WorldWideScience

Sample records for long-fiber injection-molded thermoplastics

  1. Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics

    This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  2. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  3. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.

  4. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Kunc, Vlastimil; Tucker III, Charles L.

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.

  5. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.; Kunc, Vlastimil; Frame, Barbara; Norris, Robert E.; Phelps, Jay; Tucker III, Charles L.; Jin, Xiaoshi; Wang, Jin

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into a structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.

  6. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.; Kunc, Vlastimil; Norris, Robert E.; Phelps, Jay; Tucker III, Charles L.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understanding of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.

  7. Development of step for light duty truck by using injection molding of long-fiber reinforced thermoplastics; Chosen`i kyoka jushi no shashutsu keisei ni yoru truck yo step no kaihatsu

    Togo, A.; Yamamura, H.; Yamaguchi, M. [Mitsubishi Motor Corp., Tokyo (Japan); Yoshino, K. [Kawasaki Steel Corp. Tokyo (Japan)

    1997-10-01

    The new step for light duty truck was developed by injection molding of glass long-fiber reinforced polypropylene. Feature of the step is good surface appearance and no post processings, compared with the conventional one press molded with a glass fiber reinforced polypropylene sheet (Stampable sheet). 3 refs., 14 figs., 6 tabs.

  8. Injection molding of thermoplastic elastomers for microstructured substrates

    Birkar, Smita

    Amorphous and semi-crystalline thermoplastic polymers have been widely investigated for injection molding of parts with microstructured surfaces. Microstructured surfaces injection molded from thermoplastic elastomers have emerging applications as superhydrobic surfaces and patterned adhesives, but there is a limited understanding of the factors affecting replication with these materials. This research was a continued investigation of block copolymer thermoplastic elastomers as well as the first in-depth examination of thermoplastic vulcanizates for injection molding microfeatures. The first focus of this research was the interactions between tooling aspect ratio and feature orientation (negative and positive tooling) and thermoplastic elastomer hard segment content on microfeature replication. Electroformed nickel tooling having positive and negative features with different geometries and aspect ratios of 0.02:1 to 2:1 were molded from three copolyester thermoplastic elastomers with similar chemistry and different hardness values. The tooling and part features were characterized for feature depth and height as well as feature definition using scanning electron microscopy and optical profilometry. Results were correlated with elastomer properties. In the second parts of this research, the effects of microfeature spacing on the replication of thermoplastic elastomer features was investigated using micropillars with two diameters (10 and 20 mum) and three spacing ratios (0.5:1, 1:1, and 2:1). The tooling and part features were characterized for feature depth and height as well as feature definition using scanning electron microscopy and optical profilometry. Feature spacing significantly affected the replication of micropillars using a thermoplastic elastomer. This replication was competition between cooling and pressurization of the melt. Wider spacing between smaller features allowed cooling in the tooling lands to dominate the feature filling. Higher pressures did

  9. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Yossathorn Tanetrungroj; Jutarat Prachayawarakorn

    2015-01-01

    In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS) were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on n...

  10. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  11. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi [Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato [Research Center, Toyobo Co., LTD, 2-1-1 Katata, Otsu, Shiga 520-0292 (Japan)

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  12. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated

  13. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  14. Chemistry principles for thermoplastic polymer binder formula selection for powder injection molding

    梁叔全; 唐艳; 黄伯云; 李少强

    2004-01-01

    The polymer binder selection is one of the very important aspects for the powder injection molding.However, even nowadays the binder selection is still mainly performed by try and error method. Six commercial or intensive studied binder formulas were analyzed according to state diagram and chemical characteristics of ingredients in each binder formula. In addition, the interactions between the binder components and additives were also taken into account. Based on the analysis, the optimum binder formula was selected and some selection criterions were put forward for the binder and additives.

  15. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  16. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    Giboz, Julien; Copponnex, Thierry; Mélé, Patrice

    2009-02-01

    The skin-core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin-core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities.

  17. Modeling of uncertainties in long fiber reinforced thermoplastics

    Highlights: • Prediction of uncertainties in the elastic response of long fiber composites. • Simple analytical model. • Numerically efficient scheme. • Complex interaction between microstructural and effective material uncertainties. - Abstract: The present study is concerned with a numerical scheme for the prediction of the uncertainty of the effective elastic properties of long fiber reinforced composites with thermoplastic matrix (LFT) produced by standard injection or press molding technologies based on the uncertainty of the microstructural geometry and topology. The scheme is based on a simple analysis of the single-fiber problem using the rules of mixture. The transition to the multi-fiber problem with different fiber orientations is made by the formulation of an ensemble average with defined probability distributions for the fiber angles. In the result, the standard deviations of the local fiber angles together with the local fiber content are treated as stochastic variables. The corresponding probability distributions for the effective elastic constants are determined in a numerically efficient manner by a discretization of the space of the random variables and the analysis of predefined cases within this space

  18. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. - Highlights: • Microcellular injection molding was used to fabricate tissue engineering scaffolds. • TPU/PLA tissue engineering scaffolds with tunable properties were fabricated. • Multiple test methods were used to characterize the scaffolds. • The biocompatibility of the scaffolds was confirmed by fibroblast cell culture. • Scaffolds produced have the potential to be used in multiple tissue applications

  19. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C

    2016-06-15

    Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. PMID:27113866

  20. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2015-02-01

    This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. PMID:25448075

  1. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Fourth FY 2015 Quarterly Report

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Wollan, Eric J.; Roland, Dale; Gandhi, Umesh N.; Mori, Steven; Lambert, Gregory; Baird, Donald G.; Wang, Jin; Costa, Franco; Tucker III, Charles L.

    2015-11-13

    During the last quarter of FY 2015, the following technical progress has been made toward project milestones: 1) PlastiComp used the PlastiComp direct in-line (D-LFT) Pushtrusion system to injection mold 40 30wt% LCF/PP parts with ribs, 40 30wt% LCF/PP parts without ribs, 10 30wt% LCF/PA66 parts with ribs, and 35 30wt% LCF/PA66 parts without ribs. In addition, purge materials from the injection molding nozzle were obtained for fiber length analysis, and molding parameters were sent to PNNL for process modeling. 2) Magna cut samples at four selected locations (named A, B, C and D) from the non-ribbed Magna-molded parts based on a plan discussed with PNNL and the team and shipped these samples to Virginia Tech for fiber orientation and length measurements. 3) Virginia Tech started fiber orientation and length measurements for the samples taken from the complex parts using Virginia Tech’s established procedure. 4) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, reviewed process datasheets and performed preliminary analyses of these complex parts using the actual molding parameters received from Magna and PlastiComp to compare predicted to experimental mold filling patterns. 5) Autodesk assisted PNNL in developing the workflow to use Moldflow fiber orientation and length results in ABAQUS® simulations. 6) Autodesk advised the team on the practicality and difficulty of material viscosity characterization from the D-LFT process. 7) PNNL developed a procedure to import fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS® model for structural analyses of the complex part for later weight reduction study. 8) In discussion with PNNL and Magna, Toyota developed mechanical test setups and built fixtures for three-point bending and torsion tests of the complex parts. 9) Toyota built a finite element model for the complex parts subjected to torsion loading. 10) PNNL built the 3D ABAQUS® model of the complex ribbed

  2. Comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics and short fiber reinforced thermoplastic

    Fang Kun; Yang Jie; Wu Sizhu; Li Mei; Ma Mingtu

    2012-01-01

    This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower.

  3. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Wang, Jin; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-08-15

    This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66 (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to

  4. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Fourth Quarterly Report

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathur, Raj N. [PlastiComp, Inc., Winona, MN (United States); Kijewski, Seth A. [Purdue Univ., West Lafayette, IN (United States); Sangid, Michael D. [Purdue Univ., West Lafayette, IN (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Jin, Xiaoshi [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Gandhi, Umesh N. [MAGNA Exteriors and Interiors Corp, Aurora, ON (Canada); Mori, Steven [Univ. of Illinois, Champaign, IL (United States); Tucker, III, Charles L.

    2014-09-30

    extract machine purgings (purge materials) from Magna’s 200-Ton Injection Molding machine targeted to mold the complex part. 11) Toyota and Magna discussed with PNNL tool modification for molding the complex part.

  5. Predictive engineering tools for injection-molded long-carbon-fiber thermoplastic composites - FY 2015 third quarterly report

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mori, Steven [MAGNA Exteriors and Interiors Corp. Aurora, ON (Canada); Gandhi, Umesh N. [Toyota Research Institute North America, Ann Arbor, MI (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States); Tucker, III, Charles L. [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2015-07-01

    During the third quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Magna oversaw the tool build and prepared the molding plan for the complex part of Phase II. 2) PlastiComp hosted a visit by Magna and Toyota on April 23rd to finalize the molding scope and schedule. The plan for molding trials including selection of molding parameters for both LFT and D-LFT for the U-shape complex part was established. 3) Toyota shipped the U-shape complex part tool to Magna on May 28th, 2015. 4) Plasticomp provided 30wt% LCF/PP and 30wt% LCF/PA66 compounded pellets to Magna for molding the complex part. 5) Magna performed preliminary molding trials on June 2nd, 2015 to validate wall thickness, fill profile, tool temperature and shot size requirements for the complex part. 6) Magna performed the first complex part run on June 16th and 17th, 2015 at Magna’s Composite Centre of Excellence in Concord, ON, Canada. Dale Roland of Plasticomp, and Umesh Gandhi of Toyota also attended the molding. 7) Magna discussed and finalized the plan with PNNL and the team for cutting samples from molded parts at selected locations for fiber orientation and length measurements. 8) Magna provided the computer-aided design (CAD) files of the complex parts with and without ribs to PNNL and Autodesk to build the corresponding ASMI models for injection molding simulations. Magna also provided the actual parameters used. 9) Plasticomp’s provided knowledge and experience of molding LCF materials essential to the successful molding of the parts including optimization of fill speed, tool temperatures, and plasticizing conditions for the 30wt% LCF/PP and 30wt% LCF/PA66 materials in both rib and non-rib versions. 10) Magna molded additional parts for evaluation of mechanical property testing including torsional stiffness on June 29th and 30th, 2015 at Magna’s Composite Center of Excellence. 11) Toyota began preparation for the torsion test of the specimens

  6. Relationship between fiber degradation and residence time distribution in the processing of long fiber reinforced thermoplastics

    2008-08-01

    Full Text Available Long fiber reinforced thermoplastics (LFT were processed by in-line compounding equipment with a modified single screw extruder. A pulse stimulus response technique using PET spheres as the tracer was adopted to obtain residence time distribution (RTD of extrusion compounding. RTD curves were fitted by the model based on the supposition that extrusion compounding was the combination of plug flow and mixed flow. Characteristic parameters of RTD model including P the fraction of plug flow reactor (PFR and d the fraction of dead volume of continuous stirred tank reactor (CSTR were used to associate with fiber degradation presented by fiber length and dispersion. The effects of screw speed, mixing length and channel depth on RTD curves, and characteristic parameters of RTD models as well as their effects on the fiber degradation were investigated. The influence of shear force with different screw speeds and variable channel depth on fiber degradation was studied and the main impetus of fiber degradation was also presented. The optimal process for obtaining the balance of fiber length and dispersion was presented.

  7. Wavelet Packet Decomposition to Characterize Injection Molding Tool Damage

    Tomaž Kek

    2016-02-01

    Full Text Available This paper presents measurements of acoustic emission (AE signals during the injection molding of polypropylene with new and damaged mold. The damaged injection mold has cracks induced by laser surface heat treatment. Standard test specimens were injection molded, commonly used for examining the shrinkage behavior of various thermoplastic materials. The measured AE burst signals during injection molding cycle are presented. For injection molding tool integrity prediction, different AE burst signals’ descriptors are defined. To lower computational complexity and increase performance, the feature selection method was implemented to define a feature subset in an appropriate multidimensional space to characterize the integrity of the injection molding tool and the injection molding process steps. The feature subset was used for neural network pattern recognition of AE signals during the full time of the injection molding cycle. The results confirm that acoustic emission measurement during injection molding of polymer materials is a promising technique for characterizing the integrity of molds with respect to damage, even with resonant sensors.

  8. Characterization of Injection Molded Structures

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard;

    and limitations. Therefore, it would be difficult to characterize complex, especially hierarchical structures by using only one method. Here we present a combined optical microscopy, scanning electron microscopy (SEM), and scanning probe microscopy study on injection molded structures. These...... understand structure-properties relationship of the injection molded polymer samples. These results are very important in optimizing injection molding parameters....

  9. Microcellular Injection Molding Using Helium

    In comparison with conventional foaming process microcellular injection molding process has advantages such as small bubble size, the removal of sink mark, scale reliability, and weight lightening. So microcellular injection molded parts are applied to electrical product and automobile part. Conventional microcellular foaming process used carbon dioxide and nitrogen as a foaming agent. And it has been never researched and applied about microcellular injection molding process using helium. In this paper, we did a microcellular injection molding process using helium based on previous research result and made samples. From this we can certificate the possibility of microcellular continuous process using helium. Helium is lighter and faster in diffusion than carbon dioxide or nitrogen so through this technique, it can be solved the problem such as spray or labeling

  10. Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system

    Tso, W.; Hou, T. H.; Tiwari, S. N.

    1993-01-01

    Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables us to estimate the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance our knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.

  11. Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system

    Tso, W.; Hou, T.H.; Tiwari, S.N.

    1993-11-01

    Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables the estimation of the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance the knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.

