Sample records for ma oceanic crust

  1. Multiple-scale hydrothermal circulation in 135 Ma oceanic crust of the Japan Trench outer rise: Numerical models constrained with heat flow observations (United States)

    Ray, Labani; Kawada, Yoshifumi; Hamamoto, Hideki; Yamano, Makoto


    Anomalous high heat flow is observed within 150 km seaward of the trench axis at the Japan Trench offshore of Sanriku, where the old Pacific Plate (˜135 Ma) is subducting. Individual heat flow values range between 42 and 114 mW m-2, with an average of ˜70 mW m-2. These values are higher than those expected from the seafloor age based on thermal models of the oceanic plate, i.e., ˜50 mW m-2. The heat flow exhibits spatial variations at multiple scales: regional high average heat flow (˜100 km) and smaller-scale heat flow peaks (˜1 km). We found that hydrothermal mining of heat from depth due to gradual thickening of an aquifer in the oceanic crust toward the trench axis can yield elevated heat flow of the spatial scale of ˜100 km. Topographic effects combined with hydrothermal circulation may account for the observed smaller-scale heat flow variations. Hydrothermal circulation in high-permeability faults may result in heat flow peaks of a subkilometer spatial scale. Volcanic intrusions are unlikely to be a major source of heat flow variations at any scale because of limited occurrence of young volcanoes in the study area. Hydrothermal heat transport may work at various scales on outer rises of other subduction zones as well, since fractures and faults have been well developed due to bending of the incoming plate.

  2. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance (United States)

    Xu, Yi-Gang


    Major, trace element and Sr-Nd-Pb isotopic data of basalts emplaced during 90-40 Ma in the North and Northeast China are compiled in this review, with aims of constraining their petrogenesis, and by inference the evolution of the North China Craton during the late Cretaceous and early Cenozoic. Three major components are identified in magma source, including depleted component I and II, and an enriched component. The depleted component I, which is characterized by relatively low 87Sr/86Sr (1.1) and HIMU-like trace element characteristics, is most likely derived from gabbroic cumulate of the oceanic crust. The depleted component II, which distinguishes itself by its high ?Nd (?8) and moderate 87Sr/86Sr (?0.7038), is probably derived from a sub-lithospheric ambient mantle. The enriched component has low ?Nd (2-3), high 87Sr/86Sr (>0.7065), low 206Pb/204Pb (17), excess Sr, Rb, Ba and a deficiency of Zr and Hf relative to the REE. This component is likely from the basaltic portion of the oceanic crust, which is variably altered by seawater and contains minor sediments. Comparison with experimental melts and trace element modeling suggest that these recycled oceanic components may be in form of garnet pyroxenite/eclogite. These components are young (influence of Pacific subduction on the deep processes in the North China Craton, which can be traced back at least to the late Cretaceous. This, along with the conjugation of crustal deformation pattern in this region with the movement of the Pacific plate, makes the Pacific subduction as a potential trigger of the destruction of the North China Craton. Geophysical investigations and morphological analyses indicate that decratonization is largely confined to east of the NSGL, whereas to west of NSGL, in particular the Ordos basin, characteristics typical of a craton are observed (Menzies et al., 2007; Zhu et al., 2011). This spatial pattern of craton destruction, together with NE-NNE-oriented extensional basins, main structural alignments and metamorphic core complexes (Zheng et al., 1978; Ye et al., 1987; Ren et al., 2002; Liu et al., 2006; Zhu G et al., 2012), is consistent with the subduction direction of the Pacific plate. Two main episodes of late Mesozoic magmatism have been identified in the Jurassic and the early Cretaceous. These correspond to the subduction of the Pacific plate underneath the Eurasian content and to subsequent extensions, respectively (Wu et al., 2005, 2006). Global tomography studies indicate that the subducted Pacific oceanic slab has become stagnant within the mantle transition zone and extended subhorizontally westward beneath the East Asian continent (Fukao et al., 1992; Huang and Zhao, 2006; Chen and Ai, 2009; Van der Hilst and Li, 2010). The western end of this stagnant slab does not go beyond the NNE-trending NSGL (Huang and Zh

  3. Field and geochemical characterisitics of the Mesoarchean (~3075 ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in a supra-subduction oceanic crust.

    DEFF Research Database (Denmark)

    Polat, A.; Appel, P.W.U.


    The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt in southern West Greenland includes variably deformed and metamorphosed pillow basalts, ultramafic flows (picrites), serpentinized ultramafic rocks, gabbros, sulphide-rich siliceous layers, and minor siliciclastic sedimentary rocks. Primary magmatic features such as concentric cooling-cracks and drainage cavities in pillows, volcanic breccia, ocelli interpreted as liquid immiscibility textures in pillows and gabbros, magmatic layering in gabbros, and clinopyroxene cumulates in ultramafic flows are well preserved in low-strain domains. The belt underwent at least two stages of calc-silicate metasomatic alteration and polyphase deformation between 2963 and 3075 Ma. The stage I metasomatic assemblage is composed predominantly of epidote (now mostly diopside) + quartz + plagioclase ± hornblende ± scapolite, and occurs mainly in pillow cores, pillow interstitials, and along pillow basalt-gabbro contacts. The origin of this metasomatic assemblage is attributed to seafloor hydrothermal alteration. On the basis of the common presence of epidote inclusions in diopside and the local occurrence of epidote-rich aggregates, the stage I metasomatic assemblage is interpreted as relict epidosite. The stage II metasomatic assemblage occurs as concordant discontinuous layered calc-silicate bodies to discordant calc-silicate veins commonly associated with shear zones. The stage II metasomatic assemblage consists mainly of diopside + garnet + amphibole + plagioclase + quartz ± vesuvianite ± scapolite ± epidote ± titanite ± calcite ± scheelite. Given that the second stage of metasomatism is closely associated with shear zones and replaced rocks with an early metamorphic fabric, its origin is attributed to regional dynamothermal metamorphism. The least altered pillow basalts, picrites, gabbros, and diorites are characterized by LREE-enriched, near-flat HREE, and HFSE (especially Nb)-depleted trace element patterns, indicating a subduction zone geochemical signature. Ultramafic pillows and cumulates display large positive initial eNd values of + 1.3 to + 5.0, consistent with a strongly depleted mantle source. Given the geological similarities between the Ivisaartoq greenstone belt and Phanerozoic forearc ophiolites, we suggest that the Ivisaartoq greenstone belt represents Mesoarchean supra-subduction zone oceanic crust.

  4. The global oxidation state of the upper oceanic crust (United States)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Smith-Duque, C. E.; Teagle, D. A.


    The oxidation state of the oceanic crust is an important component of the Earth system. The widespread oxidation of the crust is a major contributor to the redox state of the mantle due to the subduction of hydrothermally altered oceanic crust, which supplies 10 - 25 % of the net ferric iron flux to the global mantle Fe3+/FeTOT budget (Lécuyer and Ricard, 1999). Secondly, the degree of oxidation of the upper oceanic crust provides a measure of the biomass of microbial life sub-basement (Bach and Edwards, 2003). Thirdly, oxidation state analyses of oceanic basalt give information on the environment and relative timings of local hydrothermal alteration events. To date comprehensive measurements of Fe3+/FeTOT for the oceanic crust are lacking. Post crystallisation oxidation processes, occurring predominantly in the upper basaltic layers of the crust, elevate ratios of ferric to total iron (Fe3+/FeTOT) from mantle levels of 0.16 ± 0.01 (Cottrell and Kelley, 2011). Ferrous (Fe2+/) iron is oxidised to ferric (Fe3+/) iron during reaction with oxidised seawater, which circulates through oceanic crust for tens of millions of years following crustal formation. This study integrates published data with new analyses from six ocean crustal boreholes to categorise the global oxidation state of the upper crust. Samples range from <1 to 129 Ma, and represent basalt from medium to superfast spreading centres, depths between <100 - 2000 mbsf, and at a variety of sedimentary cover rates and thicknesses. Results show that by 1 Ma, the Fe3+/FeTOT ratio of the bulk crust is already raised to an average of 0.28 ± 0.07, implying that the oxidation state is established very early in the lifetime of the ocean crust. Post 1 Ma, Fe3+/FeTOT ratios are more variable, reflecting the effects of prolonged exposure to circulating seawater, but are on average ~0.35.

  5. Field and geochemical characterisitics of the Mesoarchean (~3075 ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in a supra-subduction oceanic crust

    DEFF Research Database (Denmark)

    Polat, A.; Appel, P.W.U.; Frei, Robert; Pan, Y.; Dilek, Y.; Ordonez-Calderon, J.C.; Fryer, B.; Hollis, J.A.; Raith, J.G.


    The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt in southern West Greenland includes variably deformed and metamorphosed pillow basalts, ultramafic flows (picrites), serpentinized ultramafic rocks, gabbros, sulphide-rich siliceous layers, and minor siliciclastic sedimentary rocks. Primary magmatic features such as concentric cooling-cracks and drainage cavities in pillows, volcanic breccia, ocelli interpreted as liquid immiscibility textures in pillows and gabbros, magmatic layering in g...

  6. Metamorphic processes in subducting oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.W. [CNRS, Lab. Magmas et Volcans, Clermont-Ferrand (France)


    In subduction zones, crust is recycled back into the mantle. Three principal processes of interaction between oceanic crust and mantle may intervene: (i) dehydration (or more general devolatilization) which leads to the transfer of volatiles and hydrophile elements into the mantle wedge, (ii) partial melting of the oceanic crust which might mobilize 10-30% of the crust, and finally (iii) assimilation of the mostly dry residual crust into the mantle at great depth. This lecture deals mostly with the first process but will also discuss some aspects of melting of subducting crust. First, the state of the oceanic crust before subduction will be characterized and some typical metamorphic reactions taking place between 10 and 300 km depth investigated. Next, some principles of devolatilization reactions are described and some thermodynamic calculations will illustrate the prediction of phase equilibria and thus P-T determinations. Furthermore, some consequences for geochemical processes are outlined. Slab melting will be briefly characterized and finally, a quantification of the dehydration process is outlined.

  7. Magnetization of the oceanic crust: TRM or CRM? (United States)

    Raymond, C. A.; Labrecque, J. L.


    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  8. Helium isotopes in ferromanganese crusts from the central Pacific Ocean (United States)

    Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.


    Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 ?m diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.

  9. Post-glacial ocean acidification and the decline of reefal microbial crusts (United States)

    Riding, R.; Liang, L.; Braga, J.


    Data from Pacific, Indian Ocean and Caribbean coral reefs indicate marked Late Pleistocene to Holocene decline in the maximum thickness of microbial carbonate crusts in reef cavities. Using estimated values of pH, temperature, CO2, and ionic composition, we calculated calcite saturation ratio (?calcite) of tropical surface seawater for the past 16 Ka. This shows a declining trend of ?calcite, paralleling that of reefal microbial crust thickness. We suggest that thinning of reefal microbial crusts could reflect decrease in seawater carbonate saturation due to ocean acidification in response to deglacial CO2 increase. Previously, decline in reefal microbial crusts, for example at Tahiti in the Pacific Ocean, has mainly been attributed to changes in nutrient supply associated with ocean upwelling and/or terrestrial run-off. Ocean acidification does not preclude such effects on microbial crust development produced by localized changes, but two features in particular are consistent with a global link with carbonate saturation state. Firstly, post-glacial decline in reefal microbial crust thickness affected tropical coral reefs in several oceans. Secondly, seawater carbonate saturation is a major long-term control on microbial carbonate abundance; microbially-induced biocalcification requires elevated seawater saturation for CaCO3 minerals and can be expected to fluctuate with carbonate saturation. In addition to compiling published crust thickness data, we measured thicknesses of microbial carbonate crusts in cavities in Tahiti reefs sampled by Integrated Ocean Drilling Program coring in 2005. This indicates halving of maximum crust thickness, during the same period as steep decline in mean-ocean calcite saturation, near the Pleistocene-Holocene transition. Reefal microbial crusts have been common since skeletal reefs became widespread during the Ordovician Period, 475 Ma ago. The habitat for cryptic crusts expanded as scleractinian corals developed cavernous frameworks. These typically form late-stage stromatolitic veneers on coral and other reef skeletons in framework cavities, and can make a substantial contribution to reef structure. In some tropical reefs of the past 10 Ma, microbial crusts constitute up to 80% of the CaCO3 framework. The thinning and/or elimination of crusts affects the wave-resistance and mechanical stability of skeletal frames, and can be expected to influence overall patterns of coral reef growth and architecture. If the deglacial decline in reefal microbial crusts recorded by our data does reflect reduction in carbonate saturation ratio due to CO2 increase, then this natural ocean acidification can be expected to have occurred with similar effects during earlier interglacial periods.

  10. Estimation of seismic velocities of upper oceanic crust from ocean bottom reflection loss data. (United States)

    Dong, Hefeng; Chapman, N Ross; Hannay, David E; Dosso, Stan E


    This paper describes a Bayesian inversion of acoustic reflection loss versus angle measurements to estimate the compressional and shear wave velocities in young uppermost oceanic crust, Layer 2A. The data were obtained in an experiment on the thinly sedimented western flank of the Endeavor segment of the Juan de Fuca Ridge, using a towed horizontal hydrophone array and small explosive charges as sound sources. Measurements were made at three sites at increasing distance from the ridge spreading center to determine the effect of age of the crust on seismic velocities. The inversion used reflection loss data in a 1/3-octave band centered at 16 Hz. The compressional and shear wave velocities of the basalt were highly sensitive parameters in the inversion. The compressional wave velocity increased from 2547 + or - 30 to 2710 + or - 18 m/s over an age span of 1.4 million years (Ma) from the spreading center, an increase of 4.5 + or - 1.0%/Ma. The basalt shear wave velocity increased by nearly a factor of 2, from approximately 725 to 1320 m/s over the same age span. These results show a decreasing trend of Poisson's ratio with age, from a value of 0.46 at the youngest site closest to the ridge axis. PMID:20369999

  11. Another one bites the rust: Microbes weathering subsurface oceanic crust (United States)

    Orcutt, B.


    The marine deep biosphere consists of deeply buried sediment and igneous oceanic crust; yet, the existence, extent, and activity of life hosted in igneous oceanic crust is considerably less understood than in the sedimentaty realm. The role of microbial metabolic reactions in altering basaltic crust is not yet clear. This presentation will summarize what is currently known or speculated about rates of microbial activity in crust, focusing on the cycling of iron and oxygen, based on data from a few basalt-dominated sites that have been examined recently, including the eastern flank of the Juan de Fuca Ridge, the western flank of the Mid-Atlantic Ridge, and the Dorado Outcrop. Microbial community diversity, activity and genomic data will seek to address the question: how do you think microbes get along without iron when it's gone?

  12. Alpha Ridge: Oceanic or Continental Crust? Constraints from Crustal Thickness Mapping using Gravity Inversion (United States)

    Kusznir, N. J.; Alvey, A.


    The ocean basins of the Arctic formed during the Late Jurassic, Cretaceous and Tertiary as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The structure and origin of the Alpha and Mendeleev Ridges within the Amerasia Basin are contentious; possibilities include thick oceanic crust formed by ocean ridge - mantle plume interaction, micro-continents or thinned continental crust with mantle plume volcanic addition. We use gravity inversion, incorporating a lithosphere thermal gravity anomaly correction, to map Moho depth, crustal thickness and continental lithosphere thinning factor for the Amerasia Basin in order to determine the distribution of oceanic and continental lithosphere and the ocean-continent transition location. Data used in the gravity inversion are gravity data from the NGA (U) Arctic Gravity Project, IBCAO bathymetry and sediment thickness from Laske et al. (1997). Our gravity inversion predicts thin crust (5-10 km thickness) and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20-30 km, are predicted for the Alpha, Mendeleev and Lomonosov Ridges. Moho depths predicted by gravity inversion compare well with estimates from the TransArctica-Arctica seismic profiles. Moho depths from the gravity inversion are dependent on the age of oceanic lithosphere and continental breakup because of the lithosphere thermal gravity anomaly correction; these ages are uncertain for the Amerasia Basin. Gravity inversion sensitivities to break-up ages between 150 Ma (late Jurassic Triassic) and 60 Ma (early Tertiary) have been examined. Alpha Ridge has in its centre a crustal thickness of 25-30 km and possesses sharp angular edges. While Alpha Ridge has been compared with Iceland for structure and origin, its very large positive satellite derived MF6 total magnetic field anomaly at 350 km elevation (Maus et al. 2009) is an order of magnitude larger in amplitude and spatial extent than of Iceland suggesting a different origin. A global search shows that Kerguelen and Broken Ridge have similar 25-30 km crustal thicknesses, sharp angular edges, and large positive MF6-dt350 satellite magnetic anomalies. Evidence suggests that Kerguelen and Broken Ridge are micro-continents formed by poly-phase continental breakup (giving their angular sharp edges) with LIP volcanic addition. Our interpretation is that, by analogy, Alpha Ridge is also a micro-continent formed by poly-phase continental breakup with LIP volcanic addition.

  13. Chemical Composition of Ferromanganese Crusts in the World Ocean: A Review and Comprehensive Database. U.S. Geological Survey. (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Ferromanganese Crust data set was compiled by F.T. Manheim and C.M. Lane-Bostwick of the U.S. Geological Survey, Woods Hole, MA. The data set consists of...

  14. Changes in erosion and ocean circulation recorded in the Hf isotopic compositions of North Atlantic and Indian Ocean ferromanganese crusts (United States)

    Piotrowski, Alexander M.; Lee, Der-Chuen; Christensen, John N.; Burton, Kevin W.; Halliday, Alex N.; Hein, James R.; Günther, Detlef


    High-resolution Hf isotopic records are presented for hydrogenetic Fe–Mn crusts from the North Atlantic and Indian Oceans. BM1969 from the western North Atlantic has previously been shown to record systematically decreasing Nd isotopic compositions from about 60 to ?4 Ma, at which time both show a rapid decrease to unradiogenic Nd composition, thought to be related to the increasing influence of NADW or glaciation in the northern hemisphere. During the Oligocene, North Atlantic Hf became progressively less radiogenic until in the mid-Miocene (?15 Ma) it reached +1. It then shifted gradually back to an ?Hf value of +3 at 4 Ma, since when it has decreased rapidly to about ?1 at the present day. The observed shifts in the Hf isotopic composition were probably caused by variation in intensity of erosion as glaciation progressed in the northern hemisphere. Ferromanganese crusts SS663 and 109D are from about 5500 m depth in the Indian Ocean and are now separated by ?2300 km across the Mid-Indian Ridge. They display similar trends in Hf isotopic composition from 20 to 5 Ma, with the more northern crust having a composition that is consistently more radiogenic (by ?2 ?Hf units). Paradoxically, during the last 20 Ma the Hf isotopic compositions of the two crusts have converged despite increased separation and subsidence relative to the ridge. A correlatable negative excursion at ?5 Ma in the two records may reflect a short-term increase in erosion caused by the activation of the Himalayan main central thrust. Changes to unradiogenic Hf in the central Indian Ocean after 5 Ma may alternatively have been caused by the expanding influence of NADW into the Mid-Indian Basin via circum-Antarctic deep water or a reduction of Pacific flow through the Indonesian gateway. In either case, these results illustrate the utility of the Hf isotope system as a tracer of paleoceanographic changes, capable of responding to subtle changes in erosional regime not readily resolved using other isotope systems.

  15. Anorthositic oceanic crust in the Archean Earth (United States)

    Jagoutz, E.; Dawson, J. B.; Hoernes, S.; Spettel, B.; Waenke, H.


    Ultrapure minerals separated from eclogite inclusions in kimberlites were analyzed for Sm, Nd, Sr, and oxygen isotopes and for major and trace elements. Clinopyroxene (cpx) and garnet (gnt) are the only primary mineral phases in these rocks, and mineral phases and their alteration products. The WR sub calc. is the reconstructed bulk composition excluding all the contamination influences. Two groups of eclogites: are distinguished: (1) type A Noritic-anorthositic eclogites; and (2) type B Ti-ferrogabbroic eclogites. The oxygen isotopes are primary mantle-derived features of these rocks and are not caused by posteruption processes, as they were measured on unaltered, clean mineral separates and show a correlation with REE pattern and Sr and Nd isotopes. It is suggested that the variation of the oxygen isotopes are caused by crustal-level fluid-rock interaction at relatively low temperature. It is shown that oxygen isotopes variation in MORB basalts caused by the hydrothermal system are in the same range as the observed oxygen isotope variation in eclogites. A model to explain the new set of data is proposed. It is thought that some of these eclogites might be emplaced into the upper lithosphere or lower crust at the time corresponding to their internal isochron age. The calculated WR composition was used to estimate model ages for these rocks.

  16. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean (United States)

    Banakar, V.K.; Hein, J.R.


    A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher content of oxide-bound elements than in the older zone, possibly corresponding to further increased oxygenation of bottom-waters, increased stability of the seamount slope, and gradually reduced input of continental detritus from the erosion of the Himalayas. Middle Miocene Antarctic glaciation, which peaked ~ 12-13 Ma ago, increased the oxic bottom-water influx to the basin resulting in accretion of the crust with low detritus. Therefore, the younger crust started to accrete in response to a shift in bottom-water circulation towards the contemporary pattern, which produced a uniform growth rate and pillar structure up to the present. (C) 2000 Published by Elsevier Science B.V.

  17. Early Carboniferous (˜357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria) (United States)

    Stern, Robert J.; Ren, Minghua; Ali, Kamal; Förster, Hans-Jürgen; Al Safarjalani, Abdulrahman; Nasir, Sobhi; Whitehouse, Martin J.; Leybourne, Matthew I.; Romer, Rolf L.


    Continental crust beneath northern Arabia is deeply buried and poorly known. To advance our knowledge of this crust, we studied 8 xenoliths brought to the surface by Neogene eruptions of Tell Thannoun, S. Syria. The xenolith suite consists of two peridotites, one pyroxenite, four mafic granulites, and one charnockite. The four mafic granulites and charnockite are probably samples of the lower crust, and two mafic granulites gave 2-pyroxene equilibration temperatures of 780-800 °C, which we take to reflect temperatures at the time of formation. Peridotite and pyroxenite gave significantly higher temperatures of ?900 °C, consistent with derivation from the underlying lithospheric mantle. Fe-rich peridotite yielded T?800 °C, perhaps representing a cumulate layer in the crust. Three samples spanning the lithologic range of the suite (pyroxenite, mafic granulite, and charnockite) yielded indistinguishable concordant U-Pb zircon ages of ?357 Ma, interpreted to approximate when these magmas crystallized. These igneous rocks are mostly juvenile additions from the mantle, as indicated by low initial 87Sr/86Sr (0.70312 to 0.70510) and strongly positive initial ?Nd(357 Ma) (+4 to +9.5). Nd model ages range from 0.55 to 0.71 Ga. We were unable to unequivocally infer a tectonic setting where these melts formed: convergent margin, rift, or hotspot. These xenoliths differ from those of Jordan and Saudi Arabia to the south in four principal ways: 1) age, being least 200 Ma younger than the presumed Neoproterozoic (533-1000 Ma) crust beneath Jordan and Saudi Arabia; 2) the presence of charnockite; 3) abundance of Fe-rich mafic and ultramafic lithologies; and 4) the presence of sapphirine. Our studies indicate that northern Arabian plate lithosphere contains a significant proportion of juvenile Late Paleozoic crust, the extent of which remains to be elucidated. This discovery helps explain fission track resetting documented for rocks from Israel and provides insights into the nature of Late Paleozoic (Hercynian) deformation that affected Arabia near the Persian Gulf.

  18. Geochemical constraints on the origin of the late Jurassic proto-Caribbean oceanic crust in Hispaniola (United States)

    Viruete, J. Escuder; Pérez-Estaún, A.; Weis, D.


    The nature of the oceanic crust produced through rifting and oceanic spreading between North and South America during the Late Jurassic is a key element for the Caribbean plate tectonic model reconstruction. Located in the Cordillera Central of Hispaniola, the Loma La Monja volcano-plutonic assemblage (LMA) is composed of gabbros, dolerites, basalts, and oceanic sediments, as well as metamorphic equivalents, which represent a dismembered fragment of this proto-Caribbean oceanic crust. Petrologic and geochemical data show that the LMA have a relatively broad diversity in composition, which represent the crystallization products of a typical low-pressure tholeiitic fractionation of mid-ocean ridge basalts (MORB)-type parental magmas, ranging from N- to E-MORB. Three geochemical groups have been distinguished in the volcanic sequence: LREE-flat to slightly LREE-enriched basalts of groups II and III occur interlayered in the lower stratigraphic levels; and LREE-depleted basalts of group I in the upper levels. Mantle melt modeling suggests that group III magmas are consistent by mixing within a mantle melt column of low-degree (15%) melts of a shallow spinel source, and groups II and I magmas are explained with moderate to high (14-18%) and very high (>20%) fractional melting degrees of a shallower spinel mantle source, respectively. Thus, upward in the volcanic sequence of the LMA, the magmas represent progressively more extensive melting of shallower sources, in a plume-influenced spreading ridge of the proto-Caribbean oceanic crust. Nb/Y versus Zr/Y systematics combined with recent plate tectonic model reconstructions reveal that Caribbean Colombian oceanic plateau fragments in Hispaniola formed through melting of heterogeneous mantle source regions related with distinct plumes during at least from Aptian-Albian (>96 Ma) to Late Campanian.

  19. Periodic deformation of oceanic crust in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Ramana, M.V.; Rao, D.G.; Murthy, K.S.R.; Rao, M.M.M.; Subrahmanyam, V.; Sarma, K.V.L.N.S.

    New seismic reflection profiles of ~~ 5370 km, running through the Ocean Drilling Program Leg 116 sites and Deep Sea Drilling Project Sites 215 and 218, were obtained to investigate the spatial extent, timing, and nature of the Tertiary deformation...

  20. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.


    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  1. Exploring the oceanic crust deep biosphere through subsurface borehole observatories (United States)

    Orcutt, Beth


    During Integrated Ocean Drilling Program Expeditions 327 and 336, several new subsurface borehole observatories were installed in oceanic crust, with a primary motivation to access the deep biosphere in these poorly understood environments. These new observatories have enabled unprecedented opportunities to collect high-quality samples for microbiological analysis, including metagenomic and single cell genomic investigations of the unique microbial communities living "on the rocks." This presentation will provide an overview of recent discoveries, focusing on the observatories on the Juan de Fuca Ridge flank and highlighting adaptations to life in the subsurface gleaned from genomic approaches. The presentation will also highlight opportunities for continued observatory-based research within the International Ocean Discovery Program.

  2. Thermochemical convection in the mantle with oceanic crust recirculation (United States)

    Trubitsyn, V. P.


    Basalts of mid-ocean ridges are depleted in incompatible elements that have passed into the continental crust. Basalts of hot spots (oceanic islands and igneous provinces) have a chemical composition close to the primary uniform mantle and are even somewhat enriched in incompatible elements. At present, for explaining the reason for this difference, there are different qualitative schemes of differentiation and mixing of substance in the mantle. In the present work, the results of numerical modeling of the two-component thermochemical convection in the mantle are given. They quantitatively demonstrate with which parameters in the mantle the layers of different chemical composition can remain unchanged. Models with different density contrasts and with variable viscosity are examined. The times of the partial mixing of layers depending on the values of these parameters are calculated. For retaining the stratified mantle for two Ga, the density contrast must be more than 2%. If the layer D? contains a substance of the primary composition, then, its upper boundary can be the place of origin of the plumes that feed the hot spots of the Earth. The enrichment in the incompatible elements and the variety of the chemical composition of hot spots can be explained by the mixing of the substance of the slowly eroded D? layer and the oceanic crust accumulated in it.

  3. Geophysical and geochemical nature of relaminated arc-derived lower crust underneath oceanic domain in southern Mongolia (United States)

    Guy, Alexandra; Schulmann, Karel; Janoušek, Vojt?ch; Å típská, Pavla; Armstrong, Robin; Belousova, Elena; Dolgopolova, Alla; Seltmann, Reimar; Lexa, Ondrej; Jiang, Yingde; Hanžl, Pavel


    The Central Asian Orogenic Belt (CAOB) in southern Mongolia consists of E-W trending Neoproterozoic cratons and Silurian-Devonian oceanic tectonic zones. Previous study revealed that the Early Paleozoic accretionary wedge and the oceanic tectonic zone are underlain by a layer giving a homogeneous gravity signal. Forward gravity modelling suggests that this layer is not formed of high-density material typical of lower oceanic crust but is composed of low- to intermediate-density rocks resembling continental crust. The nature of this lower crust is constrained by the whole-rock geochemistry and zircon Hf isotopic signature of abundant Late Carboniferous high-K calc-alkaline and Early Permian A-type granitoids intruding the two Early Paleozoic domains. It is possible to explain the genesis of these granitoids by anatexis of juvenile, metaigneous (tonalitic-gabbroic) rocks of Late Cambrian age, the source of which is presumed to lie in the "Khantaishir" arc (520-495 Ma) further north. In order to test this hypothesis, the likely modal composition and density of Khantaishir arc-like protoliths are thermodynamically modelled at granulite- and higher amphibolite-facies conditions. It is shown that the current average density of the lower crust inferred by gravity modelling (2730 ± 20 kg/m3) matches best metamorphosed leucotonalite to diorite. Based on these results, it is now proposed that Mongolian CAOB has an architecture in which the accretionary wedge and oceanic upper crust is underlain by allochthonous lower crust that originated in a Cambrian arc. A tectonic model explaining relamination of allochthonous felsic to intermediate lower crust beneath mafic upper crust is proposed.

  4. Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data (United States)

    Bécel, Anne; Shillington, Donna J.; Nedimovi?, Mladen R.; Webb, Spahr C.; Kuehn, Harold


    Multi-channel seismic (MCS) reflection profiles across the Pacific Plate south of the Alaska Peninsula reveal the internal structure of mature oceanic crust (48-56 Ma) formed at fast to intermediate spreading rates during and after a major plate re-organization. Oceanic crust formed at fast spreading rates (half spreading rate ? 74 mm /yr) has smoother basement topography, thinner sediment cover with less faulting, and an igneous section that is at least 1 km thicker than crust formed at intermediate spreading rates (half spreading rate ? 28- 34 mm /yr). MCS data across fast-spreading oceanic crust formed during plate re-organization contain abundant bright reflections, mostly confined to the lower crust above a highly reflective Moho transition zone, which has a reflection coefficient (RC) of ?0.1. The lower crustal events dip predominantly toward the paleo-ridge axis at ?10-30°. Reflections are also imaged in the uppermost mantle, which primarily dip away from the ridge at ?10-25°, the opposite direction to those observed in the lower crust. Dipping events in both the lower crust and upper mantle are absent on profiles acquired across the oceanic crust formed at intermediate spreading rates emplaced after plate re-organization, where a Moho reflection is weak or absent. Our preferred interpretation is that the imaged lower crustal dipping reflections within the fast spread crust arise from shear zones that form near the spreading center in the region characterized by interstitial melt. The abundance and reflection amplitude strength of these events (RC ? 0.15) can be explained by a combination of solidified melt that was segregated within the shear structures, mylonitization of the shear zones, and crystal alignment, all of which can result in anisotropy and constructive signal interference. Formation of shear zones with this geometry requires differential motion between the crust and upper mantle, where the upper mantle moves away from the ridge faster than the crust. Active asthenospheric upwelling is one possible explanation for these conditions. The other possible interpretation is that lower crustal reflections are caused by magmatic (mafic/ultramafic) layering associated with accretion from a central mid-crustal magma chamber. Considering that the lower crustal dipping events have only been imaged in regions that have experienced plate re-organizations associated with ridge jumps or rift propagation, we speculate that locally enhanced mantle flow associated with these settings may lead to differential motion between the crust and the uppermost mantle, and therefore to shearing in the ductile lower crust or, alternatively, that plate reorganization could produce magmatic pulses which may lead to mafic/ultramafic banding.

  5. Cadomian (?560 Ma) crust buried beneath the northern Arabian Peninsula: Mineral, chemical, geochronological, and isotopic constraints from NE Jordan xenoliths (United States)

    Stern, Robert J.; Ali, Kamal A.; Ren, Minghua; Jarrar, Ghaleb H.; Romer, Rolf L.; Leybourne, Matthew I.; Whitehouse, Martin J.; Ibrahim, Khalil M.


    In order to better understand the nature and formation of the lower continental crust beneath northern Arabia, we studied lower crustal xenoliths brought up by Neogene basalts in NE Jordan. Most of these xenoliths are comprised of primary phases plagioclase + two-pyroxenes with magnetite and ilmenite. Most clinopyroxene are augite whereas orthopyroxene mostly are hypersthene (Mg# = 50-80). Plagioclase feldspar is dominantly andesine-labradorite; pyrope-rich garnet and Fe-rich olivine (Fo75 to Fo62) are rare. These xenoliths represent cumulates formed from intermediate magmas that pooled in the lower crust. Many xenoliths also contain small, fine-grained K-rich zones interpreted as melt pockets reflecting late magmatic infiltration of the lower crust. The xenoliths display a wide range in major element compositions (37-51 wt.% SiO2, 4-15 wt.% MgO and 0.1-6.3 wt.% TiO2), enrichment in Ba, K, Sr, Pb and Eu, and some trace element ratios atypical of bulk continental crust (e.g., K/Rb = 1265 ± 565, K/U = 63 000 ± 60 080 and Th/U = 0.96 ± 0.56); these extreme ratios reflect widespread K-metasomatism associated with melt pockets. The magmas from which these cumulates formed may have been generated at a reararc convergent margin setting. Four U-Pb zircon populations yield indistinguishable ages of 554 ± 4 Ma; 559 ± 5 Ma; 559 ± 6 Ma, and 563 ± 5 Ma. Initial 87Sr/86Sr values (0.70260-0.70352) and positive ?Nd(560) (with the exception of a single, more radiogenic sample (+9.6), range = + 1.3 to +4.8) indicate that the lower crust sampled by the xenoliths originated in the asthenospheric mantle, with little or no interaction with older crust, although Pb isotopic compositions allow for some interaction with older or subducted crustal materials. We interpret the geochemistry and mineralogy of these xenoliths to indicate that the lower crust beneath NE Jordan is mafic and comprised of plagioclase-rich 2-pyroxene igneous rocks. The lower crust of this area formed by magmatic underplating over less than 18 Ma. The crust of NE Jordan is significantly younger than the crust of the northernmost Arabian-Nubian Shield and represents a fragment of Cadomian (600-520 Ma) crust that may make up the NE margin of the Arabian Plate.

  6. Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution (United States)

    Trela, Jarek; Vidito, Christopher; Gazel, Esteban; Herzberg, Claude; Class, Cornelia; Whalen, William; Jicha, Brian; Bizimis, Michael; Alvarado, Guillermo E.


    Galápagos plume-related lavas in the accreted terranes of the Caribbean and along the west coast of Costa Rica and Panama provide evidence on the evolution of the Galápagos mantle plume, specifically its mantle temperature, size and composition of heterogeneities, and dynamics. Here we provide new 40Ar/39Ar ages, major and trace element data, Sr-Nd-Pb isotopic compositions, and high-precision olivine analyses for samples from the Quepos terrane (Costa Rica) to closely examine the transitional phase of the Galápagos Plume from Large Igneous Province (LIP) to ocean island basalt (OIB) forming stages. The new ages indicate that the record of Quepos volcanism began at 70 Ma and persisted for 10 Ma. Petrological evidence suggests that the maximum mantle potential temperature (Tp) of the plume changed from ?1650° to ?1550 °C between 90-70 Ma. This change correlates with a dominant pyroxenite component in the Galapagos source as indicated by high Ni and Fe/Mn and low Ca olivines relative to those that crystallized in normal peridotite derived melts. The decrease in Tp also correlates with an increase in high-field strength element enrichments, e.g., Nb/Nb*, of the erupted lavas. Radiogenic isotope ratios (Nd-Pb) suggest that the Quepos terrane samples have intermediate (Central Domain) radiogenic signatures. The Galápagos plume at 70 Ma represents elevated pyroxenite melt productivity relative to peridotite in a cooling lithologically heterogeneous mantle.

  7. Geo-neutrino Detection From the Oceanic Crust (United States)

    Dye, S.


    It is well established that radioactivity within the Earth contributes to terrestrial heat flow and dynamic activity of the planet. At present, the extent of the contribution is predicted by models rather than measured by observation. Radioactive heat is dominated by long-lived isotopes of uranium, thorium, and potassium. It is now demonstrated that uranium and thorium in the Earth can be measured by geo-neutrino detectors. Geo- neutrino detectors at both continental and oceanic locations are needed to determine the partitioning of uranium and thorium between the crusts and mantle. The key role of the marine geo-neutrino detector for measuring mantle radioactivity, searching for the putative geo-reactor, and monitoring nuclear activity is described.

  8. Partial separation of halogens during the subduction of oceanic crust (United States)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.


    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep into the mantle through subduction of oceanic crust, possibly via marine pore fluids (Sumino et al. 2010). The OIB source region is, however, significantly enriched in fluorine relative to the primitive mantle by a factor of 1.4-3.6, which indicates that significantly larger amounts of fluorine are transported deep into the Earth's mantle through subduction. An explanation for the partial separation of chlorine and fluorine during subduction is that the heavy halogens are more likely to escape from the subducting slab in hydrous fluids at an early subduction stage whereas significant amounts of fluorine are likely to remain in the slab, possibly incorporated in the lattice of hydrous amphibole or mica, or in anhydrous high-pressure phases of eclogite. The MORB source mantle is degassed in fluorine (17-88%) and chlorine (22-99%) relative to primitive mantle estimates. Preliminary data suggest that the bromine partitioning behaviour between forsterite and melt is roughly comparable to the behaviour of fluorine and chlorine. If true, this would imply that the Earth's upper mantle is presumably degassed of all halogens despite the more likely escape of heavy halogens from the slab at an early subduction stage, implying that these halogens are at least partly accumulating in the crust after leaving the slab. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Earth Planet Sci. Lett. 337-338, pp. 1-9. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Contrib. Mineral. Petrol. 163, pp. 591-609. Palme H, O'Neill HSTC (2003) Treatise Geochem. 2, pp. 1-38. Ruzié L, Burgess R, Hilton DR, Ballentine CJ (2012) AGU Fall Meeting 2012. V31A-2762 (abstr.). Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Earth Planet. Sci. Lett. 294, pp. 163-172.

  9. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Hein, J.R.

    detritus from the erosion of the Himalayas. Middle Miocene Antarctic glaciation, which peaked ;12–13 Ma ago, increased the oxic bottom-water influx to the basin resulting in accretion of the crust with low detritus. Therefore, the younger crust started... by precipi- tation of oxyhydroxides from ambient seawater on to a hard substrate. Fe–Mn crusts exhibit low accretion . . rates -1–15 mmrMa , low MnrFe ratios -2.5 , distinct internal structures, and compositional varia- tions that reflect the evolving...

  10. First findings of Paleo- and Mesoarchean zircons in the rocks from the Central Arctic province of oceanic rises as an evidence of the ancient continental crust (United States)

    Sergeev, S. A.; Presnyakov, S. L.; Antonov, A. V.; Belyatsky, B. V.; Rodionov, N. V.; Shevchenko, S. S.


    This report presents the results of local U-Pb zircon dating (SIMS SHRIMP II) for a sample of migmatite gneiss dredged on the western slope of Alpha Ridge in the Arctic Ocean in the course of the "Arktika-2012" Russian polar expedition. The distribution of U-Pb ages of the examined zircon points to the Early Precambrian origin of this gneiss, for the bulk of the zircon was crystallized at least 3450 Ma ago from a magmatic melt under acidic volcanism at the primary crust formation. Zircon of the second generation was crystallized 3300 Ma ago under the remelting of acid volcanics and appearance of migmatite gneisses under the amphibolite facies of metamorphism. Most likely, a partial recrystallization of zircon and formation of microfolded structures and foliation took place 3000 Ma ago at the stage of rocks deformation. The latest zircon was formed 1900 Ma ago from the crust fluid or melt under the low-gradient metamorphism. In view of the possibility of the appearance of the treated clastogenic gneiss fragment under current oceanic erosion, the obtained results allow one to affirm that the occurrence of a fragment of the most ancient sialic continental crust formed at least 3450 Ma ago is possible at the submarine rises of the Arctic Ocean (Alpha Ridge and the Mendeleev Rise).

  11. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes. (United States)

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul


    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. PMID:18216852

  12. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe


    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon-bearing magmas at the time of accretion. This crust only produces significant zircon when and if it partially melts, which may occur long after accretion.

  13. Imaging The Flat Slab Beneath The Sierras Pampeanas, Argentina, Using Receiver Function Analysis: Evidence For Overthickened Subducted Oceanic Crust (United States)

    Gans, C.; Beck, S. L.; Zandt, G.; Gilbert, H. J.; Alvarado, P. M.; Linkimer, L.; Porter, R. C.


    The western margin of the South American continent between 30°and 32° S is characterized by the flat slab subduction of the ~43 Ma oceanic Nazca plate beneath the continental South American plate. Several arrays of broadband seismic instruments have been deployed in Chile and western Argentina to study this phenomenon (e.g., CHARGE, 2000-2002; SIEMBRA, 2007-2009; ESP, 2008-2010). The low angle subduction has prevented magmatism in the area since the late Miocene due to reduced mantle flow above the subducting slab, and spatially correlates with the formation of both thick-skinned (Sierras Pampeanas) and thin-skinned (Andean Precordillera) thrust belts within the region. In order to better constrain the crust and upper mantle structure in the transition region between flat slab and normal subduction to the south and east, we have calculated receiver functions (RFs) from teleseismic earthquakes. Using our dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, we are able to image in detail the flat slab, which contains a distinct negative arrival (indicative of a low velocity zone) at the top of the flat slab, followed by a strong positive P-to-S conversion. While the exact causes of flat slab subduction continue to be debated, one overriding theme is the necessity of having an overthickened crust in order to increase the buoyancy of the subducting slab. In this region, the hotspot seamount chain of the Juan Fernandez Ridge (JFR) is thought to provide such a mechanism. Kopp et al. (2004), however, did not find overthickened crust in the offshore portion of the JFR, but rather moderately thick oceanic crust. Preliminary results from our receiver functions, compared with synthetic RFs containing either a normal (7 km) or an overthickened (17km) crust, indicate that the oceanic crust at the top of the slab (the low velocity zone) must be at least ~15 km thick. Our results support the idea of an overthickened crust in the subducted flat slab beneath western Argentina.

  14. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition (United States)

    Palin, Richard M.; White, Richard W.


    The oldest blueschists--metamorphic rocks formed during subduction--are of Neoproterozoic age, and 0.7-0.8 billion years old. Yet, subduction of oceanic crust to mantle depths is thought to have occurred since the Hadean, over 4 billion years ago. Blueschists typically form under cold geothermal gradients of less than 400 °C GPa-1, so their absence in the ancient rock record is typically attributed to hotter pre-Neoproterozoic mantle prohibiting such low-temperature metamorphism; however, modern analogues of Archaean subduction suggest that blueschist-facies metamorphic conditions are attainable at the slab surface. Here we show that the absence of blueschists in the ancient geological record can be attributed to the changing composition of oceanic crust throughout Earth history, which is a consequence of secular cooling of the mantle since the Archaean. Oceanic crust formed on the hot, early Earth would have been rich in magnesium oxide (MgO). We use phase equilibria calculations to show that blueschists do not form in high-MgO rocks under subduction-related geothermal gradients. Instead, the subduction of MgO-rich oceanic crust would have created greenschist-like rocks--metamorphic rocks formed today at low temperatures and pressures. These ancient metamorphic products can hold about 20% more water than younger metamorphosed oceanic crust, implying that the global hydrologic cycle was more efficient in the deep geological past than today.

  15. First Investigation of the Microbiology of the Deepest Layer of Ocean Crust


    Mason, Olivia U; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D.; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R.; Giovannoni, Stephen J


    The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was a...

  16. Density and porosity of the upper oceanic crust from seafloor gravity measurements (United States)

    Johnson, H. Paul; Pruis, M. J.; Van Patten, D.; Tivey, M. A.


    The exposure of 1300 meters of upper oceanic crust at the Blanco Fracture Zone allows near-bottom gravity measurements to determine the in situ density of the seafloor as a function of depth. Gravity measurements along the north wall of the Blanco Depression indicate an outcrop density of 2530 ± Kg/m³ for the upper 800 meters of crust and a calculated porosity of 23%. The lower 500 meters of crust (800 to 1300 meters below the sea floor) has a measured density of 2710 ± 130 Kg/m³ and a porosity of 14%. These data indicate that most of the extrusive volcanic oceanic crust is highly porous and can act as an aquifer and large-scale reservoir for hydrothermal fluids. These direct crustal density measurements also support previous interpretations that low seismic velocities observed in Layer 2 are due to the high porosity of the upper extrusive section.

  17. Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean

    Indian Academy of Sciences (India)

    R P Rajani; V K Banakar; G Parthiban; A V Mudholkar; A R Chodankar


    Eight ferromanganese crusts (Fe-Mn crusts) with igneous and sedimentary substrates collected at different water depths from the Afanasiy-Nikitin Seamount are studied for their bulk major, minor and rare earth element composition. The Mn/Fe ratios > 1.5 indicate the hydrogenetic accretion of the Fe-Mn hydroxides. These Fe-Mn crusts are enriched in Co (up to 0.9%, average ?0.5%) and Ce. The Ce-content is the highest reported so far (up to 3763 ppm, average ?2250 ppm) for global ocean seamount Fe-Mn crusts. In spite of general similarity in the range of major, minor, and strictly trivalent rare earth element composition, the dissimilarity between the present Fe-Mn crusts and the Pacific seamount Fe-Mn crusts in Co and Ce associations with major mineral phases indicates inter-oceanic heterogeneity and region-specific conditions responsible for their enrichment. The decrease in Ce-anomaly (from ?8 to ?1.5) with increasing water depth (from ?1.7km to ?3.2 km) might suggest that the modern intermediate depth low oxygen layer was shifted and sustained at a deeper depth for a long period in the past.

  18. Glacial cycles drive variations in the production of oceanic crust

    CERN Document Server

    Crowley, John W; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun


    Glacial cycles redistribute water between the oceans and continents causing pressure changes in the upper mantle, with potential consequences for melting of Earth's interior. A numerical model of mid-ocean ridge dynamics that explicitly includes melt transport is used to calculate the melting effects that would be caused by Plio-Pleistocene sea-level variations. Model results interpreted in the context of an analytical approximation predict sea-level induced variations in crustal thickness on the order of hundreds of meters. The specifics of the response depend on rates of sea-level change, mid-ocean ridge spreading rates, and mantle permeability. Spectral analysis of the bathymetry of the Australian-Antarctic ridge shows significant spectral energy near 23, 41, and 100 ky periods, consistent with model results and with the spectral content of Pleistocene sea-level variability. These results support the hypothesis that sea-floor topography records the magmatic response to changes in sea level, reinforcing the...

  19. Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt? (United States)

    Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.


    U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.

  20. Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Balaram, V.; Banakar, V.K.; Subramanyam, K.S.V.; Roy, P.; Satyanarayan, M.; RamMohan, M.; Sawant, S.S.

    reports high concentrations of rare earth elements (REE) and yttrium ranging from 1,727 to 2,511 mu g/g in the crust samples collected from the Afanasy Niktin Seamount (ANS) in the Eastern Equatorial Indian Ocean. The concentrations of REE in the ANS Fe...

  1. Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling (United States)

    Ruh, J. B.; Le Pourhiet, L.; Agard, Ph.; Burov, E.; Gerya, T.


    Multikilometer-sized slivers of high-pressure low-temperature metamorphic oceanic crust and mantle are observed in many mountain belts. These blueschist and eclogite units were detached from the descending plate during subduction. Large-scale thermo-mechanical numerical models based on finite difference marker-in-cell staggered grid technique are implemented to investigate slicing processes that lead to the detachment of oceanic slivers and their exhumation before the onset of the continental collision phase. In particular, we investigate the role of the serpentinized subcrustal slab mantle in the mechanisms of shallow and deep crustal slicing. Results show that spatially homogeneous serpentinization of the sub-Moho slab mantle leads to complete accretion of oceanic crust within the accretionary wedge. Spatially discontinuous serpentinization of the slab mantle in form of unconnected patches can lead to shallow slicing of the oceanic crust below the accretionary wedge and to its deep slicing at mantle depths depending on the patch length, slab angle, convergence velocity and continental geothermal gradient. P-T paths obtained in this study are compared to natural examples of shallow slicing of the Crescent Terrane below Vancouver Island and deeply sliced crust of the Lago Superiore and Saas-Zermatt units in the Western Alps.

  2. Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life (United States)

    Kargel, J.S.; Kaye, J.Z.; Head, J. W., III; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.


    We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is and discrimination among several alternative scenarios. Most chemical pathways could support viable ecosystems based on analogy with the metabolic and physiological versatility of terrestrial microorganisms. ?? 2000 Academic Press.

  3. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA (United States)


    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones: Neptune Deep Water Port, Atlantic Ocean... comment at the Web site . These safety zones are needed pending implementation... Deep Water Port, Atlantic Ocean, Boston, MA; Final Rule (USCG-2009-0589), to protect vessels from...

  4. Small, monogenetic volcanoes: building blocks of the upper oceanic crust (United States)

    Yeo, Isobel A.; Achenbach, Kay L.; Searle, Roger C.; Le Bas, Tim P.


    The study of slow-spreading mid-ocean ridge volcanism provides important insights into the mechanisms of oceanic crustal accretion. This study uses a combination of sidescan sonar and recently developed methods of high resolution bathymetry and video data collection to describe the volcanic features on the Mid-Atlantic Ridge axis at 45°N in more detail than has previously been possible. Within most axial valleys lie axial volcanic ridges (AVRs), linear volcanic features thought to be the focus of volcanism at slow spreading ridges. AVR volcanic morphologies have been described independently in a number of studies, through combinations of remote sensing (predominantly through the use of sidescan sonar) and deep towed cameras or submersibles. These different methods have led to classification of volcanic features on two very different scales. While the resolution of the sidescan sonar studies allows only for the identification and classification of features tens to hundreds of metres in size, the photographic and submersible studies describe features from centimetre to metre scale. Until now it has been difficult to reliably link these observations together as no intermediate sensing method has been available. This study uses 1m resolution ROV multibeam bathymetry to address this problem and link features identified at different scales together. We identify a prominent 22km long axial volcanic ridge within a 1km deep axial valley that ranges from 6 to 14km across. We find that 'hummocks' described in previous sidescan sonar studies (of which the AVR is composed) are individual, monogenetic volcanic cones. These cones range from 2 to 200m in height and 40 to 400m in diameter and we identify over 8000 of them on the surface of the AVR. We calculate the average volume of a cone to be 220,000m3 and estimate the AVR is built of approximately 73,000 such cones. We estimate these edifices form on time scales ranging from less than one hour to several months so are likely the products of single eruptions. Cones of all heights, but particularly those over 70m, are prone to collapse soon after forming. A variety of mechanisms are examined and collapse triggers may include: a) flank over-steepening, b) building on unstable material, and c) cutting by fissuring. Collapse scarps show two strong alignments, one ridge parallel and one at 30° to the ridge trend; however as cones always collapse downslope, these alignments may be due to the slope angles produced as a result of cone emplacement rather than first order controls on collapses themselves. We estimate the minimum magmatic flux to the surface for this segment to be at least 64,000m3 yr -1, which is equivalent to producing one average volume cone every 3.5 years.



    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul


    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot- spot activity below the Pacific Plate(1,2). Despite the apparent simplicity of the parent process emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity(3-5). Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this...

  6. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts (United States)

    Von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N.S.; Gibb, A.; Hein, J.R.


    The direct measurement of the ratio of cosmogenic 10Be (T1/2 = 1.5 Ma) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be/9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be/9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U/ 238U, are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 ?? 10-7). In the Southwest Atlantic ratios increase up to 1 ?? 10-7, they vary between 0.7 and 1.0 ?? 10-7 in Indian Ocean samples, and have a near constant value of 1.1 ?? 0.2 ?? 10-7 for all Pacific samples. If the residence time of 10Be (??10Be) in deep water is constant globally, then the observed variations in 10Be/9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global ??10Be ??? 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario ??10Be would vary according to local particle concentration and would ??? 600 a in the central Pacific, but ??10Be ??? 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater Be content. If true, ocean margins would be the sites for 9Be addition. Due to the particle-reactive nature of Be, these would also be the primary sites of Be removal. A possible net result of horizontal water masses passing through these marginal areas might be a decrease in seawater 10Be/9Be, and establishment of a relatively constant 9Be concentration. As ??10Be ( ??? 600 a) is less than the apparent age of deep water in the Pacific ( ??? 1500 a), the Pacific record of 10Be/ 9Be is not expected to show secular variations due to changes in deep-water flow, despite the large variations in 10Be/ 9Be between different water masses. Because of this insensitivity to deep-water flow, however, it is suggested that the 10Be/ 9Be ratio, determined in the authigenic phase of marine sediments or hydrogenetic precipitates, should be a suitable tool for monitoring changes in continental input or cosmic ray intensity on longer time scales.

  7. Early (pre–8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    -reflection profiles within the central Indian Ocean demonstrate that compressional activity started much earlier than previously thought, at around 15.4-13.9 Ma. From reconstructions of fault activity histories, it is shown that 12% of the total reverse fault...

  8. Imaging the Moho and Subducted Oceanic Crust at the Isthmus of Tehuantepec, Mexico, from Receiver Functions (United States)

    Melgar, Diego; Pérez-Campos, Xyoli


    Using teleseismic data recorded along a transect, which we call VEOX (for Veracruz-Oaxaca seismic line), of 46 broadband stations installed across the Isthmus of Tehuantepec in southern Mexico, we obtained receiver functions and stacked them to study the Moho topography and back projected them to visualize the subducted slab geometry beneath the isthmus. We observed a back-azimuth dependent Moho thickness across the transect, particularly beneath the Los Tuxtlas Volcanic Field. Also, we observed the Cocos plate which subducts with an angle of 26° between 140 and 310 km from the trench. Comparison with regional seismicity indicates that it occurs below the oceanic crust.

  9. Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia (United States)

    Villagómez, Diego; Spikings, Richard; Mora, AndréS.; GuzmáN, Georgina; Ojeda, GermáN.; CortéS, Elizabeth; van der Lelij, Roelant


    The topographically prominent Sierra Nevada de Santa Marta forms part of a faulted block of continental crust located along the northern boundary of the South American Plate, hosts the highest elevation in the world (˜5.75 km) whose local base is at sea level, and juxtaposes oceanic plateau rocks of the Caribbean Plate. Quantification of the amount and timing of exhumation constrains interpretations of the history of the plate boundary, and the driving forces of rock uplift along the active margin. The Sierra Nevada Province of the southernmost Sierra Nevada de Santa Marta exhumed at elevated rates (?0.2 Km/My) during 65-58 Ma in response to the collision of the Caribbean Plateau with northwestern South America. A second pulse of exhumation (?0.32 Km/My) during 50-40 Ma was driven by underthrusting of the Caribbean Plate beneath northern South America. Subsequent exhumation at 40-25 Ma (?0.15 Km/My) is recorded proximal to the Santa Marta-Bucaramanga Fault. More northerly regions of the Sierra Nevada Province exhumed rapidly during 26-29 Ma (˜0.7 Km/My). Further northward, the Santa Marta Province exhumed at elevated rates during 30-25 Ma and 25-16 Ma. The highest exhumation rates within the Sierra Nevada de Santa Marta progressed toward the northwest via the propagation of NW verging thrusts. Exhumation is not recorded after ˜16 Ma, which is unexpected given the high elevation and high erosive power of the climate, implying that rock and surface uplift that gave rise to the current topography was very recent (i.e., ?1 Ma?), and there has been insufficient time to expose the fossil apatite partial annealing zone.

  10. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling (United States)

    Carns, R.; Light, B.; Warren, S. G.


    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of grain size and crust optical depth, as inputs to Mie scattering and radiative transfer models allowed us to infer the imaginary refractive index of hydrohalite. The model can calculate albedo for pure hydrohalite crusts of varying thickness and for mixtures of ice and hydrohalite. A parameterization is presented for albedo as a function of the thickness of the hydrohalite crust.

  11. Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka

    Directory of Open Access Journals (Sweden)

    G. Delisle


    Full Text Available Heat flow measurements were carried out in 2009 offshore Kamchatka during the German-Russian joint-expedition KALMAR. An area with elevated heat flow in oceanic crust of Cretaceous age – detected ~30 yr ago in the course of several Russian heat flow surveys – was revisited. One previous interpretation postulated anomalous lithospheric conditions or a connection between a postulated mantle plume at great depth (>200 km as the source for the observed high heat flow. However, the positive heat flow anomaly – as our bathymetric data show – is closely associated with the fragmentation of the western flank of the Meiji Seamount into a horst and graben structure initiated during descent of the oceanic crust into the subduction zone offshore Kamchatka. This paper offers an alternative interpretation, which connects high heat flow primarily with natural convection of fluids in the fragmented rock mass and, as a potential additional factor, high rates of erosion, for which evidence is available from our collected bathymetric image. Given high erosion rates, warm rock material at depth rises to nearer the sea floor, where it cools and causes temporary elevated heat flow.

  12. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. (United States)

    Audet, Pascal; Bostock, Michael G; Christensen, Nikolas I; Peacock, Simon M


    Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction-and indeed plate tectonics-to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented. Here we use converted teleseismic waves to obtain observations of anomalously high Poisson's ratios within the subducted oceanic crust from the Cascadia continental margin to its intersection with forearc mantle. On the basis of pressure, temperature and compositional considerations, the elevated Poisson's ratios indicate that water is pervasively present in fluid form at pore pressures near lithostatic values. Combined with observations of a strong negative velocity contrast at the top of the oceanic crust, our results imply that the megathrust is a low-permeability boundary. The transition from a low- to high-permeability plate interface downdip into the mantle wedge is explained by hydrofracturing of the seal by volume changes across the interface caused by the onset of crustal eclogitization and mantle serpentinization. These results may have important implications for our understanding of seismogenesis, subduction zone structure and the mechanism of episodic tremor and slip. PMID:19122639

  13. Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka

    Directory of Open Access Journals (Sweden)

    G. Delisle


    Full Text Available Heat flow measurements were carried out in 2009 offshore Kamchatka during the German-Russian joint-expedition KALMAR. An area with elevated heat flow in oceanic crust of Cretaceous age – detected ~30 years ago in the course of several Russian heat flow surveys – was revisited. One previous interpretation postulated anomalous lithospheric conditions or a connection between a postulated mantle plume at great depth (> 200 km as the source for the observed high heat flow. However, the positive heat flow anomaly – as our bathymetric data show – is closely associated with the fragmentation of the western flank of the Meiji Seamount into a horst and graben structure, initiated during descend of the oceanic crust into the subduction zone offshore Kamchatka. This paper offers an alternative interpretation, which connects high heat flow primarily with natural convection of fluids in the fragmented rock mass and, as a potential additional factor, high rates of erosion, for which evidence is available from our collected bathymetric image. Given high erosion rates, warm rock material at depth rises to nearer the sea floor, where it cools and causes temporary elevated heat flow.

  14. Araxa Group in the type-area: A fragment of Neoproterozoic oceanic crust in the Brasilia Fold Belt

    International Nuclear Information System (INIS)

    This study reviews the geological characteristics and puts forward a new evolution model for the Araxa Group in its type-area, the southern segment of the Neo proterozoic Brasilia Belt, Minas Gerais, Brazil. The Araxa Group is confined within a thrust sheet belonging to a syn formal regional fold, the Araxa Syn form, overlying two other thrust sheets made of the Ibia and Canastra Groups. The Araxa Group is described as a tectono stratigraphic terrane in the sense of Howell (1993). It comprises an igneous mafic sequence, with fine and coarse grained amphibolites, associated with pelitic meta sedimentary rocks, and subordinate psanmites. All rocks were metamorphosed to amphibolite facies at ca. 630 Ma ago and were intruded by collisional granites. The amphibolites represent original basaltic and gabbroic rocks, with minor ultramafic (serpentinite/ amphibole-talc schist). The basalts are similar to high Fe O tholeiites, with REE signatures that resemble E-MORB and ?Nd(T) =+ 1.1. The meta sedimentary rocks are interpreted as the result of a marine deep-water sedimentation. They have Sm-Nd model ages of 1,9 Ga, and ?Nd(T) = -10.21. The amphibolites and metasediments could represent a fragment of back-arc oceanic crust. The data presented here differ significantly from the original definition of Barbosa et al. (1970) who describe the Araxa Group as a pelitic/psanmitic sequence and the collisional granites as a basement complex. (author)

  15. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts (United States)

    Frank, M.; Whiteley, N.; Kasten, S.; Hein, J.R.; O'Nions, K.


    The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.

  16. The Ocean and Crust of a Rapidly Accreting Neutron Star Implications for Magnetic Field Evolution and Thermonuclear Flashes

    CERN Document Server

    Brown, E F; Brown, Edward F.; Bildsten, Lars


    We investigate the atmosphere, ocean, and crust of neutron stars accreting at rates sufficiently high (typically in excess of the local Eddington limit) to stabilize the burning of accreted hydrogen and helium. For hydrogen-rich accretion at global rates in excess of 10^-8 solar masses per year (typical of a few neutron stars), we discuss the thermal state of the deep ocean and crust and their coupling to the neutron star core, which is heated by conduction (from the crust) and cooled by neutrino emission. We estimate the Ohmic diffusion time in the hot, deep crust and find that it is noticeably shortened (to less than 10^8 yr) from the values characteristic of the colder crusts in slowly accreting neutron stars. We speculate on the implications of these calculations for magnetic field evolution in the bright accreting X-ray sources. We also explore the consequences of rapid compression at local accretion rates exceeding ten times the Eddington rate. This rapid accretion heats the atmosphere/ocean to temperat...

  17. Oceanographer transform fault structure compared to that of surrounding oceanic crust: Results from seismic refraction data analysis (United States)

    Ambos, E. L.; Hussong, D. M.


    A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.

  18. Reactive overprint of the Central Indian Ridge mantle and formation of hybrid troctolites: reassessing the significance of bulk oceanic crust (United States)

    Sanfilippo, A.; Morishita, T.; Kumagai, H.; Nakamura, K.; Okino, K.; Tamura, A.; Arai, S.


    The idea that hybridized mantle rocks can contribute to the oceanic crust composition has recently emerged thanks to studies on primitive (olivine-rich) troctolites [e.g. 1]. These rocks are considered to be formed by melt-rock interaction, but the exact reaction process by which they originate is still debated and their role on the bulk oceanic crust composition has been never defined. Olivine-rich troctolites have been mostly found at slow spreading ridges [2] or at their fossil analogues [3]. Similar rocks have been recently collected in the 25ºS area of the intermediate spreading Central Indian Ridge (CIR), and rarely characterize the crust mantle boundary at fast spreading ridges [4]. We show that textural and chemical inheritances of the pre-existing mantle are preserved in the CIR troctolites. In particular, the local occurrence of granular, mantle-derived orthopyroxenes and the composition of the associated clinopyroxene indicate that these crustal rocks formed through a direct (one-stage) conversion of a mantle peridotite. We use chemical evidence to infer the same origin of the olivine-rich troctolites worldwide, concluding that the reactive overprint of the oceanic mantle is a process diffused over the entire spreading rate spectrum. Bulk oceanic crust estimates of the Hess Deep (Pacific) and Atlantis Massif (Atlantic) crustal sections are used to quantify and compare the effect of these rocks on the bulk crust composition at fast and slow spreading ridges. Our inferences suggest that the significance of the bulk oceanic crust should be reassessed. When hybrid troctolites are included at crustal levels, the oceanic crust cannot be considered equal to the composition of the melt extracted from the mantle, but it results more primitive and importantly thicker. References: [1] Suhr G., Hellebrand E., Johnson K., Brunelli D., 2008, Geochem. Geophys. Geosyst. 9, doi:10.1029/2008GC002012; [2] Drouin M., Godard M., Ildefonse B., Bruguier O., Garrido C.J. , 2009, Chem. Geol. 264, 71-88; [3] Renna M. R., Tribuzio R., 2011, J. Petrol. 52, 1763-1790; [4] Dick H.J.B. and Natland J.H., 1996, Proceedings Ocean Drill. Prog., 147, 103-134.

