WorldWideScience

Sample records for ladar based object

  1. ALLFlight: detection of moving objects in IR and ladar images

    Doehler, H.-U.; Peinecke, Niklas; Lueken, Thomas; Schmerwitz, Sven

    2013-05-01

    Supporting a helicopter pilot during landing and takeoff in degraded visual environment (DVE) is one of the challenges within DLR's project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites). Different types of sensors (TV, Infrared, mmW radar and laser radar) are mounted onto DLR's research helicopter FHS (flying helicopter simulator) for gathering different sensor data of the surrounding world. A high performance computer cluster architecture acquires and fuses all the information to get one single comprehensive description of the outside situation. While both TV and IR cameras deliver images with frame rates of 25 Hz or 30 Hz, Ladar and mmW radar provide georeferenced sensor data with only 2 Hz or even less. Therefore, it takes several seconds to detect or even track potential moving obstacle candidates in mmW or Ladar sequences. Especially if the helicopter is flying with higher speed, it is very important to minimize the detection time of obstacles in order to initiate a re-planning of the helicopter's mission timely. Applying feature extraction algorithms on IR images in combination with data fusion algorithms of extracted features and Ladar data can decrease the detection time appreciably. Based on real data from flight tests, the paper describes applied feature extraction methods for moving object detection, as well as data fusion techniques for combining features from TV/IR and Ladar data.

  2. Ladar-based terrain cover classification

    Macedo, Jose; Manduchi, Roberto; Matthies, Larry H.

    2001-09-01

    An autonomous vehicle driving in a densely vegetated environment needs to be able to discriminate between obstacles (such as rocks) and penetrable vegetation (such as tall grass). We propose a technique for terrain cover classification based on the statistical analysis of the range data produced by a single-axis laser rangefinder (ladar). We first present theoretical models for the range distribution in the presence of homogeneously distributed grass and of obstacles partially occluded by grass. We then validate our results with real-world cases, and propose a simple algorithm to robustly discriminate between vegetation and obstacles based on the local statistical analysis of the range data.

  3. Photographic-based target models for LADAR applications

    Jack, James T.; Delashmit, Walter H.

    2009-05-01

    A long standing need for the application of laser radar (LADAR) to a wider range of targets is a technique for creating a "target model" from target photographs. This is feasible since LADAR images are 3D and photographs at selected azimuth/elevation angles will allow the required models to be created. Preferred photographic images of a wide range of selected targets were specified and collected. These photographs were processed using code developed in house and some commercial software packages. These "models" were used in model-based automatic target recognition (ATR) algorithms. The ATR performance was excellent. This technique differs significantly from other techniques for creating target models. Those techniques require CAD models which are much harder to manipulate and contain extraneous detail. The technique in this paper develops the photographic-based target models in component form so that any component (e.g., turret of a tank) can be independently manipulated, such as rotating the turret. This new technique also allows models to be generated for targets for which no actual LADAR data has ever been collected. A summary of the steps used in the modeling process is as follows: start with a set of input photographs, calibrate the imagery into a 3D world space to generate points corresponding to target features, create target geometry by connecting points with surfaces, mark all co-located points in each image view and verify alignment of points, place in a 3D space, create models by creating surfaces (i.e., connect points with planar curves) and scale target into real-world coordinates.

  4. Precision and Accuracy Testing of FMCW Ladar Based Length Metrology

    Mateo, Ana Baselga

    2015-01-01

    The calibration and traceability of high resolution frequency modulated continuous wave (FMCW) ladar sources is a requirement for their use in length and volume metrology. We report the calibration of a FMCW ladar length measurement system by use of spectroscopy of molecular frequency references HCN (C-band) or CO (L-band) to calibrate the chirp rate of the FMCW source. Propagating the stated uncertainties from the molecular calibrations provided by NIST and measurement errors provides an estimated uncertainty of a few ppm for the FMCW system. As a test of this calibration, a displacement measurement interferometer with a laser wavelength close to that of our FMCW system was built to make comparisons of the relative precision and accuracy. The comparisons performed show ppm agreement which is within the combined estimated uncertainties of the FMCW system and interferometer.

  5. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  6. Simulation of laser detection and ranging (LADAR) and forward-looking infrared (FLIR) data for autonomous tracking of airborne objects

    Powell, Gavin; Markham, Keith C.; Marshall, David

    2000-06-01

    This paper presents the results of an investigation leading into an implementation of FLIR and LADAR data simulation for use in a multi sensor data fusion automated target recognition system. At present the main areas of application are in military environments but systems can easily be adapted to other areas such as security applications, robotics and autonomous cars. Recent developments have been away from traditional sensor modeling and toward modeling of features that are external to the system, such as atmosphere and part occlusion, to create a more realistic and rounded system. We have implemented such techniques and introduced a means of inserting these models into a highly detailed scene model to provide a rich data set for later processing. From our study and implementation we are able to embed sensor model components into a commercial graphics and animation package, along with object and terrain models, which can be easily used to create a more realistic sequence of images.

  7. Spectral ladar: towards active 3D multispectral imaging

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  8. MBE based HgCdTe APDs and 3D LADAR sensors

    Jack, Michael; Asbrock, Jim; Bailey, Steven; Baley, Diane; Chapman, George; Crawford, Gina; Drafahl, Betsy; Herrin, Eileen; Kvaas, Robert; McKeag, William; Randall, Valerie; De Lyon, Terry; Hunter, Andy; Jensen, John; Roberts, Tom; Trotta, Patrick; Cook, T. Dean

    2007-04-01

    Raytheon is developing HgCdTe APD arrays and sensor chip assemblies (SCAs) for scanning and staring LADAR systems. The nonlinear characteristics of APDs operating in moderate gain mode place severe requirements on layer thickness and doping uniformity as well as defect density. MBE based HgCdTe APD arrays, engineered for high performance, meet the stringent requirements of low defects, excellent uniformity and reproducibility. In situ controls for alloy composition and substrate temperature have been implemented at HRL, LLC and Raytheon Vision Systems and enable consistent run to run results. The novel epitaxial designed using separate absorption-multiplication (SAM) architectures enables the realization of the unique advantages of HgCdTe including: tunable wavelength, low-noise, high-fill factor, low-crosstalk, and ambient operation. Focal planes built by integrating MBE detectors arrays processed in a 2 x 128 format have been integrated with 2 x 128 scanning ROIC designed. The ROIC reports both range and intensity and can detect multiple laser returns with each pixel autonomously reporting the return. FPAs show exceptionally good bias uniformity China Lake. Excellent spatial and range resolution has been achieved with 3D imagery demonstrated both at short range and long range. Ongoing development under an Air Force Sponsored MANTECH program of high performance HgCdTe MBE APDs grown on large silicon wafers promise significant FPA cost reduction both by increasing the number of arrays on a given wafer and enabling automated processing.

  9. EO Scanned Micro-LADAR Project

    National Aeronautics and Space Administration — In this phase II SBIR we will design, build, test, and deliver new scanning based micro-ladar sensors with unprecedented small size, weight, and power (SWaP),...

  10. EO Scanned Micro-LADAR Project

    National Aeronautics and Space Administration — In this SBIR program we will develop, design and build new scanning based micro-ladar sensors with unprecedented small size, weight, and power (SWaP), thereby...

  11. Research on key technologies of LADAR echo signal simulator

    Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo

    2015-10-01

    LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.

  12. Target recognition for ladar range image using slice image

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  13. Integration and demonstration of MEMS-scanned LADAR for robotic navigation

    Stann, Barry L.; Dammann, John F.; Del Giorno, Mark; DiBerardino, Charles; Giza, Mark M.; Powers, Michael A.; Uzunovic, Nenad

    2014-06-01

    LADAR is among the pre-eminent sensor modalities for autonomous vehicle navigation. Size, weight, power and cost constraints impose significant practical limitations on perception systems intended for small ground robots. In recent years, the Army Research Laboratory (ARL) developed a LADAR architecture based on a MEMS mirror scanner that fundamentally improves the trade-offs between these limitations and sensor capability. We describe how the characteristics of a highly developed prototype correspond to and satisfy the requirements of autonomous navigation and the experimental scenarios of the ARL Robotics Collaborative Technology Alliance (RCTA) program. In particular, the long maximum and short minimum range capability of the ARL MEMS LADAR makes it remarkably suitable for a wide variety of scenarios from building mapping to the manipulation of objects at close range, including dexterous manipulation with robotic arms. A prototype system was applied to a small (approximately 50 kg) unmanned robotic vehicle as the primary mobility perception sensor. We present the results of a field test where the perception information supplied by the LADAR system successfully accomplished the experimental objectives of an Integrated Research Assessment (IRA).

  14. Miniature Ground Mapping LADAR Project

    National Aeronautics and Space Administration — System & Processes Engineering Corporation (SPEC) proposes a miniature solid state surface imaging LADAR, for imaging the landing areas providing precision...

  15. Comprehensive high-speed simulation software for ladar systems

    Kim, Seongjoon; Hwang, Seran; Son, Minsoo; Lee, Impyeong

    2011-11-01

    Simulation of LADAR systems is particularly important for the verification of the system design through the performance assessment. Although many researchers attempted to develop various kinds of LADAR simulators, most of them have some limitations in being practically used for the general design of diverse types of LADAR system. We thus attempt to develop high-speed simulation software that is applicable to different types of LADAR system. In summary, we analyzed the previous studies related to LADAR simulation and, based on those existing works, performed the sensor modeling in various aspects. For the high-speed operation, we incorporate time-efficient incremental coherent ray-tracing algorithms, 3D spatial database systems for efficient spatial query, and CUDA based parallel computing. The simulator is mainly composed of three modules: geometry, radiometry, and visualization modules. Regarding the experimental results, our simulation software could successfully generate the simulated data based on the pre-defined system parameters. The validation of simulation results is performed by the comparison with the real LADAR data, and the intermediate results are promising. We believe that the developed simulator can be widely useful for various fields.

  16. Anomaly Detection in Clutter using Spectrally Enhanced Ladar

    Chhabra, Puneet S; Hopgood, James R

    2016-01-01

    Discrete return (DR) Laser Detection and Ranging (Ladar) systems provide a series of echoes that reflect from objects in a scene. These can be first, last or multi-echo returns. In contrast, Full-Waveform (FW)-Ladar systems measure the intensity of light reflected from objects continuously over a period of time. In a camouflaged scenario, e.g., objects hidden behind dense foliage, a FW-Ladar penetrates such foliage and returns a sequence of echoes including buried faint echoes. The aim of this paper is to learn local-patterns of co-occurring echoes characterised by their measured spectra. A deviation from such patterns defines an abnormal event in a forest/tree depth profile. As far as the authors know, neither DR or FW-Ladar, along with several spectral measurements, has not been applied to anomaly detection. This work presents an algorithm that allows detection of spectral and temporal anomalies in FW-Multi Spectral Ladar (FW-MSL) data samples. An anomaly is defined as a full waveform temporal and spectral ...

  17. Ladar scene projector for a hardware-in-the-loop simulation system.

    Xu, Rui; Wang, Xin; Tian, Yi; Li, Zhuo

    2016-07-20

    In order to test a direct-detection ladar in a hardware-in-the-loop simulation system, a ladar scene projector is proposed. A model based on the ladar range equation is developed to calculate the profile of the ladar return signal. The influences of both the atmosphere and the target's surface properties are considered. The insertion delays of different channels of the ladar scene projector are investigated and compensated for. A target range image with 108 pixels is generated. The simulation range is from 0 to 15 km, the range resolution is 1.04 m, the range error is 1.28 cm, and the peak-valley error for different channels is 15 cm. PMID:27463932

  18. Ultra-compact, High Resolution, LADAR system for 3D Imaging Project

    National Aeronautics and Space Administration — SiWave proposes to develop an innovative, ultra-compact, high resolution, long range LADAR system to produce a 3D map of the exterior of any object in space such as...

  19. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    Prasad, Narasimha S.; Rudd, Van; Shald, Scott; Sandford, Stephen; Dimarcantonio, Albert

    2014-01-01

    In this paper, the development of a long range ladar system known as ExoSPEAR at NASA Langley Research Center for tracking rapidly moving resident space objects is discussed. Based on 100 W, nanosecond class, near-IR laser, this ladar system with coherent detection technique is currently being investigated for short dwell time measurements of resident space objects (RSOs) in LEO and beyond for space surveillance applications. This unique ladar architecture is configured using a continuously agile doublet-pulse waveform scheme coupled to a closed-loop tracking and control loop approach to simultaneously achieve mm class range precision and mm/s velocity precision and hence obtain unprecedented track accuracies. Salient features of the design architecture followed by performance modeling and engagement simulations illustrating the dependence of range and velocity precision in LEO orbits on ladar parameters are presented. Estimated limits on detectable optical cross sections of RSOs in LEO orbits are discussed.

  20. Super-resolution for flash LADAR data

    Hu, Shuowen; Young, S. Susan; Hong, Tsai; Reynolds, Joseph P.; Krapels, Keith; Miller, Brian; Thomas, Jim; Nguyen, Oanh

    2009-05-01

    Flash laser detection and ranging (LADAR) systems are increasingly used in robotics applications for autonomous navigation and obstacle avoidance. Their compact size, high frame rate, wide field of view, and low cost are key advantages over traditional scanning LADAR devices. However, these benefits are achieved at the cost of spatial resolution. Super-resolution enhancement can be applied to improve the resolution of flash LADAR devices, making them ideal for small robotics applications. Previous work by Rosenbush et al. applied the super-resolution algorithm of Vandewalle et al. to flash LADAR data, and observed quantitative improvement in image quality in terms of number of edges detected. This study uses the super-resolution algorithm of Young et al. to enhance the resolution of range data acquired with a SwissRanger SR-3000 flash LADAR camera. To improve the accuracy of sub-pixel shift estimation, a wavelet preprocessing stage was developed and applied to flash LADAR imagery. The authors used the triangle orientation discrimination (TOD) methodology for a subjective evaluation of the performance improvement (measured in terms of probability of target discrimination and subject response times) achieved with super-resolution. Super-resolution of flash LADAR imagery resulted in superior probabilities of target discrimination at the all investigated ranges while reducing subject response times.

  1. Anti-ship missile tracking with a chirped AM ladar - Update: design, model predictions, and experimental results

    Redman, Brian; Ruff, William; Stann, Barry; Giza, Mark; Lawler, William; Dammann, John; Potter, William

    2005-05-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming, anti-ship missiles at long ranges. Since IRST systems cannot measure range and line-of-sight (LOS) velocity, they have difficulty distinguishing missiles from false targets and clutter. In a joint Army-Navy program, the Army Research Laboratory (ARL) is developing a ladar based on the chirped amplitude modulation (AM) technique to provide range and velocity measurements of potential targets handed-over by the distributed aperture system - IRST (DAS-IRST) being developed by the Naval Research Laboratory (NRL) and sponsored by the Office of Naval Research (ONR). Using the ladar's range and velocity data, false alarms and clutter will be eliminated, and valid missile targets' tracks will be updated. By using an array receiver, ARL's ladar will also provide 3D imagery of potential threats for force protection/situational awareness. The concept of operation, the Phase I breadboard ladar design and performance model results, and the Phase I breadboard ladar development program were presented in paper 5413-16 at last year's symposium. This paper will present updated design and performance model results, as well as recent laboratory and field test results for the Phase I breadboard ladar. Implications of the Phase I program results on the design, development, and testing of the Phase II brassboard ladar will also be discussed.