  12. Fabrication of micro gear wheels by micropowder injection molding

    Haiqing Yin; Xuanhui Qu; Chengchang Jia

    2008-01-01

    The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based thermoplastic binder. Microinjection molding was fulfilled at about 423 K under 100 MPa. The heating system was applied to the die to improve the fluidity of the feedstock and subsequently the cooling system was used to enhance the strength of the green compacts after injection by decreasing the temperature of the die. The gear wheels were realized successfully with their addendum circle diameter ranging from 800 to 200 m and with the center hole as small as 60 μtm.

  13. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  14. Residual stresses in injection molded shape memory polymer parts

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  15. Injection molding of metal powders

    The powder Injection Moulding (PIM) process is a viable and competitive commercial technique for producing complex-shaped parts of various materials in high volumes. PIM based on a new binder system and using a Co-Cr-Mo alloy powder as a test material, has been described. The binder comprises a major fraction of polyethylene glycols (PEGs) of various molecular weights and a minor fraction of very finely dispersed poly methyl methacrylate (PMMA) incorporated in the form of an emulsion. Various processing stages of the PIM process, i.e., feedstock preparation, injection molding, de binding and sintering have been discussed. (author)

  16. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  17. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  18. Injection Molding of Plastics from Agricultural Materials

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  19. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    Tanzi, Simone; Larsen, Simon Tylsgaard; Taboryski, Rafael J.

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3...

  20. Injection molding ceramics to high green densities

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  1. Optimization of injection molding parameters for poly(styrene-isobutylene-styrene) block copolymer

    Fittipaldi, Mauro; Garcia, Carla; Rodriguez, Luis A.; Grace, Landon R.

    2016-03-01

    Poly(styrene-isobutylene-styrene) (SIBS) is a widely used thermoplastic elastomer in bioimplantable devices due to its inherent stability in vivo. However, the properties of the material are highly dependent on the fabrication conditions, molecular weight, and styrene content. An optimization method for injection molding is herein proposed which can be applied to varying SIBS formulations in order to maximize ultimate tensile strength, which is critical to certain load-bearing implantable applications. The number of injection molded samples required to ascertain the optimum conditions for maximum ultimate tensile strength is limited in order to minimize experimental time and effort. Injection molding parameters including nozzle temperature (three levels: 218, 246, and 274 °C), mold temperature (three levels: 50, 85, and 120 °C), injection speed (three levels: slow, medium and fast) and holding pressure time (three levels: 2, 6, and 10 seconds) were varied to fabricate dumbbell specimens for tensile testing. A three-level L9 Taguchi method utilizing orthogonal arrays was used in order to rank the importance of the different injection molding parameters and to find an optimal parameter setting to maximize the ultimate tensile strength of the thermoplastic elastomer. Based on the Taguchi design results, a Response Surface Methodology (RSM) was applied in order to build a model to predict the tensile strength of the material at different injection parameters. Finally, the model was optimized to find the injection molding parameters providing maximum ultimate tensile strength. Subsequently, the theoretically-optimum injection molding parameters were used to fabricate additional dumbbell specimens. The experimentally-determined ultimate tensile strength of these samples was found to be in close agreement (1.2%) with the theoretical results, successfully demonstrating the suitability of the Taguchi Method and RSM for optimizing injection molding parameters of SIBS.

  2. Research in manufacturing of micro-structured injection molded polymer parts

    Lucyshyn, Thomas; Struklec, Tobias; Burgsteiner, Martin; Graninger, Georg; Holzer, Clemens

    2015-12-01

    An overview of current research results is given for the topic of injection molding of micro-structured polymer parts regarding filling behavior and demolding process of micro-structures as well as the production of micro-structures on curved surfaces. In order to better understand how micro-structures are formed during the filling stage of injection molding, a study was performed on a test part with micro-channels placed parallely and perpendicularly to flow direction. Short shots with a highly fluent Polypropylene grade were injection molded with the melt front stopping in the structure fields. The melt and mold temperature, the injection rate as well as the use of a variotherm heating system were varied in a systematic Design of Experiments. The shape of the flow front was investigated with the optical measurement system Alicona InfiniteFocus. The data gained was analyzed with Matlab scripts and provided the needed distance to completely fill the structures as a reference value. The next topic covers the demolding step, which is a crucial process step in injection molding of micro-structured parts as the successfully replicated structures often get destroyed in the following demolding step. In order to evaluate the influence of the four aspects polymer, mold surface (coatings), structure (geometry and placement) and process settings on the demolding behavior, an injection mold with integrated measurement system was built, which makes it possible to measure the demolding force respectively a demolding energy under process conditions. These values can be used to quantitatively compare the impact of the above mentioned influencing factors on demolding. Finally, a concept to produce micro-structures on curved surfaces with injection molding is shown: A flat metal premaster structure is used to produce an elastomeric polymer (dimethylsiloxane) master in a casting process. This master is fixed in a conventional injection mold and a thermoplastic polymer is replicated

  3. Nanostructuring steel for injection molding tools

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and...... ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are...

  4. Polyamide 6 - long glass fiber injection moldings

    Bijsterbosch, H.; Gaymans, R.J.

    1995-01-01

    The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of impregnation and fiber concentration were studied. The injection molded samples were analyzed for fiber concentration, fiber length, and fiber orientation. Dumbbell-shaped tensile bars were made t...

  5. Injection Molding of High Aspect Ratio Nanostructures

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...... using native nickel molds only lead to slight improvements in replication quality. In contrast, a fluorocarbon based antistiction coating (FDTS) was found to improve the replication quality significantly....

  6. All-in-polymer injection molded device for single cell capture using multilevel silicon master fabrication

    Tanzi, S.; Larsen, S.T.; Matteucci, M.;

    2012-01-01

    This work demonstrates a novel all-in-polymer device for single cell capture applicable for biological recordings. The chip is injection molded and comprises a "cornered" (non planar) aperture. It has been demonstrated how cornered apertures are straightforward to mold in PDMS [1,2]. In this study...... we demonstrate cornered apertures made in a thermoplastic polymer. One of the advantages of cornered apertures is the ease of microscopy under a standard inverted optical microscope, when using transparent materials. After the part is injection molded, the sealing of the chip is performed by thermal...

  7. Tool application CAD / CAM for design and construction of a prototype of plastic injection mold

    Albert Miyer Suárez Castrillón

    2015-11-01

    Full Text Available The study, development and production of injection molds comes with the implementation of CAD and CAM tools available on the market; using these tools, a prototype injection mold for thermoplastic materials was designed and built, based on a mold is injection in the laboratory of the University of Pamplona, in which a couple of modifications were made in order to experiment with its design. The prototype was manufactured through a 3D scan of the original mold to provide the CAD / CAM files with the simulated 3D printing technique for performing an experimental study with the prototype for adjusting temperature and pressure sensors and for coatings metallic materials for use in the injection molding process.

  8. Powder Injection Molding of Titanium Components

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 – 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  9. Surface microstructure replication in injection molding

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    In recent years, polymer components with surface microstructures have been in rising demand for applications such as lab-on-a-chip and optical components. Injection molding has proven to be a feasible and efficient way to manufacture such components. In injection molding, the mold surface...... the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the...... topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...

  10. Single gate optimization for plastic injection mold

    LI Ji-quan; LI De-qun; GUO Zhi-ying; LV Hai-yuan

    2007-01-01

    This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.

  11. Powder injection molding of pure titanium

    GUO Shibo; DUAN Bohua; HE Xinbo; QU Xuanhui

    2009-01-01

    An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. The injection molding, debinding, and sintering process were studied. An ideal control of carbon and oxygen contents was achieved by thermal debinding in vacuum atmosphere (10-3 Pa). The mechanical properties of as-sintered specimens were less than those of titanium made by the conventional press-sintering process. Good shape retention and ±0.04 mm dimension deviation were achieved.

  12. Porous media heat transfer for injection molding

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  13. Foam injection molding of elastomers with iron microparticles

    Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto

    2015-12-01

    In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.

  14. Polyamide 6 - long glass fiber injection moldings

    Bijsterbosch, H.; Gaymans, R.J.

    1995-01-01

    The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of

  15. Nanostructuring steel for injection molding tools

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  16. Progress in Titanium Metal Powder Injection Molding

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  17. Nanostructuring steel for injection molding tools

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...

  18. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    Tanzi, Simone; Larsen, Simon Tylsgaard; Rafael J. Taboryski

    2011-01-01

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3,4-ethylenedioxythiopene) and showed that it can be used as an electrode material for detecting neurotransmitters electrochemically in biosensors.

  19. Particle Image Velocimetry During Injection Molding

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  20. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  1. Experimental Investigation into Suitable Process Conditions for Plastic Injection Molding of Thin-Sheet Parts

    Dyi-Cheng Chen

    2014-04-01

    Full Text Available This study performs an experimental investigation into the effects of the process parameters on the surface quality of injection molded thin-sheet thermoplastic components. The investigations focus specifically on the shape, number and position of the mold gates, the injection pressure and the injection rate. It can be seen that the gravity force entering point improved filling of the cavity for the same forming time and injection pressure. Moreover, it shows the same injection pressure and packing time, the taper-shape gate yields a better surface appearance than the sheet-shape gate. The experimental results provide a useful source of reference in suitable the process conditions for the injection molding of thin-sheet plastic components.

  2. Study on manufacture of 2:17 Sm-Co magnets by powder injection molding

    Manufacture of 2:17 Sm-Co magnets by powder injection molding was investigated. The binder of thermoplastic polymer was selected as the wax-based system including paraffin wax, stearic acid and high density polyethylene. Before mixing with paraffin wax and high density polyethylene, the powder of 5-8 μm was coated by stearic acid. The molding compacts were obtained under 200 without deficits. Solvent debinding and thermal debinding were combined to remove the binder. The basic magnetic characteristics of the specimen were of the same level as those by powder metallurgy technique, which indicated that to fabricate 2:17 Sm-Co magnets by powder injection molding was feasible. (orig.)

  3. Functional nanostructures on injection molded plastic

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard;

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during the...... molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  4. Injection molded self-cleaning surfaces

    Søgaard, Emil

    that are superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano......° for structured surfaces with a drop roll-off angle of less than 2°. Thereby, it is shown that an extremely water repellant surface can be injection molded directly with clear perspectives for more environmental and healthier plastic consumer products....

  5. Injection molding of micro patterned PMMA plate

    Yeong-Eun YOO; Tae-Hoon KIM; Tae-Jin JE; Doo-Sun CHOI; Chang-Wan KIM; Sun-Kyung KIM

    2011-01-01

    A plastic plate with surface micro features was injection molded to investigate the effect of pressure rise of melt on the replication of the micro structures. Prism pattern, which is used in many optical applications, was selected as a model pattern. The prism pattern is 50 μm in pitch and 108° in the vertical angle. The overall size of the plate was 335 mm×213 mm and the thickness of the plate varied linearly from 2.6 mm to 0.7 mm. The prism pattern was firstly machined on the nickel plated core block using micro diamond tool and this machined pattern core was installed in a mold for injection molding of prism patterned plate. Polymethyl methacrylate (PMMA) was used as a molding material. The pressure and temperature of the melt in the cavity were measured at different positions in the cavity and the replication of the pattern was also measured at the same positions. The results show that the pressure or temperature profile through the process depends on the shape and the size of the plate. The replication is affected by the temperature and pressure profiles at the early stage of filling, which is right after the melt reaches the position to be measured.

  6. Fractal phenomena in powder injection molding process

    郑洲顺; 曲选辉; 李云平; 雷长明; 段柏华

    2003-01-01

    The complicated characteristics of the powder were studied by fractal theory. It is illustrated that powder shape, binder structure, feedstock and mold-filling flow in powder injection molding process possess obvious fractal characteristics. Based on the result of SEM, the fractal dimensions of the projected boundary of carbonylic iron and carbonylic nickel particles were determined to be 1.074±0.006 and 1.230±0.005 respectively by box counting measurement. The results show that the fractal dimension of the projected boundary of carbonylic iron particles is close to smooth curve of one-dimension, while the fractal dimension of the projected boundary of carbonylic nickel particle is close to that of trisection Koch curve, indicating that the shape characteristics of carbonylic nickel particles can be described and analyzed by the characteristics of trisection Koch curve. It is also proposed that the fractal theory can be applied in the research of powder injection molding in four aspects.

  7. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    Graf, Neil J; Bowser, Michael T

    2013-10-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  8. Modelling and monitoring in injection molding

    Thyregod, Peter

    2001-01-01

    This thesis is concerned with the application of statistical methods in quality improvement of injection molded parts. The methods described are illustrated with data from the manufacturing of parts for a medical device. The emphasis has been on the variation between cavities in multi-cavity molds....... >From analysis of quality measurements from a longer period of manufacturing, it was found that differences in cavities was that source of variation with greatest influence on the lenght of the molded parts. The other large contribution to the lenght varation was the different machine settings. Samples...... taken within the same machine set-point did not cause great variation compared to the two preceding sources of variation. A simple graphical approach is suggested for finding patterns in the cavity differences. Applying this method to data from a 16 cavity mold, a clear connection was found between a...

  9. Optomechanical details in injection-molded assemblies

    Hebert, Raymond T.

    1995-12-01

    With the advent of low-cost electro-optic components such as LEDs, laser diodes and CCD imaging devices, the cost and performance demands now fall upon the optical subsystems in order to achieve realistic marketing targets for many emerging commercial and consumer products. One of the many benefits of injection-molded plastic optics is the diversity of features that are available to the design team. Once designed and incorporated into the tooling, many features are virtually free in high-volume production. These features can include mechanical details as well as optical functions. Registration features can be included for precisely positioning optical elements to one another or to other assemblies such as printed circuit boards or housings. Snaps, compression features, spring-loading elements, standoffs, self-tapping screws or ultrasonically weldable features can greatly facilitate ease of assembly.