  19. Geological storage of CO2 within the oceanic crust by gravitational trapping (United States)

    Marieni, Chiara; Henstock, Timothy J.; Teagle, Damon A. H.


    rise of atmospheric carbon dioxide (CO2) principally due to the burning of fossil fuels is a key driver of anthropogenic climate change. Mitigation strategies include improved efficiency, using renewable energy, and capture and long-term sequestration of CO2. Most sequestration research considers CO2 injection into deep saline aquifers or depleted hydrocarbon reservoirs. Unconventional suggestions include CO2 storage in the porous volcanic lavas of uppermost oceanic crust. Here we test the feasibility of injecting CO2 into deep-sea basalts and identify sites where CO2 should be both physically and gravitationally trapped. We use global databases to estimate pressure and temperature, hence density of CO2 and seawater at the sediment-basement interface. At previously suggested sites on the Juan de Fuca Plate and in the eastern equatorial Pacific Ocean, CO2 is gravitationally unstable. However, we identify five sediment-covered regions where CO2 is denser than seawater, each sufficient for several centuries of anthropogenic CO2 emissions.

  20. Molybdenum evidence for expansive sulfidic water masses in ~ 750 Ma oceans

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Canfield, Donald Eugene


    The Ediacaran appearance of large animals, including motile bilaterians, is commonly hypothesized to reflect a physiologically enabling increase in atmospheric and oceanic oxygen abundances (pO2). To date, direct evidence for low oxygen in pre-Ediacaran oceans has focused on chemical signatures in the rock record that reflect conditions in local basins, but this approach is both biased to constrain only shallower basins and statistically limited when we seek to follow the evolution of mean ocean chemical state through time. Because the abundance and isotopic composition of molybdenum (Mo) in organic-rich euxinic sediments can vary in response to changes in global redox conditions, Mo geochemistry provides independent constraints on the global evolution of well-oxygenated environments. Here, we establish a theoretical framework to access global marine Mo cycle in the past from the abundance and isotope composition of ancient seawater. Further, we investigate the ~ 750 Ma Walcott Member of the Chuar Group, Grand Canyon, which accumulated in a rift basin with open connection to the ocean. Iron speciation data from upper Walcott shales indicate that local bottom waters were anoxic and sulfidic, consistent with their high organic content (up to 20 wt.%). Similar facies in Phanerozoic successions contain high concentrations of redox-sensitive metals, but in the Walcott Member, abundances of Mo and U, as well as Mo/TOC (~ 0.5 ppm/wt.%) are low. ?98Mo values also fall well below modern equivalents (0.99 ± 0.13‰ versus ~ 2.35‰ today). These signatures are consistent with model predictions where sulfidic waters cover ~ 1–4% of the global continental shelf area, corresponding to a ~ 400–800 fold increase compared to the modern ocean. Therefore, our results suggest globally expansive sulfidic water masses in mid-Neoproterozoic oceans, bridging a nearly 700 million-year gap in previous Mo data. We propose that anoxic and sulfidic (euxinic) conditions governed Mo cycling in the oceans even as ferruginous subsurface waters re-appeared 800–750 Ma, and we interpret this anoxic ocean state to reflect a markedly lower atmospheric and oceanic O2 level, consistent with the hypothesis that pO2 acted as an evolutionary barrier to the emergence of large motile bilaterian animals prior to the Ediacaran Period.

  1. Static and fault-related alteration in the lower ocean crust, IODP Expedition 345, Hess Deep (United States)

    McCaig, Andrew; Faak, Kathrin; Marks, Naomi; Nozaka, Toshio; Python, Marie; Wintsch, Robert; Harigane, Yumiko; Titarenko, Sofya


    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros (Gillis et al 2014). Alteration can be subdivided into two series: 1) a largely static pseudomorphic alteration affecting predominantly olivine. This began in the amphibolite facies with minor secondary cinopyroxene and hornblendic amphibole replacing primary pyroxene, and sporadically developed corona textures with tremolite and chlorite replacing olivine and plagioclase respectively, but was predominantly in the greenschist and sub-greenschist facies with talc, serpentine, clay minerals,oxides andsulphides replacing olivine, and prehnite and locally other calcsilicates replacing plagioclase, commonly in micro-vein networks. Albitic plagioclase is sporadically developed, and locally zeolite and carbonate. 2) An overprinting metasomatic alteration under sub-greenschist or perhaps lowermost greenschist conditions(zeolite. This alteration is spatially related to cataclastic fault zones and macroscopic veins. Comminuted plagioclase in cataclasites is commonly completely replaced by prehnite, while chlorite may completely pseudomorph olivine, locally with textures suggesting replacement of previous secondary minerals such as talc and serpentine. Chlorite also ubiquitously occurs as patches replacing plagioclase along grain boundaries, locally associated with carbonate and amphibole needles. Metamorphosed dykes show chilled margins within the cataclasites, and are affected by cataclastic deformation. Faults, dykes and overprinting alteration are all inferred to be related to the westward propagation of Cocos-Nazca spreading that formed Hess Deep. Samples of different alteration and cataclastic domains were cut out of this section chips for isotopic analysis. 87Sr/86Sr ratios of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. ?18O values range from +1 to + 6 per mil, indicating alteration at temperatures generally >200 °C. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. Our study reveals a low temperature alteration assemblage dominated by prehnite and chlorite that is not normally associated with the lower oceanic crust. Yet it is likely to be common in any location where faults intersect the Moho off-axis, including transform faults, near axis normal faults at slow spreading ridges, and bending faults at subduction zones, and would be accompanied by serpentinites in upper mantle rocks, as seen at ODP site 895 in Hess Deep. This prehnite + chlorite assemblage may therefore be significant in the release of volatiles in subduction zones. Gillis, K.M., Snow J. E. and Shipboard Science Party (2014) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature, 505,204-207, doi: 10.1038/nature12778

  2. Seawater recharge into oceanic crust: IODP Exp 327 Site U1363 Grizzly Bare outcrop (United States)

    Wheat, C. Geoffrey; Hulme, Samuel M.; Fisher, Andrew T.; Orcutt, Beth N.; Becker, Keir


    Systematic differences in sediment thermal and pore water chemical profiles from Integrated Ocean Drilling Program Site U1363 document mixing and reaction within the basaltic crust adjacent to Grizzly Bare outcrop, a site of hydrothermal recharge into 3.6 My-old basaltic crust. A transect of seven holes was drilled ~50 m to ~750 m away from the base of the outcrop. Temperatures at the sediment-basement interface increase from ~6°C to >30°C with increasing distance from the outcrop, and heat flow is suppressed within several hundred meters from the outcrop. Calculated fluid compositions at the sediment-basement interface are generally explained by mixing between bottom seawater and altered crustal basement fluids, with a composition similar but not identical to fluids from seeps at Baby Bare outcrop, located ~45 km to the northeast. Reactions within upper basement and overlying sediment affect a variety of ions (Mn, Fe, Mo, Si, PO43-, V, and U) and ?13DIC, indicating a diagenetic influence and diffusive exchange with overlying sediment pore waters. The apparent 14C age of basal pore fluids is much older than bottom seawater. Collectively, these results are consistent with seawater recharge at Grizzly Bare outcrop; however, there are strong gradients in fluid composition within 50 m of the outcrop, providing evidence for complex flow paths and vigorous mixing of young, recently recharged seawater with much older, more reacted basement fluid. The proximity of these altered fluids to the edge of the outcrop raises the possibility for fluid seepage from the outcrop in addition to seawater recharge.

  3. Transient Hydrothermal Alteration in Fault Zones Cutting the Lower Oceanic Crust, Hess Deep Rift (United States)

    McCaig, Andrew; Titarenko, Sofya; Cliff, Robert; Ivan, Savov; Adrian, Boyce


    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros [1]. Alteration occurred as: 1) a largely static pseudomorphic alteration, predominantly in the greenschist and sub-greenschist facies with mainly talc and serpentine replacing olivine, and prehnite replacing plagioclase. Talc sometimes overprints serpentine mesh texture. 2) an overprinting metasomatic alteration, spatially related to cataclastic fault zones and macroscopic veins, dominated by prehnite and chlorite. Secondary clinopyroxene and epidote locally overprint the prehnite-chlorite assemblage, but the last events are veins of prehnite and zeolite. Metamorphosed dykes show chilled margins within the cataclasites, and are themselves affected by cataclastic deformation. Faults, dykes and overprinting alteration are all inferred to be related to the westward propagation of Cocos-Nazca spreading forming Hess Deep. 87Sr/86Sr ratios of small whole rock samples of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. Sampling of individual minerals has been undertaken using a microscope mounted drill, and shows that alteration is mainly affecting secondary minerals, with late prehnite veins ranging up to Sr isotope ratios of 0.7054. ?18O values range from +1 to + 6 per mil. Combined with metamorphic data this indicates alteration at temperatures between 200 and 400 °C. Secondary clinopyroxene and talc replacing serpentine are interpreted to indicate transient prograde hydrothermal events. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration, as well as transient prograde events, could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. The prehnite-chlorite assemblage is predicted to be important in off-axis alteration, common in any location where faults intersect the Moho, including transform faults, near axis normal faults at slow spreading ridges, and perhaps bending faults at subduction zones. [1] Gillis, K.M., Snow J. E. and Shipboard Science Party (2014) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature, 505, 204-207.

  4. Slow-Spreading Oceanic Crust Formed By Steady-State Axial Volcanic Ridges (United States)

    Murton, B. J.; Schroth, N.; LeBas, T.; Van Calsteren, P. W.; Yeo, I. A.; Achenbach, K. L.; Searle, R. C.


    Oceanic crust originates at mid-ocean spreading ridges (MORs), covers almost three quarters of the earth's surface and dominates the global magmatic flux. Axial volcanic ridges (AVRs) are almost ubiquitous features of orthogonal slow-spreading ridges, which account for three quarters of the global mid-ocean spreading ridge system today. Typically 3-6 km wide, 200-500 m high and 10-20 km long, AVRs are the loci of recent volcanic activity and form the most prominent topography rising above the otherwise flat-lying Median Valley floor. Previous studies indicate that AVRs, and their related crustal magma reservoirs are episodic, on a time scale of 150-300 ka. Yet their near ubiquitous occurrence at slow-spreading ridge segments provides us with a paradox: if AVRs have a life cycle of formation and degradation, does their near ubiquitous presence at slow spreading ridges imply their life-cycles are synchronised? In this contribution, we report the findings from a high-resolution study of a well-developed axial volcanic ridge (AVR) at 45°N on the Mid-Atlantic Ridge (MAR). Here, the MAR is typical of most slow-spreading ridges: it spreads generally symmetrically and orthogonally, at a full rate of 23.6 mm per year, has second and third-order segmentation, and contains a typical AVR. Using a combination of detailed micro-bathymetry, sidescan sonar, visual surveying and petrology, we suggest that the AVR is the product of quasi-steady state volcanotectonic processes. Small volume lava flows, originating at or near the crest and with short run-out lengths, form ~60 m high hummocky pillow-lava mounds that dominate the construction of the AVR. The lavas are the product of moderate degrees of mantle melting that are typical for normal mid-ocean ridge basalt. Synchronous with these eruptions the flanks of the AVR subside forming a structural horst. Subsidence is partially accommodated by a series of outward-facing volcanic growth faults that step-down and away from the AVR crest and towards the Median Valley floor. Here, much larger volume, yet less frequent, effusions of massive lava flows erupt rapidly from large flat-topped seamounts, found almost exclusively outside of the AVR. The sheet-flows have run-out lengths of up to several kilometres, a combined thickness sufficient to bury the hummocky topography of the AVR flanks, producing smooth flat-lying seafloor typical of the Median Valley floor and its uplifted flanks. These lavas are relatively enriched geochemically and are characteristic of small melt fractions from the mantle. Thus it appears that the volcanic crust at slow-spreading ridges is formed through a continuous process of small volcanic eruptions along AVRs that evolve through syn-volcanic subsidence and episodic burial by large volume massive lava eruptions. From this, we conclude that AVRs have neither a particular life cycle nor are they synchronised along the global mid-ocean ridge system. Rather, they approximate steady-state features in which subsidence plays as large a part in their origin as volcanic construction.

  5. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust (United States)

    Tomkins, Andrew G.; Evans, Katy A.


    Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma oxidation and ore formation, there has been little investigation of the metamorphic reactions responsible for sulfur release from subducting slabs. Here, we investigate the relative stability of anhydrite (CaSO4) and pyrite (FeS2) in subducted basaltic oceanic crust, the largest contributor to the subducted sulfur budget, to place constraints on the processes controlling sulfur release. Our analysis of anhydrite stability at high pressures suggests that this mineral should dominantly dissolve into metamorphic fluids released across the transition from blueschist to eclogite facies (?450-650 °C), disappearing at lower temperatures on colder geothermal trajectories. In contrast, we suggest that sulfur release via conversion of pyrite to pyrrhotite occurs at temperatures above 750 °C. This higher temperature stability is indicated by the preservation of pyrite-bornite inclusions in coesite-bearing eclogites from the Sulu Belt in China, which reached temperatures of at least 750 °C. Thus, sulfur may be released from subducting slabs in two separate pulses; (1) varying proportions of SO2, HSO4- and H2S are released via anhydrite breakdown at the blueschist-eclogite transition, promoting oxidation of remaining silicates in some domains, and (2) H2S is released via pyrite breakdown well into the eclogite facies, which may in some circumstances coincide with slab melting or supercritical liquid generation driven by influx of serpentinite-derived fluids. These results imply that the metallogenic potential in the sub-arc mantle above the subducting slab varies as a function of subduction depth, having the greatest potential above the blueschist-eclogite transition given the association between oxidised magmas and porphyry Cu(-Au-Mo) deposits. We speculate that this zoned sulfur liberation might be one of the factors that lead to the apparently redox-influenced zoned distribution of ore deposit types in the Andean arc. Furthermore, given the lack of sulfate-associated sea floor oxidation prior to the second great oxidation event, the pattern of sulfur transfer from the slab to the sub-arc mantle likely changed over time, becoming shallower and more oxidised from the Neoproterozoic onwards.

  6. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust. (United States)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.


    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination) as boundary conditions for the models. In all, and with limited integration of existing tools, to deployment of high-temperature downhole tools could contribute largely to the success of the long awaited Mohole project.

  7. Oceanic crust within the paleozoic Granjeno Schist, northeastern Mexico. Remnants of the Rheic and paleo-Pacific Ocean. (United States)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Torres Sanchez, Dario; Aleman Gallardo, Eduardo; Abratis, Michael


    Late Paleozoic metamorphic rocks in Mexico are related to the Laurentia-Gondwana collision in Carboniferous time, during Pangaea amalgamation. Vestiges of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental. Field work and petrographic analysis reveal that the Granjeno Schist comprises metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and igneous (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as 40Ar/39Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma). The presence of metabasalt, metacumulate, serpentinite and talc bodies suggests an oceanic tectonic setting for the evolution of the Granjeno Schist. Serpetinite rocks have mesh, granular and ribbon textures which indicate recrystallization and metasomatic events. The serpentinite rocks are enriched in the very large incompatible elements Cs, U, and Zr and depleted in Ba, Sr, Pb, Zr and Ce. Normalized REE patterns (LaN/YbN = 0.51 - 19.95 and LaN/SmN = 0.72 - 9.08) of the serpentinite and talc/soapstone are characteristic of peridotite from both suprasubduction and mid-ocean ridge zones. Serpentinite from the Granjeno Schist have spinel content which can reveal different stages of evolution in host serpentinite. The composition of chromite indicates that they belong to podiform chromite that may have crystallized from mid-ocean ridge magma. Al-chromite in the serpentinite is characterized by #Cr 0.48 to 0.55, which indicates a depleted mantle source affected by 17 to 18% of partial melting. The ferritchromite has #Cr values of 0.93 to 1.00 which indicates a metamorphic origin. Our study suggests at least two serpentinization stages. The first serpentinization stage is related to an ocean-floor environment. At this stage, mesh-textured serpentinite formed under static conditions under subgreenschist to greenschist conditions. The second serpentinization stage occurred under greenschist to low amphibole conditions. During this stage Cr-spinel progressively was replaced by ferritchromite with magnetite rims due to regional metamorphism. Tectonic contact of the serpentinite with metavolcanic and metasedimentary rocks indicates lithospheric mantle slivers juxtaposed during the metamorphism of the Granjeno Schist during Pennsylvanian time. This metamorphic event occurred in an active continental margin. It represents the last events of the southern closure of the Rheic Ocean and Permo-Carboniferous convergence of Pacific plates on the western margin of Pangea.

  8. Scattering beneath Western Pacific subduction zones: evidence for oceanic crust in the mid-mantle (United States)

    Bentham, H. L. M.; Rost, S.


    Small-scale heterogeneities in the mantle can give important insight into the dynamics and composition of the Earth's interior. Here, we analyse seismic energy found as precursors to PP, which is scattered off small-scale heterogeneities related to subduction zones in the upper and mid-mantle. We use data from shallow earthquakes (less than 100 km depth) in the epicentral distance range of 90°-110° and use array methods to study a 100 s window prior to the PP arrival. Our analysis focuses on energy arriving off the great circle path between source and receiver. We select coherent arrivals automatically, based on a semblance weighted beampower spectrum, maximizing the selection of weak amplitude arrivals. Assuming single P-to-P scattering and using the directivity information from array processing, we locate the scattering origin by ray tracing through a 1-D velocity model. Using data from the small-aperture Eielson Array (ILAR) in Alaska, we are able to image structure related to heterogeneities in western Pacific subduction zones. We find evidence for ˜300 small-scale heterogeneities in the region around the present-day Japan, Izu-Bonin, Mariana and West Philippine subduction zones. Most of the detected heterogeneities are located in the crust and upper mantle, but 6 per cent of scatterers are located deeper than 600 km. Scatterers in the transition zone correlate well with edges of fast features in tomographic images and subducted slab contours derived from slab seismicity. We locate deeper scatterers beneath the Izu-Bonin/Mariana subduction zones, which outline a steeply dipping pseudo-planar feature to 1480 km depth, and beneath the ancient (84-144 Ma) Indonesian subduction trench down to 1880 km depth. We image the remnants of subducted crustal material, likely the underside reflection of the subducted Moho. The presence of deep scatterers related to past and present subduction provides evidence that the subducted crust does descend into the lower mantle at least for these steeply dipping subduction zones. Applying the same technique to other source-receiver paths will increase our knowledge of the small-scale structure of the mantle and will provide further constraints on geodynamic models.

  9. Do Two Deep Drill Holes Into the Upper Ocean Crust Quantify the Hydrothermal Contribution to Global Geochemical Cycles? (United States)

    Teagle, D. A. H.; Alt, J.; Coggon, R. M.; Harris, M.; Smith-Duque, C. E.; Rehkamper, M.


    Vigorous circulation of seawater at the ocean ridges is required to cool and crystallize magma to form new ocean crust. Axial and ridge flank hydrothermal fluid circulation is accompanied by seawater-basalt exchanges over a spectrum of temperatures that buffer the chemistry of seawater, provide unique microbial niches, alter the chemistry and mineralogy of the ocean crust, and through subduction return surface-derived geochemical tracers to the interior of our planet. In many models of axial and ridge flank hydrothermal circulation, most fluid-rock interaction occurs in the upper oceanic crust. Hence inventories of seawater exchange should be captured by relatively shallow (textbook Penrose-type layering, albeit with different thicknesses of lavas and dikes. However, what was not anticipated was the contrasting distribution and nature of elemental and isotopic hydrothermal exchanges. Differences reflect the influence of local crustal structure, such as lava morphology and flow thicknesses, and thermal gradients on hydrothermal processes. These contrasts highlight the importance of further deep drilling to at least the upper gabbros in a range of spreading rates and ages to robustly extrapolate the results from what will always be a limited number of bore holes to quantify global hydrothermal exchanges.

  10. A hydrologic model for the uppermost oceanic crust constrained by temperature estimates from carbonate minerals (United States)

    Anderson, B. W.; Gillis, K. M.; Coogan, L. A.


    models of the oceanic crust commonly assume that the uppermost igneous extrusive layer of the aquifer is thermally well mixed, although this assumption has not been rigorously tested. Here, the assumption of a thermally well-mixed aquifer is tested against the geological record using O isotope-derived crystallization temperatures of carbonates in the lavas as a record of the temperatures experienced by the aquifer. It is found that carbonate formation temperatures are higher than can be explained by a model of outcrop-to-outcrop flow in a well-mixed aquifer at four of the seven drilling locations analyzed. A poorly mixed aquifer is developed to further explore the crustal hydrology at these locations. Relative to a well-mixed aquifer, a poorly mixed aquifer can achieve higher average temperatures, develops larger lateral pressure gradients driving flow, and requires a lower permeability to achieve a given lateral fluid flux. O isotope data from most of the carbonate samples analyzed are consistent with temperatures achievable in a poorly mixed aquifer; those samples which are not consistent can be explained by plausible special circumstances (such as formation at a discharge zone, where ascending fluid may warm the uppermost aquifer).

  11. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust (United States)

    Okazaki, Keishi; Hirth, Greg


    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovi?i? discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick–slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  12. Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite (United States)

    VanTongeren, J. A.; Hirth, G.; Kelemen, P. B.


    Oceanic crust represents more than 60% of the earth's surface and despite a large body of knowledge regarding the formation and chemistry of the extrusive upper oceanic crust, there still remains significant debate over how the intrusive gabbroic lower oceanic crust is accreted at the ridge axis. The two proposed end-member models, the Gabbro Glacier and the Sheeted Sills, predict radically different strain accumulation in the lower crust during accretion. In order to determine which of these two hypotheses is most applicable to a well-studied lower crustal section, we present data on plagioclase lattice preferred orientations (LPO) in the Wadi Khafifah section of the Samail ophiolite. We observe no systematic change in the strength of the plagioclase LPO with height above the crust-mantle transition, no dominant orientation of the plagioclase a-axis lineation, and no systematic change in the obliquity of the plagioclase LPO with respect to the modal layering and macroscopic foliation evident in outcrop. These observations are most consistent with the Sheeted Sills hypothesis, in which gabbros are crystallized in situ and fabrics are dominated by compaction and localized extension rather than by systematically increasing shear strain with increasing depth in a Gabbro Glacier. Our data support the hypothesis of MacLeod and Yaouancq (2000) that the rotation of the outcrop-scale layering from sub-horizontal in the layered gabbros to sub-vertical near the sheeted dikes is due to rapid vertical melt migration through upper gabbros close to the axial magma chamber. Additionally, our results support the hypothesis that the majority of extensional strain in fast spreading ridges is accommodated in partially molten regions at the ridge axis, whereas in slow and ultra-slow ridges large shear strains are accommodated by plastic deformation.

  13. Magnetic mapping of (carbonated) oceanic crust-mantle boundary: New insights from Linnajavri, northern Norway (United States)

    Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.


    The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (? 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190 ?m, show that the distribution of microscopically measurable ferromagnetic and possibly sulfide minerals produces a different bulk intensity for each of the rock types. SM vector magnetic field maps of these samples also reveal that the magnetization associated with these grains (observed as dipole-like fields in SM maps) is variable in direction from grain to grain, which may result from different alteration histories for each grain. These complex magnetization patterns acquired through thermal and chemical alteration history may explain the short wavelength magnetic anomalies observed along our traverse lines. [1] Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B. (2012), Terra Nova, in press.

  14. Pliocene (3.2-2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean (United States)

    Cronin, T. M.; Raymo, M.E.; Kyle, K.P.


    Ostracode assemblages from Deep Sea Drilling Project Sites 607 (western Mid-Atlantic Ridge) and 610 (southeast Rockall Plateau) show rapid, systematic shifts during late Pliocene glacial-interglacial cycles that reflect deep-sea environmental change. Progressive decreases in North Atlantic deep-water taxa and increases in Southern Ocean taxa occur from 3.4 to 2.4 Ma, and high-amplitude faunal cycles begin near 2.8 Ma. Four ostracode assemblages, each with a characteristic phase relative to 41 k.y. obliquity glacial-interglacial ??18O cycles, characterize the benthic faunal record at Site 607. Cross-spectral analysis shows that the Site 607 glacial assemblage has a 41 k.y. periodicity significant at the 95% level; other assemblages show a less significant, but still obvious, concentration of variance at 41 k.y. Faunal patterns suggest climatically controlled reorganization of deep-sea benthic communities during glacial-interglacial cycles due to oscillating deep-sea environments.

  15. Structure, porosity and stress regime of the upper oceanic crust: Sonic and ultrasonic logging of DSDP Hole 504B (United States)

    Newmark, R.L.; Anderson, R.N.; Moos, D.; Zoback, M.D.


    The layered structure of the oceanic crust is characterized by changes in geophysical gradients rather than by abrupt layer boundaries. Correlation of geophysical logs and cores recovered from DSDP Hole 504B provides some insight into the physical properties which control these gradient changes. Borehole televiewer logging in Hole 504B provides a continuous image of wellbore reflectivity into the oceanic crust, revealing detailed structures not apparent otherwise, due to the low percentage of core recovery. Physical characteristics of the crustal layers 2A, 2B and 2C such as the detailed sonic velocity and lithostratigraphic structure are obtained through analysis of the sonic, borehole televiewer and electrical resistivity logs. A prediction of bulk hydrated mineral content, consistent with comparison to the recovered material, suggests a change in the nature of the alteration with depth. Data from the sonic, borehole televiewer, electrical resistivity and other porosity-sensitive logs are used to calculate the variation of porosity in the crustal layers 2A, 2B and 2C. Several of the well logs which are sensitive to the presence of fractures and open porosity in the formation indicate many zones of intense fracturing. Interpretation of these observations suggests that there may be a fundamental pattern of cooling-induced structure in the oceanic crust. ?? 1985.

  16. Radiocarbon dating of basalts from middle oceanic ridges using lithified carbonate crust samples

    International Nuclear Information System (INIS)

    Results of radiocarbon dating of basalts using lithified carbonate crust samples are presented. Core samples were samples in Red sea deep-water cavities during joint Picar expedition of two scientific research ships ''Academic Kurchatov'' and ''Professor Shtockman''. Crust samples were dated according to benzene variant. Age values obtained are varied in the interval from 2980 to 20700 yeras. Dating of basalts using lithified carbonate crusts is efficient in the range of radiocarbon dating (up to 40000-45000 years). This range is inaccessible for other methods of nuclear geochronology that makes the above method more valuable

  17. Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle (United States)

    Shorttle, Oliver; Moussallam, Yves; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Murton, Bramley J.


    The cycling of material from Earth's surface environment into its interior can couple mantle oxidation state to the evolution of the oceans and atmosphere. A major uncertainty in this exchange is whether altered oceanic crust entering subduction zones can carry the oxidised signal it inherits during alteration at the ridge into the deep mantle for long-term storage. Recycled oceanic crust may be entrained into mantle upwellings and melt under ocean islands, creating the potential for basalt chemistry to constrain solid Earth-hydrosphere redox coupling. Numerous independent observations suggest that Iceland contains a significant recycled oceanic crustal component, making it an ideal locality to investigate links between redox proxies and geochemical indices of enrichment. We have interrogated the elemental, isotope and redox geochemistry of basalts from the Reykjanes Ridge, which forms a 700 km transect of the Iceland plume. Over this distance, geophysical and geochemical tracers of plume influence vary dramatically, with the basalts recording both long- and short-wavelength heterogeneity in the Iceland plume. We present new high-precision Fe-XANES measurements of Fe3+ / ∑ Fe on a suite of 64 basalt glasses from the Reykjanes Ridge. These basalts exhibit positive correlations between Fe3+ / ∑ Fe and trace element and isotopic signals of enrichment, and become progressively oxidised towards Iceland: fractionation-corrected Fe3+ / ∑ Fe increases by ∼0.015 and ΔQFM by ∼0.2 log units. We rule out a role for sulfur degassing in creating this trend, and by considering various redox melting processes and metasomatic source enrichment mechanisms, conclude that an intrinsically oxidised component within the Icelandic mantle is required. Given the previous evidence for entrained oceanic crustal material within the Iceland plume, we consider this the most plausible carrier of the oxidised signal. To determine the ferric iron content of the recycled component ([Fe2O3]source) we project observed liquid compositions to an estimate of Fe2O3 in the pure enriched endmember melt, and then apply simple fractional melting models, considering lherzolitic and pyroxenitic source mineralogies, to estimate [Fe2O3](source) content. Propagating uncertainty through these steps, we obtain a range of [Fe2O3](source) for the enriched melts (0.9-1.4 wt%) that is significantly greater than the ferric iron content of typical upper mantle lherzolites. This range of ferric iron contents is consistent with a hybridised lherzolite-basalt (pyroxenite) mantle component. The oxidised signal in enriched Icelandic basalts is therefore potential evidence for seafloor-hydrosphere interaction having oxidised ancient mid-ocean ridge crust, generating a return flux of oxygen into the deep mantle.

  18. Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation (United States)

    Stroncik, N. A.; Niedermann, S.


    Both, terrestrial and extra-terrestrial applications of noble gases have demonstrated their importance as tracers for source identification, process characterisation and mass and heat flux quantification. However, the interpretation of noble gas isotope data from terrestrial igneous rocks is often complicated by the ubiquitous presence of heavy noble gases (Ne, Ar, Kr, Xe) with an atmospheric origin. Up to now there has been no consensus on how atmospheric noble gases are entrained into igneous rocks. Suggested processes range from contamination during sample preparation to mantle recycling through subduction. Here we present Ne, Ar, Mg, K, and Cl data of fresh glasses from the Mid-Atlantic Ridge north and south of the Ascension Fracture Zone which show that incorporation of atmospheric noble gases into igneous rocks is in general a two-step process: (1) magma contamination by assimilation of altered oceanic crust results in the entrainment of noble gases from air-equilibrated seawater; (2) atmospheric noble gases are adsorbed onto grain surfaces during sample preparation. This implies, considering the ubiquitous presence of the contamination signal, that magma contamination by assimilation of a seawater-sourced component is an integral part of mid-ocean ridge basalt evolution. Combining the results obtained from noble gas and Cl/K data with estimates of crystallisation pressures for the sample suite shows that the magma contamination must have taken place at a depth between 9 and 13 km. Taking thickness estimates for the local oceanic crust into account, this implies that seawater penetration in this area reaches lower crustal levels, indicating that hydrothermal circulation might be an effective cooling mechanism even for the deep parts of the oceanic crust.

  19. Age, spreading rates, and spreading asymmetry of the world's ocean crust (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...

  20. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe-Mn crusts (United States)

    Von Blanckenburg, F.; O'Nions, R. K.; Hein, J.R.


    The lead isotope composition of ocean water is not well constrained due to contamination by anthropogenic lead. Here the global distribution of lead isotopes in deep ocean water is presented as derived from dated (ca. 100 ka) surface layers of hydrogenetic Fe-Mn crusts. The results indicate that the radiogenic lead in North Atlantic deep water is probably supplied from the continents by river particulates, and that lead in Pacific deep water is similar to that characteristic of island and continental volcanic arcs. Despite a short residence time in deep water (80-100 a), the isotopes of lead appear to be exceedingly well mixed in the Pacific basin. There is no evidence for the import of North Atlantic deep water-derived lead into the Pacific ocean, nor into the North Indian Ocean. This implies that the short residence time of lead in deep water prohibits advection over such long distances. Consequently, any climate-induced changes in deep-water flow are not expected to result in major changes in the seawater Pb-isotope record of the Pacific Ocean.

  1. Platinum group elements and gold in ferromanganese crusts from Afanasiy–Nikitin seamount, equatorial Indian Ocean: Sources and fractionation

    Indian Academy of Sciences (India)

    V K Banakar; J R Hein; R P Rajani; A R Chodankar


    The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations ( = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5-2) and Pt/Ru ratios (7-28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values (> 2) similar to CI-chondrite (?1). The chondrite-normalized PGE patterns are similar to those of igneous rocks, except that Pd is relatively depleted. The water depth of Fe-Mn crust formation appears to have a first-order control on both major element and PGE enrichments. These relationships are defined statistically by significant ( < 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations ( < 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE ( $mt; 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.

  2. Intermediate crust (IC); its construction at continent edges, distinctive epeirogenic behaviour and identification as sedimentary basins within continents: new light on pre-oceanic plate motions (United States)

    Osmaston, Miles F.


    Introduction. The plate tectonics paradigm currently posits that the Earth has only two kinds of crust - continental and oceanic - and that the former may be stretched to form sedimentary basins or the latter may be modified by arc or collision until it looks continental. But global analysis of the dynamics of actual plate motions for the past 150 Ma indicates [1 - 3] that continental tectospheres must be immensely thicker and rheologically stiffer than previously thought; almost certainly too thick to be stretched with the forces available. In the extreme case of cratons, these tectospheric keels evidently extend to 600 km or more [2, 3]. This thick-plate behaviour is attributable, not to cooling but to a petrological 'stiffening' effect, associated with a loss of water-weakening of the mineral crystals, which also applies to the hitherto supposedly mobile LVZ below MORs [4, 5]. The corresponding thick-plate version of the mid-ocean ridge (MOR) process [6 - 8], replacing the divergent mantle flow model, has a deep, narrow wall-accreting axial crack which not only provides the seismic anisotropy beneath the flanks but also brings two outstanding additional benefits:- (i) why, at medium to fast spreading rates, MOR axes become straight and orthogonally segmented [6], (ii) not being driven by body forces, it can achieve the sudden jumps of axis, spreading-rate and direction widely present in the ocean-floor record. Furthermore, as we will illustrate, the crack walls push themselves apart at depth by a thermodynamic mechanism, so the plates are not being pulled apart. So the presence of this process at a continental edge would not imply the application of extensional force to the margin. Intermediate Crust (IC). In seeking to resolve the paradox that superficially extensional structures are often seen at margins we will first consider how this MOR process would be affected by the heavy concurrent sedimentation to be expected when splitting a mature continent. I reason that, by blocking the hydrothermal cooling widely seen along MOR axes this must inhibit the freezing-in of diagnostic spreading-type magnetic anomalies and would prolong magmagenesis to give a thicker-than-oceanic mafic crust. I have called this Intermediate Crust (IC) [9, 10], to distinguish it from Mature Continental Crust (MCC). Plate separation will continue to generate IC along the margins for as long/far as the sedimentation input is sufficient to have this effect. Transition to the MOR process will then follow. But if, contrary to the general plate tectonics assumption, based on body forces, plate separation ceases after a limited separation (or perhaps several in differing directions), without proceeding to the oceanic condition, the resulting IC areas will be incorporated within the continent [11]. Where does this lead us? With examples drawn from 40 years' study, I will contend that this is indeed the way the Earth has worked and that it offers potential plate kinematic explanation of the origin of the block-and-sedimentary basin layouts abundantly present in the non-craton areas of continents. I will show that in some cases the intricacy of block outlines and the precision with which they can be fitted together in a kinematically consistent manner rules out that this was purely by chance. The evidently meaningful character of those outlines means that they have been drawn by a narrow-crack separative mechanism which reflects that of our new MOR model. To provide a basis for such Plate Kinematic Analysis (PKA) we now link and compare some features of IC-formation at continental edges and of the crust of sedimentary basins. Characteristics of IC and of sedimentary basin crust (SBC). 1. IC basement, with expected seismic Vp around 6km/s, must look deceptively like that assigned to supposedly stretched MCC. 2. For thermodynamic reasons, the hydrous metamorphic content of deep MCC and of deeply subducted UHP slices of it gives them a big thermal epeirogenic sensitivity which IC lacks. Calculation [8, 9] shows that this type of process yields some 12-30 t

  3. Seismic properties of subducting oceanic crust: Constraints from natural lawsonite-bearing blueschist and eclogite in Sivrihisar Massif, Turkey (United States)

    Cao, Yi; Jung, Haemyeong


    Investigating the seismic properties of natural lawsonite (Lws)-bearing blueschist and eclogite is particularly important for constraining the seismic interpretation of subducting oceanic crust based on seismological observations. To achieve this end, we analyzed in detail the mineral fabrics and seismic properties of foliated Lws-blueschist and Lws-eclogites from Sivrihisar Massif in Turkey. In both blueschists and eclogites, the lawsonite fabric is characterized by three different patterns: [0 0 1] axes aligning sub-normal to foliation, and [0 1 0] axes aligning sub-parallel to lineation (normal type); [0 0 1] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation with a girdle sub-normal to lineation (abnormal type); and [0 0 1] axes aligning both sub-normal to foliation and sub-parallel to lineation, [0 1 0] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation (transitional pattern). In contrast, glaucophane and omphacite mostly present consistent axial fabrics with the [0 0 1] axes aligning to lineation. These mineral fabrics produce whole-rock seismic anisotropies with similar patterns. However, the variations in seismic anisotropies are mainly controlled by the rock type, to a lesser extent are determined by the lawsonite fabric type, and to only a small extent are affected by mineral fabric strength. Despite the constructive abnormal-type lawsonite fabric on whole-rock seismic anisotropies, because of their weaker mineral fabric strength (or deformation degree), the abnormal-type Lws-blueschist still exhibit comparatively lower seismic anisotropies than those normal-type Lws-blueschist from other localities. Based on the calculated seismic anisotropies and velocities, we estimated that when oceanic crust transforms from Lws-blueschist to Lws-eclogite with increasing subduction depth, (1) P-wave and max. S-wave polarization anisotropies reduce about 70% and 40%, respectively; and (2) variations of Vp and Vs contrasts relative to mantle peridotites are about -7% to -3% and -8% to -6%, respectively. These results corroborate the important roles of Lws-bearing blueschist and eclogite in interpreting the existence and gradual weakening of low-velocity layers in subducting oceanic crust, during the subduction process.

  4. New ichthyoliths from ferromanganese crusts and nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    Ferromanganese encrusted hardgrounds, their intraclasts and the nuclei of manganese nodules collected from the Central Indian Ocean basin have yielded plentiful numbers of ichthyoliths. Forty well-knon ichthyoliths, one new type and 35 new subtypes...

  5. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia (United States)

    Tissot, François L. H.; Dauphas, Nicolas


    The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a ?238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (?Anoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the ?238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average ?238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of the variability of the 238U/235U ratio on Pb-Pb and U-Pb ages and provide analytical formulas to calculate age corrections as a function of the age and isotopic composition of the sample. The crustal ratio may be used in calculation of Pb-Pb and U-Pb ages of continental crust rocks and minerals when the U isotopic composition is unknown. In cosmochemistry, the search for 247Cm (t1/2 = 15.6 Myr), an extinct short-lived radionuclide that decays into 235U, is important for understanding how r-process nuclides were synthesized in stars and learning about the astrophysical context of solar system formation (Chen and Wasserburg, 1981; Wasserburg et al., 1996; Nittler and Dauphas, 2006; Brennecka et al., 2010b; Tissot et al., 2015). In both terrestrial and extraterrestrial samples, variations in the 238U/235U ratio affect Pb-Pb ages (and depending on the analytical protocols, U-Pb ages). Therefore, samples dated by these techniques need to have their U isotopic compositions measured (Stirling et al., 2005, 2006; Weyer et al., 2008; Amelin et al., 2010; Brennecka et al., 2010b; Brennecka and Wadhwa, 2012; Connelly et al., 2012; Goldmann et al., 2015) or uncertainties on the U isotopic composition should be propagated into age calculations. In low temperature aqueous geochemistry, U isotopic fractionation between U4+ and U6+ (driven in part by nuclear field shift effects; Bigeleisen, 1996; Schauble, 2007; Abe et al., 2008), makes U isotopes potential tracers of paleoredox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Kendall et al., 2013, 2015; Asael et al., 2013; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). The present paper aims at constraining some aspects of the global budget of uranium in the modern oceans using 238U/235U isotope variations, which involves characterizing the U isotopic composition of seawater and several reservoirs involved in the uranium oceanic budget. Uranium can exist in two oxidation states in terrestrial surface environments: U4+ is insoluble in seawater while U6+ is soluble (Langmuir, 1978). The contrasting behaviors of the two oxidation states of uranium explains why the disappearance of detrital uraninite after the Archean marks the rise of oxygen in Earth's atmosphere/hydrosphere (Ramdohr, 1958; Rasmussen and Buick, 1999; Frimmel, 2005). More recently, significant effort has focused on using U isotopes to constrain the past extents of anoxic/euxinic vs. oxic or suboxic sediments in modern and ancient oceans (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Asael et al., 2013; Kendall et al., 2013, 2015; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). A virtue of this system is that it can potentially reflect the global redox state of Earth's oceans. At the same time, several difficulties have been encountered in applying U isotopes as paleo-redox indicators. For example, detrital contributions can blur the authigenic signal and have to be corrected for (Asael et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), uranium isotopes can be affected by diagenesis and exchange with porewater (Romaniello et al., 2013; Andersen et al., 2014), and the exact isotopic fractionation factors relevant to various conditions of deposition are uncertain. While significant progress has already been made to address these difficulties (Asael et al., 2013; Romaniello et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), this system and others are missing some of the groundwork studies on modern environments that are needed to gain trust in their applications to ancient sediments.In the modern ocean, water-soluble uranium behaves conservatively (i.e., U concentration correlates linearly to water salinity, Ku et al., 1977; Owens et al., 2011) and has a long residence time of ?400 kyr (Ku et al., 1977). The ocean is therefore a large repository of uranium, exceeding the total inventory of land-based deposits (Lu, 2014). The riverine input (40-46 Mmol/yr) is balanced by several sinks; including suboxic sediments, anoxic/euxinic sediments, carbonates, altered oceanic crust, salt marshes and Fe-Mn nodules. Barnes and Cochran (1990), Morford and Emerson (1999), Dunk et al. (2002), and Henderson and Anderson (2003) each proposed estimates for the oceanic uranium budget that differ substantially in the fluxes that they use. Uranium isotopes are sensitive to ocean redox conditions because uranium removal in anoxic/euxinic sediments imparts large uranium isotopic fractionation, so that the areal extent of this sink influences greatly the U isotopic composition of seawater relative to the riverine input. In the present paper, we report double-spike uranium isotopic measurements of 18 seawater samples, 18 continental crust lithologies, 7 individual minerals, 6 oyster samples, 3 modern evaporites samples, 2 lake water samples, 1 large river water sample and 1 coral sample. These measurements are supplemented by compilations of literature data. With this large data set (n = 444), we are able to constrain the flux of uranium into anoxic/euxinic sediments, as well as the global extent of anoxia in the modern ocean (percent of seafloor covered by anoxic/euxinic sediments). Our findings compare well with independent estimates and rule out the most recent U budget of Henderson and Anderson (2003).As part of our effort, we also present a data reduction method for double-spike measurements that is both comprehensive in the way the errors are propagated and simple to implement.

  6. The origin of layered gabbros from the mid lower ocean crust, Hess Deep, East Pacific Rise (United States)

    Cheadle, M. J.; Brown, T. C.; Ceuleneer, G.; Meyer, R.


    IODP Exp. 345 Holes U1415 I & J cored a ~30m thick unit of conspicuously layered gabbroic rocks from the lower plutonic crust at Hess Deep. These rocks likely come from >1500m below the dike gabbro transition and thus provide an unique opportunity to study the origin of layering and the formation of relatively deep, fast spread plutonic crust formed at the EPR. Here we report the initial results of a comprehensive high-resolution petrologic, geochemical and petrographic study of this unit, which focuses on a fairly continuous 1.5m long section recovered at Hole I. The rocks consist of opx-bearing olivine gabbro, olivine gabbro and gabbro and exhibit 1-10cm scale modal layering. Some layers host spectacular 2-3 cm diameter cpx oikocrysts encapsulating partially resorbed plagioclase laths. Downhole variations in mineral chemistry are complicated. Olivine, cpx and opx Mg#'s partly reflect equilibration and show a subtle metre-scale variation (1-2 Mg#), whereas, for example, plagioclase anorthite, and cpx TiO2 contents reveal a more complicated 10-20 cm-scale variation (2-4 An, and 0.2 TiO2). Mineral zonation, for all but Mg# in equilibrated olivine, is of higher magnitude than downhole variations in average mineral compositions. Trace element geochemistry reveals rather homogeneous plagioclase and opx compositions; however cpx exhibits variation at the mineral scale. Cpx shows an increased range of, and highest REE concentrations, in the more olivine rich, near cotectic, composition gabbros, whereas the more plagioclase rich, cumulates show no variation of, and low REE, concentrations.Plagioclase fabrics are moderate to weak and partially modally controlled, but the strength of the plagioclase crystallographic preferred orientation (CPO) varies dramatically, within the 1.5m core showing a significant part of the variation recorded by Oman ophiolite plutonic crust. Plagioclase shape preferred orientation and CPO match well suggesting that diffusion enabled compaction was not significant. Overall, our combined observations and the similarity of composition and textures to those found in the Rum layered mafic intrusion (Scotland); an intrusion built by multiple ~100m thick replenishments of magma, suggests that the studied layered sequence is best interpreted as having formed in a lower crustal sill.

  7. Molybdenum evidence for expansive sulfidic water masses in ~ 750 Ma oceans

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Canfield, Donald Eugene; Rosing, Minik Thorleif; Frei, Robert; Gordon, Gwyneth; Knoll, Andrew; Anbar, Ariel

    The Ediacaran appearance of large animals, including motile bilaterians, is commonly hypothesized to reflect a physiologically enabling increase in atmospheric and oceanic oxygen abundances (pO2). To date, direct evidence for low oxygen in pre-Ediacaran oceans has focused on chemical signatures in...... reflect a markedly lower atmospheric and oceanic O2 level, consistent with the hypothesis that pO2 acted as an evolutionary barrier to the emergence of large motile bilaterian animals prior to the Ediacaran Period....

  8. Carbonate formation in the ocean crust as a proxy for water-rock interactions


    Eickmann, Benjamin


    The main objective of this thesis was to elucidate the authigenesis of carbonate minerals in modern and Devonian ocean-floor volcanic rocks and to demonstrate that Late Devonian (Frasnian) pillow basalts from the Saxothuringian zone once harbored microbial life. The ultramafic-hosted Logatchev hydrothermal field (LHF) at the Mid-Atlantic Ridge, the Arctic Gakkel Ridge (GR) and the Late Devonian Frankenwald feature carbonate precipitates (aragonite, calcite, dolomite) in voids and fractures of...

  9. Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece (United States)

    Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung


    Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (?7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2?, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The ?7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The ?7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.

  10. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA (United States)


    ...1625-AA00 Safety Zones: Neptune Deep Water Port, Atlantic Ocean...for review and comment at the Web site http://www.regulations...rulemaking docket titled: Neptune Deep Water Port, Atlantic Ocean...infrastructure of the Neptune Deep Water Port. Extensive...

  11. Molybdenum evidence for expansive sulfidic water masses in ~ 750 Ma oceans

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Canfield, Donald Eugene; Rosing, Minik Thorleif; Frei, Robert; Gordon, Gwyneth; Knoll, Andrew; Anbar, Ariel

    The Ediacaran appearance of large animals, including motile bilaterians, is commonly hypothesized to reflect a physiologically enabling increase in atmospheric and oceanic oxygen abundances (pO2). To date, direct evidence for low oxygen in pre-Ediacaran oceans has focused on chemical signatures i...

  12. Reconciling hydrological models with geological constraints in the upper oceanic crust at ODP Holes 504B and 896A (United States)

    Anderson, B. W.; Gillis, K. M.; Coogan, L. A.


    It has been proposed that ridge flank hydrothermal circulation by outcrop-to-outcrop (lateral) flow may be the dominant mode of advective heat extraction from the oceanic crust globally[1]. In this model the upper crust is an aquifer overlain by low permeability sediments, and aquifer-ocean fluid exchange occurs through basement outcrops. Thermally-induced pressure gradients drive fluid laterally from recharge outcrops to discharge outcrops. Drilling at ODP Holes 504B and 896A (in 6.9 Myr crust), along with hydrological monitoring and geophysical surveys of the area, provide a wealth of data to test the model of outcrop-to-outcrop flow in a young, rapidly sedimented area. Outcrop-to-outcrop flow in this region has been shown to be consistent with heat flow data and measured upper crustal temperatures[2], but has not been tested against geological constraints. With a numerical model of sedimentation, and constraints from geophysical data, the time-dependant distribution of outcrops near Holes 504B and 896A is estimated. From this, temperature histories and fluid fluxes in the upper crust are estimated for the drilling locations with a quantitative model of outcrop-to-outcrop fluid flow and heat exchange. Temperatures predicted by the outcrop-to-outcrop flow model for both holes are outcrop-to-outcrop flow. We consider whether ?18O-derived carbonate temperatures may be overestimated due to uncertainty in the hydrothermal fluid composition. Although there is a 1-2% enrichment in the ?18Orock of Hole 896A lavas[3], the modeled water-rock ratio of ~50 requires a relatively small corresponding decrease in ?18Ofluid relative to seawater, insufficient to lower carbonate temperatures to within range of the outcrop-to-outcrop flow model. These high temperature carbonates could be explained if vertical heat advection is important. The solubility of calcium carbonate is determined for temperatures predicted for outcrop-to-outcrop flow. Carbonate solubility and modeled water/rock ratios are used to estimate the timing and abundance of carbonate precipitation. Outcrop-to-outcrop flow requires that most upper crustal carbonates in both holes precipitated within the last ~2 Myrs. The 2-3x enrichment of bulk rock CO2 at Hole 896A[6] is consistent with greater fluid fluxes at Hole 896A relative to Hole 504B and/or a closer proximity of Hole 896A to a focused recharge site. Ongoing modeling of carbonate precipitation in off-axis hydrothermal systems near other drill holes will also be presented. [1] Fisher and Becker, Nature 2000, v403, p71. [2] Davis et al., EPSL 2004, v222, p863. [3] Teagle et al., Proc. ODP, Sci. Res. v148, p119. [4] Coggon et al., Science 2010, v327, p1114. [5] Alt et al., Proc. ODP, Sci. Res. 1996, v148, p435. [6] Alt and Teagle, Geochim. Cosmochim. Acta 1999, v63, p1527.

  13. Canterbury Drifts, SW Pacific Ocean: Record of Antarctic Intermediate Water Flow Since 24 Ma (United States)

    Carter, R. M.


    The Canterbury Drifts were deposited in water depths between 400 and 1500 m by northward flowing, cold, intermediate depth water masses - Subantarctic Mode Water, Antarctic Intermediate Water, and their predecessor current flows. Drift accumulation started at 24 Ma, fed by terrigenous sediment derived from the newly rising Alpine Fault plate boundary in the west, which has built a progradational shelf-slope sediment prism up to 130 km wide at rates of eastward advance of up to 5.4 km/My. These regionally extensive, intermediate-depth sediment drifts can be examined in outcrop, in marine drillcore (ODP Site 1119) and at the modern seabed. The drifts comprise planar-bedded units up to several metres thick. Sand intervals have either reverse graded or sharp, erosive bases and normally graded tops. Bioturbation is moderate and the sands occur within a pervasive background of cm-scale, planar or wispy alternating muddy and sandy silts, consistent with deposition from rhythmically fluctuating bottom currents. In the Plio-Pleistocene, the sand:silt lithological rhythmicity occurs in synchroneity with Milankovitch-scale climate cycling; periods of inferred faster current flow (sand beds) mostly correspond to warm climatic intervals. The drifts vary in thickness from 300 m near the early Miocene shoreline, where they were accumulating in limited shallow water accommodation, to 2000+ m under the modern shelf edge. Mounded drifts first occur at 15 Ma (Middle Miocene), their appearance perhaps reflecting more vigorous intermediate water flow consequent upon the worldwide climatic deterioration between 15 and 13 Ma. A further change from large (more than 10 km wide) to smaller (1-3 km wide) mounded slope drifts occurs at 3.1 Ma, marking further cooling, the inception of discrete SAMW flows, and initiation of the Subantarctic Front. The natural gamma ray record from Site 1119 contains a history since 3.9 Ma of the waxing and waning of the New Zealand mountain ice cap. Back to 0.37 Ma, this record closely mirrors the climate history of Antarctica, as manifested in the Vostok ice core, at 0.1-0.6 ky resolution. Beyond, and back to 3.9 Ma, the gamma record reflects southern mid-latitude ice-volumes and perhaps Antarctic polar plateau temperature at a resolution of 1.3 ky.

  14. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust? (United States)

    Rapp, Jennifer F.; Draper, David S.


    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  15. Molybdenum evidence for expansive sulfidic water masses in ~750Ma oceans


    Dahl, Tais; Canfield, Donald E; Rosing, Minik T; Frei, Robert E.; Gordon, Gwyneth W.; Knoll, Andrew Herbert; Anbar, Ariel D.


    The Ediacaran appearance of large animals, including motile bilaterians, is commonly hypothesized to reflect a physiologically enabling increase in atmospheric and oceanic oxygen abundances (pO2). To date, direct evidence for low oxygen in pre-Ediacaran oceans has focused on chemical signatures in the rock record that reflect conditions in local basins, but this approach is both biased to constrain only shallower basins and statistically limited when we seek to follow the evolution of mean oc...

  16. Internal time marker (Q1) of the Cretaceous super chron in the Bay of Bengal - a new age constraint for the oceanic crust evolved between India and Elan Bank (United States)

    Krishna, K. S.; Ismaiel, M.; Karlapati, S.; Saha, D.; Mishra, J.


    Analysis of marine magnetic data of the Bay of Bengal (BOB) led to suggest two different tectonic models for the evolution of lithosphere between India and East Antarctica. The first model explains the presence of M-series (M11 to M0) magnetic anomalies in BOB with a small room leaving for accommodating the crust evolved during the long Cretaceous Magnetic Quiet Period. Second model explains in other way that most part of the crust in BOB was evolved during the quite period together with the possible presence of oldest magnetic chron M1/ M0 in close vicinity of ECMI. It is with this perspective we have reinvestigated the existing and recently acquired magnetic data together with regional magnetic model of BOB for identification of new tectonic constraints, thereby to better understand the evolution of lithosphere. Analysis of magnetic data revealed the presence of spreading anomalies C33 and C34 in the vicinity of 8°N, and internal time marker (Q1) corresponding to the age 92 Ma at 12°N in a corridor between 85°E and Ninetyeast ridges. The new time marker and its location, indeed, become a point of reference and benchmark in BOB for estimating the age of oceanic crust towards ECMI. The magnetic model further reveals the presence of network of fracture zones (FZs) with different orientations. Between 85°E and Ninetyeast ridges, two near N-S FZs, approximately followed 87°E and 89.5°E are found to extend into BOB up to 12°N, from there the FZs reorient in N60°W direction and reach to the continental margin region. Along ECMI two sets of FZs are identified with a northern set oriented in N60°W and southern one in N40°W direction. This suggests that both north and south segments of the ECMI were evolved in two different tectonic settings. The bend in FZs marks the timing (92 Ma) of occurrence of first major plate reorganisation of the Indian Ocean and becomes a very critical constraint for understanding the plate tectonic process in early opening of the Indian Ocean.

  17. Late Quaternary Sedimentary Records of Core MA01 in the Mendeleev Ridge, the Western Arctic Ocean: Preliminary Results (United States)

    Park, K.; Kim, S.; Khim, B. K.; Wang, R.; Mei, J.; Xiao, W.; Polyak, L. V.


    Late Quaternary deep sea sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers. It has been known that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~1.0 Ma) of core MA01 was tentatively decided by correlation of sediment color cycles, XRF Mn and Ca cycles, and geomagnetic inclinations with core HLY0503-8JPC (Adler et al., 2009) and core HLY0503-06JPC(Cronin et al., 2013) that were also collected from the Mendeleev Ridge area. A total of 23 brown layers are characterized by low L* and b*, high Mn concentration, and abundant foraminifera. In contrast, gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which are accompanied with the coarse-grained (>63 ?m) fractions (i.e., IRD) both in brown and gray layers. A strong positive correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 fraction which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, also suggesting that the fine-grained particles in the Mendeleev Ridge were transported from the northern coasts of the Alaska and Canada. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, has played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that TOC and CaCO3 peaks are obviously distinct in the upper part of core MA01, whereas these peaks are reduced in the lower part of the core. More study on these contrasting features is in progress.

  18. Molybdenum evidence for expansive sulfidic water masses in ~ 750 Ma oceans

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Canfield, Donald Eugene; Rosing, Minik Thorleif; Frei, Robert; Gordon, Gwyneth; Knoll, Andrew; Anbar, Ariel

    The Ediacaran appearance of large animals, including motile bilaterians, is commonly hypothesized to reflect a physiologically enabling increase in atmospheric and oceanic oxygen abundances (pO2). To date, direct evidence for low oxygen in pre-Ediacaran oceans has focused on chemical signatures in...... organic-rich euxinic sediments can vary in response to changes in global redox conditions, Mo geochemistry provides independent constraints on the global evolution of well-oxygenated environments. Here, we establish a theoretical framework to access global marine Mo cycle in the past from the abundance...

  19. Deeply dredged submarine HIMU glasses from the Tuvalu Islands, Polynesia: Implications for volatile budgets of recycled oceanic crust (United States)

    Jackson, M. G.; Koga, K. T.; Price, A.; Konter, J. G.; Koppers, A. A. P.; Finlayson, V. A.; Konrad, K.; Hauri, E. H.; Kylander-Clark, A.; Kelley, K. A.; Kendrick, M. A.


    Ocean island basalts (OIB) with extremely radiogenic Pb-isotopic signatures are melts of a mantle component called HIMU (high µ, high 238U/204Pb). Until now, deeply dredged submarine HIMU glasses have not been available, which has inhibited complete geochemical (in particular, volatile element) characterization of the HIMU mantle. We report major, trace and volatile element abundances in a suite of deeply dredged glasses from the Tuvalu Islands. Three Tuvalu glasses with the most extreme HIMU signatures have F/Nd ratios (35.6 ± 3.6) that are higher than the ratio (˜21) for global OIB and MORB, consistent with elevated F/Nd ratios in end-member HIMU Mangaia melt inclusions. The Tuvalu glasses with the most extreme HIMU composition have Cl/K (0.11-0.12), Br/Cl (0.0024), and I/Cl (5-6 × 10-5) ratios that preclude significant assimilation of seawater-derived Cl. The new HIMU glasses that are least degassed for H2O have low H2O/Ce ratios (75-84), similar to ratios identified in end-member OIB glasses with EM1 and EM2 signatures, but significantly lower than H2O/Ce ratios (119-245) previously measured in melt inclusions from Mangaia. CO2-H2O equilibrium solubility models suggest that these HIMU glasses (recovered in two different dredges at 2500-3600 m water depth) have eruption pressures of 295-400 bars. We argue that degassing is unlikely to significantly reduce the primary melt H2O. Thus, the lower H2O/Ce in the HIMU Tuvalu glasses is a mantle signature. We explore oceanic crust recycling as the origin of the low H2O/Ce (˜50-80) in the EM1, EM2, and HIMU mantle domains.

  20. Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica) (United States)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Tiepolo, Massimo; Berno, Davide


    The Jurassic Pineto ophiolite from Corsica exposes a ~1-km-thick troctolite-olivine-gabbro sequence, interpreted to represent a lowermost sector of the gabbroic oceanic crust from a (ultra-)slow spreading system. To constrain the petrogenesis of the olivine-gabbros, minor and trace element analyses of olivine (forsterite = 84-82 mol%) were carried out. Olivine from the olivine-gabbros is depleted in incompatible trace elements (Sc, V, Ti, Y, Zr and heavy rare earth elements) with respect to olivines from associated troctolites. Depleted incompatible element compositions are also shown by olivine (forsterite = 86 mol%) from a clinopyroxene-rich troctolite. The incompatible element compositions of olivine argue against a petrogenetic process entirely driven by fractional crystallization. We propose that melts migrating through an olivine-plagioclase crystal mush chemically evolved by reaction with the existing minerals, changing in composition as it flowed upward. The melt residual from these interactions led to partial dissolution of preexisting olivine and to crystallization of clinopyroxene, generating olivine-gabbro bodies within a troctolite matrix. Reactive flow was the major evolution process active in the ~1-km crustal transect exposed at the Pineto ophiolite, producing lithological variations classically attributed to fractional crystallization processes.

  1. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS (United States)

    Lever, M. A.


    The European Cooperation in Science and Technology (COST)-Action FLOWS ( was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  2. Morphology and genesis of slow-spreading ridges-seabed scattering and seismic imaging within the oceanic crust (United States)

    Peirce, Christine; Sinha, Martin; Topping, Simon; Gill, Christopher


    A grid of 32 across-axis and five axis-parallel multichannel seismic (MCS) reflection profiles were acquired at an axial volcanic ridge (AVR) segment at 57° 45'N, 32° 35'W on the slow-spreading Reykjanes Ridge, Mid-Atlantic Ridge, to determine the along-axis variation and geometry of the axial magmatic system and to investigate the relationship between magma chamber structure, the along-axis continuity and segmentation of melt supply to the crust, the development of faulting and the thickness of oceanic layer 2A. Seismic reflection profiles acquired at mid-ocean ridges are prone to being swamped by high amplitude seabed scattered noise which can either mask or be mistaken for intracrustal reflection events. In this paper, we present the results of two approaches to this problem which simulate seabed scatter and which can either be used to remove or simply predict events within processed MCS profiles. The 37 MCS profiles show clear intracrustal seismic events which are related to the structure of oceanic layer 2, to the axial magmatic system and to the faults which dismember each AVR as it ages through its tectono-magmatic life cycle and which form the median valley walls. The layer 2A event can be mapped around the entirety of the survey area between 0.1 and 0.5 s two-way traveltime below the seabed, being thickest at AVR centres, and thinning both off-axis and along-axis towards AVR tips. Both AVR-parallel and ridge-parallel trends are observed, with the pattern of on-axis layer 2A thickness variation preserved beneath relict AVRs which are rafted off-axis largely intact. Each active AVR is underlain by a mid-crustal melt lens reflection extending almost along its entire length. Similar reflection events are observed beneath the offset basins between adjacent AVRs. These are interpreted as new AVRs at the start of their life cycle, developing centrally within the median valley. The east-west spacings of relict AVRs and offset basins is ~5-7 km, corresponding to a life span of the order of 0.5-0.7 Myr, during which AVRs appear to undergo multiple 20-60 Kyr tectono-magmatic cycles.

  3. Linear inversion of a negative gravity anomaly in se Rio Grande cone: a graben on oceanic crust?

    Scientific Electronic Library Online (English)

    Emilson Pereira, Leite; Naomi, Ussami.


    Full Text Available Uma anomalia ar-livre com amplitude negativa de 23 mGal em uma região no oceano Atlântico Sul, centrada em 48ºW e 35ºS, foi observada pela primeira vez devido à integração de dados de gravimetria marinha convencionais e dados de gravidade derivados de altimetria por satélite, adquiridos pela missão [...] GEOSAT/ERM. O limite norte desta anomalia coincide com o Lineamento Chuí e o limite sul indica outro lineamento, que é uma extensão da Zona de Fratura Meteoro. A anomalia tem direção NE-SW, sua largura é de 400 km e seu comprimento é de 600 km. Foi utilizada uma metodologia de inversão linear bidimensional, com vínculos relativos e absolutos, para calcular a distribuição de densidades ao longo de três perfis paralelos ao eixo principal da anomalia. O resultado sugere que a espessura de sedimentos na parte mais profunda da bacia é de no mínimo 3,0 km onde a batimetria oceânica é de 4.800 m. Esta feição tectônica, um semi-gráben assimétrico formado entre dois lineamentos, provavelmente situa-se sobre uma crosta oceânica. O volume de sedimentos estimado para esta bacia é de cerca de 50% do volume de sedimentos pós-Mioceno depositados no Rio Grande Cone, onde hidratos de gás foram encontrados. Abstract in english We detect, for the first time, a negative free-air gravity anomaly of 23 mGal amplitude over a region in the South Atlantic Ocean centered at 48ºW and 35ºS. To this end, we used the integration of conventional shipborne gravity data and gravity data derived from GEOSAT/ERM satellite altimetry. The n [...] orth bound of this anomaly coincides with the Chuí Lineament and the south bound indicates another lineament, which is the extension of the Meteor Fracture Zone. The anomaly trend is NE-SW, its width is 400 km and its length is 600 km. Two-dimensional linear inversion with relative and absolute equality constraints was used to calculate the density distribution along three profiles perpendicular to the main axis of the anomaly. The result suggests that the sediment thickness in the deepest part of the basin is at least 3.0 km where the ocean bathymetry is 4,800 m. This tectonic feature, an asymmetric half-graben formed between two lineaments, probably lies over an oceanic crust. The estimated volume of sediments in this basin is approximately 50% of the post-Miocene sediments volume deposited in the Rio Grande Cone where gas-hydrates were found.