  2. ATA algorithm suite for co-boresighted pmmw and ladar imagery

    Stevens, Mark R.; Snorrason, Magnus; Ablavsky, Vitaly; Amphay, Sengvieng A.

    2001-08-01

    The need for air-to-ground missiles with day/night, adverse weather and pinpoint accuracy Autonomous Target Acquisition (ATA) seekers is essential for today's modern warfare scenarios. Passive millimeter wave (PMMW) sensors have the ability to see through clouds; in fact they tend to show metallic objects in high contrast regardless of weather conditions. However, their resolution is very low when compared with other ATA sensor such as laser radar (LADAR). We present an ATA algorithm suite that combines the superior target detection potential of PMMW with the high-quality segmentation and recognition abilities of LADAR. Preliminary detection and segmentation results are presented for a set of image-pairs of military vehicles that were collected for this project using an 89 Ghz, 18 inch aperture PMMW sensor from TRW and a 1.06 (mu) high-resolution LADAR.

  3. Monostatic all-fiber scanning LADAR system.

    Leach, Jeffrey H; Chinn, Stephen R; Goldberg, Lew

    2015-11-20

    A compact scanning LADAR system based on a fiber-coupled, monostatic configuration which transmits (TX) and receives (RX) through the same aperture has been developed. A small piezo-electric stripe actuator was used to resonantly vibrate a fiber cantilever tip and scan the transmitted near-single-mode optical beam and the cladding mode receiving aperture. When compared to conventional bi-static systems with polygon, galvo, or Risley-prism beam scanners, the described system offers several advantages: the inherent alignment of the receiver field-of-view (FOV) relative to the TX beam angle, small size and weight, and power efficiency. Optical alignment of the system was maintained at all ranges since there is no parallax between the TX beam and the receiver FOV. A position-sensing detector (PSD) was used to sense the instantaneous fiber tip position. The Si PSD operated in a two-photon absorption mode to detect the transmitted 1.5 μm pulses. The prototype system collected 50,000 points per second with a 6° full scan angle and a 27 mm clear aperture/40 mm focal length TX/RX lens, had a range precision of 4.7 mm, and was operated at a maximum range of 26 m. PMID:26836533

  4. Object-Based Benefits without Object-Based Representations

    Alvarez, George Angelo; Fougnie, Daryl; Cormiea, Sarah M

    2012-01-01

    The organization of visual information into objects strongly influences visual memory: Displays with objects defined by two features (e.g. color, orientation) are easier to remember than displays with twice as many objects defined by one feature (Olson & Jiang, 2002). Existing theories suggest that this ‘object-benefit’ is based on object-based limitations in working memory: because a limited number of objects can be stored, packaging features together so that fewer objects have to be remembe...

  5. Multi-Dimensional, Non-Contact Metrology using Trilateration and High Resolution FMCW Ladar

    Mateo, Ana Baselga

    2015-01-01

    Here we propose, describe, and provide experimental proof-of-concept demonstrations of a multi-dimensional, non-contact length metrology system design based on high resolution (millimeter to sub-100 micron) frequency modulated continuous wave (FMCW) ladar and trilateration based on length measurements from multiple, optical fiber-connected transmitters. With an accurate FMCW ladar source, the trilateration based design provides 3D resolution inherently independent of stand-off range and allows self-calibration to provide flexible setup of a field system. A proof-of-concept experimental demonstration was performed using a highly-stabilized, 2 THz bandwidth chirped laser source, two emitters, and one scanning emitter/receiver providing 1D surface profiles (2D metrology) of diffuse targets. The measured coordinate precision of < 200 microns was determined to be limited by laser speckle issues caused by diffuse scattering of the targets.

  6. Imaging of Airborne Synthetic Aperture Ladar under Platform Vibration Condition

    Ma Meng; Li Dao-jing; Du Jian-bo

    2014-01-01

    This study examines the imaging problems in airborne synthetic aperture ladar with single detector and dual detectors along tracks under platform vibration condition. Because platform vibrations affect imaging processing for short intervals negligibly, a method uniting the subaperture imaging and phase gradient autofocus is considered for single-detector ladar. To obtain long stripmap images in azimuth, the stripmap phase gradient autofocus method and the subaperture image mosaic process usin...

  7. A low-power CMOS trans-impedance amplifier for FM/cw ladar imaging system

    Hu, Kai; Zhao, Yi-qiang; Sheng, Yun; Zhao, Hong-liang; Yu, Hai-xia

    2013-09-01

    A scannerless ladar imaging system based on a unique frequency modulation/continuous wave (FM/cw) technique is able to entirely capture the target environment, using a focal plane array to construct a 3D picture of the target. This paper presents a low power trans-impedance amplifier (TIA) designed and implemented by 0.18 μm CMOS technology, which is used in the FM/cw imaging ladar with a 64×64 metal-semiconductor-metal(MSM) self-mixing detector array. The input stage of the operational amplifier (op amp) in TIA is realized with folded cascade structure to achieve large open loop gain and low offset. The simulation and test results of TIA with MSM detectors indicate that the single-end trans-impedance gain is beyond 100 kΩ, and the -3 dB bandwidth of Op Amp is beyond 60 MHz. The input common mode voltage ranges from 0.2 V to 1.5 V, and the power dissipation is reduced to 1.8 mW with a supply voltage of 3.3 V. The performance test results show that the TIA is a candidate for preamplifier of the read-out integrated circuit (ROIC) in the FM/cw scannerless ladar imaging system.

  8. Development of a 3D Flash LADAR Video Camera for Entry, Decent and Landing Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) has developed a 128 x 128 frame, 3D Flash LADAR video camera capable of a 30 Hz frame rate. Because Flash LADAR captures an...

  9. Development of a 3D Flash LADAR Video Camera for Entry, Decent, and Landing Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) has developed a 128 x 128 frame, 3D Flash LADAR video camera which produces 3-D point clouds at 30 Hz. Flash LADAR captures...

  10. Infrared-based object tracking

    Gervais, Jon; Youngblood, Austin; Delashmit, Walter H.

    2009-05-01

    Often it is necessary to track moving objects on horizontal paths. Human error and the associated cost and dangers of using humans lead to a requirement to automate this task. The system presented here was designed, built and tested. The system uses an IR beacon and a microcontroller receiver/controller module. The design consists of a field programmable gate array (FPGA) based IR transmitter and a microcontroller based IR receiver/controller. The design consisted of two main parts, the transmitter (beacon) and the receiver/controller module. The receiver was implemented with a FPGA so that the characteristics of the beacon signal could be adjusted more quickly and with greater precision. The controller module was integrated with the receivers and detailed system integration tests were performed. Measurements were collected, recorded and analyzed.

  11. Object-Based Image Compression

    Schmalz, Mark S.

    2003-01-01

    Image compression frequently supports reduced storage requirement in a computer system, as well as enhancement of effective channel bandwidth in a communication system, by decreasing the source bit rate through reduction of source redundancy. The majority of image compression techniques emphasize pixel-level operations, such as matching rectangular or elliptical sampling blocks taken from the source data stream, with exemplars stored in a database (e.g., a codebook in vector quantization or VQ). Alternatively, one can represent a source block via transformation, coefficient quantization, and selection of coefficients deemed significant for source content approximation in the decompressed image. This approach, called transform coding (TC), has predominated for several decades in the signal and image processing communities. A further technique that has been employed is the deduction of affine relationships from source properties such as local self-similarity, which supports the construction of adaptive codebooks in a self-VQ paradigm that has been called iterated function systems (IFS). Although VQ, TC, and IFS based compression algorithms have enjoyed varying levels of success for different types of applications, bit rate requirements, and image quality constraints, few of these algorithms examine the higher-level spatial structure of an image, and fewer still exploit this structure to enhance compression ratio. In this paper, we discuss a fourth type of compression algorithm, called object-based compression, which is based on research in joint segmentaton and compression, as well as previous research in the extraction of sketch-like representations from digital imagery. Here, large image regions that correspond to contiguous recognizeable objects or parts of objects are segmented from the source, then represented compactly in the compressed image. Segmentation is facilitated by source properties such as size, shape, texture, statistical properties, and spectral

  12. The effect of environment factors of ladar army on neurobehavioral function of military task population

    Objective: To evaluate the effect of the electromagnetic irradiation of ladar army on neurobehavioral function of military task population. Methods: 40 workers exposed to electromagnetic irradiation and 20 controls were investigated with questionnaire survey, profile of mood state and Some other neurobehavioral function tests. Results: Of all the rational symptoms, visual fatigue is ware obvious in the irradiation group and fatigue of POMS form of irradiation group have significant increased. The sum of the pursuit aiming test and the second self intercrossing test have obvious decreased. Conclusion: The mood state, hand operation ability and work efficiency in occupational people are affected by electromagnetic irradiation. (authors)

  13. Classification of objects in images based on various object representations

    Cichocki, Radoslaw

    2006-01-01

    Object recognition is a hugely researched domain that employs methods derived from mathematics, physics and biology. This thesis combines the approaches for object classification that base on two features – color and shape. Color is represented by color histograms and shape by skeletal graphs. Four hybrids are proposed which combine those approaches in different manners and the hybrids are then tested to find out which of them gives best results.

  14. LADAR performance simulations with a high spectral resolution atmospheric transmittance and radiance model: LEEDR

    Roth, Benjamin D.; Fiorino, Steven T.

    2012-06-01

    In this study of atmospheric effects on Geiger Mode laser ranging and detection (LADAR), the parameter space is explored primarily using the Air Force Institute of Technology Center for Directed Energy's (AFIT/CDE) Laser Environmental Effects Definition and Reference (LEEDR) code. The expected performance of LADAR systems is assessed at operationally representative wavelengths of 1.064, 1.56 and 2.039 μm at a number of locations worldwide. Signal attenuation and background noise are characterized using LEEDR. These results are compared to standard atmosphere and Fast Atmospheric Signature Code (FASCODE) assessments. Scenarios evaluated are based on air-toground engagements including both down looking oblique and vertical geometries in which anticipated clear air aerosols are expected to occur. Engagement geometry variations are considered to determine optimum employment techniques to exploit or defeat the environmental conditions. Results, presented primarily in the form of worldwide plots of notional signal to noise ratios, show a significant climate dependence, but large variances between climatological and standard atmosphere assessments. An overall average absolute mean difference ratio of 1.03 is found when climatological signal-to-noise ratios at 40 locations are compared to their equivalent standard atmosphere assessment. Atmospheric transmission is shown to not always correlate with signal-to-noise ratios between different atmosphere profiles. Allowing aerosols to swell with relative humidity proves to be significant especially for up looking geometries reducing the signal-to-noise ratio several orders of magnitude. Turbulence blurring effects that impact tracking and imaging show that the LADAR system has little capability at a 50km range yet the turbulence has little impact at a 3km range.

  15. Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment

    Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon

    2013-01-01

    As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970

  16. Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment

    Yong Joon Kwon

    2013-07-01

    Full Text Available As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively.

  17. View-based 3-D object retrieval

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  18. Speedy Object Detection Based on Shape

    Y. Jayanta Singh

    2013-07-01

    Full Text Available This study is a part of design of an audio system for in-house object detection system for visually impaired,low vision personnel by birth or by an accident ordue to old age. The input of the system will be scene andoutput as audio. Alert facility is provided based on severity levels of the objects (snake, broke glass etc andalso during difficulties. The study proposed techniques to provide speedy detection of objects based onshapes and its scale. Features are extraction to have minimum spaces using dynamic scaling. From ascene, clusters of objects are formed based on thescale and shape. Searching is performed among theclusters initially based on the shape, scale, meancluster value and index of object(s. The minimumoperation to detect the possible shape of the object is performed. In case the object does not have alikelymatching shape, scale etc, then the several operations required for an object detection will not perform;instead, it will declared as a new object. In suchway, this study finds a speedy way of detecting objects.

  19. SPEEDY OBJECT DETECTION BASED ON SHAPE

    Y. Jayanta Singh

    2013-06-01

    Full Text Available This study is a part of design of an audio system for in-house object detection system for visually impaired, low vision personnel by birth or by an accident or due to old age. The input of the system will be scene and output as audio. Alert facility is provided based on severity levels of the objects (snake, broke glass etc and also during difficulties. The study proposed techniques to provide speedy detection of objects based on shapes and its scale. Features are extraction to have minimum spaces using dynamic scaling. From a scene, clusters of objects are formed based on the scale and shape. Searching is performed among the clusters initially based on the shape, scale, mean cluster value and index of object(s. The minimum operation to detect the possible shape of the object is performed. In case the object does not have a likely matching shape, scale etc, then the several operations required for an object detection will not perform; instead, it will declared as a new object. In such way, this study finds a speedy way of detecting objects.

  20. Building a Knowledge Base from Learning Objects

    Fredlund, Per Kristen

    2005-01-01

    The goal of this thesis has been to investigate if it is possible to develop a knowledge structure,knowledge base, based on learning objects. In this connection a learning object is a digital unitwhich should, as a minimum, contain a picture and some text. Most likely a learning objectwould function as a container with anchors for video, animations and links to html-pages.For every learning object there exists a textual description. If we consider the learning object asan overhead presented i...

  1. Object based attention and visual area LO.

    de-Wit, L.; Kentridge, R. W.; Milner, A D

    2009-01-01

    We investigated the neural basis of so-called “object-based attention” by examining patient D.F., who has visual form agnosia caused by bilateral damage to the lateral occipital (LO) area of the ventral visual stream. We tested D.F.’s object-based attention in two ways. In the first experiment, we used a spatial cueing procedure to compare the costs associated with shifting attention within versus between two separate outline figures. D.F. did not show the normal advantage of within-object ov...

  2. Range resolution improvement of eyesafe ladar testbed (ELT) measurements using sparse signal deconvolution

    Budge, Scott E.; Gunther, Jacob H.

    2014-06-01

    The Eyesafe Ladar Test-bed (ELT) is an experimental ladar system with the capability of digitizing return laser pulse waveforms at 2 GHz. These waveforms can then be exploited off-line in the laboratory to develop signal processing techniques for noise reduction, range resolution improvement, and range discrimination between two surfaces of similar range interrogated by a single laser pulse. This paper presents the results of experiments with new deconvolution algorithms with the hoped-for gains of improving the range discrimination of the ladar system. The sparsity of ladar returns is exploited to solve the deconvolution problem in two steps. The first step is to estimate a point target response using a database of measured calibration data. This basic target response is used to construct a dictionary of target responses with different delays/ranges. Using this dictionary ladar returns from a wide variety of surface configurations can be synthesized by taking linear combinations. A sparse linear combination matches the physical reality that ladar returns consist of the overlapping of only a few pulses. The dictionary construction process is a pre-processing step that is performed only once. The deconvolution step is performed by minimizing the error between the measured ladar return and the dictionary model while constraining the coefficient vector to be sparse. Other constraints such as the non-negativity of the coefficients are also applied. The results of the proposed technique are presented in the paper and are shown to compare favorably with previously investigated deconvolution techniques.

  3. Processing 3D flash LADAR point-clouds in real-time for flight applications

    Craig, R.; Gravseth, I.; Earhart, R. P.; Bladt, J.; Barnhill, S.; Ruppert, L.; Centamore, C.