  10. Observation of the polymer melt flow in injection molding process using co-injection molding technique

    Chen, S.C.; Hsu, K.F.; Huang, J.S. (Chung Yuan Univ., Chung-Li (Taiwan, Province of China). Mechanical Engineering Dept.)

    Studies of the polymer melt flow in injection molding process have been carried out by co-injection molding technique using alternating sequence of transparent and colored PMMA resin. Simulations are also developed to predict the melt front advancements for both skin and core melts. Fountain flow effect is evident in all case studies. During the packing process, the polymer melt flows significantly with the increased packing pressure due to the compressible nature of the melt and the flow concentrates around cavity location near gate area. That the polymer melt flows across the weld line around the gap center in the packing stage was also observed. Although numerical simulations show fair consistence with experimental results in both skin and core material distribution, edge effect remains to be taken into account to improve the simulation accuracy.

  11. Applications of thin carbon coatings and films in injection molding

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a

  12. Fabrication of sinterable silicon nitride by injection molding

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  13. Development of Integrated Simulation System for Plastic Injection Molding

    CHENGXue-wen; LIDe-qun; ZHOUHua-min

    2005-01-01

    Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-difference/boundary-element/volume-control methods and the surface model. This paper discusses the development of an integrated CAE system for injection molding in detail, and presents the mathematics for numerical simulation of filling, packing,cooling, stress and warpage in injection molding. The developed system named as HsCAE3D is introduced at the end.

  14. Multi-height structures in injection molded polymer

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2015-01-01

    We present the fabrication process for injection molded multi-height surface structures for studies of wetting behavior. We adapt the design of super hydrophobic structures to the fabrication constrictions imposed by industrial injection molding. This is important since many super hydrophobic...... surfaces are challenging to realize by injection molding due to overhanging structures and very high aspect ratios. In the fabrication process, we introduce several unconventional steps for producing the desired shapes, using a completely random mask pattern, exploiting the diffusion limited growth rates...... of different geometries, and electroforming a nickel mold from a polymer foil. The injection-molded samples are characterized by contact angle hysteresis obtained by the tilting method. We find that the receding contact angle depends on the surface coverage of the random surface structure, while the...

  15. Research on machine vision system of monitoring injection molding processing

    Bai, Fan; Zheng, Huifeng; Wang, Yuebing; Wang, Cheng; Liao, Si'an

    2016-01-01

    With the wide development of injection molding process, the embedded monitoring system based on machine vision has been developed to automatically monitoring abnormality of injection molding processing. First, the construction of hardware system and embedded software system were designed. Then camera calibration was carried on to establish the accurate model of the camera to correct distortion. Next the segmentation algorithm was applied to extract the monitored objects of the injection molding process system. The realization procedure of system included the initialization, process monitoring and product detail detection. Finally the experiment results were analyzed including the detection rate of kinds of the abnormality. The system could realize the multi-zone monitoring and product detail detection of injection molding process with high accuracy and good stability.

  16. Smart plastic functionalization by nanoimprint and injection molding

    Zalkovskij, Maksim; Thamdrup, Lasse Højlund; Smistrup, Kristian;

    2015-01-01

    In this paper, we present a route for making smart functionalized plastic parts by injection molding with sub-micrometer surface structures. The method is based on combining planar processes well known and established within silicon micro and sub-micro fabrication with proven high resolution and...... high fidelity with truly freeform injection molding inserts. The link between the planar processes and the freeform shaped injection molding inserts is enabled by the use of nanoimprint with flexible molds for the pattern definition combined with unidirectional sputter etching for transferring the...... pattern. With this approach, we demonstrate the transfer of down to 140 nm wide holes on large areas with good structure fidelity on an injection molding steel insert. The durability of the sub-micrometer structures on the inserts have been investigated by running two production series of 102,000 and 73...

  17. Process and part filling control in micro injection molding

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  18. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue;

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  19. Effect of injection-molding-induced residual stress on microchannel deformation irregularity during thermal bonding

    Micro injection molding offers a promising approach to rapidly produce thermoplastic microfluidic substrates in large volumes. Many research works have been focused on the replication fidelity of microstructures by injection molding. However, there has not been any investigation on the effect of molded-in residual stress on microchannel deformation during the subsequent thermal bonding process. These effects could be important, because the residual stress developed due to anisotropic polymer flow orientation and inhomogeneous cooling may lead to abnormal microchannel distortion. In the direct thermal bonding process, asymmetric cross-sectional distortion was observed in well-formed microchannels aligned perpendicular to the polymer melt injection direction. This asymmetric distortion is attributed to the residual stress introduced into the substrates during molding, particularly in the surface region where microchannels are molded. Design of experiment on injection molding was carried out to reduce the residual stress in order to achieve the lowest microchannel deformation irregularity, which is a new term defined in this study. The direct thermal bonding was utilized as a feasible non-destructive indirectly quantitative method to evaluate the effect of residual stress around microchannel regarding deformation irregularity. The dominant molding parameters with positive effects were found to be melt temperature, mold temperature as well as cooling time after packing. The presence of the residual stress was also demonstrated through photoelastic stress analysis in terms of phase retardation. With improved molding condition, the absolute retardation difference around microchannels aligned parallel and perpendicular to the molding direction could be tuned to the same level, which indicates that the molded-in residual stresses have been moderated. (paper)

  20. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp [Department of Advanced Fibro-Science, Kyoto Institute of Technology (Japan); Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Kodama, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Yamashita, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Isogai, Y., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Furuichi, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Nonomura, C., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp [Toyobo Co., LTD. Research Center (Japan)

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  1. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results

  2. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  3. Injection molding of high aspect ratio sub-100 nm nanostructures

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality......-containing thin film (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the...... coating with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high...

  4. CENTRAL CONVEYING & AUTO FEEDING SYSTEMS FOR AN INJECTION MOLDING SHOP

    Sanjeev Kumar

    2011-08-01

    Full Text Available Nowadays injection molding is probably the most important method of Processing of consumer and industrial goods, and is performed everywhere in the world. The developing of injection molding becomes a competition from day to day. This Process now integrated with computer control make the production better in quality and Better quantity. The trends of producing a plastics product in injection molding industries are recently changing from traditional method to using the FEA analysis. For injection molding industries, time and cost is very important aspects to consider because these two aspectswill directly related to the profits at a company. The next issue toconsider, to get the best parameter for the injection molding process, plastics has been waste. Through the experiment, operator will use large amount of plastics material to get the possibly parameters to setup the machine.To produce the parts with better quality and quantity these molding defects are the major obstacles in achieving the targets with quality & quantity. Various defects like Short shot, colour streaks and low productivity rates are associated with the material mixing and feeding as molded plastics are often a blend of two or more materials. Colors (master batch and other additives are often mixed (blended with the raw plastic material prior to the molding process in molding plants. So it is very necessary to work out auto blending and auto feeding of plasticgranules to the machine hopper. This paper will cover the studyof automatic blending unit & central conveying system for plasticgranule feeding to machine & will help in optimizing the injection molding process.

  5. Dynamic of taking out molding parts at injection molding

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  6. Fiber-Based, Injection-Molded Optofluidic Systems

    Matteucci, Marco; Triches, Marco; Nava, Giovanni;

    2015-01-01

    We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow...... optical fibers in a quick and precise manner, with a lateral alignment accuracy of 2.7 ± 1.8 μm. We report the production, assembly methods, and the characterization of the resulting injection-molded chips for Lab-on-Chip (LoC) applications. We demonstrate the versatility of this technology by carrying...

  7. Two component micro injection molding for MID fabrication

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector, but...... recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  8. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard;

    2012-01-01

    In today´s industry, applications involving surface patterning of sub-μm to nanometer scale structures have shown a high growth potential. To investigate the injection molding capability of replicating sub-μm surface texture on a large scale area, a 30x80 mm2 tool insert with surface structures...... having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  9. Recent Developments and Trends in Powder Injection Molding

    Hermina Wang

    2000-01-01

    Injection molding is a productive and widely used technology for shaping plastics. The use of this shaping technique to metal and ceramics powders is termed powder injection molding (PIM). This process combines a certain quantity of a polymer with a metallic or ceramic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered. When proper powder size or/and its distribution are used, sintered densities of 95% or more, often to near-theoretical densities, are reached and the mechanical properties are, therefore, generally superior to those of traditional PM parts.

  10. The Shrinkage Behavior and Surface Topographical Investigation for Micro Metal Injection Molding

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian;

    2014-01-01

    especially when it is compared with micro molding of thermoplastics. The current paper presents a thorough investigation on the process of metal injection molding where it systematically characterizes the effects of important process conditions on the shrinkage and surface quality of molded parts with micro....... Among the different process parameters studied, the melt temperature was the most influential parameters for better replication and dimensional stability of the final part. The results presented in the paper clearly show that the shrinkage in metal part is not uniform in the micro scale. It depends on...... the feature dimensions and also on the process conditions. A thin section of the part exhibits higher relative shrinkage compared with a thicker section. Based on these findings, it can be concluded that a micro part molded by MIM process will have higher relative shrinkage compared to a macro part...

  11. Residual stress distribution in injection molded parts

    P. Postawa

    2006-08-01

    Full Text Available Purpose: The paper presents the results of the investigations of influence of the amorphous polystyrene (PSprocessing on the diversity of the internal stresses observed in the injection moulded piece.Design/methodology/approach: For the tests, the standardized mould piece designed for the investigations ofthe processing shrinkage of thermoplastics materials has been used. The samples have been prepared using theDesign of Experiment (DoE theory.The state of internal stresses has been analysed by means of photoelastic method (used stress viewer equipmenton the basis of the layout and size of the isochromatics (fields with the same colour, which determine the mouldpiece’s areas where the same value for the difference of main tensions. In the article the results of investigationsof influence of 5 chosen processing parameters such as injection temperature Tw, mould temperature Tf,clamping pressure pd, cooling time tch and the injection speed vw on the changes in isochromatics layout as adeterminant for diversity of internal stresses in injection moulded pieces have been presented.Findings: The performed investigations of the influence of injection conditions on the state of internal stressesreached for injection mould pieces were to determine the parameters of injection at which the achieved state ofthe stresses in the mould piece (described by the difference of main tensions will show the lowest values.Practical implications: Effects of examinations of influence of processing conditions on residual stress ininjection molded parts (presented in the article could find practical application in polymer industry, both smalland large enterprises.Originality/value: New approach to fast estimation of value of residual stresses were present in the paper.

  12. Ion channel recordings on an injection-molded polymer chip

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann;

    2013-01-01

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made u...

  13. PHYSICAL PROPERTIES OF EXTRUDED AND INJECTION MOLDED CORN GLUTEN MEAL

    This study was performed to investigate the compounding of corn gluten meal (CGM) and decanoic acid and to evaluate their mechanical properties. The mixture of CGM and 30% decanoic acid was compounded in a twin screw extruder, followed by injection molding. Scanning electron microscopy (SEM), tens...

  14. Injection molded polymeric hard X-ray lenses

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen;

    2015-01-01

    etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  15. Injection molded dielectromagnets prepared from mixture of hard magnetic powders

    Dielectromagnets are permanent magnets prepared from a hard magnetic powder bonded by binder. These permanent magnets are termed also as bonded permanent magnets. There are two ways to prepare dielectromagnets: compression molding and injection molding. Dielectromagnets prepared by injection molding, from the same hard magnetic powders, have worse magnetic properties than dielectromagnets prepared by compression molding, but they are cheaper. Isotropic dielectromagnets prepared from ferrite powder have low value of magnetic properties, but their advantage is positive value of temperature coefficient of JHc. They are low in price. Dielectromagnets prepared from melt-spun Nd-Fe-B have high values of magnetic properties.Value of temperature coefficient of JHc is their weakness. They are more expensive than ferrite dielectromagnets. Comparison of advantages and disadvantages of dielectromagnets prepared from different kinds of hard magnetic powder has produced an idea of making dielectromagnets from the mixture of these powders prepared by compression molding have magnetic and thermal properties of values between values of dielectromagnets from Nd-Fe-B and ferrite powders. It was described elsewhere. The purpose of this investigation is to prepare injection molded dielectromagnets from mixture of powders of strontium ferrite and melt-spun ribbon Nd-Fe-B and to find correlation between the composition of the mixture and magnetic properties of dielectromagnets. A result of mixture composition on magnetic properties of injection molded dielectromagnets is shown. (author)

  16. Fast prototyping of injection molded polymer microfluidic chips

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    , likely due to the resulting reduction in sidewall steepness. We employed the latter method for injection molding bondable polymer microfluidic chips with integrated conducting polymer electrode arrays that permitted the culture and on-chip analysis of cell spreading by impedance spectroscopy....

  17. Modeling injection molding of net-shape active ceramic components.

    Baer, Tomas (Gram Inc.); Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of

  18. Injection molding of bushes made of tribological PEEK composites

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  19. Shape retention of injection molded stainless steel compacts

    LI Yi-min; K.A.Khalil; HUANG Bai-yun

    2005-01-01

    The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120 MPa and molding temperature of 150 ℃. Under this process condition, the percentage of distorted compacts is the lowest.