  4. Ocean crust vein mineral deposition: Rb/Sr ages, U-Th-Pb geochemistry, and duration of circulation at DSDP sites 261, 462 and 516

    International Nuclear Information System (INIS)

    Cation exchange experiments (ammonium acetate and cation resin) on celadonite-smectite vein minerals from three DSDP holes demonstrate selective removal of common Sr relative to Rb and radiogenic Sr. This technique increases the Rb/Sr ratio by factors of 2.3 to 22 without significantly altering the age of the minerals, allowing easier and more precise dating of such vein minerals. Celadonites show U and Pb contents and Pb isotopic compositions little changed from their basalt precursors, while Tb contents are significantly lower. Celadonites thus have unusually high alkali/U,Th ratios and low Th/U ratios. If this celadonite alteration signature is significantly imprinted on oceanic crust as a whole, it will lead to very distinctive Pb isotope signatures for any hot spot magmas which contain a component of aged subducted recycled oceanic crust. Initial Sr isotope ratios of ocean crust vein minerals (smectite, celadonite, zeolite, calcite) are intermediate between primary basalt values and contemporary sea water values, and indicate formation under seawater-dominated systems with effective water-rock ratios of 20-200. (author)

  5. Ocean circulation in the tropical Indo-Pacific during early Pliocene (5.6 - 4.2 Ma): Paleobiogeographic and isotopic evidence

    Indian Academy of Sciences (India)

    M. S. Srinivasan; D. K. Sinha


    A Comparison of late Neogene planktic foraminferal biogeography and stable isotopic records of shallow dwelling and deep dwelling planktic foraminifera from DSDP sites 214 (Ninetyeast Ridge, northeast Indian Ocean) and 586B (ontong-Java Plateau, western Equatorial Pacific) provides a clue to the nature of the ocean circulation in the tropical Indo-Pacific during early Pliocene. The Present study reveals that the late Neogene planktic foraminiferal data from the eastern and western sides of the Indonesian Seaway are very similar. The only distinct inter-ocean difference however is the absence of Pulleniatina spectablis from the Indian Ocean. This species makes its first evolutionary appearance in the Equatorial Pacific at about 5.6 Ma (Early Gilbert reversed) and ranges up to 4.2 Ma (Top Conhiti subchron). The complete absence of Pulleniatina spectablis from the Indian Ocean is attributed to blocking of westward flow of tropical waters of the Pacific to the Indian Ocean resulting in a major change in the tropical Pacific and Indian oceans during 5.6 to 4.2 ma. In order to understand the nature of this blockage, isotopic depth ranking of selected planktic foraminifera and thus may be interpreted that the shallow sills that mark the Seaway in modern times were present as early as 5.6 Ma. The distribution of Pulleniatina spectablis throughout the Equatorial Pacific reveals that Modern Equatorial Pacific Under Current (Cromwell Current) flowing towards east at a depth of 200-300 m (which is also the depth habitat of Pulleniatina spectablis) was present at the beginning of the Pliocene (5.6 Ma). As a dequel to the blocking of the Indonesian Seaway and the resultant interruption in the flow of central Equatorial Current System of the Pacific to the west there was an increase in the western Pacific Warm Pool Waters and strengthening of the gyral circulation in the Pacific and Indian Oceans. This eventually triggered the intensification of the Asian Monsoon System.

  6. Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits (United States)

    Patten, Clifford G. C.; Pitcairn, Iain K.; Teagle, Damon A. H.; Harris, Michelle


    Volcanogenic massive sulphide (VMS) deposits are commonly enriched in Cu, Zn and Pb and can also be variably enriched in Au, As, Sb, Se and Te. The behaviour of these elements during hydrothermal alteration of the oceanic crust is not well known. Ocean Drilling Program (ODP) Hole 1256D penetrates a complete in situ section of the upper oceanic crust, providing a unique sample suite to investigate the behaviour of metals during hydrothermal alteration. A representative suite of samples was analysed for Au, As, Sb, Se and Te using low detection limit methods, and a mass balance of metal mobility has been carried out through comparison with a fresh Mid-Oceanic Ridge Basalt (MORB) glass database. The mass balance shows that Au, As, Se, Sb, S, Cu, Zn and Pb are depleted in the sheeted dyke and plutonic complexes by -46 ± 12, -27 ± 5, -2.5 ± 0.5, -27 ± 6, -8.4 ± 0.7, -9.6 ± 1.6, -7.9 ± 0.5 and -44 ± 6 %, respectively. Arsenic and Sb are enriched in the volcanic section due to seawater-derived fluid circulation. Calculations suggest that large quantities of metal are mobilised from the oceanic crust but only a small proportion is eventually trapped as VMS mineralisation. The quantity of Au mobilised and the ratio of Au to base metals are similar to those of mafic VMS, and ten times enrichment of Au would be needed to form a Au-rich VMS. The Cu-rich affinity of mafic VMS deposits could be explained by base metal fractionation both in the upper sheeted dykes and during VMS deposit formation.

  7. Updated maps of Moho topography and the earth crust thickness in the Deep Arctic Ocean based on results of potential field zoning and 3-D gravity modeling (United States)

    Glebovsky, Yury; Astafurova, Ekaterina; Chernykh, Andrey; Egorova, Alena; Kaminsky, Valeriy; Korneva, Mariya; Redko, Anton


    Both initial (Glebovsky et al., 2013) and updated maps and digital models (DM) of Moho topography and earth crust thickness in the deep Arctic Ocean were compiled using the same procedure. It included several steps: analysis of potential fields information compiled under CAMPGM and ArcGP projects and updating by new Russian data; separation of the study area into individual geostructures; calculation of gravitational effects from two main boundaries lying above Moho, presented by IBCAO grid, and by grid of basement relief (Kaminsky et al., 2012); subtraction of these effects from observed gravity anomalies, and converting of residual anomalies to depths to Moho using Parker's (1974) algorithm. Averaged depth to Moho required by Parker's algorithm to estimate its relative variations was determined from available deep refraction seismic data. It varies for different regional geological structures (basins, ridges and rises) which boundaries were contoured based on results of potential fields zoning. Modeling process for each structure was iterative and calibrated by seismic data. Results that best fit with seismic sections were merged to compile the grid of depths to Moho. This grid was specified by estimation of gravitational effects related both with increasing of density of sediments with depth and with uplift of asthenosphere beneath the Gakkel Ridge (GR). Grids of total and consolidated crust thickness were computed by sequential subtracting the IBCAO and sediment thickness grids from the final grid of depths to Moho. Updated versions of maps and DM of Moho topography and earth crust thickness are specified by recent Russian multi-channel and DSS seismic data collected in 2011-2012. It is confirmed the significant differences in crustal structure between the Eurasian (EB) and Amerasian Basins (AB). The thickness of the consolidated crust in the EB shows a fairly clear bilateral symmetry with respect to the GR. In the Nansen and Amundsen basins it varies from 3 to 8 km. The GR is underlain by the thinnest crust (2 km or less km). The crustal thickness of the Lomonosov Ridge varies along its strike within 16-26 km which may indicate its block structure. Within the AB there are a number of large highs and deep basins. The Mendeleev and Alpha ridges are underlain by crust that varies from 24 to 30 km and reaches maximum values of 30-32 km, respectively. The thickest crust that reaches 32-34 km is observed at the Northwind Ridge and Chukchi Plateau. Thickness of crust in deep basins of the AB varies widely. In the Canada and Makarov basins, it ranges from 10 to 16 km, and in the Podvodnikov Basin, from 16 to 20 km.

  8. Palaeoceanographic conditions during the formation of ferromanganese crust from the Afanasiy Nikitin seamount, north central Indian Ocean: geochemical evidence

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Pattan, J.N.; Mudholkar, A.V.

    A ferromanganese crust dredged from the summit of the Afanasiy-Nikitin seamount in the composed of fresh-water phreatic calcite cement, Terebratulinae casts, rounded and ferruginised basalt clasts and weathered coralline algal fragments suggesting...

  9. Chemistry and possible resource potential of cobalt rich ferromanganese crust from Afanasiy-Nikitin seamount in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Parthiban, G.; Banakar, V.K.

    lithogeneous detritus intermixed with hydrogenetic component. Another detrital indicator element 'Ti', instead of showing the affinity to Al exhibits affinity towards hydrogenetic oxide elements suggesting a possible incorporation into Fe-Mn crust analogous...

  10. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results (United States)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian


    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are obviously distinct in the upper part of core MA01, whereas these peaks are reduced in the lower part of the core. More study on these contrasting features is in progress. References Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E.T., Xuan, C., Grottoli, A.G., Sellén, E., and Crawford, K.A., 2009. Global and Planetary Change 68(1-2), 18-29. Polyak, L., Curry, W.B., Darby, D.A., Bischof, J., and Cronin, T.M., 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 73-93. Poore, R., Osterman, L., Curry, W., and Phillips, R., 1999. Geology 27, 759-762.

  11. Incorporation of transition and platinum group elements (PGE) in Co-rich Mn crusts at Afanasiy-Nikitin Seamount (AFS) in the equatorial S Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.

    hydrogenous ferromanganese crusts. Acknowledgment The author thanks Dr M.P. Torokhov for interesting discussions. References Astakhova, N. V., Vvdenskaya, I. A., Karabtsov, A. A. and Mol- chanova, G. B. (2008) Modes of occurrence of noble and non- ferrous... of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. J. Earth Syst. Sci., 114, 51–61. Stüben, D., Glasby, G. P., Eckhardt, J.-D., Berner, Z., Mountain, B. W. and Usui, A. (1999) Enrichments of platinum-group ele- ments in hydrogenous, diagenetic...

  12. Long-distance fluid and heat transport in the oceanic crust entering the Nankai subduction zone, NanTroSEIZE transect (United States)

    Spinelli, Glenn A.


    I examine the potential causes of anomalous seafloor heat flux on the oceanic plate in the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) transect offshore southern Japan. The most prominent anomaly is a ˜50 mW m change in heat flux between Integrated Ocean Drilling Program Sites C0011 and C0012 over a distance of process in the shallow subsurface; variations in heat input from ?5 km depth would generate a >30 km wide transition at the seafloor. The observed surface heat flux pattern is indicative of hydrothermal circulation in the basement aquifer and advection of heat from the subducted crust into the aquifer on the incoming plate. For a 600 m thick aquifer, the permeability is likely ?7×10-11 m, and hydrothermal circulation transports at least 300 times more heat than conduction alone. The heat flux from the subduction zone seaward to the incoming plate is consistent with hydrothermal circulation in the subducting crust persisting to ˜100 km landward of the deformation front. Vigorous fluid circulation in the basaltic basement is consistent with both the seafloor thermal anomalies and geochemical anomalies near the sediment-basement interface.

  13. Role of hydrology in the formation of Co-rich Mn crusts from the equatorial N Pacific, equatorial S Indian Ocean and the NE Atlantic Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.; Mountain, B.; Vineesh, T.C.; Banakar, V.K.; Rajani, R.; Ren, X.

    is highly recommended. Keywords: Afanasiy-Nikitin Seamount, Co-rich Mn crusts, Eh-pH diagrams, oxygen minimum zone, WOCE profiles. 1. Introduction Co-rich Mn crusts have attracted considerable attention for over 20 years (Manheim, 1986; Mangini et al., 1987... and Schulz (1999), Bruland and Lohan (2004) and MBARI (2008). In this study, we have prepared one Eh-pH diagram showing the predominance fields and equal activity boundaries of the major element species in the system C-S-O-H at 2°C and have calculated Eh...

  14. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. (United States)

    Orcutt, Beth N; Wheat, C Geoffrey; Rouxel, Olivier; Hulme, Samuel; Edwards, Katrina J; Bach, Wolfgang


    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass; yet, empirical analysis of reaction rates in basaltic crust is lacking. Here we report the first assessment of oxygen consumption in young (~8?Ma) and cool (strontium pore water gradients in basal sediments collected during Integrated Ocean Drilling Program Expedition 336 to 'North Pond' on the western flank of the Mid-Atlantic Ridge. Dissolved oxygen is completely consumed within the upper to middle section of the sediment column, with an increase in concentration towards the sediment-basement interface, indicating an upward supply from oxic fluids circulating within the crust. A parametric reaction transport model of oxygen behaviour in upper basement suggests oxygen consumption rates of 1?nmol? cm(-3)ROCK d(-1) or less in young and cool basaltic crust. PMID:24071791

  15. Araxa Group in the type-area: A fragment of Neoproterozoic oceanic crust in the Brasilia Fold Belt; Grupo Araxa em sua area tipo: um fragmento de crosta oceanica Neoproterozoica na faixa de dobramentos Brasilia

    Energy Technology Data Exchange (ETDEWEB)

    Seer, Hildor Jose [Centro Federal de Educacao Tecnologica de Araxa, (CEFET), MG (Brazil); Brod, Jose Affonso; Fuck, Reinhardt Adolfo; Pimentel, Marcio Martins; Boaventura, Geraldo Resende; Dardenne, Marcel Auguste [Brasilia Univ., DF (Brazil). Inst. de Geociencias


    This study reviews the geological characteristics and puts forward a new evolution model for the Araxa Group in its type-area, the southern segment of the Neo proterozoic Brasilia Belt, Minas Gerais, Brazil. The Araxa Group is confined within a thrust sheet belonging to a syn formal regional fold, the Araxa Syn form, overlying two other thrust sheets made of the Ibia and Canastra Groups. The Araxa Group is described as a tectono stratigraphic terrane in the sense of Howell (1993). It comprises an igneous mafic sequence, with fine and coarse grained amphibolites, associated with pelitic meta sedimentary rocks, and subordinate psanmites. All rocks were metamorphosed to amphibolite facies at ca. 630 Ma ago and were intruded by collisional granites. The amphibolites represent original basaltic and gabbroic rocks, with minor ultramafic (serpentinite/ amphibole-talc schist). The basalts are similar to high Fe O tholeiites, with REE signatures that resemble E-MORB and {epsilon}{sub Nd(T)} =+ 1.1. The meta sedimentary rocks are interpreted as the result of a marine deep-water sedimentation. They have Sm-Nd model ages of 1,9 Ga, and {epsilon}{sub Nd(T)} = -10.21. The amphibolites and metasediments could represent a fragment of back-arc oceanic crust. The data presented here differ significantly from the original definition of Barbosa et al. (1970) who describe the Araxa Group as a pelitic/psanmitic sequence and the collisional granites as a basement complex. (author)

  16. Tectonic model for the evolution of oceanic crust in the northeastern Indian Ocean from the Late Cretaceous to the Early Tertiary

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Pilipenko, A.I.; Shcherbakov, V.S.; Murthy, I.V.R.

    Bathymetry and magnetic studies (part of the Trans Indian Ocean Geotraverse investigations) in the northeastern Indian Ocean revealed seafloor topographic features, magnetic Lineations (19 through 32B) and abandonaed spreading centers. The seafloor...


    Scientific Electronic Library Online (English)



    Full Text Available El Batolito de Sabanalarga es a un cuerpo alargado de 410 Km2 que se extiende entre las Cordilleras Central y Occidental de Colombia, intruye en el borde occidental la Formación Barroso y las Diabasas de San José de Urama y en el borde oriental las rocas metamórficas del Complejo Cajamarca. El Batol [...] ito de Sabanalarga está formado por al menos dos pulsos magmáticos: uno inicial representado por gabros y dioritas de afinidad subalcalina toleítica y un segundo pulso constituido por cuarzodioritas y tonalitas de afinidad subalcalina de la serie calcoalcalina baja en K. El magmatismo se generó en un ambiente localizado por encima de la zona de subducción, en un arco volcánico plutónico localizado en el borde de sutura entre la corteza continental y la corteza oceánica, afectando ambas cortezas. Hace parte del arco las rocas volcánicas de la Formación Barroso. La edad del Batolito y del arco en general, en concordancia con los datos radiométricos, las relaciones intrusivas y el registro fósil, ocurrió dentro del rango comprendido entre el Cenomaniano-Aptiano superior, localizándose el plutonismo en el rango de edad entre 83 M.a y 102 M.a. Magmatismo como el de la Diorita de Altavista, el Gabro de San Diego y el Batolito Antioqueño, es contemporáneo con el arco que generó el Batolito de Sabanalarga, pudiendo ser parte del mismo evento magmático. Abstract in english The Sabanalarga Batholith is a long shape body reaching 410 Km2, located between the Central and Western cordilleras of Colombia. It intrudes rocks of the Barroso Formation and San Jose de Urama diabases along its western margin and rocks belonging to the Cajamarca complex towards the eastern side o [...] f the pluton. The Sabanalarga batholith is formed by at least two magmatic pulses. The first pulse is represented by gabbros and diorites with tholeiitic sub-alkaline affinity. The second pulse corresponds to cuarzodiorites and tonalites with sub-alkaline to calco-alkalyne low-K affinity. Magmatism is interpreted as being of supra-subduction environment, where the plutonic-volcanic arc is located right into the suture zone bonding and affecting both, continental and oceanic crust. The batholith is part of the volcanic arc of the Barroso Formation. The age of the batholith and related arc, according to available radiometric data, intrusive character and fossil record, occurred between the Cenomanian-Upper Aptian range, constraining the plutonism in the age range between 83 Ma and 102 Ma. The magmatic arc represented by the Sabanalarga batholith is contemporary with the Altavista diorite, San Diego Gabbro and Antioquian batholith and eventually belong to the same magmatic event.

  18. Insights into Oceanic Crust Accretion from a Comparison of Rock Magnetic and Silicate Fabrics from Lower Crustal Gabbros from Hess Deep Rift (United States)

    Horst, A. J.; Morris, A.; Friedman, S. A.; Cheadle, M. J.


    The mechanisms of lower crustal accretion remain a long-standing question for those who study fast-spreading mid-ocean ridges. One of the goals of Integrated Ocean Drilling Program (IODP) Expedition 345 is to test accretionary models by investigating the structure of the lower oceanic crust exposed within the Hess Deep Rift. Located near the tip of the westward-propagating Cocos-Nazca spreading center, Hess Deep Rift exposes crust formed at the East Pacific Rise. During IODP Expedition 345, primitive gabbroic rocks were recovered from a dismembered lower crustal section at ~4850 meters below sealevel. Constraints on physical processes during magmatic accretion are provided by the relative orientation and strength of rock fabrics. We present anisotropy of magnetic susceptibility (AMS) fabric data from gabbros recovered from the two deepest holes (U1415J and U1415P). AMS measurements provide petrofabric data that may be used to constrain magma emplacement and subsequent magmatic flow. Bulk susceptibility ranges from 1.15 x 10-4 to 5.73 x 10-2 SI, with a majority of the samples having susceptibility greater than 10-3 SI, suggesting magnetite is the dominant contributor to the AMS signal. Low-temperature demagnetization data show Verwey transitions near 125K indicating the presence of nearly stoichiometric magnetite in most samples. AMS reveals dominantly oblate fabrics with a moderate degree of anisotropy (P') ranging from 1.01 to 1.38 (average P' = 1.13). Fabric strength varies within each of the petrologically-defined units recovered from different crustal blocks. Additional remanence anisotropy fabric analyses of a few specimens reveal nearly identical directions of principal axes compared to AMS, but with larger degrees of anisotropy. Electron backscatter diffraction (EBSD) data from one sample shows a moderate plagioclase crystallographic preferred orientation best defined by a b-axis maxima that is coincident with the AMS minimum principal axis. This comparison between silicate and magnetic fabric data suggests that AMS is a good proxy for bulk silicate fabrics in these samples from Hess Deep. By integrating AMS and EBSD, both sensitive indicators of magnetic and silicate fabrics in gabbroic rocks, we seek a better understanding of the formation of gabbro in oceanic crust.

  19. A documentation on burrows in hard substrates of ferromanganese crusts and associated soft sediments from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.

    , the photographic records of recent bioturbation (Figure 4 a and b) on soft sediments were taken using a deep-towed camera. Extensive fossil burrows are seen in the cla ystone and altered pumice substrates of many ferromanganese en- crustations and nodules..., 5250 m; camera height, 4 m above ocean floor; b, Burrow mark on the sediment surface probably dug by a deep -sea crab. Water depth, 5230 m; camera height, 3.5 m above ocean floor. Ocean is almost 75% and 17% higher, respectively. In the surface...

  20. From the lavas to the gabbros: 1.25 km of geochemical characterization of upper oceanic crust at ODP/IODP Site 1256, eastern equatorial Pacific (United States)

    Höfig, Tobias W.; Geldmacher, Jörg; Hoernle, Kaj; Hauff, Folkmar; Duggen, Svend; Garbe-Schönberg, Dieter


    Here we present trace element and Sr-Nd-Hf-Pb (double spike) isotopic data covering the entire igneous section of oceanic crust drilled at Ocean Drilling Program (ODP)/Integrated Ocean Drilling Program (IODP) Site 1256 on the Cocos Plate. The penetrated interval extends from the upper lavas through the sheeted dike complex to the gabbroic plutonic rocks, formed during superfast spreading at the mid-Miocene equatorial East Pacific Rise. The data are used to characterize the effects of chemical alteration, resulting from convection of seawater and hydrothermal fluids, on the trace element and isotopic composition of oceanic crust. Compared to normal mid-ocean-ridge basalt, the igneous basement of Site 1256 (Holes 1256C/D) is isotopically slightly enriched but shows only narrow downhole variations in Nd-Hf-Pb isotope ratios: 143Nd/144Nd = 0.513089 ± 0.000028 (2?), 176Hf/177Hf = 0.283194 ± 0.000033 (2?), 206Pb/204Pb = 18.61 ± 0.11 (2?), 207Pb/204Pb = 15.521 ± 0.014 (2?), 208Pb/204Pb = 38.24 ± 0.15 (2?). We believe that this minor variability is mainly of primary (magmatic) origin. The Sr isotopic composition shows considerably larger variation and, as expected, serves as sensitive tracer of seawater influence, which is particularly pronounced in the lava-dike transition zone and the sheeted dikes. The seawater influence is most prominent in a highly metal sulfide-enriched breccia layer encountered in the transition zone with 87Sr/86Sr of ~ 0.706, indicating a maximum water-rock mixing ratio of ~ 12. However, compared to the igneous section drilled at Site 504 (Hole 504B), which formed at intermediate, i.e., slower spreading rates at the Galápagos Spreading Center and hosting a much thicker sulfide-rich stockwork zone, the average intensity of water-rock interaction is lower. This is expressed by lesser mobility of base metals, narrower variability of alteration-sensitive incompatible elements, and less radiogenic Sr isotopic compositions on average at Site 1256. The amount of metal sulfide precipitation seems to be positively correlated with the degree of hydrothermal overprint. The less intense alteration of the Site 1256 transition zone, compared to Site 504, most likely reflects the higher rate of spreading, eventually resulting in a shorter period of time of continuous exposure to hydrothermal convection at the ridge crest. The observed seafloor alteration, leading to modified radiogenic parent/daughter ratios in the Site 1256 rocks, is ultimately not sufficient to develop time-integrative high 206Pb/204Pb and moderate 87Sr/86Sr ratios, as being characteristic of the HIMU (high ? = high 238U/204Pb) mantle signature proposed to originate from hydrothermally altered, subducted oceanic crust. Therefore, additional modification during the subduction process must be taken into account.

  1. Evolution of biogeochemical cycling of phosphorus during 45~50 Ma revealed by sequential extraction analysis of IODP Expedition 302 cores from the Arctic Ocean (United States)

    Hashimoto, S.; Yamaguchi, K. E.; Takahashi, K.


    The modern Arctic Ocean plays crucial roles in controlling global climate system with the driving force of global thermohaline circulation through the formation of dense deep water and high albedo due to the presence of perennial sea-ice. However, the Arctic sea-ice has not always existed in the past. Integrated Ocean Drilling Program (IODP) Expedition 302 Arctic Coring Expedition (ACEX) has clarified that global warming (water temperature: ca. 14~16?C) during 48~49 Ma Azolla Event induced the loss of sea-ice and desalination of surface ocean, and that sea-ice formed again some million years later (45 Ma). In the Arctic Ocean, warming and cooling events repeated over and over (e.g., Brinkhuis et al., 2006; Moran et al., 2006; März et al., 2010). Large variations in the extent of thermohaline circulation through time often caused stagnation of seawater and appearance of anaerobic environment where hydrogen sulfide was produced by bacterial sulfate reduction. Ogawa et al. (2009) confirmed occurrence of framboidal pyrite in the ACEX sediments, and suggested that the Arctic Ocean at the time was anoxic, analogous to the modern Black Sea, mainly based on sulfur isotope analysis. To further clarify the variations in the nutrient status of the Arctic Ocean, we focus on the geochemical cycle of phosphorus. We performed sequential extraction analysis of sedimentary phosphorus in the ACEX sediments, using the method that we improvped based on the original SEDEX method by Ruttenberg (1992) and Schenau et al. (2000). In our method, phosphorus fractions are divided into five forms; (1) absorbed P, (2) Feoxide-P, (4) carbonate fluorapatite (CFAP) + CaCO3-P + hydroxylapatite (HAP), (4) detrital P, and (5) organic P. Schenau et al. (2000) divided the (3) fraction into non-biological CFAP and biological HAP and CaCO3-P. When the Arctic Ocean was closed and in its warming period, the water mass was most likely stratified and an anaerobic condition would have prevailed where bacterial sulfate reduction was active. In this case, most of the phosphorus in sediment was stored as organic P, which was originally derived as sinking particles of detrital plankton from the surface ocean. Increased rainfalls during such a warming period would have enhanced continental weathering and delivery of phosphorus to the surface ocean, and biological activity using increased amounts of phosphorus supply would also have increased. Feoxide-P is considered to be less important as a sink for phosphorus because of the likely formation of pyrite through the reductive dissolution of Fe oxide. CFAP could be a sink for phosphorus, because the formation of CFAP tends to increase with increasing age and depth.

  2. Two stage melt-rock interaction in the lower oceanic crust of the Parece Vela basin (Philippine sea), evidence from the primitive troctolites from the Godzilla Megamullion (United States)

    Sanfilippo, A.; Dick, H. J.; Ohara, Y.


    Godzilla Megamullion is a giant oceanic core complex exposed in an extinct slow- to intermediate-spreading segment of the Parece Vela Basin (Philippine sea) [1; 2]. It exposes lower crust and mantle rocks on the sea-floor, offering a unique opportunity to unravel the architecture and the composition of the lower oceanic lithosphere of an extinct back arc basin. Here we present data on primitive troctolites and associated olivine-gabbros from the breakaway area of the Godzilla Megamullion. On the basis of the olivine/plagioclase volume ratio, the troctolites are subdivided into Ol-troctolites (Ol/Pl >1) and Pl-troctolites (Ol/PlNews 12, 27-29. [2]Tani et al., 2011. Geology 39, 47-50. doi:10.1130/G3132. [3] Suhr et al., 2008.Geochem. Geophys. Geosyst., 9, Q10007, doi:10.1029/2008GC002012 [4] Renna and Tribuzio, 2011, Journal of Petrology, doi:10.1093/petrology/egr029

  3. Barium geochemistry in sediment pore waters and formation waters of the oceanic crust on the eastern flank of the Juan de Fuca Ridge (ODP Leg 168) (United States)

    Monnin, Christophe; Wheat, C. Geoffrey; Dupre, Bernard; Elderfield, Henry; Mottl, Mike M.


    Sediment pore waters collected on the eastern flank of the Juan de Fuca Ridge at 10 sites drilled during Ocean Drilling Program (ODP) Leg 168 and basement fluids discharging at the seafloor on a basaltic outcrop called Baby Bare located at ˜100 km east of the Juan de Fuca Ridge were analyzed for barium. The data show an overall symmetrical behavior between Ba and sulfate, suggesting that the pore water Ba content is controlled by equilibrium with barium sulfate. Barite saturation indices calculated with a thermodynamic model of the Na-K-Ca-Mg-Ba-Sr-Cl-SO4-H2O system show that barite does not equilibrate with the pore waters at the shipboard conditions (20°C, 1 bar) but reflects an overall equilibrium between pore waters and barite at in situ temperatures and pressures, for depths below ˜20 m below the seafloor. Barite supersaturation is found for conditions in the upper 20 m of the sediment column. Ba concentrations in pore waters at the base of the sediment section exceed those in the underlying formation fluids, based on the direct sampling of these fluids in the open borehole at ODP Sites 1026 and the hydrothermal springs at Baby Bare. This suggests that Ba is supplied to basement by the sediment. Despite this, the formation fluids are undersaturated with respect to barite. These fluids, which contain ˜2-3 times more Ba than bottom seawater, vent at the seafloor resulting in a net flux of Ba to bottom seawater. The calculated flux from warm (63°C) ridge flank hydrothermal systems is insignificant to the oceanic budget for Ba, but the flux associated from cool (less than 25°C) ridge flank hydrothermal systems, which dispense most of the heat and fluid flux through the oceanic crust, is unconstrained.

  4. Crusted scabies

    Directory of Open Access Journals (Sweden)

    Karthikeyan Kaliaperumal


    Full Text Available Crusted scabies is a rare manifestation of scabies characterized by uncontrolled proliferation of mites in the skin. In immunocompromised patients, this infestation is characterized by crusted lesions. The occurrence of the disease in human immunodeficiency virus-infected patients and the widespread use of immunosuppressive agents has led to a renewed interest in the disease. Early recognition and treatment is necessary to avoid an outbreak of scabies. This review highlights the pathogenesis, predisposing factors, clinical features and treatment of crusted scabies.

  5. Crustal thickness controlled by plate tectonics : a review of crust-mantle interaction processes illustrated by European examples

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf


    The continental crust on Earth cannot be extracted directly from the mantle, and the primary crust extracted directly from an early magma ocean is not preserved on Earth. We review geophysical and geochemical aspects of global crust–mantle material exchange processes and examine the processes which, on one side, form and transform the continental crust and, on the other side, chemically modify the mantle residue from which the continental crust has been extracted. Major mechanisms that provide crust–mantle material exchange are oceanic and continental subduction, lithosphere delamination, and mafic magmatism. While both subduction and delamination recycle crustal material into the mantle, mafic magmatism transports mantle material upward and participates in growth of new oceanic and continental crusts and significant structural and chemical modification of the latter. We discuss the role of basalt/gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, together with basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal (lithosphere) recycling. The processes of crust–mantle interaction have created very dissimilar crustal styles in Europe, as seen by its seismic structure, crustal thickness, and average seismic velocities in the basement. Our special focus is on processes responsible for the formation of the thin crust of central and western Europe, which was largely formed during the Variscan (430–280 Ma) orogeny but has the present structure of an “extended” crust, similar to that of the Basin and Range province in western USA. Major geophysical characteristics of the Variscan lithosphere are discussed within the frame of possible sequences of crust–mantle material exchange mechanisms during and after main orogenic events in the European Variscides.

  6. Crusted scabies


    Karthikeyan Kaliaperumal


    Crusted scabies is a rare manifestation of scabies characterized by uncontrolled proliferation of mites in the skin. In immunocompromised patients, this infestation is characterized by crusted lesions. The occurrence of the disease in human immunodeficiency virus-infected patients and the widespread use of immunosuppressive agents has led to a renewed interest in the disease. Early recognition and treatment is necessary to avoid an outbreak of scabies. This review highlights the pathogenesis,...

  7. Tectonic implications of post-30 Ma Pacific and North American relative plate motions (United States)

    Bohannon, R.G.; Parsons, T.


    The Pacific plate moved northwest relative to North America since 42 Ma. The rapid half rate of Pacific-Farallon spreading allowed the ridge to approach the continent at about 29 Ma. Extinct spreading ridges that occur offshore along 65% of the margin document that fragments of the subducted Farallon slab became captured by the Pacific plate and assumed its motion proper to the actual subduction of the spreading ridge. This plate-capture process can be used to explain much of the post-29 Ma Cordilleran North America extension, strike slip, and the inland jump of oceanic spreading in the Gulf of California. Much of the post-29 Ma continental tectonism is the result of the strong traction imposed on the deep part of the continental crust by the gently inclined slab of subducted oceanic lithosphere as it moved to the northwest relative to the overlying continent. -from Authors

  8. Long-term records of erosional change from marine ferromanganese crusts

    Indian Academy of Sciences (India)

    R Keith O'Nions; Martin Frank


    Ferromanganese crusts from the Atlantic, Indian and Pacific Oceans record the Nd and Pb isotope compositions of the water masses from which they form as hydrogenous precipitates. The 10Be/9Be-calibrated time series for crusts are compared to estimates based on Co-contents, from which the equatorial Pacific crusts studied are inferred to have recorded ca. 60 Ma of Pacific deep water history. Time series of Nd show that the oceans have maintained a strong provinciality in Nd isotopic composition, determined by terrigenous inputs, over periods of up to 60 Ma. Superimposed on the distinct basin-specific signatures are variations in Nd and Pb isotope time series which have been particularly marked over the last 5 Ma. It is shown that changes in erosional inputs, particularly associated with Himalayan uplift and the northern hemisphere glaciation have influenced Indian and Atlantic Ocean deep water isotopic composi- tions respectively. There is no evidence so far for an imprint of the final closure of the Panama Isthmus on the Pb and Nd isotopic composition in either Atlantic or Pacific deep water masses.

  9. Building the oceanic crust: Insights on volcanic emplacement processes at the hotspot-influenced Galápagos Spreading Center, 92°W (United States)

    McClinton, J. T.; White, S. M.; Colman, A.; Sinton, J. M.


    The Galápagos Spreading Center (GSC) displays a range of axial morphology due to increased magma supply from the adjacent Galápagos mantle plume. Over 30 years of scientific exploration has also documented the associated variations in volcanic terrain, crustal thickness, and geochemistry of erupted basalts, but until recently the fine-scale ("lava flow scale") volcanic features of the GSC had not been investigated. Using the Alvin submersible and aided by near-bottom photographic surveys by TowCam and sub-meter-scale sonar surveys by AUV Sentry, we mapped and sampled 12 individual eruptive units covering ~16km2 of seafloor on the ridge axis of the GSC at 92°W. Variations in AUV Sentry bathymetry and DSL-120A backscatter enabled us to characterize the fine-scale surface morphology within each eruptive unit. Lava flow morphologies within each unit were identified using a neuro-fuzzy classifier which assigns pixels as pillows, lobates, sheets, or fissures by using attributes derived from high-resolution sonar bathymetry and backscatter (McClinton et al., submitted PE&RS). An accuracy assessment indicates approximately 90% agreement between the lava morphology map and an independent set of visual observations. The result of this classification effort is that we are able to quantitatively examine the spatial distribution of lava flow morphology as it relates to the emplacement of lava flows within each eruptive unit at a mid-ocean ridge. Preliminary analyses show that a large, segment-centered volcanic cone which straddles the axial summit graben (the "Empanada") is constructed mostly of pillow lavas, while volcanism in the rifted center of the cone consists of lobate and sheet flows. Conversely, along the rest of the segment, on-axis eruptions consist mainly of pillow lava with most sheet and lobate flows found outside of a small axial summit graben. At least some of these sheet flows are fed by lava channels, suggesting emplacement over distances up to 1km, while pillow lava within the summit graben form low mounds; we speculate that eruption effusion rates decreased over the eruptive episode, producing changes in lava morphology within the larger eruptive units. Many axial mounds are also cut by the graben faults. The relatively young appearance of the lava surfaces at 92°W argues for a close relationship between volcanism and graben faulting on this part of the ridge.

  10. High-resolution grain size analysis and its significance for detecting ocean acidification at the onset of the Paleocene-Eocene Thermal Maximum (PETM; 55Ma) (Invited) (United States)

    Bralower, T. J.; Kump, L.; Eccles, L.; Smith, G. J.; Lindemann, T. L.; Bowen, G. J.; Schneider Mor, A.; Thomas, E.


    The Paleocene-Eocene Thermal Maximum (PETM; 55Ma) is widely considered a close ancient analog to modern global warming. A host of recent investigations have elucidated the scale and nature of the climate forcing during the PETM, as well as the range of atmospheric, oceanographic and biotic impacts. Introduction of massive amounts of greenhouse gases into the ocean-atmosphere system at the onset of the event is known to have led to abrupt shoaling of the lysocline and calcite compensation depth in the oceans as observed at deep-sea locations by a marked increase in the dissolution of calcareous microfossils and correspondingly sharp lithologic changes. The occurrence of surface ocean acidification during the initial stages of the PETM is not documented largely because the potential evidence is overprinted by pervasive dissolution at the sea floor. We present detailed grain size analysis from a high-resolution sample set across the PETM at Ocean Drilling Program Sites 690 (Maud Rise, Southern Ocean), 1209 (Shatsky Rise, Pacific Ocean) and 1262 (Walvis Ridge, South Atlantic Ocean) and at the Wilson Lake drill hole from the New Jersey coastal plain. The Wilson Lake section is dominated by clastic material, thus samples were processed to obtain the grain size distribution of the carbonate fraction. Grain size data were collected using a Malvern Mastersizer, an instrument that optically measures particle size between 0.1 and 1000 micrometer in diameter. The results show dramatic differences is size trends between sites that are consistent with their depths with respect to the CCD and lysocline. At the same time, the base of the PETM is characterized by very sharp changes in grain size distribution at Site 1262, where dissolution is most severe and progressively less abrupt changes at Site 1209, Site 690 and Wilson Lake. This progression is consistent with known differences in the magnitude of the lysocline and CCD shoaling at these sites. Comparison of grain size, carbonate and stable isotope data produces more accurate estimates of the depth of carbonate “burn down” at Sites 1209 and 1262. At the other sites, comparison of nannofossil and benthic foraminiferal preservation across the base of the PETM allows us to evaluate whether there was a brief period of surface-water acidification prior to the onset of deep-water acidification. For all sites, grain size data provide more quantitative estimates of the changes in flux of planktonic foraminifera and nannoplankton during the course of the PETM. Nannoplankton dominate the carbonate flux at all sites except Site 690 where the event is marked by complex pattern of variation in foraminiferal flux.

  11. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating (United States)

    Veevers, J. J.


    Gondwanaland lasted from the 650-500 Ma (late Neoproterozoic-Cambrian) amalgamation of African and South American terranes to Antarctica-Australia-India through 320 Ma (mid-Carboniferous) merging with Laurussia in Pangea to breakup from 185 to 100 Ma (Jurassic and Early Cretaceous). Gondwanaland straddled the equator at 540 Ma, lay wholly in the Southern Hemisphere by 350 Ma, and then rotated clockwise so that at 250 Ma Australia reached the S pole and Africa the equator. By initial breakup of Pangea at 185 Ma, Gondwanaland had moved northward such that North Africa reached 35°N. The first clear picture of Gondwanaland, in the Cambrian, shows the assembly of continents with later Laurentian, European and Asian terranes along the "northern" margin, and with a trench along the "western" and "southern" margins, reflected by a 10,000-km-long chain of 530-500 Ma granites. The interior was crossed by the Prydz-Leeuwin and Mozambique Orogenic Belts. The shoreline lapped the flanks of uplifts generated during this complex terminal Pan-Gondwanaland (650-500 Ma) deformation, which endowed Gondwanaland with a thick, buoyant crust and lithosphere and a nonmarine siliciclastic facies. During the Ordovician, terranes drifted from Africa as the first of many transfers of material to the "northern" continents. Central Australia was crossed by the sea, and the eastern margin and ocean floor were flooded by grains of quartz (and 600-500 Ma zircon) from Antarctica. Ice centres in North Africa and southern South America/Africa waxed and waned in the latest Ordovician, Early Silurian, latest Devonian, and Early Carboniferous. In the mid-Carboniferous, Laurussia and Gondwanaland merged in the composite called Pangea by definitive right-lateral contact along the Variscan suture, with collisional stress and subsequent uplift felt as far afield as Australia. Ice sheets developed on the tectonic uplands of Gondwanaland south of 30°S. In the Early Permian, the self-induced heat beneath Pangea drove the first stage of differential subsidence of the Gondwanaland platform to intercept sediment from the melting ice, then to accumulate coal measures with Glossopteris, and subsequently Early Triassic redbeds. An orogenic zone along the Panthalassan margin propagated from South America to Australia and was terminally deformed in the mid-Triassic. Coal deposition resumed during Late Triassic relaxation in the second stage of Pangean extension. In the Early Jurassic, the vast ˜200 Ma Central Atlantic magmatic province of tholeiite anticipated the 185 Ma breakup in the Central Atlantic. Another magmatic province was erupted at this time between southern Africa and southeastern Australia. The northeastern Indian Ocean opened from 156 Ma, and the western Indian Ocean from 150 Ma. By the 100 Ma mid-Cretaceous, the Gondwanaland province of Pangea had split into its five constituents, and the Earth had entered the thalassocratic state of dispersed continents. The 650-500 Ma "Pan-Gondwanaland" events (? by mafic underplating) rendered Gondwanaland permanently geocratic. Pangean (320-185 Ma) tectonics, driven by pulses of self-induced heat, promoted widespread subsidence at 300 Ma Early Permian and 230 Ma Late Triassic. Pangea initially broke up at 185 Ma and the five continental pieces of Gondwanaland had broken apart by the 100 Ma mid-Cretaceous. Another long-lasting feature of Gondwanaland was subduction beneath the "southern" margin and export of terranes from the "northern" and "northwestern" margins. Export of terranes was promoted by Gondwanaland-induced heat, and internal breakup by Pangea-induced heat.

  12. Widely distributed thrust and strike-slip faults within subducting oceanic crust in the Nankai Trough off the Kii Peninsula, Japan (United States)

    Tsuji, Takeshi; Kodaira, Shuichi; Ashi, Juichiro; Park, Jin-Oh


    We identified widely distributed thrust and strike-slip faults within subducting oceanic crust in the Nankai Trough, southeast of the Kii Peninsula, Japan, on the basis of 2D and 3D seismic reflection data. The seafloor seaward of the trough axis is deformed by displacement on these intraoceanic reverse faults, producing topographic highs (part of Kashinosaki Knoll). Because the thrust faults extend to the Moho and offset the Moho reflection, they may be related to serpentinization of the mantle due to seawater invasion. These faults are seismically active, given that their geometries are consistent with the focal mechanisms of intraplate earthquakes and microearthquakes. The thrust faults appear to extend landward to a high-density dome within the accretionary prism off the Kii Peninsula. Because the dome and the associated thick accretionary prism are expected to generate high friction at the plate interface due to their large vertical load, the intraoceanic thrusts are likely to have grown with ongoing subduction. Furthermore, because the geometry of the fault system we identified off the Kii Peninsula has characteristics similar to faults at Zenisu Ridge east of our study area, the thrusts observed in the study area may be considered to be the westward continuation of those at Zenisu Ridge. Since the Euler rotation pole of relative motion between the Philippine Sea plate and Zenisu Ridge is consistent with the high-density dome off the Kii Peninsula, we interpret the high-density dome as well as Kashinosaki Knoll as a westward termination of the Zenisu compression zone.

  13. Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust-mantle relationships (United States)

    Müntener, Othmar; Pettke, Thomas; Desmurs, Laurent; Meier, Martin; Schaltegger, Urs


    Many mantle peridotites exhumed along ancient and present-day magma-poor passive continental margins, along (ultra-) slow spreading ridges and fracture zones are plagioclase-bearing and generally too fertile to be the residue of partial melting processes alone. Likewise, the associated gabbroic and basaltic rocks are not a priori genetically linked to the underlying mantle rocks. Trace element and Nd isotopic studies in the eastern Central Alps peridotites in eastern Switzerland and northern Italy provide evidence for near-fractional melting and depletion at high pressure in Permian time followed by refertilization of subcontinental mantle by ascending melts at low pressure in Jurassic time. These results suggest regional-scale modification of ancient subcontinental mantle by melt infiltration and melt-rock reaction during incipient opening of oceanic basins. The similar Nd isotopic composition of plagioclase peridotite (?Nd 160: 7.4-10.6) and associated mafic crust (?Nd 160: 7.3-9.6) indicates that the liquids, which reacted with the peridotites derived from similar N-MORB type mantle sources. Plagioclase peridotites in magma-poor passive margins may predominantly form as a consequence of diffuse porous flow of melt in the thermal boundary layer above an upwelling asthenosphere and probably represent modified ancient subcontinental mantle. Thus, plagioclase peridotites exhumed in passive margins and possibly in (ultra-) slow spreading ridges may represent magma-poor periods where liquids stagnate in the thermal boundary layer and react with the surrounding peridotites. Once the effects of conductive heat loss dominate over advection of heat from below, diffuse porous flow of melt becomes less important and might be replaced by the formation of gabbro bodies.

  14. Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong, eastern China: Evidence from magma water content and oxygen isotopes (United States)

    Liu, Jia; Xia, Qun-Ke; Deloule, Etienne; Chen, Huan; Feng, Min


    The magma water contents and cpx δ18O values in alkali basalts from the Fuyanyshan (FYS) volcano in Shandong, eastern China, were investigated by an inverse calculation based on the water content of clinopyroxene (cpx) phenocrysts, the ivAlcpx-dependent water partitioning coefficient Dwatercpx>/melt, and secondary ion mass spectrometer, respectively. The calculated water content (H2O wt.) of magma ranges from 0.58% to 3.89%. It positively correlates with heavy rare earth element concentrations and bulk rock 87Sr/86Sr ratios, and it negatively correlates with Nb/U ratios. However, it is not correlated with bulk Mg# (Mg# = 100 × Mg / (Mg + Fe)) and (La/Yb)n (n represents primitive mantle normalization). Combined with the rather homogenous distribution of water content within cpx grains, these correlations indicate that the water variations among different samples represent the original magma signature, rather than results of a shallow process, such as degassing and diffusion. The δ18O of cpx phenocrysts varies from 3.6‰ to 6.3‰ (±0.5‰, 2SD), which may be best explained by the involvement of components from the lower and upper oceanic crust with marine sediments within the mantle source. The H2O/Ce ratios of the calculated melts range from 113 to 696 and form a positive trend with bulk rock 87Sr/86Sr, which cannot be explained by the recycled Sulu eclogite or by the metasomatized lithospheric mantle. Our modeling calculation shows that the decoupling of ɛHf and ɛNd could be caused by the involvement of marine sediments. Combing the high Ba/Th ratios, positive Sr spikes, and low Ce/Pb ratios for the Fuyanshan basalts, we suggest that the hydrous nature of the FYS basalts was derived from the hydrous mantle transition zone with ancient sediments.

  15. Birth of an ocean in the Red Sea: Initial pangs


    Ligi, M.; CNR-ISMAR Bologna; Bonatti, E.; CNR-ISMAR Bologna; Bortoluzzi, G.; CNR-ISMAR Bologna; Cipriani, A.; CNR-ISMAR Bologna; Cocchi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Caratori Tontini, F.; GNS Science, Ocean Exploaration Section, New Zealand; Carminati, E.; Università di Roma La Sapienza, Roma, Italy; Ottolini, L.; CNR -Pavia; Schettino, A.; Università di Camerino


    We obtained areal variations of crustal thickness, magnetic intensity, and degree of melting of the sub- axial upwelling mantle at Thetis and Nereus Deeps, the two northernmost axial segments of initial oceanic crustal accretion in the Red Sea, where Arabia is separating from Africa. The initial emplacement of oceanic crust occurred at South Thetis and Central Nereus roughly $2.2 and $2 Ma, respectively, and is taking place today in the northern Thetis and southern Nereus tips. Basaltic glass...

  16. Interaction between seawater and magma or very hot rock in the deep fast-spreading oceanic crust: Constraints from experimental petrology (United States)

    Koepke, J.; Botcharnikov, R. E.; Berndt, J.; Feig, S.; France, L.


    More and more publications on the dynamics of magmatic system at fast spreading ridges refer to deep interaction of seawater with magma or with just frozen rocks. Prominent models focus on deep hydrothermal circulation at magmatic temperatures [1], seawater involvement into magmatic processes due to ridge tectonics [2], or on stoping/assimilation of hydrothermally altered dikes at the top of the axial melt lens [3]. In order to understand the underlying hydrous MORB magmatism and the corresponding hydrous melting reactions at fast-spreading ocean ridges, we performed different series of crystallization and partial melting experiments in hydrous MORB-type systems at shallow pressures. (1) To understand the magmatic processes ongoing in the top of the axial melt lenses, we present here new phase diagrams for hydrous MORB systems at a pressure of 50 MPa, by extrapolating results of phase equilibria experiments in hydrous systems performed at shallow pressures in primitive to evolved tholeiitic, MORB-type systems. We applied our new phase diagrams to rocks from the sheeted dike/gabbro transition from the EPR crust (IODP Site 1256D) and from the Oman ophiolite, opening interesting perspectives to explain specific aspects of petrogenesis of these rocks. (2) Experimental hydrous partial melting of gabbro results not only in the production of oceanic plagiogranites, but also in the formation of characteristic interstitial residual parageneses like plagioclase with An-rich rims, orthopyroxene, and pargasitic amphibole rimming the primary phases. Such parageneses can be observed in gabbros from IODP Site 1256D and from the Oman ophiolite, documenting that hydrous partial melting proceeded. (3) Experimental partial melting of hydrated dikes results in the formation of plagiogranitic melts and of a typical residual granoblastic mineral paragenesis. Domains with a characteristic texture (microgranular wormy intergrowth of clino- and orthopyroxene, plagioclase, and oxides) can be observed rather often in Gabbros from IODP Site 1256D, implying that partial melting of stoped hydrated sheeted dikes was a major magmatic process which resulted in locally high water activities enabling primary amphibole crystallization. [1] Nicolas, A., and D. Mainprice (2005), Terra Nova, 17, 326-330. [2] Abily, B., G. Ceuleneer, and P. Launeau (2011), Geology, 39, 391-394. [3] Koepke, J., L. France, T. Müller, F. Faure, N. Goetze, W. Dziony, and B. Ildefonse (2011 accepted), Geochem. Geophys. Geosyst.

  17. Biological productivity, terrigenous influence and noncrustal elements supply to the Central Indian Ocean Basin: Paleoceanography during the past ?1Ma

    Indian Academy of Sciences (India)

    J N Pattan; Toshiyuki Masuzawa; D V Borole; G Parthiban; Pratima Jauhari; Mineko Yamamoto


    A 2 m-long sediment core from the siliceous ooze domain in the Central Indian Ocean Basin (CIOB; 13° 03?S: 74° 44?E; water depth 5099 m) is studied for calcium carbonate, total organic carbon, total nitrogen, biogenic opal, major and few trace elements (Al, Ti, Fe, K, Mg, Zr, Sc,V, Mn, Cu, Ni, Zn, Co, and Ba) to understand the productivity and intensity of terrigenous supply. The age model of the sediment core is based on U-Th dating, occurrence of Youngest Toba Tuff of ?74 ka and Australasian microtektites of ?770ka. Low carbonate content (> 1%) of sediment core indicates deposition below the carbonate compensation depth. Organic carbon content is also very low, almost uniform (mean 0.2 wt%) and is of marine origin. This suggests a well-oxygenated bottom water environment during the past ?1100 ka. Our data suggest that during ?1100 ka and ?400 ka siliceous productivity was lower, complimented by higher supply of terrigenous material mostly derived from the metasedimentary rocks of High Himalayan crystalline. However, during the last ?400ka, siliceous productivity increased with substantial reduction in the terrigenous sediment supply. The results suggest that intensity of Himalayan weathering, erosion associated with monsoons was comparatively higher prior to 400 ka. Manganese, Ba, Cu, Ni, Zn, and Co have around 90% of their supply from noncrustal (excess) source and their burial to seafloor remained unaffected throughout the past ?1100ka.

  18. Global Paleobathymetry for the Cenomanian-Turonian (90 Ma) (United States)

    Goswami, A.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.


    We present a paleo-ocean bathymetry reconstruction for Cenomanian-Turonian (90 Ma) time in a 0.1°x0.1° resolution for use in paleo-climate studies. Age of the ocean floor for the Cenomanian-Turonian (90 Ma) is from Müller et al. (2008 a,b); coastlines are from the PALEOMAP Project (Scotese, 2011). To reconstruct paleo-ocean bathymetry, we use a plate model equation to model depth to basement (Turcotte and Schubert, 2002). We estimate plate model equation parameter values from measurements of modern oceans (Crosby et al., 2006). On top of the depth to basement, we isostatically add a multilayer sediment model derived from area-corrected sediment thickness data (Divins, 2003; Whittaker et al., 2013). Lastly, we parameterize the modern continental shelf, slope, and rise in a "sediment wedge model" to connect the coastline with the closest ocean crust as defined by Müller et al. (2008 a, b). These parameters are defined using empirical relationships obtained from study of modern ocean transects where a complete rifting history is preserved (Atlantic and Southern oceans), and the closest approach of the respective oceanic crust (Müller et al., 2008a,b) to the coastline. We use the modern ocean as a test, comparing maps and cross sections of modern ocean bathymetry modeled using our reconstruction method with that of ETOPO1 (Amante and Eakins, 2009). Adding sea plateaus and seamounts minimize the difference between our modeled bathymetry and ETOPO1. Finally, we also present a comparison of our reconstructed paleo-bathymetry to that of Müller et al. (2008 a,b) for the Cenomanian-Turonian (90 Ma). References: Amante, C., Eakins, B.W., 2009, NOAA Tech. Memo. NESDIS NGDC-24, 19 p. Crosby, A., McKenzie, D., Sclater, J.G., 2006, Geophysical Journal Int. 166.2, 553-573. Divins, D., 2003, NOAA NGDC, Boulder, CO. Müller, R., Sdrolias, M., Gaina, C., Roest, W., 2008b, Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743 Müller, R., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008a, Science, 319, 1357-1362. Scotese, C., 2011, PALEOMAP Project, Arlington, Texas. Turcotte, D., Schubert, G., 2002, Cambridge University Press, Cambridge, 456 p. Whittaker, J., Goncharov, A., Williams, S., Müller, R., Leitchenkov, G., 2013, Geochemistry, Geophysics, Geosystems. DOI:10.1002/ggge.20181

  19. The hydrothermal power of oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    C. J. Grose


    Full Text Available We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (<1 Ma is about 50% of the total, significantly higher than previous estimates. This low hydrothermal power estimate originates from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (yielding lower heat flow, and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and convective mantle.

  20. Palaeogene hardgrounds and associated intraclast lag deposits as the substrates of ferromanganese crusts and nuclei of nodules: Inferences of abyssal current in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    The Palaeogene substrates of ferromanganese crusts and nuclei of nodules collected from the Central Indian Basin chiefly consist of incipient to younger pelagic hard grounds and associated intraclast lag deposits. The clayey lumps, ferromanganese...

  1. Sulfur and metal fertilization of the lower continental crust (United States)

    Locmelis, Marek; Fiorentini, Marco L.; Rushmer, Tracy; Arevalo, Ricardo; Adam, John; Denyszyn, Steven W.


    Mantle-derived melts and metasomatic fluids are considered to be important in the transport and distribution of trace elements in the subcontinental lithospheric mantle. However, the mechanisms that facilitate sulfur and metal transfer from the upper mantle into the lower continental crust are poorly constrained. This study addresses this knowledge gap by examining a series of sulfide- and hydrous mineral-rich alkaline mafic-ultramafic pipes that intruded the lower continental crust of the Ivrea-Verbano Zone in the Italian Western Alps. The pipes are relatively small (mineralization. Stratigraphic relationships, mineral chemistry, geochemical modeling and phase equilibria suggest that the pipes represent open-ended conduits within a large magmatic plumbing system. The earliest formed pipe rocks were olivine-rich cumulates that reacted with hydrous melts to produce orthopyroxene, amphibole and phlogopite. Sulfides precipitated as immiscible liquid droplets that were retained within a matrix of silicate crystals and scavenged metals from the percolating hydrous melt. New high-precision chemical abrasion TIMS U-Pb dating of zircons from one of the pipes indicates that these pipes were emplaced at 249.1 ± 0.2 Ma, following partial melting of lithospheric mantle pods that were metasomatized during the Eo-Variscan oceanic to continental subduction (~ 420-310 Ma). The thermal energy required to generate partial melting of the metasomatized mantle was most likely derived from crustal extension, lithospheric decompression and subsequent asthenospheric rise during the orogenic collapse of the Variscan belt (process is a very effective mechanism to fertilize the commonly dry and refractory lower continental crust in metals and volatiles. During the four-dimensional evolution of the thermo-tectonic architecture of any given terrain, metals and volatiles stored in the lower continental crust may become available as sources for subsequent ore-forming processes, thus enhancing the prospectivity of continental block margins for a wide range of mineral systems.

  2. Dynamical tides in icy satellites with subsurface oceans (United States)

    Beuthe, M.; Rivoldini, A.; Trinh, A.; Van Hoolst, T.


    Subsurface oceans are a generic feature of large icy bodies, if not now, then at some point in their past evolution. Various datasets already point to the existence of oceans within Europa, Ganymede, Callisto, Titan,Enceladus, and Mimas, while other bodies like Ceres,Pluto, and Triton await their turn. Subsurface oceans partially decouple the crust and thus greatly enhance tidal effect, unless the crust is very thick and hard. Dynamical effects are usually neglected when computing tidal deformations of solid bodies. It is well known,however, that various oscillation modes have a ma- jor impact on tidal dissipation within shallow surface oceans [1]. We show here that the dynamical Love numbers of a non-rotating body exhibit a simple resonant behavior if the ocean is very shallow. We also examine how the resonance is affected by rotation.

  3. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments (United States)

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.


    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic emanations. Alternatively, the Tl isotope trends may reflect the increasing importance of Tl fluxes to altered ocean crust through time. ?? 2004 Elsevier B.V. All rights reserved.

  4. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge

    International Nuclear Information System (INIS)

    Major and trace element and Sr- and Nd-isotope analyses are presented on 186-0 Ma magmatic rocks along an east-west traverse across North Chile at 220S. ?Sr ranges from -25 to +100 and ?Nd from +6 to -9, but the low ?Nd and high ?Sr values are in rocks generated in the last 15 Ma. It is argued that previous discussions of petrogenesis in North Chile have been hampered because the changes in magma chemistry in this area of unusually thick crust reflect not one, but two processes. One results in a progressive shift of ?Sr from -25 to +20 and ?Nd from +6 to -6 in Jurassic to Recent rocks, which is accompanied by increasing Ta/Sm and Sr decreasing Th/Ta. The second is largely confined to the younger rocks and it is characterised by ?Sr increasing up to +100 with increasing SiO2 and decreasing Sr, and it results in relatively shallow trends on an ?Nd-?Sr diagram. The preferred interpretation is that trend 1 is due to the mobilisation of old, late Proterozoic mantle lithosphere as magmatism migrated eastwards, and that trend 2 is due to crustal melting and contamination with differentiation in this area of thickened continental crust. It follows that the mantle wedge is the principal site of crust generation, and it is argued that <20% of the Sr in the recent northern Chile rocks is derived from the subducted ocean crust. (orig.)

  5. Genesis and evolution of the upper oceanic crust (ODP-IODP site 1256, East Pacific Rise): inferences from structure and composition of late magmatic veins in a lava pond (United States)

    Panseri, M.


    A complete intact "in situ" section of upper oceanic crust, from extrusive lavas, through dikes into gabbros has been recently drilled for the first time in a 15 Ma old crust that formed at the East Pacific Rise with a full spreading rate of >200 mm/yr. The study area is ODP-IODP Site 1256 (6°44.2N, 91°56.1W, Pacific Ocean). Holes 1256C and 1256D have been drilled into the basaltic basement during ODP Leg 206, IODP Expeditions 309 and 312. Hole 1256D has been deepened to a depth of ca. 1500 meters below seafloor (mbsf). The upper section of the igneous basement consists of thin (3m). The massive flows include a ponded lava flow, located near the top of both Hole 1256C and 1256D, where it has a thickness of 32m and 74m, respectively. The lava pond is interpreted as a thick lava flow delivered either on-axis or off-axis and accumulated in a topographic depression. Although very close (ca. 30m), the two holes record different structural patterns of the lava pond, probably related to different steps of the lava flow emplacement. In the lava pond, both igneous (magmatic foliation, flow-related folds, late-magmatic veins) and post-magmatic (joints, veins, shear veins, and microfaults) structures were recognized. Late magmatic veins (LMVs), which were identified as primary features typical of the lava pond, are the main goal of this work. Mm-thick LMVs are mainly clustered in the middle (290-300 mbsf in hole 1256C and 282-297 mbsf in hole 1256D) and bottom (312-313 mbsf in hole 1256C and 311-328 mbsf in hole 1256D) parts of the lava pond. Structural measurements on cores suggest that they are mostly gently dipping structures, but we also observed sub-vertical LMVs. At the bottom of the lava pond in hole 1256C, late magmatic veins are often arranged in en echelon arrays and sigmoidal pull aparts, suggesting a syn/post-magmatic shear component. Thin-section observations show that basalt including LMVs consists of plagioclase, clinopyroxene, ilmenite, and spinel. LMVs cutting basalt are filled with quartz, quartz + plagioclase intergrowth showing a granophyric texture, clinopyroxene, ilmenite, spinel, and apatite. Rarely we observed pyrite crystals at the LMV core that cut plagioclase + quartz intergrowth. Quartz + plagioclase intergrowth (with apatite) are also present in the basalt as mm-size interstitial domains or rimming plagioclase (IDs = intergrowth domains). Rare samples display IDs with interstitial K-feldspar growing around plagioclase. LMVs often show sharp contacts with basalt. Plagioclase or pyroxene crystals of the basalt may be fragmented at the contact with LMVs (brittle rheology of basalt). Differently, IDs commonly corrode plagioclase crystals, without fragmentation (ductile rheology). The composition of basalt plagioclase ranges from Ab37 to Ab62, with a main concentration around Ab50. On the contrary, plagioclase in the LMVs intergrowth as well as that in the mm-sized IDs are Na-rich (Ab64-Ab98). Mineral analyses also highlight homogeneous clinopyroxene, spinel and ilmenite, without variations in the LMVs and IDs. Clinopyroxene usually shows a Ca-poor core (mainly augite or pigeonite) and a diopsidic rim. Opaque minerals often exhibit ilmenite-ulvospinel lamellae intergrowths. EDS mapping of IDs and LMVs cutting basalt supports the previous observations. LMVs and IDs have higher Si, Na and lower Al, Ca values than basalt. This distribution is only due to albitic plagioclase concentration in LMVs and IDs. K has low and homogeneous concentrations: rarely IDs are characterized by interstitial K enrichment (K-feldspar). Incompatible (Zr, Rb, Sr, Ba), hydrothermal elements (Cu, Cl), and F are undetectable or absent. We infer that LMVs and IDs likely crystallized from a pure Si-Al-Na-(Ca) melt. K, rarely noticed in the IDs, may be related to late magmatic fluids differentiation or to subsequent hydrothermal fluids. Core description, microstructural observations, mineral compositions and EDS mapping of the studied samples suggest that: - the middle and bottom parts of the lava pond has been affected by Si-Na rich late magmatic melts, without chemical interactions between host rock and melt; - IDs may represent the diffused reservoir of late magmatic felsic material; - LMVs could be the migration channels for Si-Al-Na-(Ca) melt through the basalt mush during the late stages of crystallization; - late magmatic material rapidly cooled producing granophyric textures in veins and interstitial patches.

  6. ACEX Arctic Coring Expedition : paleoceanographic and tectonic evolution of the central Arctic Ocean


    Backman, Jan; Moran, Kathryn; Evans, Dan


    The first scientific drilling expedition to the central Arctic Ocean was completed in late summer 2004. Integrated Ocean Drilling Program Expedition 302, Arctic Coring Expedition (ACEX), recovered sediment cores deeper than 400 meters below seafloor (mbsf) in water depths of ~1300 m at the top of the world, only 250 km from the North Pole. ACEX's destination was the Lomonosov Ridge, hypothesized to be a sliver of continental crust that broke away from the Eurasian plate at ~56 Ma. As the ...

  7. Eocene deep crust at Ama Drime, Tibet

    DEFF Research Database (Denmark)

    Kellett, Dawn; Cottle, John; Smit, Matthijs Arjen


    for burial of the lower Indian crust beneath Tibet reported from the central-eastern Himalaya. Granulite-facies overprinting followed at ca. 15–13 Ma, as indicated by U-Pb zircon ages. Unlike ultrahigh-pressure eclogites of the northwest Himalaya, the Ama Drime eclogites are not characteristic of...... rapid burial and exhumation of a cold subducted slab. The rocks instead resulted from crustal thickening during the early stages of continental collision, and resided in the lower-middle crust for >20 m.y. before they were exhumed and reheated. These new data provide solid evidence for the Indian crust...

  8. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean (United States)

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A


    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  9. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean (United States)

    Grantz, A.; Hart, P.E.; Childers, V.A.