    2007-04-01

    Ball Aerospace & Technologies Corp. has demonstrated real-time processing of 3D imaging LADAR point-cloud data to produce the industry's first time-of-flight (TOF) 3D video capability. This capability is uniquely suited to the rigorous demands of space and airborne flight applications and holds great promise in the area of autonomous navigation. It will provide long-range, three dimensional video information to autonomous flight software or pilots for immediate use in rendezvous and docking, proximity operations, landing, surface vision systems, and automatic target recognition and tracking. This is enabled by our new generation of FPGA based "pixel-tube" processors, coprocessors and their associated algorithms which have led to a number of advancements in high-speed wavefront processing along with additional advances in dynamic camera control, and space laser designs based on Ball's CALIPSO LIDAR. This evolution in LADAR is made possible by moving the mechanical complexity required for a scanning system into the electronics, where production, integration, testing and life-cycle costs can be significantly reduced. This technique requires a state of the art TOF read-out integrated circuit (ROIC) attached to a sensor array to collect high resolution temporal data, which is then processed through FPGAs. The number of calculations required to process the data is greatly reduced thanks to the fact that all points are captured at the same time and thus correlated. This correlation allows extremely efficient FPGA processing. This capability has been demonstrated in prototype form at both Marshal Space Flight Center and Langley Research Center on targets that represent docking and landing scenarios. This report outlines many aspects of this work as well as aspects of our recent testing at Marshall's Flight Robotics Laboratory.

  4. A 32x32 pixel focal plane array ladar system using chirped amplitude modulation

    Stann, Barry L.; Aliberti, Keith; Carothers, Daniel; Dammann, John; Dang, Gerard; Giza, Mark M.; Lawler, William B.; Redman, Brian C.; Simon, Deborah R.

    2004-09-01

    The Army Research Laboratory is researching system architectures and components required to build a 32x32 pixel scannerless ladar breadboard. The 32x32 pixel architecture achieves ranging based on a frequency modulation/continuous wave (FM/cw) technique implemented by directly amplitude modulating a near-IR diode laser transmitter with a radio frequency (RF) subcarrier that is linearly frequency modulated (i.e. chirped amplitude modulation). The backscattered light is focused onto an array of metal-semiconductor-metal (MSM) detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency (IF) signal (a product of the mixing process) whose frequency is proportional to the target range. Pixel read-out is achieved using code division multiple access techniques as opposed to the usual time-multiplexed techniques to attain high effective frame rates. The raw data is captured with analog-to-digital converters and fed into a PC to demux the pixel data, compute the target ranges, and display the imagery. Last year we demonstrated system proof-of-principle for the first time and displayed an image of a scene collected in the lab that was somewhat corrupted by pixel-to-pixel cross-talk. This year we report on system modifications that reduced pixel-to-pixel cross-talk and new hardware and display codes that enable near real-time stereo display of imagery on the ladar's control computer. The results of imaging tests in the laboratory will also be presented.

  5. Invariant object recognition based on extended fragments.

    Bart, Evgeniy; Hegdé, Jay

    2012-01-01

    Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called "digital embryos." Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI) of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination), and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition. PMID:22936910

  6. Invariant Object Recognition Based on Extended Fragments

    Evgeniy eBart

    2012-08-01

    Full Text Available Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called ‘digital embryos’. Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination, and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition.

  7. Advances in LADAR Components and Subsystems at Raytheon

    Jack, Michael; Chapman, George; Edwards, John; McKeag, William; Veeder, Tricia; Wehner, Justin; Roberts, Tom; Robinson, Tom; Neisz, James; Andressen, Cliff; Rinker, Robert; Hall, Donald N. B.; Jacobson, Shane M.; Amzajerdian, Farzin; Cook, T. Dean

    2012-01-01

    Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain, i.e., APDs with very low noise Readout Integrated Circuits (ROICs). Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In the following we will review progress in real-time 3D LADAR imaging receiver products in three areas: (1) scanning 256 x 4 configuration for the Multi-Mode Sensor Seeker (MMSS) program and (2) staring 256 x 256 configuration for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) lunar landing mission and (3) Photon-Counting SCAs which have demonstrated a dramatic reduction in dark count rate due to improved design, operation and processing.

  8. Circular object recognition based on shape parameters

    Chen Aijun; Li Jinzong; Zhu Bing

    2007-01-01

    To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented.The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique.Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects.The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided.The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming.In addition, the method performs well when some circular objects are little deformed and partly misshapen.

  9. Object tracking based on bit-planes

    Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng

    2016-01-01

    Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.

  10. Object Based Middleware for Grid Computing

    S. Muruganantham

    2010-01-01

    Full Text Available Problem statement: “Grid” computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications and, in some cases, high-performance orientation. The role of middleware is to ease the task of designing, programming and managing distributed applications by providing a simple, consistent and integrated distributed programming environment. Essentially, middleware is a distributed software layer, which abstracts over the complexity and heterogeneity of the underlying distributed environment with its multitude of network technologies, machine architectures, operating systems and programming languages. Approach: This study brought out the development of supportive middleware to manage resources and distributed workload across multiple administrative boundaries is of central importance to Grid computing. Active middleware services that perform look-up, scheduling and staging are being developed that allow users to identify and utilize appropriate resources that provide sustainable system and user-level qualities of service. Results: Different middleware platforms support different programming models. Perhaps the most popular model is object-based middleware in which applications are structured into objects that interact via location transparent method invocation. Conclusion: The Object Management Group’s CORBA platform offer an Interface Definition Language (IDL which is used to abstract over the fact that objects can be implemented in any suitable programming language, an object request broker which is responsible for transparently directing method invocations to the appropriate target object and a set of services such as naming, time, transactions, replication which further enhance the programming environment.

  11. Time reversed photonic beamforming of arbitrary waveform ladar arrays

    Cox, Joseph L.; Zmuda, Henry; Bussjaeger, Rebecca J.; Erdmann, Reinhard K.; Fanto, Michael L.; Hayduk, Michael J.; Malowicki, John E.

    2007-04-01

    Herein is described a novel approach of performing adaptive photonic beam forming of an array of optical fibers with the expressed purpose of performing laser ranging. The beam forming technique leverages the concepts of time reversal, previously implemented in the sonar community, and wherein photonic implementation has recently been described for use by beamforming of ultra-wideband radar arrays. Photonic beam forming is also capable of combining the optical output of several fiber lasers into a coherent source, exactly phase matched on a pre-determined target. By implementing electro-optically modulated pulses from frequency chirped femtosecond-scale laser pulses, ladar waveforms can be generated with arbitrary spectral and temporal characteristics within the limitations of the wide-band system. Also described is a means of generating angle/angle/range measurements of illuminated targets.

  12. Top-down facilitation of visual object recognition: object-based and context-based contributions.

    Fenske, Mark J; Aminoff, Elissa; Gronau, Nurit; Bar, Moshe

    2006-01-01

    The neural mechanisms subserving visual recognition are traditionally described in terms of bottom-up analysis, whereby increasingly complex aspects of the visual input are processed along a hierarchical progression of cortical regions. However, the importance of top-down facilitation in successful recognition has been emphasized in recent models and research findings. Here we consider evidence for top-down facilitation of recognition that is triggered by early information about an object, as well as by contextual associations between an object and other objects with which it typically appears. The object-based mechanism is proposed to trigger top-down facilitation of visual recognition rapidly, using a partially analyzed version of the input image (i.e., a blurred image) that is projected from early visual areas directly to the prefrontal cortex (PFC). This coarse representation activates in the PFC information that is back-projected as "initial guesses" to the temporal cortex where it presensitizes the most likely interpretations of the input object. In addition to this object-based facilitation, a context-based mechanism is proposed to trigger top-down facilitation through contextual associations between objects in scenes. These contextual associations activate predictive information about which objects are likely to appear together, and can influence the "initial guesses" about an object's identity. We have shown that contextual associations are analyzed by a network that includes the parahippocampal cortex and the retrosplenial complex. The integrated proposal described here is that object- and context-based top-down influences operate together, promoting efficient recognition by framing early information about an object within the constraints provided by a lifetime of experience with contextual associations. PMID:17027376

  13. Perceptual Object Extraction Based on Saliency and Clustering

    Qiaorong Zhang; Yafeng Zheng; Haibo Liu; Jing Shen; Guochang Gu

    2010-01-01

    Object-based visual attention has received an increasing interest in recent years. Perceptual object is the basic attention unit of object-based visual attention. The definition and extraction of perceptual objects is one of the key technologies in object-based visual attention computation model. A novel perceptual object definition and extraction method is proposed in this paper. Based on Gestalt theory and visual feature integration theory, perceptual object is defined using homogeneity reg...

  14. Invariant object recognition based on extended fragments

    Bart, Evgeniy; Hegdé, Jay

    2012-01-01

    Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual syst...

  15. Object Extraction Based on Evolutionary Morphological Processing

    LI Bin; PAN Li

    2004-01-01

    This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.

  16. Use of laser radar imagery in optical pattern recognition: the Optical Processor Enhanced Ladar (OPEL) Program

    Goldstein, Dennis H.; Mills, Stuart A.; Dydyk, Robert B.

    1998-03-01

    The Optical Processor Enhanced Ladar (OPEL) program is designed to evaluate the capabilities of a seeker obtained by integrating two state-of-the-art technologies, laser radar, or ladar, and optical correlation. The program is a thirty-two month effort to build, optimize, and test a breadboard seeker system (the OPEL System) that incorporates these two promising technologies. Laser radars produce both range and intensity image information. Use of this information in an optical correlator is described. A correlator with binary phase input and ternary amplitude and phase filter capability is assumed. Laser radar imagery was collected on five targets over 360 degrees of azimuth from 3 elevation angles. This imagery was then processed to provide training sets in preparation for filter construction. This paper reviews the ladar and optical correlator technologies used, outlines the OPEL program, and describes the OPEL system.

  17. Ontology Based Object Learning and Recognition

    Maillot, Nicolas

    2005-01-01

    This thesis deals with the problem of complex object recognition. The proposed approach takes place in the conceptual framework of cognitive vision. This thesis shows how an object categorization system is set up in three phases.The knowledge acquisition phase consists of acquiring domain knowledge as a taxonomy/partonomy of domain classes. It also consists of acquiring the visual description of these domain classes. This description is driven by a visual concept ontology composed of several ...

  18. Saliency-based object recognition in video

    González-Díaz, Iván; Boujut, Hugo; Buso, Vincent; Benois-Pineau, Jenny; Domenger, Jean-Philippe

    2013-01-01

    10 pages In this paper we study the problem of object recognition in egocentric video recorded with cameras worn by persons. This task hasgained much attention during the last years, since it has turned tobe a main building block for action recognition systems in applications involving wearable cameras, such as tele-medicine or lifelogging. Under these scenarios, an action can be effectively definedas a sequence of manipulated or observed objects, so that recognition becomes a relevant stag...

  19. Action modulates object-based selection

    Karina J Linnell; Humphreys, Glyn W; McIntyre, Dave B.; Laitinen, Sauli; Wing, Alan M.

    2005-01-01

    Cueing attention to one part of an object can facilitate discrimination in another part (Experiment 1 [Duncan, j. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501-517]; [Egly, R., Driver, J., and Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion divisions. Journal of Experimental Psychology: Human Perception and Performance, 123, 161-177]). We show ...

  20. University collections and object-based pedagogies

    SIMPSON, Andrew; Hammond, Gina

    2012-01-01

    Engagement with objects, either directly or through digital media, has long been recognized as a viable, constructivist pedagogy, capable of mediating significant meaning and context. The increasing uptake of digital technologies in university learning and teaching programs provides a timely opportunity for integrating museum and collection data and metadata in these programs. This project looked at the use of university museum and collection objects in teaching programs through a controlled...

  1. Interval-based Specification of Concurrent Objects

    Løvengreen, Hans Henrik; Sørensen, Morten U.

    1998-01-01

    We propose a logic for specifying the behaviour of concurrent objects, ie. concurrent entities that invoke operation of each other. The logic is an interval logic whith operation invocatins as primitive formulas. The strengths and deficiencies of the logic are illustrated by specifying a variety of...

  2. Object formation in visual working memory: Evidence from object-based attention.

    Zhou, Jifan; Zhang, Haihang; Ding, Xiaowei; Shui, Rende; Shen, Mowei

    2016-09-01

    We report on how visual working memory (VWM) forms intact perceptual representations of visual objects using sub-object elements. Specifically, when objects were divided into fragments and sequentially encoded into VWM, the fragments were involuntarily integrated into objects in VWM, as evidenced by the occurrence of both positive and negative object-based attention effects: In Experiment 1, when subjects' attention was cued to a location occupied by the VWM object, the target presented at the location of that object was perceived as occurring earlier than that presented at the location of a different object. In Experiment 2, responses to a target were significantly slower when a distractor was presented at the same location as the cued object (Experiment 2). These results suggest that object fragments can be integrated into objects within VWM in a manner similar to that of visual perception. PMID:27253863

  3. Monitoring objects orbiting earth using satellite-based telescopes

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  4. ROIC for gated 3D imaging LADAR receiver

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-09-01

    Time of flight laser range finding, deep space communications and scanning video imaging are three applications requiring very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In this project, a readout integrated circuit of hybrid e-APD focal plane array (FPA) with 100um pitch for 3D-LADAR was designed for gated optical receiver. The ROIC works at 77K, including unit cell circuit, column-level circuit, timing control, bias circuit and output driver. The unit cell circuit is a key component, which consists of preamplifier, correlated double Sampling (CDS), bias circuit and timing control module. Specially, the preamplifier used the capacitor feedback transimpedance amplifier (CTIA) structure which has two capacitors to offer switchable capacitance for passive/active dual mode imaging. The main circuit of column-level circuit is a precision Multiply-by-Two circuit which is implemented by switched-capacitor circuit. Switched-capacitor circuit is quite suitable for the signal processing of readout integrated circuit (ROIC) due to the working characteristics. The output driver uses a simply unity-gain buffer. Because the signal is amplified in column-level circuit, the amplifier in unity-gain buffer uses a rail-rail amplifier. In active imaging mode, the integration time is 80ns. Integrating current from 200nA to 4uA, this circuit shows the nonlinearity is less than 1%. In passive imaging mode, the integration time is 150ns. Integrating current from 1nA to 20nA shows the nonlinearity less than 1%.

  5. Line imaging ladar using a laser-diode transmitter and FM/cw radar principles for submunition applications

    Stann, Barry L.; Abou-Auf, Ahmed; Ruff, William C.; Robinson, Dale; Liss, Brian; Potter, William; Sarama, Scott D.; Giza, Mark M.; Simon, Deborah R.; Frankel, Scott; Sztankay, Zoltan G.

    2000-09-01

    We describe the technical approach, component development, and test results of a line imager laser radar (ladar) being developed at the Army Research Laboratory (ARL) for smart munition applications. We obtain range information using a frequency modulation/continuous wave (FM/cw) technique implemented by directly amplitude modulating a near-IR diode laser transmitter with a radio frequency (rf) subcarrier that is linearly frequency modulated. The diode's output is collimated and projected to form a line illumination in the downrange image area. The returned signal is focused onto a line array of metal-semiconductor-metal (MSM) detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency (IF) signal (a product of the mixing process) whose frequency is proportional to the target range. This IF signal is continuously sampled over each period of the rf modulation. Following this, a N-channel signal processor based on field- programmable gate arrays (FPGA) calculates the discrete Fourier transform over the IF waveform in each pixel to establish the ranges to all the scatterers and their respective amplitudes. Over the past year, we constructed the fundamental building blocks of this ladar, which include a 3.5-W line illuminator, a wideband linear FM chirp modulator, a N-pixel MSM detector line array, and a N-channel FPGA signal processor. In this paper we report on the development and performance of each building block and the results of system tests conducted in the laboratory.