  20. Pressureless sintering behavior of injection molded alumina ceramics

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  1. Injection molding tools with micro/nano-meter pattern

    2011-01-01

    The present invention relates to methods for embedded a micrometer and/or nanometer pattern into an injection molding tool. In a first main aspect, a micro/nanometer structured imprinting device is applied in, or on, an active surface so as to transfer the micro/nanometer patterned structure to the...... tool while the imprinting device is, at least partly, within a cavity of the injection molding tool. In a second main aspect, a base plate with a micro/nanometer structured pattern positioned on an upper part is positioned on the active surface within the tool, the lower part of the base plate facing...... the tool, the active surface receiving the base plate being non-planar on a macroscopic scale. Both aspects enable a simple and effective way of transferring the pattern, and the pattern may be transferred on the active working site of tool immediately prior to molding without the need for extensive...

  2. Stability of FDTS monolayer coating on aluminum injection molding tools

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  3. FPGA-Based Multiprocessor System for Injection Molding Control

    Roque A. Osornio-Rios

    2012-10-01

    Full Text Available The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

  4. CAE for Injection Molding — Past, Present and the Future

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE

  5. Metal Injection Molding (MIM) of Magnesium and Its Alloys

    Martin Wolff; Johannes G. Schaper; Marc René Suckert; Michael Dahms; Frank Feyerabend; Thomas Ebel; Regine Willumeit-Römer; Thomas Klassen

    2016-01-01

    Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM) technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in...

  6. The Simulation and Optimization of Aspheric Plastic Lens Injection Molding

    WEN Jialing; WEN Pengfei

    2005-01-01

    For the purpose of reducing the volumetric shrinkage and volumetric shrinkage variation, the process in injection molding of aspheric plastic lens was simulated, and several process parameters which include holding pressure, melt temperature, mold temperature, fill time, holding pressure time and cooling time were optimized by using an orthogonal experimental design method. Finally, the optimum process parameters and the influence degree of process parameters on the average volumetric shrinkage and the volumetric shrinkage variation are obtained.

  7. A Recurrent Neural Network for Warpage Prediction in Injection Molding

    A. Alvarado-Iniesta; D.J. Valles-Rosales; J.L. García-Alcaraz; A. Maldonado-Macias

    2012-01-01

    Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in product...

  8. An investigation into the injection molding of PMR-15 polyimide

    Colaluca, M. A.

    1984-01-01

    The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.

  9. Stability of FDTS monolayer coating on aluminum injection molding tools

    Highlights: ► We present novel and highly useful results on FDTS monolayer coating of aluminum. ► The coating is particularly applicable for coating of prototyping injection molding tools, which often are made of Al. ► We have demonstrated that the coating prevails in injection molding conditions and that the coating will prevent wear of the tools. - Abstract: We have characterized perfluorodecyltrichlorosilane (FDTS) molecular coating of aluminum molds for polymer replication via injection molding (IM). X-ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energies and roughness data have been collected. Samples have been characterized immediately after coating, after more than 500 IM cycles to test durability, and after 7 months to test temporal stability. The coating was deposited in an affordable process, involving near room temperature gas phase reactions. XPS shows detectable fluorine presence on both freshly coated samples as well as on post-IM samples with estimated 30 at.% on freshly coated and 28 at.% on post-IM samples with more than 500 IM cycles with polystyrene (PS) and ABS polymer.

  10. Injection molding of high aspect ratio sub-100 nm nanostructures

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual pillars. The poorly replicated structures on nickel molds with or without FDTS coatings all appeared fractured. We investigated the underlying mechanism in a macroscopic model system and found reduced wetting and strongly decreased adhesion of solidified COC droplets on nickel surfaces after coating with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect ratio >2.5) pillars on a 200 nm pitch. (paper)

  11. A Recurrent Neural Network for Warpage Prediction in Injection Molding

    A. Alvarado-Iniesta

    2012-11-01

    Full Text Available Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in products manufactured through injection molding. Five process parameters areemployed for being considered to be critical and have a great impact on the warpage of plastic components. Thisstudy used the finite element analysis software Moldflow to simulate the injection molding process to collect data inorder to train and test the recurrent neural network. Recurrent neural networks were used to understand the dynamicsof the process and due to their memorization ability, warpage values might be predicted accurately. Results show thedesigned network works well in prediction tasks, overcoming those predictions generated by feedforward neuralnetworks.

  12. Atmosphere control during debinding of powder injection molded parts

    Moore, J. A.; Jarding, B. P.; Lograsso, B. K.; Anderson, I. E.

    1995-06-01

    Atmosphere control during debinding of powder injection molded (PIM) parts is an important parameter to consider. Experimental results have shown that a stagnant atmosphere containing volatiles evolved during debinding can cause slumping of the green samples. Removal of volatiles from the sample zone aids debinding and can reduce cycle times and improve sample quality. Residual carbon and oxygen can be controlled during debinding by adjusting the atmosphere composition. This paper presents the results of PIM 70 vol% spherical copper powder and 30 vol% binder. Debinding atmospheres were altered to determine the effect of debinding on the green body and the sintered sample.

  13. Capabilities Of Micro Powder Injection Molding For Microparts Manufacturing

    Kong, X.; Barriere, T.; Gelin, J. C.

    2011-01-01

    The Micro-PIM processing technology satisfies the increasing demand in terms of smaller parts and miniaturization. Research works in this area have been carried out at FEMTO-ST Institute by performing the injection molding with 316L stainless steel fine powders and polymer binders. Several formulations with different proportion of powders and binders as well various polymers have been tested, and then a well adapted one has been selected. The process to select the well adapted formulation and the rheological characteristics of the feedstock realized according with the selected formulation are also detailed. Several test specimens have been successfully manufactured.

  14. Evaluation of stability for monolayer injection molding tools coating

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface and...... especially suitable for rapid prototyping and mold geometry testing....

  15. Investigation of interfacial fracture behavior on injection molded parts

    Fischer, Matthieu; Ausias, Gilles; Kuehnert, Ines

    2016-03-01

    In this study the interfacial morphology of different polymers joined by various assembly injection molding (AIM) technologies were discussed. Melt streams were injected successively using tools with core-back or rotation techniques. To compare bulk specimen strength and weld line strength, the fracture behavior of different specimen scales and thin sections were investigated. An in-situ SEM tensile test and a new thin section testing device which is used in polarized (transmitted) light microscopy were used to observe specimen failure. The effects of processing on spherulitic structures were linked to bonding strength and mechanical properties.

  16. Imprinted and injection-molded nano-structured optical surfaces

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik;

    2013-01-01

    paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of...... of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx...

  17. Bubble growth in mold cavities during microcellular injection molding processes

    Bubble nucleation and growth are the key steps in polymer foam generation processes. The mechanical properties of foam polymers are closely related to the size of the bubbles created inside the material, and most existing analysis methods use a constant viscosity and surface tension to predict the size of the bubbles. Under actual situations, however, when the polymer contains gases, changes occur in the viscosity and surface tension that cause discrepancies between the estimated and observed bubble sizes. Therefore, we developed a theoretical framework to improve our bubble growth rate and size predictions, and experimentally verified our theoretical results using an injection molding machine modified to make microcellular foam products

  18. Bubble growth in mold cavities during microcellular injection molding processes

    Moon, Yong Rak [University of Toronto, Toronto (Canada); Lee, Kyoung Soo; Cha, Sung W. [Yonsei University, Seoul (Korea, Republic of)

    2009-12-15

    Bubble nucleation and growth are the key steps in polymer foam generation processes. The mechanical properties of foam polymers are closely related to the size of the bubbles created inside the material, and most existing analysis methods use a constant viscosity and surface tension to predict the size of the bubbles. Under actual situations, however, when the polymer contains gases, changes occur in the viscosity and surface tension that cause discrepancies between the estimated and observed bubble sizes. Therefore, we developed a theoretical framework to improve our bubble growth rate and size predictions, and experimentally verified our theoretical results using an injection molding machine modified to make microcellular foam products

  19. Dimensional Accuracy Optimization of the Micro-plastic Injection Molding Process Using the Taguchi Design Method

    Chil-Chyuan KUO; Hsin-You LIAO

    2015-01-01

    Plastic injection molding is an important field in manufacturing industry because there are many plastic products that are produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses...

  20. Validation of precision powder injection molding process simulations using a spiral test geometry

    Marhöfer, Maximilian; Müller, Tobias; TOSELLO, Guido; Islam, Aminul; Hansen, Hans N.; Piotter, Volker

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant of precision powder injection molding for the production of metallic and ceramic micro parts raises more and more interest though. Consequently, in the entire field the demand for simulation tools inc...

  1. Rheological properties of granulometric mixtures for powder injection molding

    Resende, L.M. [Dept. of Mechanical Engineering, Univ. Federal de Santa Catarina Florianopolis (Brazil); Dept. of Materials Engineering, Ponta Grossa State Univ., Ponta Grossa PR (Brazil); Klein, A.N.; Prata, A.T. [Dept. of Mechanical Engineering, Univ. Federal de Santa Catarina Florianopolis (Brazil)

    2001-07-01

    Powder injection molding (PIM) combines benefits from both powder metallurgy, regarding the accurate control of microstructure and chemical composition, and the injection molding regarding the feasibility of tridimensional shapes. Obtaining parts with complex geometry and tight dimensional control has proven to be a high technology process. There are many advantages of using PIM; however, some processing difficulties do exist, especially related to the powder-to-binder ratio, that has a direct impact on dimensional distortions, microstructural homogeneity, injectability, and processing time. In this way, the task of establishing an optimum relationship between powder and binder plays an important role on the process quality. One of the alternatives for optimizing the amount of powder in the mixture, keeping appropriate viscosity levels needed during injection, is in the use of powders with multimodal distributions. In the present work, powders with mono and bimodal granulometric distributions were investigated with respect to their rheological properties and parameters for binder remotion. Iron spherical powder was used with medium sizes of 1 {mu}m and 7 {mu}m. (orig.)

  2. Metal Injection Molding (MIM of Magnesium and Its Alloys

    Martin Wolff

    2016-05-01

    Full Text Available Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in further technical fields. This study focusses on the performance of MIM-processing of magnesium alloy powders. It includes Mg-specific development of powder blending, feedstock preparation, injection molding, solvent and thermal debinding and final sintering. Even though Mg is a highly oxygen-affine material forming a stable oxide layer on each particle surface, the material can be sintered to nearly dense parts, providing mechanical properties matching those of as cast material. An ultimate tensile strength of 142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa and 8% elongation at fracture could be achieved using novel organic polymer binders for the feedstock preparation. Thus, first implant demonstrator parts could be successfully produced by the MIM technique.

  3. Micro powder injection molding-large scale production technology for micro-sized components

    YIN HaiQing; JIA ChengChang; QU XuanHui

    2008-01-01

    Micro powder injection molding (μPIM), a miniaturized variant of powder injection molding, has advantages of shape complexity, applicability to many materials and good mechanical properties. Co-injection molding has been realized between metals and ceramics on micro components, which become the first breakthrough within the PIM field. Combined with the prominent characteristics of high features/cost ratio, micro powder injection molding becomes a potential technique for large scale production of intricate and three-dimensional micro components or microstructured components in microsystems technology (MST) field.

  4. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively. PMID:26479615

  5. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  6. A wide variety of injection molding technologies is now applicable to small series and mass production

    Bloß, P.; Jüttner, G.; Jacob, S.; Löser, C.; Michaelis, J.; Krajewsky, P.

    2014-05-01

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process "all" thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  7. A wide variety of injection molding technologies is now applicable to small series and mass production

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail

  8. A wide variety of injection molding technologies is now applicable to small series and mass production

    Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Löser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  9. Use of a Naphthalene-Based Binder in Injection Molding Net-Shape Titanium Components of Controlled Porosity

    Weil, K. Scott; Nyberg, Eric A.; Simmons, Kevin L.

    2005-07-01

    We have recently developed a naphthalene-based binder system for use in powder injection molding (PIM) of ceramic and metallic materials. The use of a binder that can be removed via sublimation offers several unique advantages relative to the typical thermoplastic and/or thermoset binders employed in PIM. One of these is that essentially no volume change takes place during debindering. This offers a relatively facile method of introducing porosity into a net-shape part of potentially complex geometry. In the study described in this paper, the effects of powder loading and subsequent isostatic compaction on the size and amount of porosity in the components produced by this technique were investigated. In general, it was found that the amount of porosity is inversely proportional to the initial concentration of metal powder in the PIM feedstock. Likewise, average pore size displays a similar relationship with powder loading.

  10. Comparison of two setups for induction heating in injection molding

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed...... based on a test geometry integrating different aspect ratios of small structures. Acrylonitrile butadiene styrene (ABS) was used as material, and different mold temperatures were tested. The replicated test objects were measured by means of an optical coordinate measuring machine (CMM). On the basis of...

  11. A senior manufacturing laboratory for determining injection molding process capability

    Wickman, Jerry L.; Plocinski, David

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.

  12. Microcellular foam injection molding with cellulose nanofibers (CNFs)

    Ohshima, Masahiro; Kubota, Masaya; Ishihara, Shota; Hikima, Yuta; Sato, Akihiro; Sekiguchi, Takafumi

    2016-03-01

    Cellulose nanofibers (CNFs) nanocomposites polypropylene foams are prepared by microcellular foam injection molding with core-back operation. The modified CNFs were blended with isotactic-polypropylene (i-PP) at different CNFs weight percentages and foamed to investigate the effect of CNFs on cell morphology. CNFs in i-PP increased the elastic modulus and induced a strain hardening behavior. CNFs also shifted the crystallization temperature of i-PP to higher temperature and enhanced crystallization. With these changes in rheological and thermal properties, CNFs could reduce the cell size and increase the cell density of the foams. By adjusting the core-back timing i.e., foaming temperature, the closed cell and the nano-fibrillated open cellular structure could be produced. The flexural modulus and bending strength of foams were measured by three point flexural tester. The flexural modulus and bending strength were increased as the CNFs content in i-PP was increased at any foam expansion ratio.