    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  10. Crustal structure of the ocean-continent transition at Flemish Cap: Seismic refraction results (United States)

    Funck, Thomas; Hopper, John R.; Larsen, Hans Christian; Louden, Keith E.; Tucholke, Brian E.; Holbrook, W. Steven


    We conducted a seismic refraction experiment across Flemish Cap and into the deep basin east of Newfoundland, Canada, and developed a velocity model for the crust and mantle from forward and inverse modeling of data from 25 ocean bottom seismometers and dense air gun shots. The continental crust at Flemish Cap is 30 km thick and is divided into three layers with P wave velocities of 6.0-6.7 km/s. Across the southeast Flemish Cap margin, the continental crust thins over a 90-km-wide zone to only 1.2 km. The ocean-continent boundary is near the base of Flemish Cap and is marked by a fault between thinned continental crust and 3-km-thick crust with velocities of 4.7-7.0 km/s interpreted as crust from magma-starved oceanic accretion. This thin crust continues seaward for 55 km and thins locally to ˜1.5 km. Below a sediment cover (1.9-3.1 km/s), oceanic layer 2 (4.7-4.9 km/s) is ˜1.5 km thick, while layer 3 (6.9 km/s) seems to disappear in the thinnest segment of the oceanic crust. At the seawardmost end of the line the crust thickens to ˜6 km. Mantle with velocities of 7.6-8.0 km/s underlies both the thin continental and thin oceanic crust in an 80-km-wide zone. A gradual downward increase to normal mantle velocities is interpreted to reflect decreasing degree of serpentinization with depth. Normal mantle velocities of 8.0 km/s are observed ˜6 km below basement. There are major differences compared to the conjugate Galicia Bank margin, which has a wide zone of extended continental crust, more faulting, and prominent detachment faults. Crust formed by seafloor spreading appears symmetric, however, with 30-km-wide zones of oceanic crust accreted on both margins beginning about 4.5 m.y. before formation of magnetic anomaly M0 (˜118 Ma).

  11. Fluid kinematics, fluid residence times, and rock degassing in oceanic crust determined from noble gas contents of deep sea drilling project pore waters (United States)

    Barnes, Ross O.; Clarke, W. Brian


    The 3He, 4He, Ne, and Ar in sedimentary pore fluids, extracted in situ, were measured on samples from Deep Sea Drilling Project (DSDP) sites 398, 410, 419, 420, 424, 436, and 438. Earlier results from DSDP leg 15 are also discussed. Where regional sediment cover prevents direct penetration of seawater into basement rocks at sites 149, 436, and 438, He concentration profiles indicate slow vertical and/or horizontal advection of sedimentary pore fluids, suggesting that fluids can ventilate through the sediment cover either in diffuse, bulk flow or in "aquifers" confined to regions of relatively high permeability such as ash beds, sand/silt layers, or fracture channels in lithified sediments. At site 410, where basement outcrops are prevalent, no advection was detectable in the sediments; however, the basement was well flushed by seawater. On fluid velocities. However, most juvenile helium is degassed from the crust in fluids advecting in deep fissures or faults. Fluid residence times in upper basement rocks increased from ˜5 × 103 years in 10 m.y. crust open to direct seawater penetration to ˜105-106 years in Cretaceous basement sealed by hundreds of meters of sediment, to >1-5 × 108 years (apparent age) in sediments on the active continental margin off NE Japan.

  12. Investigating the link between an iron-60 anomaly in the deep ocean's crust and the origin of the Local Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Schulreich, Michael; Breitschwerdt, Dieter [Zentrum fuer Astronomie und Astrophysik, TU Berlin, Berlin (Germany)


    Supernova explosions responsible for the creation of the Local Bubble (LB) and its associated HI cavity should have caused geological isotope anomalies via deposition of debris on Earth. The discovery of a highly significant increase of {sup 60}Fe (a radionuclide that is exclusively produced in explosive nucleosynthesis) in layers of a deep sea ferromanganese crust corresponding to a time of 2.2 Myr before present, appears very promising in this context. We report on our progress in relating these measurements to the formation of the LB by means of 3D hydrodynamical adaptive mesh refinement simulations of the turbulent interstellar medium in the solar neighborhood. Our calculations are based on a sophisticated selection procedure for the LB's progenitor stars and take advantage of passive scalars for following the chemical mixing process.

  13. Evolution of the Late Cretaceous crust in the equatorial region of the Northern Indian Ocean and its implication in understanding the plate kinematics

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.

    -breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean, Tectonophysics, 155, 261-283. Ramana, M. V., Nair, R. R., Sarma, K. V. L. N. S., Ramprasad, T., Krishna, K. S., Subrahmanyam, V., D’Cruz, M., Subrahmanyam, C...

  14. Interpretations of the Surficial Geology from National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel, MA (H11079_SURFGEOL.SHP, Geographic) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  15. H11076_INTERP.SHP: Interpretations of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of Quicks Hole, MA (Geographic) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  16. Variability of low temperature hydrothermal alteration in upper ocean crust: Juan de Fuca Ridge and North Pond, Mid-Atlantic Ridge (United States)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Teagle, D. A. H.


    Over 2/3 of the global hydrothermal heat flux occurs at low temperatures (discharge. Understanding ridge flank hydrothermal exchange is important to quantify global geochemical cycles. Hydrothermal chemical pathways are complex and the effects of water-rock reactions remain poorly constrained. Factors controlling fluid flow include volcanic structure, sediment thickness, and basement topography. This study compares the effects of low temperature alteration in two locations with contrasting hydrogeological regimes. The intermediate spreading Juan de Fuca ridge flank (JdF) in the northeast Pacific sports a thick sediment blanket. Rare basement outcrops are sites of fluid recharge and discharge. The average alteration extent (~10% secondary minerals), oxidation ratio (Fe3+/FeTOT=34%), and alteration character (orange, green, grey halos) of basement is constant with crustal age and depth along a 0.97-3.6 m.yr transect of ODP basement holes. However, vesicle fills record an increasingly complex history of successive alteration with age. In contrast, North Pond, a ~8 m.yr-old sediment-filled basin at 22N on the slow spreading Mid Atlantic Ridge, hosts rapid, relatively cool SE to NW basinal fluid flow. Average alteration extent (~10%) and oxidation ratio (33%) of Hole 395A basalts are similar to JdF. However, 395A cores are dominated by orange alteration halos, lack celadonite, but have abundant zeolite. Vesicle fill combinations are highly variable, but the most common fill progression is from oxidising to less oxidising secondary assemblages. The comparable extent of alteration between these two sites and the absence of an age relationship on the JdF suggests that the alteration extent of the upper crust is uniform and mostly established by 1 Myr. However, the variable alteration character reflects the influence of regional hydrology on hydrothermal alteration.

  17. Geochemical evidence for the tectonic setting of the Coast Range ophiolite: A composite island arc oceanic crust terrane in western California (United States)

    Shervais, John W.; Kimbrough, David L.


    The Middle to Late Jurassic age Coast Range ophiolite (CRO) of California contains two geochemically distinct volcanic rock associations that formed in different tectonic settings. Volcanic rocks from the southern CRO (Point Sal, Cuesta Ridge, Stanley Mountain, Llanada, Quinto Creek, and Del Puerto) and parts of the northern CRO (Healdsburg, Elder Creek) are similar to low-K tholeiites and calc-alkaline rocks of the island-arc suite. The thin volcanic sections of these ophiolite remnants suggest formation by intra-arc rifting. In contrast, volcanic rocks from Stonyford seamount and Paskenta in the northern CRO are transitional subalkaline metabasalts with geochemical characteristics similar to enriched mid-ocean ridge basalts or ocean-island tholeiites. These rocks are associated with Tithonian radiolarian cherts and may be part of the Franciscan Complex. Alternatively, they may represent a change in tectonic setting within the CRO during the Late Jurassic. Regardless, the CRO as currently conceived cannot be considered a single terrane with one mode of origin.

  18. Core and early crust formation on Mars (United States)

    Golabek, G. J.; Keller, T.; Gerya, T.; Tackley, P. J.; Connolly, J.; Zhu, G.


    One of the most striking surface features on Mars is the crustal dichotomy. It is the oldest geological feature on Mars and was formed more than 4.1 Ga ago by either exogenic or endogenic processes [1,2]. In order to find an internal origin of the crustal dichotomy, located within a maximum of 400 Ma of planetary differentiation, the thermal state of the planet resulting from core formation needs to be considered. Additionally, it was suggested that a primordial crust with up to 45 km thickness can be formed already during the Martian core formation [3]. We suggest that the sinking of iron diapirs delivered by predifferentiated impactors induced impact- and shear heating-related temperature anomalies in the mantle that fostered the formation of early Martian crust. Thus, the crustal thickness distribution would largely be a result of planetary core formation, late impact history and the onset of mantle convection. To test this hypothesis we use numerical models to simulate the formation of the Martian iron core and the resulting mantle convection pattern, while peridotite melting is enabled to track melting caused by shear and radioactive heating. We perform 2D simulations using the spherical-Cartesian code I2ELVIS for planetary accretion and the spherical code STAGYY for the consequent onset of mantle convection. We apply a temperature-, stress- and melt-fraction dependent viscoplastic rheology. Radioactive and shear heating as well as consumption of latent heat by silicate melting are taken into account. The depth of neutral buoyancy of silicate melt with respect to solid silicates is determined by the difference in compressibility of the liquid and solid phase. To self-consistently simulate the silicate phase changes expected inside a Mars-sized body, we use the thermodynamical database Perple_X. As initial condition for core formation, we apply randomly distributed iron diapirs with 75 km radius inside the planet, representing the cores of stochastically distributed impactors. Additionally, we explore the effect of one giant impactor core on the planetary evolution. Results indicate that the presence of a large impactor core induces hemispherically asymmetrical core formation. The amplitude of shear heating anomalies often exceeds the solidus of primitive mantle material and thus, the formation of a considerable amount of silicate melt is observed. The resulting temperature field after core formation is then read into the mantle convection code STAYY. The hemispherical magma ocean induced by one late giant impactor favours a dichotomous crust formation during and shortly after core formation. Afterwards, the extraction of excess heat produced by the sinking of the giant impactor through the mantle leads to a localized region of massive magmatism, comparable to Tharsis, which is sustained during later evolution by a single plume forming beneath the province. The rest of the mantle is dominated by a sluggish convection pattern with limited crust formation that preserves the early formed dichotomous crustal structure until recent time. References [1] Nimmo, F. et al., Nature, 453, 1220-1223, 2008. [2] Keller, T. & Tackley, P.J., Icarus, 202, 429-443, 2009. [3] Norman, M.D., Meteorit. Planet. Sci., 34, 439-449, 1999.

  19. Paleoceanography/climate and taphonomy at intermediate water depth in the Subtropical Western North Pacific Ocean over the last 1 Ma from IODP Exp 350 Sites U1436C and U1437B, Izu arc area. (United States)

    Vautravers, Maryline


    IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing influences in the Kuroshio/Oyashio currents at orbital time scales over the last 1 Ma. However, the 2 main findings are i.) that of the intense and pervasive carbonate dissolution at such an intermediate water depth, especially during interglacials, and in particular at site U1436C, and ii.) the good and improving carbonate preservation at Site U1437B during glacials, particularly in the upper part of the record.

  20. Evidence of Himalayan erosional event at approx. 0.5 Ma from a sediment core from the equatorial Indian Ocean in the vicinityof ODP Leg 116 sites

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Gupta, S.M.; Mislankar, P.G.; Rao, B.R.; Parthiban, G.; Roelandts, I.; Patil, S.K.

    , S.M. Gupta a , P.G. Mislankar a , B.Ramalingeswara Rao a , G. Parthiban a , I. Roelandts b , S.K. Patil c a Geological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa 403004, India b Department of Geology, Petrology...NeogenesandfromNicobarandBengalfans,DSDPsites 211 and 218. Journal of SedimentaryPetrology49, 1217–1228. Johnson, D.A., Schneider, D.A., Nigrini, C.A., Caulet, C.P., Kent, D.V., 1989. Pliocene–Pleistocene radiolarian events and magnetostratigraphic calibrations for the tropical Indian Ocean...

  1. Investigating an Apparent Warming Event in the Southern Ocean During the Late Miocene (11.5-11.0 Ma): Foraminiferal and Geochemical Results from IODP Expedition 318 Site U1361 Wilkes Land, Antarctica (United States)

    DeCesare, M.; Pekar, S. F.


    High-resolution isotope and foraminiferal biofacies records are being developed from samples obtained from IODP Expedition 318 Site U1361 to investigate a transient warming event that effected the Southern Ocean and Antarctica during the Late Miocene (11.5-11.0 Ma). The Pagodroma Group are proximal glaciomarine strata and provide evidence that the Lambert Glacier had receded up 300 km inland from its present-day grounding line between 12.1 and 8.5 Ma. Four cores, 34X-37X (311.6-349.99 mbsf), recovered from Site U1361 and dated at 11.5-11.0 Ma, contain a sedimentary archive suggestive of a transient warming event. With excellent core recovery and good preservation of foraminifers, it will be possible to document the extent and duration of this warming event. Integrated biostratigraphy and magnetostratigraphy, as well as high sedimentation rates of ~69 m/106 yr allow for excellent age control. These cores were drilled in 3,466 meters water depth on the continental rise, ~280km offshore from Wilkes Land. Foraminiferal abundances are variable, with specimens ranging from rare to relatively high abundances. Planktonic foraminifers are dominated by Globigerina bulloides, while benthic foraminiferal assemblages include Oridorsalis Umbonatus, Cibicidoides Wuellertorfi, Cibicidoides Bradyi, and Epistominella Exigua. Shipboard studies recognized apparent cyclicity in the sediments, which shows good correlation with 41-kyr obliquity cycles. This is supported by comparing foraminiferal abundances to sediment luminosity (total light reflectance or L*). These changes in foraminiferal abundances are interpreted to represent a periodic deepening of the lysocline and carbonate compensation depth. Stable isotope (?18O and ?13C) records are being developed to reconstruct bottom and surface water conditions and place constraints on changes in Southern Ocean dynamics. Mg/Ca and Li/Ca ratio records are being obtained using laser ablation-inductively coupled plasma-mass spectrometry and will provide estimates on temperature. Li/Ca ratios will quantify carbonate ion saturation and reduce uncertainty in Mg/Ca ratio temperature estimates. These records will be developed at 3.5-kyr resolution for intervals in which the above species are present. Biofacies are being used to infer paleoceaographic conditions and will fill any gaps in the isotope record.

  2. Does subduction zone magmatism produce average continental crust

    International Nuclear Information System (INIS)

    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition

  3. The evolution of the Bangong-Nujiang Neo-Tethys ocean: Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites (United States)

    Fan, Jian-Jun; Li, Cai; Xie, Chao-Ming; Wang, Ming; Chen, Jing-Wen


    We conducted in situ U-Pb analyses of zircons from three basalts and one gabbro from the Zhonggang oceanic island, one basalt from the Zhaga oceanic island, and one gabbro from the Kangqiong ophiolite (all located in the middle segments of the Bangong-Nujiang suture zone of Tibetan Plateau), as well as in situ Hf isotope analyses of zircons from one gabbro from the Zhonggang oceanic island to constrain the tectonic evolution of the Bangong-Nujiang Neo-Tethys ocean. All samples contain numerous inherited zircons, and all the zircons contain magmatic oscillatory zoning and have Th/U ratios exceeding 0.4. Moreover, the average ?REE content of these zircons is less than 2000 ppm, and they display clear negative Eu and variable positive Ce anomalies, indicating a magmatic origin. LA-ICP-MS U-Pb dating of the zircons revealed three clear peaks in the age distribution, at 248-255, 162-168, and 117-120 Ma; Lu-Hf isotopic analyses of zircons from the gabbro of the Zhonggang oceanic island yielded a 269 Ma crust-mantle separation age. Taking into account the regional geology, previous data, and our new analyses, we infer that the middle and western segments of the Bangong-Nujiang Neo-Tethys ocean had initially opened in the late Permian (254-269 Ma) and that the ocean opened substantially between the late Permian and the Early Triassic (248-255 Ma). In addition, we infer that the initiation of subduction of the Bangong-Nujiang Neo-Tethys ocean took place at ~ 162-168 Ma, which is Middle Jurassic. The 117-120 Ma age is the time when the oceanic islands and ophiolites were formed, indicating that the Bangong-Nujiang Neo-Tethys ocean was, to some extent, still open at that time.

  4. A unified history of the ocean around southern Africa (United States)

    Reeves, Colin; Master, Sharad


    The movement with respect to Africa of the hotspot marked by present-day Bouvet island is extrapolated backward in time to a position in the Lower Limpopo Valley at the time of the Karoo-Ferrar basalt event (183 Ma). In a tight reconstruction of the Precambrian fragments of Gondwana at this time, the triangular gap that remains between South Africa's Precambrian, that of Dronning Maud Land, Antarctica, and the eastward-extrapolated front of the Cape Fold Belt we fill with the Precambrian fragments of South Patagonia and the Falkland Islands. We postulate that the 183 Ma mantle upwelling produced a triple junction-type fracture marked by the alignments of the Lebombo, the SE margin of the Zimbabwe craton and the giant Botswana dyke swarm (178 Ma) that was rather quickly followed by the expulsion of the South Patagonia terranes from the Gondwana assembly along the alignment of the Falklands-Agulhas Fault Zone (FAFZ) as a transform margin. The space created was filled with igneous material akin to the present day Afar triangle. The magma supply generated not only oceanic crust but also overlying igneous deposits, much probably erupted subaerially. These developed progressively into the Falklands Plateau, the Mozambique Plains, the Mozambique Rise and the Explora Wedge of Antarctica. Not until the early Cretaceous did the growth of normal ocean crust start to exceed the ability of the declining mantle plume to cover the new ocean crust in a confined space with subaerial deposits that substantially thickened otherwise ‘oceanic' crust. When Antarctica and Africa began to separate before about 167 Ma, the future Mozambique Rise moved with Antarctica until, at about 125 Ma, a modest ridge reorganization east of Africa left Madagascar and the Mozambique Rise as part of the Africa Plate. An increasing westerly component to the movement of Antarctica against Africa preceded the initial opening of the South Atlantic and the fusing of the South Patagonia terranes with the bulk of South America. The triple junction jumped from off Cape St Lucia to immediately south of the Mozambique Rise as part of this 125 Ma reorganization and normal ocean crust grew from each of the three ridges emanating from it. The Agulhas Bank represents a reactivation of the mantle plume at about 100 Ma and the Maurice Ewing Bank and other submarine features east of the Falklands Plateau later and smaller ones. The model conforms with limited magnetic anomaly evidence in the oceans and the direction of preserved transforms before Anomaly 34 time (84 Ma). After Anomaly 34, events around the triple junction are well-defined by both magnetic anomalies and preserved transforms. The model may be demonstrated by a geometrically correct animation and offers simple solutions to a number of geological enigmas concerning (a) the Falkland Islands, (b) supposedly ‘continental' plateaus off South Africa, (c) the sudden ending of the Karoo igneous episode well before substantive Gondwana disruption and (d) the exotic nature of the Precambrian rocks of South Patagonia in the context of South American geology. The central role of the Bouvet mantle plume suggests that it has produced a volume of magma comparable with - and a longevity 50 myrs in excess of - that demonstrated by the Kerguelen plume.

  5. Ocean, Spreading Centre

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.

    the lithospheric plates on either side in order to accommodate newly accreted crust. Many of the oceanic ridges in the world oceans have been abandoned in the geologic past and led to resume the activity elsewhere either in the intra-oceanic or intracontinental...

  6. On the dynamics and the geochemical mechanism of the evolution of the continental crust. 1

    International Nuclear Information System (INIS)

    An investigation of the isotopic composition of oxygen in the continental crust, in the oceans, in the oceanic crust and in the upper mantle shows the dynamics of plate tectonics and continental growthto be more or less constant during the last three or four aeons independent on the geochemical mechanism of continental growth. (author)

  7. Forward modelling of petrological crust-forming processes on the early Earth


    Ziaja, Karen


    Tonalite-trondhjemite-granodiorite (TTG) gneisses form up to two-thirds of the preserved Archean continental crust and there is considerable debate regarding the primary magmatic processes of the generation of these rocks. The popular theories indicate that these rocks were formed by partial melting of basaltic oceanic crust which was previously metamorphosed to garnet-amphibolite and/or eclogite facies conditions either at the base of thick oceanic crust or by subduction processes.rnThis stu...

  8. Corium crust strength measurements

    International Nuclear Information System (INIS)

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO2, ZrO2, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  9. Weathering crusts on peridotite (United States)

    Bucher, Kurt; Stober, Ingrid; Müller-Sigmund, Hiltrud


    Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.

  10. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus (United States)

    Kerr, Andrew C.; Tarney, John


    It is widely accepted that the thickened oceanic crust of the Caribbean plate, its basaltic accreted margins, and accreted mafic terranes in northwestern South America represent the remnants of a single ca. 90 Ma oceanic plateau. We review geologic, geochemical, and paleomagnetic evidence that suggests that the Caribbean-Colombian oceanic plateau in fact represents the remnants of two different oceanic plateaus, both dated as ca. 90 Ma. The first of these plateaus, the Caribbean Plateau, formed ca. 90 Ma in the vicinity of the present-day Galapagos hotspot. Northeastward movement of the Farallon plate meant that this plateau collided with the proto Caribbean arc and northwestern South America <10 m.y. after the plateau's main phase of formation. Paleomagnetic evidence suggests that the second of these plateaus, the Gorgona Plateau, formed at 26° 30°S, possibly at the site of the present-day Sala y Gomez hotspot. Over the next ˜45 m.y., this plateau was carried progressively northeastward on the Farallon plate and collided in the middle Eocene with the proto Andean subduction zone in northwestern South America. The recognition of a second ca. 90 Ma Pacific oceanic plateau strengthens the link between plateau formation and global oceanic anoxic events.

  11. Seismic structure of crust formed by back-arc spreading (United States)

    Grevemeyer, I.; Ranero, C. R.


    About three quarters of today Earth crust and most of the past subducted crust have been formed at oceanic spreading centers. Soon after the discovery that oceanic crust underlies most of the world ocean basins it was defined its ubiquitous three-velocity-layers structure, a structure that has been found to date in the vast majority of seismic experiments at mid ocean ridges (MOR) and old oceanic plates, defining the most prevalent crustal structure on Earth. Layer 1 was quickly identified as sediment, but interpretation of layers 2 and 3 remains a topic of intense research since more than half century. The nature of the oceanic crust is primarily inferred from indirect geophysical measurements and rocks sampled at the seafloor. Current models propose that the formation of oceanic crust at MOR -away from hotspot anomalies- is essentially controlled by the rate of plate separation, with crustal types classified as ultraslow, slow, intermediate, and fast spreading crust. However, evaluation of the deep structure has been limited to only a few drill sites (sites 504, 894, 1256) and exposures in tectonic windows (Hess Deep) by sampling of lower crust rocks. Attempting to overcome this limitation, models of oceanic accretion rely strongly on observations from ophiolitic rock assemblages found in orogenic belts, and long interpreted as slices of oceanic lithosphere obducted during subduction-collision processes. After realization that ophiolite stratigraphy -so-called Penrose model - comprises, from bottom to top, peridotites, gabbros, diabase, and basalt, it was proposed that the oceanic layered velocity structure corresponds to that stratigraphy. Although the oceanic "Penrose" stratigraphy was supported by a comparable structure and velocity values measured at some ophiolites, crustal models have subsequently evolved to account for a variable rock-type architecture related to spreading rate. Today the original "Penrose" ophiolite model is regarded appropriate for intermediate- to fast-spreading crust, although in practice most data from MOR are interpreted following a "Penrose" model derivative. Yet, the geodynamic origin of ophiolite assemblages remains an unresolved research subject. Ophiolite geochemistry has been long interpreted to support a supra-subduction-zone arc or back-arc setting, but ophiolite's considerable structural and geochemical variability are interpreted to indicate that at least some of them may have a MOR origin. This uncertainty is fueled by a lack of systematics on back-arc crustal structure due to sparse seismic experiments, contrasting to the wealth of studies of present-day MOR. Here we present the first extensive seismic study of back-arc oceanic crust providing constrains on accretion processes and ophiolite origin. The depth-velocity distribution of back-arc crust resembles MOR layered structure, but velocities are systematically different to MOR crust formed at any spreading rate. In particular, Layer 3 display lower velocities, indicating either a considerable different rock composition or deformation process. Taken with results from other back-arc basins, the substantial range of crustal velocities may explain ophiolite structural and geochemical variability. In sum, the seismic structure of the crust indicates that back-arc spreading represents a class in its own.

  12. A ~400 ka supra-Milankovitch cycle in the Na, Mg, Pb, Ni, and Co records of a ferromanganese crust from the Vityaz fracture zone, central Indian ridge

    Directory of Open Access Journals (Sweden)

    R. Banerjee


    Full Text Available A ~400 ka (kilo years supra-Milankovitch cycle, recorded in the sodium, magnesium, lead, nickel and cobalt contents of a 32 mm thick ferromanganese crust from Vityaz fracture zone, central Indian ridge is reported here. To arrive at the geological ages, we used both 230Thexeccs and Co-chronometric datings. The correlation coefficient between the 230Thexeccs based dates and Co-chronometric dates for the top 0–8 mm is very high (r=0.9734, at 99.9% significance. The cobalt chronometric age for the bottom most oxide layer of this crust is computed as 3.5 Ma. Red-fit and multi-taper spectral analyses of time series data revealed the existence of the significant ~400 ka cycle, representing the changes in the hydrogeochemical conditions in the ocean due to the Earth's orbital eccentricity related summer insolation at the equator. This is the first report of such cycle from a hydrogenous ferromanganese crust from equatorial Indian ocean.

  13. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change (United States)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.


    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  14. Andean Adakites: Products of Slab Melting, Magma Evolution in Thickened Crust and Crustal Recycling by Forearc Subduction Erosion (United States)

    Kay, S. M.; Kay, R. W.; Goss, A.


    Adakites in the southern and central Andes show a residual garnet signature that can variously be related to local slab melting associated with subduction of hot oceanic crust at the Chile Triple Junction, widespread interaction of mafic magmas in regions of thickened crust, and episodic melting of crust removed by forearc subduction erosion, particularly at times of frontal arc migration. Among the most convincing slab-melt adakites on Earth are the late Miocene Cerro Pampa type dacitic adakites east of the Chile Triple Junction whose low 87Sr/86Sr ratios (0.7028-0.7033) and high Sr contents (up to 2300 ppm) are difficult to explain by any other mechanism. Elsewhere the appearance of transient extreme adakitic signatures at times of frontal arc migration can be explained by forearc subduction erosion and the evolution of magmas at deep crustal levels in a contractional regime provided the crust is thick. Transient steep adakitic-like REE patterns at times of arc migration fit with forearc crust being transported down the subduction channel, entering the tip of the asthenospheric wedge and being incorporated into the arc mantle source. Evidence for a genetic link for transient adakite signatures, arc migration and forearc subduction erosion comes from changing isotopic ratios in mafic magmas erupted before and after arc migration on the edges of the Chilean flat-slab near 27°S and 34°S (Kay et al 2005) where the arc front has migrated up to 50 km eastward in the last 8 Ma. The chemistry of these mafic magmas cannot be explained by enriched mantle or incorporation of subducted sediments or in situ crust. Sharp increases in 87Sr/86Sr ratios and transient steep REE patterns in Andean arc rocks erupted in the final stages of Cretaceous to early Tertiary magmatic cycles at 21°S to 26°S (see Haschke et al. 2002) can also be attributed to forearc subduction erosion. Forearc subduction erosion provides a better explanation for the formation of Aleutian and Central American adakitic magmas erupted through crust that is less than 40 km thick than slab melting or crystallization of garnet from hydrous magmas.

  15. Birth of an ocean in the Red Sea: Initial pangs (United States)

    Ligi, Marco; Bonatti, Enrico; Bortoluzzi, Giovanni; Cipriani, Anna; Cocchi, Luca; Caratori Tontini, Fabio; Carminati, Eugenio; Ottolini, Luisa; Schettino, Antonio


    We obtained areal variations of crustal thickness, magnetic intensity, and degree of melting of the sub-axial upwelling mantle at Thetis and Nereus Deeps, the two northernmost axial segments of initial oceanic crustal accretion in the Red Sea, where Arabia is separating from Africa. The initial emplacement of oceanic crust occurred at South Thetis and Central Nereus roughly ˜2.2 and ˜2 Ma, respectively, and is taking place today in the northern Thetis and southern Nereus tips. Basaltic glasses major and trace element composition suggests a rift-to-drift transition marked by magmatic activity with typical MORB signature, with no contamination by continental lithosphere, but with slight differences in mantle source composition and/or potential temperature between Thetis and Nereus. Eruption rate, spreading rate, magnetic intensity, crustal thickness and degree of mantle melting were highest at both Thetis and Nereus in the very initial phases of oceanic crust accretion, immediately after continental breakup, probably due to fast mantle upwelling enhanced by an initially strong horizontal thermal gradient. This is consistent with a rift model where the lower continental lithosphere has been replaced by upwelling asthenosphere before continental rupturing, implying depth-dependent extension due to decoupling between the upper and lower lithosphere with mantle-lithosphere-necking breakup before crustal-necking breakup. Independent along-axis centers of upwelling form at the rifting stage just before oceanic crust accretion, with buoyancy-driven convection within a hot, low viscosity asthenosphere. Each initial axial cell taps a different asthenospheric source and serves as nucleus for axial propagation of oceanic accretion, resulting in linear segments of spreading.

  16. Paleo-elevation and subsidence of ˜145Ma Shatsky Rise inferred from CO2 and H2O in fresh volcanic glass (United States)

    Shimizu, Kenji; Shimizu, Nobumichi; Sano, Takashi; Matsubara, Noritaka; Sager, William


    Shatsky Rise, a large Mesozoic oceanic plateau in the northwest Pacific, consists of three massifs (Tamu, Ori, and Shirshov) that formed near a mid-ocean-ridge triple junction. Published depth estimates imply that Shatsky Rise has not subsided normally, like typical oceanic lithosphere. We estimated paleo-eruption depths of Shatsky Rise massifs on the basis of dissolved CO2 and H2O in volcanic glass and descriptions of cores recovered from five sites of Integrated Ocean Drilling Program Expedition 324. Initial maximum elevations of Shatsky Rise are estimated to be 2500-3500 m above the surrounding seafloor and the ensuing subsidence of Shatsky Rise is estimated to be 2600-3400 m. We did not observe the anomalously low subsidence that has been reported for both Shatsky Rise and the Ontong Java Plateau. Although we could not resolve whether Shatsky Rise originated from a hot mantle plume or non-plume fusible mantle, uplift and subsidence histories of Shatsky Rise for the both cases are constrained based on the subsidence trend from the center of Tamu Massif (˜2600 m) toward the flank of Ori Massif (˜3400 m). In the case of a hot mantle plume origin, Shatsky Rise may have formed on young (˜5 Ma) pre-existing oceanic crust with a total crustal thickness of ˜20 km. For this scenario, the center of Shatsky Rise is subsequently uplifted by later (prolonged) crustal growth, forming the observed ˜30 km thickness crust. For a non-plume origin, Shatsky Rise may have formed at the spreading ridge center as initially thick crust (˜30 km thickness), with later reduced subsidence caused by the emplacement of a buoyant mass-perhaps a refractory mantle residuum-beneath the center of Shatsky Rise.

  17. nantucket_ma.grd (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission...

  18. Composition and origin of ferromanganese crusts from equatorial western Pacific seamounts (United States)

    Wang, Guozhi; Jansa, Luba; Chu, Fengyou; Zou, Can; Sun, Guosheng


    In the equatorial western Pacific, iron-manganese oxyhydroxide crusts (Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.

  19. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland (United States)

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans


    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  20. Volcanic Origin of the Lunar Highland Crust (United States)

    Lowman, P. D.


    Introduction: This paper reviews evidence from Apollo missions, returned lunar samples, and earth-based reflection spectroscopy, bearing on the composition, structure, and origin of the "highland" crust (actually the global crust, underlying the maria as well as the nominal highlands). Current views are that the crust is primarily anorthosite, formed in a magma ocean, with a layered structure formed of superimposed impact ejecta blankets. Several lines of independent evidence contradict this concept. Structure: Retrospective analysis of lunar surface photos taken by the astronauts on Apollos 15, 16, and 17 reveal pervasive layering, best exposed on the Apennine Front near the Apollo 15 landing site, at Silver Spur. These layers, more than 90, average 16 meters in thickness. Similar layers were found on photos from Apollo 16, of Stone Mountain, and from Apollo 17, of the Sculptured Hills. In thickness, geometry, and regularity they are similar to basaltic lava flows of the Columbia Plateau, the island of Hawaii, and Kauai. The generally- accepted explanation of these layers as overlapping ejecta blankets from mare basins or craters is contradicted by their number and thickness, and the fact that no such layers were found by seismic methods in the Fra Mauro Formation (Imbrium ejecta). Composition: Remote sensing data, from Apollo orbital X-ray fluorescence surveys and earth-based reflection spectroscopy, show that anorthosite is a subordinate constituent of the lunar crust, not the major one. Returned lunar samples support this, despite the masking effects of pervasive brecciation and impact melting. Dominant highland rock types are basalt, frequently feldspar-rich; norite; troctolite; KREEP; and anorthosite, the bulk surface composition corresponding chemically to a high-Al norite. Five-km resolution reflectance traverses by Pieters and others show that anorthosite is a widespread but subordinate component, occurring in central peaks that probably expose anorthosite intrusions. The "magma ocean" concept is petrologically valid but probably applicable only to these intrusions. Conclusion: It is proposed that the highland crust layers are flows of alumnum-rich noritic lavas, collectively several kilometers thick, and that they represent a "first differentiation" of the Moon by massive global volcanism in the first few hundred million years of the Moon's history,concurrent with intense impact cratering.

  1. MaTeam-projektet

    DEFF Research Database (Denmark)

    Andreasen, Marikka; Damkjær, Helle Sejer; Højgaard, Tomas

    Projektet MaTeam beskrives med fokus på et toårigt forsøg hvor matematiklærerne på 4.-6. klassetrin på fire skoler i Silkeborg Kommune samarbejdede med forfatterne. Projektet handlede om udvikling af matematiklærerkompetencer med fokus på samarbejdet i de fire skolers matematiklærerfagteam...... matematiklærerfagteam og samarbejdsrelationer der indgår i projektet. Desuden beskriver vi forskellige typer af fagteam og lærere. Metodisk var MaTeam-projektet struktureret som en didaktisk modelleringsproces....

  2. Highly extended oceanic lithosphere: The basement and wallrocks for the Late Jurassic Rogue-Chetco oceanic arc, Oregon Klamath Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Yule, J.D.; Saleeby, J.B.


    The superbly preserved, coeval Late Jurassic Rogue-Chetco oceanic arc and Josephine inter-arc basin exposed in the western Jurassic belt of the Oregon Klamath Mountains provide a unique opportunity to (1) directly observe the oceanic lithosphere upon which this oceanic arc was constructed, and (2) gain a better understanding of the pre-accretionary dynamic processes that shape oceanic arc and inter-arc basin lithosphere. Field relations exposed in the Roque, Illinois, and Chetco River areas show that (1) plutonic and volcanic rocks of the Rogue-Chetco arc both intruded and conformably overlapped fragmented composite blocks of oceanic crust and serpentinized, dike-filled depleted mantle rocks; and (2) arc growth occurred during regional oblique extension of the oceanic lithosphere resulting in the extreme fragmentation of oceanic crustal rocks and the local exposure of serpentinized mantle rocks on the sea floor. The Rogue-Chetco overlap sequence consists of rhythmically bedded volcanogenic turbidites, chert, argillite, and local deposits of polymict basal breccias. The clasts which comprise the distinctive basal breccias indicate derivation from a dominantly ophiolitic crust and serpentinized mantle source. Source materials for the basal breccias comprise the basement and wallrocks for the Roque-Chetco arc and consist of (1) rifted fragments of western Paleozoic and Triassic belt rocks (Yule and others, 1991) cut by heterogeneous mafic complexes inferred to represent early Josephine age rifting at approximately 165 Ma, (2) fault bounded blocks of massive gabbro, sheeted mafic dikes, pillow lava and breccia overlain by Callovian age chert, and (3) serpentinized depleted mantle peridotite cut by multiple generation of mafic and intermediate dikes. The basement rock types all share a pervasive brittle fragmentation and hydrothermal alteration history that is conspicuously absent in the arc volcanic and plutonic rocks.

  3. The effect of hydrothermal circulation on subsidence on ocean basins : evidence from the South East Indian Ocean (United States)

    Géli, L.; Francheteau, J.


    While it is generally accepted that off-axis hydrothermal circulation is responsible for the majority of the observed oceanic heat flow anomalies (e. g. for the "missing" conductive heatflow through oceanic lithosphere), the effect of water circulation on the subsidence of ocean basins at the scale of tens of millions years has not been thoroughly recognized. We present a very simple model (based on the half-space model) showing that, that in some particular circumstances, hydrothermal circulation may be held responsible for unexplained subsidence rate anomalies at the scale of ocean basins. An example is given for the poorly sedimented South-East Indian Ridge flanks of age Ma1/2 ) can be more readily explained by the observed sedimentation pattern and the subsequent pattern in hydrothermal circulation than by ad hoc variations in the mantle thermal parameters. Our model assumes that in absence of sedimentation, hydrothermal circulation convectively maintains low temperatures within the upper crust at ages as old as 20 to 30 Ma. Agreement with re-assesed subsidence estimates supports the model hypothesis.

  4. Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust (United States)

    Laske, Gabi; Masters, Guy; Ma, Zhitu; Pasyanos, Mike


    Our new 1-by-1 degree global crustal model, CRUST1.0, was introduced last year and serves as starting model in a comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0 (Pasyanos et al., 2012). The Moho depth in CRUST1.0 is based on 1-degree averages of a recently updated database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially followed the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; to assign elastic properties in the crystalline crust according to basement age or tectonic setting (loosely following an updated map by Artemieva and Mooney (2001; For cells with no local seismic or gravity constraints, statistical averages of crustal properties, including crustal thickness, were extrapolated. However, in places with constraints the depth to basement and mantle are given explicitly and no longer assigned by crustal type. This allows for much smaller errors in both. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3 sediment layers and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is based on our sediment model (Laske and Masters, 1997;, with some near-coastal updates. In an initial step toward LITHO1.0, the model is then validated against new global surface wave disperison maps and adjusted in areas of extreme misfit. This poster presents the next validation step: compare the new Moho depths with in-situ active source and receiver function results. We also present comparisons with CRUST2.0. CRUST1.0 is available for download. References: Pasyanos, M.E., Masters, G., Laske, G. and Ma, Z., LITHO1.0 - An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints, Abstract T11D-09 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec, 2012. Artemieva, I.M. and Mooney, W.D., Thermal thickness and evolution of Precambrian lithosphere: A global study, J. Geophys. Res., 106, 16,387-16,414, 2001. Bassin, C., Laske, G. and Masters, G., The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897, 2000. Laske, G. and Masters, G., A Global Digital Map of Sediment Thickness, EOS Trans. AGU, 78, F483, 1997. URL:

  5. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas


    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  6. Physics of Neutron Star Crusts



    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  7. Continued Evidence for Input of Chlorine into the Martian Crust from Degassing of Chlorine-Rich Martian Magmas with Implications for Potential Habitability (United States)

    Filiberto, J.; Gross, J.


    The chlorine-concentration (or salinity) of a fluid affects the potential for that fluid to be a habitable environment, with most known terrestrial organisms preferring low salinity fluids [1, 2]. The Martian crust (as analyzed by the Gamma Ray Spectrometer) is chlorine-rich with up to 0.8 wt% Cl; while the MER rovers Spirit and Opportunity as well as MSL Curiosity have analyzed rocks with even higher chlorine concentrations [e.g., 3]. This suggests that any potential fluid flowing through the crust would have high chlorine concentrations and therefore high salinity. Here we investigate the bulk and mineral chemistry of the SNC meteorites to constrain the pre-eruptive chlorine concentrations of Martian magmas as the potential source of chlorine in the Martian crust. Bulk SNC meteorites have Cl concentrations similar to terrestrial Mid Ocean Ridge Basalts which would suggest a Cl content of the Martian interior similar to that of the Earth [4]. However, based on Cl/La ratios, the Martian interior actually has 2-3 times more Cl than the Earth [5]. This is also reflected in the composition of Cl-rich minerals within the SNC meteorites [5, 6] and suggests that the pre-eruptive parental magmas to the SNC meteorites were Cl-rich. Eruption and degassing of such Cl-rich magmas would have delivered Cl to the Martian crust, thereby increasing the salinity of any fluids within the crust. [1] Rothschild L.J. and R.L. Mancinelli (2001) Nature. 409: 1092-1101. [2] Sharp Z.D. and D.S. Draper (2013) EPSL. 369-370: 71-77. [3] Taylor G.J. et al. (2010) GRL. 37: L12204. [4]. Burgess R. et al (2013) GCA 77: 793. [5] Filiberto J. and A.H. Treiman (2009) Geology. 37: 1087-1090. [6] McCubbin F.M. et al. (2013) MaPS. 48: 819-853.

  8. A model of oceanic development by ridge jumping: Opening of the Scotia Sea (United States)

    Maldonado, Andrés; Bohoyo, Fernando; Galindo-Zaldívar, Jesús; Hernández-Molina, Fº. Javier; Lobo, Francisco J.; Lodolo, Emanuele; Martos, Yasmina M.; Pérez, Lara F.; Schreider, Anatoly A.; Somoza, Luis


    Ona Basin is a small intra-oceanic basin located in the southwestern corner of the Scotia Sea. This region is crucial for an understanding of the early phases of opening of Drake Passage, since it may contain the oldest oceanic crust of the entire western Scotia Sea, where conflicting age differences from Eocene to Oligocene have been proposed to date. The precise timing of the gateway opening between the Pacific and Atlantic oceans, moreover, has significant paleoceanographic and global implications. Two sub-basins are identified in this region, the eastern and western Ona basins, separated by the submarine relief of the Ona High. A dense geophysical data set collected during the last two decades is analyzed here. The data include multichannel seismic reflection profiles, and magnetic and gravimetric data. The oceanic basement is highly deformed by normal, reverse and transcurrent faults, as well as affected by deep intrusions from the mantle. The initial extension and continental thinning, with subsequent oceanic spreading, were followed by compression and thrusting. Several elongated troughs, bounded by faults, depict a thick sequence of depositional units in the basin. Eight seismic units are identified in a deep trough of the eastern Ona Basin. The deposits reach a thickness of 5 km, a consistent value not previously reported from the Scotia Sea. A body of chaotic seismic facies is also observed above the thinned continental crust of the Ona High. Magnetic seafloor anomalies older than C10 (~ 28.5 Ma) may be present in the region. The anomalies could include up to chron C12r (~ 32 Ma), although their identification is difficult, since the amplitude is subdued and the original oceanic crust was highly deformed by later faulting and thrusting. The magnetic anomaly distribution is not congruent with seafloor spreading from a single ridge. The basin plain is tilted and subducted southwestward below the South Shetland Islands Block, particularly in the western part, where an accretionary prism is identified. Such tectonics, locally affecting up to the most recent deposits, imply that a portion of the primitive oceanic crust is absent. Based on the stratigraphy of the deposits and the magnetic anomalies, an age of 44 Ma is postulated for the initiation of oceanic spreading in the eastern Ona basin, while spreading in the western Ona Basin would have occurred during the early Oligocene. The tectonics, depositional units and the age of the oceanic crust provide additional evidence regarding the Eocene opening of Drake Passage. The initial tectonic fragmentation of the South America-Antarctic Bridge, followed by oceanic spreading, was characterized by jumping of the spreading centers. An Eocene spreading center in the eastern Ona Basin was the precursor of the Scotia Sea. A model comprising four tectonic evolutionary phases is proposed: Phase I, Pacific subduction - Paleocene to middle Eocene; Phase II, eastern Ona back-arc spreading - middle to late Eocene; Phase III, ridge jumping and western Ona back-arc spreading - early Oligocene; and Phase IV, ridge jumping and West Scotia Ridge spreading - early Oligocene to late Miocene. The development of shallow gateways allowed for an initial connection between the Pacific and Atlantic oceans and, hence, initiated the thermal isolation of Antarctica during the middle and late Eocene. Deep gateways that enhanced the full isolation of Antarctica developed in Drake Passage from the Eocene/Oligocene transition onward. A significant correlation is observed between the tectonics, stratigraphic units and major climate events, thereby indicating the influence of the local tectonic and paleoceanographic events of the Southern Ocean on global evolution.

  9. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific (United States)

    Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.


    A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.

  10. Structure and Composition of the Lunar Crust (United States)

    Spudis, P. D.; Bussey, D. B. J.; Hawke, B. R.


    Since the first return of lunar samples indicated that global differentiation of the Moon had occurred, numerous models of crustal structure have been proposed. With the completion of the first global reconnaissance mapping by Clementine and Lunar Prospector, we are now in position to re-evaluate crustal structure and composition at a global scale. Although this is a difficult and complex task, and one requiring significant study, some first-order results are apparent now and are quite telling. We here summarize our current view of crustal structure and identify some required knowledge to better understand the origin and evolution of the lunar crust. Wood et al. attempted to estimate the amount of plagioclase in the crust, based on the average elevation difference between mare and highlands and some simple assumptions about anorthosite and basalt as responsible for the principal lunar rock types. Later, more complex models emerged, involving layered crusts of feldspathic material over more basaltic material or a laterally variable crust, with Mg-suite plutons intruding a grossly anorthositic crust. Later models attempted to reconcile these contrasting styles by incorporating both features. In part, crustal structure was inferred by the envisioned mode of crustal formation. A decade-long debate on the reality of the lunar "magma ocean," stimulated by the provocative notion of Walker that the Moon never had a magma ocean, and the recognition that the anorthosites and Mg suite probably recorded different and unrelated magmatic events. Such a scenario leaves much about crustal structure an open question, but allows for both lateral and vertical heterogeneity, thus accommodating both principal crustal models. Global maps of Fe , Ti, and Th both confirm old ideas and create new problems. It is clear that vast areas of the lunar highlands are extremely low in Fe, consistent with a significant amount of anorthosite. Such a distribution supports the magma ocean. However, the average lunar highlands composition is, as long suspected, that of "anorthositic norite", a mixed rock type, somewhat similar to many of the lunar meteorites (e.g,., ALHA 81005 and more mafic than pure ferroan anorthosite. Anorthosite proper does occur on the Moon; it is found almost exclusively within the inner rings of multiring basins. These basins span a range of ages and distributions. Mafic provinces occur in the central Procellarum region of the front side and on the floor of the South Pole Aitken Basin. In these areas, the lunar surface is "highland basaltic" composition (FeO about 9-10 wt%). Additional highland basaltic areas occur in the vicinity of nearside basins, such as Serenitatis. The major lunar "hot spot" of high Th concentration (about 10 ppm) occurs within a broad, oval depression approximately coincident with Oceanus Procellarum. Slightly less elevated amounts (about ppm) are associated with the basaltic floor of SPA Basin on the farside. Aside from this, Th highs are isolated and minor. On the basis of the new global data, as well as from our continuing study of the composition of basin ejecta to probe the deep crust, we have modified slightly our existing crustal model to accommodate the new findings. We propose a three-layer model of crustal configuration. The uppermost zone, down to depths of about 15-20 km, consists of mega breccia of mostly anorthositic norite composition (FeO about 4-6 wt%; Al2O3 about 26 wt%). This zone is neither laterally or vertically uniform, displaying anomalous compositional zones at scales of tens to hundreds of kilometers, but is remarkably homogeneous at planetwide scales. In bulk composition, it resembles the "ferroan anorthositic norite" suite of mixed rocks described by Lindstorm et al. and many of the highlands regolith breccias found as lunar meteorites. It is also similar to the average crustal composition inferred by Taylor , on the basis of Apollo granulitic breccias and limited orbital chemical data. Although some areas on the northern farside app

  11. Origin of the 'Gabbro' Signature in Ocean Island Basalts: Constraints from Osmium Isotopic Ratios of Galapagos Basalts (United States)

    Gibson, S. A.; Dale, C. W.; Geist, D.; Harpp, K. S.


    The Re-Os isotope system has become increasingly used as a tracer of lithological heterogeneity in the convecting mantle, with radiogenic 187Os/188Os in high-Os oceanic basalts and picrites widely interpreted as evidence of a melt contribution from ancient recycled oceanic crust. When combined with 206Pb/204Pb and O isotopes, 187Os/188Os ratios have been used to identify distinct lithological units (i.e. sediments, gabbros and basalts). We report new 187Os/188Os for basalts with high Os (>40 ppt) and MgO from Galápagos, which range from near primitive mantle values (0.130) to highly radiogenic (0.155). While co-variations in 187Os/188Os and 206Pb/204Pb for some Galápagos basalts (Floreana-type) are HIMU like, and consistent with melting of ancient recycled oceanic crust, others have variable 187Os/188Os ratios and primitive to depleted mantle like 206Pb/204Pb. Similar variations in Os and Pb isotopic space have been interpreted in other OIB suites as melts from recycled ancient oceanic gabbros, entrained by upwelling mantle plumes. Nevertheless, a marked east-west spatial variation in 187Os/188Os of Galápagos basalts does not correlate with postulated lithological variations in the Galápagos plume (Vidito et al., 2013). We show that basalts in eastern Galápagos with elevated 187Os/188Os and positive Sr anomalies occur in the vicinity of over-thickened 10 Ma gabbroic crust, that formed when the Galápagos plume was on-axis. We propose the elevated 187Os/188Os of Galápagos basalts are due to in-situ assimilation of young gabbroic lower crust, with high Re/Os, rather than melting of ancient recycled material in the Galápagos plume. In western Galápagos recent plume accreted crust is thick but more mafic, the melt flux higher and assimilation more sporadic. The contamination thresholds of Os and MgO in Galápagos basalts occur at higher contents than for many global OIBs (Azores, Iceland, Hawaii) and may reflect both a relatively low melt flux into the crust from the weak Galápagos plume (Tp=1400 oC) and excess thickness of ridge-formed gabbro in the east of the archipelago. Similar in-situ assimilation of lower oceanic crust by high-Os and MgO-rich OIBs suites may have been overlooked in the quest for establishing melting of ancient recycled oceanic gabbro in hotspots and heterogeneity in the convecting mantle.

  12. H11076_GEO_1MMBES.TIF: Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11076 in Quicks Hole, Elizabeth Islands, MA (Geographic) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  13. H11076_GEO_1MSSS.TIF: Composite Grayscale Image of the Sidescan Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of the Sea Floor in Quicks Hole, MA (Geographic) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  14. Evaluating Complex Magma Mixing via Polytopic Vector Analysis (PVA in the Papagayo Tuff, Northern Costa Rica: Processes that Form Continental Crust

    Directory of Open Access Journals (Sweden)

    Guillermo E. Alvarado


    Full Text Available Over the last forty years, research has revealed the importance of magma mixing as a trigger for volcanic eruptions, as well as its role in creating the diversity of magma compositions in arcs. Sensitive isotopic and microchemical techniques can reveal subtle evidence of magma mixing in igneous rocks, but more robust statistical techniques for bulk chemical data can help evaluate complex mixing relationships. Polytopic vector analysis (PVA is a multivariate technique that can be used to evaluate suites of samples that are produced by mixing of two or more magma batches. The Papagayo Tuff of the Miocene-Pleistocene Bagaces Formation in northern Costa Rica is associated with a segment of the Central American Volcanic Arc. While this segment of the arc is located on oceanic plateau, recent (<8 Ma ignimbrites bear the chemical signatures of upper continental crust, marking the transition from oceanic to continental crust. The Papagayo Tuff contains banded pumice fragments consistent with one or more episodes of mixing/mingling to produce a single volcanic deposit. The PVA solution for the sample set is consistent with observations from bulk chemistry, microchemistry and petrographic data from the rocks. However, without PVA, the unequivocal identification of the three end-member solution would not have been possible.

  15. The thermal effect of fluid circulation in the subducting crust on slab melting in the Chile subduction zone (United States)

    Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng; Perry, Matthew


    Fluids released from subducting slabs affect geochemical recycling and melt generation in the mantle wedge. The distribution of slab dehydration and the potential for slab melting are controlled by the composition/hydration of the slab entering a subduction zone and the pressure-temperature path that the slab follows. We examine the potential for along-strike changes in temperatures, fluid release, and slab melting for the subduction zone beneath the southern portion of the Southern Volcanic Zone (SVZ) in south central Chile. Because the age of the Nazca Plate entering the subduction zone decreases from ?14 Ma north of the Guafo Fracture Zone to ?6 Ma to the south, a southward warming of the subduction zone has been hypothesized. However, both north and south of Guafo Fracture Zone the geochemical signatures of southern SVZ arc lavas are similar, indicating 3-5 wt.% sediment melt and little to no contribution from melt of subducted basalt or aqueous fluids from subducted crust. We model temperatures in the system, use results of the thermal models and the thermodynamic calculation code Perple_X to estimate the pattern of dehydration-derived fluid release, and examine the potential locations for the onset of melting of the subducting slab. Surface heat flux observations in the region are most consistent with fluid circulation in the high permeability upper oceanic crust redistributing heat. This hydrothermal circulation preferentially cools the hottest parts of the system (i.e. those with the youngest subducting lithosphere). Models including the thermal effects of fluid circulation in the oceanic crust predict melting of the subducting sediment but not the basalt, consistent with the geochemical observations. In contrast, models that do not account for fluid circulation predict melting of both subducting sediment and basalt below the volcanic arc south of Guafo Fracture Zone. In our simulations with the effects of fluid circulation, the onset of sediment melting occurs under the volcanic arc, but dewatering of the subducting sediment and basalt is focused farther seaward (below the landward boundary of the stagnant mantle wedge corner). Thus, the sediment melt could enter the mantle wedge, contributing to the composition of the southern SVZ magmas, yet remain separate from the fluid derived from sediment dewatering which could migrate updip within the slab or into the wedge corner. Preferential hydrothermal cooling of the hottest segments of the system can help explain how there can be fairly uniform magma composition along the arc, despite large along-arc differences in the age of the subducting plate.

  16. Color characterization of Arctic Biological Soil Crusts (United States)

    Mele, Giacono; Gargiulo, Laura; Ventura, Stefano


    Global climate change makes large areas lacking the vegetation coverage continuously available to primary colonization by biological soil crusts (BSCs). This happens in many different environments, included high mountains and Polar Regions where new areas can become available due to glaciers retreat. Presence of BSCs leads to the stabilization of the substrate and to a possible development of protosoil, with an increase of fertility and resilience against erosion. Polar BSCs can exhibit many different proportions of cyanobacteria, algae, microfungi, lichens, and bryophytes which induce a large variability of the crust morphology and specific ecosystem functions. An effective and easy way for identifying the BSCs in the field would be very useful to rapidly recognize their development stage and help in understanding the overall impact of climate change in the delicate polar environments. Color analysis has long been applied as an easily measurable physical attribute of soil closely correlated with pedogenic processes and some soil functions. In this preliminary work we used RGB and CIE-L*a*b* color models in order to physically characterize fourteen different BSCs identified in Spitsbergen island of Svalbard archipelago in Arctic Ocean at 79° north latitude. We found that the "redness parameter "a*" of CIE-L*a*b* model was well correlated to the succession process of some BSCs at given geomorphology condition. Most of color parameters showed, moreover, a great potential to be correlated to photosynthetic activity and other ecosystem functions of BSCs.

  17. Models of a partially hydrated Titan interior with clathrate crust (United States)

    Lunine, J. I.; Castillo-Rogez, J.


    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate crust and in contact with the silicates beneath for most of Titan's history. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach the high pressure ice layer maintaining contact between the ocean and the silicate core. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged.

  18. Adjoint tomography of the southern California crust. (United States)

    Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen


    Using an inversion strategy based on adjoint methods, we developed a three-dimensional seismological model of the southern California crust. The resulting model involved 16 tomographic iterations, which required 6800 wavefield simulations and a total of 0.8 million central processing unit hours. The new crustal model reveals strong heterogeneity, including local changes of +/-30% with respect to the initial three-dimensional model provided by the Southern California Earthquake Center. The model illuminates shallow features such as sedimentary basins and compositional contrasts across faults. It also reveals crustal features at depth that aid in the tectonic reconstruction of southern California, such as subduction-captured oceanic crustal fragments. The new model enables more realistic and accurate assessments of seismic hazard. PMID:19696349

  19. Semi-Empirical Oceanic Depth-Age Relationship Inferred from Bathymetric Curve (United States)

    Niedzielski, Tomasz; Jurecka, Miros?awa; Migo?, Piotr


    In this paper, we report on a preliminary investigation into a semi-empirical method for derivation of depth-age relationship for oceanic lithosphere. The global 30-arcsecond bathymetry data from the General Bathymetric Charts of the Oceans (GEBCO) were corrected for (1) sediment thickness using the Total Sediment Thickness of the World's Oceans and Marginal Seas and (2) isostasy. The corrected bathymetry was processed to obtain the empirical bathymetric curve, the solution computed with 50 m elevation bin. Subsequently, the data-based curve was approximated with the optimal polynomial model. By combining the model with a formula for derivative of area with respect to age, we obtained the approximate differential equation for depth-age relationship. We solved the equation numerically. The solution was compared with (1) depth-age relationships derived empirically using the combination of the corrected GEBCO bathymetry with digital isochrons of the oceans, (2) Parsons Sclater Model (PSM) and (3) Global Depth Heatflow model (GDH1). In the new depth-age curve, three sections with specific relationships of ocean depth versus age of the crust are identified: (1) moderate increase in depth from 2500 to 5900 m for lithospheric ages 0-118 Ma, (2) more pronounced increase in depth from 5900 to 6700 m for the lithosphere 118-147 Ma old, (3) stabilization of ocean depth at 6700-6760 m for the lithosphere older than 147 Ma. The fit to empirical data as well as PSM and GDH1 models is good for the first section, but rather imperfect for the other two. Reasons for mismatches are complex and probably different for dissimilar sections of the curve.

  20. Precambrrian continental crust evolution of southeastern Sao Paulo state-Brazil: based on isotopico evidences

    International Nuclear Information System (INIS)

    The focussed area comprises five major different tectonic terranes separated by faults, which are named Alto Rio Grande Belt, Socorro-Guaxupe Nappe, Sao Roque, Embu and Costeiro Domains. The geological and geochronological history of these terranes show that the metamorphic episodes of crust-forming occurred involving both mantle-derived magmas and reworking of continental material since 3.4 Ga until 600 Ma. The post-tectonic granitic activities occurred within 1000-500 Ma range and in general, the rocks are progressively younger from the Socorro-Guaxupe Nappe (1000-850 Ma) in the NW towards the Costeiro Domain (550 Ma) in the SE. The Sr and Pb isotopic evidences, together with geological and geophysical informations, suggest that the proportions of the rock-forming processes through the geological time are: Archean, 10%; Lower Proterozoic, 10%; Middle Proterozoic, 38%; Late Proterozaic, 42%. Although the Mid and Late Proterozoic time were a period of a large amount of rocks were formed, they were not a major crustforming period, because these rocks are mainly constituted by recycled continental crust material. In our view, at end of the Early Proterozoic time, at least 85% of continetal crust, in this area, has accreted and differentiate. During the Middle and Late Proterozoic the continental crust grew at small rate. (author)

  1. Oceanic slab melting and mantle metasomatism


    Scaillet, Bruno; Prouteau, Gaëlle


    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (

  2. The formation of ultradeep sedimentary basins through metamorphism with rock contraction in continental crust (United States)

    Artyushkov, E. V.; Belyaev, I. V.; Kazanin, G. S.; Pavlov, S. P.; Chekhovich, P. A.; Shkarubo, S. I.


    Sedimentary covers are up to 15-20 km thick in ultradeep sedimentary basins. Joint interpretation of seismic reflection sounding and gravimetric data indicates that eclogites are located in the basins under the Moho. In these rocks the velocities of P-waves are close to those in mantle peridotites. The basins show only moderate crustal stretching and their formation was caused primarily by the transformation of gabbroids into dense eclogites in the lower part of the continental crust. The transformation took place episodically as mantle fluids infiltrated the lower crust and it was ensured by pressure rise in the lower crust occurring with the accumulation of sediments. Moderate metamorphism developed in silicic upper crust as temperature and pressure increased under thick sedimentary covers. In iron-rich metasedimentary rocks, deep metamorphism resulted in the density increase, and P-wave velocities there increased to those characteristic of the oceanic crust.

  3. 42 CFR 495.202 - Identification of qualifying MA organizations, MA-EPs and MA-affiliated eligible hospitals. (United States)


    ...-EPs and MA-affiliated eligible hospitals. 495.202 Section 495.202 Public Health CENTERS FOR MEDICARE... Advantage (MA) Organizations § 495.202 Identification of qualifying MA organizations, MA-EPs and MA... in June 2011 (for plan year 2012), MA organizations seeking reimbursement for qualifying MA EPs...

  4. Processes of Magma-crust Interaction : Insights from Geochemistry and Experimental Petrology


    Deegan, Frances M.


    This work focuses on crustal interaction in magmatic systems, drawing on experimental petrology and elemental and isotope geochemistry. Various magma-chamber processes such as magma-mixing, fractional crystallisation and magma-crust interaction are explored throughout the papers comprising the thesis. Emphasis is placed on gaining insights into the extent of crustal contamination in ocean island magmas from the Canary Islands and the processes of magma-crust interaction observed both in natur...

  5. A New Estimate for Global Hydrothermal Exchange Between the Oceans and Lithosphere (United States)

    Hasterok, D. P.


    We revise the estimated global power deficit due to ventilated hydrothermal circulation (8.0 TW) using an updated global heat flow dataset with >14000 oceanic measurements and a new conductive cooling model of the oceanic lithosphere. This study differs from previous estimates by taking into account (1) non-Gaussian statistics, (2) an improved seafloor age model, (3) a new plate cooling model calibrated directly to heat flow, and (4) the effect of sediment cover on the heat flow deficit and ventilated cutoff age. We obtain the maximum heat flow deficit (difference between predicted and observed) when the data are separated by seafloor areas with power deficit (integrated heat flow deficit with respect to area) for areas of thin (total power deficit, 8.0 TW with 50% of estimates falling between 5.0 and 10.0 TW, represents a 30% reduction in magnitude compared with previous heat flow and fluid flow based estimates. Regions with thick, 400 m, sediment cover experience half the heat flow deficit for one-third of the duration (25 Ma) of regions with thin sediment cover (75 Ma). Based on this study, vigorous fluid exchange between the oceans and seafloor redistributes 30% of heat lost through young oceanic crust. Spatial variation in heat flow deficit relative to estimated conductive heat loss. Variations are calibrated to observed heat flow and constrained by sediment thickness variations.

  6. Nature of crust in the central Red Sea (United States)

    Mitchell, Neil C.; Park, Yongcheol


    A transition between continental crust in the northern Red Sea and oceanic crust in the southern Red Sea coincides broadly with a southward increase in plate tectonic separation rate and with a decrease in upper mantle seismic velocity. We re-evaluate here the nature of crust in the intervening central Red Sea with the results of legacy seismic refraction experiments and recently released marine gravity anomalies derived from satellite altimeter measurements. In the refraction data, collected east of Thetis Deep, velocities of 6.6-6.9 km s- 1 of a deep refracting layer, which are similar to measured velocities of unaltered gabbro samples, extend outside the deep to 65 km from the axis. The new version of the marine gravity field reveals trends crossing the central Red Sea. Whereas some of them connect with major lineaments in the surrounding African-Arabian shield, those around Thetis Deep die out towards the coastlines. They can be paired across the ridge and lie slightly oblique to plate motions, as is typical of oceanic fracture zones or non-transform discontinuities migrating away from hotspots. Taken together these observations support the view that an oceanic rather than extended continental crust underlies this part of the central Red Sea. The crestal mountains around the median valleys of slow-spreading ridges are typically 500-1000 m lower at spreading discontinuities. Around Thetis Deep, the similar pattern in the gravity field to those of slow-spreading ridges suggests that the crestal mountains may variably block or impede flowage of evaporites towards the spreading centre, whereas the discontinuities may mark areas where flowage is unobstructed. Limited multibeam data collected in transits outside Thetis Deep show oblique fabrics as expected from these predicted movements.



    Sugathan P; Martin Abhay


    Crusted scabies is rare. It is a therapeutic challenge, as the common drugs used against scabies are unsatisfactory. The successful use of galenicals in a 10-year-old girl with crusted scabies is reported.

  8. Galenicals in the treatment of crusted scabies

    Directory of Open Access Journals (Sweden)

    Sugathan P


    Full Text Available Crusted scabies is rare. It is a therapeutic challenge, as the common drugs used against scabies are unsatisfactory. The successful use of galenicals in a 10-year-old girl with crusted scabies is reported.

  9. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling orogen, central China (United States)

    Qin, Zhengwei; Wu, Yuanbao; Siebel, Wolfgang; Gao, Shan; Wang, Hao; Abdallsamed, Mohammed. I. M.; Zhang, Wenxiang; Yang, Saihong


    Adakitic rocks are often considered as a key to deciphering the genesis of Archean TTGs and the early crustal growth. Granites from the Huichizi pluton in the North Qinling (NQ) unit have high Sr/Y and (La/Yb)N ratios similar to adakites. Their relatively high SiO2, K2O, and Na2O and very low MgO, Cr, and Ni contents are in the range of high-SiO2 adakites and early Archean TTGs and are compositionally similar to experimental melts derived from metabasalt sources. New SIMS zircon U-Pb dating constrains the emplacement age of the Huichizi pluton at 422 ± 5 Ma. Rock samples from the Huichizi pluton have ?Nd(t) and zircon ?Hf(t) values similar to the Neoproterozoic metabasalts in the NQ unit. In combination with their normal mantle-like ?18Ozir values, these adakites are best explained by partial melting of the Neoproterozoic mafic crustal root due to subduction of the Shangdan ocean. Regional geological data suggest that the crust was probably thickened by a ca. 490 Ma arc-collision process prior to the emplacement of the Huichizi pluton. Our results confirm that underplating of mafic magma and its subsequent fusion triggered by slab subduction under high pressure conditions could be an important mechanism for the formation of early continental crust.

