Tsunehiko N.

    2005-01-01

    We propose that strong magnetic fields should be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The strength of the magnetic fields generated through this mechanism is close to the order of those observed in galaxies or clusters of galaxies at present. If the generated fields do not decay rapidly, this indicates that strong amplification of magnetic fields after formation of galaxies or...

  1. Magnetic field structure effect on the spatial flow in a supersonic MHD generator with boundary layer separation

    Calculational experiment for evaluating the role of the inhomogeneous two-component magnetic field constants in the MHD-channel is carried out. Difference of the medium-integral magnetic induction from the values on the axis is within the range of 2 up 4%. It is shown that availability of additional component of the magnetic field in the electrode direction in the channel cross sections intensifies the secondary flows and thereby increases the danger of the boundary layers break-off. The negative effect of the additional component by the beginning of the break-off regime is surpassed by stabilizing effect from decrease in the basic component to electrodes. By developed break-off flow the effects related to the availability of the additional component are prevailing

  2. On the influence of the plasma generated by comet Shoemaker-Levy 9 on Jupiter`s magnetic field

    Stabile, F.; Zimbardo, G. [Arcavacata di Rende, Cosenza, Univ. della Calabria (Italy). Dipt. di Fisica

    1997-11-01

    The impact of comet Shoemaker-Levy 9 with Jupiter has created a variety of magnetospheric plasmas which were detected by their electromagnetic emissions. By means of the Dessler-Parker-Sckopke relation we estimate the perturbation of Jupiter`s magnetic field. It appears that the produced plasma may explain the observed decrease of UV lines in Io`s torus.

  3. Magnetic fields in spiral galaxies

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with forthcoming radio telescopes like the Square Kilometre Array.

  4. Lasers plasmas and magnetic field

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author)

  5. ISR Radial Field Magnet

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  6. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-01-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level. PMID:25837346

  7. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    Serena Fiocchi

    2015-04-01

    Full Text Available During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.

  8. The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field

    Liu, Xin; Zou, LiLi; Liu, Chenglin; Zhang, Zhi-Hai; Yuan, Jian-Hui

    2016-03-01

    In the present work, the effects of hydrostatic pressure, temperature, and magnetic field on the nonlinear optical rectification (OR) and second-harmonic generation (SHG) in asymmetrical Gaussian potential quantum well (QW) have been investigated theoretically. Here, the expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. Simultaneously, the energy eigenvalues and their corresponding eigenfunctions have been obtained by using the finite difference method. The energy eigenvalues and the shape of the confined potential are modulated by the hydrostatic pressure, temperature, and magnetic field. So the results of a number of numerical experiments indicate that the nonlinear OR and SHG strongly depends on the hydrostatic pressure, temperature, and magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.

  9. Solar Magnetic Fields

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  10. Modelling of magnetic fields to enhance the performance of an in-plane EMAT for laser-generated ultrasound.

    Dutton, B; Boonsang, S; Dewhurst, R J

    2006-12-22

    A new magnetic arrangement is described for use with an in-plane electromagnetic acoustic transducer (EMAT) for detecting laser-generated ultrasound. The magnetic flux density was modelled and validated. Modelling was accomplished in 3D using finite element software to predict new magnet spatial distributions. A configuration was found which increased the magnetic flux density by a factor of 1.8+/-0.2, compared to magnetic configurations previously used in conventional designs. Model predictions were implemented and confirmed experimentally. As a result, laser ultrasound Rayleigh waves have been used to verify the performance of this sensor system. It was establish that the EMAT's in-plane sensitivity increased, while the frequency bandwidth improvement factor was about 1.9+/-0.2. The resonant frequency increased from 6.5 MHz and 16.4 MHz, with both exhibiting an extended frequency response well beyond the resonant values. For maximum frequency response, it was demonstrated that added elements such as cables may have a deleterious effect. In particular the length of the cable, which in turn adds capacitance to the overall circuit, will decrease the frequency response of the EMAT. The frequency response was compared with a previous sensor, to provide an increased resonant frequency factor of 2.5+/-0.2. PMID:16790255

  11. Sunquake Generation by Coronal Magnetic Restructuring

    Russell, Alexander J B; Leake, James E; Hudson, Hugh S

    2016-01-01

    Sunquakes are the surface signatures of acoustic waves in the Sun's interior that are produced by some but not all flares and coronal mass ejections (CMEs). This letter explores a mechanism for sunquake generation by the magnetic field changes that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfv\\'en-sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes by the order of 10 degrees in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the tilt change are of secondary importance.

  12. Generation of nuclear magnetic resonance images

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  13. Permanent magnet edge-field quadrupole

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs

  14. Permanent magnet edge-field quadrupole

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  15. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  16. Magnetic field of Mercury

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 1022G cm3 in the same direction as the earth's dipole), approx.-113 γR/sub M/4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  17. High field superconducting magnets

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  18. Observations of Mercury's magnetic field

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  19. Optimum Magnets for MHD Generators

    One of the more critical aspects in the design of MHD power generation systems for specific applications concerns the proper selection of a magnet for the generator. The advent of superconducting (low weight, zero power) magnets will allow of the realization of MHD systems which are competitive with conventional power generators. Nevertheless, resistive or permanent magnets may prove superior to superconducting magnets for certain types of MHD generation systems. The purpose of this study is to define the areas of applicability for permanent, conventionally cooled resistive, cryogenically cooled resistive, and superconducting magnets to open cycle MHD power generation systems. Combustion driven MHD generators utilizing continuous electrode Faraday and Hall configurations are investigated. In all cases, typical values of gas scalar conductivity, gas velocity, and Hall coefficient are used. Operation of such generators is considered over the range of net power output 100 kW to 1000 MW for durations of 1 ms to one year. For each generator case considered, magnet characteristics are calculated for systems optimized on the basis of either total system cost or total system weight by computer analysis. Magnets and refrigerator systems are assumed to be operated with power generated by the MHD process. The cost, weight, and power requirements of magnet cooling systems are calculated and included in the magnet design criteria. The net power produced by the generator must be computed taking into consideration the proper efficiency factors and losses represented by Joule heating in the resistive magnets and refrigeration losses in superconducting magnets. Coolant tankage weights are also considered for aerospace systems. The type or types of magnets most applicable to the given operating situation for the two types of generators are then selected. The selection of magnet types for stationary and mobile systems as well as for short and long duration systems is made. The results of the investigation are presented in summary form for two types of MHD generators. These results are plotted on power duration and net power output co-ordinates to show the economical operating regimes of the various types of magnets. Both a weight and cost optimum regime are shown for the entire MHD generator operating range. The most significant result of the analysis is that high-purity aluminium magnets cooled with liquid hydrogen exhibit a wide range of application from both a cost and weight standpoint. (author)

  20. Determination of a flow generating a neutral magnetic mode

    Zheligovsky, V.

    2009-01-01

    The problem of reconstruction of a flow of conducting incompressible fluid generating a given magnetic mode is considered. We use the magnetic induction equation to derive ordinary differential equations along the magnetic field lines, which give an opportunity to determine the generating flow, if additional data is provided on a two-dimensional manifold transversal to magnetic field lines, and show that an arbitrary solenoidal vector field can not be a neutral magnetic mode sustained by any ...

  1. Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling

    Hirazawa, Hideyuki; Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro; Sato, Mitsunori; Watanabe, Yuji

    2011-03-01

    Nanosized MgFe2O4-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 °C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe2O4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm ϕ beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm ϕ beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 °C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg0.5Ca0.5Fe2O4 was synthesized using a reverse precipitation method decreased by bead milling.

  2. Noncommutativity in space and primordial magnetic field

    In this paper we show that noncommutativity in spatial coordinates can generate magnetic field in the early Universe on a horizon scale. The strength of such a magnetic field depends on tin number density of massive charged particles present at a given moment. This allows us to trace back the temperature dependence of the noncommutativity scale from the bounds on primordial magnetic field coming from nucleosynthesis. (author)

  3. Passive Magnetic Shielding in Gradient Fields

    Bidinosti, C. P.; Martin, J.W.

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the co...

  4. Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

    Imbert-Gérard Lise-Marie

    2011-11-01

    Full Text Available We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas semi-implicit diffusion operators have been developed for the thermal and resistive conduction equations. Source terms are treated explictly. Numerical results on the deceleration phase of an ICF implosion test problem are proposed, a benchmark which was initially proposed in [2]. Nous proposons dans cet article des méthodes numériques pour les équations de la magnétohydrodynamique résistive à deux températures avec champ magnétique auto-généré et relations de fermeture de Braginskii [1] en géométrie 2-D axisymétrique sur maillage cartésien. Celles-ci sont basées sur une décomposition du système complet selon la nature des opérateurs mathématiques sous-jacents. La partie hyperbolique est résolue par des schémas conservatifs Lagrange-projection d’ordre élevé en directions alternées tandis que des opérateurs de diffusion semi-implicites ont été développés pour les équations de conduction thermique et résistive. Les termes sources sont traités de manière explicite. Des résultats numériques sur un cas-test simulant la phase de décélération d’une implosion de capsule FCI sont proposés, ce benchmark ayant été initialement présenté dans [2].