  6. Games based on active NFC objects : model and security requirements

    Fortat, Florent; LAURENT, Maryline; Simatic, Michel

    2015-01-01

    Cheating in video games is a critical financial matter for game developers. With games now integrating physical objects through NFC, new cheating techniques have emerged, including characteristic boosting of the objects, duplication of objects and introduction of new unauthorized objects. In this paper, we address this problem for games based on active NFC objects. Having active objects in a game allows for new possibilities of interaction yet to be seen, including offline interactions betwee...

  7. THE ADMINISTRATOR OBJECT PATTERN FOR ROLE-BASED ACCESS CONTROL

    S. R. KODITUWAKKU

    2010-01-01

    The Object-Oriented paradigm approaches the software development by representing real world entities into classes of software objects. Object oriented design patterns facilitate small scale and large scale design reuse. This paper presents an object oriented design pattern, Administrator Object, to address the User-Role assignment problem in Role Based Access Control (RBAC). Two alternative solutions are proposed. The pattern is presented according to the Gang of Four template.

  8. THE ADMINISTRATOR OBJECT PATTERN FOR ROLE-BASED ACCESS CONTROL

    S. R. KODITUWAKKU

    2010-12-01

    Full Text Available The Object-Oriented paradigm approaches the software development by representing real world entities into classes of software objects. Object oriented design patterns facilitate small scale and large scale design reuse. This paper presents an object oriented design pattern, Administrator Object, to address the User-Role assignment problem in Role Based Access Control (RBAC. Two alternative solutions are proposed. The pattern is presented according to the Gang of Four template.

  9. Tracking target objects orbiting earth using satellite-based telescopes

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  10. Attending to Motion: an object-based approach

    Belardinelli, Anna

    2010-01-01

    Visual attention is the biological mechanism allowing to turn mere sensing into conscious perception. In this process, object-based modulation of attention provides a further layer between low-level space/feature-based region selection and full object recognition. In this context, motion is a very powerful feature, naturally attracting our gaze and yielding rapid and effective shape distinction. Moving from a pixel-based account of attention to the definition of proto-objects as perc...

  11. Perceptual Object Extraction Based on Saliency and Clustering

    Qiaorong Zhang

    2010-08-01

    Full Text Available Object-based visual attention has received an increasing interest in recent years. Perceptual object is the basic attention unit of object-based visual attention. The definition and extraction of perceptual objects is one of the key technologies in object-based visual attention computation model. A novel perceptual object definition and extraction method is proposed in this paper. Based on Gestalt theory and visual feature integration theory, perceptual object is defined using homogeneity region, salient region and edges. An improved saliency map generating algorithm is employed first. Based on the saliency map, salient edges are extracted. Then graph-based clustering algorithm is introduced to get homogeneity regions in the image. Finally an integration strategy is adopted to combine salient edges and homogeneity regions to extract perceptual objects. The proposed perceptual object extraction method has been tested on lots of natural images. Experiment results and analysis are presented in this paper also. Experiment results show that the proposed method is reasonable and valid.

  12. BACKGROUND RECONSTRUCTION AND OBJECT EXTRACTION BASED ON COLOR AND OBJECT TRACKING

    XIANG Guishan; WANG Xuanyin; LIANG Dongtai

    2006-01-01

    In YCbCr colorspace, a method is proposed to reconstruct the background and extract moving objects based on the Gaussian model of chroma components. Background model is updated according to changes of chroma components. In order to eliminate the disturbance of shadow, a shadow detecting principle is proposed in YCbCr colorspace. A Kalman filter is introduced to estimate objects' positions in the image and then the pedestrian is tracked according to its information of shape. Experiments show that the background reconstruction and updating are successful, object extraction and shadow suppression are satisfactory, and real-time and reliable tracking is realized.

  13. Phase gradient algorithm method for three-dimensional holographic ladar imaging.

    Stafford, Jason W; Duncan, Bradley D; Rabb, David J

    2016-06-10

    Three-dimensional (3D) holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them, making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be efficient for this application, and the maximum entropy saturation behavior of the estimator is analytically described. PMID:27409018

  14. a New Object Based Method for Automated Extraction of Urban Objects from Airborne Sensors Data

    Moussa, A.; El-Sheimy, N.

    2012-07-01

    The classification of urban objects such as buildings, trees and roads from airborne sensors data is an essential step in numerous mapping and modelling applications. The automation of this step is greatly needed as the manual processing is costly and time consuming. The increasing availability of airborne sensors data such as aerial imagery and LIDAR data offers new opportunities to develop more robust approaches for automatic classification. These approaches should integrate these data sources that have different characteristics to exceed the accuracy achieved using any individual data source. The proposed approach presented in this paper fuses the aerial images data with single return LIDAR data to extract buildings and trees for an urban area. Object based analysis is adopted to segment the entire DSM data into objects based on height variation. These objects are preliminarily classified into buildings, trees, and ground. This primary classification is used to compute the height to ground for each object to help improve the accuracy of the second phase of classification. The overlapping perspective aerial images are used to build an ortho-photo to derive a vegetation index value for each object. The second phase of classification is performed based on the height to ground and the vegetation index of each object. The proposed approach has been tested using three areas in the centre of the city of Vaihingen provided by ISPRS test project on urban classification and 3D building reconstruction. These areas have historic buildings having rather complex shapes, few high-rising residential buildings that are surrounded by trees, and a purely residential area with small detached houses. The results of the proposed approach are presented based on a reference solution for evaluation purposes. The classification evaluation exhibits highly successful classification results of buildings class. The proposed approach follows the exact boundary of trees based on LIDAR data

  15. Object-based attentional facilitation and inhibition are neuropsychologically dissociated.

    Smith, Daniel T; Ball, Keira; Swalwell, Robert; Schenk, Thomas

    2016-01-01

    Salient peripheral cues produce a transient shift of attention which is superseded by a sustained inhibitory effect. Cueing part of an object produces an inhibitory cueing effect (ICE) that spreads throughout the object. In dynamic scenes the ICE stays with objects as they move. We examined object-centred attentional facilitation and inhibition in a patient with visual form agnosia. There was no evidence of object-centred attentional facilitation. In contrast, object-centred ICE was observed in 3 out of 4 tasks. These inhibitory effects were strongest where cues to objecthood were highly salient. These data are evidence of a neuropsychological dissociation between the facilitatory and inhibitory effects of attentional cueing. From a theoretical perspective the findings suggest that 'grouped arrays' are sufficient for object-based inhibition, but insufficient to generate object-centred attentional facilitation. PMID:26551577

  16. A Comparative Study between Frequency-Modulated Continous Wave LADAR and Linear LiDAR

    R. D. Massaro; Anderson, J E; Nelson, J. D.; Edwards, J D

    2014-01-01

    Topographic Light Detection and Ranging (LiDAR) technology has advanced greatly in the past decade. Pulse repetition rates of terrestrial and airborne systems havemultiplied thus vastly increasing data acquisition rates. Geiger-mode and FLASH LiDAR have also become far more mature technologies. However, a new and relatively unknown technology is maturing rapidly: Frequency-Modulated Continuous Wave Laser Detection and Ranging (FMCW-LADAR). Possessing attributes more akin to modern ra...

  17. Automatic fuzzy object-based analysis of VHSR images for urban objects extraction

    Sebari, Imane; He, Dong-Chen

    2013-05-01

    We present an automatic approach for object extraction from very high spatial resolution (VHSR) satellite images based on Object-Based Image Analysis (OBIA). The proposed solution requires no input data other than the studied image. Not input parameters are required. First, an automatic non-parametric cooperative segmentation technique is applied to create object primitives. A fuzzy rule base is developed based on the human knowledge used for image interpretation. The rules integrate spectral, textural, geometric and contextual object proprieties. The classes of interest are: tree, lawn, bare soil and water for natural classes; building, road, parking lot for man made classes. The fuzzy logic is integrated in our approach in order to manage the complexity of the studied subject, to reason with imprecise knowledge and to give information on the precision and certainty of the extracted objects. The proposed approach was applied to extracts of Ikonos images of Sherbrooke city (Canada). An overall total extraction accuracy of 80% was observed. The correctness rates obtained for building, road and parking lot classes are of 81%, 75% and 60%, respectively.

  18. Classification problems in object-based representation systems

    Napoli, Amedeo

    1999-01-01

    Classification is a process that consists in two dual operations: generating a set of classes and then classifying given objects into the created classes. The class generation may be understood as a learning process and object classification as a problem-solving process. The goal of this position paper is to introduce and to make precise the notion of a classification problem in object-based representation systems, e.g. a query against a class hierarchy, to define a subsumption relation betwe...

  19. A proto-object-based computational model for visual saliency.

    Yanulevskaya, Victoria; Uijlings, Jasper; Geusebroek, Jan-Mark; Sebe, Nicu; Smeulders, Arnold

    2013-01-01

    State-of-the-art bottom-up saliency models often assign high saliency values at or near high-contrast edges, whereas people tend to look within the regions delineated by those edges, namely the objects. To resolve this inconsistency, in this work we estimate saliency at the level of coherent image regions. According to object-based attention theory, the human brain groups similar pixels into coherent regions, which are called proto-objects. The saliency of these proto-objects is estimated and incorporated together. As usual, attention is given to the most salient image regions. In this paper we employ state-of-the-art computer vision techniques to implement a proto-object-based model for visual attention. Particularly, a hierarchical image segmentation algorithm is used to extract proto-objects. The two most powerful ways to estimate saliency, rarity-based and contrast-based saliency, are generalized to assess the saliency at the proto-object level. The rarity-based saliency assesses if the proto-object contains rare or outstanding details. The contrast-based saliency estimates how much the proto-object differs from the surroundings. However, not all image regions with high contrast to the surroundings attract human attention. We take this into account by distinguishing between external and internal contrast-based saliency. Where the external contrast-based saliency estimates the difference between the proto-object and the rest of the image, the internal contrast-based saliency estimates the complexity of the proto-object itself. We evaluate the performance of the proposed method and its components on two challenging eye-fixation datasets (Judd, Ehinger, Durand, & Torralba, 2009; Subramanian, Katti, Sebe, Kankanhalli, & Chua, 2010). The results show the importance of rarity-based and both external and internal contrast-based saliency in fixation prediction. Moreover, the comparison with state-of-the-art computational models for visual saliency demonstrates the

  20. RFID and IP Based Object Identification in Ubiquitous Networking

    Nisha Vaghela

    2012-10-01

    Full Text Available Ubiquitous networking is an integrated part of future networking technology that can provide capabilities for connecting all of objects (computers, human, PDAs, cell phones etc. in future network. It has to meet the challenge of seamless connection for communication between human and objects in internet infrastructure. Unique object identification is very much important to make the communication between objects possible. RFID tag can be used as unique identifier to identify a physical object. Radio Frequency Identification (RFID is a technology used for object identification of system. Internet Protocol (IPaddress is used to provide logical identity to find the location of object for communication. In this paper, IP based RFID architecture for unique identification and tracking of object by considering mobility isproposed. RFID Agent (RA is used to generate IP address based on RFID tags. In proposed solution, RFID-IP mapping is used to identify and track the location of object as RFID Tag ID can be used to generate unique identifier and IP can be used to find the location. RFID deployment is cost effective and IP is being used as current internet structure. In this way RFID-IP mapping provides better solution for object identification in ubiquitous networking environment.

  1. Content-Based Object Movie Retrieval and Relevance Feedbacks

    Lee Greg C

    2007-01-01

    Full Text Available Object movie refers to a set of images captured from different perspectives around a 3D object. Object movie provides a good representation of a physical object because it can provide 3D interactive viewing effect, but does not require 3D model reconstruction. In this paper, we propose an efficient approach for content-based object movie retrieval. In order to retrieve the desired object movie from the database, we first map an object movie into the sampling of a manifold in the feature space. Two different layers of feature descriptors, dense and condensed, are designed to sample the manifold for representing object movies. Based on these descriptors, we define the dissimilarity measure between the query and the target in the object movie database. The query we considered can be either an entire object movie or simply a subset of views. We further design a relevance feedback approach to improving retrieved results. Finally, some experimental results are presented to show the efficacy of our approach.

  2. A Method of Object-based De-duplication

    Fang Yan

    2011-12-01

    Full Text Available Today, the world is increasingly awash in more and more unstructured data, not only because of the Internet, but also because data that used to be collected on paper or media such as film, DVDs and compact discs has moved online [1]. Most of this data is unstructured and in diverse formats such as e-mail, documents, graphics, images, and videos. In managing unstructured data complexity and scalability, object storage has a clear advantage. Object-based data de-duplication is the current most advanced method and is the effective solution for detecting duplicate data. It can detect common embedded data for the first backup across completely unrelated files and even when physical block layout changes. However, almost all of the current researches on data de-duplication do not consider the content of different file types, and they do not have any knowledge of the backup data format. It has been proven that such method cannot achieve optimal performance for compound files.In our proposed system, we will first extract objects from files, Object_IDs are then obtained by applying hash function to the objects. The resulted Object_IDs are used to build as indexing keys in B+ tree like index structure, thus, we avoid the need for a full object index, the searching time for the duplicate objects reduces to O(log n.We introduce a new concept of a duplicate object resolver. The object resolver mediates access to all the objects and is a central point for managing all the metadata and indexes for all the objects. All objects are addressable by their IDs which is unique in the universe. The resolver stores metadata with triple format. This improved metadata management strategy allows us to set, add and resolve object properties with high flexibility, and allows the repeated use of the same metadata among duplicate object.

  3. Category vs. Object Knowledge in Category-based Induction

    Murphy, Gregory L.; Ross, Brian H.

    2010-01-01

    In one form of category-based induction, people make predictions about unknown properties of objects. There is a tension between predictions made based on the object’s specific features (e.g., objects above a certain size tend not to fly) and those made by reference to category-level knowledge (e.g., birds fly). Seven experiments with artificial categories investigated these two sources of induction by looking at whether people used information about correlated features within categories, sug...

  4. G-CNN: an Iterative Grid Based Object Detector

    Najibi, Mahyar; Rastegari, Mohammad; Larry S. Davis

    2015-01-01

    We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxe...

  5. Monocular model-based 3D tracking of rigid objects

    Lepetit, Vincent

    2014-01-01

    Many applications require tracking complex 3D objects. These include visual serving of robotic arms on specific target objects, Augmented Reality systems that require real time registration of the object to be augmented, and head tracking systems that sophisticated interfaces can use. Computer vision offers solutions that are cheap, practical and non-invasive. ""Monocular Model-Based 3D Tracking of Rigid Objects"" reviews the different techniques and approaches that have been developed by industry and research. First, important mathematical tools are introduced: camera representation, robust e

  6. A practical approach to object based requirements analysis

    Drew, Daniel W.; Bishop, Michael

    1988-01-01

    Presented here is an approach developed at the Unisys Houston Operation Division, which supports the early identification of objects. This domain oriented analysis and development concept is based on entity relationship modeling and object data flow diagrams. These modeling techniques, based on the GOOD methodology developed at the Goddard Space Flight Center, support the translation of requirements into objects which represent the real-world problem domain. The goal is to establish a solid foundation of understanding before design begins, thereby giving greater assurance that the system will do what is desired by the customer. The transition from requirements to object oriented design is also promoted by having requirements described in terms of objects. Presented is a five step process by which objects are identified from the requirements to create a problem definition model. This process involves establishing a base line requirements list from which an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the identification of objects from the requirements. An example is given of how semantic modeling may be used to improve the entity-relationship model and a brief discussion on how this approach might be used in a large scale development effort.