  10. Seasonal Methane Oxidation Potential in Manure Crusts


    Nielsen, Daniel A.; Schramm, Andreas; Nielsen, Lars P.; Revsbech, Niels P.


    Organic crusts on liquid manure storage tanks harbor ammonia- and nitrite-resistant methane oxidizers and may significantly reduce methane emissions. Methane oxidation potential (0.6 mol CH4 m−2 day−1) peaked during fall and winter, after 4 months of crust development. Consequences for methane mitigation potential of crusts are discussed.

  11. Origin of the Martian Crust and Mantle (United States)

    Hess, P. C.


    The existence of a planet-wide early magma ocean on Mars is supported by a growing base of petrochemical and geophysical observations 1) The parent liquids to the SNC meteorites are significantly depleted in Al2O3 and CaO relative to terrestrial basalts. Only terrestrial komatiites, the products of more than 30% melting of the Archean mantle and boninites, wet melts of the mantle wedge in island arc regions, have similar low Al2O3 and CaO contents. Mare basalts and picrite glasses on the Moon have similar geochemical depletions, and the major element compositions of very low Ti mare basalts bear a striking resemblance to the Shergotty parent magmas. What these terrestrial and lunar magmas have in common is that the parent magmas last equilibrated with a mantle severely depleted in magmaphile elements. The boninites and mare basalts, in particular, last coexisted with a mantle residue of olivine and orthopyroxene. In the lunar case the mantle was a product of crystallization from a magma ocean whereas the harzburgite parent mantle for boninites was a residuum to previous melting events that eliminated diopside from the mantle. 2) W-182 and Nd-142 anomalies date the fractionation of the core and mantle, respectively, within about 50- 100 million years of the origin of the solar system. The large heavily crated Martian crust and the absence of large scale recycling suggests strongly that the crust was also a product of this ancient global differentiation and has experienced only modest volcanic activity, particularly in the southern hemisphere, in subsequent epochs. Whole rock Rb-Sr systematics appear to record this planet wide differentiation at about 4.5 Ga 3) The Nd-143 composition of the Martian mantle is significantly more depleted than the terrestrial mantle and even the cumulate source regions of mare basalts on the Moon. Only Archean lithosphere on earth has the extreme positive and negative epsilon values so characteristic of the Martian mantle. Continental lithosphere, by definition, is stable and has withstood the homogenizing effects of mantle convection. The extreme epsilon values reflect ancient depletion events and subsequent metasomatic perturbations. The data is consistent with the early differentiation of a Martian magma ocean producing a buoyant crust, dense core and a complementary stratified cumulate mantle. The stratified cumulate is likely to be gravitationally unstable, at least, in the shallowmost stratigraphic levels where more iron-rich cumulates overlie dense magnesian cumulates. Under these unstable conditions, solid state differentiation would have carried dense, iron-rich and relatively cool cumulates into the Martian interior ultimately resulting in a lower mantle that is denser and compositional more evolved than the upper mantle. This lower mantle would also contain varying amounts of heat producing radioactive elements.

  12. The tectonic structure of the Song Ma fault zone, Vietnam (United States)

    Wen, Strong; Yeh, Yu-Lien; Tang, Chi-Cha; Phong, Lai Hop; Toan, Dinh Van; Chang, Wen-Yen; Chen, Chau-Huei


    Indochina area is a tectonic active region where creates complex topographies and tectonic structures. In particular, the Song Ma fault zone plays an important role in understanding the mechanism and revolution of the collision between the Indian plate and Eurasian plate. In order to have better understanding the seismotectonic structures of the Song Ma fault zone, a three-year project is proposed to study the seismotectonic structures of crust in this region. The main goal of this project is to deploy temporary broad-band seismic stations around/near the shear zone to record high quality microearthquakes. By using the data recorded by the temporary array and the local seismic network, we are able to conduct seismological studies which include using waveform inversion to obtain precise fault plane solutions of microearthquakes, one-dimensional (1-D) velocity structure of the crust in the region as well as the characteristics of seismogeneric zone. From the results of earthquake relocation and focal mechanisms, we find that the spatial distribution of events occurred in Song Ma fault zone forms in several distinct groups which are well correlated local geological structures and further use to gain insights on tectonic evolution.

  13. Millennium Ecosystem Assessment: MA Scenarios (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Scenarios provide useful insight into the complex factors that drive ecosystem change, estimating the magnitude of regional...

  14. Millennium Ecosystem Assessment: MA Scenarios (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Scenarios provide useful insight into the complex factors that drive ecosystem change, estimating the magnitude of regional...

  15. Physics of the earth crust

    International Nuclear Information System (INIS)

    This book deals in 12 chapters, amongst other things, with the subjects: Structure of the crust and the upper earth mantle, geology and geophysics of sea beds, satellite and aero-methods of geophysics, state of the art of geothermal research, geophysical potential fields and their anomalies, applied seismology, electrical methods of geophysics, geophysics in engineering and rock engineering, borehole geophysics, petrophysics, and geochemistry. (RW)

  16. Metamorphism in the Martian crust (United States)

    McSween, Harry Y.; Labotka, Theodore C.; Viviano-Beck, Christina E.


    Compositions of basaltic and ultramafic rocks analyzed by Mars rovers and occurring as Martian meteorites allow predictions of metamorphic mineral assemblages that would form under various thermophysical conditions. Key minerals identified by remote sensing roughly constrain temperatures and pressures in the Martian crust. We use a traditional metamorphic approach (phase diagrams) to assess low-grade/hydrothermal equilibrium assemblages. Basaltic rocks should produce chlorite + actinolite + albite + silica, accompanied by laumontite, pumpellyite, prehnite, or serpentine/talc. Only prehnite-bearing assemblages have been spectrally identified on Mars, although laumontite and pumpellyite have spectra similar to other uncharacterized zeolites and phyllosilicates. Ultramafic rocks are predicted to produce serpentine, talc, and magnesite, all of which have been detected spectrally on Mars. Mineral assemblages in both basaltic and ultramafic rocks constrain fluid compositions to be H2O-rich and CO2-poor. We confirm the hypothesis that low-grade/hydrothermal metamorphism affected the Noachian crust on Mars, which has been excavated in large craters. We estimate the geothermal gradient (>20 °C km-1) required to produce the observed assemblages. This gradient is higher than that estimated from radiogenic heat-producing elements in the crust, suggesting extra heating by regional hydrothermal activity.

  17. Identification of hyper-extended crust east of Davie Ridge in the Mozambique Channel (United States)

    Klimke, Jennifer; Franke, Dieter


    Davie Ridge is a ~1200 km wide, N-S trending bathymetrical high in the Mozambique Channel. Today, it is widely accepted that Davie Ridge is located along a fossil transform fault that was active during the Middle Jurassic and Early Cretaceous (~165-120 Ma). This transform fault results from the breakup of Gondwana, when Madagascar (together with India and Antarctica) drifted from its northerly position in the Gondwana Supercontinent (adjacent to the coasts of Tanzania, Somalia and Kenya) to its present position (e.g. Coffin and Rabinowitz, 1987; Rabinowitz et al., 1983; Segoufin and Patriat, 1980). The southward motion of Madagascar relative to Africa is constrained by the interpretation of magnetic anomalies in the Western Somali Basin, located north of Madagascar (e.g. Rabinowitz et al., 1983). According to Bird (2001), sheared margins share typical characteristics and a common evolution: 1. The transition from continental to oceanic crust is relatively abrupt (~ 50-80 km). 2. Along the continental side of the margin, complex rift basins form that display a wide range of faults. 3. Prominent marginal ridges form along the sheared margin that probably originate from the propagation of the oceanic spreading center along the plate boundary (Bird, 2001). In February and March 2014, a dense geophysical dataset (multichannel seismic, magnetics, gravimetry and bathymetry) with a total of 4300 profile km along the sheared margin was acquired with the R/V Sonne by the Federal Institute for Geosciences and Natural Resources (BGR). A special objective of the project, amongst others, is the characterization and interpretation of the continent-ocean transition seaward of Davie Ridge in the Mozambique Channel. Seismic profiles located east of Davie Ridge in the Western Somali Basin reveal a wide sequence of half-grabens bounded by listric normal faults. We tentatively suggest that this crust is of continental origin and results from rifting between Africa and Madagascar during the breakup of Gondwana. This implies that the continent-ocean transition is located at least ~ 150 km east of Davie Ridge. References Bird, D., 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The Leading Edge, 150-159. Coffin, M. F., und Rabinowitz, P. D., 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, vol. 92, no. B9, 9385-9406. Rabinowitz, P.D., Coffin, M.F. and Falvey, D.A., 1983. The separation of Madagascar and Africa. Science 220, 67-69. Segoufin, J., und Patriat, P., 1980. Existence d'anomalies mesozoiques dans le bassin de Somalie. Implications pour les relations Afrique-Antarctique-Madagascar: C.R. Acad. Sci. Paris, v. 291, p. 85-88.

  18. Opening of the Gulf of Mexico and the Nature of the Crust in the Deep Gulf: New Evidence from Seafloor Spreading Magnetic Anomalies (United States)

    Harry, D. L.; Eskamani, P. K.


    The seafloor spreading history in the Gulf of Mexico is poorly constrained due to a lack of recognized seafloor spreading magnetic anomalies, a paucity of deep penetrating seismic data, and absence of drilling to constrain crystalline ocean floor composition and ages. We have identified lineated magnetic anomalies in the eastern Gulf on profiles collected during the Woods Hole R/V Farnella FRNL85-2 cruise that correlate with magnetic chrons M21R to M10. Forward modeling shows that these anomalies formed during creation of weakly magnetized new seafloor in the eastern Gulf between 149-134 Ma at an average half-spreading rate of 3.2 cm/yr. The oldest anomalies are located against stretched continental crust beneath the western Florida shelf on the east and the Yucatan shelf on the west. The youngest anomalies form a juxtaposed conjugate pair that mark the location of an extinct spreading ridge between Yucatan and Florida. Seismic velocities of the crust in the eastern Gulf and the amplitude of the magnetic anomalies are similar to the Iberian and Newfoundland rifted margins, where the early stages of continental breakup were accommodated by exhumation of subcontinental lithosphere rather than creation of new basaltic oceanic crust. We infer that the eastern Gulf of Mexico is underlain by exhumed sub-continental peridotitic mantle intruded by lesser volumes of basaltic igneous rocks generated by decompression melting of the asthenosphere during the late stages of opening of the Gulf. The long wavelength characteristics of the magnetic and gravity fields in the eastern Gulf, as well as the seismic velocity structure of the crust, differ from those in the central and western Gulf, which are more similar to typical magmatic rifted margins. This suggests that the character of the Gulf changes along strike, from a magmatic western portion to an amagmatic eastern portion. Paleogeographic restoration of the lineated magnetic anomaly pattern suggests a 4-phase model for opening of the Gulf. During phase 1 (Early Permian-Late Triassic), Yucatan and associated tectonic blocks that now comprise eastern Mexico were translated eastward from the Pacific realm into positions near the modern western Gulf. During phase 2 (Late Triassic-ca. 160 Ma) Yucatan and the South Florida block were translated southeastward relative to North America, rotating 6.7? counterclockwise about a pole located at 34?N, 74?W. This resulted in ca. 430 km of southeastward extension on the North American coastal plain, 120 km of southward extension on the northern Yucatan shelf, and displacement of the South Florida Block from a pre-rift position on the northwest Florida shelf to its modern position. During phase 3 (ca. 160-149 Ma), Yucatan rotated counterclockwise 46? relative to North America about a pole located at 27.6?N, 84.0?W. Phase 3 may have coincided with seafloor spreading in the central and western Gulf, but predated seafloor spreading in the eastern Gulf. During phase 4 (149-134 Ma), Yucatan moved southwestward relative to North America, rotating counterclockwise 2.2? about a pole located at 17.6?N, 74.2?W and completing opening of the Gulf.

  19. The tectonic transition from oceanic subduction to continental subduction: Zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet (United States)

    Zhang, Long; Chen, Ren-Xu; Zheng, Yong-Fei; Li, Wan-Cai; Hu, Zhaochu; Yang, Yueheng; Tang, Haolan


    In the plate tectonics theory, continental subduction is pulled by subduction of dense oceanic crust. In practice, however, it is not easy to demonstrate that preceding oceanic crust exposes as oceanic-type eclogite together with continental-type eclogite in collisional orogens. The North Qaidam orogen in northern Tibet is an ultrahigh-pressure (UHP) metamorphic belt that contains the two types of eclogites, providing us with an excellent opportunity to study the tectonic transition from oceanic subduction to continental subduction. In order to constrain the protolith nature and metamorphic evolution of eclogites, we performed a combined study of zircon U-Pb ages, trace elements, mineral inclusions and O-Hf isotopes for various eclogites from the orogen. We discriminate the two types of eclogites by their differences in zircon U-Pb ages and O-Hf isotopes. CL-dark zircon domains exhibit high Th/U ratios, steep HREE patterns and significantly negative Eu anomalies, indicating that they are protolith zircons of magmatic origin with different extents of metamorphic recrystallization. Relict magmatic zircon domains in Type I eclogites yield Neoproterozoic protolith ages of > 830 Ma and Hf model ages of 850-1100 Ma, whereas those in Type II eclogites yield Cambrian protolith U-Pb ages of > 489 Ma and Hf model ages of 500-650 Ma. Most of the CL-bright zircon domains show low Th/U ratios, flat HREE patterns and no negative Eu anomalies, and contain mineral inclusions of garnet, omphacite and rutile, indicating their growth under eclogite-facies metamorphic conditions. These metamorphic domains have consistent eclogite-facies metamorphic ages of 433-440 Ma throughout the North Qaidam orogen, regardless of the eclogite types and locations. The metamorphic zircon domains in Type I eclogites mostly exhibit ?18O values higher than normal mantle values, whereas Type II eclogites mostly have ?18O values lower than the normal mantle values. The difference in the ?18O values indicates that their protoliths underwent different temperatures of hydrothermal alteration at different tectonic settings. Combining zircon U-Pb ages and O-Hf isotope compositions with local tectonics, it is inferred that Type I eclogites were metamorphosed from Neoproterozoic continental mafic rocks, whereas Type II eclogites were metamorphosed from oceanic mafic rocks that were subducted prior to the continental subduction. The consistent eclogite-facies metamorphic ages for the two types of eclogites indicate that the exhumed oceanic-type eclogite was detached from the subducted oceanic crust and then entrained by the exhuming continental crust. Therefore, the coexistence of oceanic- and continental-type eclogites in the North Qaidam orogen demonstrates the tectonic transition from oceanic subduction to continental collision in the early Paleozoic.

  20. Ductile extensional shear zones in the lower crust of a passive margin (United States)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude


    We describe and interpret an unpublished set of ION Geophysical seismic reflection profile showing strong organized seismic reflectors at the base of the continental crust of the Uruguayan volcanic rifted margin. We distinguish two main groups of reflectors in the lowermost continental crust. A first group, at depths ranging from 32 km below the continent to 16 km in the continent-ocean transition, comprises reflectors continuous over tens of kilometers, peculiarly visible near the mantle-crust boundary. A second group of reflectors dipping toward the ESE (oceanward) is widely distributed in the lower crust. These reflectors are slightly curved and tend to merge and become sub-parallel with the first group of reflectors. Together they draw the pattern of thick shallow-dipping top-to-the continent shear zones affecting the lower continental crust. Such sense of shear is also consistent with the continentward dip of the normal faults that control the deposition of the thick syn-tectonic volcanic formations (SDR). A major portion of the continental crust behaved in a ductile manner and recorded a component of top-to-the continent penetrative simple shear during rifting indicative of a lateral movement between the upper crust and the mantle.

  1. Archean Arctic continental crust fingerprints revealing by zircons from Alpha Ridge bottom rocks (United States)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Shevchenko, Sergey; Presnyakov, Sergey; Antonov, Anton; Belyatsky, Boris


    Whereas thick Cenozoic sedimentary cover overlapping bedrock of the Arctic Ocean, some tectonic windows were sampled by scientific submarine manipulator, as well as by grabbing, dredging and drilling during «Arctic-2012» Russian High-Arctic expedition (21 thousands samples in total, from 400-km profile along Alpha-Mendeleev Ridges). Among others, on the western slope of Alpha Ridge one 10x10 cm fragment without any tracks of glacial transportation of fine-layered migmatitic-gneiss with prominent quartz veinlets was studied. Its mineral (47.5 vol.% plagioclase + 29.6% quartz + 16.6% biotite + 6.1% orthoclase) and chemical composition (SiO2:68.2, Al2O3:14.9, Fe2O3:4.44, TiO2:0.54, MgO:2.03, CaO:3.13, Na2O:3.23, K2O:2.16%) corresponds to trachydacite vulcanite, deformed and metamorphozed under amphibolite facies. Most zircon grains (>80%) from this sample has an concordant U-Pb age 3450 Ma with Th/U 0.8-1.4 and U content of 100-400 ppm, epsilon Hf from -4 up to 0, and ca 20% - ca 3.3 Ga with Th/U 0.7-1.4 and 90-190 ppm U, epsilon Hf -6.5 to -4.5, while only 2% of the grains show Proterozoic age of ca 1.9 Ga (Th/U: 0.02-0.07, U~500 ppm, epsilon Hf about 0). No younger zircons were revealed at all. We suppose that magmatic zircon crystallized as early as 3450 Ma ago during acid volcanism, the second phase zircon crystallization from partial melt (or by volcanics remelting) under amphibolite facies metamorphism was at 3.3 Ga ago with formation of migmatitie gneisses. Last zircon formation from crustal fluids under low-grade metamorphic conditions was 1.9 Ga ago. There are two principal possibilities for the provenance of this metavolcanic rock. The first one - this is ice-rafted debris deposited by melted glacial iceberg. However, presently there are no temporal and compositional analogues of such rocks in basement geology of peri-oceanic regions, including Archean Itsaq Gneiss Complex, Lewisian Complex and Baltic Shield but these regions are far from the places of nowadays iceberg formation. Moreover, no Grenvillian-age zircons were revealed in studied sample. The nearest areas of Paleo- and Mesoarchean rocks appearance are deeply inland territories like Acasta Gneiss Complex, Uivak Gneisses, the Superior Province, Anabar and Aldan Shields, Northern China craton (Anshan complex), thus, a only possibility to bring some fragments of basement rocks from these areas to oceanic coast is transcontinental river transportation. The second possibility - this gneissic clast has a local provenance and has undergone a submarine weathering, shallow marine avalanche, proximal transportation by alongside ocean flows, tidal waves abrasion, and as so, reflects local bedrock geology, i.e. adjacent Alpha Ridge rock composition. Additional confirmation of this can be seen in a wide distribution of Qu-sandstones with Paleo-Mezoarchean zircons, and finds of similar allochtonous zircons in dolerites along Alpha-Mendeleev Ridge profile. The studied fragment is a unique evidence for the possible existence of Paleoarchean continental crust within the submarine Alpha-Mendeleev Ridge in Arctic Ocean.

  2. Millennium Ecosystem Assessment: MA Population (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Population data sets provide baseline population information as one of the drivers of ecosystem change. The data helped in...

  3. Biogenic crust dynamics on sand dunes


    Kinast, Shai; Meron, Ehud; Yizhaq, Hezi; Ashkenazy, Yosef


    Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power, and fixed vegetated dunes and active dunes a...

  4. Eocene magmatic processes and crustal thickening in southern Tibet: Insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith (United States)

    Wang, Qing; Zhu, Di-Cheng; Cawood, Peter A.; Zhao, Zhi-Dan; Liu, Sheng-Ao; Chung, Sun-Lin; Zhang, Liang-Liang; Liu, Dong; Zheng, Yuan-Chuan; Dai, Jin-Gen


    This study reports zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Sr-Nd-Pb-Hf isotope data for the Dajia pluton, western Gangdese Batholith, in southern Tibet. These data indicate that the pluton consists of moderately (Group 1) and strongly (Group 2) fractionated granites that were emplaced synchronously at ca. 43 Ma. Group 1 samples have SiO2 contents of 69-72 wt.% and vary in terms of the differentiation index (DI = 84-93). These rocks are depleted in Ba, Nb, Sr, P, and Ti, with moderate negative Eu anomalies, and display low heavy rare earth elements (HREEs) and Y abundances. Group 2 samples are characterized by high SiO2 (75-78 wt.%) and DI (95-97); significantly negative Eu anomalies; marked concave-upward middle REE (Gd-Ho) patterns; and Ba, Sr, P, and Ti anomalies that are significantly more negative than those of Group 1 samples. Group 1 samples have whole-rock ?Nd(t) (- 5.9 to - 6.0), ?Hf(t) (- 4.0 to - 4.5), and zircon ?Hf(t) (- 6.0 to + 5.8) values identical to those of Group 2 samples [?Nd(t) = - 5.7 to - 6.7, ?Hf(t) = - 3.5 to - 2.9, and zircon ?Hf(t) = - 2.0 to + 4.2], as well as similar initial Pb isotopic compositions. These data indicate that the two groups were derived from a common source region with garnet as a residual mineral phase. Group 1 samples were most likely derived from partial melting of garnet-bearing amphibolite (rather than eclogite) within the juvenile southern Lhasa crust and mixed with the enriched components from the subducting ancient Indian continental crust and/or the ancient central Lhasa basement. Group 2 samples are interpreted as the products of extensive fractional crystallization (plagioclase, K-feldspar, biotite, apatite, allanite, titanite, monazite, and ilmenite) of the melts represented by Group 1 samples. Low HREEs and Y abundances of the Dajia pluton, together with the presence of strongly fractionated granites (Group 2) identified for the first time in the Gangdese Batholith, indicate that the crust beneath the Dajia region had already been thickened by ca. 43 Ma. High whole-rock zircon saturation temperatures (815 °C-869 °C) of Group 1 samples and the other ca. 43 Ma coeval magmatism documented both in the Gangdese Batholith and in the Tethyan Himalaya can be best interpreted as the final consequences of the magmatic responses to the Neo-Tethyan oceanic slab breakoff.

  5. The return of subducted continental crust in Samoan lavas (United States)

    Jackson, Matthew G.; Hart, Stanley R.; Koppers, Anthony A. P.; Staudigel, Hubert; Konter, Jasper; Blusztajn, Jerzy; Kurz, Mark; Russell, Jamie A.


    Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the Earth's surface at hotspots, but the proportion of recycled sediment in the mantle is small, and clear examples of recycled sediment in hotspot lavas are rare. Here we report remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures in Samoan lavas from three dredge locations on the underwater flanks of Savai'i island, Western Samoa. The submarine Savai'i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to the upper continental crust) in the Samoan mantle. Trace-element data show affinities similar to those of the upper continental crust-including exceptionally low Ce/Pb and Nb/U ratios-that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from these Samoan lavas significantly redefines the composition of the EM2 (enriched mantle 2; ref. 9) mantle endmember, and points to the presence of an ancient recycled upper continental crust component in the Samoan mantle plume.

  6. Petrological, geochemical and geochronological evidence for a Neoproterozoic ocean basin recorded in the Marlborough terrane of the northern New England Fold Belt

    International Nuclear Information System (INIS)

    Petrological, geochemical and radiogenic isotopic data on ophiolitic-type rocks from the Marlborough terrane, the largest (?700 km2) ultramafic-mafic rock association in eastern Australia, argue strongly for a sea-floor spreading centre origin. Chromium spinel from partially serpentinised mantle harzburgite record average Cr/(Cr + Al) = 0.4 with associated mafic rocks displaying depleted MORB-like trace-element characteristics. A Sm/Nd isochron defined by whole-rock mafic samples yields a crystallisation age of 562 ± 22 Ma (2?). These rocks are thus amongst the oldest rocks so far identified in the New England Fold Belt and suggest the presence of a late Neoproterozoic ocean basin to the east of the Tasman Line. The next oldest ultramafic rock association dated from the New England Fold Belt is ca 530 Ma and is interpreted as backarc in origin. These data suggest that the New England Fold Belt may have developed on oceanic crust, following an oceanward migration of the subduction zone at ca 540 Ma as recorded by deformation and metamorphism in the Anakie Inlier. Fragments of late Neoproterozoic oceanic lithosphere were accreted during progressive cratonisation of the east Australian margin. Copyright (1999) Geological Society of Australia

  7. Early Formation of Terrestrial Crust (United States)

    Harrison, T. M.; Schmitt, A. K.; McCulloch, M. T.; Lovera, O. M.


    Early (?4.5 Ga) Formation of Terrestrial Crust T.M. Harrison1, A.K. Schmitt1, M.T. McCulloch2, and O.M. Lovera1 1Department of Earth and Space Sciences and IGPP, UCLA, Los Angeles, CA 90095, USA; 2Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 2601 AUSTRALIA Large deviations in ?repsilonHf(T) from bulk silicate Earth seen in >4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at ca. 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/177Hf (Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/206Pb analyses, permitting assessment of the use of ion microprobe data to characterize the age of the volumetrically larger domain sampled by laser drilling. Our new results confirm and extend the earlier observation of significant negative deviations in ?repsilonHf(T) throughout the Hadean, although no positive ?repsilonHf(T) values were documented in this study. These data yields an essentially uniform spectrum of single-stage model ages between 4.54 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. We derived the full error propagation expression for a parameter, ?repsilono, which measures the difference of a sample from solar system initial (Hf) (Hfo), and from this conclude that data plotting close to (Hfo), are statistically meaningful and consistent with silicate differentiation at 4.540±0.006 Ga. ?18O and Ti thermometry for these Hadean zircons show little obvious correlation with initial (Hf), consistent with their derivation through fusion of a broad suite of crustal rock types under near water-saturated conditions. Together with the inclusion assemblage and other isotopic and trace element data obtained from these ancient zircons, our results indicate essentially continuous derivation of crust from the mantle from 4.5 to 4.2 Ga, concurrent with recycling into the mantle and internal crustal re-working. These results represent further evidence that by 4.35 Ga, portions of the crust had taken on continental characteristics.

  8. Composition of the Primary Crust of Mars: Observations of Deeply Excavated Crater Central Peaks (United States)

    Skok, J. R.; Mustard, J. F.; Tornabene, L. L.; Murchie, S. L.


    It is predicted that the primary crust of Mars crystallized from a magma ocean and would be well preserved at depth on a single plate planet but poorly exposed as impacts, volcanism and alteration has reworked the upper crust. In a few select locations, extensive excavation by impact or erosion has exposed unaltered mafic minerals of the Martian crust. The majority of these exposures occur within the uplifted central peaks and peak rings of Southern Highland craters. We examine the mafic compositions of these deeply excavated crustal rocks in an attempt to constrain the composition of the Martian crust and test models of planetary formation. The search for deeply excavated bedrock from HiRISE images is ongoing and has so far resulted in nearly 200 potential locations. Over half of these currently have CRISM spectroscopic observations with ~50 locations having good exposures of crustal rocks showing little to no alteration. It is this combination of deeply excavated minerals that has potential to tap the preserved primary crust of Mars. We focus our analysis on olivine and pyroxene as crustal formation models predict that these two minerals would dominate the modal mineralogy of the crystallizing crust with a garnet layer potentially stable at depth. The high-resolution visible and near-infrared spectroscopic data provided by the CRISM instrument is ideally suited for examining these compositional characteristics. Initial in-depth analysis of the central peak of Alga Crater shows excellent exposures of lithologies characterized by both olivine and pyroxene. The olivine-bearing unit here has a fayalitic composition and a dunite lithology. This ancient Fe-rich olivine is in stark contrast to the Mg-enriched olivine of the primitive mantle of Earth. The primary pyroxene-bearing unit was determined to be a low-calcium, high-Fe enstatite orthopyroxenite, consistent with the mineralogy of the ancient Mars meteorite ALH84001. These observations suggest that the crust crystallized into compositionally homogeneous units in close proximity to allow single impact to sample multiple lithologies. The units are consistent with the late-stage crystallization of a hot magma ocean enriched in Fe. Here we expand the results to all suitable Southern Highland exposures to check regional compositional consistency and examine global trends. Initial results support similar compositions in excavated crust throughout the southern highlands, though the presence of both olivine and pyroxene lithologies are rarely well exposed in the same central peak. Additional analysis will continue to test the emerging hypothesis that the upper primary crust is the direct result of the late stage crystallization of a magma ocean, with no density driven overturn, that results in compositionally segregated fayalite and enstatite rich crust.

  9. The formation of deep basins in High Arctic from metamorphism in continental crust (United States)

    Artyushkov, Eugene; Belyaev, Igor; Chekhovich, Peter; Petrov, Eugene; Poselov, Viktor


    In the East Barents and North Chukchi basins, 16-20 km deep, the crystalline crust is attenuated to 12-18 km (reference profiles 2-AR, 4-AR and 5-AR). P-wave velocities and densities in this layer are characteristic of the oceanic crust. However, the subsidence history in the basins is quite different from that typical of the oceanic crust. In both basins the subsidence continued for several hundred million years and one half of the deposits or more was formed long after the start of the subsidence when cooling of the oceanic plate would be already over. Moreover, the basins are 4-5 km deeper than it could be expected according to the thickness of the crystalline crust above the Moho boundary. In the absence of large free-air gravity anomalies, joint analysis of the gravity and seismic data indicates the existence under the Moho of thick layers of high-density and high-velocity eclogites. As can be seen in high resolution seismic profiles, the intensity of crustal stretching did not exceed 10% in the basins, and their formation can be predominantly attributed to a high-grade metamorphism in the mafic lower part of continental crust. At some episodes, strong increase in the rate of subsidence occurred in the basins. This indicates acceleration of metamorphism catalyzed by infiltration of mantle fluids. A set of the above features, abnormally large depth, long subsidence history with its acceleration at the late stages, and episodes of pronounced acceleration of the subsidence represent characteristic features of some other large hydrocarbon basins, e.g., of the North and South Caspian basins. These features can be used for prospecting new prolific provinces on the Arctic shelf. The Lomonosov ridge, Mendeleev high and the Makarov basin pertain to the same structural type. In the Oligocene they underwent erosion near to sea level with the formation of pronounced unconformity. Then at the end of Oligocene deep-water basins were formed in these regions. Rapid crustal subsidence after a long period of relative stability is atypical of oceanic crust. It can be produced either by intense stretching of continental crust or by a density increase due to metamorphism in this layer. Recent seismic reflection profiles demonstrate only minor stretching of the crystalline basement in the regions. Then metamorphism should be the main cause of formation of deep basins in these regions. This can explain attenuation of crystalline crust and an increase in P-wave velocities in this layer that are typical for many deep basins formed due to intense metamorphism in continental crust.

  10. DTA for superalloy MA6000 and ferritic steel MA956

    International Nuclear Information System (INIS)

    Commercialized mechanically alloyed yttria dispersion strengthened alloys exhibit unusual recrystallisation behavior. In spite of their large stored energy content, they tend to recrystallise temperatures close to melting. The recrystallised microstructure is often very coarse and highly anisotropic, characterized by columnar grains. To investigate the factors behind such strange recrystallisation behavior, DTA (Differential Thermal Analysis) experiments were performed for the measurement of stored energy in the as-deformed condition to oxide dispersion strengthened superalloys commercially designated as MA6000 and MA956. The ODS (Oxide Dispersion Strengthened) MA6000 measured and calculated values of energies suggest that the material in deformed condition is primary recrystallized and subsequent change in microstructure by further heat treatment can be described as secondary recrystallization and attributed to the driving force for that is the energy stored in the material in the form of grain boundaries. Whereas, a much higher stored energy was measured for MA956 and a small part of that appears to be due to grain boundary energy. The highly deformed microstructure in as-received condition and higher energy values suggest that the coarse columnar grain is-the product of primary recrystallisation in MA956. (author)

  11. Propagation of microseisms from the deep ocean to land


    Ying, Yingzi; Bean, Christopher J.; Peter D. Bromirski


    Ocean-generated microseisms are faint Earth vibrations that result from pressure fluctuations at the sea floor generated by the interaction between ocean surface gravity waves, and are continuously recorded as low frequency seismic noise. Here we investigate microseism propagation away from deep-ocean source regions using the spectral element method for an oceanic model that contains realistic northeast Atlantic Ocean irregular-layered structure composed of water, sediment, and upper crust. I...

  12. Himalaya gneiss dome formation, focused radiogenic heating in southern Madagascar, and fertilization of the Neoproterozoic ocean by mantle-derived phosphorus (United States)

    Horton, Forrest Miller

    (I) Geochronology, thermochronology, and structural observations across Gianbul gneiss dome provide insight about the exhumation of middle crust in the India-Asia collision zone: Doming (1) initiated during the early stages of extension; (2) was driven by a positive feedback among dehydration melting, buoyancy, and decompression; and (3) culminated with the injection of anatectic melts into the upper levels of the dome. The dome was subsequently exhumed as part of a footwall block beneath a brittle normal fault. (II) Focused internal heating led to melting, metamorphism, and crustal weakening during the Neoproterozoic continent-continent collision between East and West Gondwana. Numerical models based on chronologic and thermal constraints across southern Madagascar indicate that radioactive decay of thorium was the principal heat source responsible for regional metamorphism at temperatures >900° C in the middle to lower crust. (III) The Neoproterozoic era was punctuated by profound tectonic, evolutionary, and environmental change. Biologic and climatic conditions may have been especially sensitive to fluxes of phosphorus (P) from the weathering of continental crust. Large igneous provinces-containing abundant P and highly susceptible to chemical weathering-occurred regularly during the breakup of the Rodinia supercontinent. An estimated bioavailable P flux to the ocean from the weathering of basalt peaked at ˜720 Ma, immediately prior to rapid biologic diversification and the Sturtian glaciation; I postulate that the burial of organic carbon that resulted from this unprecedented P flux helped facilitate glaciation and triggered the oxidation of the ocean-atmosphere system.

  13. Dry and strong quartz during deformation of the lower crust in the presence of melt


    Menegon, Luca; Nasipuri, Pritam; Stunitz, Holger; Behrens, Harald; Ravna, Erling J Krogh


    Granulite facies migmatitic gneisses from the Seiland Igneous Province (northern Norway) were deformed during deep crustal shearing in the presence of melt, which formed by dehydration melting of biotite. Partial melting and deformation occurred during the intrusion of large gabbroic plutons at the base of the lower crust at 570 to 520 Ma in an intracontinental rift setting. The migmatitic gneisses consist of high-aspect-ratio leucosome-rich domains and a leucosome-poor, restitic domain of qu...

  14. Towards self-consistent modelling of the Martian dichotomy: Coupled models of simultaneous core and crust formation (United States)

    Golabek, Gregor; Keller, Tobias; Gerya, Taras; Zhu, Guizhi; Tackley, Paul


    One of the most striking surface features on Mars is the crustal dichotomy. It is the oldest geological feature on Mars and was formed more than 4.1 Ga ago by either exogenic or endogenic processes (e.g. Keller and Tackley, 2009). In order to find an internal origin of the crustal dichotomy, located within a maximum of 400 Ma of planetary differentiation, the thermal state of the planet resulting from core formation needs to be considered. Additionally, it was suggested that a primordial crust with up to 45 km thickness can be formed already during the Martian core formation (Norman, 1999). We suggest that the sinking of iron diapirs delivered by pre-differentiated impactors induced impact- and shear heating-related temperature anomalies in the mantle that fostered the formation of early Martian crust. Thus, the crustal thickness distribution would largely be a result of planetary core formation, late impact history and the onset of mantle convection. In this study, we examine parameter sets that will likely cause hemispherical asymmetry in both core formation and onset of mantle convection. To test this hypothesis we use numerical models to simulate the formation of the Martian iron core and the resulting mantle convection pattern, while peridotite melting is enabled to track melting caused by shear and radioactive heating.?We perform 2D simulations using the spherical-Cartesian code I2ELVIS (Gerya and Yuen, 2007) for planetary accretion and the spherical code STAGYY (Tackley, 2008) for the consequent onset of mantle convection. We apply a temperature-, stress- and melt-fraction dependent viscoplastic rheology inside a Mars-sized planet. Radioactive and shear heating as well as consumption of latent heat by silicate melting are taken into account. The depth of neutral buoyancy of silicate melt with respect to solid silicates is determined by the difference in compressibility of the liquid and solid phase. To self-consistently simulate the silicate phase changes expected inside a Mars-sized body, we use the thermodynamical database PerpleX (Connolly, 2005). As initial condition for core formation (I2ELVIS), we apply randomly distributed iron diapirs with 75 km radius inside the planet, representing the cores of stochastically distributed impactors. Additionally, we explore the effect of one giant impactor core on the planetary evolution. Results indicate that the presence of a large impactor core induces hemispherically asymmetrical core formation. The amplitude of shear heating anomalies often exceeds the solidus of primitive mantle material and thus, the formation of a considerable amount of silicate melt is observed. The resulting temperature field after core formation is then read into the mantle convection code STAYY. The hemispherical magma ocean induced by one late giant impactor favours a dichotomous crust formation during a few Ma after core formation. Afterwards, the extraction of excess heat produced by the sinking of the giant impactor through the mantle leads to a localized region of massive magmatism, comparable to Tharsis, whereas the rest of the mantle is dominated by a sluggish convection pattern with limited crust formation that prevails during the further evolution of the planet. REFERENCES? Connolly, J.A.D. 2005. EPSL, 236. Gerya, T.V. & Yuen, D.A. 2007. PEPI, 163. Keller, T. & Tackley, P.J. 2009. Icarus, 202. Norman, M.D. 1999. Meteorit. Planet. Sci., 34. Tackley, P.J. 2008. PEPI, 171.

  15. Modelling the volatile and organic content of Enceladus' ocean (United States)

    Sotin, Christophe; Lunine, Jonathan


    A variety of Cassini data on Enceladus suggest that the jets of material spraying out of the south polar region of this Saturnian moon are connected to a regional or global ocean below an icy crust -- an ocean in contact with a rocky core [1, 2, 3]. In this study we construct models of the mineralogical and elemental composition of Enceladus' rocky core so as to predict the abundance of species that may provide more detail on the extent of hydrothermal evolution of the ocean and its interaction with the rocky core. Using equations of state of the relevant material, the models are made consistent with the values of the gravity coefficients [1]. We investigate the amount of organic molecules (amino acids and fatty acids) as well as the amount of 40Ar that could be present in Enceladus' deep ocean and, therefore, in the icy grains expelled into space. Some models show that the conditions in Enceladus rocky core can be very similar to those existing in the Earth's oceanic crust, suggesting that all of Enceladus rocky core would have been leached over the age of the solar system. The amount of 40Ar dissolved in the ocean provides constraints on the amount of K in the building blocks of Enceladus, the amount of leaching of the silicate fraction, and the extent of the ocean. Based on chondritic abundances for K, we have calculated that the total potential of 40Ar is about 5.6x1012 kg. We also investigate the amount of organic material that would have been concentrated in the ocean. The Murchison meteorite contains about 60 ppm of amino acids, mainly glycine [4]. Assuming that all the rocky core has been leached by water, the modelled concentration of amino acids exceeds 150 ppm. Carboxylic acids were detected in the Asuka carbonaceous chondrites in Antarctica with values, for example, of 90 nmol/g of benzoic acid. Assuming this value, about 35 ppm of benzoic acid would be present in Enceladus' ocean. The concentrations are larger if the ocean is not global, but rather limited to the South Pole [1], and assuming that all the leached material is concentrated in the regional ocean (and not partially trapped elsewhere in ice). A future mission to Enceladus could eventually measure these quantities in order to assess the extent of evolution of Enceladus, and the potential presence of the building blocks of life in its ocean. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2014) Science, 344, 78. [2] Porco C. et al. (2014) The Astronomical Journal, 148:45. [3] Hedman M. M. et al. (2013) Nature, 500, 182-184. [4] Sephton M.A. (2002) Nat. Prod. Rep., 19, 292-311.

  16. Biogenic crust dynamics on sand dunes. (United States)

    Kinast, Shai; Meron, Ehud; Yizhaq, Hezi; Ashkenazy, Yosef


    Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in model studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power; and fixed vegetated dunes and active dunes at high wind power. These results suggest a crossover between two different forms of desertification. PMID:23496449

  17. Microphytic crusts: 'topsoil' of the desert (United States)

    Belnap, Jayne


    Deserts throughout the world are the home of microphytic, or cryptogamic, crusts. These crusts are dominated by cyanobacteria, previously called blue-green algae, and also include lichens, mosses, green algae, microfungi and bacteria. They are critical components of desert ecosystems, significantly modifying the surfaces on which they occur. In the cold deserts of the Colorado Plateau (including parts of Utah, Arizona, Colorado, and New Mexico), these crusts are extraordinarily well-developed, and may represent 70-80% of the living ground cover.

  18. Biogenic crust dynamics on sand dunes

    CERN Document Server

    Kinast, Shai; Yizhaq, Hezi; Ashkenazy, Yosef


    Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power, and fixed vegetated dunes and active dunes at high wind power. These results suggest a cross-over between two different forms of desertification.

  19. Ocean Ridges and Oxygen (United States)

    Langmuir, C. H.


    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized material, and oxygen could rise. Once the ocean becomes fully oxidized, a substantial subduction flux operates as a negative feedback. Plate tectonic geochemical cycles may have played a very significant role in the oxygen balance in both the ancient and modern Earth.

  20. Kitoy sillimanite deposit (Eastern Siberia): an example of Neoarchaean-Paleoproterozoic paleoweathering crust (United States)

    Salnikova, Ekaterina; Yakovleva, Sonya; Levitsky, Ivan; Kotov, Alexander; Levitsky, Valery; Reznitsky, Leonid; Anisimova, Irina


    We present the first reliable geochronological data on the age of the Kitoy sillimanite deposit (south-western Siberian craton) composed by andalusite-sillimanite, garnet-sillimanite and essentially sillimanite rocks intercalated with quartzite. These rocks experienced metamorphic reworking under amphibolite facies condition. Geochemical data indicates that hydrolysate clay rocks with kaolin, kaolinite and metalaterite or pyrophyllite have been a protholites of the high-alumina Kitoy rocks. Thus the Kitoy deposit high-alumina schist corresponds to mature paleoweathering crust (laterite and bauxite) with negligible amount of clastic material. U-Pb zircon geochronological investigations were undertaken for leucocratic biotite gneisses directly subjacent productive high-alumina suite as well as for migmatitic orthotektite vein cutting the andalusite-sillimanite rocks. Both samples contain typical magmatic zircon which was dated at 2578+/-16 Ma in the biotite gneisses and at 2483+/-4 Ma in the veined orthotektite. Pb-Pb age of sillimanite from high-alumina rocks is at 2536+/-27 Ma (Levchenkov et al., 2009) that is in good correspondence with our data. Results of our study allow to bracket the formation of the Kitoy deposit in the age interval 2536-2483 Ma and consider the high-alumina rocks of this deposit as example of the ancient paleoweathering crust recognized in the Eastern Siberia.

  1. The hydrothermal power of oceanic lithosphere (United States)

    Grose, C. J.; Afonso, J. C.


    We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (total, significantly higher than previous estimates. This low hydrothermal power estimate originates from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (yielding lower heat flow), and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and convective mantle.

  2. Seismicity, metamorphism and rheology of the lower continental crust (United States)

    Austrheim, HÃ¥kon


    Seismological data document that both normal earthquakes and tremors occur in the lower continental crust. Pseudotachylytes (frictional melts and ultracommunited rocks) have been described from several high grade metamorphic terrains and may be the geological manifestation of this seismicity. The Grenville (c. 930Ma) granulite facies complex (T: 800 °C; P: ≤10kbar) of the Lindås Nappe in the Bergen Arcs, W-Norway underwent a fluid induced partial eclogite (T: 600-650 °C; P: 15-20 kbar) and amphibolite facies metamorphism during the Caledonian (c.400-430 Ma) continent collision. Pseudotachylyte fault and injection veins formed in the dry granulites at or close to the reaction fronts both in the eclogitized (western parts) and the amphibolitized (eastern parts) of the Nappe. They are locally recrystalized with the development of amphibolite and eclogite facies assemblages demonstrating that they formed pre or syn the Caledonian metamorphism. The pseudotachylytes transect lithologies ranging from peridotite to anorthosite and consequently the influence of the seismic energy release on a range of granulite facies minerals including garnet, pyroxenes, olivine, plagioclase, hornblende and scapolite can be observed. The seismic energy released promotes the Caledonian metamorphism and change the petrophysical properties of the lower crust in the following ways: The melting and the ultracommunition of the granulite facies minerals increased the reactive surface area and produce local pathways for fluid. S-rich scapolite, a common mineral in granulities play a key role in this process by releasing S and C to form sulfides and carbonates. Small sulfide grains impregnate the pseudotachylyte veins which may lead to an increased electrical conductivity of the deep crust. The pseudotachylyte veins impose inhomogeneities in the massive rocks through grain size reduction and lead to strain localization with development of amphibolite and eclogite facies shear zones. Formation of eclogite facies breccias where meter size blocks of rotated granulites are enclosed in eclogite may have initiated by the seismic events as indicated by fractures in the relict granulite facies garnet. The seismic events may have been important in large scale transport of fluid required to bring about the metamorphism of the dry granulite facies complex.

  3. Rb–Sr and Sm–Nd isotope systematics and geochemical studies on metavolcanic rocks from Peddavura greenstone belt: Evidence for presence of Mesoarchean continental crust in easternmost part of Dharwar Craton, India

    Indian Academy of Sciences (India)

    M Rajamanickam; S Balakrishnan; R Bhutani


    Linear, north–south trending Peddavura greenstone belt occurs in easternmost part of the Dharwar Craton. It consists of pillowed basalts, basaltic andesites, andesites (BBA) and rhyolites interlayered with ferruginous chert that were formed under submarine condition. Rhyolites were divided into type-I and II based on their REE abundances and HREE fractionation. Rb–Sr and Sm–Nd isotope studies were carried out on the rock types to understand the evolution of the Dharwar Craton. Due to source heterogeneity Sm–Nd isotope system has not yielded any precise age. Rb–Sr whole-rock isochron age of 2551 ± 19 (MSWD = 1.16) Ma for BBA group could represent time of seafloor metamorphism after the formation of basaltic rocks. Magmas representing BBA group of samples do not show evidence for crustal contamination while magmas representing type-II rhyolites had undergone variable extents of assimilation of Mesoarchean continental crust (< 3.3 Ga) as evident from their initial Nd isotope values. Trace element and Nd isotope characteristics of type I rhyolites are consistent with model of generation of their magmas by partial melting of mixed sources consisting of basalt and oceanic sediments with continental crustal components. Thus this study shows evidence for presence of Mesoarchean continental crust in Peddavura area in eastern part of Dharwar Craton.

  4. Methane oxidation in slurry storage surface crusts. (United States)

    Petersen, Søren O; Amon, Barbara; Gattinger, Andreas


    Livestock manure is a significant source of atmospheric methane (CH4), especially during liquid storage. In liquid manure (slurry) storages a surface crust may form naturally, or an artificial surface crust can be established. We investigated whether there is a potential for CH4 oxidation in this environment. Surface crust materials were sampled from experimental storages with cattle slurry (with natural crust) or anaerobically digested cattle slurry (with straw layer) that had been stored with or without a wooden cover. Extracts of surface crust material were incubated with 5.6% CH4 in the headspace, and methanotrophic activity was demonstrated in all four treatments following a 4- to 10-d lag phase. Subsequent incubation of field-moist surface crust material with 350 microL L(-1) CH4 also showed CH4 oxidation, indicating a potential for CH4 removal under practical storage conditions. There was no CH4 oxidation activity during incubation of autoclaved samples. Methane oxidation rates were 0.1 to 0.5 mg kg(-1) organic matter (OM) h(-1), which is comparable with the activity in wetlands and rice paddies. Partial drying increased CH4 oxidation to 0.2 to 1.4 mg kg(-1) OM h(-1), probably as a result of improved diffusivity within the surface crust. Rewetting reversed the stimulation of methanotrophic activity in some treatments, but not in others, possibly due to a decline in CH4 production in anaerobic volumes, or to growth of methanotrophs during incubation. This study presents direct evidence for methanotrophic activity in slurry storages. Measures to ensure crust formation with or without a solid cover appear to be a cost-effective greenhouse gas mitigation option. PMID:15758097

  5. Ma's identity and its application

    Directory of Open Access Journals (Sweden)

    Damian S?ota


    Full Text Available In the paper we distinguish the, so called, Ma's polynomials and we introduce connections of these polynomials with the classic Cauchy polynomials and the Ferrers-Jackson's polynomials. Presented connections enable to receive certain interesting divisibility relations for all these three types of polynomials and some other symmetric polynomials. Application of the discussed identities for determining the limits of quotients of the respective polynomials in two variables are also presented here.

  6. The unstable CO2 feedback cycle on ocean planets


    Kitzmann, D.; Alibert, Y.; Godolt, M; Grenfell, J.L.; Heng, K; Patzer, A. B. C.; Rauer, H.; Stracke, B.; von Paris, P.


    Ocean planets are volatile rich planets, not present in our Solar System, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In o...

  7. The Siquisique basalts and gabbros, Los Algodones, Venezuela: late Cretaceous oceanic plateau formed within the proto-Caribbean plate? (United States)

    Kerr, A. C.; Neill, I.; Urbani, F.; Spikings, R.; Barry, T.; Tarney, J.


    Basalts and gabbros, exposed near Siquisique, Venezuela have previously been interpreted as Jurassic mid-ocean ridge basalts, on the basis of an ammonite found in nearby, but not obviously intercalated, sediments (Bartok, 1985). This, combined with their current tectonic position, well within the continent, and because they accreted before the Cretaceous ‘Great Arc’ of the Caribbean, has led to the Siquisique igneous rocks being widely regarded as Jurassic ‘normal’ mid-ocean ridge basalts and gabbros formed as North and South America rifted apart. We present new geochemical and chronological data which shows that the Siquisique igneous rocks are 95-90Ma and have a chemistry which is more consistent with derivation from a deep mantle plume, than a mid-ocean ridge. It is clear that these basalts represent part of the original ocean floor of the Caribbean, which formed before the tectonic emplacement of the present-day Caribbean from the Pacific. Chemically similar basalts and gabbros at El Copey on Araya Peninsula and Sans Souci in northern Trinidad also accreted to the continental margin of South America before the ‘Great Arc’ of the Caribbean and may well be part of the same intra-Caribbean ‘plume event’. These exposures all indicate that the oceanic crust of the proto-Caribbean, was likely to have consisted (at least in part) of thickened oceanic crust formed by melting of a hot-mantle plume. Although the Siquisique rocks formed at a similar time to the Caribbean-Colombian oceanic plateau they were not derived from the same mantle plume. This supports previous suggestions (Kerr & Tarney, 2005; Snow et al. 2005) that the period around ~90Ma (like that around 120Ma) was marked by a significant upsurge in global plume-related magmatic activity. This activity is likely to have contributed significantly to the major worldwide oceanic anoxia event (OAE2) around the Cenomanian-Turonian boundary (93.4Ma)(Kerr, 1998; Snow et al. 2005). Significantly, this discovery requires a revision of our current understanding of Caribbean plate tectonic evolution. References Bartok, P.E., et al. 1985. The Siquisique Ophiolites, Northern Lara State, Venezuela - a discussion on their Middle Jurassic Ammonites and Tectonic Implications. GSA Bulletin 96, 1050-1055. Kerr, A.C., 1998. Oceanic plateau formation: A cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary. J Geol Soc London 155, 619-626. Kerr, A.C., Tarney, J., 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology 33, 269-272. Snow, L.G. et al. 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography 20, doi. 10.1029/2004PA001093.

  8. Fission track dating of authigenic quartz in red weathering crusts of carbonate rocks in Guizhou province

    International Nuclear Information System (INIS)

    The Cenozoic evolution history of Guizhou Province, which is located on the southeastern flank of the Qinghai-Tibet Plateau, is unclear because of the lack of sedimentation records. The red weathering crusts widespread on the Yunnan-Guizhou Plateau may bear critical information about their evolution history. This work firstly determined the ages of four red weathering crusts in eastern, central and northern Guizhou. The material used in fission track dating is well-crystallized quartz occurring in many in-situ weathering crusts of carbonate rocks. The results showed that the fission track ages of quartz vary over a wide range from 1 Ma to 25 Ma in the four profiles, significantly younger than the ages of Triassic and Cambrian parent rocks. In combination with the regionally geological evolution history during the period from 25 Ma to 1 Ma, the ages of quartz can exclude the possibility that the origin of quartz has nothing to do with primary clastic minerals in parent rocks, authigenesis during diagenesis and hydrothermal precipitation or replacement by volcanic activities. It is deduced that the well-crystallized quartz was precipitated from Si-rich weathering fluids during weathering processes of carbonate rocks. The recorded ages of quartz from the four profiles are consistent with the episodes of planation surfaces on the Qinghai-Tibet Plateau, the stages of red soil in the tropics of South China, the tectonically stable periods in Guizhou, and the ages of weathering in other parts of the world during the Cenozoic era. That is to say, the ages of authigenic quartz dated by the fission track method are well feasible and credible. (authors)

  9. Evolution of the long-wavelength, subduction-driven topography of South America since 150 Ma (United States)

    Flament, N. E.; Gurnis, M.; Williams, S.; Bower, D. J.; Seton, M.; Müller, D.


    Subduction to the west of South America spans 6000 km along strike and has been active for over 250 Myr. The influence of the history of subduction on the geodynamics of South America has been profound, driving mountain building and arc volcanism in the Andean Cordillera. Here, we investigate the long-wavelength changes in the topography of South America associated with subduction and plate motion and their interplay with the lithospheric deformation associated with the opening of the South Atlantic. We pay particular attention to the topographic expression of flat-lying subduction zones. We develop time-dependent geodynamic models of mantle flow and lithosphere deformation to investigate the evolution of South American dynamic and total topography since the late Jurassic (150 Ma). Our models are semi-empirical because the computational cost of fully dynamic, evolutionary models is still prohibitive. We impose the kinematics of global plate reconstructions with deforming continents in forward global mantle convection models with compositionally distinct crust and continental lithosphere embedded within the thermal lithosphere. The shallow thermal structure of subducting slabs is imposed, allowing us to investigate the evolution of dynamic topography around flat slab segments in time-dependent models. Multiple cases are used to investigate how the evolution of South American dynamic topography is influenced by mantle viscosity, the kinematics of the opening of the South Atlantic and alternative scenarios for recent and past flat-slab subduction. We predict that the migration of South America over sinking oceanic lithosphere resulted in continental tilt to the west until ~ 45 Ma, inverting to an eastward tilt thereafter. This first-order result is consistent with the reversal of the drainage of the Amazon River system. We investigate which scenarios of flat-slab subduction since the Eocene are compatible with geological constraints on the evolution of the Solimoes Basin, the Chaco Basin, the Sierras Pampeanas and the Central Patagonian Basin. To broadly constrain mantle viscosity, we compare models to the total subsidence inferred from well data offshore Argentina and Brazil, and to mantle tomography, since the initial and boundary conditions are based on independent plate reconstructions.

  10. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, Alexis S.; Knowles, A. S.; Eldridge, D. L.; Arey, Bruce W.; Dohnalkova, Alice; Webb, Samuel M.; Bailey, B. E.; Tebo, Bradley M.; Staudigel, Hubert


    Unsedimented volcanic rocks exposed on the seafloor at ridge systems and Seamounts host complex, abundant and diverse microbial communities that are relatively cosmopolitan in distribution (Lysnes, Thorseth et al. 2004; Mason, Stingl et al. 2007; Santelli, Orcutt et al. 2008). The most commonly held hypothesis is that the energy released by the hydration, dissolution and oxidative alteration of volcanic glasses in seawater drives the formation of an ocean crust biosphere (Thorseth, Furnes et al. 1992; Fisk, Giovannoni et al. 1998; Furnes and Staudigel 1999). The combined thermodynamically favorable weathering reactions could theoretically support anywhere from 105 to 109 cells/gram of rock depending upon the metabolisms utilized and cellular growth rates and turnover (Bach and Edwards 2003; Santelli, Orcutt et al. 2008). Yet microbially-mediated basalt alteration and energy conservation has not been directly demonstrated on the seafloor. By using synchrotron-based x-ray microprobe mapping, x-ray absorption spectroscopy and high-resolution scanning and transmission electron microscopy observations of young volcanic glasses recovered from the outer flanks of Loihi Seamount, we intended to identify the initial rates and mechanisms of microbial basalt colonization and bioalteration. Instead, here we show that microbial biofilms are intimately associated with ferromanganese crusts precipitating onto basalt surfaces from cold seawater. Thus we hypothesize that microbial communities colonizing seafloor rocks are established and sustained by external inputs of potential energy sources, such as dissolved and particulate Fe(II), Mn(II) and organic matter, rather than rock dissolution.

  11. The magma ocean as an impediment to lunar plate tectonics (United States)

    Warren, Paul H.


    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  12. Boron isotopes in tourmaline from the ca. 3.7-3.8 Ga Isua supracrustal belt, Greenland: Sources for boron in Eoarchean continental crust and seawater (United States)

    Grew, Edward S.; Dymek, Robert F.; De Hoog, Jan C. M.; Harley, Simon L.; Boak, Jeremy; Hazen, Robert M.; Yates, Martin G.


    Boron is highly concentrated in Earth's crust relative to primitive mantle. However, when present-day crustal concentrations were achieved remains debatable. It has been proposed that seawater boron ?11B was lower than at present, consistent with a model relating increase in sea-water ?11B to the proportion of B extracted from Earth's mantle into the oceans and crust. Our in situ ion microprobe analyses of tourmaline in 17 samples from the Eoarchean Isua supracrustal belt, Southwest Greenland, gave the following average ?11B with uncertainties ranging from ±0.4 to ±1.9‰: ?11B = -7.1 to -11.5‰ in amphibolite; ?11B = -10.5 to -25.3‰ in mica schist; ?11B = -19.2‰ in metachert (one sample), and ?11B = -21.9‰ in metaconglomerate (one sample). Tourmaline is largely schorl-dravite, rarely uvite-feruvite, and shows color and compositional zoning. ?11B varies from grain to grain in most samples; grains in a kyanite-staurolite schist are isotopically zoned, possibly because the rims incorporated B released by muscovite breakdown. The patterns in color-zoned tourmaline grains in our samples are not consistent with detrital origin of the cores, which rules out the possibility of there being tourmaline detritus from pre-existing continental crust in the studied samples. The tourmaline-bearing rocks are found in both the ca. 3700 Ma northern and ca. 3800 Ma southern terranes in the Isua supracrustal belt. Following an approach suggested by Chaussidon and Appel, we estimated Eoarchean seawater ?11B by calculating back from ?11B of tourmaline in metasedimentary rocks using fractionation of boron isotopes between clays and muscovite, tourmaline and aqueous fluid. This calculation gave an estimated ?11B ? +14 ± 15‰ for Eoarchean seawater, 25‰ lower than present-day seawater (?11B = +39.5‰). For comparison, an estimate obtained simply by direct comparison of ?11B for Eoarchean and Phanerozoic tourmaline presumed to have crystallized in similar environments gives ?11B ? +30‰ for Eoarchean seawater. At first, our results appear to be contradictory. On the one hand, tourmaline is as widespread and abundant in the Isua supracrustal rocks as it is in many younger complexes, which suggests that extraction of boron from the mantle had reached levels close to present day levels. On the other hand, there is no evidence of boron having been extracted prior to ca. 3800 Ma and a seawater ?11B lower than present-day ?11B = 39.5‰ implies that extraction of B from the mantle had not reached the present-day extent. The proto-arc scenario proposed by A. Nutman and co-authors offers a possible resolution to the contradiction by considering the abundance and isotopic composition of B in the Isua supracrustal rocks as a localized phenomenon that should not be interpreted to reflect B concentrations in an Earth-circling ocean. Accumulation of boron in seawater in a partially isolated basin associated with a proto-arc and the attendant volcanism might have been sufficiently rapid for the needed concentrations to be attained in a relatively short time.

  13. Role of the Deep Mantle in Generating EM-I in Ocean Island Basalts: Insight from the Kerguelen Archipelago (Indian Ocean) (Invited) (United States)

    Weis, D.


    The Kerguelen Plume is responsible for one of the longest (both in length and time) hotspot tracks on Earth, starting at ~120 Ma with the formation of the Rajmahal Traps in India. The tectonic setting evolved from continental break-up at ~120 Ma, to a position above the Southeast Indian Ridge (SEIR) at ~40 Ma, to a purely oceanic environment today. The Cretaceous record of volcanism on the Central and Southern Kerguelen Plateau shows interaction of mantle plume-derived magmas with continental-related material (5000 km-long Ninetyeast Ridge (82-38 Ma) lacks any evidence of such shallow contamination. Upper mantle components (depleted, SEIR-type) participated in the formation of the submarine Northern Kerguelen Plateau (~34 Ma). The Kerguelen Archipelago is covered (>80%) by flood basalts erupted between 30 and 24 Ma. With decreasing age and increasing distance from the SEIR, the compositions evolved from tholeiitic in the northwest, to transitional in the central part of the archipelago, and to alkaline in the Southeast Province. The transition from tholeiitic to mildly alkalic compositions primarily reflects changes in melting conditions (lower extents of partial melting at higher pressures), associated with crust and lithosphere thickening as the distance from the SEIR increased. High-precision Pb-Sr-Nd-Hf isotopic data reveal that the archipelago flood basalts were derived from melting of an enriched component (EM-I) in the plume source, without any trace of continental contamination during eruption. The enriched component dominates the chemistry of the alkalic basalts (25-24 Ma), whereas the older (28-26 Ma) tholeiitic-transitional basalts contain a higher proportion of a depleted-SEIR component. In binary isotope plots, Kerguelen compositions form subparallel trends that are distinctly more enriched than those from Hawaii. Seismic data shows the presence of two large-low-shear-velocity-provinces (LLSVP) in the deep mantle, one centred in the Pacific, the other below Africa. When projected down to the core-mantle boundary (CMB), Kerguelen and Tristan (Atlantic Ocean) are located on the eastern and western edges of the tall steep-sided LLSVP African anomaly, respectively. The other two islands with EM-I signatures, Hawaii and Pitcairn, overlie the edges of the Pacific LLSVP. We infer that these deep zones with velocity anomalies at the CMB are the repositories for enriched components in the mantle that are brought to the surface by strong mantle plumes. Kerguelen and Tristan carry the strongest enriched signature, also referred to as the ';DUPAL anomaly', whereas Pitcairn and Hawaii have a distinct, slightly less pronounced enriched signature. The differences in EM-I compositions indicate that some of the material constituting the LLSVP at the base of the mantle is different in the African and Pacific anomalies. In Hawaii, the EM-I signature can be traced back to at least 5 Ma, whereas in Kerguelen it can be traced back until 34 Ma on the archipelago and Northern Kerguelen Plateau, and until 82 Ma along the Ninetyeast Ridge. This implies that the LLSVPs are long-lived features of the deep mantle; in the case of the African anomaly, on the order of 100 million years.

  14. Implications of regional gravity for state of stress in the earth's crust and upper mantle. (United States)

    McNutt, M.


    Topography is maintained by stress differences within the earth. Depending on the distribution of the stress we classify the support as either local or regional compensation. In general, the stresses implied in a regional compensation scheme are an order of magnitude larger than those corresponding to local isostasy. Gravity anomalies, a measure of the earth's departure from hydrostatic equilibrium, can be used to distinguish between the two compensation mechanisms and thus to estimate the magnitude of deviatoric stress in the crust and upper mantle. Topography created at an ocean ridge crest or in a major contiental orogenic zone appears to be locally compensated. Such features were formed on weak crust incapable of maintaining stress differences much greater than the stress from the applied load. Oceanic volcanoes formed on an already cooled, thickened lithosphere are regionally supported with elastic stresses. -Author

  15. Post-rift km-scale uplift of passive continental margins can be caused by compressive stresses within continental crust (United States)

    Chalmers, J. A.