  5. Generation of 24 T at 4.2 K using a layer-wound GdBCO insert coil with Nb3Sn and Nb–Ti external magnetic field coils

    High-temperature superconducting (HTS) magnets are believed to be a practical option in the development of high field nuclear magnetic resonance (NMR) systems. The development of a 600 MHz NMR system that uses an HTS magnet and a probe with an HTS radio frequency coil is underway. The HTS NMR magnet is expected to reduce the volume occupied by the magnet and to encourage users to install higher field NMR systems. The tolerance to high tensile stress is expected for HTS conductors in order to reduce the magnet in volume. A layer-wound Gd–Ba–Cu–O (GdBCO) insert coil was fabricated in order to investigate its properties under a high electromagnetic force in a high magnetic field. The GdBCO insert coil was successfully operated at a current of up to 321 A and an electromagnetic force BJR of 408 MPa in an external magnetic field generated by Nb3Sn and Nb–Ti low-temperature superconducting coils. The GdBCO insert coil also managed to generate a magnetic field of 6.8 T at the center of the coil in an external magnetic field of 17.2 T. The superconducting magnet consisting of GdBCO, Nb3Sn and Nb–Ti coils successfully generated a magnetic field of 24.0 T at 4.2 K, which represents a new record for a superconducting magnet. (paper)

  6. The Heliospheric Magnetic Field

    Balogh, André; Erdõs, Géza

    2013-06-01

    The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

  7. Non-destructive evaluation of stream generator tubes and pressure tubes from the PHWR reactors, using the rotating magnetic field method

    This work presents a new type of eddy current transducer with a rotating magnetic field devoted to the inspection of steam generator tubes and pressure tubes from the PHWR reactors. A theoretical model has been developed that permits the calculations of the emf induced in the reception coils in the presence of the copper or magnetite deposits, anti-vibration railing and garter springs. (authors)

  8. Generation of magnetic-field aligned currents, parallel electric fields, and inverted-V structures by plasma pressure inhomogeneities in the magnetosphere

    Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than approx. 3g0Bsub(i)/B0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0(Bsub(i) denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEsub(p) + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Esub(p) in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (approx. 1 km) auroral arc. (author)

  9. Distributed generation induction and permanent magnet generators

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  10. High magnetic fields science and technology

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  11. Magnetic fields from second-order interactions

    Osano, Bob

    2014-01-01

    It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-free approach, but could be done in the standard covariant indexed-approach.

  12. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  13. A Fiber Magnetic Field Sensor

    A Fabry-Perot interferometer-based fiber optic sensor that uses magnetostrictive Terfenol-D (Tb0,3Dy0,7Fe1,92) rod as a sensor gauge for measuring DC magnetic fields was designed. A single mode fiber was placed in front of the one of the polished circular face of Terfenol-D rod with 48 mm long and 6 mm in diameter, acts as a reflector, thereby creating an air gap that acts as a Fabry-Perot cavity. A solenoid was used to generate magnetic field and the sensor was inserted inside the coil. The detectable minimum magnetic field level is 8 kA/m (?100 Oe). Up to 45 kA/m magnetic field was measured by using the sensor. Also the obtained results were compared with the theoretical results. A single mode diode laser was used as a light source with 660 nm wavelength and the data acquisition was made with ADC with a simple program written in Labview 8.0

  14. Magnetic field optimization of permanent magnet undulators for arbitrary polarization

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Englisch, U.

    2004-01-01

    Techniques for improving the magnetic field quality of APPLE II undulators are discussed. Individual block characterization including the inhomogeneities of the magnetization permits a precise prediction of field integrals as required for sorting. Specific shimming procedures adapted to the magnetic design of APPLE II undulators have to be employed in order to meet the stringent requirements of insertion devices in third generation synchrotron radiation sources as demonstrated for BESSY.

  15. Coronal Magnetic Field Models

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  16. Magnetic nanoparticle motion in external magnetic field

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director. - Highlights: • There are three different modes of the unit magnetization vector precession for a free magnetic nanoparticle in uniform external magnetic field. • The high-frequency mode is similar to the conventional ferromagnetic resonance. The frequencies of the low-frequency modes can be two orders of magnitude lower. • The characteristic relaxation time for the low-frequency modes is remarkably long

  17. An example of utilization of the superconductivity for the generation of high magnetic fields: the LHC at CERN; Un exemple d'application de la supraconductivite pour la generation d'inductions magnetiques intenses: le LHC du CERN

    Savary, F.; Vlogaert, J. [Conseil Europeen pour la recherche nucleaire, Dept. AT, Geneve (Switzerland)

    2006-09-15

    The Large Hadron Collider, LHC, under construction at CERN (European Organization for Nuclear Research) in Geneva makes use of the low temperature superconductivity of the Nb-Ti alloy to generate high magnetic fields in order to guide and to focus high energy proton beams in a double ring of 27-km circumference; aiming at studying the matter in the sub-nuclear field. In this paper, we will present the main parameters of the collider and the constraints which led to the choice of the low temperature superconductor technology for two of the main components of the LHC: the bending magnet and the focussing quadrupole. Then, the conceptual principles and the main parameters of the bending magnets will be described. To conclude, the results obtained at half of the fabrication of the 1232 superconducting magnets necessary to guide the protons in the accelerator ring will be shown. (authors)

  18. High heat generation ability in AC magnetic field for nano-sized magnetic Y{sub 3}Fe{sub 5}O{sub 12} powder prepared by bead milling

    Aono, Hiromichi, E-mail: aono.hiromichi.mf@ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Hirazawa, Hideyuki [Department of Environmental Materials Engineering, Niihama National College of Technology, Niihama 792-8580 (Japan); Watanabe, Yuji [Department of Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295 (Japan)

    2012-06-15

    Nano-sized magnetic Y{sub 3}Fe{sub 5}O{sub 12} ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 {mu}m in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y{sub 3}Fe{sub 5}O{sub 12} ferrites. The highest heat ability in the AC magnetic field was for the fine Y{sub 3}Fe{sub 5}O{sub 12} powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mm{phi} beads). The heat generation ability of the excessively milled Y{sub 3}Fe{sub 5}O{sub 12} samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Neel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mm{phi} beads, the heat generation ability (W g{sup -1}) was estimated using a 3.58 Multiplication-Sign 10{sup -4} fH{sup 2} frequency (f/kHz) and the magnetic field (H/kA m{sup -1}), which is the highest reported value of superparamagnetic materials. - Highlights: Black-Right-Pointing-Pointer The nano-sized Y{sub 3}Fe{sub 5}O{sub 12} powder prepared by bead-milling has the highest heat generation ability in an AC magnetic field. Black-Right-Pointing-Pointer The heat generation properties are ascribed to an increase in the Neel relaxation of the superparamagnetic material. Black-Right-Pointing-Pointer The heat ability (W g{sup -1}) can be estimated using 3.58 Multiplication-Sign 10{sup -4} fH{sup 2} (f=kHz, H=kA m{sup -1}). Black-Right-Pointing-Pointer This is an expectable material for use in a drug delivery system for the thermal coagulation therapy of cancer tumors.

  19. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    Ye, Hu; Wu, Ping [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China); Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Song, Zhimin; Cao, Yibing; Du, Zhaoyu [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China)

    2015-12-15

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.

  20. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed

  1. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    Ye, Hu; Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Wu, Ping; Song, Zhimin; Cao, Yibing; Du, Zhaoyu

    2015-12-01

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.

  2. Magnetic fields in the cosmos

    Although only a small part of available energy in the universe is invested in magnetic fields, they are responsible for most of the continual violent activity in the cosmos. There is a single, generic explanation for the ability of bodies as different as a dense, cold planet and a tenuous hot galactic disk to generate a magnetic field. The explanation, first worked out for the earth, comes from the discipline of magnetohydrodynamics. The cosmos is filled with fluids capable of carrying electric currents. The magnetic fields entrained in these fluids are stretched and folded by the fluid motion, gaining energy in the process. In other words, the turbulent fluids function as dynamos. However, the dynamo mechanism by itself cannot account for the exceptionally strong field of some stars. Because of such gaps in information, the rival hypothesis that there are primordial fields cannot be disproved. The balance of evidence, however, indicates that the planets, sun, most stars and the galaxy function as colossal dynamos. (SC)

  3. The LHC Magnetic Field Model

    Sammut, Nicholas J; Micallef, Joseph

    2005-01-01

    The compensation of the field changes during the beam injection and acceleration in the LHC requires an accurate forecast and an active control of the magnetic field in the accelerator. The LHC Magnetic Field Model is the core of this magnetic prediction system. The model will provide the desired field components at a given time, magnet operating current, magnet ramp rate, magnet temperature and magnet powering history to the required precision. The model is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet aperture of the LHC dipoles. Each effect is quantified using data obtained from series measurements, and modeled theoretically or empirically depending on the complexity of the physical phenomena involved. This paper presents the developments of the new finely tuned magnetic field model and evaluates its accuracy and predictive capabilities over a sector of the machine.