  13. Porous titanium implants fabricated by metal injection molding

    CHEN Liang-jian; LI Ting; LI Yi-min; HE Hao; HU You-hua

    2009-01-01

    Sodium chloride (NaCl) was added as a space holder in synthesis of porous titanium by using metal injection molding(MIM) method. The microstructure and mechanical properties of porous titanium were analyzed by mercury porosimeter, scanning electron microscope(SEM) and compression tester. The results show that the content of NaCl influences the porosity of porous titanium significantly. Porous titanium powders with porosity in the range of 42.4%-71.6% and pore size up to 300 μm were fabricated. The mechanical test shows that with increasing NaCl content, the compressive strength decreases from 316.6 to 17.5 MPa and the elastic modulus decreases from 3.03 to 0.28 GPa.

  14. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  15. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders;

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  16. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have, in...

  17. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom;

    2014-01-01

    enrichment was performed using an all-polymer pinched flow fractionation device fabricated by injection molding. The polymer chips were bonded to a 500 lm polymer foil using UV assisted thermal bonding. The quality of the final devices was reproducible and the injection molding process combined with the use...

  18. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano;

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order to...

  19. Effects of process parameters in plastic, metal, and ceramic injection molding processes

    Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.

    2011-09-01

    Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.

  20. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); England, Roger [Cummins, Inc, Knoxville, TN (United States)

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  1. Metal Injection Molding (MIM of NdFeB Magnets

    Hartwig T.

    2014-07-01

    Full Text Available Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.

  2. Rapid control of mold temperature during injection molding process

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  3. Injection molded polymeric micropatterns for bone regeneration study.

    Zanchetta, Erika; Guidi, Enrica; Della Giustina, Gioia; Sorgato, Marco; Krampera, Mauro; Bassi, Giulio; Di Liddo, Rosa; Lucchetta, Giovanni; Conconi, Maria Teresa; Brusatin, Giovanna

    2015-04-01

    An industrially feasible process for the fast mass-production of molded polymeric micro-patterned substrates is here presented. Microstructured polystyrene (PS) surfaces were obtained through micro injection molding (μIM) technique on directly patterned stamps realized with a new zirconia-based hybrid spin-on system able to withstand 300 cycles at 90 °C. The use of directly patterned stamps entails a great advantage on the overall manufacturing process as it allows a fast, flexible, and simple one-step process with respect to the use of milling, laser machining, electroforming techniques, or conventional lithographic processes for stamp fabrication. Among the different obtainable geometries, we focused our attention on PS replicas reporting 2, 3, and 4 μm diameter pillars with 8, 9, 10 μm center-to-center distance, respectively. This enabled us to study the effect of the substrate topography on human mesenchymal stem cells behavior without any osteogenic growth factors. Our data show that microtopography affected cell behavior. In particular, calcium deposition and osteocalcin expression enhanced as diameter and interpillar distance size increases, and the 4-10 surface was the most effective to induce osteogenic differentiation. PMID:25756304

  4. Drag material change in hot runner injection molding

    蒋炳炎; 黄伯云

    2001-01-01

    Quick material change is often encountered for the different colors or kinds of polymer in hot runner injecting molding process. Time-costing and incompleteness of material change process often affects the quality and productivity of products. In the practical production, multi-injection or white material as the transition material is often adopted for quick material change. Based on the rheological behavior of the new and the previous plastic melt, the researches on the related problems were carried out. The concept of drag material change was originally presented. The physical and mathematical model on the simultaneous flow process of the new and the previous plastic melt in hot runner were built up, which can well explain the influence of the injection speed, pressure, viscosity difference, temperature and mold structure on the drag material change efficiency. When temperature in different position in the mold was increased and adjusted, the viscosity difference between the two kinds of melt can be controlled. Therefore the material change ability can be greatly improved during the whole material change process, getting rid of more and more difficult changing in the late stage.

  5. Flexural Properties of Injection-Molded Bamboo/pbs Composites

    Ohkita, Kazuya; Takagi, Hitoshi

    In recent years, from an environmental perspective, there has been increasing interest in the change to a sustainable society. The use of natural-fiber-reinforced biodegradable composites has been proposed as one solution. Bamboo is an often used renewable bio-resource; it has an inherent advantage of rapid growth. Polybutylene succinate (PBS), used as matrix resin, has biodegradable characteristics. This paper describes flexural properties of bamboo/PBS composites prepared by injection molding. The following results were obtained. The flexural modulus was improved with increasing bamboo powder contents when the cylinder temperature of the injection molder was 140°C. However, the flexural strength showed the opposite tendency to be decreased with increasing bamboo powder contents. An SEM photomicrograph of the fracture surface for bamboo/PBS composites showed typical fracture behavior of pull-out fibers without fiber fracture. Furthermore, there was no adhesion of PBS resin on the bamboo fiber surface. Processing conditions affected mechanical properties of bamboo/PBS composites, imparting higher flexural strength and flexural modulus at high cylinder temperatures such as 180°C and 200°C.

  6. 3D Fiber Orientation Simulation for Plastic Injection Molding

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  7. Processing development of Si3N4 components by injection molding

    The development of complex-shaped ceramic components by powder injection molding has been considered as a promising technique by industry. In this study silicon nitride was used as a sample material for demonstrating the possibility of fabricating ceramic components by injection molding. An optimized process for the manufacture of components by injection molding will be presented. The effects of solid content, binder type, solvent and thermal debinding and effects of firing atmosphere will be discussed. Some promising physical and mechanical properties of sintered silicon nitride will be illustrated. Some prototypes will also be demonstrated. The developed technique could be extended for fabricating engine or functional components. (author)

  8. Experimental Investigation of Comparative Process Capabilities of Metal and Ceramic Injection Molding for Precision Applications

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian;

    2016-01-01

    The purpose of this paper is to make a comparative study on the process capabilities of the two branches of the powder injection molding (PIM) process—metal injection molding (MIM) and ceramic injection molding (CIM), for high-end precision applications. The state-of-the-art literature does not...... discussion presented in the paper will be useful for thorough understanding of the MIM and CIM processes and to select the right material and process for the right application or even to combine metal and ceramic materials by molding to produce metal–ceramic hybrid components....

  9. Injection molding of micro pillars on vertical side walls using polyether-ether-ketone (PEEK)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2016-01-01

    This paper investigates the replication of microstructures on a vertical wall by PEEK injection molding. A 4-cavity insert was used in the injection molding. Pre-fabricated nickel plates with ø 4 μm micro holes on the surface were glued on vertical walls in the cavities. 3 cavities were coated by...... CrN, TiN and TiB2 respectively, the remaining one was not coated as a reference. The effect of coating was compared via the morphology of the micropillars on the polymer parts. 4000 injection molding cycles were repeated. The roughness of the coated surface was measured. The reasons for the demolding...

  10. Nonlinear Modeling of a High Precision Servo Injection Molding Machine Including Novel Molding Approach

    何雪松; 王旭永; 冯正进; 章志新; 杨钦廉

    2003-01-01

    A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.

  11. OPTIMIZATION OF INJECTION MOLDING PROCESS BASED ON NUMERICAL SIMULATIONAND BP NEURAL NETWORKS

    王玉; 邢渊; 阮雪榆

    2001-01-01

    Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by combining the numerical simulation with back-propagation(BP) networks. The BP networks are trained by the results of numerical simulation. The trained BP networks may:(1) shorten time for process planning;(2) optimize process parameters;(3) be employed in on-line quality control;(4) be integrated with knowledge-based system(KBS) and case-based reasoning(CBR) to make intelligent process planning of injection molding.

  12. Improved silicon carbide for advanced heat engines. I - Process development for injection molding

    Whalen, Thomas J.; Trela, Walter

    1989-01-01

    Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.

  13. Processing study of injection molding of silicon nitride for engine applications

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  14. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Yoshizumi, F.; Funatsu, A.; Yazawa, H. [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  15. A new route for fibre management in powder injection molded metal matrix composites

    The properties of short fibre reinforced metal matrix composites can be enhanced by controlling the directionality of the fibers. In the reported research, the multiple live feed injection moulding technique was successfully used for controlling the orientation of short fibers in powder injection molded metal matrix composites. A range of heavily loaded short fibre reinforced metal matrix compounds were injection molded by both parameters. The level of fibre orientation achieved in injection molded components was assessed by calculation of the orientation factor. One result of this investigation was identification of the moulding composition to achieve the highest level of fibre orientation in a preferred direction. (author)

  16. Two-component co-injection and transfer molding and gas-assisted injection molding of polymers: Simulation and experiment

    Li, Chengtao

    Two-component molding is a novel process for manufacturing polymer products with a sandwich structure or a hollow structure. Typically, two different materials are injected or transferred into a mold sequentially or simultaneously. The skin is generally a prime polymer with required surface and bulk properties for intended use. The core can be solid, foam or gas. Obtaining a uniform encapsulated structure is difficult and there are no science-based rules for optimization of process setup. Thus, a physical model and process simulations have been developed based on the kinematics and dynamics of a moving interface, and Hele-Shaw approximation. The model has incorporated temperature and shear rate dependences of viscosity of both skin and core component into the transient interface evolution. Based on the developed model, simulations have been carried out to study flow rate controlled simultaneous co-injection molding of thermoplastics, pressure-controlled sequential transfer molding of rubber compounds, and gas-assisted injection molding (GAIM). The simulation results were compared with the experimental data, and in general, good agreement was found between the predicted and experimentally measured interface distribution in moldings. For simultaneous co-injection molding, it is found that material pairs with a broad range of viscosities may be utilized. Breakthrough phenomena are mainly determined by the volume of melt of initial single phase injection and rheological properties of material combinations. When the core has a lower viscosity than the skin, or the volume of initial injection of skin melt is smaller, breakthrough is very likely. However, the breakthrough can be eliminated by controlling injection rate of the skin and core melts. For sequential transfer molding, it is found that the rubber distribution in moldings are dominated by the rheological properties of components and the volume fraction transferred, but independent of the gate pressure. When the

  17. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    Calaon, M.; Tosello, G.; Garnaes, J.;

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  18. Gate design in injection molding of microfluidic components using process simulations

    Marhöfer, D. M.; Tosello, G.; Islam, A.;

    2015-01-01

    Just as in conventional injection molding of plastics, process simulations are an effective tool in the area of micro injection molding. They are applied in order to optimize and aid the design of the micro plastic part, the mold and the actual process. Available simulation software is actually...... made for macroscopic injection molding, but by means of the correct implementation and modelling strategy it can also be applied to micro plastic parts, as it is shown in the presented work. Process simulations are applied to two microfluidic devices (a micro distributor and a micro mixer) which shall...... be manufactured by micro injection molding. One of the main goals of the simulations is the investigation of the filling of the parts. Great emphasis is also on the optimization of selected gate designs for both parts which was successfully carried out. The paper describes how the two devices were...

  19. Validation of precision powder injection molding process simulations using a spiral test geometry

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido;

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant of...... precision powder injection molding for the production of metallic and ceramic micro parts raises more and more interest though. Consequently, in the entire field the demand for simulation tools increases constantly, too. The present work reports the material characterization of feedstocks which are used for...... powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software. The...

  20. Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions

    In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition

  1. Design of Multimodel based MPC and IMC control schemes applied to injection molding machine

    Kanaga Lakshmi

    2014-03-01

    Full Text Available Good control of plastic melt temperature for injection molding is very important in reducing operator setup time, ensuring product quality, and preventing thermal degradation of the melt. The controllability and set points of barrel temperature also depend on the precise monitoring and control of plastic melt temperature. Motivated by the practical temperature control of injection molding, this paper proposes MPC and IMC based control scheme. A robust system identification and control methodology is developed which uses canonical varieties analysis for identification and model predictive control for regulation. The injection molding process consists of three zones and the mathematical model for each of the zone is different. The control output for each zone controller is assigned a weight based on the computed probability of each model and the resulting action is the weighted average of the control moves of the individual zone controllers.   Keywords: Injection-Molding Machine (IMM, IMC Control, Temperature Control.

  2. Fabrication of injection molded sintered alpha SiC turbine components

    Storm, R. S.; Ohnsorg, R. W.; Frechette, F. J.

    1981-01-01

    Fabrication of a sintered alpha silicon carbide turbine blade by injection molding is described. An extensive process variation matrix was carried out to define the optimum fabrication conditions. Variation of molding parameters had a significant impact on yield. Turbine blades were produced in a reasonable yield which met a rigid quality and dimensional specification. Application of injection molding technology to more complex components such as integral rotors is also described.

  3. Injection molding of iPP samples in controlled conditions and resulting morphology

    Sessa, Nino; De Santis, Felice; Pantani, Roberto

    2015-12-01

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  4. Injection molding of iPP samples in controlled conditions and resulting morphology

    Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it [Department of Industrial Engineering, University of Salerno, 84084 Fisciano (Italy)

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  5. Injection molding of iPP samples in controlled conditions and resulting morphology

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy

  6. An X-ray Scattering Study of Water-Conditioned Injection- Molded Starch during Isothermal Heating

    Cagiao, M.E.; Bayer, R. K.; Rueda, D. R.; Baltá Calleja, F. J.