    Many passive continental margins are flanked by a mountain range up to more than 2 km high (Elevated Passive Continental Margins; EPCMs), e.g. Norway, east and west Greenland, East Brazil, eastern Australia and other margins elsewhere, that have been uplifted long after continental break-up. Explanations for these uplifted margins have been ad hoc, but there has hitherto been no explanation that accounts for their presence at both volcanic and non-volcanic margins and in both polar and tropical climatic environments. A continent breaks up by extension and thinning of the continental crust. Thinning varies from small amounts in the proximal rift to perhaps a factor of 5 or more adjacent to oceanic crust. Continental crust > ca. 25 km thick contains two weak layers, one between strong upper (quartz-rich) and lower (dioritic) crust and the other between strong lower crust and strong mantle. Continental crust data exists, all EPCMs are currently under compression. Continental crust responds to moderate compression stress in two modes; flow in the weak lower crust and by forming gentle buckle-folds with a wavelength of 200-400 km and an amplitude of ca. 0.5 km. Under moderate compression, material in the crust's weak layers starts to flow towards the rift from under the adjacent continent. The lack of weak layers under the thinned, distal rift basin means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material therefore accumulates under the proximal rift, thickening the crust there and lifting it by isostatic response to the thickening. Material flows into the rift until the crust under it is once more as thick as it was prior to extension, but no thicker. This thickened layer extends gradually further and further below the rift, at speeds of a few km per million years, uplifting it and exposing post-rift sediments. At higher stress, buckling may enhance this uplift, and it may be enhanced even more by the isostatic response to the erosion of deep valleys in the rising mountains. Both the thickening and folding continues until there is a reduction in imposed far-field compressive stress, after which the thickened crust 'freezes' in place.

  16. Obama vu de ma banlieue.

    Directory of Open Access Journals (Sweden)

    Olga Stanislawska


    Full Text Available Une petite brocante est organisée tous les jeudis sur une place proche de la Basilique de Saint-Denis. On y vend des livres, des bibelots, des bijoux fantaisies et des masques africains. L’un des vendeurs a visiblement décidé de bénéficier de l’effet Obama. J’ai pris la photo de ma fenêtre, située au dessus de ce marché. J’ai adoré ce stand, mais ce n’est qu’une fois sur l’écran de mon ordinateur que j’ai vu les petites images Banania... ! Si j’avais su, je serais ...

  17. CO 2-depleted fluids from mid-ocean ridge-flank hydrothermal springs (United States)

    Sansone, Francis J.; Mottl, Michael J.; Olson, Eric J.; Wheat, C. Geoffrey; Lilley, Marvin D.


    Hydrothermal spring fluids were collected from Baby Bare, a basement outcrop on the sediment-covered eastern flank of the Juan de Fuca Ridge overlying 3.5 Ma-old crust. These waters are venting at 25°C but have cooled from 64°C within the upper 200-300 m of the upflow zone during their ascent. Unlike ridge-axis hydrothermal vent fluids previously sampled, the total CO 2 content of the endmember spring fluids (0.85 ?mol kg -1) is depleted with respect to bottom seawater. The very low alkalinities (0.43 meq L -1) and high Ca 2+ concentrations (55 mmol kg -1) of endmember spring fluids suggest that the removal of C in the spring fluids is associated with carbonate precipitation in the igneous basement. Assuming that 8-20% of the total ridge-flank heat loss rate of 50 × 10 18 cal yr -1 (6.6 TW) is removed by porewater advecting from the sediment at ?25°C (an upper limit dictated by the global input rate of Mg +2 to the oceans; Mottl and Wheat, 1994), a maximum global carbon sink of 1.0-2.6 × 10 11 mol yr -1 ( 1.2-3.1 Mton-C yr -1) and a maximum global alkalinity sink of 140-340 × 10 9 eq yr -1 are calculated for warm (?25°C) ridge-flank hydrothermal circulation. This carbon flux is only 2-5% of current estimates of subaerial and submarine volcanic CO 2 emissions (˜50 × 10 11 mol yr -1), indicating that hydrothermal alteration of oceanic crust on young mid-ocean ridge flanks at temperatures of a few tens of degrees Celsius is only a relatively minor sink for carbon on a global basis. It is still possible, however, that ridge-flank alteration at lower temperatures (<25°C) is an important component of the global carbon budget.

  18. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models (United States)

    Wells, R.E.


    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath overthrust, dismembered ophiolite derived from adjacent marginal basin crust. ?? 1989.

  19. Hydroacoustic Monitoring of Oceanic Spreading Centers: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Robert P. Dziak


    Full Text Available Mid-ocean ridge volcanism and extensional faulting are the fundamental processes that lead to the creation and rifting of oceanic crust, yet these events go largely undetected in the deep ocean. Currently, the only means available to observe seafloor-spreading events in real time is via the remote detection of the seismicity generated during faulting or intrusion of magma into brittle oceanic crust. Hydrophones moored in the ocean provide an effective means for detecting these small-magnitude earthquakes, and the use of this technology during the last two decades has facilitated the real-time detection of mid-ocean ridge seafloor eruptions and confirmation of subseafloor microbial ecosystems. As technology evolves and mid-ocean ridge studies move into a new era, we anticipate an expanding network of seismo-acoustic sensors integrated into seafloor fiber-optic cabled observatories, satellite-telemetered surface buoys, and autonomous vehicle platforms.

  20. Nuclei in Strongly Magnetised Neutron Star Crusts

    CERN Document Server

    Nandi, Rana


    We discuss the ground state properties of matter in outer and inner crusts of neutron stars under the influence of strong magnetic fields. In particular, we demonstrate the effects of Landau quantization of electrons on compositions of neutron star crusts. First we revisit the sequence of nuclei and the equation of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS) model in the presence of strong magnetic fields and most recent versions of the theoretical and experimental nuclear mass tables. Next we deal with nuclei in the inner crust. Nuclei which are arranged in a lattice, are immersed in a nucleonic gas as well as a uniform background of electrons in the inner crust. The Wigner-Seitz approximation is adopted in this calculation and each lattice volume is replaced by a spherical cell. The coexistence of two phases of nuclear matter - liquid and gas, is considered in this case. We obtain the equilibrium nucleus corresponding to each baryon density by minimizing the free energy of the c...

  1. RHUM-RUM investigates La Réunion mantle plume from crust to core (United States)

    Sigloch, Karin; Barruol, Guilhem


    RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group ( * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.

  2. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean

    Indian Academy of Sciences (India)

    K S Krishna; J M Bull; O Ishizuka; R A Scrutton; S Jaishankar; V K Banakar


    The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80–73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80–73 Ma, close to the India–Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6–13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25–35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85°E Ridge appear to be unrelated as they were formed by different mantle sources, and that the proximity of the southern end of the 85°E Ridge to the ANS is coincidental.

  3. Early Cretaceous intra-oceanic rifting in the Proto-Indian Ocean recorded in the Masirah Ophiolite, Sultanate of Oman


    Marquer, Didier; Mercolli, Ivan; Peters, Tjerk


    The Masirah Ophiolite (Sultanate of Oman) was part of an oceanic basin (Proto-Indian Ocean) formed by the break-up of Gondwana in Late Jurassic times similar to the Somali basin. It was obducted onto the Arabian continental margin in the Early Paleocene, 100 Ma after its formation. Hence, it is possible to investigate the different tectonic and magmatic processes that have affected the oceanic lithosphere during these 100 Ma. Tithonian ridge magmatism, tectonism and hydrothermal alteration ar...

  4. Elemental composition of the Martian crust. (United States)

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B


    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars. PMID:19423810

  5. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.


    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  6. The Subduction of Continental Crust, the Variscan Evolution of the Bohemian Massif, and the Origin of PO Granitoids (United States)

    Brueckner, H. K.


    Slices of continental crust subducted into the mantle during collisional orogeny may either undergo metamorphism and exhumation towards the surface as coherent slab-like or domal high pressure/ultrahigh pressure (HP/UHP) terranes or, if stalled or delayed in the mantle, melt and return towards the surface as magmas, or undergo a combination of exhumation and melting. Some exhumed HP/UHP terranes contain synorogenic granitoid bodies demonstrating melting does occur during exhumation. Therefore, crust that remains trapped in the mantle will also melt when temperatures reach the appropriate solidi through adiabatic decompression and/or conductive heating and/or radioactive decay. Subducted terranes with hydrous phases will undergo hydrate-breakdown melting and could melt during subduction, when stalled in the mantle or during exhumation. Terranes lacking hydrous phases probably require melting by adiabatic decompression as heated crust becomes ductile and rises as diapirs through the mantle wedge. The generated magmas will intrude through the overlying mantle wedge and into the overlying continental crust to form late orogenic and post orogenic (PO) granitoids depending on the time required to reach solidus temperatures. Geochemical characteristics will depend on P-T conditions, the age/chemistry/mineralogy of the subducted terrane (especially the presence or lack of hydrous phases), and the degree of melt interaction (i.e. the traverse length) with the mantle wedge. Melts that significantly traverse the wedge will acquire the hybrid mantle/crust nature of many PO granitoids. Melts generated by adiabatic decompression close to or within the continental crust will retain ancient crustal signatures. The Variscan evolution of the Bohemian Massif involved two episodes of subduction of continental crust: (1), the southward (present coordinates) subduction of Saxo-Thuringia beneath Bohemia (aka Tapla-Barrandia) along an east-west suture at 400-370 Ma followed by, (2), the east-northeast subduction of Moldanubia beneath Bohemia at 340-320 Ma1. The first subduction was followed by the intrusion of granitoids, including the Central Bohemian Batholith, between 370-340 Ma, all occurring south of the Saxo-Thuringian - Bohemia suture suggesting elements of the subducted Saxo-Thuringian continental crust melted and intruded the overlying Bohemian Craton. The second subduction event was accompanied and followed by multiple intrusions of granites (340 Ma synorogenic granitoids, 340-310 Ma post-orogenic S and high-K granitoids, and 310-290 I-type granitoids2) all occurring west of the of the Moldanubia-Bohemia suture suggesting elements of the subducted Moldanubian crust were melted and intruded the overlying Bohemian/Saxo-Thuringian Craton. Many of the HP/UHP terranes in the Bohemian Massif occur in domal structures suggesting exhumation and melting occurred in part by diapiric upwelling3. It is proposed that both the Saxo-Thuringian and Moldanubian terranes were exhumed by a combination of slab-return and diapiric upwelling and that elements of both terranes were stranded long enough in the mantle to heat up and melt to form most or all of the PO granitoids of the Bohemian Massif. This model involves successive re-distillation of the continental crust and may play a significant role in the evolution of both the continental crust and upper mantle. 1Medaris et al., 2005, Lithos 82. 2Finger et al., 1997, Min & Pet 61. 3Stípská et a., 04, J. Met. Geol. 22.

  7. Resonant Shattering of Neutron Star Crusts


    Tsang, D.; Read, J. S.; Hinderer, T; Piro, A. L.; Bondarescu, R.


    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (sGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10^46-10^47 erg of energy seconds before the merger of a NS-NS or NS-black hole binary. Such properties are consistent with Swift/BAT detections of sGRB precursors, and we use the timing of the observed precursors to place weak constraints...

  8. Cost synergies in M&A


    Nowak, Daniel; Nyman, Robert,


    Background: Today, M&A carried out by European companies stands for a significant share of the total M&A (Gaughan, 2002). One example, is the M&A between two of Europe’s superior truck manufacturers, MAN and Scania. In fact, M&A with Swedish companies have reached a level, close to all time high, during the year of 2006. However, it still prevails an ambiguity whether M&A are followed by success or by failure. An explanation is synergies in general and cost synergies in pa...

  9. Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans (United States)

    Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P.


    A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ?? 0.25 and ??205Tl = -1.7 ?? 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (??205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ??205Tl value that is indistinguishable from estimates for the Earth's mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases. Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ??205Tl value of the oceans at ???55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ??205Tl value of seawater is best explained if the oceans of the early Cenozoic featured significantly larger Tl output fluxes to oxic pelagic sediments, whilst the sink fluxes to altered ocean crust remained approximately constant. ?? 2009 Elsevier Ltd.

  10. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China: Partial melting of the juvenile lower crust in intra-plate extensional environment (United States)

    Li, Zhen-Zhen; Qin, Ke-Zhang; Li, Guang-Ming; Ishihara, Shunso; Jin, Lu-Ying; Song, Guo-Xue; Meng, Zhao-Jun


    The Chalukou porphyry Mo deposit (2.46 Mt @ 0.087% Mo), located in the northern Great Xing'an Range, NE China, is the largest Mo deposit discovered in China so far. The host rocks consist of aplite porphyry, granite porphyry and quartz porphyry, and are intruded into Lower Ordovician intermediate-felsic volcanic-sedimentary rocks and pre-ore monzogranite and are cut by post-ore feldspar porphyry, diorite porphyry and quartz monzonite porphyry. Here, we present the zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data for the pre-ore, syn-ore and post-ore intrusive rocks. The Chalukou ore-forming porphyries intruded during 147-148 Ma and have high-silica, alkali-rich, metaluminous to slightly peraluminous compositions and are oxidized. They are enriched in large ion lithophile elements (e.g. K, Rb, U and Th), light REE and depleted in high-field strength elements (e.g. Nb, P and Ti). Depletions in Eu, Ba, Sr, Nb, Ta, P and Ti suggest that they have experienced strong fractional crystallization of plagioclase, biotite, hornblende and accessory minerals. The pre-ore monzogranite (~ 172 Ma) also belongs to the high-K calc-alkaline series. Highly fractionated REE patterns ((La/Yb) N = 19.6-21.7), high values of Sr/Y (54-69) and La/Yb (29-32), are adakite-like geochemical features. The post-ore rocks (~ 141-128 Ma) have similar geochemical characteristics with ore-forming porphyries except that quartz monzonite porphyry shows no Ba-Sr negative anomaly. All intrusive rocks have relative low initial 87Sr/86Sr (0.705413-0.707889) and εNd (t) values (- 1.28 to + 0.92), positive εHf (t) values (+ 2.4 to + 10.1) and young two-stage Nd and Hf model ages (TDM2 (Nd) = 863-977 Ma, TDM2 (Hf) = 552-976 Ma). These geochemical and isotopic data are interpreted to demonstrate that the ore-forming porphyries formed by partial melting of the juvenile lower crust caused by underplating of mafic magmas in an intra-plate extensional setting. The pre-ore monzogranite formed by partial melting of thickened lower crust in a collisional setting caused by closure of Mongol-Okhotsk Ocean. The post-ore feldspar porphyry shares a similar magma source with ore-forming porphyry, but the quartz monzonite porphyry has a relatively deeper magma source region and has not experienced as much fractional crystallization. The transformation from middle Jurassic compression to late Jurassic extension created favorable conditions for the generation and emplacement of the ore-forming magma. The juvenile lower crust provided the main source of molybdenum for Chalukou deposit. Enrichment of Mo by fractional crystallization played an important role in concentrating Mo during formation of the Chalukou Mo deposit. The age (~ 147 Ma), high fluorine, and associated Pb-Zn deposits are all different from other major porphyry Mo deposits in NE China; Chalukou is a new mineral deposit type in the Great Xing'an Range.

  11. A relatively reduced Hadean continental crust (United States)

    Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno


    Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary processes such as metamorphism, weathering and erosion. Thus, zircons in granites of shallow crust may record the chemical/isotopic composition of the deep crust that is otherwise inaccessible, and offer robust records of the magmatic and crust-forming events preserved in the continental crust. In fact, due to the absence of suitable rock records (in particular for periods older than ~4.0 Ga), studies in recent years concerning the nature, composition, growth and evolution of the continental crust, and especially the Hadean crust, have heavily relied on inherited/detrital zircons. Natural igneous zircons incorporate rare-earth elements (REE) and other trace elements in their structure at concentrations controlled by the temperature, pressure, fO2 and composition of their crystallization environment. Petrological observations and recent experiments have shown that the concentration of Ce relative to other REE in igneous zircons can be used to constrain the fO2 during their growth. By combining available trace-elements data of igneous zircons of crustal origin, we show that the Hadean continental crust was significantly more reduced than its modern counterpart and experienced progressive oxidation till ~3.6 billions years ago. We suggest that the increase in the oxidation state of the Hadean continental crust is related to the progressive decline in the intensity of meteorite impacts during the late veneer. Impacts of carbon- and hydrogen-rich materials during the formation of Hadean granitic crust must have favoured strongly reduced magmatism. The conjunction of cold, wet and reduced granitic magmatism during the Hadean implies the degassing of methane and water. When impacts ended, magma produced by normal decompression melting of the mantle imparted more oxidizing conditions to erupted lavas and the related crust.

  12. 33 CFR 80.135 - Hull, MA to Race Point, MA. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull, MA to Race Point, MA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.135 Hull, MA to Race Point, MA. (a... position latitude 42°16.7? N., longitude 70°52.6? W., to Race Point on Cape Cod. (b) A line drawn...

  13. Central Andean Giant Ore Deposits: Links to Forearc Subduction Erosion, Shallowing Subduction and Thickening Crust (United States)

    Kay, S. M.; Mpodozis, C.


    An outstanding question on the Central Andean margin is the relationship between tectonic processes like ebbing arc volcanism, shallowing of the subducting slab and crustal thickening, and the origin of giant porphyry and epithermal Cu, Au and Ag deposits. Another potentially important factor in forming these major mineral deposits is forearc subduction erosion, which is postulated to have removed up to ~250 km of Central Andean forearc crust since the Jurassic. Geochemical and geophysical studies provide insights into possible links. Evidence for partial melts of removed and subducted forearc crust reaching the arc magma source and thus the magmas that host the ore deposits comes from the chemistry of late Neogene volcanic rocks on both the northern and southern margin of the Chilean-Pampean flat-slab (28°-33°S), where the frontal arc was displaced ~50 km into the foreland between ~10 and 3 Ma. This chemical evidence consists of transient ultra-steep REE patterns, elevated Mg, Cr and Ni contents and steps in isotopic ratios that are particularly notable in the glassy adakitic 8-3 Ma (Pircas Negras) andesites on the northern flat-slab margin at 27°-28°S. Well constrained reconstructions of the margin near 26-28°S that assume a sustained 300 km wide arc-trench gap and ~50 km of forearc removal suggest an accelerated average forearc subduction erosion rate over 150 km3/my/km between 8 and 3 Ma. Noting that the late Miocene arc is now at least ~ 260 km from the trench from 26°S to 34°S and that the active arc extrapolates through the amagmatic flat-slab region (28°-33°S) at 300 km from the trench, accelerated forearc removal could be inferred from ~34°S to 26°S at ~10 to 3 Ma. Geophysical evidence for forearc crust entering the mantle wedge as the flatslab shallowed could come from low Vp/Vs seismic ratios in the mantle wedge under the flatslab, which Wagner et al. (2010) attribute to orthopyroxene. Formation of this orthopyroxene could be explained by forearc crust reacting with the mantle wedge. Thus, the slab shallowing, crustal thickening and forearc subduction erosion in the flatslab region, which began at ca 20-18 Ma and accelerated after 11-10 Ma could have set the stage for the formation of the Los Pelambres, Rio Blanco and El Teniente giant Cu porphyries between ~ 11-4 Ma. The backarc 8-6 Ma Bajo de la Alumbrera Cu-Au district near 27°S, also formed east of the migrating volcanic arc on the northern flatslab margin at this time. This deposit is notable for now being above a high Qp mantle seismic anomaly overlying the slab, which is at a depth of ~150 km. Elsewhere, Ag-Zn mineralization in the ~14-12 Ma Potosi district near 19.5°S in the Altiplano backarc, which has been suggested to have occurred in the early stages of steepening of a shallow slab, would potentially predate flushing of eroded forearc material from an expanding mantle wedge. In the same vein, a lack of known big Cu-Au-Ag deposits associated with the late Neogene giant plateau ignimbrite complexes, considered to be fomed over steepening subduction zones characterized by low Vp and Vs and high Qp tomographic seismic anomalies, could also partially reflect loss of forearc subducted components from an expanding wedge.

  14. The atypical Caribbean-Colombia oceanic plateau and its role in the deformation of the Northern Andes (United States)

    Ferrari, L.; Lopez-Martinez, M.; Petrone, C. M.; Serrano, L.


    The Late Cretaceous to Early Tertiary tectono-magmatic evolution of the Northern Andes has been strongly influenced by the dextral oblique interaction of the Caribbean-Colombian oceanic plateau (CCOP) with northwestern South America. This complex interaction has resulted in several pulses of transpressional deformation and crustal accretion to the South America plate but also in a widespread deformation in the plateau itself. In this peculiar type of orogeny one of the factors controlling the deformation is the crustal structure and thus the rheological profiles of the two lithospheric sections that interact. The genesis of the CCOP has been traditionally associated to the melting of the Galapagos plume head when it impacted the Farallon plate, which is supposed to have built an unsubductable and thick crustal section. This interpretation was based on the apparent clustering of ages at ~91-89 Ma for several obducted fragments of the CCOP in northwestern South America and in the Caribbean islands. However, seismic profiles show that magmatism added a very variable amount but no more than 10 km of igneous material to the original crust of the Farallon plate, making the CCOP much more irregular than other oceanic plateaus. Recent studies of key areas of the obducted part of the CCOP contradict the notion that the plateau formed by melting of a plume head at ~ 90 Ma. Particularly, new geochronologic data and petrologic modeling from the small Gorgona Island document a magmatic activity spanning the whole Late Cretaceous (98.7±7.7 to 64.4±5 Ma) and a progressive increase in the degree of melting and melt extraction with time. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, are also recognized in other areas of the CCOP, documenting a long period of igneous activity with peaks at 74-76, 80-82, and 88-90 Ma in decreasing order of importance. Even older, Early Cretaceous ages, have been reported for fragments in Costa Rica and Curaçao. A prolonged period of igneous activity over several tens of Ma is not consistent with a short, voluminous outburst of magmatism from a plume head at ~91-89 Ma and the geographic distribution of ages does not point to a definite pattern of migration as it would be expected if magmatism would be the result of the passage of the Farallon plate over a stationary, or slowly moving, hotspot. However, the age span of this magmatism is broadly concurrent with the existence of the Caribbean slab window, formed by the intersection of the proto- Caribbean spreading ridge with the Great Caribbean Arc. During this time span the Farallon oceanic lithosphere advanced eastward ~1500 km, overriding the astenosphere feeding the proto-Caribbean spreading ridge. This hotter mantle flowed westward into, and mixed with, the opening mantle wedge, promoting increasing melting with time. This mechanism may explain the irregularly thickened oceanic crust of the CCOP and its internal deformation but also the evidence of partial subduction of some of its parts.

  15. Oman Ophiolite: Petrological and Geochemical Investigation of Fast-Spreading Crust Formation Processes (United States)

    Müller, T.; Koepke, J.; Garbe-Schoenberg, C. D.; Schuth, S.; Wolff, P. E.


    We undertook a detailed field campaign in the Wadi Gideah, which is located in the Wadi-Tayin Massif in the southern part of the Oman Ophiolite, to sample a complete section of fast-spreading oceanic crust. Our concept of performing different analytical and structural investigations on the same samples enabled us to create a coherent data set. The thickness of the layered and virtually undeformed oceanic crust, containing pillow lavas and sheeted dikes as well as varitextured, foliated and layered gabbros resting on a relatively thin MOHO transition zone, was recalculated to approximately 6km. Here we present our data focusing on the petrological and geochemical logs obtained. Samples from the layered gabbro sequence show modal compositions of ~50 vol% plagioclase, ~40 vol% clinopyroxene and ~10 vol% olivine in average. The samples from the foliated gabbro sequence display a slightly higher amount of plagioclase. In very few samples up to 20 vol% of orthopyroxene is present. The layered gabbro sequence display Mg# 71-82 for olivine, Mg# 75-83 for clinopyroxene and An% in plagioclase of 71-93 mol%. The foliated gabbro sequence display Mg# 67-79 for olivine, Mg# 76-85 for clinopyroxene and An% in plagioclase of 58-85 mol%. The varitextured gabbro sequence display Mg# 74-80 for clinopyroxene and An% 59-86 in plagioclase mol%. The generally evolving trends in mineral major element composition from bottom to top of the profile are also observed for bulk rock major and trace element data. The average Sr87/Sr86 ratio is 0.7033 ± 0.0002 for the entire foliated and layered gabbro with significantly higher values for samples from fault zones cutting the gabbros at all crustal level which here are interpreted as possible hydrothermal pathways for cooling of the deep crust. We calculated the Wadi Gideah bulk crust composition and modeled possible fractionation paths, implying significant crystallization in the deep crust.

  16. 42 CFR 495.204 - Incentive payments to qualifying MA organizations for MA-EPs and MA-affiliated eligible hospitals. (United States)


    ... for MA-EPs and MA-affiliated eligible hospitals. 495.204 Section 495.204 Public Health CENTERS FOR...-EPs and MA-affiliated eligible hospitals. (a) General rule. A qualifying MA organization receives an incentive payment for its qualifying MA-EPs and its qualifying MA-eligible hospitals. The incentive...

  17. Melting in the Hawaiian plume at 1-2 Ma as recorded at Maui Nui: The role of eclogite, peridotite, and source mixing (United States)

    Gaffney, Amy M.; Nelson, Bruce K.; Blichert-Toft, Janne


    The volcanoes of Maui Nui (West Moloka'i, East Moloka'i, Lana'i, West Maui, Haleakala, and Kaho'olawe) record Hawaiian magmatism at ˜1-2 Ma. Lavas from these volcanoes nearly span the compositional range erupted from all the Hawaiian volcanoes over the past 5 Myr and represent both the Kea and Ko'olau compositional end-members of Hawaiian lavas. Many aspects of major and trace element and isotope compositions of Hawaiian shield-stage lavas are consistent with ancient, recycled oceanic lithosphere in the plume sources of Kea- and Ko'olau-type magmas (Lassiter and Hauri, 1998; Blichert-Toft et al., 1999). Hypotheses that describe the compositional range of Hawaiian lavas as originating from ancient oceanic lithosphere in the Hawaiian plume implicitly or explicitly infer lithologic heterogeneity in the plume. We present trace element models for the origin of these end-members that explicitly address the petrologic complexities of melting eclogite (derived from ancient oceanic lithosphere) in the plume. Trace element (La/Nb, Sm/Yb, Sm/Hf, and Sm/Nb), major element, and isotope compositions of Lana'i, which erupts dominantly Ko'olau-type lavas, are consistent with the origin of these lavas in large-degree (˜60-70%) melts of ancient upper oceanic crust (basalt + sediment) that mix with plume-derived Haleakala-type melts. Trace element (Sm/Yb, Hf/Zr, and Hf/Nb) and isotope compositions of West Maui and East Moloka'i, which erupt dominantly Kea-type magmas, are consistent with an origin in ancient depleted oceanic lithosphere that has been refertilized with moderate-degree melts (10-30%) of associated crustal gabbro. The physical mechanisms (melt-melt versus melt-solid mixing) through which the oceanic crustal components melt and mix within the plume lead to the generation of isotopically homogeneous Kea-type lavas and isotopically heterogeneous Ko'olau-type lavas. The volcanoes of Maui Nui record the exhaustion of the Ko'olau component and the initiation of the Kea component as dominant compositional end-members in the Hawaiian plume.

  18. Pulsar Glitches: The Crust may be Enough

    CERN Document Server

    Piekarewicz, J; Horowitz, C J


    Pulsar glitches-the sudden spin-up in the rotational frequency of a neutron star-suggest the existence of an angular-momentum reservoir confined to the inner crust of the neutron star. Large and regular glitches observed in the Vela pulsar have originally constrained the fraction of the stellar moment of inertia that must reside in the solid crust to about 1.4%. However, crustal entrainment-which until very recently has been ignored-suggests that in order to account for the Vela glitches, the fraction of the moment of inertia residing in the crust must increase to about 7%. This indicates that the required angular momentum reservoir may exceed that which is available in the crust. We explore the possibility that uncertainties in the equation of state provide enough flexibility for the construction of models that predict a large crustal thickness and consequently a large crustal moment of inertia. Given that analytic results suggest that the crustal moment of inertia is sensitive to the transition pressure at ...

  19. Collective excitations in neutron-star crusts (United States)

    Chamel, N.; Page, D.; Reddy, S.


    We explore the spectrum of low-energy collective excitations in the crust of a neutron star, especially in the inner region where neutron-proton clusters are immersed in a sea of superfluid neutrons. The speeds of the different modes are calculated systematically from the nuclear energy density functional theory using a Skyrme functional fitted to essentially all experimental atomic mass data.

  20. Unified Structural Representation of the southern California crust and upper mantle (United States)

    Shaw, John H.; Plesch, Andreas; Tape, Carl; Suess, M. Peter; Jordan, Thomas H.; Ely, Geoffrey; Hauksson, Egill; Tromp, Jeroen; Tanimoto, Toshiro; Graves, Robert; Olsen, Kim; Nicholson, Craig; Maechling, Philip J.; Rivero, Carlos; Lovely, Peter; Brankman, Charles M.; Munster, Jason


    We present a new, 3D description of crust and upper mantle velocity structure in southern California implemented as a Unified Structural Representation (USR). The USR is comprised of detailed basin velocity descriptions that are based on tens of thousands of direct velocity (Vp, Vs) measurements and incorporates the locations and displacement of major fault zones that influence basin structure. These basin descriptions were used to developed tomographic models of crust and upper mantle velocity and density structure, which were subsequently iterated and improved using 3D waveform adjoint tomography. A geotechnical layer (GTL) based on Vs30 measurements and consistent with the underlying velocity descriptions was also developed as an optional model component. The resulting model provides a detailed description of the structure of the southern California crust and upper mantle that reflects the complex tectonic history of the region. The crust thickens eastward as Moho depth varies from 10 to 40 km reflecting the transition from oceanic to continental crust. Deep sedimentary basins and underlying areas of thin crust reflect Neogene extensional tectonics overprinted by transpressional deformation and rapid sediment deposition since the late Pliocene. To illustrate the impact of this complex structure on strong ground motion forecasting, we simulate rupture of a proposed M 7.9 earthquake source in the Western Transverse Ranges. The results show distinct basin amplification and focusing of energy that reflects crustal structure described by the USR that is not captured by simpler velocity descriptions. We anticipate that the USR will be useful for a broad range of simulation and modeling efforts, including strong ground motion forecasting, dynamic rupture simulations, and fault system modeling. The USR is available through the Southern California Earthquake Center (SCEC) website (

  1. Actual timing of neodymium isotopic variations recorded by Fe-Mn crusts in the western North Atlantic (United States)

    Burton, K.W.; Lee, D.-C.; Christensen, J.N.; Halliday, A.N.; Hein, J.R.


    Hydrogenetic ferromanganese (Fe-Mn) crusts from the western North Atlantic record variations in the Nd and Pb isotopic composition of Cenozoic deep water preserved during their growth. The timing and cause of the most striking change have been the subject of debate. Some have proposed that the shift took place after 4 Ma in response to the closure of the Panama gateway. Others have argued that the major change in isotope composition occurred as early as 8 Ma. This study presents high-resolution Nd isotope records for crusts previously dated using 10Be/9Be chronology. These data confirm that the shifts in Nd occurred after 4 Ma, consistent with a likely relationship with the closure of the Central American Isthmus and intensification of Northern Hemisphere Glaciation, and in accordance with changes seen in other physical and chemical records. These results illustrate the need for both a robust chronological framework and high-resolution records before a reliable paleoceanographic interpretation can be made of the variations recorded by Fe-Mn crusts.

  2. MA transmutation performance in the optimized MYRRHA

    International Nuclear Information System (INIS)

    MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days of shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable

  3. MA transmutation performance in the optimized MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Malambu, E.; Van den Eynde, G.; Fernandez, R.; Baeten, P.; Ait Abderrahim, H. [SCK-CEN, Boeretang 200, BE-2400 Mol (Belgium)


    MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days of shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.

  4. Stability of clathrate hydrates in Martian crust (United States)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique


    Clathrate hydrates are crystalline compounds constituted by cages formed by hydrogen-bonded water molecules inside of which guest gas molecules are trapped. These materials are typically stable at high pressure and low temperature and are present on Earth mainly in marine sediments and in permafrost. Moreover, clathrate hydrates are expected to exist on celestial bodies like the icy moons Titan, Europa or Enceladus. Current conditions in the Martian crust are favourable to the presence of clathrate hydrates. In this study, we focused on the stability of methane and carbon dioxide clathrates in the Martian crust. We coupled the stability conditions of clathrates with a 1D thermal model in order to obtain the variations of the clathrate stability zone in the crust of Mars with time and for different crust compositions. Indeed, the type of soil directly controls the geothermal conditions and therefore the depth of clathrates formation. Unconsolidated soil acts as a thermal insulator and prevents the clathrates formation in the crust except on a small part of a few tens of meters thick. In contrast, sandstone or ice-cemented soil allows the clathrates formation with a stability zone of several kilometers. This is explained by the fact that they evacuate heat more efficiently and thus maintain lower temperatures. We also studied the stability zone of clathrates formed from a mixture of methane and hydrogen sulphide as well as from a mixture of methane and nitrogen. Contrary to the addition of N2, the addition of H2S to CH4 clathrates extends the stability zone and thus brings it closer to the surface. Therefore, mixed clathrates CH4-H2S will be more easily destabilized by changes in surface temperature than CH4 clathrates.

  5. Regional anomalies of sediment thickness, basement depth and isostatic crustal thickness in the North Atlantic Ocean (United States)

    Louden, Keith E.; Tucholke, Brian E.; Oakey, Gordon N.


    We calculate the anomalous basement topography for the North Atlantic Ocean from 30° to 70°N latitude and from 0° to 70°W longitude at a resolution of roughly 6×6 km, using grids of total sediment thickness and observed and predicted sea-floor bathymetry to correct for the effects of isostatic sediment loading and lithospheric age. Plotting this residual topography for various plate reconstructions during opening of the North Atlantic, we delineate consistent patterns of basement highs related to variations in hotspot-related volcanism. In addition to Iceland and the Azores, we recognize three centers of excess volcanism at the mid-Atlantic ridge: the Milne Seamounts and Azores-Biscay Rise (˜75-40 Ma), the Southeast Newfoundland Ridge and Madeira-Tore Rise (˜130-110 Ma), and the East and West Thulean Rises (˜60-50 Ma). The duration of volcanic activity ranges from 8 to 10 m.y. (Thulean Rises) to 60 m.y. (Iceland) and thus it appears that both long- and short-lived hotspots coexist, even in relatively close proximity. In contrast, during the period 110-60 Ma we observe little excess volcanism during either continental breakup or seafloor spreading. We estimate isostatic crustal thickness from the anomalous basement depths, after first removing dynamic effects created by mantle flow. Maximum thicknesses of volcanic features, from 30 km beneath the Greenland-Iceland-Faeroe ridge to ˜15 km beneath the Azores-Biscay Rise, are broadly consistent with seismic data and predictions of decompression melting. Widths of volcanic features indicate that thickening primarily occurs within 100-200 km of hotspots except along continental margins that rifted at the time of the hotspot activity (i.e. East Greenland and the Hatton-Rockall Bank). We observe conjugate structures south of Greenland and Edoras Bank, where excess volcanism appears to have extended beyond the margin proper and into oceanic crust. Similar conjugate features appear in the Labrador Sea south of Davis Strait. Finally, we identify anomalous oceanic regions adjacent to some continental margins, where unusually low values of predicted crustal thickness suggest either additional variations in plate properties or non-isostatic effects within the mantle.

  6. Widespread, Miocene, Large-Magnitude Exhumation of the Pamir Deep Crust Driven by the India-Asia Collision (United States)

    Hacker, B. R.; Ratschbacher, L.; Stearns, M.; McGraw, J.; Stübner, K.; Kylander-Clark, A. R.; Pfander, J.; Weise, C.; Minaev, V.; Gadoev, M.; Oimahmadov, I.


    Thermobarometry, thermochronology, and structural geology provide insight into the formation and exhumation histories of the high-grade crustal domes across the Pamir. P-T histories were reconstructed from thermobarometry based on major elements and pseudosections. Intrusion, recrystallization, and cooling histories were determined by SIMS and LA-MC-ICP-MS U-Th-Pb zircon, monazite, titanite, and rutile; Rb-Sr mica; 40Ar/39Ar hornblende and mica; apatite fission-track, and (U-Th)/He apatite dating. For the northern Pamir Kurgovat dome we find peak conditions of 600-650 °C and 6.5-8.2 kbar. Hornblende and biotite 40Ar/39Ar ages indicate that this metamorphism is Jurassic and Early Cretaceous (ca. 200 and ca. 130 Ma), overprinting Devonian arc intrusions (350 Ma U-Pb zircon). The western central Pamir Yazgulom dome yields P-T conditions of 575 °C and 9.4 kbar; U-Pb zircon ages of 21-18 Ma from igneous rocks; a U-Pb titanite age of 19 Ma and 40Ar/39Ar biotite ages of 17-16 Ma tightly constrain an early Miocene exhumation. The eastern central Pamir Muskol-Sares dome yields hotter P-T conditions of 700-800 °C and 9.1-11.7 kbar; U-Pb zircon ages as young as 23-17 Ma, U-Pb titanite ages of ca. 17 Ma, 40Ar/39Ar hornblende ages of 22-15 Ma, and 40Ar/39Ar mica ages of 19-13 Ma indicate an essentially identical exhumation history. U-Pb zircon and titanite ages indicate a Triassic magmatic protolith, intruding Paleozoic meta-sedimentary strata. The enormous Shakhdara dome in the southwestern Pamir gives higher peak metamorphic conditions at 6.5-14.6 kbar and 700-800 °C. U-Pb zircon ages indicate ca. 1.8 and 2.5 Ga basement, strongly remobilized by 134-73 Ma Cretaceous magmatism. U-Pb metamorphic zircon ages of 22-12 Ma, U-Pb titanite ages of 18-10 Ma, Th-Pb metamorphic monazite ages of 30-18 Ma, U-Pb titanite ages of 18-10 Ma, 40Ar/39Ar biotite ages of 18-10 Ma, and apatite fission-track ages of 8-5 Ma imply early to late Miocene exhumation. These data, combined with those of earlier studies (e.g., Hubbard, 1989; Schwab et al., 2004; Robinson et al., 2007), indicate that the bulk of the Pamir high-grade crystalline rocks were exhumed from ~35 km depth, beginning in the central Pamir in the early Miocene and progressing north and south in the middle Miocene. If the crust of the Pamir prior to the India-Asia collision was <30 km thick and convergence within the Pamir was <600 km, shortening could have been accommodated by homogeneous plane-strain vertical thickening; each of the Pamir domes then represents a zone of unusually great exhumation compensated by a corresponding zone of less exhumation. Alternatively, if the pre-collisional crust was thicker or the amount of convergence was larger, vast amounts of crust must have been removed from the Pamir orogenic system by i) subhorizontal extrusion along the strike of the orogenic belt, ii) erosion, or-most likely-iii) recycling into the mantle.

  7. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    International Nuclear Information System (INIS)

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z?6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including 24O+24O and 28Ne+28Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear 24O+24O fusion and find that 24O should burn at densities near 1011 g/cm3. The energy released from this and similar reactions may be important for the temperature profile of the star

  8. Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent (United States)

    Cardona, A.; Valencia, V.; Bustamante, C.; García-Casco, A.; Ojeda, G.; Ruiz, J.; Saldarriaga, M.; Weber, M.


    Metamorphosed volcano-sedimentary rocks accreted to the northern South American continental margin are major vestiges of the Caribbean oceanic plate evolution and its interactions with the continent. Selected whole rock geochemistry, Nd-Sr isotopes and detrital zircon geochronology were obtained in metabasic and metasedimentary rocks from the Santa Marta and San Lorenzo Schists in northernmost Colombia. Trace element patterns are characterized by primitive island arc and MORB signatures. Similarly initial 87Sr/ 86Sr-? Nd isotopic relations correlate with oceanic arcs and MORB reservoirs, suggesting that the protoliths were formed within a back-arc setting or at the transition between the inta-oceanic arc and the Caribbean oceanic crust. Trace element trends from associated metasedimentary rocks show that the provenance was controlled by a volcanic arc and a sialic continental domain, whereas detrital U/Pb zircons from the Santa Marta Schists and adjacent southeastern metamorphic units show Late Cretaceous and older Mesozoic, Late Paleozoic and Mesoproterozoic sources. Comparison with continental inland basins suggests that this arc-basin is allocthonous to its current position, and was still active by ca. 82 Ma. The geological features are comparable to other arc remnants found in northeastern Colombia and the Netherland Antilles. The geochemical and U/Pb detrital signatures from the metasedimentary rocks suggest that this tectonic domain was already in proximity to the continental margin, in a configuration similar to the modern Antilles or the Kermadec arc in the Pacific. The older continental detritus were derived from the ongoing Andean uplift feeding the intra-oceanic tectonic environment. Cross-cutting relations with granitoids and metamorphic ages suggest that metamorphism was completed by ca. 65 Ma.

  9. Crust and subduction zone structure of Southwestern Mexico (United States)

    Suhardja, Sandy Kurniawan; Grand, Stephen P.; Wilson, David; Guzman-Speziale, Marco; Gomez-Gonzalez, Juan Martin; Dominguez-Reyes, Tonatiuh; Ni, James


    Southwestern Mexico is a region of complex active tectonics with subduction of the young Rivera and Cocos plates to the south and widespread magmatism and rifting in the continental interior. Here we use receiver function analysis on data recorded by a 50 station temporary deployment of seismometers known as the MARS (MApping the Rivera Subduction zone) array to investigate crustal structure as well as the nature of the subduction interface near the coast. The array was deployed in the Mexican states of Jalisco, Colima, and Michoacan. Crustal thickness varies from 20 km near the coast to 42 km in the continental interior. The Rivera plate has steeper dip than the Cocos plate and is also deeper along the coast than previous estimates have shown. Inland, there is not a correlation between the thickness of the crust and topography indicating that the high topography in northern Jalisco and Michoacan is likely supported by buoyant mantle. High crustal Vp/Vs ratios (greater than 1.82) are found beneath the trenchward edge of magmatism including below the Central Jalisco Volcanic Lineament and the Michoacan-Guanajuato Volcanic Field implying a new arc is forming closer to the trench than the Trans Mexican Volcanic Belt. Elsewhere in the region, crustal Vp/Vs ratios are normal. The subducting Rivera and Cocos plates are marked by a dipping shear wave low-velocity layer. We estimate the thickness of the low-velocity layer to be 3 to 4 km with an unusually high Vp/Vs ratio of 2.0 to 2.1 and a drop in S velocity of 25%. We postulate that the low-velocity zone is the upper oceanic crust with high pore pressures. The low-velocity zone ends from 45 to 50 km depth and likely marks the basalt to eclogite transition.

  10. The sedimentary supply of African sedimentary basins over the last 250 Ma (United States)

    Rouby, Delphine; Guillocheau, Francois; Robin, Cecile; Helm, Catherine


    The African continent is bordered by passive margins and bears intracontinental basins preserving the terrigeneous sediment resulting from its erosion, and as such, recording the dynamics of its relief variation. Our objective is to bring new constraints on the uplift and erosion of the African continent over the last 250 Ma from the perspective of the stratigraphic architecture of its sedimentary basins. The novel aspect of our approach is to integrate the evolution of both the domains in erosion and in sedimentation (i.e. from the drainage divide of the domain in erosion down to the most distal deposits over the oceanic crust), and to review published data to quantify the terrigeneous supply eroded in the drainage area and preserved in the basins. One objective is to evaluate the conditions under which this simple approach, based on already published data, can be used to infer continental relief variations, the sedimentary archives of the domain in erosion being by definition scarce and denudation evaluation by thermochronology usually relying on hypotheses on past heat flows. We quantify the siliciclastic sedimentary volumes preserved in African basins correcting from porosity and in-situ (e.g. carbonate) production, with a particular attention to the determination of uncertainties resulting from parameters such as: velocity laws used to depth conversion of TWT data, biostratigraphic used for calibration in absolute ages, lithology assumed for porosity removal. We use two approaches with complementary spatial and temporal resolutions. (1) When data are available (e.g along the South African and Namibian Atlantic margins), we determine the long-term signal of sedimentary supply (x10 Ma) from 3D mass balance calculations comparing sedimentary volumes deduced from offshore isopach maps on one hand and erosion volumes deduced from the present day geometry of geomorphic markers and thermochronology data on the other hand. We show that our approach provide a good estimation of the long-term denudation of the drainage basins. (2) 3D dataset are not always available and allow most of the time only a long-term description of the sedimentary supply. We therefore develop a GIS database of 2D regional cross-sections across the major sedimentary basins established from published seismic lines. We homogenise the sections in spatial and temporal scale and then extrapolate them down to the most distal part of the basin so that geometries of our sedimentary wedges are not restricted to the platform domain (Figure 4), this, taking into account several hypotheses. On each cross-section, we then measure the 2D area of each stratigraphic interval (x1 Ma) and, in doing so, determine the average sedimentation "areas" and rates. We then determine the spatial extension of the basins for each time increment and use it to extrapolate average sedimentation "areas" and rate into sedimentation volumes.

  11. The fate of Ceres' original crust (United States)

    Roberts, James H.; Rivkin, Andrew S.


    The bulk density of Ceres implies that water ice comprises a substantial fraction of Ceres’ interior. However, water ice is not stable at Ceres orbital distance and if exposed would have a loss rate of 1 km Myr-1 or more. The near-hydrostatic shape of Ceres, and relatively low melting point of ice suggests that the interior is at least partly differentiated. Because Ceres’ surface remains exposed to space, it radiates very effectively, and models predicting differentiation retain an undifferentiated crust. This would be denser than the ice shell beneath it resulting in an unstable stratification. This has led to expectations that the crust would founder and the surface of Ceres might be very smooth and relaxed. But could the crust have remained to the present day?Here, we model global-scale overturn on Ceres using both analytical two-layer linear stability analyses, and numerical models to predict the most unstable wavelength, and growth timescales for Rayleigh-Taylor instabilities. We find that for a 10 km-thick crust above a 75 km-thick ice layer, instabilities grow fastest at spherical harmonic degree l=4. The growth timescale is a function of the viscosity of the upper layer. This timescale is less than the age of the solar system unless the effective viscosity of the crust is > 1024 Pa s. We conclude that the crust of Ceres could remain at the surface if it either has some finite elastic strength over a ~800 km length scale, or is an unconsolidated regolith with a large, (> 50%) macro-porosity, such that the regolith is buoyant relative to water ice.Neither end-member for the crustal strength precludes convective activity in the underlying ice layer. However we note that a thick, porous regolith is a fantastic insulator and may promote heating of the interior and potential foundering of the regolith if the top of the ice becomes too warm. This possibility can be evaluated by models of thermal evolution (e.g., Castillo-Rogez et al., 2010). An episode of global overturn may have been preserved as spatially correlated long-wavelength (l=3-5) variations in albedo, composition, and topography, which could be measured by Dawn.

  12. Accurate focal depth determination of oceanic earthquakes using water-column reverberation and some implications for the shrinking plate hypothesis (United States)

    Huang, Jianping; Niu, Fenglin; Gordon, Richard G.; Cui, Chao


    Investigation of oceanic earthquakes is useful for constraining the lateral and depth variations of the stress and strain-rate fields in oceanic lithosphere, and the thickness of the seismogenic layer as a function of lithosphere age, thereby providing us with critical insight into thermal and dynamic processes associated with the cooling and evolution of oceanic lithosphere. With the goal of estimating hypocentral depths more accurately, we observe clear water reverberations after the direct P wave on teleseismic records of oceanic earthquakes and develop a technique to estimate earthquake depths by using these reverberations. The Z-H grid search method allows the simultaneous determination of the sea floor depth (H) and earthquake depth (Z) with an uncertainty less than 1 km, which compares favorably with alternative approaches. We apply this method to two closely located earthquakes beneath the eastern Pacific. These earthquakes occurred in ?25 Ma-old lithosphere and were previously estimated to have similar depths of ?10-12 km. We find that the two events actually occurred at dissimilar depths of 2.5 km and 16.8 km beneath the seafloor, respectively, within the oceanic crust and lithospheric mantle. The shallow and deep events are determined to be a thrust and normal earthquake, respectively, indicating that the stress field within the oceanic lithosphere changes from horizontal deviatoric compression to horizontal deviatoric tension as depth increases, which is consistent with the prediction of lithospheric cooling models. Furthermore, we show that the P-axis of the newly investigated thrust-faulting earthquake is perpendicular to that of the previously studied thrust event, consistent with the predictions of the shrinking-plate hypothesis.

  13. Heat and fluid flux at a crustal scale: Observations and models of coupled transport in young oceanic lithosphere (United States)

    Hutnak, Michael

    Hydrothermal circulation of seawater through the oceanic crust profoundly influences lithospheric and oceanic evolution. The upper oceanic crust comprises an aquifer of global proportions, and sedimentation acts to hydrologically isolate the crustal aquifer from the overlying ocean. Thermally-significant exchange of fluids between the crustal aquifer and overlying ocean can only occur where seamounts or other basaltic outcrops penetrate the sediment blanket. Although much progress has been made in the last several decades in elucidating the nature of hydrothermal circulation in oceanic basement, many of the physical properties and processes remain poorly understood or inadequately quantified. My dissertation research addresses several fundamental gaps in our understanding of ridge-flank hydrological processes, namely the roles of seamounts and basement outcrops is facilitating the exchange of fluid between the crustal aquifer and overlying ocean, the extents and rates of hydrothermal circulation in uppermost basement, the bulk crustal permeability distributions required to support the fluid fluxes, the thermal effects of sedimentation on measurements of seafloor heat flux, and the timescales required for conductive thermal rebound to occur once basement outcrops become buried. Interpretation of measurements of seafloor heat flux on relatively young (0.7-24 Ma) on the eastern flanks of the Juan de Fuca Ridge (JFR) and East Pacific Rise (EPR) is facilitated by collocation of measurements on bathymetric maps and along seismic reflection profiles, and these data are used as constraints for numerical models of coupled heat-fluid flow. Observational data from the eastern flank of the JFR indicate that fluids circulate rapidly through upper basement close to the ridge axis, both along- and across-strike of dominant structural trends. Numerical models of both individual and paired recharging and discharging outcrops are most consistent with regional upper basement permeabilities of 10-11 to 10-8 m2, and crustal aquifer thicknesses of 100-600 m. Numerical thermal models of sedimentation indicate that incomplete conductive thermal rebound may be responsible for the observed variability in seafloor heat flux measurements on the JFR, and may also bias measurements made on moderate to old seafloor areas even where there is little evidence for ridge-flank hydrothermal circulation at present.

  14. Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas (United States)

    Karakas, Ozge; Dufek, Josef


    Tectonic extension and magmatism often act in concert to modify the thermal, mechanical, and chemical structure of the crust. Quantifying the effects of extension and magma flux on melting relationships in the crust is fundamental to determining the rate of crustal melting versus fractionation, magma residence time, and the growth of continental crust in rift environments. In order to understand the coupled control of tectonic extension and magma emplacement on crustal thermal evolution, we develop a numerical model that accounts for extension and thermal-petrographic processes in diverse extensional settings. We show that magma flux exerts the primary control on melt generation and tectonic extension amplifies the volume of melt residing in the crustal column. Diking into an extending crust produces hybrid magmas composed of 1) residual melt remaining after partial crystallization of basalt (mantle-derived melt) and 2) melt from partial melting of the crust (crustal melt). In an extending crust, mantle-derived melts are more prevalent than crustal melts across a range of magma fluxes, tectonic extension rates, and magmatic water contents. In most of the conditions, crustal temperatures do not reach their solidus temperatures to initiate partial melting of these igneous lithologies. Energy balance calculations show that the total enthalpy transported by dikes is primarily used for increasing the sensible heat of the cold surrounding crust with little energy contributing to latent heat of melting the crust (maximum crustal melting efficiency is 6%). In the lower crust, an extensive mush region develops for most of the conditions. Upper crustal crystalline mush is produced by continuous emplacement of magma with geologically reasonable flux and extension rates on timescales of 106 yr. Addition of tectonic effects and non-linear melt fraction relationships demonstrates that the magma flux required to sustain partially molten regions in the upper crust is within the range of estimates of magmatic flux in many rifting regions (?10-4 to 10-3km3 /yr) and at least an order of magnitude lower than previous modeling estimates. Our results demonstrate the importance of tectonics in augmenting melt production, composition, and crustal evolution in active magmatic systems.

  15. Rare earth element geochemistry of ferromanganese deposits of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Balaram, V.; Sudhakar, M.; Pluger, W.L.

    Fourteen manganese nodules and three ferromanganese crusts from the Indian Ocean were analysed for major and minor elements and the 14 naturally occurring rare earth elements (REE). The REE were analysEd. by inductively coupled plasma...

  16. Outer crust of nonaccreting cold neutron stars (United States)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen


    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  17. Towards a metallurgy of neutron star crusts

    CERN Document Server

    Kobyakov, D


    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic (bcc) lattice of nuclei immersed in an essentially uniform electron gas. We show that at densities above that for neutron drip ($\\sim4\\times10^11$) g cm$^{-3}$ or roughly one thousandth of nuclear matter density, the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO$_3$. As a consequence, properties of matter in the inner crust are expected to be much richer than previously appreciated and we mention consequences for observable neutron star properties.

  18. Crusted Scabies in the Burned Patient

    DEFF Research Database (Denmark)

    Berg, Jais Oliver; Alsbjørn, Bjarne


    The objectives of this study were 1) to describe a case of crusted scabies (CS) in a burned patient, which was primarily undiagnosed and led to a nosocomial outbreak in the burn unit; 2) to analyze and discuss the difficulties in diagnosing and treating this subset of patients with burn injury; and...... 3) to design a treatment strategy for future patients. Case analysis and literature review were performed. The index patient had undiagnosed crusted scabies (sive Scabies norvegica) with the ensuing mite hyperinfestation when admitted to the department with minor acute dermal burns. Conservative...... healing and autograft healing were impaired because of the condition. Successful treatment of the burns was only accomplished secondarily to scabicide treatment. An outbreak of scabies among staff members indirectly led to diagnosis. CS is ubiquitous, and diagnosis may be difficult. This is the first...

  19. Topological characterization of neutron star crusts (United States)

    Dorso, C. O.; Giménez Molinelli, P. A.; López, J. A.


    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy-ion reactions. After the model is shown to produce a plethora of the so-called pasta shapes, a series of techniques borrowed from nuclear physics, condensed matter physics, and topology is used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way.

  20. Topological characterization of neutron star crusts

    CERN Document Server

    Dorso, C O; López, J A


    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy ion reactions. After the model is shown to produce a plethora of the so-called "pasta" shapes, a series of techniques borrowed from nuclear physics, condensed matter physics and topology are used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way.

  1. Millennial-scale ocean acidification and late Quaternary

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Liang, Liyuan [ORNL; Braga, Dr Juan Carlos [Universidad de Granada, Departamento de Estratigraf?a y Paleontolog?a, Granada, Spain


    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.

  2. Mesoscopic pinning forces in neutron star crusts (United States)

    Seveso, S.; Pizzochero, P. M.; Grill, F.; Haskell, B.


    The crust of a neutron star is thought to be comprised of a lattice of nuclei immersed in a sea of free electrons and neutrons. As the neutrons are superfluid, their angular momentum is carried by an array of quantized vortices. These vortices can pin to the nuclear lattice and prevent the neutron superfluid from spinning down, allowing it to store angular momentum which can then be released catastrophically, giving rise to a pulsar glitch. A crucial ingredient for this model is the maximum pinning force that the lattice can exert on the vortices, as this allows us to estimate the angular momentum that can be exchanged during a glitch. In this paper, we perform, for the first time, a detailed and quantitative calculation of the pinning force per unit length acting on a vortex immersed in the crust and resulting from the mesoscopic vortex-lattice interaction. We consider realistic vortex tensions, allow for displacement of the nuclei and average over all possible orientations of the crystal with respect to the vortex. We find that, as expected, the mesoscopic pinning force becomes weaker for longer vortices and is generally much smaller than previous estimates, based on vortices aligned with the crystal. Nevertheless, the forces we obtain still have maximum values of the order of fpin ? 1015 dyn cm-1, which would still allow for enough angular momentum to be stored in the crust to explain large Vela glitches, if part of the star is decoupled during the event.

  3. Generic Ma\\~n\\'e sets


    Contreras, Gonzalo


    We prove that $C^2$ generic hyperbolic Ma\\~n\\'e sets contain a periodic orbit. In dimesion 2, adding a result with A. Figalli and L. Rifford, we obtain Ma\\~n\\'e's Conjecture for surfaces in the $C^2$ topology.

  4. Maßnahmenmanagement anhand eines Lebenszyklusmodells

    Directory of Open Access Journals (Sweden)

    Ulrich Schmidt


    Full Text Available Wie im ersten Teil dieser Beitragsserie dargestellt, ist es in der betrieblichen Praxis von großer Bedeutung den Nutzen von Wissensmanagement aufzuzeigen. Als erfolgversprechende Herangehensweise hat sich hierbei die Betrachtung einzelner Maßnahmen des Wissensmanagements herausgestellt. Dieser Erkenntnis folgend wurde bei EnBW ein Ansatz entwickelt, der sich auf die Darstellung des Nutzens von Wissensmanagement-Maßnahmen fokussiert. Dem Ansatz liegt die Überlegung zugrunde, dass sich der Nutzen einer Maßnahme insbesondere über deren Wirkung und ihre Wirkungsdauer beschreiben lässt. Aus diesem Grund wurde ein Modell entwickelt, das es ermöglicht Maßnahmen im Zeitverlauf zu begleiten, dabei die Wirkung zu dokumentieren und somit den Erfolg einer Maßnahme zu beurteilen.

  5. H11077_MB1.5M_UTM19.TIF: Color Shaded-Relief GeoTIFF Image Showing the 1.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (UTM Zone 19) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  6. H11346_MB25M_UTM19.TIF: Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (UTM Zone 19, WGS84) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  7. H11346_MB25M_GEO.TIF: Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (Geographic, WGS84) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  8. H11077_MB0.5M_UTM19.TIF: Color Shaded-Relief GeoTIFF Image Showing the 0.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (UTM Zone 19) (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone...

  9. Crust and upper mantle structure in the Caribbean region by group velocity tomography and regionalization

    International Nuclear Information System (INIS)

    An overview of the crust and upper mantle structure of the Central America and Caribbean region is presented as a result of the processing of more than 200 seismograms recorded by digital broadband stations from SSSN and GSN seismic networks. By FTAN analysis of the fundamental mode of the Rayleigh waves, group velocity dispersion curves are obtained in the period range from 10 s to 40 s; the error of these measurements varies from 0.06 and 0.10 km/s. From the dispersion curves, seven tomographic maps at different periods and with average spatial resolution of 500 km are obtained. Using the logical combinatorial classification techniques, eight main groups of dispersion curves are determined from the tomographic maps and eleven main regions, each one characterized by one kind of dispersion curves, are identified. The average dispersion curves obtained for each region are extended to 150 s by adding data from the tomographic study of and inverted using a non-linear procedure. As a result of the inversion process, a set of models of the S-wave velocity vs. depth in the crust and upper mantle are found. In six regions, we identify a typically oceanic crust and upper mantle structure, while in the other two the models are consistent with the presence of a continental structure. Two regions, located over the major geological zones of the accretionary crust of the Caribbean region, are characterized by a peculiar crust and upper mantle structure, indicating the presence of lithospheric roots reaching, at least, about 200 km of depth. (author)

  10. The 17 Ma old Turkana beaked whale fossil: new paleoaltimetry constraints for uplift and environmental change in East Africa (United States)

    Wichura, Henry; Jacobs, Louis L.; Strecker, Manfred R.; Lin, Andrew; Polcyn, Michael J.; Manthi, Fredrick K.; Winkler, Dale A.; Matthew, Clemens


    Timing and magnitude of vertical motions of the Earth's crust is key to evaluate the impact of tectonic processes on changes in atmospheric circulation patterns, rainfall, and environmental conditions. The East African Plateau (EAP) is a major topographic feature that fundamentally impacts the patterns of the Indian-African Monsoon and the eastward transport of air masses from the Congo Basin. Uplift of the EAP in Kenya has been linked to mantle processes, but due to the lack of reliable palaeoaltimetric data it has been challenging to unambiguously constrain plateau evolution, vertical motions associated with late Cenozoic rifting of the East African Rift System, and ensuing environmental change. We explored the fossil remains of a beaked whale (Ziphiidae) from the Turkana region in the northern Kenya Rift, 700 km inland from the present-day coastline of the Indian Ocean. The whale fossil, preserved near sea level, was discovered at an elevation of 620 m and thus constrains the uplift of the northeastern flanks of the EAP. The Kenyan ziphiid was discovered in fluvio-lacustrine sediments of the extensional Oligo-Miocene Lokichar basin (Mead, 1975) along with terrestrial mammals and freshwater molluscs below a basalt dated at 17.1 ± 1.0 Ma (Boschetto et al., 1992). The unifying characteristics of riverine occurrences of modern marine mammals include sufficient discharge in low-gradient rivers to maintain pathways deep enough to facilitate migration, and the absence of shallow bedrock, rapids, and waterfalls. The most likely route, which may have had these characteristics is a fluvial corridor controlled by protracted thermal subsidence of the Cretaceous Anza Rift, which once linked extensional processes in Central and East Africa with the continental margin of northeastern Africa. The fossil locality and analogies with present-day occurrences of marine mammals in terrestrial realms suggest that the ziphiid stranded slightly above sea level. In combination with Miocene lava flows that utilized eastward-directed drainages away from the EAP the fossil find thus provides the older of only two empirical palaeoelevation points that constrain the onset of uplift of the EAP to the interval between approximately 17 and 13 Ma. Our results show that topographic uplift of the EAP is a viable mechanism that induced palaeoclimatic change from a low-elevation humid environment to highly variable, much drier conditions, which altered biotic communities and drove evolution in East Africa, including that of primates.

  11. High Tech High interns develop a mid-ocean ridge database for research and education (United States)

    Staudigel, D.; Delaney, R.; Staudigel, H.; Koppers, A.; Miller, S.


    Mid-ocean ridges (MOR) represent one of the most important geographic features on planet Earth. MORs are the locations where plates spread apart, they are the locations of most of the earths' volcanoes that harbor some of the most extreme life forms. These concepts attract much research, but mid-ocean ridges are still effectively not represented in the earth science class rooms. We began an internship at Scripps to develop a database for mid-ocean ridges as a resource for science and for education. Major research goals of this project include the development of an archival structure for data, images or any other arbitrary digital objects relating to MORs, and to compile a global data set for some of the most defining characteristics of every ridge segment. One of the challenges included the need of making MOR data useful to the scientist as well as the teacher in the class room. While this data base remains a long term project, we completed a series of first order steps that establish an archival structure and lay out the defining information for each ridge segment. To create this database we used existing maps of the age of the ocean floor (University of Sidney) and the MOR locations from the University of Texas database. We divided the global MOR system into segments through their end-point coordinates, using the mid-point lat/lon as a generic name and we digitized the area of the 11 Ma isochron. Each ridge segment was also characterized with the ocean it is in, and the names of the plates. This allowed us to create a database structure for MOR segments, similar to the seamount catalogue ( The data compiled allow us to determine the length of the ridges, spreading rates, the ocean crust production rates, and plate motion vectors for every ridge segment, ocean or the global ocean ridge system. The process of creating this data base introduced us to the excitement of MOR research, allowing us to create a resource that is equally useful for researchers as well as the members of the educational community.

  12. Syn-volcanic cannibalisation of juvenile felsic crust: Superimposed giant 18O-depleted rhyolite systems in the hot and thinned crust of Mesoproterozoic central Australia (United States)

    Smithies, R. H.; Kirkland, C. L.; Cliff, J. B.; Howard, H. M.; Quentin de Gromard, R.


    Eruptions of voluminous 18O-depleted rhyolite provide the best evidence that the extreme conditions required to produce and accumulate huge volumes of felsic magma can occur in the upper 10 km of the crust. Mesoproterozoic bimodal volcanic sequences from the Talbot Sub-basin in central Australia contain possibly the world's most voluminous accumulation of 18O-depleted rhyolite. This volcanic system differs from the better known, but geochemically similar, Miocene Snake River Plain - Yellowstone Plateau of North America. Both systems witnessed 'super' sized eruptions from shallow crustal chambers, and produced 18O-depleted rhyolite. The Talbot system, however, accumulated over a much longer period (>30 Ma), at a single depositional centre, and from a magma with mantle-like isotopic compositions that contrast strongly with the isotopically evolved basement and country-rock compositions. Nevertheless, although the Talbot rhyolites are exclusively 18O-depleted, the unavoidable inference of an 18O-undepleted precursor requires high-temperature rejuvenation of crust in an upper-crustal chamber, and in this respect the evolution of the Talbot rhyolites and 18O-depleted rhyolites of the Snake River Plain - Yellowstone Plateau is very similar. However, instead of older crustal material, the primary upper-crustal source recycled into Talbot rhyolites was comagmatic (or nearly so) felsic rock itself derived from a contemporaneous juvenile basement hot-zone. Whereas giant low ?18O volcanic systems show that voluminous melting of upper crust can occur, our studies indicate that felsic magmas generated at lower crustal depths can also contribute significantly to the thermal and material budget of these systems. The requirement that very high-temperatures be achieved and sustained in the upper crust means that voluminous low ?18O magmatism is rare, primarily restricted to bimodal tholeiitic, high-K rhyolite (A-type) magmatic associations in highly attenuated lithosphere. In the case of the Talbot system, at least, our data suggest that an unusually hot pre-history might also be required to thermally prime the crust.