  4. Generation and focusing of high-power ion beams in a magnetically insulated diode with applied B field

    The results of high-power ion beam (HPIB) generation and in the magnetically insulated diode (MID) installed on a 3 x 1010-W nanosecond accelerator are given. The possibility of efficient HPIB ballistic focusing with the use of the preformed plasma in the HPIB transport region was demonstrated. Several new diagnostics (spring pendulum and acoustic probe) were used to measure the plasma ablation pressure during the impact of the HPIB with the target. The highest degree of HPIB focusing attained during the experiments with spherical geometries of the diode electrodes was equal to 60. The ablation average pressures measured by the spring pendulum gave several kilobars for 8-10 kA/cm2 of HPIB density. The peak pressure measured by accoustic probes attained tens of kilobars for the same HPIB current amplitudes. (author)

  5. Skewed magnetic field lines reconnection

    Three-dimensional time-dependent reconnection of skewed magnetic field lines is studied. Reconnection is shown to be possible only in the limited oval-shaped part of the current sheet, which was called the reconnection zone. The size of the reconnection zone is defined by the reconnection line length, the behaviour of the electric field in the diffusion region as well as by the angle between the reconnecting fields. Reconnected magnetic flux has the same direction as it has in the Petschek's model near the reconnection line (normal flux), but it changes its sign in the rest of the reconnection zone (anomalous flux). The magnetic energy is converted into the kinetic one in the normal flux region, and the reverse process occurs in the anomalous flux region, so the energy balance is fulfilled within the reconnection region. An electric double layer emerges along the reconnection zone, which emits Alfven waves, these carryin away the energy released in the reconnection process. The solution obtained may be useful in various problems of cosmic plasma physics, e.g. MHD waves generation on the Sun, carrying magnetic flux away from its surface, origin of solar cosmic rays, etc

  6. Measurement of electric and magnetic fields

    A project was initiated to study power frequency electric and magnetic fields that exist in Canada. The main objective of the study was to produce a compendium of electric and magnetic field levels that exist in Canada, and to characterize and classify the sources of electric and magnetic fields. Typical electric and magnetic field levels were measured around generating plants, substations, transmission lines, distribution lines, residences and workplaces. Protocols were developed so that a consistent set of data could be collected, and so that sufficient detail could be captured for a thorough analysis. Generating plants were found to exhibit the widest range of magnetic field levels, from 0.02 to 250 microtesla, however had low electric field levels. Electric fields tend to be highest in substations, due to lower clearances of energized bus-work to the ground. Transmission lines had higher magnetic fields than substations and distribution lines. Characterization of distribution lines was difficult due to a wide range of configurations, however in general magnetic fields are lower than near transmission lines. A wide range of magnetic fields were found in residences, but tended to be lower than those found in workplaces. Appendices describe data collection protocols and database structure. Eight separate abstracts have been prepared for this report. 4 refs., 29 figs

  7. A Possible Origin of Magnetic Fields in Galaxies and Clusters: Strong Magnetic fields at z~10?

    Fujita, Y; Fujita, Yutaka; Kato, Tsunehiko N.

    2005-01-01

    We propose that strong magnetic fields should be generated at shock waves associated with formation of galaxies or clusters of galaxies by the Weibel instability, an instability in collisionless plasmas. The strength of the magnetic fields generated through this mechanism is close to the order of those observed in galaxies or clusters of galaxies at present. If the generated fields do not decay rapidly, this indicates that strong amplification of magnetic fields after formation of galaxies or clusters of galaxies is not required. This mechanism could have worked even at a redshift of ~10, and therefore the generated magnetic fields may have affected the formation of stars in protogalaxies. This model will partially be confirmed by future observations of nearby clusters of galaxies. Mechanisms that preserve the magnetic fields for a long time without considerable decay are discussed.

  8. Optimization of superconductivity properties in MgB2 Wires and tapes to generate high magnetic fields

    We present, in this work, a study of the effects of doping, heat treatments and mechanisms of deformation, over the microstructure and superconducting properties of powder in tube (PIT) MgB2 wires and tapes.We observed that nano-SiC doping improves the critical current density (Jc) and the upper critical field (Hc2).The combined use of doping and Hot Isostatic Pressing (HIPing), produces samples with high density and improves Jc s.We studied the influence of number and temperature of intermediate heat treatments (TTI), during the fabrication of wires and tapes.We observed that TTI made at low temperature (oC), results in wires and tapes with better microstructure than those made at high temperature.Moreover, the increment of the heat treatments numbers at high temperature, decreases the quality of microstructure and Jc.In the study of sheaths materials, we observed that the Jc values measured by magnetization in Ti sheath samples are two order of magnitude larger than the values measured by transport, which indicates macroscopic fracture problems.On other hand, we fabricated tapes with excellent Jc values (104A/cm2 at 4K and 7T), which are similar to those of samples made with HIPing.This tape presents some degree of grains alignment, as a consequence of rolling.We observed Jc anisotropy in both transport and magnetization measurements in a range between 4 and 26K, and the same effect in Hc2.The anisotropy factor in Jc increase with applied field, while the anisotropy in Hc2 is constant with temperature (Hc2 parallel Hc2 perpendicular ∼1.2).Finally, we observed that carbon nanotubes doping improves Hc2 and this effects is most important at temperatures below 5K.This increase in Hc2 was predicted by Gurevich [45], as an effect of modification in scattering coefficient between electronics bands of MgB2 by doping

  9. The strongest magnetic fields in the universe

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  10. Heat generation ability in AC magnetic field of nano MgFe{sub 2}O{sub 4}-based ferrite powder prepared by bead milling

    Hirazawa, Hideyuki, E-mail: hirazawa@mat.niihama-nct.ac.j [Department of Environmental Materials Engineering, Niihama National College of Technology, Niihama 792-8580 (Japan); Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Sato, Mitsunori [AdMeTech Co. Ltd., 2821-4, Minami-yoshida-cyo, Matsuyama 791-8042 (Japan); Watanabe, Yuji [Department of Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295 (Japan)

    2011-03-15

    Nanosized MgFe{sub 2}O{sub 4}-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability ({Delta}T=34 {sup o}C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe{sub 2}O{sub 4} powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm {phi} beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm {phi} beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation ({Delta}T=41 {sup o}C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the {Delta}T value for Mg{sub 0.5}Ca{sub 0.5}Fe{sub 2}O{sub 4} was synthesized using a reverse precipitation method decreased by bead milling. - Research highlights: > The crystal and particle size for MgFe{sub 2}O{sub 4} based ferrite were decreased by bead milling. > The highest heat ability was obtained for MgFe{sub 2}O{sub 4} having a ca. 6 nm crystal size. > This high heat generation ability was ascribed to the increase in hysteresis loss. > Hysteresis loss was increased by the formation of a single domain.

  11. Focus on Materials Analysis and Processing in Magnetic Fields

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in...

  12. Observations of Cool-Star Magnetic Fields

    Ansgar Reiners

    2012-02-01

    Full Text Available Cool stars like the Sun harbor convection zones capable of producing substantial surface magnetic fields leading to stellar magnetic activity. The influence of stellar parameters like rotation, radius, and age on cool-star magnetism, and the importance of the shear layer between a radiative core and the convective envelope for the generation of magnetic fields are keys for our understanding of low-mass stellar dynamos, the solar dynamo, and also for other large-scale and planetary dynamos. Our observational picture of cool-star magnetic fields has improved tremendously over the last years. Sophisticated methods were developed to search for the subtle effects of magnetism, which are difficult to detect particularly in cool stars. With an emphasis on the assumptions and capabilities of modern methods used to measure magnetism in cool stars, I review the different techniques available for magnetic field measurements. I collect the analyses on cool-star magnetic fields and try to compare results from different methods, and I review empirical evidence that led to our current picture of magnetic fields and their generation in cool stars and brown dwarfs.

  13. Highly-efficient source of collimated multi-MeV photons driven by radiation reaction of an electron beam in a self-generated magnetic field

    Stark, D J; Arefiev, A V

    2015-01-01

    The rapid development of high brilliance X-ray radiation sources is revolutionizing physics, chemistry, and biology research through their novel applications. Another breakthrough is anticipated with the construction of next-generation laser facilities which will operate at intensities beyond $10^{23}$ $\\mathrm{W/cm^2}$, leading to higher yield, shorter wavelength radiation sources. We use numerical simulations to demonstrate that a source of collimated multi-MeV photons with conversion efficiency comparable to the one expected for these facilities is achievable at an order of magnitude lower in intensity, within reach of the existing facilities. In the optimal setup, the laser pulse irradiates a bulk solid-density target, heating the target electrons and inducing relativistic transparency. As the pulse then propagates, it generates a beam of energetic electrons which in turn drives a strong azimuthal magnetic field. This field significantly enhances the radiation reaction for the electrons, yielding tens of ...