  7. Object-based mapping of drumlins from DTMs

    Eisank, C.; Dragut, L.; Blaschke, T.

    2012-04-01

    Until recently, landforms such as drumlins have only been manually delineated due to the difficulty in integrating contextual and semantic landform information in per cell classification approaches. Therefore, in most cases the results of per cell classifications presented basic landform elements or broad-scale physiographic regions that were only thematically defined. In contrast, object-based analysis provides spatially configured landform objects that are generated by terrain segmentation, the process of merging DTM cells to meaningful terrain objects at multiple scales. Such terrain objects should be favoured for landform modelling due to the following reasons: Firstly, their outlines potentially better correspond to the spatial limits of landforms as conceptualised by geoscientists; secondly, spatially aware objects enable the integration of semantic descriptions in the classification process. We present a multi-scale object-based study on automated delineation and classification of drumlins for a small test area in Bavaria, Germany. The multi-resolution segmentation algorithm is applied to create statistically meaningful objects patterns of selected DTMs, which are derived from a 5 m LiDAR DEM. For the subsequent classification of drumlins a semantics-based approach, which uses the principles of semantic modelling, is employed: initially, a geomorphological concept of the landform type drumlin is developed. The drumlin concept should ideally comprise verbal descriptions of the fundamental morphometric, morphological, hierarchical and contextual properties. Subsequently, the semantic model is built by structuring the conceptualised knowledge facts, and by associating those facts with object and class-related features, which are available in commonly used object-based software products for the development of classification rules. For the accuracy assessment we plan an integrated approach, which combines a statistical comparison to field maps and a qualitative

  8. Laser Calibration Experiment for Small Objects in Space

    Campbell, Jonathan; Ayers, K.; Carreras, R.; Carruth, R.; Freestone, T.; Sharp, J.; Rawleigh, A.; Brewer, J.; Schrock, K.; Bell, L.; Howell, Joe (Technical Monitor)

    2001-01-01

    The Air Force Research Laboratory/Directed Energy Directorate (AFRL/DE) and NASA/Marshall Space Flight Center (MSFC) are looking at a series of joint laser space calibration experiments using the 12J 15Hz CO2 High Performance CO2 Ladar Surveillance Sensor (FU-CLASS) system on the 3.67 meter aperture Advanced Electro-Optics System (AEOS). The objectives of these experiments are to provide accurate range and signature measurements of calibration spheres, demonstrate high resolution tracking capability of small objects, and support NASA in technology development and tracking projects. Ancillary benefits include calibrating radar and optical sites, completing satellite conjunction analyses, supporting orbital perturbations analyses, and comparing radar and optical signatures. In the first experiment, a Global Positioning System (GPS)/laser beacon instrumented microsatellite about 25 cm in diameter will be deployed from a Space Shuttle Hitchhiker canister or other suitable launch means. Orbiting in low earth orbit, the microsatellite will pass over AEOS on the average of two times per 24-hour period. An onboard orbit propagator will activate the GPS unit and a visible laser beacon at the appropriate times. The HI-CLASS/AEOS system will detect the microsatellite as it rises above the horizon, using GPS-generated acquisition vectors. The visible laser beacon will be used to fine-tune the tracking parameters for continuous ladar data measurements throughout the pass. This operational approach should maximize visibility to the ground-based laser while allowing battery life to be conserved, thus extending the lifetime of the satellite. GPS data will be transmitted to the ground providing independent location information for the microsatellite down to sub-meter accuracies.

  9. Possibility of object recognition using Altera's model based design approach

    Object recognition is an image processing task of finding a given object in a selected image or video sequence. Object recognition can be divided into two areas: one of these is decision-theoretic and deals with patterns described by quantitative descriptors, for example such as length, area, shape and texture. With this Graphical User Interface Circuitry (GUIC) methodology employed here being relatively new for object recognition systems, the aim of this work is to identify if the developed circuitry can detect certain shapes or strings within the target image. A much smaller reference image feeds the preset data for identification, tests are conducted for both binary and greyscale and the additional mathematical morphology to highlight the area within the target image with the object(s) are located is also presented. This then provides proof that basic recognition methods are valid and would allow the progression to developing decision-theoretical and learning based approaches using GUICs for use in multidisciplinary tasks.

  10. A new approach toward object-based change detection

    2010-01-01

    Object-based change detection has been the hotspot in remote sensing image processing.A new approach toward object-based change detection is proposed.The two different temporal images are unitedly segmented using the mean shift procedure to obtain corresponding objects.Then change detection is implemented based on the integration of corresponding objects’ intensity and texture differences.Experiments are conducted on both panchromatic images and multispectral images and the results show that the integrated measure is robust with respect to illumination changes and noise.Supplementary color detection is conducted to determine whether the color of the unchanged objects changes or not when dealing with multispectral images.Some verification work is carried out to show the accuracy of the proposed approach.

  11. Research on moving object detection based on frog's eyes

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  12. Vector ordinal optimization based multi-objective transmission planning

    The deregulation of the power industry has resulted in a restructured industry. The integrated power industry has been separated into generation companies, transmission company and distribution companies. Each individual market participant has its own goal of maximizing its profit in power system planning and power system operation. In this paper, the vector ordinal optimization (VOO) theory was applied to solve the multi-objective transmission expansion planning (TEP) problems. The weight-summation of multiple objectives was considered as a single objective. In order to reflect the interests of different market participants and the social benefit, the authors used the Transmission Economic Assessment Methodology (TEAM) to formulate the multi-objective TEP. The VOO solution algorithm was presented and tested based on the TEAM model. Numerical examples were presented to test the proposed VOO based solution algorithm. The 4 indices of the transmission economic assessment methodology were used as the 4 objectives for transmission planning. VOO uses crude models to estimate the indices of the TEAM base multi-objective optimization problem to determine a select subset of schemes to simulate and find solutions which have been termed as good enough. The calculation burden was reduced significantly by using this method. Test results on the modified IEEE 14-bus system show that the VOO is efficient and practical for solving multi-objective TEP problems. The test results show that the proposed VOO approach can find good enough solutions in a short time with less computational burden. 11 refs., 5 tabs., 3 figs., 1 appendix.

  13. Human Object Detection based on Context Awareness in the Surroundings

    Nguyen Thanh Binh

    2015-08-01

    Full Text Available Surveillance system has been applied in providing public security for many complex places like railway stations, bus stops, etc. In most cases, human object detection is an important task in surveillance system. In the case that human objects are occlusion or outdoor environment, human objects detection is a challenging problem. In this paper, we propose a method to implement for human object detection based on context awareness in new wavelet generation domain in outdoor environment. We use curvelet transform based on context awareness combined with support vector machines as a classifier for human detection. The proposed method was tested on a standard dataset like PEST2001 dataset. For demonstrating the superiority of the proposed method, we have compared the results with the other recent methods available in literature.

  14. Spanish Tourist Behaviour: A Specific Objective-base Segmantation

    González, Pablo Rodríguez; Molina, Oscar

    2009-01-01

    This work uses data from the Spanish Tourism Demand Segments Survey (N=6900) conducted by the IESA-CSIC for Turismo Andaluz, SA. The objective of the paper is to develop a statistical segmentation or typology of Spanish tourists based on objective aspects of tourist behaviour measured in the survey including destinations visited, theme of the trip, lodging, transportation and travel group. Initial categorical data are reduced using multiple correspondence analysis and grouped through cluster ...

  15. A New RWA Algorithm Based on Multi-Objective

    2003-01-01

    In this article, we studied the associated research problems and challenges on routing and wavelength assignment (RWA) in WDM (wavelength division multiplexing) networks. Various RWA approaches are examined and compared. We proposed a new RWA algorithm based on multi-objective. In this new algorithm, we consider multiple network optimizing objectives to setup a lightpath with maximize profit and shortest path under the limited resources. By comparing and analyzing, the proposed algorithm is much better ...

  16. Cauchy graph embedding based diffusion model for salient object detection.

    Tan, Yihua; Li, Yansheng; Chen, Chen; Yu, Jin-Gang; Tian, Jinwen

    2016-05-01

    Salient object detection has been a rather hot research topic recently, due to its potential applications in image compression, scene classification, image registration, and so forth. The overwhelming majority of existing computational models are designed based on computer vision techniques by using lots of image cues and priors. Actually, salient object detection is derived from the biological perceptual mechanism, and biological evidence shows that the spread of the spatial attention generates the object attention. Inspired by this, we attempt to utilize the emerging spread mechanism of object attention to construct a new computational model. A novel Cauchy graph embedding based diffusion (CGED) model is proposed to fulfill the spread process. Combining the diffusion model and attention prediction model, a salient object detection approach is presented through perceptually grouping the multiscale diffused attention maps. The effectiveness of the proposed approach is validated on the salient object dataset. The experimental results show that the CGED process can obviously improve the performance of salient object detection compared with the input spatial attention map, and the proposed approach can achieve performance comparable to that of state-of-the-art approaches. PMID:27140886

  17. A General Polygon-based Deformable Model for Object Recognition

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic...... distribution, which combined with a match of the warped intensity template and the image form the final criteria used for localization and recognition of a given object. The chosen representation gives the model an ability to model an almost arbitrary object. Beside the actual model a full general scheme for...

  18. A framework for Internet service evolution based on active object

    HU Hua; ZHANG Yang

    2006-01-01

    The wide use of Internet Service in distributed computing and e-business has made the evolution of Internet Service to be one of the most prevalent research fields in software development domain. Traditional methods for software development cannot adapt to the challenge of Internet Service oriented software development. In this paper, we propose a new paradigm for the evolution of Internet Service with active objects from the characteristics of Internet Service and principles of active objects. The paradigm uses an automatic monitoring mechanism of active object to detect and process evolution requirement in system based on Internet Service.

  19. Using Morphlet-Based Image Representation for Object Detection

    Gorbatsevich, V. S.; Vizilter, Yu. V.

    2016-06-01

    In this paper, we propose an original method for objects detection based on a special tree-structured image representation - the trees of morphlets. The method provides robust detection of various types of objects in an image without employing a machine learning procedure. Along with a bounding box creation on a detection step, the method makes pre-segmentation, which can be further used for recognition purposes. Another important feature of the proposed approach is that there are no needs to use a running window as well as a features pyramid in order to detect the objects of different sizes.

  20. Solid State Disk Object-Based Storage with Trim Commands

    Frankie, Tasha; Hughes, Gordon; Kreutz-Delgado, Ken

    2012-01-01

    This paper presents a model of NAND flash SSD utilization and write amplification when the ATA/ATAPI SSD Trim command is incorporated into object-based storage under a variety of user workloads, including a uniform random workload with objects of fixed size and a uniform random workload with objects of varying sizes. We first summarize the existing models for write amplification in SSDs for workloads with and without the Trim command, then propose an alteration of the models that utilizes a f...

  1. Segmentation of object-based video of gaze communication

    Aghito, Shankar Manuel; Stegmann, Mikkel Bille; Forchhammer, Søren; Ersbøll, Bjarne Kjær

    2005-01-01

    Aspects of video communication based on gaze interaction are considered. The overall idea is to use gaze interaction to control video, e.g. for video conferencing. Towards this goal, animation of a facial mask is demonstrated. The animation is based on images using Active Appearance Models (AAM......). Good quality reproduction of (low-resolution) coded video of an animated facial mask as low as 10-20 kbit/s using MPEG-4 object based video is demonstated....

  2. Object tracking based on two-dimensional PCA

    Xu, Fuyuan; Gu, Guohua; Kong, Xiaofang; Wang, Pengcheng; Ren, Kan

    2016-04-01

    In this paper, we present a novel object tracking method based on two-dimensional PCA. The low quality of images and the changes of the object appearance are very challenging for the object tracking. The representation of the training features is usually used to solve these challenges. Two-dimensional PCA (2DPCA) based on the image covariance matrix is constructed directly using the original image matrices. An appearance model is presented and its likelihood estimation has been established based on 2DPCA representation in this paper. Compared with the state-of-the-art methods, our method has higher reliability and real-time property. The performances of the proposed tracking method are quantitatively and qualitatively shown in experiments.

  3. Video Based Moving Object Tracking by Particle Filter

    Md. Zahidul Islam

    2009-03-01

    Full Text Available Usually, the video based object tracking deal with non-stationary image stream that changes over time. Robust and Real time moving object tracking is a problematic issue in computer vision research area. Most of the existing algorithms are able to track only inpredefined and well controlled environment. Some cases, they don’t consider non-linearity problem. In our paper, we develop such a system which considers color information, distance transform (DT based shape information and also nonlinearity. Particle filtering has been proven very successful for non-gaussian and non-linear estimation problems. We examine the difficulties of video based tracking and step by step we analyze these issues. In our firstapproach, we develop the color based particle filter tracker that relies on the deterministic search of window, whose color content matches a reference histogram model. A simple HSV histogram-based color model is used to develop this observation system. Secondly, wedescribe a new approach for moving object tracking with particle filter by shape information. The shape similarity between a template and estimated regions in the video scene is measured by their normalized cross-correlation of distance transformed images. Our observation system of particle filter is based on shape from distance transformed edge features. Template is created instantly by selecting any object from the video scene by a rectangle. Finally, inthis paper we illustrate how our system is improved by using both these two cues with non linearity.

  4. Reactor Network Synthesis Based on Instantaneous Objective Function Characteristic Curves

    张治山; 赵文; 王艳丽; 周传光; 袁希钢

    2003-01-01

    It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions(steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper,the instantaneous objective function is closed to be the instantaneous selectivity and several samples axe examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.

  5. Modeling of Heterogeneous Objects: An Approach Based on Implicit Functions

    Miller Gómez-Mora

    2016-02-01

    Full Text Available Modeling objects, their properties and relations is an important topic in computer science. In this sense, this research contributes to the framework of heterogeneous solid modeling, as well as the popular and intricate study of implicit solid representation. The approach presented here is broad and generic, but this article will focus on bio-CAD models, alluding to the existing extension and implementation in other fields. The overall aim of this work is to demonstrate that solid models of heterogeneous object can be built implicitly. This is shown to have promise in practical applications from biomedical computing to computer animation and engineering. The approach adopted here is based on the observation that current solid models cannot intrinsically represent multiphase geometric information along with the attribute information. This makes necessary to explore new modeling techniques in order to represent real-world objects. The availability of such modeling techniques remains central to the design, analysis, and fabrication of heterogeneous objects

  6. Concurrent Object-Oriented Programming Based on MPI

    鲁宏伟; 汪厚祥; 裴晓黎; 肖永玲

    2004-01-01

    Object-oriented model possesses inherent concurrency. Integration of concurrency and object-orientation is a promising new field. MPI is a message-passing standard and has been adopted by more and more systems. This paper proposes a novel approach to realize concurrent object-oriented programming based on Message-passing interface(MPI) in which future method communication is adopted between concurrent objects. A state behavior set is proposed to solve inheritance anomaly, and a bounded buffer is taken as an example to illustrate this proposal. The definition of ParaMPI class, which is the most important class in the concurrent class library,and implementation issues are briefly described.