  13. The morphostructure of the atlantic ocean floor its development in the meso-cenozoic

    CERN Document Server

    Litvin, V M


    The study of the topography and structure of the ocean floor is one of the most important stages in ascertaining the geological structure and history of development of the Earth's oceanic crust. This, in its turn, provides a means for purposeful, scientifically-substantiated prospecting, exploration and development of the mineral resources of the ocean. The Atlantic Ocean has been geologically and geophysically studied to a great extent and many years of investigating its floor have revealed the laws governing the structure of the major forms of its submarine relief (e. g. , the continental shelf, the continental slope, the transition zones, the ocean bed, and the Mid-Oceanic Ridge). The basic features of the Earth's oceanic crust structure, anomalous geophysical fields, and the thickness and structure of its sedimentary cover have also been studied. Based on the investigations of the Atlantic Ocean floor and its surrounding continents, the presently prevalent concept of new global tectonics has appeared. A g...

  14. The worship of Bh?ma


    Duijker, Marijke


    This study deals with stone representations of Bh?ma, one of the protagonists of the Hindu epic Mah?bh?rata. This epic which originates from India, is already known on Java in the tenth century. The Bh?ma representations which include statues and reliefs appeared during the Majapahit Period (1296-1527 C.E.) and were mainly found on mountain sanctuaries in present East and Central Java. Given the number of statues found, there was a worship of Bh?ma going on during the Majapahit Period. ...

  15. Tectonic evolution of the Perth Abyssal Plain's Quiet Zone, Southeast Indian Ocean (United States)

    Ehrlich, Zohar Louis; Granot, Roi; Williams, Simon E.


    During the Late Jurassic period, the Greater-Indian plate was torn away from Australia, dissociating East Gondwanaland. The Perth Abyssal Plain (PAP) is the southernmost rift segment along the western Australian margin, and has an onset age of ~136 Ma. New marine magnetic and swath bathymetry data, crossing the entire PAP, were acquired recently on geophysical cruise ss2011v06 aboard the R/V Southern Surveyor. These have lead to the outline of conjugate Indian and Australian M-series isochrons in the east and west PAP, respectively [1]. Yet, most of the PAP was created during the Cretaceous Normal Superchron (CNS, 121-83 Ma), a period of no geomagnetic field reversals, hence no comprehensive tectonic model for the PAP exists . Here we present preliminary findings of an analytic bathymetric and magnetic investigation aimed at elucidating the PAP's quiet zone. Recent discoveries regarding the evolution of the geomagnetic field during the CNS [2] provide new time markers that can be utilized to date the oceanic crust. The magnetic anomaly data exhibit the Q2 anomaly marker (~108 Ma), further constraining the spreading history of the PAP. Together with the ridgelet transform method [3] for automated abyssal hill delineation, we present new constraints on the development of crustal construction processes (spreading location, direction and rates) that took place along the PAP spreading center. References: [1] S.E. Williams, J.M. Whittaker, R. Granot, R.D. Muller (in preparation), New constraints on the seafloor spreading history in the Perth Abyssal Plain. [2] Granot, R., J. Dyment, and Y. Gallet (2012), Geomagnetic field variability during the Cretaceous Normal Superchron, Nature Geoscience, 5(3), 220-223. [3] Downey, N. J. and R. W. Clayton (2007), A ridgelet transform method for constraining tectonic models via abyssal-hill morphology, Geochemistry Geophysics Geosystems, 8, Q03004, doi: 10.1029/2006GC001440.

  16. Forward modelling of oceanic lithospheric magnetization (United States)

    Masterton, S. M.; Gubbins, D.; Müller, R. D.; Singh, K. H.


    We construct a model of remanence for the oceans, combine it with a model of induced magnetization for the whole Earth from a previous study, compute the predicted lithospheric geomagnetic field and compare the result with a model, MF7, that is based on satellite data. Remanence is computed by assigning magnetizations to the oceanic lithosphere acquired at the location and time of formation. The magnetizing field is assumed to be an axial dipole that switches polarity with the reversal time scale. The magnetization evolves with time by decay of thermal remanence and acquisition of chemical remanence. The direction of remanence is calculated by Euler rotation of the original geomagnetic field direction with respect to an absolute reference frame, significantly improving previous results which did not include realistic oceanic magnetization computed this way. Remanence only accounts for 24 per cent of the energy of the oceanic magnetization, the induced magnetization being dominant, increasing slightly to 30 per cent of the part of the magnetization responsible for generating geomagnetic anomalies and 39 per cent of the Lowes energy of the geomagnetic anomalies. This is because our model of oceanic crust and lithosphere is fairly uniform, and a uniform layer magnetized by a magnetic field of internal origin produces no external field. The largest anomalies are produced by oceanic lithosphere magnetized during the Cretaceous Normal Superchron. Away from ridges and magnetic quiet zones the prediction fails to match the MF7 values; these are also generally, but not always, somewhat smaller than the observations. This may indicate that the magnetization estimates are too small, in which case the most likely error is in the poorly-known magnetization deep in the crust or upper mantle, or it may indicate some other source such as locally underplated continental lithosphere or anomalous oceanic crust, or even small-scale core fields.

  17. Dew formation and activity of biological crusts


    M. Veste; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.


    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the Atacama desert being almost rain-free ¿ or restricted to infrequent rains during short rainfall seasons, atmospheric moisture in the form of dew and/or fog can be a major, regular supplier of water for c...

  18. Modelling of heat flow in Earths Crust


    ?urove Juraj B.; Maras Michal; Rybárová Mária; Kuzevi? Štefan; Rybár Pavol


    The paper deals with the modelling of the heat flow in the Earths crust. The used three-dimensional model utilises the computer environment where the rock masses are modelled by the set of basic structural elements placed in the orthogonal co-ordinate system x, y, z, while the basic structural element is a cube with a chosen size. The physical notion of the diffusion is utilised for modelling the potentials flow from places with higher value of potentials to the surrounding rock masses. With...

  19. Salatoimikud : ma tahan uskuda / Mart Rummo

    Index Scriptorium Estoniae

    Rummo, Mart


    USA sarjale "The X-Files" põhinev teine järjefilm "Salatoimikud: Ma tahan uskuda" ("The X-Files: I Want to Believe") : režissöör Chris Carter : peaosades David Duchovny, Gillian Anderson : Ameerika Ühendriigid - Kanada 2008

  20. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. (United States)

    Pepe-Ranney, Charles; Koechli, Chantal; Potrafka, Ruth; Andam, Cheryl; Eggleston, Erin; Garcia-Pichel, Ferran; Buckley, Daniel H


    Biological soil crusts (BSCs) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria; however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development. DNA stable isotope probing with (15)N2 revealed that Clostridiaceae and Proteobacteria are the most common microorganisms that assimilate (15)N2 in early successional crusts. The Clostridiaceae identified are divergent from previously characterized isolates, though N2-fixation has previously been observed in this family. The Proteobacteria identified share >98.5% small subunit rRNA gene sequence identity with isolates from genera known to possess diazotrophs (for example, Pseudomonas, Klebsiella, Shigella and Ideonella). The low abundance of these heterotrophic diazotrophs in BSCs may explain why they have not been characterized previously. Diazotrophs have a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how anthropogenic change will affect the formation and ecological function of BSCs in arid ecosystems. PMID:26114889

  1. The Early?Middle Palaeozoic Oceanic Events Along the Southern European Margin: The Deli Jovan Ophiolite Massif (NE Serbia) and Palaeo-oceanic Zones of the Great Caucasus




    The paper deals with the Middle Palaeozoic oceanic events on the northern margin of the Eastern Mediterranean Hercynides. The Balkan-Carpathian Ophiolite Belt (BCO) and palaeo-oceanic zones of the Great Caucasus, all framing the East European Platform from the south, are correlated. The BCO palaeo-oceanic complex was widely thought to be a Late Precambrian-earliest Cambrian oceanic thrust sheet (563±5 Ma), a part of the South European Palaeo-oceanic Suture. The geochronological studies carrie...

  2. Zircon U-Pb and biotite Rb-Sr dating of the Wami River granulites, Eastern Granulites, Tanzania: evidence for approximately 715 Ma old granulite-facies metamorphism and final Pan-African cooling approximately 475 Ma ago

    International Nuclear Information System (INIS)

    A U-Pb investigation of suites of zircons from five granulites in the Wami River area, Tanzania, yields a 17-points discordia with upper and lower intercepts at 714-49+36 Ma and 538-35+49 Ma, respectively. These systematics are interpreted to indicate an age of approximately 715 Ma (Pan African) for the M1 granulite-facies metamorphism, whereas the lower intercept is related to a stage in the uplift and cooling following the M2 amphibolite-facies retrogradation (elsewhere dated at approximately 650 Ma). Three of the granulites contain minor amounts of an inherited, > 1600 Ma old zircon component, probably derived from the igneous precursors of the granulites. A suite of zircons from the adjacent biotite gneisses may signal a provenance age of approximately 2600 Ma (Tanzania craton?), but the U-Pb sytematics do not clearly reflect the amphibolite-facies metamorphism (correlated with the M2 partial retrogradation of the granulites) that transformed the sedimentary sequences into gneisses (any petrographic record of a possible older metamorphic influence being absent). Biotite/whole-rock pairs from the same samples yield Rb-Sr ages between about 470 and 485 Ma for the granulites and about 458 Ma for the gneiss. They are interpreted as 'cooling ages' and set an age between about 485 and 460 Ma to the final cooling of the crust through the closure temperature of biotite to Rb-Sr. The subsequent granulite-facies and amphibolite-facies events and their chronology are fitted in the continent-continent collision model for the evolution of the Mozambique belt advocated by the first author. (Auth.)

  3. Geochemical stratigraphy of submarine lavas (3-5 Ma) from the Flamengos Valley, Santiago, Cape Verde

    DEFF Research Database (Denmark)

    Barker, Abigail K; Holm, Paul Martin; Peate, David W.; Baker, Joel A.


    New high-precision Pb-Sr-Nd isotope, major and trace element and mineral chemistry data are presented for the submarine stage of ocean island volcanism on Santiago, one of the southern islands of the Cape Verde archipelago. Pillow basalts and hyaloclastites in the Flamengos Valley are divided into three petrographic and compositional groups; the Flamengos Formation lavas ( 4·6 Ma) dominate the sequence, with the younger Low Si and Coastal groups ( 2·8 Ma) found near the shoreline. Olivine and cl...

  4. Kinetics of the crust thickness development of bread during baking. (United States)

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh


    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %. PMID:26396343

  5. Titanite evidence for Triassic thickened lower crust along southeastern margin of North China Craton (United States)

    Guo, Jing-Liang; Gao, Shan; Wu, Yuan-Bao; Hu, Zhao-Chu; Xu, Wen-Liang; Zong, Ke-Qing; Liu, Yong-Sheng; Yuan, Hong-Lin


    Titanite U-Pb isotopic and major and trace element compositions of one mafic garnet granulite from a rare suite of lower crustal xenoliths (e.g., eclogite, garnet pyroxenite, and mafic garnet granulite) hosted in Early Cretaceous dioritic porphyries in the Xu-Huai area along the southeastern margin of the North China Craton (NCC) were analyzed by laser ablation ICP-MS. Titanite occurs as granular grains or coronary rims on rutile. The coronary titanite is clearly a secondary product of rutile decomposition. The granular titanite exhibits zonation in U-Pb age and chemical composition. Petrographic and geochemical evidence suggests that the zonation was formed by thermal diffusion and later fluid-assisted recrystallization. Occurrences of granular titanite between garnet grains point to a pressure of > 10 kbar, while inclusions of rutile inside granular titanite rims imply that the pressure might have reached 15 kbar. Granular titanite cores give U-Pb ages of 237-241 Ma and Zr-temperatures of 794-831 °C at 10 kbar and 850-892 °C at 15 kbar, indicating high-pressure granulite-facies metamorphism. Together with previous P-T estimates of coeval eclogite-facies xenoliths, a geotherm of above 60 mW m- 2 is implied. The geotherm plots below the temperature field of amphibole dehydration melting, consistent with presence of abundant amphibole. This geotherm is similar to that of the Kohistan arc, which has preserved a 12-km-thick dense lower crust, but significantly cooler than the geotherm of the Talkeetna arc, where most of the dense lower crust has been foundered. Our results provide new evidence for Triassic thickened dense lower crust along the southeastern margin of the NCC. By comparison with the Kohistan and Talkeetna arc crusts, we suggest that this dense lower crust was not hot enough to be foundered in the Triassic. Foundering must have occurred in the Jurassic-Cretaceous in order to explain the present-day seismic velocity structure characterized by a sharp Moho, overall slow velocities in the lower crust, and a thin crustal thickness in the Xu-Huai area and other parts of the eastern NCC. We suggest that the Jurassic-Cretaceous foundering was related to the Pacific subduction. On one hand, the Jurassic subduction may have further thickened the southeastern margin of the NCC prior to Cretaceous extension, leading to greater instability of the lower crust. On the other hand, the subduction-related magma provided heat and water that weakened the lower crust, resulting in the final foundering. The large contrast in mineralogy between the Xu-Huai eclogite-facies xenoliths and nearby Nüshan garnet-free granulite xenoliths entrained by Quaternary basalts indicates > 20 km removal of the lower crust along the southeastern margin of the NCC.

  6. Critical Metals In Western Arctic Ocean Ferromanganese Mineral Deposits (United States)

    Hein, J. R.; Spinardi, F.; Conrad, T. A.; Conrad, J. E.; Genetti, J.


    Little exploration for minerals has occurred in the Arctic Ocean due to ice cover and the remote location. Small deposits of seafloor massive sulfides that are rich in copper and zinc occur on Gakkel Ridge, which extends from Greenland to the Laptev Sea, and on Kolbeinsey and Mohns ridges, both located between Greenland and mainland Europe. However, rocks were recently collected by dredge along the western margin of the Canada Basin as part of the U.S. Extended Continental Shelf (ECS) program north of Alaska. Sample sites include steep escarpments on the Chukchi Borderland, a newly discovered seamount informally named Healy seamount, the southern part of Alpha-Mendeleev Ridge, and several basement outcrops in Nautilus Basin. These dredge hauls yielded three types of metal-rich mineralized deposits: ferromanganese crusts, ferromanganese nodules, and hydrothermal iron and manganese deposits. Chemical analyses of 43 crust and nodule samples show high contents of many critical metals needed for high-technology, green-technology, and energy and military applications, including cobalt (to 0.3 wt.%), vanadium (to 0.12 wt.%), zirconium (to 459 grams/tonne=ppm), molybdenum (to 453 g/t), the rare-earth elements (including scandium and yttrium; yttrium to 229 g/t), lithium (to 205 g/t), tungsten (to 64 g/t), and gallium (to 26 g/t). The metal contents of these Arctic Ocean crusts and nodules are comparable to those found throughout the global ocean, however, these Arctic Ocean samples are the first that have been found to be enriched in rare metal scandium. The metal contents of these samples indicate a diagenetic component. Crusts typically form by precipitation of metal oxides solely from seawater (hydrogenetic) onto rock surfaces producing a pavement, whereas nodules form by accretion of metal oxides, from both seawater and pore waters (diagenetic), around a nucleus on the surface of soft sediment. The best evidence for this diagenetic input to the crusts is that crusts typically have low lithium contents, 1-10 g/t while diagenetic nodules can have contents up to 600 g/t; the Arctic Ocean crusts have relatively high lithium contents of up to 205 g/t, indicating that these crusts may be only the second yet discovered to acquire some elements from sediment pore waters. A potential avenue for acquisition of diagenetic metals would be via release from pore waters into the bottom waters that bathe the crusts, or alternatively by partial burial of the crusts in mud. However, the overall composition of the crusts indicates predominantly a hydrogenetic origin. Hydrothermal iron hydroxide samples from the Arctic Ocean were dated using argon isotopes, which produced a Paleozoic age. This indicates that the Chukchi Platform in the SW Arctic Ocean is a piece of continental crust. This age also indicates that hydrothermal iron and manganese deposits are not temporally related to the Neogene ferromanganese crusts and nodules. Our preliminary results suggest that additional exploration in the Arctic Ocean for mineral deposits is warranted.

  7. Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Abraham, H.; Sager, W.W.; Pringle, M.S.; Frey, F.; Rao, D.G.; Levchenko, O.V.

    toward the hot spot, which transferred portions of crust from the Antarctic plate to the Indian plate, lengthening the NER. Magnetic anomalies document a small number of large spreading ridge jumps in the ocean crust immediately to the west of the NER...

  8. An elderly long-term care resident with crusted scabies


    Sandre, Matthew; Ralevski, Filip; Rau, Neil


    Crusted scabies is a highly contagious form of scabies. Altered immune response, nutritional deficiencies and modified host response are all risk factors for crusted scabies. The authors report a case involving a patient found to have a chronic maculopapular, erythematous rash with large hyperkeratotic, white and grey plaques on the soles of both feet. An ultimate diagnosis of crusted scabies was reached after a delay in diagnosis suspected to be caused by the similarity in appearance to more...

  9. The Neoproterozoic Malani magmatism of the northwestern Indian shield: Implications for crust-building processes

    Indian Academy of Sciences (India)

    Kamal K Sharma


    Malani is the largest event of anorogenic felsic magmatism (covering ?50,000km2) in India. This magmatic activity took place at ?750Ma post-dating the Erinpura granite (850 Ma) and ended prior to Marwar Supergroup (680 Ma) sedimentation. Malani eruptions occurred mostly on land, but locally sub-aqueous conditions are shown by the presence of conglomerate, grits and pillow lava. The Malani rocks do not show any type of regional deformation effects. The Malanis are characterised by bimodal volcanism with a dominant felsic component, followed by granitic plutonism and a terminal dyke phase. An angular unconformity between Malani lavas and basement is observed, with the presence of conglomerate at Sindreth, Diri, and Kankani. This indicates that the crust was quite stable and peneplained prior to the Malani activity. Similarly, the absence of any thrust zone, tectonic m´elange and tectonised contact of the Malanis with the basement goes against a plate subduction setting for their genesis. After the closure of orogenic cycles in the Aravalli craton of the northwestern shield, this anorogenic intraplate magmatic activity took place in a cratonic rift setting under an extensional tectonic regime.

  10. Computation and analysis for maximal water press of condensator's crust

    International Nuclear Information System (INIS)

    As to the failure of the condensator's crust in the system of cold circulation in a enterprise, mechanical evaluations of the maximal water press of the condensator's crust were conducted via the simplified theoretical model an the finite element numerical computation, according to the relationship of the corresponding unisonous deformation between the long fixed bolts on the condensator's crust and themselves. the results show that the structural design of the condensator's crust and the welding quality of the weld lead to these hidden trouble. (authors)

  11. Thinning and flow of Tibetan crust constrained by seismic anisotropy. (United States)

    Shapiro, Nikolai M; Ritzwoller, Michael H; Molnar, Peter; Levin, Vadim


    Intermediate-period Rayleigh and Love waves propagating across Tibet indicate marked radial anisotropy within the middle-to-lower crust, consistent with a thinning of the middle crust by about 30%. The anisotropy is largest in the western part of the plateau, where moment tensors of earthquakes indicate active crustal thinning. The preferred orientation of mica crystals resulting from the crustal thinning can account for the observed anisotropy. The middle-to-lower crust of Tibet appears to have thinned more than the upper crust, consistent with deformation of a mechanically weak layer that flows as if confined to a channel. PMID:15247475

  12. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  13. Paleomagnetism continents and oceans

    CERN Document Server

    McElhinny, Michael W; Dmowska, Renata; Holton, James R; Rossby, H Thomas


    Paleomagnetism is the study of the fossil magnetism in rocks. It has been paramount in determining that the continents have drifted over the surface of the Earth throughout geological time. The fossil magnetism preserved in the ocean floor has demonstrated how continental drift takes place through the process of sea-floor spreading. The methods and techniques used in paleomagnetic studies of continental rocks and of the ocean floor are described and then applied to determining horizontal movements of the Earth''s crust over geological time. An up-to-date review of global paleomagnetic data enables 1000 millionyears of Earth history to be summarized in terms of the drift of the major crustal blocks over the surface of the Earth. The first edition of McElhinny''s book was heralded as a "classic and definitive text." It thoroughly discussed the theory of geomagnetism, the geologicreversals of the Earth''s magnetic field, and the shifting of magnetic poles. In the 25 years since the highly successful first editio...

  14. Lunar anorthosite - Identification and distribution of remnants of the primordial crust (United States)

    Peterson, C. A.; Hawke, B. R.; Lucey, P. G.; Taylor, G. J.; Blewett, D. T.; Spudis, P. D.


    Evidence strongly suggests that Earth's moon was once covered by a magma ocean which differentiated as it cooled. In the later stages of crystallization, plagioclase feldspar formed a cumulate flotation crust composed primarily of anorthosite many kilometers thick. The concurrent and subsequent heavy bombardment experienced by the moon has disrupted or obscured much of this original crust, but portions of it appear to have remained intact, especially on the northern lunar farside and globally at depth. While some other mechanisms for the production of anorthosite, such as the differentiation of plutons, have been suggested, the great majority of anorthosite outcrops present at the surface of the moon today may be portions of the original crust. Several spectral techniques are available for remotely identifying anorthosite on the moon. They utilize multispectral data sets obtained from Earth-based telescopes or from spacecraft orbiting or flying by the moon. While the techniques are related, they differ in their strengths and weaknesses. By comparing and combining the results from the various techniques, we can increase our confidence in our understanding of the global distribution of anorthosite.

  15. Biogeochemistry of the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    salinity-low oxygen watermasses are transported into this region from the Arabian Sea, but not active denitrification. Supply of eroded materials from the Indian subcontinent during heavy discharge periods facilitates removal of organic matter from... in and exchanges among air-ocean-crust reservoirs. The study of understanding biological and geochemical processes that regulate chemical equilibria at the Earth surface can be broadly termed ?biogeochemistry?. Geochemical processes that controlled chemistry...

  16. Recrystallization temperatures in mechanically alloyed oxide-dispersion-strengthened MA956 and MA957 steels

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S. [University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)


    Previous work has demonstrated that the mechanically alloyed oxide-dispersion-strengthened steels MA956 and MA957 have significantly different crystallographic textures prior to recrystallization and that their subsequent recrystallization behaviours are also not similar. New experiments confirm that the differences in recrystallization behaviour can indeed be attributed to their initial difference in crystallographic texture. The crystallographic texture of MA957 prior to recrystallization has been manipulated so as to make it similar to that of MA956, and the two alloys have been demonstrated to behave similarly during subsequent recrystallization heat treatments. ((orig.))

  17. Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial (United States)

    Volk, Tyler


    A model of the carbonate-silicate geochemical cycle is presented that distinguishes carbonate masses produced by shallow-ocean and deep-ocean carbonate burial and shows that reasonable increases in deep-ocean burial could produce substantial warmings over a few hundred million years. The model includes exchanges between crust and mantle; transients from burial shifts are found to be sensitive to the fraction of nondegassed carbonates subducted into the mantle. Without the habitation of the open ocean by plankton such as foraminifera and coccolithophores, today's climate would be substantially colder.

  18. Global maps of the step-wise topography corrected and crustal components stripped geoids using the CRUST 2.0 model (United States)

    Tenzer, Robert; Hamayun; Vajda, Peter


    We compile global maps of the step-wise topography corrected and crustal components stripped geoids based on the geopotential model EGM'08 complete to spherical harmonic degree 180 and the CRUST 2.0 global crustal model. The spectral resolution complete to degree 180 is used to compute the primary indirect bathymetric stripping and topographic effects on the geoid, while degree 90 for the primary indirect ice stripping effect. The primary indirect stripping effects of the soft and hard sediments, and the upper, middle and lower consolidated crust components are forward modeled in spatial form using the 2 × 2 arc-deg discrete data of the CRUST 2.0 model. The ocean, ice, sediment and consolidated crust density contrasts are defined relative to the adopted reference crustal density of 2670 kg/m3. Finally we compute and apply the primary indirect stripping effect of the density contrast (relative to the mantle) of the reference crust. The constant value of -520 kg/m3 is adopted for this density contrast relative to the mantle. All data are evaluated on a 1 × 1 arc-deg geographical grid. The complete crust-stripped geoidal undulations, globally having a range of approximately 1.5 km, contain the gravitational signal coming from the global mantle lithosphere (upper mantle) morphology and density composition, and from the sub-lithospheric density heterogeneities. Large errors in the complete crust-stripped geoid are expected due to uncertainties of the CRUST 2.0 model, i.e., due to deviations of the CRUST 2.0 model density from the real earth's crustal density and due to the Moho-boundary uncertainties.

  19. Shear viscosity in magnetized neutron star crust (United States)

    Ofengeim, D. D.; Yakovlev, D. G.


    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  20. Shear viscosity in magnetized neutron star crust

    CERN Document Server

    Ofengeim, D D


    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  1. Crusting susceptibility in some allic Colombian soils

    International Nuclear Information System (INIS)

    Many lab methods were used: dry and water soil aggregates stability, instability index and erosion index and their results were related with soil characteristics like texture, Fe and Al oxides and organic matter. Soil samples collected within 0-2.5 and 2.5-5 cm of the soil surface came from terrains with many kinds of both forest and savanna intervened systems. Those results were analyzed like a completely randomized designed. It was found that significative changes in oxides content could increase soil-crusting susceptibility unless soil humus was up to was up to 4%. In this sense, pastures or its rotation with rice and leguminous offer a best alternative for intervening these natural systems. Intensive land husbandry or monocultures with low stubble soil incorporation caused an increase in physical instability at the top of soil. Dry soil stability test and instability index were most adequate for these soils

  2. Ma Ying-jeou’s Presidential Discourse

    Directory of Open Access Journals (Sweden)

    Jonathan Sullivan


    Full Text Available Despite the substantial advances made in cross-Strait relations during Ma Ying-jeou’s (Ma Yingjiu first term, the ROC president’s rhetoric varied considerably as he grappled with the difficult reality of implementing campaign and inauguration pledges to establish better relations with China while striving to maintain national respect and sovereignty. In this article, we put forward a framework for measuring, analysing and explaining this variation in President Ma’s first-term discourse. Analysing a very large number of Ma’s speeches, addresses, etc., we provide empirical assessments of how the content of Ma’s public pronouncements has developed over time, how his rhetoric varies according to the strategic context and timing of a speech, and how his discourse compares to that of his predecessor, Chen Shui-bian (Chen Shuibian. In addressing these questions, the article contributes a quantitative perspective to existing work on political discourse in Taiwan and to the growing methodological and applied literature on how to systematically analyse Chinese political text.

  3. Calculation of fluid fluxes in Earth's crust (United States)

    Lasaga, Antonio C.; Rye, Danny M.; Lüttge, Andreas; Bolton, Edward W.


    The movement of fluids in the crust and upper mantle not only lead to important mineral reactions but also play an essential role in the geochemical cycling of elements and in controlling global change. Numerous papers have focused on calculation of fluid fluxes driving metamorphic reactions in the earth's crust. The extent of reaction in nature has been "inverted" to predict the total amount of fluid that was required to drive that much reaction. These models, although based on thermodynamic equilibrium, have extended the earlier concept of water-rock ratio. Any quantitative treatment of the fluid fluxes and the relationship between these fluxes and other variables such as temperature and mineral abundances requires a kinetic model. A simple model is presented that incorporates the essential dynamics of metamorphic processes including both heat flow by conduction and convection as well as fluid flow in and out of a representative volume. Overall mineral reactions can then take place within this rock volume in response to internal and external factors. The production and subsequent expulsion of excess fluids (H 2O and CO 2) as a result of these reactions leads to increased fluid fluxes, which the model can also handle. Using this kinetic model, the assumption of thermodynamic equilibrium can be tested and forward calculations can compare the numbers "inverted" for total integrated fluid fluxes based on equilibrium with the "actual" integrated fluid fluxes. Other effects such as changes in the temperature field or the presence of dispersion/diffusion can also be readily quantified with this kinetic model. The nontrivial consequences of heterogeneity in natural systems make the kinetic approach much more essential but at the same time much more "invertible" than earlier approaches. Ultimately, the effects of the rates of overall mineral reactions and their interplay with the other kinetic processes taking place in these open systems have to be evaluated to guide us in developing much more powerful and correct ways of extracting fluid velocities from petrologic field data.

  4. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  5. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments (United States)

    Rapp, J. F.; Draper, D. S.


    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  6. Experimental Fractional Crystallization of the Lunar Magma Ocean (United States)

    Rapp, J. F.; Draper, D. S.


    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  7. Ocean Acidification (United States)

    Iglesias-Rodriguez, Maria Debora

    The oceans play a central role in the maintenance of life on Earth. Oceans provide extensive ecosystems for marine animals and plants covering two-thirds of the Earth's surface, are essential sources of food, economic activity, and biodiversity, and are central to the global biogeochemical cycles. The oceans are the largest reservoir of carbon in the Planet, and absorb approximately one-third of the carbon emissions that are released to the Earth's atmosphere as a result of human activities. Since the beginning of industrialization, humans have been responsible for the increase in one greenhouse gas, carbon dioxide (CO2), from approximately 280 parts per million (ppm) at the end of the nineteenth century to the current levels of 390ppm. As well as affecting the surface ocean pH, and the organisms living at the ocean surface, these increases in CO2 are causing global mean surface temperatures to rise.

  8. Provenance And Tectonomagmatic Setting Of The Santa Marta Schists, Northern Colombia Caribbean Region: Insights On The Styles Of Growth And Approach Of Caribbean Intra- Oceanic Domains To The Continental Margin (United States)

    Cardona, A.; Jaramillo, C.; Ojeda, G.; Ruiz, J.; Valencia, V.; Weber, M.


    The life cycle of an intra-oceanic terranemincludes different phases and styles of magmatic growth, accretion with other terranes and translation before reaching a continental margin. In order to unveil the nature of these phases in crystalline rocks from northern Colombia, U/Pb LA-MC-ICP-MS detrital geochronology and whole rock geochemical data were obtained from stacks of intercalated metavolcanic-sedimentary rocks of the Santa Marta Schists in the Sierra Nevada de Santa Marta. Immobile elements whole rock geochemistry from greenschist to amphibolite facies units are characterized by low to moderate LREE/HREE, variable Th enrichment and weakly negative Nb and Ti anomalies, which are similar to island arc and MORB signatures. The intercalated metasedimentary rocks show a REE pattern similar to the PAAS and high Zr/Sc vs Th/Sc ratios, which suggest a felsic and highly diferentiated upper crust sources for the protoliths. Detrital zircons from three different units were obtained, The maximum depositional age for the northwestern unit is limited to the late Cretaceous, with a major peak of 83 Ma. Variable input of older crustal sources with Jurassic (153 Ma), Permo-Triassic (250-290 Ma), Cambrian to Late Neoproterozoic (520-560 Ma) and Middle Mesoproterozic (1000-1500 Ma) ages which are clearly recognized in older units of the Sierra Nevada de Santa Marta massif and the northern South American basement are also recorded. This type of volcano-sedimentary record within an intra-oceanic arc bears strong similarities with the modern Lesser-Antilles and the Tonga-Kermadec arcs, where continentally derived sediments can be transported houndred of kilometers to the fore-arc, back-arc or the accretionary prism of the active intra-oceanic arc. This record also suggests that this arc has an intra-Americas position, near to its final accretionary stop. Although the metamorphic overprint has obliterated the stratigraphic relations, apparent variations of the LREE/HREE in the metavolcanics and the preservation of continentally derived sediments, can be ascribed to variation in the sediment subduction vs accretion sediment budget in an evolving back-arc basin. Similar lithostratigraphic associations within the Caribbean metamorphosed and unmetamorphosed magmatic and sedimentary units can be related to a similar detrital continental input, whereas, the existence of coherent metamorphosed pre-Mesozoic crustal elements within subduction-accretion complexes, may reflect the existence of continental islands that were detached during the initial proto-Caribbean rifting phases and mixed within intra-oceanic accretionary prisms.

  9. New Zealand Maritime Glaciation: Millennial-Scale Southern Climate Change Since 3.9 Ma (United States)

    Carter, Robert M.; Gammon, Paul


    Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.

  10. New Zealand maritime glaciation: millennial-scale southern climate change since 3.9 Ma. (United States)

    Carter, Robert M; Gammon, Paul


    Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series. PMID:15192226

  11. MaRIE Undulator & XFEL Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Laboratory; Marksteiner, Quinn R. [Los Alamos National Laboratory; Anisimov, Petr Mikhaylovich [Los Alamos National Laboratory; Buechler, Cynthia Eileen [Los Alamos National Laboratory


    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  12. 70 Ma nonmarine diatoms from northern Mexico (United States)

    Chacón-Baca, Elizabeth; Beraldi-Campesi, H.; Cevallos-Ferriz, S. R. S.; Knoll, A. H.; Golubic, S.


    Carbonaceous cherts of the Tarahumara Formation, exposed near Huepac, Sonora, Mexico, contain abundant diatom frustules occurring as benthic filamentous colonies. Stratigraphic and paleontological observations indicate that Tarahumara sediments accumulated in a nonmarine setting; radiometric ages on encompassing volcanic rocks delimit their depositional age to ca. 70 Ma. Tarahumara fossils therefore extend the paleontological record of nonmarine diatoms from middle Eocene to Late Cretaceous. Preserved populations include forms similar to species of the extant genera Amphora and Melosira, as well as filament-forming araphid pennates comparable to species of Fragilaria and Tabellaria. Tarahumara fossils indicate that by 70 Ma, nonmarine diatoms had achieved considerable environmental as well as taxonomic diversity.

  13. M&A information technology best practices

    CERN Document Server

    Roehl-Anderson, Janice M


    Add value to your organization via the mergers & acquisitions IT function  As part of Deloitte Consulting, one of the largest mergers and acquisitions (M&A) consulting practice in the world, author Janice Roehl-Anderson reveals in M&A Information Technology Best Practices how companies can effectively and efficiently address the IT aspects of mergers, acquisitions, and divestitures. Filled with best practices for implementing and maintaining systems, this book helps financial and technology executives in every field to add value to their mergers, acquisitions, and/or divestitures via the IT

  14. Multidisciplinary Collaborations in Mid-Ocean Ridge Research (United States)

    Rubin, Kennneth H.; Fornari, Daniel


    The global mid-ocean ridge (MOR) is one of Earth's most fundamental geologic structures. Active volcanic, tectonic, hydrothermal, and biological processes occurring at the MOR affect nearly every attribute of the world's oceans and oceanic crust. For the past quarter century the overarching goal of the U.S. National Science Foundation (NSF)-funded multidisciplinary Ridge 2000 program ( and its predecessor, Ridge Interdisciplinary Global Experiments (RIDGE), here collectively called “R2K,” has been to use observations, experiments, and models to answer fundamental questions about oceanic spreading center processes. Since its inception, R2K has worked to develop a holistic understanding of MORs. There are multiple interrelated consequences of oceanic crust generation at MORs, including transfer of material and energy from the mantle to the crust and ocean; impacts on marine ecology; and temporal, spatial, and rate-dependent interactions between biological and geological processes. Consequently, a diverse yet tightly knit community of collaborating scientists, including geologists, chemists, geophysical modelers, microbiologists, and oceanographers, has developed under R2K programs. This research community has spanned multiple generations of investigative effort, requiring it to confront transformations in communications technology, tools for use and access of data, and attitudes about cooperative approaches to scientific discovery. The tools and approaches R2K has used to enhance cross-disciplinary understanding of complex problems are adaptable to other multidisciplinary research efforts.

  15. Geophysics of an Oceanic Ice Shell on Snowball Earth (United States)

    Gaidos, E. J.


    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  16. Thermalisation time and specific heat of neutron stars crust

    CERN Document Server

    Fortin, M; Margueron, J; Sandulescu, N


    We discuss the thermalisation process of the neutron stars crust described by solving the heat transport equation with a microscopic input for the specific heat of baryonic matter. The heat equation is solved with initial conditions specific to a rapid cooling of the core. To calculate the specific heat of inner crust baryonic matter, i.e., nuclear clusters and unbound neutrons, we use the quasiparticle spectrum provided by the Hartree-Fock-Bogoliubov approach at finite temperature. In this framework we analyse the dependence of the crust thermalisation on pairing properties and on cluster structure of inner crust matter. It is shown that the pairing correlations reduce the crust thermalisation time by a very large fraction. The calculations show also that the nuclear clusters have a non-negligible influence on the time evolution of the surface temperature of the neutron star.

  17. Persistent crust-core spin lag in neutron stars

    CERN Document Server

    Glampedakis, Kostas


    It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus' field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron star's birth.

  18. Persistent crust-core spin lag in neutron stars (United States)

    Glampedakis, Kostas; Lasky, Paul D.


    It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun-down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus' field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron star's birth.

  19. Reference crust-mantle density contrast beneath Antarctica based on the Vening Meinesz-Moritz isostatic inverse problem and CRUST2.0 seismic model

    Scientific Electronic Library Online (English)

    Robert, Tenzer; Mohammad, Bagherbandi.


    Full Text Available El contraste de densidad de la discontinuidad de Mohorovicic (Moho) debajo de la Antártida fue estimado con base en la solución del problema isostático Vening Meinesz-Moritz y a partir de datos obtenidos con el modelo sísmico de la corteza global (CRUST2.0). La solución se encontró a través de un aj [...] uste al método de mínimos cuadrados por el método de elementos. El modelo geopotencial global (GOCO02S), el modelo topográfico/batimétrico (DTM2006.0), los datos de espesor del hielo para la Antártida (reunidos por el proyecto BEDMAP) y el modelo sísmico de corteza global (CRUST2.0) fueron utilizados para calcular las anomalías gravitatorias isostáticas. Ya que los datos de CRUST2.0 para las estructuras de la corteza en la Antártida no son exactos (debido a la falta de información sísmica para esta parte del planeta), el contraste de densidad de la Discontinuidad de Mohorovicic fue determinado a partir de un modelo de corteza homogéneo que tiene una densidad constante de 2,670 kg/m³. Los valores estimados del contraste de densidad de la Moho se encontraron entre 160 y 682kg/m³. La distribución espacial del contraste de densidad de la Moho exhibe mayores rasgos en la configuración de la plancha tectónica de la Antártida continental y su alrededor oceánico. El valor máximo encontrado excede los 500 kg/m³ y se ubica en la parte Este continental, con extensión en las Montañas Transantárticas. El contraste de densidad de la Moho (zona de transición entre la corteza y el manto terrestre) en el Oeste de la Antártida osciló entre 400-500 kg/m³, excepto para la máxima local de ? 550 kg/m³, en el centro de la Península Antártida. Abstract in english The crust-mantle (Moho) density contrast beneath Antarctica was estimated based on solving the Vening Meinesz-Moritz isostatic problem and using constraining information from a seismic global crustal model (CRUST2.0). The solution was found by applying a least-squares adjustment by elements method. [...] Global geopotential model (GOCO02S), global topographic/bathymetric model (DTM2006.0), ice-thickness data for Antarctica (assembled by the BEDMAP project) and global crustal model (CRUST2.0) were used for computing isostatic gravity anomalies. Since CRUST2.0 data for crustal structures under Antarctica are not accurate (due to a lack of seismic data in this part of the world), Moho density contrast was determined relative to a reference homogenous crustal model having 2,670 kg/m³ constant density. Estimated values of Moho density contrast were between 160 and 682 kg/m³. The spatial distribution of Moho density contrast resembled major features of the Antarctic’s continental and surrounding oceanic tectonic plate configuration; maxima exceeding 500 kg/m³ were found throughout the central part of East Antarctica, with an extension beneath the Transantarctic mountain range. Moho density contrast in West Antarctica decreased to 400-500 kg/m³, except for local maxima up to ? 550 kg/m³ in the central Antarctic Peninsula.

  20. Structure of the Crust Beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    International Nuclear Information System (INIS)

    The joint inversion of Rayleigh wave group velocities and receiver functions was carried out to investigate the crustal and uppermost mantle structures beneath Cameroon. This was achieved using data from 32 broadband seismic stations installed for 2 years across Cameroon. The Moho depth estimates reveal that the Precambrian crust is variable across the country and shows some significant differences compared to other similar geologic units in East and South Africa. These differences suggest that the setting of the Cameroon Volcanic Line (CVL) and the eastward extension of the Benue Trough have modified the crust of the Panafrican mobile belt in Cameroon by thinning beneath the Rift area and CVL. The velocity models obtained from the joint inversion show at most stations, a layer with shear wave velocities ? 4.0 km/s, indicating the presence of a mafic component in the lower crust, predominant beneath the Congo Craton. The lack of this layer at stations within the Panafrican mobile belt may partly explain the crustal thinning observed beneath the CVL and rift area. The significant presence of this layer beneath the Craton, results from the 2100 Ma magmatic events at the origin of the emplacement of swarms of mafic dykes in the region. The CVL stations are underlain by a crust of 35 km on average except near Mt-Cameroon where it is about 25 km. The crustal thinning observed beneath Mt. Cameroon supported by the observed positive gravity anomalies here, suggests the presence of dense astenospheric material within the lithosphere. Shear wave velocities are found to be slower in the crust and uppermost mantle beneath the CVL than the nearby tectonic terrains, suggesting that the origin of the line may be an entirely mantle process through the edge-flow convection process. (author)

  1. IODP Expeditions 304 & 305 Characterize the Lithology, Structure, and Alteration of an Oceanic Core Complex

    Directory of Open Access Journals (Sweden)

    Christopher J. MacLeod


    Full Text Available More than forty years after the Mohole Project (Bascom, 1961, the goal of drilling a complete section through in situ oceanic crust remains unachieved. Deep Sea Drilling Project – Ocean Drilling Program (DSDP-ODP Hole 504B within the eastern Pacifi c (Alt et al., 1993 is the deepest hole ever drilled into ocean crust (2111 mbsf, but it failed to reach lower crustal plutonic rocks below the pillow basalts and sheeted dikes. IODP Expeditions 309 and 312 eventuallyrecovered the long-sought transition from sheeted dikes into underlying gabbros by drilling into very fast-spreading Pacifi c crust (Wilson et al., 2006. The lithology and structure of oceanic crust produced at slow-spreading ridges are heterogeneous (e.g., Cannat et al., 1997 and offer unique drilling access to lower crust and upper mantle rocks. After ODP Hole 735B penetrated 1500 m of gabbro at the Southwest Indian Ridge (Dick et al., 2000, IODP Expeditions 304 and 305 recently recovered just over 1400 m of little-deformed, gabbroic lower crust from a tectonic window along the slowspreading Mid-Atlantic Ridge.

  2. A Continuous History of Plume-Influenced Rifting in the North Atlantic Ocean (United States)

    Parnell-Turner, Ross; White, Nicky; Henstock, Tim; Murton, Bramley; Maclennan, John; Jones, Stephen


    Evolution of the North Atlantic Ocean has been dominated the Iceland mantle plume. Here we present an unbroken record of variable mantle plume activity stretching back 55 Ma, through analysis of regional seismic reflection images. Residual depth anomalies of oceanic lithosphere, long wavelength gravity anomalies and seismic tomographic models show that this convective upwelling reaches from Baffin Bay to Western Norway, and from offshore Newfoundland to Spitzbergen. At fringing passive margins, there is strong evidence for present-day dynamic support of the crust (e.g. Scotland, Western Norway). The Iceland plume is bisected by a mid-oceanic ridge, which provides a record of the temporal evolution of the plume. Transient behavior of the plume is indirectly recorded within the fabric of oceanic floor south of Iceland. We exploit regional seismic reflection profiles that traverse the oceanic basin between northwest Europe and Greenland. A diachronous pattern of V-shaped ridges is imaged beneath a thickening blanket of sediment, revealing a complete record of transient periodicity that can be traced continuously. This periodicity increases from ~3 to ~8 Myr with clear evidence for minor, but systematic, asymmetric crustal accretion. V-shaped ridges grow with time and reflect small (e.g. 5-30°C) changes in mantle temperature, consistent with quasi-periodic generation of hot solitary waves triggered by growth of thermal boundary layer instabilities within the mantle. Our continuous record of convective activity suggests that the otherwise uniform thermal subsidence of sedimentary basins, which fringe the North Atlantic Ocean, has been periodically interrupted by transient uplift events. These elevation changes can explain a suite of diverse observations from the geologic record. Regional Paleogene erosion surfaces in the Faroe-Shetland Basin, the punctuated deposition of contourite drifts, and the history of denudation on the UK continental shelf can all be explained by transient mantle plume behaviour. These manifestations of convective activity should lead to improved insights into the fluid dynamics of the mantle, with implications for the subsidence history of sedimentary elsewhere.

  3. Fabrication technology for ODS Alloy MA957

    International Nuclear Information System (INIS)

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule

  4. Ocean Color (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...


    Directory of Open Access Journals (Sweden)

    V. N. Glaznev


    Full Text Available The complex geophysical 3D model of the Earth's crust and the upper mantle is created for the Archaean Karelian Craton and the Late Palaeoproterozoic accretionary Svecofennian Orogen of the southeastern Fennoscandian Shield with the use of methods of complex inversion of geophysical data based on stochastic description of interrelations of physical properties of the medium (density, P-wave velocity, and heat generation. To develop the model, we use results of deep seismic studies, gravity and surficial heat flow data on the studied region. Numerical solutions of 3D problems are obtained in the spherical setting with an allowance for the Earth's surface topography. The geophysical model is correlated with the regional geological data on the surface and results of seismic CMP studies along 4B, FIRE-1 and FIRE-3-3A profiles. Based on results of complex geophysical simulation and geological interpretation of the 3D model, the following conclusions are drawn. (1 The nearly horizontal density layering of the continental crust is superimposed on the previously formed geological structure; rock differentiation by density is decreasing with depth; the density layering is controlled by the recent and near-recent state of the crust, but can be disturbed by the latest deformations. (2 Temperature variations at the Moho are partially determined by local variations of heat generation in the mantle, which, in turn, are related to local features of its origin and transformation. (3 The concept of the lower continental crust being a reflectivity zone and the concept of the lower continental crust being a layer of high density and velocity are not equivalent: the lower crust is the deepest, high-density element of near-horizontal layering, whereas the seismic image of the reflectivity zone is primarily related to transformation of the crust as a result of magmatic under- and intraplating under conditions of extension and mantle-plume activity. (4 At certain combinations of crustal thickness and temperature at the level of Moho discontinuity, the crust in a platform region can be transformed into eclogites. In this case, the crust–mantle boundary is determined by quantitative proportions of the rocks that underwent eclogitization or escaped this process and by corresponding density and velocity values. (5 High compaction of rocks in the crust under lithostatic loading cannot be explained by «simple» concepts of metamorphism and/or rock compaction, which are based on laboratory studies of rock samples and mathematical simulations; this is an evidence of the existence of additional, quite strong mechanisms providing for reversible changes of the rocks.

  6. Coastal Analysis Submission for Plymouth County, MA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping (April 2003) and Atlantic Ocean...

  7. Breaking stress of neutron star crust

    International Nuclear Information System (INIS)

    Complete text of publication follows. The breaking stress (the maximum of the stress-strain curve) of neutron star crust is important for neutron star physics including pulsar glitches, emission of gravitational waves from static mountains, and flares from star quakes. We perform many molecular dynamic simulations of the breaking stress at different coupling parameters (inverse temperatures), strain rates and composition of matter. We describe our results with the Zhurkov model of strength. We apply this model to estimate the breaking stress for timescales ?1 s - 1 year, which are most important for applications, but much longer than can be directly simulated. At these timescales the breaking stress depends strongly on the temperature. For coupling parameter ?<200 matter breaks at very small stress, if it is applied for a few years. This viscoelastic creep can limit the lifetime of mountains on neutron stars. We also suggest an alternative model of timescale-independent breaking stress, which can be used to estimate an upper limit on the breaking stress. This work was partially supported by the Russian Foundation for Basic Research (grant 11-02-00253-a), by the State Program 'Leading Scientific Schools of Russian Federation' (grant NSh 3769.2010.2), by the President grant for young Russian scientists (MK-5857.2010.2), by United States DOE grant (DE-FG02-87ER40365) and by Shared University Research grants from IBM, Inc. to Indiana University.

  8. Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean


    Frey, FA; Coffin, MF; Wallace, PJ; Weis, D; Zhao , X.; Wise Jr, SW; Wähnert, V; Teagle, DAH; Saccocia, PJ; Reusch, DN; Pringle, MS; Nicolaysen, KE; Neal, CR; Müller, RD; Moore, CL


    Oceanic plateaus form by mantle processes distinct from those forming oceanic crust at divergent plate boundaries. Eleven drillsites into igneous basement of Kerguelen Plateau and Broken Ridge, including seven from the recent Ocean Drilling Program Leg 183 (1998-99) and four from Legs 119 and 120 (1987-88), show that the dominant rocks are basalts with geochemical characteristics distinct from those of mid-ocean ridge basalts. Moreover, the physical characteristics of the lava flows and the p...

  9. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean


    Frey, F.A.; Coffin, M.F.; Wallace, P.J.; Weis, D.; Zhao, X.; Wise, S.W.; Wahnert, V.; D. A. H. Teagle; Saccocia, P.J.; Reusch, D.N.; Pringle, M.S.; Nicolaysen, K. E.; Neal, C. R.; Muller, R.D.; Moore, C L


    Oceanic plateaus form by mantle processes distinct from those farming oceanic crust at divergent plate boundaries. Eleven drillsites into igneous basement of Kerguelen Plateau and Broken Ridge, including seven from the recent Ocean Drilling Program Leg 183 (1998-99) and four from Legs 119 and 120 (1987-88), show that the dominant rocks are basalts with geochemical characteristics distinct from those of mid-ocean ridge basalts. Moreover, the physical characteristics of the lava flows and the p...

  10. Gold in the oceans through time (United States)

    Large, Ross R.; Gregory, Daniel D.; Steadman, Jeffrey A.; Tomkins, Andrew G.; Lounejeva, Elena; Danyushevsky, Leonid V.; Halpin, Jacqueline A.; Maslennikov, Valeriy; Sack, Patrick J.; Mukherjee, Indrani; Berry, Ron; Hickman, Arthur


    During sedimentation and diagenesis of carbonaceous shales in marine continental margin settings, Au is adsorbed from seawater and organic matter and becomes incorporated into sedimentary pyrite. LA-ICPMS analysis of over 4000 sedimentary pyrite grains in 308 samples from 33 locations around the world, grouped over 123 determined ages, has enabled us to track, in a first order sense, the Au content of the ocean over the last 3.5 billion years. Gold was enriched in the Meso- and Neoarchean oceans, several times above present values, then dropped by an order of magnitude from the first Great Oxidation Event (GOE1) through the Paleoproterozoic to reach a minimum value around 1600 Ma. Gold content of the oceans then rose, with perturbations, through the Meso- and Neoproterozoic, showing a steady rise at the end of the Proterozoic (800 to 520 Ma), which most likely represents the effects of the second Great Oxidation Event (GOE2). Gold in the oceans was at a maximum at 520 Ma, when oxygen in the oceans rose to match current maximum values. In the Archean and Proterozoic, the Au content of seawater correlates with the time distribution of high-Mg greenstone belts, black shales and banded iron formations, suggesting that increases in atmospheric oxygen and marine bio-productivity, combined with the higher background of Au in komatiitic and Mg-rich basalts were the first order causes of the pattern of Au enrichment in seawater. We suggest the lack of major Au deposits from 1800 to 800 Ma, is explained by the low levels of Au in the oceans during this period.

  11. The dual role of soil crusts in desertification (United States)

    Assouline, S.; Thompson, S. E.; Chen, L.; Svoray, T.; Sela, S.; Katul, G. G.


    Vegetation cover in dry regions is a key variable in determining desertification. Soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here it is shown how physical crusts can act as either drivers of or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  12. The timescales of magma evolution at mid-ocean ridges (United States)

    Brandl, Philipp A.; Regelous, Marcel; Beier, Christoph; O'Neill, Hugh St. C.; Nebel, Oliver; Haase, Karsten M.


    Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at fast-spreading ridges, magma compositions vary over < 100 to 1000 a, likely due to variations in the relative rates of crystallisation and melt recharge. However, on longer timescales of 10 to 100 ka, variations in the composition of the primitive melt feeding the ridge lead to chemical variations in the erupted lavas, likely as a function of thermal and/or chemical heterogeneity of the mantle source. The further understanding of these temporal variations in magma composition, especially at shorter timescales of less than a few centuries, is a promising area for future research.

  13. Ocean gravitational-modes in transient neutron stars

    CERN Document Server

    Deibel, Alex


    The neutron star ocean is a plasma of ions and electrons that extends from the base of the neutron star's envelope to a depth where the plasma crystallizes into a solid crust. During an accretion outburst in an X-ray transient, material accumulates in the envelope of the neutron star primary. This accumulation compresses the neutron star's outer layers and induces nuclear reactions in the ocean and crust. Accretion-driven heating raises the ocean's temperature and increases the frequencies of g-modes in the ocean; when accretion halts, the ocean cools and ocean g-mode frequencies decrease. If the observed low frequency quasi-periodic oscillations on accreting neutron stars are g-modes in the ocean, the observed quasi-periodic oscillation frequencies will increase during outburst --- reaching a maximum when the ocean temperature reaches steady state --- and subsequently decrease during quiescence. For time-averaged accretion rates during outburst between $\\langle \\dot{M} \\rangle = 0.1 \\textrm{--} 1.0\\, \\dot{\\r...

  14. The Origin of Voluminous Dacite (vs. Andesite) at Mature, Thick Continental Arcs: A Reflection of Processes in the Deep Crust (United States)

    Lange, R. A.


    An outstanding question is why some continental arc segments are characterized by voluminous eruptions of dacite (65-70 wt% SiO2), whereas others erupt more andesite (58-64 wt% SiO2) than any other magma type. An example of the former is the Altiplano-Puna region of the central Andean arc, which has erupted a predominance of dacite over all magma types 10-1 Ma (de Silva, 1989). In contrast, a 200-km arc segment of the Mexican volcanic arc (Michoacán-Guanajuato arc segment) has erupted ~75% andesite, ~26% basaltic andesite and Guanajuato arc segment, on the basis of phenocryst modes, major- and trace-element data, as well as phase-equilibrium experiments from the literature, it is proposed that the andesites were derived by partial melting (>20%) of hornblende-rich (~40%) gabbronorite in the deep crust, driven by mantle-derived basalt intrusions at depths of 30-40 km. The absence of any dacite or rhyolite along this arc segment indicates that interstitial liquid from crystal-rich andesites never segregated to form eruptible magma. Thus, little upper-crust differentiation occurred along this arc segment. On the basis of phase-equilibrium experiments in the literature (e.g., Sisson et al., 2005), it is proposed that rhyolite and dacite did form during partial melting of the lower arc crust, but at melt fractions too low (≤15%) to permit efficient transport to the upper crust (Vigneresse and Tikoff, 1999). It is further proposed that the reason why dacite is so abundant at mature thick continental arcs (e.g., Altiplano-Puno complex) may be because mantle-derived basalts are primarily emplaced at similar depths (~30-40 km) in continental arc crustal columns. If so, in the central Andean arc, a depth of 30-40 km is within the middle dioritic crust (Graeber and Asch, 1999). Partial melts of hornblende diorite (vs. hornblende gabbro) are predicted to be dacitic (vs. andesitic) at melt fractions of 20-25%, which permits transport to the upper crust. It is therefore proposed that it is deep crustal processes that determine whether andesite or dacite is the most voluminous magma type emplaced into the upper crust and erupted at arcs.

  15. An elderly long-term care resident with crusted scabies. (United States)

    Sandre, Matthew; Ralevski, Filip; Rau, Neil


    Crusted scabies is a highly contagious form of scabies. Altered immune response, nutritional deficiencies and modified host response are all risk factors for crusted scabies. The authors report a case involving a patient found to have a chronic maculopapular, erythematous rash with large hyperkeratotic, white and grey plaques on the soles of both feet. An ultimate diagnosis of crusted scabies was reached after a delay in diagnosis suspected to be caused by the similarity in appearance to more common skin conditions such as psoriasis. After topical permethrin was unsuccessful, intermittent dosing of oral ivermectin resulted in a rapid reduction in cutaneous plaques. PMID:25798153

  16. Solvent evaporation of spin cast films crust effects

    CERN Document Server

    De Gennes, Pierre Gilles


    When a glassy polymer film is formed by evaporation, the region near the free surface is polymer rich and becomes glassy first, as noticed long ago by Scriven et al. We discuss the thickness of this "crust" and the time interval where it is present -before freezing of the whole film. We argue that the crust is under mechanical tension, nd should form some cracks. This may be the source of the roughness observed on the final, dry films, when the solvent vapor pressure is high (and leads to thin crusts).

  17. LOCV approach and core-crust transition in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Bigdeli, M.; Elyasi, S. [University of Zanjan, Department of Physics, Zanjan (Iran, Islamic Republic of)


    In this paper, we have calculated the core-crust transition parameters and the location of inner edge for crust in the neutron stars. We have also investigated the structural properties of neutron stars, such as mass and radius for the core and crust, the moment of inertia, and its crustal fraction. Here we have employed the lowest-order constrained variational approach and used the UV{sub 14} + TNI and AV{sub 18} potentials to compute the equation of state of nuclear matter. Finally, we have compared our results with those of other techniques. (orig.)

  18. An elderly long-term care resident with crusted scabies (United States)

    Sandre, Matthew; Ralevski, Filip; Rau, Neil


    Crusted scabies is a highly contagious form of scabies. Altered immune response, nutritional deficiencies and modified host response are all risk factors for crusted scabies. The authors report a case involving a patient found to have a chronic maculopapular, erythematous rash with large hyperkeratotic, white and grey plaques on the soles of both feet. An ultimate diagnosis of crusted scabies was reached after a delay in diagnosis suspected to be caused by the similarity in appearance to more common skin conditions such as psoriasis. After topical permethrin was unsuccessful, intermittent dosing of oral ivermectin resulted in a rapid reduction in cutaneous plaques. PMID:25798153

  19. Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey (United States)

    Delph, Jonathan R.; Biryol, C. Berk; Beck, Susan L.; Zandt, George; Ward, Kevin M.


    The Anatolian Plate is composed of different lithospheric blocks and ribbon continents amalgamated during the closure of the Paleotethys Ocean and Neotethys Ocean along a subduction margin. Using ambient noise tomography, we investigate the crustal and uppermost mantle shear wave velocity structure of the Anatolian Plate. A total of 215 broad-band seismic stations were used spanning 7 yr of recording to compute 13 778 cross-correlations and obtain Rayleigh wave dispersion measurements for periods between 8 and 40 s. We then perform a shear wave inversion to calculate the seismic velocity structure of the crust and uppermost mantle. Our results show that the overall crustal shear wave velocities of the Anatolian crust are low (˜3.4 km s-1), indicative of a felsic overall composition. We find that prominent lateral seismic velocity gradients correlate with Tethyan suture zones, supporting the idea that the neotectonic structures of Turkey are exploiting the lithospheric weaknesses associated with the amalgamation of Anatolia. Anomalously slow shear wave velocities (˜3.15 km s-1 at 25 km) are located in the western limb of the Isparta Angle in southwestern Turkey. In the upper crust, we find that these low shear wave velocities correlate well with the projected location of a carbonate platform unit (Bey Da?lari) beneath the Lycian Nappe complex. In the lower crust and upper mantle of this region, we propose that the anomalously slow velocities are due to the introduction of aqueous fluids related to the underplating of accretionary material from the underthrusting of a buoyant, attenuated continental fragment similar to the Eratosthenes seamount. We suggest that this fragment controlled the location of the formation of the Subduction-Transform Edge Propagator fault in the eastern Aegean Sea during rapid slab rollback of the Aegean Arc in early Miocene times. Lastly, we observe that the uppermost mantle beneath continental Anatolia is generally slow (˜4.2 km s-1), indicating higher than usual temperatures consistent with the influx of asthenosphere to shallow depths as a result of the segmentation and break-up of the subducting African lithosphere.

  20. El Hierro's floating stones as messengers of crust-magma interaction at depth (United States)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.


    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up and vesiculate. The "floating stones" from El Hierro thus represent the products of crust-magma interaction beneath the Canary Islands, but is probably relevant in most volcanic areas and tectonic settings. In addition, xenolith devolatilisation has important general implications for the mechanics of crustal recycling, magma emplacement into the upper crust and volatile release from active volcanic systems.

  1. MaJAZ1 Attenuates the MaLBD5-Mediated Transcriptional Activation of Jasmonate Biosynthesis Gene MaAOC2 in Regulating Cold Tolerance of Banana Fruit. (United States)

    Ba, Liang-Jie; Kuang, Jian-Fei; Chen, Jian-Ye; Lu, Wang-Jin


    Previous studies indicated that methyl jasmonate (MeJA) treatment could effectively reduce the chilling injury of many fruits, including banana, but the underlying mechanism is poorly understood. In this study, one lateral organ boundaries (LOB) domain (LBD) gene, designated as MaLBD5, was isolated and characterized from banana fruit. Expression analysis revealed that accumulation of MaLBD5 was induced by cold temperature and MeJA treatment. Subcellular localization and transactivation assays showed that MaLBD5 was localized to the nucleus and possessed transcriptional activation activity. Protein-protein interaction analysis demonstrated that MaLBD5 physically interacted with MaJAZ1, a potential repressor of jasmonate signaling. Furthermore, transient expression assays indicated that MaLBD5 transactivated a jasmonate biosynthesis gene, termed MaAOC2, which was also induced by cold and MeJA. More interestingly, MaJAZ1 attenuated the MaLBD5-mediated transactivation of MaAOC2. These results suggest that MaLBD5 and MaJAZ1 might act antagonistically in relation to MeJA-induced cold tolerance of banana fruit, at least partially via affecting jasmonate biosynthesis. Collectively, our findings expand the knowledge of the transcriptional regulatory network of MeJA-mediated cold tolerance of banana fruit. PMID:26760434

  2. Transition metal isotope fractionation in marine hydrothermal deposits of the Mohns Ridge, North Atlantic Ocean


    Möller, Kirsten


    Seafloor hydrothermal vent systems form along mid-ocean ridges in all of the Earth’s oceans. They have a major impact on the chemical exchange between the lithosphere and the hydrosphere, as vast volumes of seawater cycle through these systems, thereby interacting with young, oceanic crust. Furthermore, seafloor hydrothermal vent systems provide an excellent environment for organisms to thrive, resulting in diverse and unique vent faunas. Due to their favourable ecological cond...

  3. Direct measurements of oceanic crustal density at the Northern Juan de Fuca Ridge (United States)

    Gilbert, Lisa A.; Johnson, H. Paul

    Density and porosity of oceanic crust are critically important to understanding the circulation of hydrothermal fluid at mid-ocean ridges. To determine these parameters directly, we completed a fixed, on-bottom gravity survey on the Endeavour Segment of the Juan de Fuca Ridge, which is a well studied spreading center that is both hydrothermally and tectonically active. A Bell-Aerospace gravity meter mounted within the submersible ALVIN was used to make gravity measurements from the floor of the axial valley to the summit of the west axial ridge. Analysis of these data gave a density of 2240±150 kg/m³ for the upper 130 m of crust. Comparison of the outcrop density with that of recovered rock samples resulted in a calculated porosity of 38±4%. Forward modeling of the seafloor gravity data indicated that both the valley floor and bounding walls have unusually low density crust that is flanked by higher density crust.

  4. Model for Analysis of the Energy Demand (MAED) users' manual for version MAED-1

    International Nuclear Information System (INIS)

    This manual is organized in two major parts. The first part includes eight main sections describing how to use the MAED-1 computer program and the second one consists of five appendices giving some additional information about the program. Concerning the main sections of the manual, Section 1 gives a summary description and some background information about the MAED-1 model. Section 2 extends the description of the MAED-1 model in more detail. Section 3 introduces some concepts, mainly related to the computer requirements imposed by the program, that are used throughout this document. Sections 4 to 7 describe how to execute each of the various programs (or modules) of the MAED-1 package. The description for each module shows the user how to prepare the control and data cards needed to execute the module and how to interpret the printed output produced. Section 8 recapitulates about the use of MAED-1 for carrying out energy and electricity planning studies, describes the several phases normally involved in this type of study and provides the user with practical hints about the most important aspects that need to be verified at each phase while executing the various MAED modules

  5. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif


    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth....