  14. SCUPOL Magnetic Field Analysis

    Poidevin, Frederick; Kowal, Grzegorz; Pino, Elisabete de Gouveia Dal; Magalhaes, Antonio-Mario

    2013-01-01

    We present an extensive analysis of the 850 microns polarization maps of the SCUPOL Catalog produced by Matthews et al. (2009), focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from 2D synthetic maps of dust emission polarization produced with 3D MHD numerical simulations scaled to the S106, OMC-2/3, W49 and DR21 molecular clouds polarization maps. For these specific regions the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfv\\`en and sonic Mach numbers, are consistent within a factor 1 to 2 with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher (1999). Constraints on the values of the inclination angle of the mean magnetic field with respect to the LOS are also given. The values obtained from th...

  15. The Heliospheric Magnetic Field

    Mathew J. Owens

    2013-11-01

    Full Text Available The heliospheric magnetic field (HMF is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  16. Five years of magnetic field management

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  17. Magnetic field evolution in interacting galaxies

    Drzazga, R. T.; Chy?y, K. T.; Jurusik, W.; Wirkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 5 ?G, which is larger than for the non-interacting objects. The field regularity (of 0.27 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 ?G) as interaction advances, then it increases up to 2 , peaks at the nuclear coalescence (25 ?G), and decreases again, down to 5-6 ?G, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to morphological distortions induced by tidal interactions than are the random fields. As a result the polarized emission could be yet another indicator of an ongoing merging process. The found evolution of magnetic field with advancing interaction would definitely imply a stronger effect of magnetic fields on the galaxy surroundings in the earlier cosmological epochs. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23), and make an association of the observed UHECRs with the sites of their origin very uncertain.

  18. Magnetic Fields: Visible and Permanent.

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  19. Magnetic field evolution of accreting neutron stars

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ?, r ? ?-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B??1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/?)-1. The characteristic time of decreasing of the magnetic field ? is equal to ? ? 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  20. A low-power magnetic-field-assisted plasma jet generated by dielectric-barrier discharge enhanced direct-current glow discharge at atmospheric pressure

    A magnetic field is introduced to the dielectric-barrier discharge enhanced direct-current glow discharge for efficient plasma generation, with the discharge power of 2.7 W and total energy consumption reduced to 34% of the original. By spatially examining the emission spectra and plasma temperature, it is found that their peaks shift from edges to the center and the negative and anode glows merge into the positive column and disappear, accompanied by improvement of uniformity and chemical activity of the enlarged plasma. This lies in the enhancement of ionization in the curved and lengthened electron path and the dispersion of discharge domains

  1. A low-power magnetic-field-assisted plasma jet generated by dielectric-barrier discharge enhanced direct-current glow discharge at atmospheric pressure

    Jiang, Weiman; Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Wang, Yishan; Zhao, Wei [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Duan, Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2014-01-06

    A magnetic field is introduced to the dielectric-barrier discharge enhanced direct-current glow discharge for efficient plasma generation, with the discharge power of 2.7 W and total energy consumption reduced to 34% of the original. By spatially examining the emission spectra and plasma temperature, it is found that their peaks shift from edges to the center and the negative and anode glows merge into the positive column and disappear, accompanied by improvement of uniformity and chemical activity of the enlarged plasma. This lies in the enhancement of ionization in the curved and lengthened electron path and the dispersion of discharge domains.

  2. Integral magnetic field measurement of dipole magnets

    This article presents the basic principle of dipole integral magnetic field measurement. The integral coil which has the same radius with the dipole magnets was used to measure the integral magnetic field of different magnets in Cooler Storage Ring (HIRFL-CSR). The article also generally introduced the software and hardware systems of the automatic measurement device. According to the repetitive experiments, a suit of better measurement got to be summarized. On the other hand, the article recommends the way of the data processing which were decided by the measuring instrument and environment influence. The practical measured results proved the measurement system is reliable and stable

  3. Manifestations of Magnetic Field Inhomogeneities

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  4. Simulation on near-field light generated by metal nano-dot on GaAs substrate for heat source of heat-assisted magnetic recording

    Katayama, Ryuichi

    2014-09-01

    Heat-assisted magnetic recording (HAMR) is promising for achieving more than 1 Tb/inch2 recording density. A near-field transducer (NFT), which forms a hot spot of 10-100 nm in diameter on a recording medium, is necessary in HAMR. In this study, localized surface plasmons generated by a metal nano-dot in a novel device for a heat source of heat-assisted magnetic recording were analyzed using a simple model in which a metal hemisphere was formed on a GaAs substrate and a quasi-electrostatic approximation. The scattering and absorption efficiencies as well as the enhancement factor were investigated for several kinds of metal. As a result, their dependence on the wavelength and the polarization direction of the incident light was clarified.

  5. Miniaturized Air-Driven Planar Magnetic Generators

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  6. What Are Electric and Magnetic Fields? (EMF)

    ... Explore » Pollution Print this page Share What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part ... is something we take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) ...

  7. Fast superconducting magnetic field switch

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  8. Comparison of adjustable permanent magnetic field sources

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agreement is found.

  9. Comparison of adjustable permanent magnetic field sources

    Bjørk, R.; Bahl, C. R. H.; Smith, A.; Pryds, N.

    2010-11-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  10. Comparison of adjustable permanent magnetic field sources

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  11. Comparison of adjustable permanent magnetic field sources

    Bjork, R., E-mail: rabj@risoe.dtu.d [Fuel Cells and Solid State Chemistry Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark - DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Bahl, C.R.H.; Smith, A.; Pryds, N. [Fuel Cells and Solid State Chemistry Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark - DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2010-11-15

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

  12. Organic Superconductors at Extremely High Magnetic Fields

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures ∼13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  13. Evolution of twisted magnetic fields

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length

  14. Magnetic fields in nearby galaxies

    Fletcher, Andrew

    2011-01-01

    Observations of synchrotron radiation and the Faraday rotation of its polarized component allow us to investigate the magnetic properties of the diffuse interstellar medium in nearby galaxies, on scales down to roughly one hundred parsecs. All disc galaxies seem to have a mean, or regular, magnetic field component that is ordered on length scales comparable to the size of the galaxy as well as a random magnetic field of comparable or greater strength. I present an overview of what is currently known observationally about galactic magnetic fields, focusing on the common features among galaxies that have been studied rather than the distinctive or unusual properties of individual galaxies. Of particular interest are the azimuthal patterns formed by regular magnetic fields and their pitch angles as these quantities can be directly related to the predictions of the mean field dynamo theory, the most promising theoretical explanation for the apparent ubiquitous presence of regular magnetic fields in disc galaxies.

  15. Ground Vehicle Navigation Using Magnetic Field Variation

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  16. The energy budget of stellar magnetic fields

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Folsom, C. P.; Saikia, S. Boro; Bouvier, J.; Fares, R; Gregory, S. G.; Hussain, G.; Jeffers, S. V; Marsden, S. C.; J. Morin; Moutou, C.; do Nascimento, J. D., Jr.

    2015-01-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5$\\,{\\rm M}_\\odot$. We find that the energy contained in toroidal fields has a power law dependence on t...

  17. Generation of magnetic fields over 21 T in a 61 mm clear bore using low copper ratio (Nb,Ti)3Sn conductors

    A 21 T superconducting magnet system has been developed and improved at the National Research Institute for Metals in Japan. As the steady progress of high-Tc superconducting coils required a larger bore for testing their performance, a new innermost coil has been developed. The authors increased the available bore from 50 mm to 61 mm. The new coil employed three kinds of rectangular (Nb,Ti)3Sn conductors. External copper stabilized these conductors, with a Cu:SC ratio of only 0.25. The new coil operated in a 160 mm diameter clear bore with a background field of 18 T in saturated superfluid helium, generating a central field of 21.5 T without any training behavior. A double walled dewar, the outer diameter of which was 60 mm, was also developed. With this dewar, the new system provides a temperature-variable bore of 50 mm

  18. Vestibular stimulation by magnetic fields.

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  19. Helical magnetic fields via baryon asymmetry

    Piratova, Eduard F; Hortúa, Héctor J

    2014-01-01

    There is strong observational evidence for the presence of large-scale magnetic fields MF in galaxies and clusters, with strength $\\sim \\mu$G and coherence lenght on the order of Kpc. However its origin remains as an outstanding problem. One of the possible explanations is that they have been generated in the early universe. Recently, it has been proposed that helical primordial magnetic fields PMFs, could be generated during the EW or QCD phase transitions, parity-violating processes and predicted by GUT or string theory. Here we concentrate on the study of two mechanisms to generate PMFs, the first one is the $\

  20. Magnetic fields around evolved stars

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  1. Plasma diffusion through multi dipole magnetic fields

    The diffusion of a cold plasma through multi dipole fields of a magnetic picket fence is presented. The ion diffusion and trapping is determined by electric potentials inside the multi dipole fields. The electron diffusion is regulated by an anomalous transport process driven by low frequency fluctuations inside the magnetic sheath. Particles drifting with velocities above the ion acoustic speed generates high amplitude turbulent waves responsible for an anomalous diffusion process. (author)

  2. Nonlinear diffusion waves in high magnetic fields

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  3. Asymmetry in generation of near-surface X-rays by 33 MeV electrons at grazing interaction with a thin Si plate in magnetic field