  7. Inverse treatment planning using volume-based objective functions

    The results of optimization of inverse treatment plans depend on a choice of the objective function. Even when the optimal solution for a given cost function can be obtained, a better solution may exist for a given clinical scenario and it could be obtained with a revised objective function. In the approach presented in this work mixed integer programming was used to introduce a new volume-based objective function, which allowed for minimization of the number of under- or overdosed voxels in selected structures. By selecting and prioritizing components of this function the user could drive the computations towards the desired solution. This optimization approach was tested using cases of patients treated for prostate and oropharyngeal cancer. Initial solutions were obtained based on minimization/maximization of the dose to critical structures and targets. Subsequently, the volume-based objective functions were used to locate solutions, which satisfied better clinical objectives particular to each of the cases. For prostate cases, these additional solutions offered further improvements in sparing of the rectum or the bladder. For oropharyngeal cases, families of solutions were obtained satisfying an intensity modulated radiation therapy protocol for this disease site, while offering significant improvement in the sparing of selected critical structures, e.g., parotid glands. An additional advantage of the present approach was in providing a convenient mechanism to test the feasibility of the dose-volume histogram constraints

  8. Rule-Based Orientation Recognition Of A Moving Object

    Gove, Robert J.

    1989-03-01

    This paper presents a detailed description and a comparative analysis of the algorithms used to determine the position and orientation of an object in real-time. The exemplary object, a freely moving gold-fish in an aquarium, provides "real-world" motion, with definable characteristics of motion (the fish never swims upside-down) and the complexities of a non-rigid body. For simplicity of implementation, and since a restricted and stationary viewing domain exists (fish-tank), we reduced the problem of obtaining 3D correspondence information to trivial alignment calculations by using two cameras orthogonally viewing the object. We applied symbolic processing techniques to recognize the 3-D orientation of a moving object of known identity in real-time. Assuming motion, each new frame (sensed by the two cameras) provides images of the object's profile which has most likely undergone translation, rotation, scaling and/or bending of the non-rigid object since the previous frame. We developed an expert system which uses heuristics of the object's motion behavior in the form of rules and information obtained via low-level image processing (like numerical inertial axis calculations) to dynamically estimate the object's orientation. An inference engine provides these estimates at frame rates of up to 10 per second (which is essentially real-time). The advantages of the rule-based approach to orientation recognition will be compared other pattern recognition techniques. Our results of an investigation of statistical pattern recognition, neural networks, and procedural techniques for orientation recognition will be included. We implemented the algorithms in a rapid-prototyping environment, the TI-Ezplorer, equipped with an Odyssey and custom imaging hardware. A brief overview of the workstation is included to clarify one motivation for our choice of algorithms. These algorithms exploit two facets of the prototype image processing and understanding workstation - both low

  9. A Learning Object Approach To Evidence based learning

    Zabin Visram; Bruce Elson; Patricia Reynolds

    2005-01-01

    This paper describes the philosophy, development and framework of the body of elements formulated to provide an approach to evidence-based learning sustained by Learning Objects and web based technology Due to the demands for continuous improvement in the delivery of healthcare and in the continuous endeavour to improve the quality of life, there is a continuous need for practitioner's to update their knowledge by accomplishing accredited courses. The rapid advances in medical science has mea...

  10. Model-based objects recognition in man-made environments

    Martí Bonmatí, Joan; Casals, Alícia

    1996-01-01

    We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some ...

  11. Research on Virtual Object Tele-operation Based on Gesture

    2000-01-01

    A tele-operation method of virtual environment based on gesture is presented.Firstly,the design block diagram and the information flow of the virtual environment tele-operation simulation system are given.Secondly,the coordination transformation between virtual gesture and the tele-operated aircraft is presented.Finally,a tele-operation simulation system based on gesture is developed.And the simulation results demonstrate that there is more consistency between the virtual gesture and the moving object.

  12. Archive Design Based on Planets Inspired Logical Object Model

    Zierau, Eld; Johansen, Anders

    2008-01-01

    We describe a proposal for a logical data model based on preliminary work the Planets project In OAIS terms the main areas discussed are related to the introduction of a logical data model for representing the past, present and future versions of the digital object associated with the Archival...

  13. Metadata management for CDP in object-based file system

    Yao, Jie; Cao, Qiang; Huang, Jianzhong

    2009-08-01

    Object-based storage system integrates advantage of both NAS and SAN, can be applied in large-capacity, low-cost and large-scale storage systems which are built from commodity devices. Continuous data protection (CDP) is a methodology that continuously captures or tracks data modifications and stores changes independent of the primary data, enabling recovery points from any point in the past. An efficient file system optimized for CDP is needed to provide CDP feature in object-based storage system. In this thesis, a new metadata management method is present. All necessary meta data information are recorded when changes happened to file system. We have a journal-like data placement algorithm to store these metadata. Secondly, this metadata management method provides both CDP feature and Object-based feature. Two type write operations are analyzed to reduce storage space consumption. Object-based data allocation algorithm can take the advantage of distributed file system to concurrently process CDP operations over storage nodes. Thirdly, history revisions and recovery operations are discussed. Finally, the experiment test result is present and analyzed.

  14. Object based data access at the D0 experiment

    The D OE Experiment at Fermilab is currently participating in the FNAL Computing Division's ''Computing for Analysis Project'' (CAP) to investigate object based data storage and access. Following a short description of the CAP system architecture, the D OE data model is explored. A brief discussion of the method of operation of the CAP system leads into a concluding section

  15. COL : a logic-based language for complex objects

    Abiteboul, Serge; Grumbach, Stéphane

    1987-01-01

    A logic-based language for manipuling complex objects constructed using set and tuple conctructors is introduced. Under some stratification restrictions, the semantic of programs is given by a canonical minimal and casual model that can be computed using a finite sequence of fixpoints. Applications of the language to procedural data, semantic database models, heterogeneous databases integration, and Datalog queries evalutation are presented.

  16. Vision-based autonomous grasping of unknown piled objects

    Computer vision techniques have been used to develop a vision-based grasping capability for autonomously picking and placing unknown piled objects. This work is currently being applied to the problem of hazardous waste sorting in support of the Department of Energy's Mixed Waste Operations Program

  17. Object-oriented vision for a behavior-based robot

    Bischoff, Rainer; Graefe, Volker; Wershofen, Klaus P.

    1996-10-01

    As one realization out of the class of behavior-based robot architectures a specific concept of situation-oriented behavior-based navigation has been proposed. Its main characteristic is that the selection of the behaviors to be executed in each moment is based on a continuous recognition and evaluation of the dynamically changing situation in which the robot is finding itself. An important prerequisite for such as approach is a timely and comprehensive perception of the robot's dynamically changing environment. Object-oriented vision as proposed and successfully applied, e.g., in freeway traffic scenes is a particularly well suited sensing modality for robot control. Our work concentrated on modeling the physical objects which are relevant for indoor navigation, i.e. walls, intersections of corridors, and landmarks. In the interest of efficiency these models include only those necessary features for allowing the robot to reliably recognize different situations in real time. According to the concept of object- oriented vision recognizing such objects is largely reduced to a knowledge-based verification of objects or features that may be expected to be visible in the current situation. The following results have been achieved: 1) By using its vision system and a knowledge base in the form of an attributed topological map the robot could orient itself and navigate autonomously in a known environment. 2) In an unknown environment the robot was able to build, by means of supervised learning, an attributed topological map as a basis for subsequent autonomous navigation. 3) The experiments could be performed both under unmodified artificial light and under natural light shining through the glass walls of the building.

  18. Observed bodies generate object-based spatial codes.

    Taylor, Alison; Flynn, Maria; Edmonds, Caroline J; Gardner, Mark R

    2016-09-01

    Contemporary studies of spatial and social cognition frequently use human figures as stimuli. The interpretation of such studies may be complicated by spatial compatibility effects that emerge when researchers employ spatial responses, and participants spontaneously code spatial relationships about an observed body. Yet, the nature of these spatial codes - whether they are location- or object-based, and coded from the perspective of the observer or the figure - has not been determined. Here, we investigated this issue by exploring spatial compatibility effects arising for objects held by a visually presented whole-bodied schematic human figure. In three experiments, participants responded to the colour of the object held in the figure's left or right hand, using left or right key presses. Left-right compatibility effects were found relative to the participant's egocentric perspective, rather than the figure's. These effects occurred even when the figure was rotated by 90° to the left or to the right, and the coloured objects were aligned with the participant's midline. These findings are consistent with spontaneous spatial coding from the participant's perspective and relative to the normal upright orientation of the body. This evidence for object-based spatial coding implies that the domain general cognitive mechanisms that result in spatial compatibility effects may contribute to certain spatial perspective-taking and social cognition phenomena. PMID:27235754

  19. Fuzzy Distance-Based Range Queries over Uncertain Moving Objects

    Yi-Fei Chen; Xiao-Lin Qin; Liang Liu; Bo-Han Li

    2012-01-01

    Data obtained from real world are imprecise or uncertain due to the accuracy of positioning devices,updating protocols or characteristics of applications.On the other hand,users sometimes prefer to qualitatively express their requests with vague conditions and different parts of search region are in-equally important in some applications.We address the problem of efficiently processing the fuzzy range queries for uncertain moving objects whose whereabouts in time are not known exactly,for which the basic syntax is find objects always/sometimes near to the query issuer with the qualifying guarantees no less than a given threshold during a given temporal interval.We model the location uncertainty of moving objects on the utilization of probability density functions and describe the indeterminate boundary of query range with fuzzy set.We present the qualifying guarantee evaluation of objects,and propose pruning techniques based on the α-cut of fuzzy set to shrink the search space efficiently.We also design rules to reject non-qualifying objects and validate qualifying objects in order to avoid unnecessary costly numeric integrations in the refinement step.An extensive empirical study has been conducted to demonstrate the efficiency and effectiveness of algorithms under various experimental settings.

  20. A Primitive-Based 3D Object Recognition System

    Dhawan, Atam P.

    1988-08-01

    A knowledge-based 3D object recognition system has been developed. The system uses the hierarchical structural, geometrical and relational knowledge in matching the 3D object models to the image data through pre-defined primitives. The primitives, we have selected, to begin with, are 3D boxes, cylinders, and spheres. These primitives as viewed from different angles covering complete 3D rotation range are stored in a "Primitive-Viewing Knowledge-Base" in form of hierarchical structural and relational graphs. The knowledge-based system then hypothesizes about the viewing angle and decomposes the segmented image data into valid primitives. A rough 3D structural and relational description is made on the basis of recognized 3D primitives. This description is now used in the detailed high-level frame-based structural and relational matching. The system has several expert and knowledge-based systems working in both stand-alone and cooperative modes to provide multi-level processing. This multi-level processing utilizes both bottom-up (data-driven) and top-down (model-driven) approaches in order to acquire sufficient knowledge to accept or reject any hypothesis for matching or recognizing the objects in the given image.

  1. Object-Based Classification and Change Detection of Hokkaido, Japan

    Park, J. G.; Harada, I.; Kwak, Y.

    2016-06-01

    Topography and geology are factors to characterize the distribution of natural vegetation. Topographic contour is particularly influential on the living conditions of plants such as soil moisture, sunlight, and windiness. Vegetation associations having similar characteristics are present in locations having similar topographic conditions unless natural disturbances such as landslides and forest fires or artificial disturbances such as deforestation and man-made plantation bring about changes in such conditions. We developed a vegetation map of Japan using an object-based segmentation approach with topographic information (elevation, slope, slope direction) that is closely related to the distribution of vegetation. The results found that the object-based classification is more effective to produce a vegetation map than the pixel-based classification.

  2. Knowledge-Based Object Detection in Laser Scanning Point Clouds

    Boochs, F.; Karmacharya, A.; Marbs, A.

    2012-07-01

    Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This "understanding" enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists' knowledge of the scene and algorithmic processing.

  3. Agent-based Algorithm for Spatial Distribution of Objects

    Collier, Nathan

    2012-06-02

    In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.

  4. Rules-based object-relational databases ontology construction

    Chen Jia; Wu Yue

    2009-01-01

    To solve the problems of sharing and reusing information in the information system, a rules-based ontology constructing approach from object-relational databases is proposed. A 3-tuple ontology constructing model is proposed first. Then, four types of ontology constructing rules including class, property, property characteristics, and property restrictions axe formalized affording to the model. Experiment results described in Web ontology language prove that our proposed approach is feasible for applying in the semantic objects project of semantic computing laboratory in UC Irvine. Our approach reduces about twenty percent constructing time compared with the ontology construction from relational databases.

  5. Nanoscale synthesis and characterization of graphene-based objects

    Daisuke Fujita

    2011-01-01

    Full Text Available Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and resulted in the directional growth of nanowires. Surface analysis by scanning tunneling microscopy (STM has clarified the structure and functionality of the novel nano-objects at atomic resolution. Nanobelts were detected consisting of bilayer graphene sheets with a nanoscale width and a length of several microns. Moiré patterns and one-dimensional reconstruction were observed on multilayer graphite terraces. As a useful functionality, application to repairable high-resolution STM probes is demonstrated.

  6. Performance Evaluation of Java Based Object Relational Mapping Tools

    Shoaib Mahmood Bhatti

    2013-04-01

    Full Text Available Object persistency is the hot issue in the form of ORM (Object Relational Mapping tools in industry as developers use these tools during software development. This paper presents the performance evaluation of Java based ORM tools. For this purpose, Hibernate, Ebean and TopLinkhave been selected as the ORM tools which are popular and open source. Their performance has been measured from execution point of view. The results show that ORM tools are the good option for the developers considering the system throughput in shorter setbacks and they can be used efficiently and effectively for performing mapping of the objects into the relational dominated world of database, thus creating a hope for a better and well dominated future of this technology.

  7. Features Extraction for Object Detection Based on Interest Point

    Amin Mohamed Ahsan

    2013-05-01

    Full Text Available In computer vision, object detection is an essential process for further processes such as object tracking, analyzing and so on. In the same context, extraction features play important role to detect the object correctly. In this paper we present a method to extract local features based on interest point which is used to detect key-points within an image, then, compute histogram of gradient (HOG for the region surround that point. Proposed method used speed-up robust feature (SURF method as interest point detector and exclude the descriptor. The new descriptor is computed by using HOG method. The proposed method got advantages of both mentioned methods. To evaluate the proposed method, we used well-known dataset which is Caltech101. The initial result is encouraging in spite of using a small data for training.

  8. Density-based clustering method in the moving object database

    ZHOU Xing; XIANG Shu; GE Jun-wei; LIU Zhao-hong; BAE Hae-young

    2004-01-01

    With the rapid advance of wireless communication, tracking the positions of the moving objects is becoming increasingly feasible and necessary. Because a large number of people use mobile phones, we must handle a large moving object database as well as the following problems. How can we provide the customers with high quality service, that means, how can we deal with so many enquiries within as less time as possible? Because of the large number of data, the gap between CPU speed and the size of main memory has increasing considerably. One way to reduce the time to handle enquiries is to reduce the I/O number between the buffer and the secondary storage. An effective clustering of the objects can minimize the I/O-cost between them. In this paper, according to the characteristic of the moving object database, we analyze the objects in buffer, according to their mappings in the two-dimension coordinate, and then develop a density-based clustering method to effectively reorganize the clusters. This new mechanism leads to the less cost of the I/O operation and the more efficient response to enquiries.