  6. Indian Ocean Triple Junction

    Energy Technology Data Exchange (ETDEWEB)

    Tapscott, C.R.; Patriat, P.; Fisher, R.L.; Sclater, J.G.; Hoskins, H.; Parsons, B.


    The boundaries of three major plates (Africa, India, and Antarctica) meet in a triple junction in the Indian Ocean near 25 /sup 0/S, 70 /sup 0/E. Using observed bathymetry and magnetic anomalies, we locate the junction to within 5 km and show that it is a ridge-ridge-ridge type. Relative plate motion is N60 /sup 0/E at 50 mm/yr (full rate) across the Central Indian Ridge, N47 /sup 0/E at 60 mm/yr across the Southeast Indian Ridge, and N3 /sup 0/W at 15 mm/yr across te Southwest Indian Ridge; the observed velocity triangle is closed. Poles of instantaneous relative plate motion are determined for all plate pairs. The data in the South Atlantic and Indian oceans are consistent with a rigid African plate without significant internal deformation. Two of the ridges at the triple junction are normal midocean spreading centers with well-defined median valleys. The Southwest Indian Ridge, however, has a peculiar morphology near the triple junction, that of an elongate triangular deep, with the triple junction at its apex. The floor of the deep represents crust formed at the Southwest Indian Ridge, and the morphology is a consequence of the evolution of the triple junction and is similar to that at the Galapagos Triple Junction. Though one cannot determine with precision the stability conditions at the triple junction, the development of the junction over the last 10 m.y. can be mapped, and the topographic expressions of the triple junction traces may be detected on the three plates.

  7. High temperature constitutive models for MA957

    International Nuclear Information System (INIS)

    Full text of publication follows: MA957 has outstanding low-temperature tensile and high-temperature creep strength and potential for managing radiation damage, including high helium levels in fusion environment. The excellent properties of nano-structured ferritic alloys (NFAs), such as MA957, derive from a high density of nm-sized Y-Ti-O precipitate cluster and/or complex oxides (NF), such as Y2Ti2O7 and Y2TiO5, which form during hot consolidation following mechanical alloying. The low temperature strengthening contributions have been evaluated in previous studies. However, the strengthening contributions of NF at high temperatures are not well understood. In this study we develop high temperature constitutive models for MA957, primarily from interrupted compression tests in the temperature (Tt) range from about 600 to 900 deg. C, over a range of strain rates down to less than 10-6/s. In probing the high stress regime for power law creep, our objective is to characterize the NF dislocation pinning dynamics. This information will then be used to build physical creep models, such as those based on threshold stress concepts, which can be extrapolated to lower stress regimes. Comparing this data to actual lower stress creep data we generate, as well as that taken from the literature, will help to discriminate the contributions of the NF to overall creep strength. The models will be used to construct Ashby type creep maps and to guide future experimental studies. (authors)

  8. Microcap M&A: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Keith Turpie


    Full Text Available A substantial body of accounting and finance literature has been devoted to the study of Mergers and Acquisitions (M&As dominated by discussions relating to the gains and losses that accrue from transactions involving large public companies. This paper makes a unique contribution to the literature by investigating the M&A experience of microcap businesses. Transactions involving microcap M&A are substantially different to those involving large companies on a number of dimensions. This paper explores the determinants of microcap M&A success and pitfalls and problems from an integration perspective. Due to the paucity of research in the area an exploratory research design is employed, conducting interviews with five CEOs of companies that had each managed multiple transactions. We find microcap M&As are successful when measured against identified goals but generally take longer and cost more than expected. Further, culture and communication are key issues in determining success/failure. We also find the in-house management of integration aspects is problematic for these businesses and suggest this warrants further study.

  9. Comparisons of Mineralogy Between Cumulate Eucrites and Lunar Meteorites Possibly from the Farside Anorsothitic Crust (United States)

    Takeda, H.; Yamaguchi, A.; Hiroi, T.; Nyquist, L. E.; Shih, C.-Y.; Ohtake, M.; Karouji, Y.; Kobayashi, S.


    Anorthosites composed of nearly pure anorthite (PAN) at many locations in the farside highlands have been observed by the Kaguya multiband imager and spectral profiler [1]. Mineralogical studies of lunar meteorites of the Dhofar 489 group [2,3] and Yamato (Y-) 86032 [4], all possibly from the farside highlands, showed some aspects of the farside crust. Nyquist et al. [5] performed Sm-Nd and Ar-Ar studies of pristine ferroan anorthosites (FANs) of the returned Apollo samples and of Dhofar 908 and 489, and discussed implications for lunar crustal history. Nyquist et al. [6] reported initial results of a combined mineralogical/chronological study of the Yamato (Y-) 980318 cumulate eucrite with a conventional Sm-Nd age of 4567 24 Ma and suggested that all eucrites, including cumulate eucrites, crystallized from parental magmas within a short interval following differentiation of their parent body, and most eucrites participated in an event or events in the time interval 4400- 4560 Ma in which many isotopic systems were partially reset. During the foregoing studies, we recognized that variations in mineralogy and chronology of lunar anorthosites are more complex than those of the crustal materials of the HED parent body. In this study, we compared the mineralogies and reflectance spectra of the cumulate eucrites, Y-980433 and 980318, to those of the Dhofar 307 lunar meteorite of the Dhofar 489 group [2]. Here we consider information from these samples to gain a better understanding of the feldspathic farside highlands and the Vesta-like body.

  10. On the relief of the crust-mantle boundary and strain-compression stresses in the crust of Venus

    International Nuclear Information System (INIS)

    An associated analysis of the topography and the non-equilibrium part of the gravitational field of the planet for spherical harmonics with n=3-18 allows one to obtaine some hinst about character of crust-mantle boundary and strain-compression stresses in the crust for series of realistic models of Venus taking into consideration an astenosphere. Moho's undulation amplitudes from the midle level for different models are in the limits from ?+80km (downward) to ?-20km (upward). On the whole, the crust - mantle boundary of Venus is smooth enough. The stresses varies from ?+600 bars(strain) to ?-700 bars(compression) depending on the planet interior model

  11. Late Triassic adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction (United States)

    Wang, Chao; Song, Shuguang; Niu, Yaoling; Su, Li


    We present the results of a geochemical and geochronological study for Late Triassic (230?220 Ma) adakitic plutons within the Archean terrane of the eastern part of the North China Craton (NCC). These plutons show adakitic signatures with high Sr, Sr/Y, (La/Yb)N, and low Cr and Ni. The enriched Nd-Hf isotopic compositions (?Nd(t) = - 13.3 to - 12.9; ?Hf(t) = - 17.4 to - 14.6) and old Nd (TDM2 = 2078-2037 Ma) and Hf (TDM2 = 2366-2192 Ma) isotope model ages suggest that the adakitic pluton may be derived from the underplated mafic lower crust of Paleoproterozoic age. The relatively low Cr and Ni contents and lower ?Nd(t) and ?Hf(t) values of the Taili adakitic plutons imply negligible input of mantle materials. Calculations of equilibrium mineral assemblages and modeling of trace element partition between melts and residual phases at different pressures confirm the interpretation that the petrogenesis of the Taili adakitic plutons is consistent with partial melting of the Paleoproterozoic mafic lower crust at 10-12 kbar (36-43 km) with a garnet granulite residue. Melting of the ancient mafic lower crust may be triggered by excess heating of the upwelling mantle in an extensional setting evoked by the contemporary subduction toward beneath the NCC from both north and south, which could serve as one possible mechanism for the destruction or lithospheric thinning of the NCC. Complex mantle-crust interaction through various mechanisms may have been responsible for the long-lived process of destruction or lithospheric thinning, which might have begun as early as in the late Triassic.

  12. Biological soil crusts in post-mining areas.

    Czech Academy of Sciences Publication Activity Database

    Lukešová, Alena; Zahradníková, M.; Frouz, J.

    Boca Raton : Taylor & Francis CRC Press, 2013, s. 53-65. ISBN 978-1-4665-9931-4 Institutional support: RVO:60077344 Keywords : biological soil crusts * post-mining areas Subject RIV: DF - Soil Science

  13. Intensive Ammonia and Methane Oxidation in Organic Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas; Revsbech, Niels Peter

    Intensive agricultural practice leads to periodic accumulation of enormous amounts of liquid manure (slurry) from animal husbandry, and large quantities of environmentally hazardous ammonia and methane are emitted from the manure storages. Floating surface crusts have been suggested to harbour...... methane oxidizing bacteria (MOB) and are known to accumulate nitrite and nitrate, indicating the presence of ammonia oxidizers (AOB). We have surveyed six manure tanks with organic covers to investigate the prevalence of MOB and AOB and to link the potential activity with physical and chemical aspects of...... the crusts. PCR targeting the unique methane and ammonia monooxygenases were applied together with FISH to detect the presence of the two bacterial groups. Potential activity was assessed by short term slurry incubations of crust samples while monitoring NO2- production or CH4 consumption. Crusts were...

  14. Nuclear superfluidity and cooling time of neutron-star crust

    Energy Technology Data Exchange (ETDEWEB)

    Monrozeau, C.; Margueron, J. [Institut de Physique Nucleaire, Universite Paris Sud, F-91406 Orsay CEDEX (France); Sandulescu, N. [Institut de Physique Nucleaire, Universite Paris Sud, F-91406 Orsay CEDEX (France); Institute of Physics and Nuclear Engineering, RO-76900 Bucharest (Romania)


    We analyse the effect of neutron superfluidity on the cooling time of inner crust matter in neutron stars, in the case of a rapid cooling of the core. The specific heat of the inner crust, which determines the thermal response of the crust, is calculated in the framework of HFB approach at finite temperature. The calculations are performed with two paring forces chosen to simulate the pairing properties of uniform neutron matter corresponding respectively to Gogny-BCS approximation and to many-body techniques including polarisation effects. Using a simple model for the heat transport across the inner crust, it is shown that the two pairing forces give very different values for the cooling time. (authors)

  15. Structure of the Crust and the Lithosperic Mantle in Siberia

    DEFF Research Database (Denmark)

    Cherepanova, Yulia

    development of a new regional crustal model, SibCrust, that is a digital crustal model for both the Siberian Craton and the West Siberian Basin. The SibCrust model, constrained by digitizing of all available seismic profiles and crustal velocity models across the Siberia, also includes a critical quality...... assessment of regional seismic data and crustal regionalization based on seismic structure of the crust. The second part of the study included the development of the SibDensity model that is the density model of the lithospheric mantle calculated by the mass balance method. Mantle density modeling involved...... calculation of the crustal correction based on the SibCrust model. The SibDensity model is made of two independent parts calculated for two major tectonic provinces with contrasting geodynamic evolution: the West Siberian Basin and the Siberian Craton. The modeling results, that are lateral variations in the...

  16. [Crusted scabies induced by topical corticosteroids: A case report]. (United States)

    Bilan, P; Colin-Gorski, A-M; Chapelon, E; Sigal, M-L; Mahé, E


    The frequency of scabies is increasing in France. Crusted (or Norwegian) scabies is a very contagious form of scabies because of the huge number of mites in the skin. It is observed in patients suffering from immunodepression, motor or sensory deficiency, or mental retardation. The clinical presentation, except for the classic manifestation of scabies, is characterized by crusted lesions. Treatment is not easy and requires hospitalization. Topical corticosteroids are frequently used for children's dermatological diseases. Their long-term and inappropriate application in an infested scabies child can induce crusted scabies. We report on a case of an 8-year-old boy who developed crusted scabies induced by topical corticosteroid application. We discuss the therapeutic aspects of this severe form of scabies. PMID:26459132

  17. Dust or Crust?: Surface Soil Nutrients in the Kalahari (United States)

    Thomas, A. D.; Dougill, A. J.


    The Kalahari covers 2.5 million km2 of southern Africa and consists of 95% fine sand-sized, aeolian-deposited sediment. Soils are predominantly deep, structureless and lacking in N, P and organic matter. Plant available nutrients are concentrated in the top centimetre and thus vulnerable to degradation and transportation by wind erosion. The fertility of Kalahari soils is important for nutritious grass production as livestock grazing remains the predominant livelihood throughout the region. The aim of the research was to investigate the interrelationships between dust, biological crusts, vegetation and disturbance across the Kalahari. Crust, vegetation and surface nutrient characteristics were determined at five locations of different land uses. The spatial and temporal variability of rainfall results in an incomplete vegetation cover and spatially heterogeneous soil nutrients. Our studies show that nutrient heterogeneity is controlled by various factors operating at different scales and is important for ecosystem functioning and degradation vulnerability. At a landscape scale, variability is minimal due to limited topography and a relatively uniform Kalahari Sand cover. At a smaller scale, spatial heterogeneity of soil N and P is also low (11 to 28%) compared to shrublands in the SW United States. Wind erosion is not the principal cause of nutrient heterogeneity because the amount of dust movement and associated nutrient fluxes are low. This is because of an extensive vegetation cover that reduces erodibility and coarse grain sizes, aggregation and biological crusts which reduce surface erosivity. Enrichment occurs under bush canopies due to organic inputs from the vegetation as well as fixation by biological soil crusts that develop preferentially in protected sub-canopy niches. Biological soil crusts are widespread and are able to persist in landscapes where there is a high level of disturbance. However, crust composition is largely restricted to simple Microcoleus spp. Crustal succession is limited by both breakage of crusts and burial by wind blown sediment. In a typical communal grazing area, 48% of the surface was unconsolidated, 44% was crusted and 8% buried crusts compared to up to 95% crust cover in National Parks. Bush sub-canopies are sites of preferential crust development and thus nutrient enrichment, but are also subjected to periodic burial by wind blown dust and plant litter. The overall impact on surface nutrients will depend upon the bush species composition, canopy structure and degree of disturbance.

  18. Models of a partially hydrated Titan interior with a clathrate crust (United States)

    Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.


    We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.: “Gravity field, shape, and moment of inertia of Titan”. Science, Vol. 327, 1367-1369. Tobie, G., et al.: “Episodic outgassing as the origin of atmospheric methane on Titan”. Nature 440: 61-64, 2006.

  19. Deep Crustal Heating in a Multicomponent Accreted Neutron Star Crust


    Steiner, Andrew W.


    A quasi-statistical equilibrium model is constructed to simulate the multicomponent composition of the crust of an accreting neutron star. The ashes of rp-process nucleosynthesis are driven by accretion through a series of electron captures, neutron emissions, and pycnonuclear fusions up to densities near the transition between the neutron star crust and core. A liquid droplet model which includes nuclear shell effects is used to provide nuclear masses far from stability. Re...

  20. Fracture behaviour of bread crust: Effect of bread cooling conditions


    Primo Martin, C.; Beukelaer, H.J., de; Hamer, R.J.; Vliet, T.


    The effect of air and vacuum cooling on the fracture behaviour and accompanying sound emission, moisture content and crispness of bread crust were investigated. Vacuum cooling resulted in rapid evaporative cooling of products that contained high moisture content. Fracture experiments showed a clear dependence of fracture properties on the way the bread was cooled. Vacuum cooling gave breads with a lower moisture content in the crust than the air cooled breads. Both fracture behaviour and soun...

  1. An elderly long-term care resident with crusted scabies


    Sandre, Matthew; Ralevski, Filip; Rau, Neil


    Crusted scabies, also referred to as Norwegian scabies, is a highly contagious infection of the skin caused by Sarcoptes scabiei mites. The authors report a case involving a 94-year-old woman with dementia who presented with symptoms of crusted scabies, which were initially believed to be due to a different skin condition. The risk factors as well as appropriate treatment courses for this infection are also reviewed.

  2. Impacts of the Nuclear Symmetry Energy on Neutron Star Crusts

    CERN Document Server

    Bao, Shishao


    Using the relativistic mean-field theory, we adopt two different methods, namely, the coexisting phase method and the self-consistent Thomas-Fermi approximation, to study the impacts of the nuclear symmetry energy on properties of neutron star crusts within a wide range of densities. It is found that the nuclear symmetry energy and its density slope play an important role in determining the pasta phases and the crust-core transition.

  3. Soil invertebrate activity in biological crusts on tropical inselbergs


    Vaçulik, Anne; Kounda-Kiki, Charlotte; Sarthou, Corinne; Ponge, Jean-François


    Granite inselbergs protrude from forest and savanna in the tropics. They are exposed to harsh climates (alternation of heavy rain and severe drought) and provide little nutrient for plants. Soil animals and humus components were investigated in cyanobacterial crusts close to patches of epilithic vegetation on the surface of the Nouragues inselberg (French Guiana). Three biological crust samples, corresponding to bromeliacean carpets of increasing size (supposed of increasing age), were sample...

  4. Crusted scabies-associated immune reconstitution inflammatory syndrome


    Fernández-Sánchez Mónica; Saeb-Lima Marcela; Alvarado-de la Barrera Claudia; Reyes-Terán Gustavo


    Abstract Background Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV)-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. Case presentation We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral th...

  5. Magnetar activity mediated by plastic deformations of neutron star crust


    Lyutikov, Maxim


    We advance a "Solar flare" model of magnetar activity, whereas a slow evolution of the magnetic field in the upper crust, driven by electron MHD (EMHD) flows, twists the external magnetic flux tubes, producing persistent emission, bursts and flares. At the same time the neutron star crust plastically relieves the imposed magnetic field stress, limiting the strain $ \\epsilon_t $ to values well below the critical strain $ \\epsilon_{crit}$ of a brittle fracture, $ \\epsilon_t \\s...

  6. New Constraints on Baja California-North America Relative Plate Motion Since 11 Ma (United States)

    Bennett, S. E.; Skinner, L. A.; Darin, M. H.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.


    Tectonic reconstructions of the Pacific-North America (PAC-NAM) plate boundary across the Gulf of California and Salton Trough (GCAST) constrain the controversial magnitude of Baja California microplate-North America (BCM-NAM) relative motion since middle Miocene time. We use estimates of total PAC-NAM relative dextral-oblique motion from the updated global plate-circuit model (Atwater and Stock, 2013; GSA Cordilleran Mtg) to resolve the proportion of this motion on faults east of the BCM. Modern GPS studies and offset of late Miocene cross-gulf geologic tie points both suggest that BCM has never been completely coupled to the Pacific plate. Thus, our preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler poles, we determine the azimuth and velocity of individual points on the BCM in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative motion increases from north to south due to greater distance from the Euler pole. Finer-scale restoration of tectonic blocks along significant (>1 km offset) faults, across extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is constrained by local geologic and marine-geophysical datasets and accomplished via the open-source Tectonic Reconstruct ArcGIS tool. We find that restoration across the Gulf of California completely closes marine basins and their terrestrial predecessors between 6 and 9 Ma. Latest Miocene opening of these basins was coincident with a ~10° clockwise azimuthal change from 8 to 6 Ma in PAC-NAM relative motion, as revealed by the global plate circuit model. The coupling ratios used in our reconstruction produce important changes in BCM-NAM relative motion, where a point at the latitude of the Guaymas rift corridor experienced a ~10° clockwise azimuthal change from ~119° to ~129° between 8 and 6 Ma, and a ~27 mm/yr rifting rate increase from ~13 to ~40 mm/yr between 9 and 6 Ma. This increase in obliquity and rate of rifting likely drove localization of plate boundary strain into the North American continent and ultimately formed the Gulf of California. Initiation of these basins ca. 9 Ma requires that the residual ~20 - 40 km of dextral-oblique motion from 9 to 11 Ma occurred immediately offshore or east of the present-day Sonora-Sinaloa shoreline on as-yet undocumented structures. Total preferred BCM-NAM dextral-oblique motion since 11 Ma varies from ~385 km in the southern Gulf of California to ~365 km at the Midriff Islands. These values and the south-north gradient are consistent with recent estimates of ~340 × 40 km of relative dextral plate motion across southern California and the Eastern California Shear Zone. Attempts to restore larger amounts (e.g. 450 - 500 km) of BCM-NAM motion require a higher percent of late Miocene BCM-PAC coupling and result in unacceptable overlap between continental tectonic blocks in western Sonora and Sinaloa and submerged, extended continental crust in the southern Gulf of California.

  7. Macrofaunal diversity in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.; Nanajkar, M.; Nath, B.N.

    Ocean where one of the highest nodule concentrations is in the Central Indian Basin. Manganese nodules, with up to 24 weight percent (wt%) manganese, 2.17 wt% of combined nickel and copper and 0.14 wt% cobalt, are found in an area in the Central... on manganese crusts (Riemann 1983). These worms may thus be responsible for a further concentration of metal oxides collected by their prey and subsequent deposition on manganese crusts. Thus, the benthic polychaete indirectly helps in the nodule growth...

  8. Ocean optics

    International Nuclear Information System (INIS)

    This paper provides an introduction and overview of the discipline known as ocean optics. Emphasis is on basic concepts, the optical quantities involved, their measurement, and inter-connecting theoretical relationships. Topics include radiometric quantities, inherent optical properties, apparent optical properties, measuring the spectral absorption coefficient, measuring the volume scattering function, effect of the deep chlorophyll layer, and future directions

  9. Ocean nutrients (United States)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  10. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study (United States)

    Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.


    A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.

  11. The unstable CO2 feedback cycle on ocean planets (United States)

    Kitzmann, Daniel; Alibert, Yann; Godolt, Mareike; Grenfell, John Lee; Heng, Kevin; Patzer, Beate; Rauer, Heike; Stracke, Barbara; von Paris, Philip


    Ocean planets are volatile rich planets, not present in our Solar System, which are dominated by deep, global oceans. Theoretical considerations and planet formation modeling studies suggest that extrasolar ocean planets should be a very common type of planet. One might therefore expect that low-mass ocean planets would be ideal candidates when searching for habitable exoplanets, since water is considered to be an essential requirement for life. However, a very large global ocean can also strongly influence the climate.The high pressure at the oceans bottom results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. In our study we, therefore, focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree.In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle on ocean planets is positive and has strong destabilising effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle is severely limiting the potential habitability of ocean planets.

  12. Structure of thinned continental crust across the Orphan Basin from a dense wide-angle seismic profile and gravity data (United States)

    Lau, K. W. Helen; Watremez, Louise; Louden, Keith E.; Nedimoví?, Mladen R.


    We present a 500-km long, 2-D P-wave velocity model across the Orphan Basin, offshore NE Newfoundland, Canada, from Flemish Cap to the Bonavista Platform, formed using refraction and wide-angle reflection data from 89 ocean-bottom seismometers. This layered model builds on a recent traveltime tomography result using additional constraints from coincident multichannel seismic reflection and gravity data plus borehole logs from three wells. The model shows (i) post-rift Tertiary (velocities ˜1.7-3.5 km s-1) and (ii) both post-rift and syn-rift, Cretaceous and Jurassic sediments (˜4-5 km s-1), deposited within an eastern and a western sub-basin that are separated by a major basement block. The existence of Jurassic sediments indicates a pre-Cretaceous rifting phase in the eastern sub-basin, and possibly in the western sub-basin. However, there is no evidence that Triassic sediments are widespread across the Orphan Basin. Two upper crustal sublayers and one lower crustal layer are defined by differences in velocities (5.4-6.1, 6.1-6.5 and 6.3-7.1 km s-1, respectively) and vertical velocity gradients (mean = 0.14, 0.10 and 0.05 s-1, respectively). Crustal thinning is asymmetric across the Orphan Basin. Within the eastern sub-basin, continental crust beneath Flemish Cap (˜32 km thick; ? ˜ 1.1) thins westward into a 35-km-wide zone of hyperextended crust ( 3.4) beneath an 11-km-deep sedimentary basin. Within the western sub-basin, the Bonavista Platform crust (˜32 km thick) thins eastward into a 116-km-wide zone of hyperextended crust. Two zones of thicker crust (? = 2-3.5) exist within the central section, with muted topography within the eastern part and large basement highs in the western part, separated by the eastward dipping White Sail Fault (WSF). The zone to the east of the WSF displays higher velocities in the lower crust than to the west. This can only be explained by a lateral ductile flow across the zone boundary. By combining the two upper crustal sublayers into one, we define the full crustal thicknesses of the upper and lower crusts as 12 and 22 km, respectively. The extension and thinning factors of these two layers are calculated across the basin. Discrepancies between upper crustal thinning and lower crustal thinning are common but only produce a small mass deficit (˜7 per cent or 1.5 km) in the lower crust. Structural connections are shown between the Rockall Trough and the West Orphan Basin and between the Porcupine Basin and the East Orphan Basin in that a wider hyperextended western basin is paired with a narrower eastern basin by a middle zone of thicker crust. In contrast to the Rockall Trough and the Porcupine Basin, serpentinized mantle is not observed in the East Orphan Basin where hyperextended crust is observed (?max ˜ 8.5). One possible cause is that the restricted size of the basin and its location adjacent to Flemish Cap may have permitted a heavier supply of sediment to cover the basement early during its extension. Such a cover would inhibit the flow of water into the crust and thus leave the mantle unchanged.

  13. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous


    Robinson, S. A.; Vance, D


    Modern thermohaline circulation plays a role in latitudinal heat transport and in deep-ocean ventilation, yet ocean circulation may have functioned differently during past periods of extreme warmth, such as the Cretaceous. The Late Cretaceous (100–65 Ma) was an important period in the evolution of the North Atlantic Ocean, characterized by opening ocean gateways, long-term climatic cooling and the cessation of intermittent periods of anoxia (oceanic anoxic events, OAEs). However, how these ph...

  14. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous


    Robinson, SA; Vance, D


    Modern thermohaline circulation plays a role in latitudinal heat transport and in deep-ocean ventilation, yet ocean circulation may have functioned differently during past periods of extreme warmth, such as the Cretaceous. The Late Cretaceous (100-65Ma) was an important period in the evolution of the North Atlantic Ocean, characterized by opening ocean gateways, long-term climatic cooling and the cessation of intermittent periods of anoxia (oceanic anoxic events, OAEs). However, how these phe...

  15. Exploring MaNGA's kinematic maps (United States)

    Weijmans, Anne-Marie; MaNGA Team


    Different galaxy formation processes leave different imprints on the gas and stellar kinematic patterns for a galaxy. With MaNGA, we now have after one year of observations an unprecedented sample of 1400 nearby galaxies for which we can study gas and stellar kinematics in much detail, based on integral-field spectroscopy. We are measuring kinematic quantities such as LambdaR (angular momentum) and their (possible) correlations with other galaxy properties such as mass, morphology and environment. By quantifying the kinematic (sub)structures in velocity and dispersion maps, we will construct a kinematic galaxy classification that can be linked to their formation processes.

  16. Ma tulen hilja : [luuletused] / Ernst Enno

    Index Scriptorium Estoniae

    Enno, Ernst, 1875-1934


    Sisu: Ma tulen hilja ; Valgel ööl ; Kevade ; Ülesse! ; Jutluse ajal ; Tuul laulis ; Kas sa ei iial küsi ; Ei sinna saa üle maa ega vee ; Me sügavam sisu ; Öö valge on õnn ; Kuu kuma ; Sügisesel rannal ; Mu tuba on väike ; Nii vaikseks kõik on jäänud ; Ei ükski neist armasta mind ; Kolm eite ; Õhtu kodutalus ; Mina ; Nõmme pääl ; Hall laul ; Tuul käib ; Rändaja õhtulaul ; Nii uinusin magama ; Kui ometi ; Võiks otsast alata ; Nii pikk, nii pikk... ; Ta tuli ; Sa ikka iseendaks saad ; Kojuigatsus ; Köitke kinni ; Kauge kõlin ; Nii on see inimese imeline oht ; Kalmude keskel ; Meil kõigil ühine on pulmapidu ees ; Siin seisad enda ees ; Valge unustus

  17. 42 CFR 422.2268 - Standards for MA organization marketing. (United States)


    ...false Standards for MA organization marketing. 422.2268 Section 422.2268...ADVANTAGE PROGRAM Medicare Advantage Marketing Requirements § 422.2268 Standards for MA organization marketing. In conducting marketing...

  18. Petrology of seamounts in the Central Indian Ocean Basin: Evidence for near-axis origin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.; Iyer, S.D.

    Previous studies on the distribution and morphology of ancient seamount chains (>50 Ma) in the Central Indian Ocean basin (CIOB) indicated their generation from the fast spreading Southeast Indian Ridge. The petrology of some of these seamounts...

  19. Exploring the Earth's crust: history and results of controlled-source seismology (United States)

    Prodehl, Claus; Mooney, Walter D.


    This volume contains a comprehensive, worldwide history of seismological studies of the Earth’s crust using controlled sources from 1850 to 2005. Essentially all major seismic projects on land and the most important oceanic projects are covered. The time period 1850 to 1939 is presented as a general synthesis, and from 1940 onward the history and results are presented in separate chapters for each decade, with the material organized by geographical region. Each chapter highlights the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. For all major seismic projects, the authors provide specific details on field observations, interpreted crustal cross sections, and key references. They conclude with global and continental-scale maps of all field measurements and interpreted Moho contours. An accompanying DVD contains important out-of-print publications and an extensive collection of controlled-source data, location maps, and crustal cross sections.

  20. Crystallographic texture in mechanically alloyed oxide dispersion-strengthened MA956 and MA957 steels (United States)

    Chou, T. S.; Bhadeshia, H. K. D. H.


    The crystallographic textures of two mechanically alloyed, oxide dispersion-strengthened steels have been studied in the as-deformed and recrystallized conditions. The MA956 steel, which has relatively large chromium and aluminum concentrations, is found to exhibit a strong fiber texture in the extruded condition. Despite the larger degree of deformation imparted to MA957 during extrusion, its crystallographic texture is found to be rather weak. Significant differences have also been found in the texture after recrystallization heat treatments. These differences could not be explained on the basis of deformation or recrystallization theory. However, the discovery that under certain specific conditions MA957 partially transforms to austenite has helped rationalize the texture results. In particular, the austenite is found to form at the temperature where the extrusion process is usually carried out. The observation of austenite is found to be consistent with thermodynamic phase stability calculations and metallographic experiments.

  1. Crystallographic texture in mechanically alloyed oxide dispersion-strengthened MA956 and MA957 steels

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bhadeshia, H.K.D.H. (Univ. of Cambridge (United Kingdom))


    The crystallographic textures of two mechanically alloyed, oxide dispersion-strengthened steels have been studied in the as-deformed and recrystallized conditions. The MA956 steel, which has relatively large chromium and aluminum concentrations, is found to exhibit a strong (110) fiber texture in the extruded condition. Despite the larger degree of deformation imparted to MA957 during extrusion, its crystallographic texture is found to be rather weak. Significant differences have also been found in the texture after recrystallization heat treatments. These differences could not be explained on the basis of deformation or recrystallization theory. However, the discovery that under certain specific conditions MA957 partially transforms to austenite has helped rationalize the texture results. In particular, the austenite is found to form at the temperature where the extrusion process is usually carried out. The observation of austenite is found to be consistent with thermodynamic phase stability calculations and metallographic experiments.

  2. The nature of orogenic crust in the central Andes (United States)

    Beck, Susan L.; Zandt, George


    The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.

  3. The 1590-1520 Ma Cachoeirinha magmatic arc and its tectonic implications for the Mesoproterozoic SW Amazonian craton crustal evolution

    Directory of Open Access Journals (Sweden)

    Ruiz Amarildo S.


    Full Text Available Isotopic and chemical data of rocks from the Cachoeirinha suite provide new insights on the Proterozoic evolution of the Rio Negro/Juruena Province in SW Amazonian craton. Six U-Pb and Sm-Nd analyses in granitoid rocks of the Cachoeirinha suite yielded ages of 1587-1522 Ma and T DM model ages of 1.88-1.75 Ga (EpsilonNd values of -0.8 to +1.0. In addition, three post-tectonic plutonic rocks yielded U-Pb ages from 1485-1389 Ma (T DM of 1.77-1.74 Ga and EpsilonNd values from -1.3 to +1.7. Variations in major and trace elements of the Cachoeirinha suite rocks indicate fractional crystallization process and magmatic arc geologic setting. These results suggest the following interpretations: (1 The interval of 1590-1520 Ma represents an important magmatic activity in SW Amazonian craton. (2 T DM and arc-related chemical affinity supportthe hypothesis that the rocks are genetically associated with an east-dipping subduction zone under the older (1.79-1.74 Ga continental margin. (3 The 1590-1520 Ma age of intrusive rocks adjacent to an older crust represents similar geological framework along the southern margin of Baltica, corroborating the hypothesis of tectonic relationship at that time.

  4. Nature of the crust in the Laxmi Basin (14°-20°N), western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Sar, D.

    & 1996), Miles et al. (1998), Todal and Eldholm (1998), Singh (1999 & 2002) and Radha Krishna et al. (2002) have suggested the possible magmatic impact of the R?;union hotspot along the western margin of India, but no concrete evidences were offered....7 s (Krishna et al., 1998 & 2001a). The shallow basement in the Laxmi Basin is also not consistent with the predictions of lithospheric-plate cooling models of pre-Tertiary age oceanic crust (Parsons and Sclater, 1977). Seismic reflection data of the Laxmi...

  5. The hydrothermal power of oceanic lithosphere (United States)

    Grose, C. J.; Afonso, J. C.


    We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of axial hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than most previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of ventilated hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and the convective mantle.

  6. Microbial Turnover of Fixed Nitrogen Compounds in Oceanic Crustal Fluids (United States)

    Kraft, B.; Wankel, S. D.; Glazer, B. T.; Huber, J. A.; Girguis, P. R.


    Oceanic crust is the largest aquifer on Earth, with a massive volume of seawater advecting through the basaltic crust. The microbiome of this deep marine subsurface biosphere has been estimated to be substantial, and consequently their metabolic activity may have major influences on global biogeochemical cycles. While earlier and recent studies provide insight into the microbial community composition of oceanic crustal fluids, information on the microbial ecophysiology is broadly missing. Therefore, to investigate the microbial transformation of fixed nitrogen compounds in crustal aquifer fluids, fluids were sampled from different horizons of two neighbouring CORK (Circulation Obviation Retrofit Kit) observatories at the North Pond sediment pond. This site is located on the western flank of the Mid Atlantic Ridge and is characterized by relatively young oceanic crust and cold fluids. The crustal fluids contain oxygen and nitrate, which potentially both may serve as electron acceptor for respiration. In a multidisciplinary approach we combined stable isotope incubations, determination of the natural isotopic compositions and plan to analyse relevant functional genes from a metagenomic dataset to investigate the nitrogen cycling at North Pond. The turnover of fixed nitrogen in oceanic crustal fluids may have important implications for the understanding of the global nitrogen cycle.

  7. MaNGA: Target selection and Optimization (United States)

    Wake, David


    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M?, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a "Color-Enhanced" sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  8. MaNGA: Target selection and Optimization (United States)

    Wake, David


    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M?, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  9. Late Pliocene climate change 3.4-2.3 Ma: paleoceanographic record from the Yabuta Formation, Sea of Japan (United States)

    Cronin, T. M.; Kitamura, A.; Ikeya, Noriyuki; Watanabe, M. E.; Kamiya, T.


    Late Pliocene paleoceanographic changes in the Sea of Japan between 3.4 and2.3 Ma were investigated through study of molluscs, diatoms, and ostracodes from the Yabuta Formation in Toyama Prefecture. The period 3.4-2.7 Ma was characterized by relatively high sea level and cool water benthic faunas. A progressive paleoceanographic shift towards colder oceanic conditions and lower sea level occurred beginning near 2.7 Ma, intenifying about 2.5 Ma, when important changes in ostracode and molluscan faunas occurred. Between 2.7 and 2.3 Ma, eight glacial events can be inferred based on drops in sea level of 50-60 m and increasing proportions of cold, shallow water ostracode species whose modern ecology and zoogeography indicate colder winter water temperatures (3-4??C). The glacial events between 2.5 and 2.3 Ma were the most intense. Preliminary interpretation of the faunal and oceanographic events of the Yabuta Formation suggests that they correspond to Northern Hemispheric cooling also known from North Atlantic deep-sea oxygen isotope, IRD, and planktic foraminiferal records, North Pacific diatom and radiolarian record, and the Chinese loess sequences. The eight glacial events may record a 41,000-yr obliquity cycle which characterized other late Pliocene climate proxy records. Inferred sea level drops near 2.5-2.3 Ma of about 50-60 m provide direct evidence from an ocean margin setting that supports deep sea oxygen isotopic evidence indicating major changes in global ice volume changes. ?? 1994.

  10. Enhanced anatexis as a consequence of mantle-derived magma intrusion in the middle crust: a case study from the Eastern French Massif Central (United States)

    Couzinié, Simon; Moyen, Jean-François; Villaros, Arnaud; Paquette, Jean-Louis; Scarrow, Jane H.; Marignac, Christian


    The post-collisional stage of orogens corresponds to a dramatic change in mountain belts dynamics. During this period, large volumes of granitic melts are generated in the crust thus impacting its rheology and overall behavior. Evolving from compression/transpression to extension/transtension enhances exhumation of high-grade metamorphic rocks and subsequent decompression crustal melting. However, other processes can trigger anatexis such as heat or fluid fluxes from the mantle and the crust. The Early Carboniferous nappe stack of the Eastern French Massif Central (EFMC) underwent two successive low-pressure melting events at the end of its evolution, during the Late Carboniferous. They are particularily evident in the southern edge of the Velay Complex, a 100 km-diameter migmatite-granite dome. The M3 'pre-Velay' event corresponds to water-saturated melting in the amphibolite facies at T heat input at the M3-M4 transition. The EFMC anatectic crust is intruded by widespread, Mg-K-rich biotite-rich diorites locally called 'vaugnerites'. These mantle-derived melts emplaced in a partially molten setting, as evidenced by mingling features between vaugnerites and anatectic melts, as well as the presence of hybrid granitoids including a 'vaugnerite' component. In situ (LA-ICP-MS) U-Pb zircon and monazite dating of vaugnerites or coeval granites in the Southern Velay area yielded ages mostly indistinguishable within analytical uncertainties, spanning from 307.4 ± 1.8 to 303.7 ± 3.1 Ma. Thus, mantle-derived magmas emplaced at ca. 305 Ma which is the very transition from M3 to M4. This striking synchronism between enhanced crustal melting and mantle-derived magmatism suggests that vaugnerites could be the cause of the M3-M4 transition. Depending on the volume involved, the emplacement of hot (ca. 1000 ° C) melts in mid crustal levels would have supplied significant amounts of heat. Vaugnerites could also be the manifestation of a (yet unconstrained) process enhancing the conductive mantle heat flux to the crust. For instance, delamination of a lithospheric mantle root or slab break-off would result in generation of mantle-derived melts as well as increase the heat conduction into the crust. Therefore, the relevant system that must be considered to study late-orogenic periods is not only the crust but the whole lithosphere, taking into account mass/heat transfer from the mantle to the overlying crust.

  11. Rb-Sr geochronology from Barro Alto Complex, Goias: metamorphism evidence of high degree and continental collision around 1300 Ma ago in Central Brazil

    International Nuclear Information System (INIS)

    Rb-Sr geochronologic investigation carried out on rocks from the Barro Alto Complex, Goias, yielded iso chronic ages of 1266 +- 17 Ma, for felsic rocks from the granulite belt and 1330 +- 67 Ma, for gneisses belonging to the Juscelandia Sequence. Rb-Sr isotope measurements suggest that Barro Alto rocks have undergone an important metamorphic event during middle Proterozoic times, around 1300 Ma ago. During that event, volcanic and sedimentary rocks of Juscelandia Sequence, as well as the underlying gabbros-anorthosite layered complex, underwent deformation and recrystallization under amphibolite facies conditions. Deformation and metamorphism took place during the collision of two continental blocks, which resulted in a southeastward directed thrust complex, allowing the exposure of granulite slices from the middle-lower crust of the overthrusted block. (author)

  12. Development of biological soil crusts and their influence on soil hydrology in the recultivation area of lignite open-cast mining district in Lower Lusatia (Germany) (United States)

    Spröte, R.; Veste, M.; Fischer, T.; Raab, T.; Bens, O.; Hüttl, R. F.


    Cyanobacteria, green algae, mosses and lichens are often the first colonizers of substrate and initial soil surfaces. They are an important factor of initial soil formation as they stabilize the substrate and decrease erosion processes. Biological soil crusts accumulate the initial soil organic matter and provide nitrogen fixation. Once settled, the crusts influence the soil water regime by delaying or limiting infiltration through enhanced water repellency. Aim of this study was to compare the influence of biological soil crusts on soil hydrology under conditions on various substrates and of different ages in recultivated areas of the open-cast mining district of Lower Lusatia (Brandenburg, NE Germany) with various recultivation aims. In Brandenburg (NE Germany), where the climate is transitional between oceanic and continental and the summers are characterized by generally low of precipitation (mean annual rainfall 559 mm, mean annual temperature 9.3° C) open landscapes provide ideal conditions for biological soil crusts, e. g. on mobile sand dunes in former military training areas and in recultivation areas related to open-cast mining with initial soil development. Here biological soil crusts are commonly found (Spröte et al., 2010). At five study sites in recultivation areas with different reclamation approaches (natural development, pine reforestation, birch reforestation) we defined four types of biological soil crusts: i) cyanobacterial and green algae crusts on the soil surface with no vegetation where dominating sand grains were physically stabilized in their contact zones by this crust type (type 1), ii) cyanobacteria and green algae partially filled in the matrix pores and enmeshed sand grains between sparse vegetation cover (type 2), iii) biological soil crusts with mosses which covered most of the surface between the vegetation (type 3) and (iv) with soil lichens (type 4). We investigated the development of the amount of chlorophyll a which is an indicator for biomass productivity and depends from the species composition and crust type, and the water repellency index which shows the influence of biological soil crusts on hydrological parameters. Additionally, organic matter content (dry combustion) as well as soil pH (soil: H2O = 1:2.5) were determined. Texture was analysed by wet sieving and fractionation pipette method. At all study sites and for all crust types soil pH ranged between 7.2 to 4.7 and decreased from type 1 to type 4. Soil organic matter and chlorophyll a concentrations ranged from 0.3 and 1.7% and from 0.95 to 16.44 mg m-2, respectively, and increased from type 1 to type 4. With few exceptions, water repellency indices ranging between 1.0 and 1.85, followed this trend. Constrarily, infiltration rates decreased from type 1 to type 4. The cause for limited infiltration is the swelling of extracellular polysaccharides in the biological soil crusts (Fischer et al., 2010) and the influence of the particle size distribution and porosity of the substrate with a relatively high content of silt and clay at some study sites. Fischer, T., Veste, M., Wiehe, W. & Lange, P. (2010): Water repellency and pore clogging at early succesional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. - Catena, 80, 47-52. Spröte, R.,Fischer, T., Veste, M., Raab, T., Wiehe, W., Lange, P., Bens, O., Hüttl, R.F. (2010): Biological topsoil crusts at early successional stages on Quaternary substrates dumped by mining in Brandenburg, NE Germany. Géomorphologie: relief, processus, environnement 4/2010: 359-370.

  13. Improving Earthquake-Explosion Discrimination using Attenuation Models of the Crust and Upper Mantle

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E; Walter, W R; Matzel, E M; Rodgers, A J; Ford, S R; Gok, R; Sweeney, J J


    In the past year, we have made significant progress on developing and calibrating methodologies to improve earthquake-explosion discrimination using high-frequency regional P/S amplitude ratios. Closely-spaced earthquakes and explosions generally discriminate easily using this method, as demonstrated by recordings of explosions from test sites around the world. In relatively simple geophysical regions such as the continental parts of the Yellow Sea and Korean Peninsula (YSKP) we have successfully used a 1-D Magnitude and Distance Amplitude Correction methodology (1-D MDAC) to extend the regional P/S technique over large areas. However in tectonically complex regions such as the Middle East, or the mixed oceanic-continental paths for the YSKP the lateral variations in amplitudes are not well predicted by 1-D corrections and 1-D MDAC P/S discrimination over broad areas can perform poorly. We have developed a new technique to map 2-D attenuation structure in the crust and upper mantle. We retain the MDAC source model and geometrical spreading formulation and use the amplitudes of the four primary regional phases (Pn, Pg, Sn, Lg), to develop a simultaneous multi-phase approach to determine the P-wave and S-wave attenuation of the lithosphere. The methodology allows solving for attenuation structure in different depth layers. Here we show results for the P and S-wave attenuation in crust and upper mantle layers. When applied to the Middle East, we find variations in the attenuation quality factor Q that are consistent with the complex tectonics of the region. For example, provinces along the tectonically-active Tethys collision zone (e.g. Turkish Plateau, Zagros) have high attenuation in both the crust and upper mantle, while the stable outlying regions like the Indian Shield generally have low attenuation. In the Arabian Shield, however, we find that the low attenuation in this Precambrian crust is underlain by a high-attenuation upper mantle similar to the nearby Red Sea Rift. Applying this 2-D MDAC methodology with the new attenuation models can significantly improve earthquake-explosion discrimination using regional P/S amplitude ratios. We demonstrate applications of this technique, including a study at station NIL (Nilore, Pakistan) using broad area earthquakes and the 1998 Indian nuclear explosion using a number of regional amplitude ratio discriminants. We are currently applying the technique in the YSKP region as well.

  14. Thermal state and complex geology of a heterogeneous salty crust of Jupiter's satellite, Europa (United States)

    Prieto-Ballesteros, O.; Kargel, J.S.


    The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are "painted" into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would produce steeper thermal gradients than in pure ice. If there are salt-rich layers inside the crust, forming salt beds over the seafloor or a briny eutectic crust, for instance, the high thermal gradients may promote endogenic geological activity. On the seafloor, bedded salt accumulations may exhibit high thermochemical gradients. Metamorphic and magmatic processes and possible niches for thermophilic life at shallow suboceanic depths result from the calculated thermal profiles, even if the ocean is very cold. ?? 2004 Elsevier Inc. All rights reserved.

  15. Crust-Poor Lithosphere at Cold Spots in the Mid Atlantic and SW Indian Ridges (United States)

    Brunelli, D.; Bonatti, E.; Cipriani, A.; Grindlay, N. R.; Ligi, M.; Paganelli, E.; Sclater, J.


    The Equatorial portion of the Mid Atlantic Ridge is thought to reflect a thermal minimum in the subridge structure, with deeper than normal axial topography underlain by high upper mantle seismic velocities revealed by tomography. This stretch of Ridge is intersected by a number of long offset transforms, the longest being the Romanche (offset ~950 km corresponding to ~50 Myr). As the Mid Atlantic Ridge axis approaches the Romanche transform from the south, it gradually deepens; its rift valley disappears, and, starting roughly 50 km from the transform, the basaltic crust becomes patchy and then disappears, leaving mantle ultramafics outcropping on the sea floor. Modelling the "cold edge" effect of the transform on the axial Ridge segment shows that partial melting of the subridge mantle decreases as the transform is approached. Crust-free lithosphere outcrops continuously for several hundred kilometers in a ~30 km wide belt south of the Romanche, indicating that the present-day lack of crustal production has been prevailing for at least 30 million years. The mantle derived serpentinized peridotites are of two types. The majority of the samples show evidence of strong impregnation by basaltic melts. The mineral chemistry of the samples that are free of impregnation suggests that they have undergone a very low degree of melting. These results suggest a quasi-crust-free lithosphere, produce by a mantle that has undergone little or no partial melting, unable to expel the small quantities of melt it generates. The small quantities of basalt produced in this area tend to have alkali affinity and are strongly enriched in H2O. Their REE content show a strong garnet signature, suggesting that they were generated mostly in the garnet peridotite mantle zone (> 20 kbar). This quasi-crust-free impregnated lithosphere probably prevails at cold spots along mid ocean ridges. Peridotites obtained recently from the SW end of the Andrew Bain transform, that offsets the SW Indian Ridge by ~750 km (~50 Myr), are strongly impregnated by basaltic melt, in a situation very similar to that observed near the Romanche. In contrast, peridotites from the NE end of the Andrew Bain transform are not impregnated, and are residual of a significant degree of melting, probably due to the influence of the Marion plume located a few hundred km away.

  16. Simulating the Late Ordovician (445Ma) with the fully coupled Community Climate System Model (CCSM3). (United States)

    Shields, C. A.; Kiehl, J. T.; Scotese, C. R.


    The first of earth's five major extinctions occurred during the late Ordovician (445Ma) and was the only extinction to occur during a glaciated climate. Current theory suggests a rigorous ocean circulation, present during the onset of glaciation, increased ocean ventilation and promoted eutrophic conditions and a massive marine die-off. Despite glacial conditions, C02 levels for this period were thought to be elevated. Estimates range from as high as 15X to, more recently, 4X pre-industrial levels. We apply the fully coupled Climate System Model, Version 3 (CCSM3), to a series of experiments simulating the earth's climate for the late Ordovician and show results from both our 15X CO2 and 4X CO2 integrations. Of technical note, we are the first modelling group to accurately represent, in a fully coupled (or ocean only) model, the geographical land distribution for the Orodivican, a period with virtually no land in the northern mid- or polar latitudes. Previously, ocean models have required a small land mass at the north pole for numerical purposes. We apply a grid rotation technique to eliminate this problem. Preliminary results from simulations show a very well ventilated Panthalassic Ocean and an atmospheric general circulation which are both supported by proxy records.

  17. Identification and characterization of novel NuMA isoforms

    International Nuclear Information System (INIS)

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions

  18. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)


    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  19. Large-scale global convection in the mantle beneath Australia from 55 Ma to now

    International Nuclear Information System (INIS)

    Full text: The global-scale mantle convection cells in the asthenosphere are not geochemically homogeneous. The heterogeneity is most prominently reflected in the isotopic compositions (Pb-Sr-Nd) of the mid-ocean ridge basalts (MORB) that are direct partial melts from the underlying asthenosphere. Of particular relevance to Australia's geodynamic evolution from about 100 million years, are the distinctive geochemical signatures of the asthenosphere beneath the Pacific Ocean (Pacific MORB) and Indian Ocean (Indian MORB). Therefore, delineation of the boundary between the two distinct mantle reservoirs and any change in that boundary with time provide information about the patterns of global-scale asthenospheric mantle convection. This information has also allowed us to track large-scale mantle chemical reservoirs such as the distinctive Gondwana lithospheric mantle, and hence better understand the geodynamic evolution of the Australian continent from the time of Gondwana dispersal. Pb-Sr-Nd isotope data for Cenozoic basalts in eastern Australia (Zhang et al, 1999) indicate that Pacific-MORB type isotopic signatures characterise the lava-field basalts (55-14 Ma) in southeastern Australia, whereas Indian-MORB type isotopic signatures characterise younger basalts (6-0 Ma) from northeastern Australia. This discovery helps to constrain the changing locus of the major asthenospheric mantle convection cells represented by the Pacific and Indian MORB sources during and following the breakup of the eastern part of Gondwana, and locates, for the first time, the boundary of these convection cells beneath the Australian continent. This extends previous work in the SW Pacific back-arc basins (eg Hickey-Vargas et al., 1995) and the Southern Ocean (Lanyon et al., 1995) that indicates that the 1- and P-MORB mantle convection cells have been moving in opposite directions since the early Tertiary. These new data also indicate that the Indian-MORB source is a long-term asthenospheric reservoir beneath most of the Gondwana lithosphere and that the westward migration of the Pacific MORB source may have been associated with the Tasman Sea opening (ca 85-60 Ma) along a broad front southeast of the Australian continent. Independent dynamic modelling by Gurnis et al. (1998) produced a west-pointing V-shaped boundary between l-MORB and P-MORB in the Southern Ocean, consistent with the data from this study, and explains the present-day geochemical and geophysical characteristics of the Australia Antarctic Discordance (AAD) in the Southern Ocean. Copyright (1999) Geological Society of Australia

  20. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30'-22°S (United States)

    Hoke, Gregory D.; Isacks, Bryan L.; Jordan, Teresa E.; Blanco, NicoláS.; Tomlinson, Andrew J.; Ramezani, Jahandar


    The western Andean mountain front forms the western edge of the central Andean Plateau. Between 18.5° and 22°S latitude, the mountain front has ˜3000 m of relief over ˜50 km horizontal distance that has developed in the absence of major local Neogene deformation. Models of the evolution of the plateau, as well as paleoaltimetry estimates, all call for continued large-magnitude uplift of the plateau surface into the late Miocene (i.e., younger than 10 Ma). Longitudinal river profiles from 20 catchments that drain the western Andean mountain front contain several streams with knickpoint-bounded segments that we use to reconstruct the history of post-10 Ma surface uplift of the western flank of the central Andean Plateau. The generation of knickpoints is attributed to tectonic processes and is not a consequence of base level change related to Pacific Ocean capture, eustatic change, or climate change as causes for creating the knickpoint-bounded stream segments observed. Minor valley-filling alluvial gravels intercalated with the 5.4 Ma Carcote ignimbrite suggest uplift related river incision was well under way by 5.4 Ma. The maximum age of river incision is provided by the regionally extensive, approximately 10 Ma El Diablo-Altos de Pica paleosurface. The river profiles reveal that relative surface uplift of at least1 km occurred after 10 Ma.

  1. Harnessing Ocean Energy by Tidal Current Technologies


    Nasir Mehmood; Zhang Liang; Jawad Khan


    The world is heavily dependent on fossil fuels since most of its energy requirements are fulfilled by conventional methods of burning these fuels. The energy demand is increasing by day with growing population. The energy production by fossil fuels is devastating the environment and survival of life on globe is endangered. The renewal energy technologies are vital to ensure future energy sustenance and environmental issues. Ocean is a vast resource of renewable energy. The technology today ma...

  2. Highland crust at the Apollo 14 site: A review (United States)

    Shervais, John W.


    Recent petrologic studies of pristine nonmare samples from the Apollo 14 site have demonstrated the unique character of the western highlands crust. Many of the lithologies which occur here are not found at other highland sites or represent unique variations of more common lithologies. Rare highland samples found at the Apollo 12 site have petrologic and geochemical affinities with the Apollo 14 highland suite and the two sites taken together constitute what can be called the Western Highland Province. Rocks of the Western Highland Province are geochemically distinct from similar lithologies found at eastern highland sites (Apollo 15, Apollo 16, Apollo 17, and the Luna sites) -- a fact which adds further complications to current petrogenetic models for the lunar crust. Nonetheless, an understanding of how the Western Highlands Province formed and why it differs from highland crust in the east is crucial to our overall understanding of primordial lunar differentiation and petrogenesis.

  3. Pb isotopic evidence for early Archaean crust in South Greenland

    International Nuclear Information System (INIS)

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust

  4. Rapid rotational crust-core relaxation in magnetars

    CERN Document Server

    Sedrakian, Armen


    If a magnetar interior $B$-field exceeds $10^{15}$ G it will unpair the proton superconductor in the star's core by inducing diamagnetic currents which destroy the Cooper pair coherence. Then, the $P$-wave neutron superfluid in these non-superconducting regions will couple to the stellar plasma by scattering of protons off the quasiparticles confined in the cores of neutron vortices via the strong (nuclear) force. The dynamical time-scales associated with this interaction span from several minutes at the crust-core interface to a few seconds in the deep core. We show that (a) the rapid crust-core coupling is incompatible with oscillation models of magnetars which decouple completely the core superfluid from the crust and (b) magnetar precession is damped by the coupling of normal fluids to the superfluid core and, if observed, needs to be forced or continuously excited by seismic activity.

  5. The Composition of the Prebasin Crust in the Central Highlands of the Moon (United States)

    Korotev, R. L.


    The Apollo 16 regolith consists of a large amount of material derived from the prebasin crust, i.e., (1) plutonic ferroan anorthosite and brecciated derivatives (>90% plagioclase), (2) a variety of noritic anor-thosites (plutonic, feldspathic fragmental breccias [FFBs], granulitic breccias [GrBs], feldspathic impact-melt breccias), and (3) a minor amount of gabbronorites of highland affinity. However, the site is sufficiently close to nearside mare basins that the regolith also contains a substantial fraction of basin ejecta as well as some mare-derived materials (MDMs) delivered to the site by volcanism and impacts since filling of the basins with mare basalt. These syn- and postbasin products include (4) mafic impact-melt breccias [MIMBs, i.e., "LKFM" and "VHA"], (5) MDMS, i.e., glasses and some crystalline mare basalt, and (6) meteoritic material (largely from micrometeorites) accumulated in the regolith since basin for-ma-tion ~3.9 Ga ago. The MIMBs, which are rich in incompatible trace elements, were formed during the time of basin formation by impacts large enough to penetrate the outer feldspathic crust and melt mafic underlying material, although not all of the several known varieties at the Apollo 16 site may actually have been formed by impacts that produced basins. The Central Highlands, as sampled by the Apollo 16 mission, differs from highlands regions distant from mare basins in its high abundance of mafic syn- and postbasin material. For example, some feldspathic lunar meteorites (ALHA81005, Yamato-86032, MAC 88104/5, QUE93069) contain virtually no MDMSor MIMBs.

  6. Fabrics and Rheology of the Mojave Lower Crust and Lithospheric Mantle (United States)

    Bernard, R. E.; Behr, W. M.


    We use xenoliths from young (3 Ma to present) cinder cones in the tectonically active Mojave desert region of southern California to characterize the rheological properties of the lower crust and upper mantle. The xenoliths were collected from two localities ~90 km apart: the Cima and Dish Hill volcanic fields. The xenolith suites represent a depth range of ~25-60 km and include spinel and plagioclase facies peridotites and lower crustal gabbros. We document how stress, temperature, water content, deformation mechanism, lattice preferred orientation, and style of localization vary with increasing depth in both xenolith suites. Key findings thus far include the following: (1) Both xenolith suites exhibit a wide range of deformation textures, ranging from granular, to protogranular, to porphyroclastic and mylonitic. The higher strain fabrics show no evidence for static annealing, thus are likely reflecting youthful deformation and strain gradients at depth. (2) Both xenolith suites show abundant dynamic recrystallization and other evidence for dislocation creep as the dominant deformation mechanism. This is consistent with recent models of upper mantle post-seismic relaxation following the Landers and Hector Mine earthquakes, which require a component of power-law creep in order to fit the post-seismic surface response. (3) A- and E-type olivine LPOs occur in both xenolith suites. Further work will determine whether these fabrics are related to changes in water content as inferred from experimental studies. (4) Deformation in most lower crustal gabbros is weak, but some show strong fabrics associated with plagioclase-rich zones. (5) Measurements of olivine subgrain sizes in Dish Hill samples are similar to previously published measurements from Cima, suggesting similar stress magnitudes at depth in both locations. Paleopiezometers for olivine and plagioclase indicate stress magnitudes of 11-20 MPa for the uppermost mantle, and 0.1 MPa for the lowermost crust.

  7. Ocean crust geothermal processes : a perspective from the vantage of leg 54 drilling


    Hekinian, Roger; Rosendahl, Bruce R.; Natland, James H.


    Two distinct sedimentary facies produced by sea-floor hydrothermal activity were cored during Deep Sea Drilling Project Leg 54. The first is equivalent to the typical basal iron- and manganese-rich, clayey mud recovered at many DSDP sites. It was sampled as a dispersed component throughout the cores taken in small sediment ponds in several sites within 120 km of the East Pacific Rise at 9°N. We infer that this component was originally deposited as iron hydroxides dispersed from high-temper...

  8. Mossbauer studies and oxidised manganese ratio in ferromanganese nodules and crusts from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N; Mudholkar, A.V

    stream_size 5 stream_content_type text/plain stream_name Geo-Mar_Lett_11_51.pdf.txt stream_source_info Geo-Mar_Lett_11_51.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  9. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Galy, A.; Sukumaran, N.P.; Parthiban, G.; Volvaiker, A.Y.

    by their corresponding time slice. The star suggests the ¢eld of seawater during the time period represented by thespecimen. EPSL64753-1-03 Cyaan Magenta Geel Zwart V.K. Banakar et al./Earth and Planetary Science Letters 205 (2003) 337^348 343 we used an identical...

  10. Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rajani, R.P.; Banakar, V.K.; Parthiban, G.; Mudholkar, A.V.; Chodankar, A.R.

    - ples included are from a total depth range of 1700{ 3200 m and are free from any visible change in the colour within the vertical section of the oxide layer. Normally the presence of phosphatic layers (light coloured) alter chemical characters... with average total alkali content of ? 7% and with high phosphate content varying from ? 1% to 4.5%. Sedimentary rocks from the ANS are mostly carbonate-rich. They occur along the upper ?anks of the seamount. The rounded basalt-clasts and large brachiopod...

  11. Corrosion of MA754 and MA956 in a Commercial Aluminum Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [University of North Dakota Energy & Environmental Research Center; Kelley, Carl [Nature’s Fuel, 410 East Cook Road, Fort Wayne, IN 46825, USA; Bornstein, Norman S. [Consultant; Wright, Ian G [ORNL


    The University of North Dakota Energy & Environmental Research Center is working with Oak Ridge National Laboratory to test two oxide dispersion-strengthened alloys that could be used to construct very high-temperature heat recuperators for the aluminum-melting industry. For the initial tests, uncooled rings of MA754 and MA956 piping were exposed for 5 months to gases leaving an aluminum melter furnace at 1200 1290 C. The MA956 suffered spotty areas of severe corrosion and lost 25% of its weight. Scanning electron microscopy showed that there were small spots of alkali-rich corrosion products on the alloy surfaces, indicating the impact of droplets of fluxing agents. The corrosion products in these areas were mixed Fe, Cr, and Al oxides, which were depleted in Cr near the gas surface. However, Al concentrations in the remaining metal were typically between 3.5% and 4.0%, so there was a sufficient reservoir of Al remaining in the alloy to prevent simple breakaway corrosion which could have occurred if the Al were significantly depleted. The MA754 lost approximately 15% of its weight and showed void formation within 2 mm of the gas metal surfaces. Within the porous area, the Cr had largely segregated into oxide precipitates up to 50 9m in diameter, leaving the remaining metal Ni-rich. Below the porous layer, the alloy composition was relatively unchanged. Remains of Na- and Al-rich particles that had impacted the surface sporadically were visible but had not obviously affected the surface scale as they had with the MA956.

  12. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges (United States)

    Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.


    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.

  13. Soil stabilization by biological soil crusts in arid Tunisia (United States)

    Guidez, Sabine; Couté, Alain; Bardat, Jacques


    As part of the fight against desertification (LCD) in arid Tunisia, we have been able to highlight the important role played by biological soil crusts (BSC) in soil stabilization. The identification of the major species of cyanobacteria, lichens and bryophytes, their adaptation and terrestrial colonization strategies in this high climatic constraints area through their morpho-anatomical criteria have been set. In addition to their biological composition, their internal arrangement (i.e. texture and microstructure) reflects the structural stability of BSC against erosion. Precisely, the aggregative power of cyanobacteria and their ways of moving inside a soil, the capacity of mosses to grow through the sediments and lichens ability to bind at particles on surface, thus stabilizing the substrate have been demonstrated. Then, the three biological components ability to capture soil particles has been widely illustrated, proving the major environmental contribution of BSC in arid areas biological crusts formation, providing that soils will experience an increase of organic matter and fine particles rates subsequently gaining faster and better stability. Although the thickness and the morphology of crusts are related to the cover rates of these different biological components, the water properties of the latter, studied at the environmental SEM, illustrate their important role in altering the water cycle. Thus, the mixed crusts, i.e. with good presence of three biological components, cause the highest runoff rates by their ability to retain the water and spread on the surface. In spite of a swelling coefficient in presence of water higher than cryptogams, the cyanobacterial crusts located in newly stabilized areas of our studied region, remain finally insufficiently dense to impact surface hydrology. But, we showed after all that the cyanobacteria, pioneer species, have a certain environmental role. The lichen crusts cause a increased runoff because the lichens have a ability to extend them horizontally on the soil surface. Despite the water capture for their metabolism, the water flows; it isn't released in the depth. The moss crusts show an opposite process with an increased infiltration thanks to the possibility of a vertical transit of water through their sheets, stem and roots. So, in relation to bare soils, a crust with a good microbial and cryptogamic development causes more runoff. As part of the fight against the desertification in arid Tunisia, hydrological impact of BSC may lead to elaborate some ecosystem strategies in water and soils management. Indeed, climate aridity is not synonymous with edaphic aridity.

  14. Recovery rates of cryptobiotic crusts: inoculant use and assessment methods (United States)

    Belnap, Jayne


    Recovery rates of cyanobacterial-lichen soil crusts from disturbance were examined. Plots were either undisturbed or scalped, and scalped plots were either inoculated with surrounding biological crust material or left to recover naturally. Natural recovery rates were found to be very slow. Inoculation significantly hastened recovery for the cyanobacterial/green algal component, lichen cover, lichen species richness, and moss cover. Even with inoculation, however, lichen and moss recovery was minimal. Traditional techniques of assessing recovery visually were found to underestimate time for total recovery. Other techniques, such as extraction of chlorophyll a from surface soil and measurement of sheath material accumulation, were used and are discussed.

  15. Microbial dolomite crusts from the carbonate platform off western India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Kessarkar, P.M.; Krumbein, W.E.; Krajewski, K.P.; Schneider, R.J.

    and irregul