    Recently observed effect of an asymmetry in X-ray generation by 33 MeV electrons in a 50 μm Si plate oriented along an internal beam of a betatron is described. The evolution of angular patterns formed by the X-rays generated in the Si plate having a length of 4 mm along the electron beam direction, when changing the plate orientation relative to the electron beam, is presented. The experimental results showed for the first time preferential generation of X-rays on the Si plate surface, which was external with respect to the center of the accelerator. At grazing incidence of electrons on this surface the radiation was emitted along the Si plate surface in the cone, which was several times narrower than the cone of ordinary bremsstrahlung emitted along electron beam direction. At grazing interaction of electrons with the internal Si plate surface facing towards the center of the accelerator, the generation of the near-surface radiation was not observed. It is supposed that the presence of the magnetic field of accelerator is decisive for the formation of the observed effect of asymmetry in X-ray generation by electrons in the long Si plate because of possible realization on external plate surface a “magneto-crystalline undulator” regime of near-surface electron motion

  4. Asymmetry in generation of near-surface X-rays by 33 MeV electrons at grazing interaction with a thin Si plate in magnetic field

    Kaplin, V.V., E-mail: kaplin@tpu.ru

    2015-07-15

    Recently observed effect of an asymmetry in X-ray generation by 33 MeV electrons in a 50 μm Si plate oriented along an internal beam of a betatron is described. The evolution of angular patterns formed by the X-rays generated in the Si plate having a length of 4 mm along the electron beam direction, when changing the plate orientation relative to the electron beam, is presented. The experimental results showed for the first time preferential generation of X-rays on the Si plate surface, which was external with respect to the center of the accelerator. At grazing incidence of electrons on this surface the radiation was emitted along the Si plate surface in the cone, which was several times narrower than the cone of ordinary bremsstrahlung emitted along electron beam direction. At grazing interaction of electrons with the internal Si plate surface facing towards the center of the accelerator, the generation of the near-surface radiation was not observed. It is supposed that the presence of the magnetic field of accelerator is decisive for the formation of the observed effect of asymmetry in X-ray generation by electrons in the long Si plate because of possible realization on external plate surface a “magneto-crystalline undulator” regime of near-surface electron motion.

  5. The magnetic field structure of Rotamak discharges

    This thesis describes an experimental study of a field-reversed compact torus configuration which is generated and sustained by a rotating magnetic field. Earlier studies of this so-called 'rotamak' concept used rotating magnetic fields of limited duration (∼15 μs). The present work extends these studies to a longer timescale (∼60 μs). The rotating magnetic field is produced by feeding RF currents, dephased by 90 deg., through two orthogonal Helmholtz coils which are wound around the outside of a spherical Pyrex vacuum vessel. Line generators are used to supply the RF current pulses. The experiments are performed using an argon plasma. From measurements of the driven toroidal current, two rotamak operating modes are identified. Detailed poloidal flux contour measurements prove that these modes are associated with either a closed magnetic field line, compact torus configuration or an open magnetic field line, mirror-like structure. In the compact torus configuration the driven toroidal current is shown to vary linearly with the magnitude of the externally applied equilibrium field. For the same initial conditions of filling pressure and externally applied equilibrium field, the plasma discharges are highly reproducible. The magnetic structures of the discharges are studied in detail for three such sets of initial conditions. In particular, poloidal flux contours are derived for each of the three conditions. Although no toroidal magnetic field is externally imposed in these experiments, under certain conditions a toroidal field is observed to be present. The toroidal field is in opposite directions in the upper and lower halves of the minor cross section. Measurements of the input power into the plasma show that this power is largely determined by the characteristics of the line-generators. The variation of this input power with time can explain all the features observed in the plasma discharges. The effects of a conducting 'shell' around the vacuum vessel are also investigated. 97 refs., 72 figs., ills

  6. High magnetic field ohmically decoupled non-contact technology

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  7. Magnetic Fields in the Solar Convection Zone

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  8. Measurements of magnetic field alignment

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  9. Interplanetary electric and magnetic fields

    Alexeev, I.I.; Kropotkin, A.P.; Veselovsky, I.S. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1982-08-01

    A kinematic model of the stationary electromagnetic fields in interplanetary space with finite conductivity is considered. The electrodynamic problem is solved for a medium with uniform conductivity and radial plasma outflow from a spherical source. Simple analytical formulae are obtained for electric and magnetic fields, currents and charges in the case of a uniformly-magnetized rotating sphere.

  10. Biological effects of magnetic fields

    The principal focus of the LBL program is the analysis of magnetic field effects on physiological functions in experimental animals and selected organ and tissue systems. A major research effort has used electrical recording techniques to detect functional alterations in the cardiovascular, neural, and visual systems during the application of stationary magnetic fields

  11. NMR in pulsed magnetic field

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  12. Dynamically Generated Anomalous Magnetic Moment in Massless QED

    Ferrer, Efrain J

    2009-01-01

    In this paper we investigate the non-perturbative generation of an anomalous magnetic moment for massless fermions in the presence of an external magnetic field. In the context of massless QED in a magnetic field, we prove that the phenomenon of magnetic catalysis of chiral symmetry breaking, which has been associated in the literature with dynamical mass generation, is also responsible for the generation of a dynamical anomalous magnetic moment. As a consequence, the degenerate energy of electrons in Landau levels higher than zero exhibits Zeeman splitting. We explicitly report the splitting for the first Landau level and find the non-perturbative Lande $\\textit{g}$-factor and Bohr magneton. We anticipate that a dynamically generated anomalous magnetic moment will be a universal feature of theories with magnetic catalysis. Our findings can be important for condensed planar systems as graphene, as well as for highly magnetized dense systems as those forming the core of compact stars.

  13. Nonlocal pseudopotentials and magnetic fields

    Pickard, C J; Pickard, Chris J.; Mauri, Francesco

    2003-01-01

    We show how to describe the coupling of electrons to non-uniform magnetic fields in the framework of the widely used norm-conserving pseudopotential appro ximation for electronic structure calculations. Our derivation applies to magnetic fields that are smooth on the scale of the core region. The method is validated by application to the calculation of the magnetic susceptibility of molecules. Our results are compared with high quality all electron quantum chemical results, and another recently proposed formalism.

  14. The MAVEN Magnetic Field Investigation

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  15. The MAVEN Magnetic Field Investigation

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  16. Review: Magnetic fields of O stars

    Wade, G A

    2014-01-01

    Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars, as well as the overall population. I will discuss the extension of the 'magnetic desert', first inferred among the A-type stars, to O stars up to 60 solar masses. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex 'dynamical magnetosphere' structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extra-Galactic magnetic stars.

  17. Magnetic field of pulsating stars

    The relation between the amplitude of magnetic field intensity, semiamplitude of radial velocity variation and the effective temperature of envelope in the form R??Be/(VrT-bare3/2)=const is obtained using dimension analysis of physical values determining the process of variation of magnetic field intensity in pulsating stars. It is shown, that magnitude R calculated for the pulsating stars of DCEP, DCEPS, CEP and RRAB-types with the magnetic field measured takes close values. This fact permits to estimate a probable amplitude of variation of the field intensity for the stars with the known parameters Vr and Te but the unknown value ?Be

  18. Wuhan pulsed high magnetic field center

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  19. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  20. Magnetic fields in ring galaxies

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R

    2016-01-01

    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  1. Multi-coil magnetic field modeling

    Juchem, Christoph; Green, Dan; de Graaf, Robin A.

    2013-11-01

    The performance of multi-coil (MC) magnetic field modeling is compared to dedicated wire patterns for the generation of spherical harmonic (SH) shapes as these are the workhorse for spatial encoding and magnetic field homogenization in MR imaging and spectroscopy. To this end, an example 48 channel MC setup is analyzed and shown to be capable of generating all first through fourth order SH shapes over small and large regions-of-interest relevant for MR investigations. The MC efficiency for the generation of linear gradient fields shares the same order of magnitude with classic and state-of-the-art SH gradient coils. MC field modeling becomes progressively more efficient with the synthesis of more complex field shapes that require the combination of multiple SH terms. The possibility of a region-specific optimization of both magnetic field shapes and generation performance with the MC approach are discussed with emphasis on the possible trade-off between the field accuracy and generation efficiency.

  2. Generation of non-equilibrium thermal quantum discord and entanglement in a three-spin XX chain by multi-spin interaction and an external magnetic field

    The generation of non-equilibrium thermal quantum discord and entanglement is investigated in a three-spin chain whose two end spins are respectively coupled to two thermal reservoirs at different temperatures. We show that the spin chain can be decoupled from the thermal reservoirs by homogeneously applying a magnetic field and including a strong three-spin interaction, and then the maximal steady-state quantum discord and entanglement in the two end spins can always be created. In addition, the present investigation may provide a useful approach to control coupling between a quantum system and its environment. -- Highlights: → Spin chain decoupled from thermal reservoirs. → Thermal excitation depressed. → Maximal quantum correlations created.