  9. Revisiting child-based objections to commercial surrogacy.

    Hanna, Jason K M

    2010-09-01

    Many critics of commercial surrogate motherhood argue that it violates the rights of children. In this paper, I respond to several versions of this objection. The most common version claims that surrogacy involves child-selling. I argue that while proponents of surrogacy have generally failed to provide an adequate response to this objection, it can be overcome. After showing that the two most prominent arguments for the child-selling objection fail, I explain how the commissioning couple can acquire parental rights by paying the surrogate only for her reproductive labor. My explanation appeals to the idea that parental rights are acquired by those who have claims over the reproductive labor that produces the child, not necessarily by those who actually perform the labor. This account clarifies how commercial surrogacy differs from commercial adoption. In the final section of the paper, I consider and reject three further child-based objections to commercial surrogacy: that it establishes a market in children's attributes, that it requires courts to stray from the best interests standard in determining custodial rights, and that it requires the surrogate to neglect her parental responsibilities. Since each of these objections fails, children's rights probably do not pose an obstacle to the acceptability of commercial surrogacy arrangements. PMID:20690918

  10. Knowledge-based simulation using object-oriented programming

    Sidoran, Karen M.

    1993-01-01

    Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.

  11. A Learning Object Approach To Evidence based learning

    Zabin Visram

    2005-06-01

    Full Text Available This paper describes the philosophy, development and framework of the body of elements formulated to provide an approach to evidence-based learning sustained by Learning Objects and web based technology Due to the demands for continuous improvement in the delivery of healthcare and in the continuous endeavour to improve the quality of life, there is a continuous need for practitioner's to update their knowledge by accomplishing accredited courses. The rapid advances in medical science has meant increasingly, there is a desperate need to adopt wireless schemes, whereby bespoke courses can be developed to help practitioners keep up with expanding knowledge base. Evidently, without current best evidence, practice risks becoming rapidly out of date, to the detriment of the patient. There is a need to provide a tactical, operational and effective environment, which allows professional to update their education, and complete specialised training, just-in-time, in their own time and location. Following this demand in the marketplace the information engineering group, in combination with several medical and dental schools, set out to develop and design a conceptual framework which form the basis of pioneering research, which at last, enables practitioner's to adopt a philosophy of life long learning. The body and structure of this framework is subsumed under the term Object oriented approach to Evidence Based learning, Just-in-time, via Internet sustained by Reusable Learning Objects (The OEBJIRLO Progression. The technical pillars which permit this concept of life long learning are pivoted by the foundations of object oriented technology, Learning objects, Just-in-time education, Data Mining, intelligent Agent technology, Flash interconnectivity and remote wireless technology, which allow practitioners to update their professional skills, complete specialised training which leads to accredited qualifications. This paper sets out to develop and

  12. Fission-track dating using object-based image analysis

    Full text: Geological dating with the help of fission track analysis is based on a time-consuming counting of the spontaneous and induced tracks in the minerals. Fission tracks are damage trails in minerals caused by fast charged particles, released in nuclear fission. In this study the 950;-method is used for fission-track dating. In order to determine the age, spontaneous tracks in the apatite and induced tracks in the muscovite external detector have to be counted. The automatic extraction and identification would not only improve the speed of track counting and eliminate the personal factor. Pixel values alone are not enough to distinguish between tracks and background. Traditional pixel based approaches are therefore inefficient for fission track counting. Image analysis based on objects, which include shape, texture and contextual information is a more promising method. A procedure for automatic object - based classification is used to extract the track objects. Resolving the individual tracks in a multi-track object is based on morphological operations. The individual track objects are skeletonized and the number of individual tracks in the object is counted by processing the skeletons. To give the right fission track age, there has to be a calibration of every single user manually counting the tracks. We calibrate the automatic approach for counting in the same way. Durango apatite standard samples are used to determine the 950;- and Z-calibration factor. The automatic approach is useful for counting tracks in apatite standards and induced tracks in muscovite external detectors where the quality and quantities of the etched tracks is high. Muscovite detectors irradiated against glasses can also be used to determine the thermal neutron fluence, which is necessary to determine an absolute age. These images are of high quality and free of disturbing background irregularities. Here the automatic approach is a practical alternative. However for natural samples

  13. Data Warehouse Requirements Analysis Framework: Business-Object Based Approach

    Anirban Sarkar

    2012-01-01

    Full Text Available Detailed requirements analysis plays a key role towards the design of successful Data Warehouse (DW system. The requirements analysis specifications are used as the prime input for the construction of conceptual level multidimensional data model. This paper has proposed a Business Object based requirements analysis framework for DW system which is supported with abstraction mechanism and reuse capability. It also facilitate the stepwise mapping of requirements descriptions into high level design components of graph semantic based conceptual level object oriented multidimensional data model. The proposed framework starts with the identification of the analytical requirements using business process driven approach and finally refine the requirements in further detail to map into the conceptual level DW design model using either Demand-driven of Mixed-driven approach for DW requirements analysi

  14. Depth-Based Object Tracking Using a Robust Gaussian Filter

    Issac, Jan; Wüthrich, Manuel; Cifuentes, Cristina Garcia; Bohg, Jeannette; Trimpe, Sebastian; Schaal, Stefan

    2016-01-01

    We consider the problem of model-based 3D-tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements i...

  15. DMD-based multi-object spectrograph on Galileo telescope

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  16. Logical Object as a Basis of Knowledge Based Systems

    徐殿祥; 郑国梁

    1995-01-01

    This paper presents a framework called logical knowledge object (LKO),which is taken as a basis of the dependable development of knowledge based systems(KBSs).LKO combines logic programming and object-oriented programming paradigms,where objects are viewed as abstractions with states,constraints,behaviors and inheritance.The operational semantics defined in the style of natural semantics is simple and clear.A hybrid knowledge representation amalgamating rule,frame,semantic network and blackboard is available for both most structured and flat knowledge.The management of knowledge bases has been formally specified.Accordingly,LKO is well suited for the formal representation of knowledge and requirements of KBSs.Based on the framework,verification techniques are also explored to enhance the analysis of requirement specifications and the validation of KBSs.In addition,LKO provides a methodology for the development of KBSs,applying the concepts of rapid prototyping and top-down design to deal with changing and incomplete requirements,and to provide multiple abstract models of the domain,where formal methods might be used at each abstract level.

  17. An Object-Based Method for Chinese Landform Types Classification

    Ding, Hu; Tao, Fei; Zhao, Wufan; Na, Jiaming; Tang, Guo'an

    2016-06-01

    Landform classification is a necessary task for various fields of landscape and regional planning, for example for landscape evaluation, erosion studies, hazard prediction, et al. This study proposes an improved object-based classification for Chinese landform types using the factor importance analysis of random forest and the gray-level co-occurrence matrix (GLCM). In this research, based on 1km DEM of China, the combination of the terrain factors extracted from DEM are selected by correlation analysis and Sheffield's entropy method. Random forest classification tree is applied to evaluate the importance of the terrain factors, which are used as multi-scale segmentation thresholds. Then the GLCM is conducted for the knowledge base of classification. The classification result was checked by using the 1:4,000,000 Chinese Geomorphological Map as reference. And the overall classification accuracy of the proposed method is 5.7% higher than ISODATA unsupervised classification, and 15.7% higher than the traditional object-based classification method.

  18. Code Based Analysis for Object-Oriented Systems

    Swapan Bhattacharya; Ananya Kanjilal

    2006-01-01

    The basic features of object-oriented software makes it difficult to apply traditional testing methods in objectoriented systems. Control Flow Graph (CFG) is a well-known model used for identification of independent paths in procedural software. This paper highlights the problem of constructing CFG in object-oriented systems and proposes a new model named Extended Control Flow Graph (ECFG) for code based analysis of Object-Oriented (OO) software. ECFG is a layered CFG where nodes refer to methods rather than statements. A new metrics - Extended Cyclomatic Complexity (E-CC) is developed which is analogous to McCabe's Cyclomatic Complexity (CC) and refers to the number of independent execution paths within the OO software. The different ways in which CFG's of individual methods are connected in an ECFG are presented and formulas for E-CC for these different cases are proposed. Finally we have considered an example in Java and based on its ECFG, applied these cases to arrive at the E-CC of the total system as well as proposed a methodology for calculating the basis set, i.e., the set of independent paths for the OO system that will help in creation of test cases for code testing.

  19. Object-Based Image Analysis in Wetland Research: A Review

    Iryna Dronova

    2015-05-01

    Full Text Available The applications of object-based image analysis (OBIA in remote sensing studies of wetlands have been growing over recent decades, addressing tasks from detection and delineation of wetland bodies to comprehensive analyses of within-wetland cover types and their change. Compared to pixel-based approaches, OBIA offers several important benefits to wetland analyses related to smoothing of the local noise, incorporating meaningful non-spectral features for class separation and accounting for landscape hierarchy of wetland ecosystem organization and structure. However, there has been little discussion on whether unique challenges of wetland environments can be uniformly addressed by OBIA across different types of data, spatial scales and research objectives, and to what extent technical and conceptual aspects of this framework may themselves present challenges in a complex wetland setting. This review presents a synthesis of 73 studies that applied OBIA to different types of remote sensing data, spatial scale and research objectives. It summarizes the progress and scope of OBIA uses in wetlands, key benefits of this approach, factors related to accuracy and uncertainty in its applications and the main research needs and directions to expand the OBIA capacity in the future wetland studies. Growing demands for higher-accuracy wetland characterization at both regional and local scales together with advances in very high resolution remote sensing and novel tasks in wetland restoration monitoring will likely continue active exploration of the OBIA potential in these diverse and complex environments.

  20. Multiview-Based Cooperative Tracking of Multiple Human Objects

    Lien Kuo-Chin

    2008-01-01

    Full Text Available Abstract Human tracking is a popular research topic in computer vision. However, occlusion problem often complicates the tracking process. This paper presents the so-called multiview-based cooperative tracking of multiple human objects based on the homographic relation between different views. This cooperative tracking applies two hidden Markov processes (tracking and occlusion processes for each target in each view. The tracking process locates the moving target in each view, whereas the occlusion process represents the possible visibility of the specific target in that designated view. Based on the occlusion process, the cooperative tracking process may reallocate tracking resources for different trackers in different views. Experimental results show the efficiency of the proposed method.

  1. Multiview-Based Cooperative Tracking of Multiple Human Objects

    Kuo-Chin Lien

    2008-03-01

    Full Text Available Human tracking is a popular research topic in computer vision. However, occlusion problem often complicates the tracking process. This paper presents the so-called multiview-based cooperative tracking of multiple human objects based on the homographic relation between different views. This cooperative tracking applies two hidden Markov processes (tracking and occlusion processes for each target in each view. The tracking process locates the moving target in each view, whereas the occlusion process represents the possible visibility of the specific target in that designated view. Based on the occlusion process, the cooperative tracking process may reallocate tracking resources for different trackers in different views. Experimental results show the efficiency of the proposed method.

  2. Measurement of spatial object's exterior attitude based on linear CCD

    2008-01-01

    It is difficult to realize real-time measurement of exterior attitude by the traditional systems based on the area image sensor which have conflict between speed and accuracy.The subsystem for three-dimensional (3D) coordinate rcconstruction of point target (S3DCRPT) which is composed of three one-dimensional (1D) cameras based on linear charge-coupled device (CCD) can determine the distant light spots' spatial position. The attitude angle of the measured object is determined by the spatial solution while the coordinate reconstruction is separately carried on by the S3DCRPT with some point cooperation targets (PCTs) on the measured object. A new optical system is designed to solve the interference problem with one-to-one relationship between the PCTs and the S3DCRPT optical subsystems,which improves the measurement accuracy and saves space. The mathematical model of the attitude measurement is established,and partial and global calibrations are realized for the multi-camera attitude measurement system.The test results show the feasibility of the exterior attitude measurement based on linear CCD.

  3. Options-Based Multi-Objective Evaluation of Product Platforms

    Gonzalez-Zugasti, Javier P.; Otto, Kevin N.; Whitcomb, Clifford A.

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1111/j.1559-3584.2007.00070.x A platform is the set of elements and interfaces that are common to a family of products. Design teams must choose among feasible platform concepts upon which a product family could be based, often involving new technologies. Multiple performance objectives need to be considered. A standard approach is to convert the performance outcomes into financial figures, which can then ...

  4. Cloud Aggregation and Bursting for Object Based Sharable Environment

    Mr. Pradeep Kumar Tripathi

    2011-09-01

    Full Text Available Cloud computing promises innate scalability and high availability at low cost. So far cloud storage deployments were subject to big companies but an increasing amount of available open-source systems allow also smaller private cloud installations. In this paper we discuss cloud aggregation and cloud bursting with their empirical review. Based on the review we map class and object in the sharable small clouds for making clouds more efficient. We also consider some of the security concern for the cloud computing for authorized data sharing between clouds.

  5. Toward an efficient objective metric based on perceptual criteria

    Quintard, Ludovic; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2008-01-01

    Quality assessment is a very challenging problem and will still as is since it is difficult to define universal tools. So, subjective assessment is one adapted way but it is tedious, time consuming and needs normalized room. Objective metrics can be with reference, with reduced reference and with no-reference. This paper presents a study carried out for the development of a no-reference objective metric dedicated to the quality evaluation of display devices. Initially, a subjective study has been devoted to this problem by asking a representative panel (15 male and 15 female; 10 young adults, 10 adults and 10 seniors) to answer questions regarding their perception of several criteria for quality assessment. These quality factors were hue, saturation, contrast and texture. This aims to define the importance of perceptual criteria in the human judgment of quality. Following the study, the factors that impact the quality evaluation of display devices have been proposed. The development of a no-reference objective metric has been performed by using statistical tools allowing to separate the important axes. This no-reference metric based on perceptual criteria by integrating some specificities of the human visual system (HVS) has a high correlation with the subjective data.

  6. Object-based Analysis for Extraction of Dominant Tree Species

    Meiyun; SHAO; Xia; JING; Lu; WANG

    2015-01-01

    As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. So the forest inventory program is on our schedule. Aiming at dealing with the problem in extraction of dominant tree species,we tested the highly hot method-object-based analysis. Based on the ALOS image data,we combined multi-resolution in e Cognition software and fuzzy classification algorithm. Through analyzing the segmentation results,we basically extract the spruce,the pine,the birch and the oak of the study area. Both the spectral and spatial characteristics were derived from those objects,and with the help of GLCM,we got the differences of each species. We use confusion matrix to do the Classification accuracy assessment compared with the actual ground data and this method showed a comparatively good precision as 87% with the kappa coefficient 0. 837.

  7. Object-based rapid change detection for disaster management

    Thunig, Holger; Michel, Ulrich; Ehlers, Manfred; Reinartz, Peter

    2011-11-01

    Rapid change detection is used in cases of natural hazards and disasters. This analysis lead to quick information about areas of damage. In certain cases the lack of information after catastrophe events is obstructing supporting measures within disaster management. Earthquakes, tsunamis, civil war, volcanic eruption, droughts and floods have much in common: people are directly affected, landscapes and buildings are destroyed. In every case geospatial data is necessary to gain knowledge as basement for decision support. Where to go first? Which infrastructure is usable? How much area is affected? These are essential questions which need to be answered before appropriate, eligible help can be established. This study presents an innovative strategy to retrieve post event information by use of an object-based change detection approach. Within a transferable framework, the developed algorithms can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated normalized temporal change index (NTCI) panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas which are developing new for cases where rebuilding has already started. The results of the study are also feasible for monitoring urban growth.