    2003-01-01

    The in situ structure variation of injection molded starch (as processed and after water conditioning)during heat treatment was investigated by means of wideangle X-ray scattering using synchrotron radiation. Results confirm that the crystal structure of potato starch is destroyed after injection molding, while as-processed corn starch preserves some degree of crystallinity. This residual crystallinity in corn starch is related to the crystalline Vh form,made of complexes of amylose with l...

  7. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Alexandre Royer; Thierry Barrière; Jean-Claude Gelin

    2016-01-01

    The binder plays the most important role in the metal injection molding (MIM) process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of...

  8. Thermal characterization of polyhydroxyalkanoates and poly(lactic acid) blends obtained by injection molding

    Loureiro, Nuno Calçada; Ghosh, Satyabrata; Viana, J. C.; Esteves, José Luis

    2015-01-01

    In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fractio...

  9. Prediction of stiffness from orientation data of glass reinforced injection moldings

    Neves, N. M.; Pouzada, A. S.

    1999-01-01

    The complex thermo-mechanical process developing in injection molding leads to through-thickness and point to point variation of fiber orientation. It is not economically viable to characterize experimentally the variation of fiber orientation. Thus, efforts have been put into modeling the fiber orientation in injection molding. Some commercially available programs already allow the prediction of fiber orientation distribution in moldings. If the fiber orientation fiel...

  10. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Quarterly Report

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-04-04

    This quarterly report summarizes the status for the project planning to initiate all the legal and contract documents required for establishing the subcontracts needed and a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). During the first quarter (10/1/2012 to 12/31/2012), the statements of work (SOW) for the subcontracts to Purdue University, University of Illinois, and PlastiComp, Inc. were completed. A draft of the CRADA SOW was sent to Autodesk, Toyota, and Magna for technical and legal reviews. PNNL Legal Services contacted project partners’ Legal counterparts for preparing legal documents for the project. A non-disclosure agreement was drafted and sent to all the parties for reviews.

  11. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-05-30

    This quarterly report summarizes the status for the project planning to complete all the legal and contract documents required for establishing the subcontracts needed and a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). During the second quarter (1/1/2013 to 3/31/2013), all the technical and legal documents for the subcontracts to Purdue University, University of Illinois, and PlastiComp, Inc. were completed. The revised CRADA documents were sent to DOE, Autodesk, Toyota, and Magna for technical and legal reviews. PNNL Legal Services contacted project partners’ Legal counterparts for completing legal documents for the project. A non-disclosure agreement was revised and sent to all the parties for reviews.

  12. RECENT METHODS FOR OPTIMIZATION OF PLASTIC INJECTION MOLDING PROCESS –A RETROSPECTIVE AND LITERATURE REVIEW

    P.K. Bharti

    2010-09-01

    Full Text Available Injection molding has been a challenging process for many manufacturers and researchers to produce products meeting requirements at the lowest cost. Faced with global competition in injection molding industry, using the trialand- error approach to determine the process parameters for injection molding is no longer good enough. Factors that affect the quality of a molded part can be classified into four categories: part design, mold design, machineperformance and processing conditions. The part and mold design are assumed as established and fixed. During production, quality characteristics may deviate due to drifting or shifting of processing conditions caused by machine wear, environmental change or operator fatigue. Determining optimal process parameter settings critically influences productivity, quality, and cost of production in the plastic injection molding (PIM industry. Previously, production engineers used either trial-and-error method or Taguchi’s parameter design method to determine optimal process parameter settings for PIM. However, these methods are unsuitable in present PIM because of the increasing complexity of product design and the requirement of multi-response quality characteristics. This article aims to review the recent research in designing and determining process parameters of injection molding. A number of research works based on various approaches have been performed in the domain of the parameter setting for injection molding. These approaches, including mathematical models, Taguchi method, Artificial Neural Networks (ANN,Fuzzy logic, Case Based Reasoning (CBR, Genetic Algorithms (GA, Finite Element Method(FEM,Non Linear Modeling, Response Surface Methodology, Linear Regression Analysis ,Grey Rational Analysis and Principle Component Analysis (PCA are described in this article. The strength and theweakness of individual approaches are discussed. It is then followed by conclusions and discussions of the potential

  13. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B. [Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada M5S 3G8 (Canada); Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  14. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications

  15. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  16. Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model

    CUIShu-biao; ZHOUHua-min; LIDe-qun

    2004-01-01

    The design of the coohng system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.

  17. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein;

    2016-01-01

    Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos......, comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear...

  18. Development of a plastic injection molding training system using Petri nets and virtual reality

    2006-01-01

    In this study, Virtual Reality (VR)-based plastic injection molding training system (VPIMTS), which can be modeled as an integrated system with a task planning module, an intelligent instruction module, a simulation module, and virtual environment (VE) module, was developed. Presented in this paper are an architecture of VPIMTS, a practical knowledge modelling approach for modelling the training scenarios of the system by using Petri nets formalism and key techniques (FEM, injection molding procedure modelling) which have been developed independently. The utilization of the Petri net model realized the environment where the trainee can behave freely, and also made it possible to equip the system with the function of showing the next action of the trainee whenever he wants. The overall system is a powerful approach for highly improving the trainee's comprehension and injection molding study-efficiency by building digital, intelligent, knowledgeable, and visual aids.

  19. Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding

    Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin

    2015-12-01

    A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.

  20. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  1. High quality ion channels recordings on an injection molded polymer chip

    Tanzi, Simone

    In this thesis we demonstrate high quality recordings of the ion channel activity across the cell membrane in a biological cell by employing the so called patch clamping technique on an injection molded polymer microfluidic device. Such recordings are traditionally made using glass micropipettes......, electroplating in nickel, and injection molding of the final part. A thorough characterization of the patching orifices by means of SEM and AFM showed high replication accuracy through the fabrication process. The most critical device parameters were identified as the length of the patching capillaries and the...... automated ion channel recordings. These experiments considered current-voltage relationships for activation and inactivation of the sodium channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine does response curves obtained from the injection molded polymer device were in...

  2. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  3. Model evolvement and reuse technology of injection molding machine based on performance knowledge

    Wei Zhe; Feng Yixiong; Tan Jianrong; Wang Jinlong

    2008-01-01

    To illuminate the necessity of model evolvement and reuse, dynamics of injection molding machine's product models are analyzed. The performance knowledge is used to support the model evolvement and reuse. The driven factors of mechanical product model are concluded. The dynamic characteristics of product model are described. The performance knowledge is used to improve specific evolvement process. The upper-layer passing rules are adopted in the mechanical product configuration design. The rules of product model evolvement are investigated. And the model evolvement of injection molding machine has three levels. Practical and effective realization arithmetic is given to realize the performance knowledge reuse. Finally, HT1800X1N series injection molding machines are taken as examples to illuminate that the arithmetic is correct and practical.

  4. Comparative analysis of different process simulation settings of a micro injection molded part featuring conformal cooling

    Marhöfer, D. M.; Tosello, G.; Hansen, H. N.

    2015-01-01

    Process simulations are applied in all fields of engineering in order to support and optimize the design and quality of products and their manufacturing processes. Micro injection molding is not an exception in this regard. Simulations enable to investigate the process and the part quality. In the...... reported work, process simulations using Autodesk Moldflow Insight 2015® are applied to a micro mechanical part to be fabricated by micro injection molding and with over-all dimensions of 12.0 × 3.0 × 0.8 mm³ and micro features (micro hole, diameter of 580 μm, and sharp radii down to 100 μm). Three...... implementation of the actual mold block, conventional cooling, and conformal cooling. In the comparison, characteristic quality criteria for injection molding are studied, such as the filling behavior of the cavity, the injection pressure, the temperature distribution, and the resulting part warpage...

  5. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow

  6. Design and fabrication of optical homogenizer with micro structure by injection molding process

    Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.

    2008-08-01

    This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.

  7. Evaluation of hot-melt extrusion and injection molding for continuous manufacturing of immediate-release tablets.

    Melocchi, Alice; Loreti, Giulia; Del Curto, Maria Dorly; Maroni, Alessandra; Gazzaniga, Andrea; Zema, Lucia

    2015-06-01

    The exploitation of hot-melt extrusion and injection molding for the manufacturing of immediate-release (IR) tablets was preliminarily investigated in view of their special suitability for continuous manufacturing, which represents a current goal of pharmaceutical production because of its possible advantages in terms of improved sustainability. Tablet-forming agents were initially screened based on processability by single-screw extruder and micromolding machine as well as disintegration/dissolution behavior of extruded/molded prototypes. Various polymers, such as low-viscosity hydroxypropylcellulose, polyvinyl alcohol, polyvinyl alcohol-polyethylene glycol graft copolymer, various sodium starch glycolate grades (e.g., Explotab(®) CLV) that could be processed with no need for technological aids, except for a plasticizer, were identified. Furthermore, the feasibility of both extruded and molded IR tablets from low-viscosity hydroxypropylcellulose or Explotab(®) CLV was assessed. Explotab(®) CLV, in particular, showed thermoplastic properties and a very good aptitude as a tablet-forming agent, starting from which disintegrating tablets were successfully obtained by either techniques. Prototypes containing a poorly soluble model drug (furosemide), based on both a simple formulation (Explotab(®) CLV and water/glycerol as plasticizers) and formulations including dissolution/disintegration adjuvants (soluble and effervescent excipients) were shown to fulfill the USP 37 dissolution requirements for furosemide tablets. PMID:25761921

  8. 塑料注塑成型技术新进展%New Development of the Technology of Injection Molding of Plastic

    李跃文

    2011-01-01

    In this article, the principle, application, characteristics and new development of gas-assisted injection molding technology, water-assisted injection molding technology, precision injection molding technology, micro-injection molding technology, microcellular injection molding technology, libration injection molding technology, in-mold decoration injection molding technology, co-injection molding technology and injection molding CAE technology were introduced.%介绍了气辅注塑、水辅注塑、精密注塑、微注塑、微孔注塑、振动注塑、模内装饰注塑、共注塑和注塑CAE等技术的原理、特点、应用和新进展.

  9. A new binder for powder injection molding titanium and other reactive metals

    Weil, K. Scott; Nyberg, Eric A.; Simmons, Kevin L.

    2006-06-26

    We have developed a new aromatic-based binder for powder injection molding (PIM) reactive metals, such as titanium, zirconium, niobium, tungsten, and molybdenum. Because of careful selection of the binder constituents, thermal removal is readily accomplished at low temperatures and short-times via vacuum sublimation. In this way the binder can be cleanly extracted from the green part prior to sintering to minimize the amount of residual carbon left in the final component. Rheological measurements indicate that powder loadings in the PIM feedstock as high as 67 vol% could be achieved using the new binder system, while still maintaining low mixing torques and injection molding pressures.

  10. Initial verification of an induction heating set-up for injection molding

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured by...

  11. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano;

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear...

  12. Injection molded superhydrophobic surfaces based on microlithography and black silicon processing

    Søgaard, Emil; Andersen, Nis Korsgaard; Taboryski, Rafael;

    2012-01-01

    This work is concerned with the design, development, and testing of nanostructured polymer surfaces with self-cleaning properties that can be manufactured by injection molding. In particular, the superimposed micro- and nanometer length scales of the so-called Lotus effect were investigated in...... detail with an engineering perspective on choice of materials and manufacturability by injection molding. Microscope slides with superhydrophobic properties were succesfully fabricated. Preliminary results indicate a contact angle increase from 95° for the unstructured polymer to a maximum 150°. The...

  13. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  14. Three Dimensional Numerical Simulation Of Gas-Assisted And Co-Injection Molding

    Ilinca, Florin; Hétu, Jean-François

    2004-06-01

    This paper presents an overview of the results obtained at the Industrial Materials Institute (IMI) on the numerical simulation of the gas-assisted injection molding and co-injection molding. For this work, the IMI's three-dimensional (3D) finite element flow analysis code was used. Non-Newtonian, non-isothermal flow solutions are obtained by solving the momentum, mass and energy equations. Two additional transport equations are solved to track polymer/air and skin/core materials interfaces. Solutions are shown for various part geometries. The final shape and depth of the core material is predicted and numerical results compare well with experimental data.

  15. Evaluation of W-Cu metal matrix composites produced by powder injection molding and liquid infiltration

    The near net shape processing of tungsten-copper metal matrix composites by powder injection molding and liquid copper infiltration was studied in this paper. In this technique, powder injection molded bimetallic components were produced. The component was debinded and subsequently heated to an elevated temperature. This facilitated the sintering of the high melting point metal and the liquidation of the lower melting point for infiltration into the preform of the former. Feasibility of this method in the manufacture of tungsten-copper metal matrix composites with high percentage copper, up to 38 wt.%, was demonstrated and mechanical properties were evaluated in this study

  16. Fabrication and characterization of injection molded multi level nano and microfluidic systems

    Matteucci, Marco; Christiansen, Thomas Lehrmann; Tanzi, Simone;

    2013-01-01

    We here present a method for fabrication of multi-level all-polymer chips by means of silicon dry etching, electroplating and injection molding. This method was used for successful fabrication of microfluidic chips for applications in the fields of electrochemistry, cell trapping and DNA elongati...

  17. All-in-polymer injection molded device for single cell capture using multilevel silicon master fabrication

    Tanzi, S.; Larsen, S.T.; Matteucci, M.; Taboryski, R.

    This work demonstrates a novel all-in-polymer device for single cell capture applicable for biological recordings. The chip is injection molded and comprises a "cornered" (non planar) aperture. It has been demonstrated how cornered apertures are straightforward to mold in PDMS [1,2]. In this stud...