  3. Generation of non-equilibrium thermal quantum discord and entanglement in a three-spin XX chain by multi-spin interaction and an external magnetic field

    Zhang, Xiu-xing [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and Department of Applied Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Fu-li, E-mail: flli@mail.xjtu.edu.cn [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and Department of Applied Physics, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-11-07

    The generation of non-equilibrium thermal quantum discord and entanglement is investigated in a three-spin chain whose two end spins are respectively coupled to two thermal reservoirs at different temperatures. We show that the spin chain can be decoupled from the thermal reservoirs by homogeneously applying a magnetic field and including a strong three-spin interaction, and then the maximal steady-state quantum discord and entanglement in the two end spins can always be created. In addition, the present investigation may provide a useful approach to control coupling between a quantum system and its environment. -- Highlights: → Spin chain decoupled from thermal reservoirs. → Thermal excitation depressed. → Maximal quantum correlations created.

  4. Advanced magnetic calculations for high magnetic field compact ion source

    The design of the advanced electronic cyclotronic resonance ion source (ECRIS) requires relatively high axial and radial magnetic inductions to allow the ECR frequency increase and to take advantage of the subsequent density increase (scaling laws). The last improvements of the commercial rare-earth magnet characteristics open new opportunities for ECRIS and enable the design of very high hexapolar magnetic fields for next generation compact ECRIS. Moreover, the high temperature superconducting (HTS) wires allow designing reliable and compact axial field coils (30 K cooled) at a very effective cost. It is thus very relevant to study a compact hybrid ECRIS using high remanence magnet and HTS technologies. In such a design, the volume of the plasma chamber is a free parameter that can be adjusted to the user requirement. It can be dedicated to very high ionic current production or high charge state production, pulsed, or cw operations. This paper presents the three-dimensional overall simulation of a 3 T axial magnetic field compact ECRIS with a high radial field sextupole composed with several magnet types and reaching ?1.9 T in front of the radially magnetized magnets. This design study will lead to the building of the 28-40 GHz A-PHOENIX source at the laboratory which will deliver its first beam by the end of 2004

  5. Venus magnetic field and magnetosphere

    Magnetic field investigations have been conducted in the distance of 1500-3000 km and 1-6Rsub(β) from the Venus, where Rsub(β) - is the Venus radius. Magnetic field complex topology, observed at the Venus night side form ''Venera-9,10'' satellites is explained by the Venus having its own weak magnetic field and the action of outer source fields. There is a magnetic stub on the planet night side, in which 2 bunches of lines of force, devided by neutral layer, are directed from the planet (to the north of equator) and to the planet (to the south of equator). The magnetic stub narrows at approaching to the planet and is located inside the planet geometric shade near the planet. The planet magnetic field effects but slightly the character of the planet flow-around by the sun wind. The stub topology depends on the polarity mark and force of field in the planet transfer zone. The ''overuniting'' processes of magnetospheric field and fields of outer sources present permanent process in the Venus magnetosphere. Notwithstanding the weakness of the Venus field, it is similar to geomagnetic one in a model way, provided the planet rotation peculiarities are taken into account

  6. Magnetic field evolution of accreting neutron stars

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  7. Dynamo generated field emergence through recurrent plasmoid ejections

    Warnecke, Jrn

    2010-01-01

    Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress--and--relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space--time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.

  8. PERMANENT-MAGNET INDUCTION GENERATORS: AN OVERVIEW

    K. S. S. RAMAKRISHNAN; PAWAN SHARMA; T. S. BHATTI

    2011-01-01

    The advantage of using a permanent-magnet induction generator (PMIG) instead of a conventional induction generator is its ability to suppress inrush current during system linking when synchronous input is performed. Induction machines excited with permanent-magnet (PM) are called permanent-magnet induction generators. This paper presents an exhaustive survey of the literature discussing the classification of permanent-magnet machines, process of permanent-magnet excitation and voltage build-u...

  9. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  10. Magnetic field homogeneity perturbations in finite Halbach dipole magnets

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z) - Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  11. Comparison of alignment tensors generated for native tRNAVal using magnetic fields and liquid crystalline media

    Residual dipolar couplings (RDCs) complement standard NOE distance and J-coupling torsion angle data to improve the local and global structure of biomolecules in solution. One powerful application of RDCs is for domain orientation studies, which are especially valuable for structural studies of nucleic acids, where the local structure of a double helix is readily modeled and the orientations of the helical domains can then be determined from RDC data. However, RDCs obtained from only one alignment media generally result in degenerate solutions for the orientation of multiple domains. In protein systems, different alignment media are typically used to eliminate this orientational degeneracy, where the combination of RDCs from two (or more) independent alignment tensors can be used to overcome this degeneracy. It is demonstrated here for native E. coli tRNAVal that many of the commonly used liquid crystalline alignment media result in very similar alignment tensors, which do not eliminate the 4-fold degeneracy for orienting the two helical domains in tRNA. The intrinsic magnetic susceptibility anisotropy (MSA) of the nucleobases in tRNAVal was also used to obtain RDCs for magnetic alignment at 800 and 900 MHz. While these RDCs yield a different alignment tensor, the specific orientation of this tensor combined with the high rhombicity for the tensors in the liquid crystalline media only eliminates two of the four degenerate orientations for tRNAVal. Simulations are used to show that, in optimal cases, the combination of RDCs obtained from liquid crystalline medium and MSA-induced alignment can be used to obtain a unique orientation for the two helical domains in tRNAVal

  12. Optimization of Cryogenic and Superconducting Magnetic Systems for MHD Generators

    Increasing the strength of the magnetic field within the working volume of an MHD generator results in a considerable increase in the power density and consequently a reduction in the weight of the generator and in the unit power cost. Strong magnetic fields can be obtained by means of iron-free magnetic systems in which either super pure metals or superconducting alloys cooled by liquid gases are used in the windings. The best windings cross-section for producing a uniform magnetic field in the rectangular working region is chosen. With an iron-free magnetic system incorporating windings of such configuration the weight can be reduced to a minimum. The authors present the calculations for producing uniform magnetic fields of high intensity in the working volume of the MHD duct by means of iron-free magnetic systems. The properties of these systems are compared in the paper. (author)

  13. STUDY INTO THE MAGNETIC FIELD FOR A MAGNETOCALORIC COOLING SYSTEM WITH THE USE OF MAGNETOVISION

    Czernuszewicz, Agata; Kaleta, Jerzy; Lewandowski, Daniel; Wiewirski, Przemys?aw

    2014-01-01

    The paper presents measurements of the magnetic field intensity of a magnet used to generate a magnetic field in a magnetocaloric cooling system. The magnet a Halbach array consisting of several permanent magnets is cylindrical with a hole in the centre. The special arrangement of these magnets concentrates the magnetic field in the inner gap. The generated magnetic field was examined with the aid of a magnetovision system designed in our laboratory. The investigations confirmed that a ma...

  14. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  15. Neutron scattering in magnetic fields

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references

  16. Constraints on primordial magnetic fields from inflation

    Green, Daniel; Kobayashi, Takeshi

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10‑15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

  17. Study of marine magnetic field

    Bhattacharya, G.C.

    of rocks revealed that there are normal and reverse magnetizations, suggesting that the Earth’s magnetic field had reversed its polarity many times in the geologic past at irregular intervals. The polarity is said to be "normal" when Earth’s magnetic..., the temporal references of various tectonic events are provided, either with respect to polarity reversal time scale or with respect to the geological time scale. Therefore, synthesising the timing of geological events inferred in various studies sometimes...

  18. Magnetic Field Amplification in Young Galaxies

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  19. Transport in ergodic magnetic fields

    Solution of a 3D problem based on a numerical treatment of macroscopic fluid equations is shown to be necessary to describe a stochastic scrape-off layer in the framework of the theory of transport in an ergodic magnetic field. The transport of a stochastic magnetic field within the bulk plasma is also considered. Here the drift kinetic equation is solved with the ansatz for the distribution function to deviate only a little from the Maxwellian. A local fluctuating stochastic magnetic field and electric field are considered and transport is found by averaging over the unperturbed magnetic surfaces. Due to collisions the diffusion coefficient is much larger than given by the Rosenbluth, Rechester formula

  20. ISR split-field magnet

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  1. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  2. What Are Electric and Magnetic Fields? (EMF)

    ... Lessons Topics Games Activities Lessons MENU What are Electric and Magnetic Fields? (EMF) Kids Homepage Topics Pollution What are Electric ... is something we take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible lines ...

  3. Magnetic fields on the Sun

    Howard, R.

    1981-01-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  4. Magnetic fields on the Sun

    Howard, R.

    1982-02-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  5. Theorem on magnet fringe field

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (bn) and skew (an) multipoles, By + iBx = summation(bn + ian)(x + iy)n, where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ? ? B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar an, bar bn, bar Bx, and bar By defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |?p?|, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |?p0|, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field Bx from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  6. The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    Pessah, Martin Elias; Psaltis, Dimitrios

    2005-01-01

    rotating, magnetized flows and the evolution of the magnetorotational instability beyond the weak-field limit. We show that, when superthermal toroidal fields are considered, the effects of both compressibility and magnetic tension forces, which are related to the curvature of toroidal field lines, should...... shearing box simulations in which superthermal toroidal fields are generated....

  7. Sensor-less Field Oriented Control of Wind Turbine Driven Permanent Magnet Synchronous Generator Using Flux Linkage and Back EMF Estimation Methods

    Porselvi Thayumanavan

    2014-05-01

    Full Text Available The study aims at the speed control of the wind turbine driven Permanent Magnet Synchronous Generator (PMSG by sensor-less Field Oriented Control (FOC method. Two methods of sensor-less FOC are proposed to control the speed and torque of the PMSG. The PMSG and the full-scale converter have an increasing market share in variable speed Wind Energy Conversion System (WECS. When compared to the Induction Generators (IGs, the PMSGs are smaller, easier to control and more efficient. In addition, the PMSG can operate at variable speeds, so that the maximum power can be extracted even at low or medium wind speeds. Wind turbines generally employ speed sensors or shaft position encoders to determine the speed and the position of the rotor. In order to reduce the cost, maintenance and complexity concerned with the sensor, the sensor-less approach has been developed. This study presents the sensor-less control techniques using the flux-linkage and the back EMF estimation methods. Simulations for both the methods are carried out in MATLAB/SIMULINK. The simulated waveforms of the reference speed, the measured speed, the reference torque, the measured torque and rotor position are shown for both the methods.

  8. Application of high pulsed magnetic fields for metal welding

    Physical basis of application of high pulsed magnetic fields for various metal welding are considered. Characteristics of generators of high pulsed currents and magnetic fields are presented. Results of studying and testing welded joints are set forth; practical examples for application of pulsed magnetic welding technology for pressurizing of nuclear reactor fuel elements are presented. 6 refs., 7 figs., 1 tab

  9. Matter in Strong Magnetic Fields

    Lai, D

    2001-01-01

    The properties of matter are significantly modified by strong magnetic fields, $B>>2.35\\times 10^9$ Gauss ($1 G =10^{-4} Tesla$), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, with $10^9G << B < 10^{16}G$. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also di...

  10. Nuclear Disintegration in Magnetic Fields

    Loveridge, Lee C.

    2002-01-01

    We employ the Weizsaecker-Williams method of virtual quanta to study disintegration of nuclei in magnetic field. We explore a variety of field configurations and conclude that for the energy range of interest for applications to cosmic rays (10^{18}-10^{21} eV) such disintegrations are not a significant source of energy or flux loss for any realistic acceleration mechanism.

  11. Magnetic fields in O stars

    Naz, Yal

    2014-01-01

    During the last decade, large-scale, organized (generally dipolar) magnetic fields with strengths between 0.1 and 20 kG have been detected in dozens of OB stars. This contribution reviews the impact of such fields on the stellar winds of O-type stars, with emphasis on variability and X-ray emission.

  12. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  13. Magnetic nanoparticles for applications in oscillating magnetic field

    Peeraphatdit, Chorthip

    2010-12-15

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  14. Magnetic Fields in Spiral Galaxies

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  15. Magnetic field of the Earth

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the periods of inversion of a magnetic field of the Earth determine cycles of the Ice Age. At inversions of a magnetic field when B=0, radial electric currents are small or are absent, excretion of thermal energy minimally or an equal to zero,it is the beginning of the cooling the Earth and offensive of the Ice Age. Disappearance warm current Gulf Stream warming the north of the Europe and Canada. Drift of a magnetic dipole of the Earth in a rotation the opposite to rotation of the Earth, is acknowledgement of drift of a kernel of the Earth in a rotation the opposite to rotation of the Earth and is acknowledgement of the theory « the Magnetic field of the Earth ». The author continues to develop the theory « the Magnetic field of the Earth » and invites geophysicists to accept in it participation in it.

  16. Dense matter is strong magnetic fields

    Sinha, Monika

    2012-01-01

    Compact stars having strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10^14-10^15 G, the implied internal field strength being several orders larger. We study the equation of state and composition of hypernuclear matter and quark matter - two forms of dense matter in strong magnetic fields. We find that the magnetic field has substantial influence on the properties of hypernuclear matter and quark matter for magnetic field B \\...

  17. Magnetic fields of neutron stars

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  18. Anomalous currents in dense matter under a magnetic field

    Hong, Deog Ki

    2010-01-01

    We consider fermionic dense matter under a magnetic field, where fermions couple minimally to gauge fields, and calculate anomalous currents at one loop. We find anomalous currents are spontaneously generated along the magnetic field but fermions only in the lowest Landau level contribute to anomalous currents. We then show that there are no more corrections to the anomalous currents from two or higher loops.

  19. Highly focused and efficient terahertz radiation generation by photo-mixing of lasers in plasma in the presence of magnetic field

    Malik, Anil K., E-mail: anilkmalik@gmail.com [Department of Physics, Multani Mal Modi College Modinagar, C.C.S. University, Meerut, Uttar Pradesh 201204 (India); Singh, Kunwar Pal [Singh Simutech Pvt. Ltd., Bharatpur, Rajasthan 321201 (India); Sajal, V. [Jaypee Institute of Information Technology, Noida 201307 (India)

    2014-07-15

    A mechanism of efficient and highly focused terahertz (THz) radiation generation by photo-mixing of top-hat like lasers with frequencies ω{sub 1}, ω{sub 2} and wave numbers k{sub 1}, k{sub 2} in pre-formed rippled density (corrugated) plasma is proposed. In this mechanism, intensity variation of lasers offers nonlinear ponderomotive force at frequency ω{sup ′}=ω{sub 1}−ω{sub 2} and wave number k{sup ′}=k{sub 1}−k{sub 2} which couples with density ripples in the plasma and leads to a strong nonlinear oscillatory current that resonantly excites highly focused and intense THz radiation at frequency ω{sub UH}=√((ω{sub p}{sup 2}+ω{sub c}{sup 2})) (where ω{sub c} is electron cyclotron frequency). The efficiency of emitted THz radiation of the order of 15% is obtained under optimum conditions. It is observed that focus and intensity of emitted radiation can be controlled by selecting a proper profile index of the lasers, ripple parameters, and tuning of external magnetic field.

  20. Magnetic shielding by soft magnetic materials in alternating magnetic field

    The magnetic shielding effect of an alternating field up to 20 kHz was examined in 3% Si steel sheets and amorphous ribbons. Not only the permeability but also the domain configuration was found to affect the shielding effects. The annealed Fe-based amorphous shield without field showed exceedingly high shielding effectiveness for higher frequencies

  1. About possibility to measure an electric dipole moment (EDM) of nuclei in the range $10^{-27} \\div 10^{-32}$ $e \\cdot cm$ in experiments for search of time-reversal violating generation of magnetic and electric fields

    Baryshevsky, Vladimir

    2004-01-01

    The possibility to measure an electric dipole moment (EDM) of nuclei in the range $10^{-27} \\div 10^{-32}$ $e \\cdot cm$ in experiments for search of time-reversal violating generation of magnetic and electric fields is discussed.

  2. Origin of solar magnetic fields

    Turbulent-dynamo theories of the solar cycle are criticized, and an alternative theory is proposed.The critique of dynamo theory focuses on attempts to justify the theory's basic physical and mathematical assumptions. It is argued that the theory's fundamental equation, the dynamo equation, is not a mathematically valid or physically plausible approximation to the exact equation governing the mean field; that there is no known physical or mathematical basis for the assumption that fluid turbulence enhances the diffusion of weak magnetic fields, as required by dynamo theories; and that mathematical models of ?? dynamos are internally inconsistent. Dynamo theories also encounter serious observational dificulties. The absence of strong surface fields for extended periods (70 years in the case of the Maunder minimum) is difficult to reconcile with theoretical expectations.The alternative theory invokes a nonregenerated, irregular magnetic field largely confined to the nonconvective core. The genesis of this field during the Hayashi phase of pre-main-sequence evolution and its role in the spin-down of the proto-Sun are discussed in qualitative terms. It is argued that the submerged field interacts with differential rotation mainly in a narrow layer at the base of the convection zone. This interaction drives a t torsional hydromagnetic oscillation which produces the reversing toroidal field in the manner originally suggested by Cowling (1953). This picture accounts qualitatively for the observed ocrrelations among the duration, intensity, and rise time of the magnetic cycle, as well as for the existence of extended periods of surface inactivity

  3. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  4. Anisotropy of magnetic emulsions induced by magnetic and electric fields

    Dikansky, Yury I.; Tyatyushkin, Alexander N.; Zakinyan, Arthur R.

    2011-01-01

    The anisotropy of magnetic emulsions induced by simultaneously acting electric and magnetic fields is theoretically and experimentally investigated. Due to the anisotropy, the electric conductivity and magnetic permeability of a magnetic emulsion are no longer scalar coefficients, but are tensors. The electric conductivity and magnetic permeability tensors of sufficiently diluted emulsions in sufficiently weak electric and magnetic fields are found as functions of the electric and magnetic in...