  18. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  19. All polymer, injection molded nanoslits, fabricated through two-level UV-LIGA processes

    Østergaard, Peter Friis; Matteucci, Marco; Marie, Rodolphe;

    2012-01-01

    the micro- and nanoregime is required. To obtain this, injection molding is included in the research process for making several chips (100-1000) with the same layout. The time it takes for the individual chip to be fabricated in this way is much shorter than with conventional cleanroom methods, and...

  20. Electroforming of Tool Inserts for Injection Molding of Optical or Microfluidic Components

    Tang, Peter Torben; Christensen, Thomas R.; Jensen, Martin F.

    2004-01-01

    With a rapidly increasing international interest in “Lab-on-a-chip”-systems as well as affordable polymer optics, the combination of electroforming and injection molding offers an attractive fabrication solution. Miniaturized analysis systems can be used for medical, security (anti terror...

  1. Thermal properties of extruded/injection-molded poly(lactic acid) and biobased composites

    In order to determine the degree of compatibility between PLA and different biomaterials (fibers), PLA was compounded with sugar beet pulp and apple fibers. Fibers were added at 85:15 and 70:30 PLA:Fiber. The composites were blended by extrusion followed by injection molding. Differential Scannin...

  2. Experimental validation of viscous and viscoelastic simulations of micro injection molding process

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni;

    2009-01-01

    The effects of two different rheological models used in the simulation of the micro injection molding (µIM) process are investigated. The Cross-WLF viscous model and the Giesekus viscoelastic model are selected and their performance evaluated using 3D models implemented on two different...

  3. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  4. Dimensional Accuracy Optimization of the Micro-plastic Injection Molding Process Using the Taguchi Design Method

    Chil-Chyuan KUO

    2015-07-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that are produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 μm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.

  5. Elasticity at Large Deformations and High Strain Rates in Injection Molded Polypropylene

    Dijkstra, P.T.S.; Gaymans, R.J.; Dijk, van D.J.; Huetink, J.

    2003-01-01

    The deformation behavior of isotactic polypropylene (PP) as a function of strain rate was investigated at 50°C in uniaxial tension. Injection molded dogbone specimens were tested at high strain rates, E = lo-' - 1@ s-l, and the local deformation in the neck was studied using fast tensile videometry.

  6. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria;

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological ce...

  7. Numerical simulation method for weld line development in micro injection molding process

    XIE Lei; ZIEGMANN Gerhard; JIANG Bing-yan

    2009-01-01

    In order to reduce the "trial-mold" risk and cost, numerical simulation method was applied to micro injection molding weld line development investigation. The micro tensile specimen which has the size of 0.1 mm (depth)×0.4 mm (width)× 12 mm(length) in test area was selected as the objective part, and polypropylene (PP) as the experimental material. Respectively with specific commercial software (Mold Flow~(R)) and general computational fluid dynamic (CFD) software (Comsol ~(R)Multiphysics), the simulation experiments for development of weld line in micro injection molding process were executed and the real comparison experiments were also carried out. The results show that during micro injection molding process, the specific commercial software for normal injection molding process is not valid to describe the micro flow process, the shape of flow front in micro cavity flowing which is important in weld line developing study and the contact angle clue to surface tension are not able to be simulated. In order to improve the simulation results for micro weld line development, the general CFD software, which is more flexible in user defining function, is applied. The results show better effects in describing micro fluid flow behavior. As a conclusion, as for weld line forming process, the numerical simulation method can give a characteristic analysis results for processing parameters optimizing in micro injection molding process; but for both kinds of softwares quantitative analysis cannot be obtained unless the boundary condition and micro fluid mathematic model are improved in the future.

  8. LCI Databases Sensitivity Analysis of the Environmental Impact of the Injection Molding Process

    Ana Elduque

    2015-03-01

    Full Text Available During the last decades, society’s concern for the environment has increased. Specific tools like the Life Cycle Assessment (LCA, and software and databases to apply this method have been developed to calculate the environmental burden of products or processes. Calculating the environmental impact of plastic products is relevant as the global plastics production rose to 288 million tons in 2012. Among the different ways of processing plastics, the injection molding process is one of the most used in the industry worldwide. In this paper, a sensitivity analysis of the environmental impact of the injection molding process has been carried out. In order to perform this study, the EcoInvent database inventory for injection molding, and the data from which this database is created, have been studied. Generally, when an LCA of a product is carried out, databases such as EcoInvent, where materials, processes and transports are characterized providing average values, are used to quantify the environmental impact. This approach can be good enough in some cases but in order to assess a specific production process, like injection molding, a further level of detail is needed. This study shows how the final results of environmental impact differ for injection molding when using the PVC’s, PP’s or PET’s data. This aspect suggests the necessity of studying, in a more precise way, this process, to correctly evaluate its environmental burden. This also allows us to identify priority areas and thereby actions to develop a more sustainable way of manufacturing plastics.

  9. On the mechanical behaviour of a butt jointed thermoplastic composite under bending

    Baran, I.; Warnet, L.; Akkerman, R.; Thomsen, O.T

    2015-01-01

    In the present work, the mechanical behavior of a recently developed novel butt jointed thermoplastic composite was investigated under bending conditions. The laminated skin and the web were made of carbon fiber (AS4) and polyetherketoneketone (PEKK). The butt joint (filler) was injection molded fro

  10. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization

    Yong-gang PENG; Jun WANG; Wei WEI

    2014-01-01

    In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure pro-portion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

  11. Anisotropic injection molding of strontium ferrite powder using a PP/PEG binder system

    Lee, S.H.; Jeung, W.Y. E-mail: wyjeung@kistmail.kist.re.kr

    2001-05-01

    In this study, new binder system for anisotropic injection molding of Sr-ferrite was developed and a process for injection molding of Sr-ferrite was optimized. The developed binder system is composed of 30 vol% PP, 60 vol% PEG-20 000 and 10 vol% PEG-4000. The extraction by water was applied to remove the major binder components PEGs and the minor binder component, PP, was subsequently burned out in air. Behaviors of extraction and thermal debinding with time and debinding atmosphere and variations of the magnetic properties with sintering temperature were studied. The sintered magnets made by PIM process showed residual carbon content of 230 ppm and a maximum energy product of 4.2 MGOe.

  12. Orientation of Carbon Fibers in Copper matrix Produced by Powder Injection Molding

    Irfan Shirazi M.

    2014-07-01

    Full Text Available Fiber orientation is a big challenge in short fiber reinforced composites. Powder injection molding (PIM process has some intrinsic fiber alignment associated with it. During PIM process fibers in skin region of moldings are aligned as these regions experience higher shear flow caused by the mold walls. Fibers in the core region remain randomly aligned as these regions are far from mold walls and experience lesser shear flow. In this study short carbon fiber (CF reinforced copper matrix composite was developed by PIM process. Two copper composite feedstock formulations were prepared having 5 vol% and 10 vol% CFs and a wax based binder system. Fiber orientation was controlled during injection molding by using a modified mold that has a diverging sprue. The sprue creates converging flow when feedstock enters into the mold cavity. Fiber orientation was analysed after molding using FESEM. The orientation of fibers can be controlled by controlling flow of feedstock into the mold.

  13. Numerical modeling of magnetic induction and heating in injection molding tools

    Guerrier, Patrick; Hattel, Jesper Henri

    2013-01-01

    Injection molding of parts with special requirements or features such as micro- or nanostructures on the surface, a good surface finish, or long and thin features results in the need of a specialized technique to ensure proper filling and acceptable cycle time. The aim of this study is to increase...... the temperatures as close as possible to the cavity surface, by means of an integrated induction heating system in the injection molding tool, to improve the fluidity of the polymer melt hereby ensuring that the polymer melt will continue to flow until the mold cavity is completely filled. The...... presented work uses numerical modeling of the induction heating in the mold to investigate how the temperature in the mold will be distributed and how it is affected by different material properties....

  14. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul;

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...... this design in practiceas actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software were described. Ultimately,the simulation results were validated by cross-checking the flow front...

  15. Numerical simulation of the filling stage in injection molding based on a 3D model

    GENG Tie; LI De-qun; ZHOU Hua-min

    2005-01-01

    Most injection molded parts are three-dimensional, with complex geometrical configurations and thick/thin wall sections. The change of the thickness of parts has significant influence on flow during injection molding. This paper presents a 3D finite element model to deal with the three-dimensional flow, which can more accurately predict the filling process than a 2. 5D model. In this model, equal-order velocity-pressure interpolation method is successfully employed and the relation between velocity and pressure is obtained from the discretized momentum equation in order to derive the pressure equation. A 3D control volume scheme is employed to track the flow front. The validity of the model has been tested through the analysis of the flow in a cavity.

  16. Influence of the polypropylene structure on the replication of nanostructures by injection molding

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2015-11-01

    In this paper, an experimental study of replication by injection molding of sub-micrometer features is presented. Two polypropylenes with different melt flow rates (MFR) were used throughout this study. The used removable mold insert was textured with a femtosecond laser. Replication of these periodic structures, called ripples, is thus investigated. Despite different MFR, we show that the viscosities of the two polymers at the investigated temperatures and injection shear rates are similar. The reproducibility of the injected molded samples and the texture of the mold were analyzed. We propose a specific methodology to quantify the reproducibility quality replicas. The latter introduces morphological parameters such as anisotropy rate, power density, etc. A difference between the two replicas was noticeable. Based on rheological analysis, the viscosity was ruled out as the origin of this difference. Other properties were identified as the source such as the chain length and the stress relaxation time. Their impact on the replication quality was investigated and found interesting.

  17. Modeling and flow analysis of pure nylon polymer for injection molding process

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  18. Neural Network Approach to Predict Melt Temperature in Injection Molding Processes

    2000-01-01

    Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was developed to predict, the melt temperature in the barrel during the plastication phase. In this paper, a neural network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two layer neural network with back propagation learning rules is used to model the relationship between input and output in the injection phase. The preliminary results show that the network works well and may be used for on-line optimization and control of injection molding processes.

  19. DESIGN TECHNOLOGY FOR INJECTION MOLD PARTING SURFACE BASED ON CASES AND KNOWLEDGE

    Yu Tongmin; Li Guanhua; Li Youmin; Lan Jian

    2005-01-01

    On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and casebased reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features. The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.

  20. Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding

    Jung, Joon Tae; Lee, Bong-Kee [Chonnam National University, Gwangju (Korea, Republic of)

    2014-07-15

    In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.

  1. A Simulation Study of Conformal Cooling Channels in Plastic Injection Molding

    Omar A. Mohamed, S.H. Masood, Abul Saifullah

    2013-09-01

    Full Text Available In injection molding process, the cooling channel performance is one of the most crucial factors because it has significant effect on both production rate and the quality of the plastic part. In order to reduce the cycle time, and control the uniform distribution of temperature, it is necessary to create conformal cooling channels, which conform to the shape of the mold cavity and core. This paper presents a simulation study of different types of cooling channels in an injection molded plastic part and compares the performance in terms of time to ejection temperature, shrinkage, temperature profile, and part warpage to determine which configuration is more appropriate to provide uniform cooling with minimum cycle time. Autodesk Moldflow Insight (AMI simulation software is used to examine the results of the cooling channels performance.

  2. Using multi-objective evolutionary algorithms in the optimization of polymer injection molding

    Fernandes, Célio Bruno Pinto; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A.

    2009-01-01

    A Multi-objective optimization methodology has been applied in the optimization of polymer injection molding process. This allowed the optimization of the operating conditions of the process from mold flow simulations, taking into consideration the existence of 5 criteria simultaneously, such as temperature dif-ference on the molding at the end of filling, the maximum pressure, the pressure work, the volumetric shrinkage and the cycle time. The results produced shown that the proposed methodo...

  3. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties. PMID:25201399

  4. Injection molding of silicon carbide capable of being sintered without pressure

    Muller-Zell, A.; Schwarzmeier, R.

    1984-01-01

    The most suitable SiC mass for injection molding of SiC articles (for subsequent pressureless sintering) consisted of beta SiC 84, a wax mixture 8, and polyethylene or polystyrene 8 parts. The most effective method for adding the binders was by dissolving them in a solvent and subsequent evaporation. The sequence of component addition was significant, and all parameters were optimized together rather than individually.

  5. Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique

    Dong Kwon Park; Ingook Song; Jin Hyo Lee; Young June You

    2013-01-01

    Background The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Methods Under local anesthesia with intravenous (IV) sedat...

  6. Fiber-Based, Injection-Molded Optofluidic Systems: Improvements in Assembly and Applications

    Marco Matteucci; Marco Triches; Giovanni Nava; Anders Kristensen; Mark R. Pollard; Kirstine Berg-Sørensen; Taboryski, Rafael J.

    2015-01-01

    We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow precise optical alignment and improve delivery of optical power. Using a multi-level chip fabrication process, complex channel designs with extremely vertical sidewalls, and dimensions that range from fe...

  7. Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Ueberschaer, A.; Cagiao, M. E.; Bayer, R. K.; Henning, S; Baltá Calleja, F. J.

    2006-01-01

    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the indepe...

  8. Analysis of Incomplete Filling Defect for Injection-Molded Air Cleaner Cover Using Moldflow Simulation

    Hyeyoung Shin; Eun-Soo Park

    2013-01-01

    A large-sized cover part for air cleaner was injection molded with ABS resin, and its incomplete filling defect was analyzed using commercial Moldflow software. To investigate the effect of processing temperature on incomplete filling defect, tensile properties, weight loss, and phase separation behavior of ABS resin were evaluated. The tensile properties of dumbbell samples were not changed up to 250°C and decreased significantly thereafter. SEM micrographs indicated no significant changes ...