  5. Majorana neutrinos and magnetic fields

    It is stressed that if neutrinos are massive they are probably of Majorana type. This implies that their magnetic moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. It is pointed out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and flavor of a neutrino. In this case the spin rotation changes particle to anti-particle. The spin-flavor rotation effect is worked out in detail. The parameterization and calculation of the electromagnetic form factors of Majorana neutrinos are discussed, taking into account the somewhat unusual quantum theory of massive Majorana particles

  6. Bosonic Casimir effect in external magnetic field

    Cougo-Pinto, M. V.; Farina, C.; Negrao, M. R.; Tort, A C

    1998-01-01

    We compute the influence of an external magnetic field on the Casimir energy of a massive charged scalar field confined between two parallel infinite plates. For this case the obtained result shows that the magnetic field inhibits the Casimir effect.

  7. Magnetic Fields in the Solar Convection Zone

    Yuhong Fan

    2009-12-01

    Full Text Available Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  8. Magnetic Fields at Largest Universal Strengths: Overview

    Beskin, V. S.; Balogh, A.; Falanga, M.; Treumann, R. A.

    2015-10-01

    A brief review is given about the role strong magnetic fields play in the universe. We list the main observational and theoretical achievements treated in the following chapters including a number of open questions which future research is going to attack. Strong fields in the universe exceed any large scale fields by several orders of magnitude, at first glance suggesting that their generation mechanisms would be different. However, it is believed that gravitational collapse and magnetic flux conservation is responsible for the amplification of fields generated in the progenitors to the observed strengths. In this sense the extremely strong fields are mainly fossil, and their variety confirms the different masses and stages where the collapse comes to rest, at the lightest in white dwarfs and at the strongest in magnetars, which are a particular class of neutron stars with strongly inhomogeneous particularly structured crust. Various effects related to the detection of such fields, radiation generation and consequences for the environment are pointed out and referred to the relevant chapters in this volume.

  9. First results of the MAVEN magnetic field investigation

    Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.; Gruesbeck, J. R.; Oliversen, R. J.; Mitchell, D. L.; Halekas, J.; Mazelle, C.; Brain, D.; Jakosky, B. M.

    2015-11-01

    Two Mars Atmosphere and Volatile EvolutioN magnetic field sensors sample the ambient magnetic field at the outer edge of each solar array. We characterized relatively minor spacecraft-generated magnetic fields using in-flight subsystem tests and spacecraft maneuvers. Dynamic spacecraft fields associated with the power subsystem (≤1 nT) are compensated for using spacecraft engineering telemetry to identify active solar array circuits and monitor their electrical current production. Static spacecraft magnetic fields are monitored using spacecraft roll maneuvers. Accuracy of measurement of the environmental magnetic field is demonstrated by comparison with field directions deduced from the symmetry properties of the electron distribution function measured by the Solar Wind Electron Analyzer. We map the bow shock, magnetic pileup boundary, the V × B convection electric field and ubiquitous proton cyclotron, and 1 Hz waves in the ion foreshock region.

  10. Magnetic Cusp Configuration of the SPL Plasma Generator

    Kronberger, Matthias; Chaudet, Elodie; Favre, Gilles; Lettry, Jacques; Kchler, Detlef; Moyret, Pierre; Paoluzzi, Mauro; Prever-Loiri, Laurent; Schmitzer, Claus; Scrivens, Richard; Steyaert, Didier

    2011-09-01

    The Superconducting Proton Linac (SPL) is a novel linear accelerator concept currently studied at CERN. As part of this study, a new Cs-free, RF-driven external antenna H- plasma generator has been developed to withstand an average thermal load of 6 kW. The magnetic configuration of the new plasma generator includes a dodecapole cusp field and a filter field separating the plasma heating and H- production regions. Ferrites surrounding the RF antenna serve in enhancing the coupling of the RF to the plasma. Due to the space requirements of the plasma chamber cooling circuit, the cusp magnets are pushed outwards compared to Linac4 and the cusp field strength in the plasma region is reduced by 40% when N-S magnetized magnets are used. The cusp field strength and plasma confinement can be improved by replacing the N-S magnets with offset Halbach elements of which each consists of three magnetic sub-elements with different magnetization direction. A design challenge is the dissipation of RF power induced by eddy currents in the cusp and filter magnets which may lead to overheating and demagnetization. In view of this, a copper magnet cage has been developed that shields the cusp magnets from the radiation of the RF antenna.

  11. Magnetic Cusp Configuration of the SPL Plasma Generator

    The Superconducting Proton Linac (SPL) is a novel linear accelerator concept currently studied at CERN. As part of this study, a new Cs-free, RF-driven external antenna H- plasma generator has been developed to withstand an average thermal load of 6 kW. The magnetic configuration of the new plasma generator includes a dodecapole cusp field and a filter field separating the plasma heating and H- production regions. Ferrites surrounding the RF antenna serve in enhancing the coupling of the RF to the plasma. Due to the space requirements of the plasma chamber cooling circuit, the cusp magnets are pushed outwards compared to Linac4 and the cusp field strength in the plasma region is reduced by 40% when N-S magnetized magnets are used. The cusp field strength and plasma confinement can be improved by replacing the N-S magnets with offset Halbach elements of which each consists of three magnetic sub-elements with different magnetization direction. A design challenge is the dissipation of RF power induced by eddy currents in the cusp and filter magnets which may lead to overheating and demagnetization. In view of this, a copper magnet cage has been developed that shields the cusp magnets from the radiation of the RF antenna.

  12. Cosmic Microwave Background Radiation anisotropy with primordial magnetic fields

    Koh, Seoktae; Lee, Chul H.

    2000-01-01

    Galactic magnetic fields are observed of order $\\sim 10^{-6}G$, but their origin is not definitely known yet. In this paper we consider the primordial magnetic fields generated in the early universe and analyse their effects on the density perturbations and the CMBR anisotropy. We assume that the random magnetic fields have the power law spectrum and satisfy the force-free field condition. The peak heights of the CMBR anisotropy are shown to be shifted upward depending on the magnetic field s...

  13. Magnetic flux generator for balanced membrane loudspeaker

    Rehder, Jörg; Rombach, Pirmin; Hansen, Ole

    This paper reports the development of a magnetic flux generator with an application in a hearing aid loudspeaker produced in microsystem technology (MST). The technology plans for two different designs for the magnetic flux generator utilizing a softmagnetic substrate or electroplated NiCoFe as...

  14. Magnetic fields of accreting pulsars

    Doroshenko, Victor

    2011-01-01

    Accreting pulsars are rotating, highly magnetized neutron stars in binary systems which emit pulsed X-rays. This emission is powered by the gravitational energy of the plasma accreted from a non degenerate companion funneled onto the polar caps of the neutron star by the magnetic field, and thermalized to X-rays either in the impact with the surface of the neutron star, or in the so-called accretion column. Although discovered more than forty years ago many aspects of the emission form accret...

  15. Galactic and intergalactic magnetic fields

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  16. Magnetic field evolution in magnetar crusts through three dimensional simulations

    Gourgouliatos, Konstantinos N; Hollerbach, Rainer

    2016-01-01

    Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star's outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modelling of the evolution of the magnetic field in the crust of a neutron star through 3-D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to non-axisymmetric, kilometre-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high energy bursts through local crust yielding, and the localised enhancement of Ohmic heating can power the star's persistent emission. Thus...

  17. Two dimensional imaging of laser produced plasma in magnetic field

    A new experimental set which consist of pulse magnetic field system has been developed for two dimensional imaging of laser produced plasma across the transverse magnetic field. A pair of coils coupled with capacitor bank system is used to generate uniform magnetic field varying from 0-0.8 T magnetic. The coils, target and ablation geometry are set in such a way that it facilitate the plume imaging in both across and along the magnetic field lines. Internally synchronized two ICCD cameras, mounted in orthogonal direction have been used to capture the temporal evolution of expending plasma plume. The design, optimization and performance of the above system will discuss in detail. Apart from the technical aspect of the experimental setup, test results related to effect of magnetic field on the geometrical aspect of the expanding plasma across as well as along the magnetic field will discuss briefly. (author)

  18. Synchrotron Magnetic Fields from Rayleigh-Taylor Instability in Supernovae

    Duffell, Paul

    2016-01-01

    Synchrotron emission from a supernova necessitates a magnetic field, but it is unknown how strong the relevant magnetic fields are, and what mechanism generates them. In this study, we perform high-resolution numerical gas dynamics calculations to determine the growth of turbulence due to Rayleigh-Taylor instability, and the resulting kinetic energy in turbulent fluctuations, to infer the strength of magnetic fields amplified by this turbulence. We find that Rayleigh-Taylor instability can produce turbulent fluctuations strong enough to amplify magnetic fields to a few percent of equipartition with the thermal energy. This turbulence stays concentrated near the reverse shock, but averaging this magnetic energy throughout the shocked region (weighting by emissivity) sets the magnetic fields at a minimum of 0.3 percent of equipartition. This suggests a minimum effective magnetic field strength ($\\epsilon_B > 0.003$) which should be present in all interacting supernovae.

  19. NMR system and method having a permanent magnet providing a rotating magnetic field

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  20. A linear magnetic motor and generator

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.