  9. A Simulation Study of Conformal Cooling Channels in Plastic Injection Molding

    Omar A. Mohamed, S.H. Masood, Abul Saifullah

    2013-01-01

    In injection molding process, the cooling channel performance is one of the most crucial factors because it has significant effect on both production rate and the quality of the plastic part. In order to reduce the cycle time, and control the uniform distribution of temperature, it is necessary to create conformal cooling channels, which conform to the shape of the mold cavity and core. This paper presents a simulation study of different types of cooling channe...

  10. LCI Databases Sensitivity Analysis of the Environmental Impact of the Injection Molding Process

    Ana Elduque; Carlos Javierre; Daniel Elduque; Ángel Fernández

    2015-01-01

    During the last decades, society’s concern for the environment has increased. Specific tools like the Life Cycle Assessment (LCA), and software and databases to apply this method have been developed to calculate the environmental burden of products or processes. Calculating the environmental impact of plastic products is relevant as the global plastics production rose to 288 million tons in 2012. Among the different ways of processing plastics, the injection molding process is one of the mo...

  11. Correlation between Rheotens measurements and reinforcement of polymer nanocomposites in the injection molding compounder

    Battisti, Markus G.; Friesenbichler, Walter; Duretek, Ivica; Guttmann, Peter

    2015-04-01

    The evaluation of the effectiveness of reinforcement of polymers and polymer nanocomposites(PNCs), in particular the improvement of Young's modulus, is made by performing standardized tensile tests. Structural and morphological characterizations typically are investigated using expensive techniques like transmission electron microscopy (TEM), X- ray scattering and sometimes also rheological analyses (rotational rheometry). The objective of this study is to generate faster and economically advantageous data to verify the quality of the produced PNC-compound in an on-line measurement system. Subsequently injection molded parts are processed by using the Injection Molding Compounder (PNC-IMC) “by only one plasticizing process”. In comparison to the conventional compounding process, where the compound has to be pelletized and fed into the injection molding machine for the second plasticizing process, injection molding compounding combines these two processing steps. This paper shows first results and problems with the implementation of the Rheotens equipment into the concept of the IMC. Different processing techniques and various processing conditions were compared and the occurring effects were detected both with tensile testing and extensional melt rheology. Both, the increase of the Young's modulus by using layered silicates as nanofillersis compared to the virgin polypropylene and the correlation of the level of melt strength with Rheotens measurements is shown. These results give a good overview on both the possibilities and the limitations of the material pre-tests by the use of extensional rheology in the concept of the IMC for producing PNCs. Further studies to enable a fast and efficient way of estimating the level of reinforcement in PNCs by means of Rheotens measurements will be carried out towards industrial usability. Furthermore the verification of exfoliation and intercalation of the layered silicates in the polymer matrix using small angle X- ray

  12. Color measurement of plastics - From compounding via pelletizing, up to injection molding and extrusion

    Botos, J.; Murail, N.; Heidemeyer, P.; Kretschmer, K.; Ulmer, B.; Zentgraf, T.; Bastian, M.; Hochrein, T.

    2014-05-01

    The typical offline color measurement on injection molded or pressed specimens is a very expensive and time-consuming process. In order to optimize the productivity and quality, it is desirable to measure the color already during the production. Therefore several systems have been developed to monitor the color e.g. on melts, strands, pellets, the extrudate or injection molded part already during the process. Different kinds of inline, online and atline methods with their respective advantages and disadvantages will be compared. The criteria are e.g. the testing time, which ranges from real-time to some minutes, the required calibration procedure, the spectral resolution and the final measuring precision. The latter ranges between 0.05 to 0.5 in the CIE L*a*b* system depending on the particular measurement system. Due to the high temperatures in typical plastics processes thermochromism of polymers and dyes has to be taken into account. This effect can influence the color value in the magnitude of some 10% and is barely understood so far. Different suitable methods to compensate thermochromic effects during compounding or injection molding by using calibration curves or artificial neural networks are presented. Furthermore it is even possible to control the color during extrusion and compounding almost in real-time. The goal is a specific developed software for adjusting the color recipe automatically with the final objective of a closed-loop control.

  13. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  14. Determination of injection molding process windows for optical lenses using response surface methodology.

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable. PMID:25321095

  15. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    Jafar Gharechahi

    2014-08-01

    Full Text Available Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques.SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05.After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes.Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  16. Measurement and computation of thermal stresses in injection molding of amorphous and crystalline polymers

    Farhoudi, Yalda

    1998-12-01

    An integrated experimental and theoretical study of the residual thermal stresses has been carried out. The final stress profiles along the thickness were measured in an amorphous and a semi-crystalline injection molded polymer using the layer removal technique. The two materials exhibited drastically distinct residual profiles. Furthermore, processing parameters such as melt and coolant temperatures, pressure history, and mold thickness were found to modify the profiles. In order to elucidate the findings, two models were derived. The two-dimensional free mold shrinkage model was developed to provide a rapid estimation of thermal stresses and the main features of their profile. A more complex model was developed by integrating the stress analysis with the simulation of the complete injection molding cycle by McKam. This model accounts for the fountain flow effect, the crystallization, and the PVT behavior of the material. With the help of the model predictions, explanations were provided for the occurrence of various regions in the residual stress profiles. Transitions or reversal of the regions under variable conditions or material properties were observed to be mainly determined by the ratio of the thermal to the pressure effects. Using these concepts, practical conclusions were drawn for controlling the residual stresses. As an alternative for optimization of injection molding with respect to residual stresses, inverse methods were developed to calculate the pressure history or the initial temperature distribution required to produce a prescribed residual stress distribution. These methods were tested using direct solutions with added errors and experimental stress data.

  17. Measurement of solidification and melting behavior of resin in injection molding and detection of flaws molded parts by using ultrasonic waves

    Injection molding of thermoplastics is widely used in many industries. However, it is not so easy to design the mold and to determine the optimal injection conditions. Therefore, a number of CAR mold design software packages for simulating the injection molding process have been developed. In order to confirm the results obtained from CAE, it is necessary to compare the numerical results with the experimental ones. In practice, the filling behavior has been observed with an optical visualization technique, but the solidification behavior of melted resin filled into the cavity has not yet been observed. It has been indirectly detected by measuring the pressure in the mold cavity. On the other hand, the melting behavior of solid resin in the barrel of an infection molding machine has influence on the quality of a molded part. Therefore, it is important to observe the melting behavior of solid resin in the barrel. In this study a method for measuring the solidification behavior in the cavity and the melting behavior in the barrel have been developed by using ultrasonic waves. Moreover, a method of detecting a flaw or a different material included in the molded part has been developed by using ultrasonic waves. Especially, a flaw close to the surface of the molded part can be detected by separating the flaw echo from the surface echo of the molded part. It was determined that the thickness of the solid layer of the melted resin filled into the cavity can be measured by using ultrasonic waves. The melting behavior of the resin on the barrel surface can be observed by measuring the amplitude of the reflected echo on the interface between the barrel and resin. Moreover, the flaw close to the surface of the molded part can be detected by using the ultrasonic waves.

  18. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana

    2014-05-01

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  19. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Hausnerova, Berenika; Sanetrnik, Daniel [Dept. of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic and Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovc (Czech Republic); Paravanova, Gordana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcírnou 3685, 760 01 Zlín (Czech Republic)

    2014-05-15

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  20. Mechanical, dynamic-mechanical and thermal properties of soy protein-based thermoplastics with potential biomedical applications

    Vaz, C.A.; Mano, J.F.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.A.

    2002-01-01

    In this study the tensile and the dynamic-mechanical behavior of injection-molded samples of various soy protein thermoplastic compounds were evaluated as a function of the amount of glycerol, type and amount of ceramic reinforcement, and eventual incorporation of coupling agents. The incorporation

  1. Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique

    Dong Kwon Park

    2013-09-01

    Full Text Available Background The forehead, which occupies about one third of the face, is one of the majordeterminants of a feminine or masculine look. Various methods have been used for the augmentationof the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate(MMA is the most appropriate material for augmentation of the forehead, and we have usedan injection-molding technique with MMA to achieve satisfactory results.Methods Under local anesthesia with intravenous (IV sedation, an incision was made onthe scalp and a meticulous and delicate subperiosteal dissection was then performed. MMAmonomers and polymers were mixed, the dough was injected into the space created, andmanual molding was performed along with direct inspection. This surgery was indicated forpatients who wanted to correct an unattractive appearance by forehead augmentation. Everypatient in this study visited our clinics 3 months after surgery to evaluate the results. Wejudged the postoperative results in terms of re-operation rates caused by the dissatisfactionof the patients and complications.Results During a 13-year period, 516 patients underwent forehead augmentation with MMA.With the injection-molding technique, the inner surface of the MMA implant is positionedclose to the underlying frontal bone, which minimizes the gap between the implant and bone.The borders of the implant should be tapered sufficiently until no longer palpable or visible.Only 28 patients (5.4% underwent a re-operation due to an undesirable postoperative appearance.Conclusions The injection-molding technique using MMA is a simple, safe, and ideal methodfor the augmentation of the forehead.

  2. Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments

    Metal injection molding (MIM) is a near net shape manufacturing method that allows for the production of components of small to moderate size and complex shape. MIM is a cost-effective and flexible manufacturing technique that provides a large innovative potential over existing methods for the industry of implantable devices. Commercially pure titanium (CP-Ti) samples were machined to the same shape as a composite feedstock with titanium and polyoxymethylene, and these metals were injected, debinded and sintered to assess comparative biological properties. Moreover, we treated MIM-Ti parts with BIOCOAT®, BIODIZE® and BIOCER®, three different anodic oxidation techniques that treat titanium using acid, alkaline and anion enriched electrolytes, respectively. Cytocompatibility as well as morphological and chemical features of surfaces was comparatively assessed on each sample, and the results revealed that MIM-Ti compared to CP-Ti demonstrated a specific surface topography with a higher roughness. MIM-Ti and BIOCER® samples significantly enhanced cell proliferation, cell adhesion and cell differentiation compared to CP-Ti. Interestingly, in the anodization post-treatment established in this study, we demonstrated the ability to improve osseointegration through anionic modification treatment. The excellent biological response we observed with MIM parts using the injection molding process represents a promising manufacturing method for the future implantable devices in direct contact with bones. - Highlights: ► Metal injection molding technique gives titanium a specific surface roughness. It enhances the biological response. ► Anodic oxidation method adds Ca, P, and Mg ions on the surface, promoting the cell adhesion. ► Cytocompatibility analyses show an increased cell adhesion and proliferation on MIM-Ti compared to pure titanium.

  3. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  4. In-situ Formation of Ti Alloys via Powder Injection Molding

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    We have developed a unique blend of powder injection molding (PIM) feedstock materials in which only a small volume fraction of binder (< 8%) is required; the remainder of the mixture consists of the metal powder and a solid aromatic solvent. Because of the nature of the decomposition in the binder system and the relatively small amount used, the binder can be completely removed from the molded component during heat treatment. Here, we present results from an initial study on in-situ titanium alloy formation in near-net shape components manufactured by this novel PIM technique.

  5. Compact surface plasmon resonance biosensor utilizing an injection-molded prism

    Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan

    2016-05-01

    Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.

  6. STRESS ANALYSIS OF INJECTION MOLDED PARTS IN POST-FILLING STAGE

    2000-01-01

    The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear themo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.

  7. Precision replication of co-molded meso and micro optics through injection molding

    Gill, David Dennis

    The objective of the research is to extend the limits of current optical production techniques for complex, thermally-stable, precise optical components produced in large volume. Injection molding is a high volume process, but is not well understood on this scale. Additionally, polymer can be formed into complex and intricate shapes, but the high coefficient of thermal expansion has prevented the widespread use of polymer for precision optics. For injection molding to become a viable process for the production of meso and micro optics, it is necessary for these challenges to be addressed. The goals of this research address the aforementioned challenges on two fronts (1) injection molding of polymer lenses, and (2) molding of polymer elements directly onto stable substrates. The first is through an increased understanding of the injection molding process in the replication of micro optics. Precision molds were produced with optical features of varying size, shape, step height, and aspect ratio. These features included spherical and fresnel lenses, blaze diffraction grating, and wedding cake. The pitch of the features was as small as 10mum and step heights as small as 1.25mum. A screening design of experiment was performed to discover the molding factors (process variables) with the greatest effect on the replication of micro optics. These experiments showed mold temperature and screw rotation speed to have the greatest effects on the accurate replication of meso and micro optics. The second challenge, the thermal instability of polymer lenses, has been addressed through research of the co-molding these optics directly onto thermally stable substrates. Challenges included the modification of properties at the polymer-substrate interface, the large mismatch in coefficients of thermal expansion between the polymer and the substrate, and mold design factors for using a brittle substrate material in the mold. In the experiments, interface adhesion was found to be

  8. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm...

  9. Cycle Time Reduction in Injection Molding Process by Selection of Robust Cooling Channel Design

    Muhammad Khan; S. Kamran Afaq; Nizar Ullah Khan; Saboor Ahmad

    2014-01-01

    Cycle time of a part in injection molding process is very important as the rate of production and the quality of the parts produced depend on it, whereas the cycle time of a part can be reduced by reducing the cooling time which can only be achieved by the uniform temperature distribution in the molded part which helps in quick dissipation of heat. Conformal cooling channel design is the solution to the problem which basically “conforms” to the shape of cavity in the molds. This paper describ...

  10. Investigation of the adhesion interface obtained through two-component injection molding

    Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel

    2011-01-01

    In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.