  8. Reactive underwater object inspection based on artificial electric sense.

    Lebastard, Vincent; Boyer, Frédéric; Lanneau, Sylvain

    2016-01-01

    Weakly electric fish can perform complex cognitive tasks based on extracting information from blurry electric images projected from their immediate environment onto their electro-sensitive skin. In particular they can be trained to recognize the intrinsic properties of objects such as their shape, size and electric nature. They do this by means of novel perceptual strategies that exploit the relations between the physics of a self-generated electric field, their body morphology and the ability to perform specific movement termed probing motor acts (PMAs). In this article we artificially reproduce and combine these PMAs to build an autonomous control strategy that allows an artificial electric sensor to find electrically contrasted objects, and to orbit around them based on a minimum set of measurements and simple reactive feedback control laws of the probe's motion. The approach does not require any simulation models and could be implemented on an autonomous underwater vehicle (AUV) equipped with artificial electric sense. The AUV has only to satisfy certain simple geometric properties, such as bi-laterally (left/right) symmetrical electrodes and possess a reasonably high aspect (length/width) ratio. PMID:27458187

  9. Object-based attentional facilitation and inhibition are neuropsychologically dissociated.

    Smith, D T; Ball, K.; Swalwell, R.; Schenk, T.

    2016-01-01

    Salient peripheral cues produce a transient shift of attention which is superseded by a sustained inhibitory effect. Cueing part of an object produces an inhibitory cueing effect (ICE) that spreads throughout the object. In dynamic scenes the ICE stays with objects as they move. We examined object-centred attentional facilitation and inhibition in a patient with visual form agnosia. There was no evidence of object-centred attentional facilitation. In contrast, object-centred ICE was observed ...

  10. Performance Analysis of Interaction between Smart Glasses and Smart Objects Using Image-Based Object Identification

    Rumiński, Jacek; Bujnowski, Adam; Kocejko, Tomasz; Wtorek, Jerzy; Andrushevich, Alexey; Biallas, Martin; Kistler, Rolf

    2016-01-01

    We propose the use of smart glasses to collaborate with smart objects in the Internet of Things environment. Particularly we are focusing on new interaction methods and the analysis of acceptable reaction times in the process of object recognition using smart glasses. We evaluated the proposed method using user studies and experiments with three different smart glasses: Google Glass, Epson Moverio, and the developed eGlasses platform. We conclude that using the proposed method it is possible ...

  11. Strength of object representation: its key role in object-based attention for determining the competition result between Gestalt and top-down objects.

    Zhao, Jingjing; Wang, Yonghui; Liu, Donglai; Zhao, Liang; Liu, Peng

    2015-10-01

    It was found in previous studies that two types of objects (rectangles formed according to the Gestalt principle and Chinese words formed in a top-down fashion) can both induce an object-based effect. The aim of the present study was to investigate how the strength of an object representation affects the result of the competition between these two types of objects based on research carried out by Liu, Wang and Zhou [(2011) Acta Psychologica, 138(3), 397-404]. In Experiment 1, the rectangles were filled with two different colors to increase the strength of Gestalt object representation, and we found that the object effect changed significantly for the different stimulus types. Experiment 2 used Chinese words with various familiarities to manipulate the strength of the top-down object representation. As a result, the object-based effect induced by rectangles was observed only when the Chinese word familiarity was low. These results suggest that the strength of object representation determines the result of competition between different types of objects. PMID:26041271

  12. RFID and IP Based Object Identification in Ubiquitous Networking

    Nisha Vaghela; Parikshit Mahalle

    2012-01-01

    Ubiquitous networking is an integrated part of future networking technology that can provide capabilities for connecting all of objects (computers, human, PDAs, cell phones etc.) in future network. It has to meet the challenge of seamless connection for communication between human and objects in internet infrastructure. Unique object identification is very much important to make the communication between objects possible. RFID tag can be used as unique identifier to identify a physical object...

  13. Mobile object retrieval in server-based image databases

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  14. Poka Yoke system based on image analysis and object recognition

    Belu, N.; Ionescu, L. M.; Misztal, A.; Mazăre, A.

    2015-11-01

    Poka Yoke is a method of quality management which is related to prevent faults from arising during production processes. It deals with “fail-sating” or “mistake-proofing”. The Poka-yoke concept was generated and developed by Shigeo Shingo for the Toyota Production System. Poka Yoke is used in many fields, especially in monitoring production processes. In many cases, identifying faults in a production process involves a higher cost than necessary cost of disposal. Usually, poke yoke solutions are based on multiple sensors that identify some nonconformities. This means the presence of different equipment (mechanical, electronic) on production line. As a consequence, coupled with the fact that the method itself is an invasive, affecting the production process, would increase its price diagnostics. The bulky machines are the means by which a Poka Yoke system can be implemented become more sophisticated. In this paper we propose a solution for the Poka Yoke system based on image analysis and identification of faults. The solution consists of a module for image acquisition, mid-level processing and an object recognition module using associative memory (Hopfield network type). All are integrated into an embedded system with AD (Analog to Digital) converter and Zync 7000 (22 nm technology).

  15. Adaptive Multi-Objective Optimization Based on Feedback Design

    窦立谦; 宗群; 吉月辉; 曾凡琳

    2010-01-01

    The problem of adaptive multi-objective optimization(AMOO) has received extensive attention due to its practical significance.An important issue in optimizing a multi-objective system is adjusting the weighting coefficients of multiple objectives so as to keep track of various conditions.In this paper,a feedback structure for AMOO is designed.Moreover,the reinforcement learning combined with hidden biasing information is applied to online tuning weighting coefficients of objective functions.Finally,the prop...

  16. Multiple-input multiple-output synthetic aperture ladar system for wide-range swath with high azimuth resolution.

    Tang, Yu; Qin, Bao; Yan, Yun; Xing, Mengdao

    2016-02-20

    For the trade-off between the high azimuth resolution and the wide-range swath in the single-input single-output synthetic aperture ladar (SAL) system, the range swath of the SAL system is restricted to a narrow range, this paper proposes a multiple-input multiple-output (MIMO) synthetic aperture ladar system. The MIMO system adopts a low pulse repetition frequency (PRF) to avoid a range ambiguity for the wide-range swath and in azimuth adopts the multi-channel method to achieve azimuth high resolution from the unambiguous azimuth wide-spectrum signal, processed through adaptive digital beam-forming technology. Simulations and analytical results are presented. PMID:26906593

  17. Model-Based Multi-Objective Reinforcement Learning

    Wiering, Marco; Withagen, Maikel; Drugan, Madalina

    2014-01-01

    This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is used by a multi-objective dynamic programming method to compute Pareto op-timal poli

  18. OBJECT DETECTION SCHEME FOR DYNAMIC VIDEOS BASED ON LOCAL ILLUMINATION BASED TECHNIQUES

    T. SOWRYA PRATAP; V. SURENDRA BABU

    2014-01-01

    The paper presents the object detection for dynamic texture scenes using illumination based techniques. They are two types of illumination technique. First one is illumination based background subtraction (ILBS) and second one is illumination based frame difference (ILFS). Illumination frame difference is identifying the objects accurately in dynamic texture scene compare to illumination background subtraction. It has less computation complexity, less computation cost and less spa...

  19. OBJECT-BASED CHANGE DETECTION USING GEOREFERENCED UAV IMAGES

    J. Shi

    2012-09-01

    Full Text Available Unmanned aerial vehicles (UAV have been widely used to capture and down-link real-time videos/images. However, their role as a low-cost airborne platform for capturing high-resolution, geo-referenced still imagery has not been fully utilized. The images obtained from UAV are advantageous over remote sensing images as they can be obtained at a low cost and potentially no risk to human life. However, these images are distorted due to the noise generated by the rotary wings which limits the usefulness of such images. One potential application of such images is to detect changes between the images of the same area which are collected over time. Change detection is of widespread interest due to a large number of applications, including surveillance and civil infrastructure. Although UAVs can provide images with high resolution in a portable and easy way, such images only cover small parts of the entire field of interest and are often with high deformation. Until now, there is not much application of change detection for UAV images. Also the traditional pixel-based change detection method does not give satisfactory results for such images. In this paper, we have proposed a novel object-based method for change detection using UAV images which can overcome the effect of deformation and can fully utilize the high resolution capability of UAV images. The developed method can be divided into five main blocks: pre-processing, image matching, image segmentation and feature extraction, change detection and accuracy evaluation. The pre-processing step is further divided into two sub-steps: the first sub-step is to geometrically correct the bi-temporal image based on the geo-reference information (GPS/INS installed on the UAV system, and the second sub-step is the radiometric normalization using a histogram method. The image matching block uses the well-known scale-invariant feature transform (SIFT algorithm to match the same areas in the images and then

  20. Object-based classification of semi-arid wetlands

    Halabisky, Meghan; Moskal, L. Monika; Hall, Sonia A.

    2011-01-01

    Wetlands are valuable ecosystems that benefit society. However, throughout history wetlands have been converted to other land uses. For this reason, timely wetland maps are necessary for developing strategies to protect wetland habitat. The goal of this research was to develop a time-efficient, automated, low-cost method to map wetlands in a semi-arid landscape that could be scaled up for use at a county or state level, and could lay the groundwork for expanding to forested areas. Therefore, it was critical that the research project contain two components: accurate automated feature extraction and the use of low-cost imagery. For that reason, we tested the effectiveness of geographic object-based image analysis (GEOBIA) to delineate and classify wetlands using freely available true color aerial photographs provided through the National Agriculture Inventory Program. The GEOBIA method produced an overall accuracy of 89% (khat = 0.81), despite the absence of infrared spectral data. GEOBIA provides the automation that can save significant resources when scaled up while still providing sufficient spatial resolution and accuracy to be useful to state and local resource managers and policymakers.

  1. Object Recognition Algorithm Utilizing Graph Cuts Based Image Segmentation

    Zhaofeng Li

    2014-02-01

    Full Text Available This paper concentrates on designing an object recognition algorithm utilizing image segmentation. The main innovations of this paper lie in that we convert the image segmentation problem into graph cut problem, and then the graph cut results can be obtained by calculating the probability of intensity for a given pixel which is belonged to the object and the background intensity. After the graph cut process, the pixels in a same component are similar, and the pixels in different components are dissimilar. To detect the objects in the test image, the visual similarity between the segments of the testing images and the object types deduced from the training images is estimated. Finally, a series of experiments are conducted to make performance evaluation. Experimental results illustrate that compared with existing methods, the proposed scheme can effectively detect the salient objects. Particularly, we testify that, in our scheme, the precision of object recognition is proportional to image segmentation accuracy

  2. Object-based modelling for representing and processing speech corpora

    Altosaar, Toomas

    2001-01-01

    This thesis deals with modelling data existing in large speech corpora using an object-oriented paradigm which captures important linguistic structures. Information from corpora is transformed into objects and are assigned properties regarding their behaviour. These objects, called speech units, are placed onto a multi-dimensional framework and have their relationships to other units explicitly defined through the use of links. Frameworks that model temporal utterances or atemporal informatio...

  3. Model Based Fault Isolation for Object-Oriented Control Systems

    Larsson, Magnus; Klein, Inger; Lawesson, Dan; Nilsson, Ulf

    1999-01-01

    This report addresses the problem of fault propagation between software modules in a large industrial control system with anobject oriented architecture. There exists a conflict between object-oriented design goals such as encapsulation and modularity, and the possibility to suppress propagating error conditions. When an object detects an error condition, it is not desirable toperform the extensive querying of other objects that would be necessary to decide how close to the real fault the obj...

  4. KNOWLEDGE-BASED OBJECT DETECTION IN LASER SCANNING POINT CLOUDS

    F. Boochs; Karmacharya, A.; Marbs, A.

    2012-01-01

    Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human e...

  5. Object Tracking Approach based on Mean Shift Algorithm

    Xiaojing Zhang; Yajie Yue; Chenming Sha

    2013-01-01

    Object tracking has always been a hotspot in the field of computer vision, which has a range of applications in real world. The object tracking is a critical task in many vision applications. The main steps in video analysis are: detection of interesting moving objects and tracking of such objects from frame to frame. Most of tracking algorithms use pre-defined methods to process. In this paper, we introduce the Mean shift tracking algorithm, which is a kind of important no parameters estimat...

  6. Multimedia Learning Systems Based on IEEE Learning Object Metadata (LOM).

    Holzinger, Andreas; Kleinberger, Thomas; Muller, Paul

    One of the "hottest" topics in recent information systems and computer science is metadata. Learning Object Metadata (LOM) appears to be a very powerful mechanism for representing metadata, because of the great variety of LOM Objects. This is on of the reasons why the LOM standard is repeatedly cited in projects in the field of eLearning Systems.…

  7. Orbit determination of space objects based on sparse optical data

    Milani, A; Farnocchia, D; Rossi, A; Schildknecht, T; Jehn, R

    2010-01-01

    While building up a catalog of Earth orbiting objects, if the available optical observations are sparse, not deliberate follow ups of specific objects, no orbit determination is possible without previous correlation of observations obtained at different times. This correlation step is the most computationally intensive, and becomes more and more difficult as the number of objects to be discovered increases. In this paper we tested two different algorithms (and the related prototype software) recently developed to solve the correlation problem for objects in geostationary orbit (GEO), including the accurate orbit determination by full least squares solutions with all six orbital elements. Because of the presence in the GEO region of a significant subpopulation of high area to mass objects, strongly affected by non-gravitational perturbations, it was actually necessary to solve also for dynamical parameters describing these effects, that is to fit between 6 and 8 free parameters for each orbit. The validation w...

  8. Partial Evaluation for Class-Based Object-Oriented Languages

    Schultz, Ulrik Pagh

    2001-01-01

    Object-oriented programming facilitates the development of generic software, but at a significant cost in terms of performance. We apply partial evaluation to object-oriented programs, to automatically map generic software into specific implementations. In this paper we give a concise, formal des...... description of a simple partial evaluator for a minimal object-oriented language, and give directions for extending this partial evaluator to handle realistic programs.......Object-oriented programming facilitates the development of generic software, but at a significant cost in terms of performance. We apply partial evaluation to object-oriented programs, to automatically map generic software into specific implementations. In this paper we give a concise, formal...

  9. Remote sensing clustering analysis based on object-based interval modeling

    He, Hui; Liang, Tianheng; Hu, Dan; Yu, Xianchuan

    2016-09-01

    In object-based clustering, image data are segmented into objects (groups of pixels) and then clustered based on the objects' features. This method can be used to automatically classify high-resolution, remote sensing images, but requires accurate descriptions of object features. In this paper, we ascertain that interval-valued data model is appropriate for describing clustering prototype features. With this in mind, we developed an object-based interval modeling method for high-resolution, multiband, remote sensing data. We also designed an adaptive interval-valued fuzzy clustering method. We ran experiments utilizing images from the SPOT-5 satellite sensor, for the Pearl River Delta region and Beijing. The results indicate that the proposed algorithm considers both the anisotropy of the remote sensing data and the ambiguity of objects. Additionally, we present a new dissimilarity measure for interval vectors, which better separates the interval vectors generated by features of the segmentation units (objects). This approach effectively limits classification errors caused by spectral mixing between classes. Compared with the object-based unsupervised classification method proposed earlier, the proposed algorithm improves the classification accuracy without increasing computational complexity.

  10. A Biological Hierarchical Model Based Underwater Moving Object Detection

    Jie Shen

    2014-01-01

    Full Text Available Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results.

  11. A biological hierarchical model based underwater moving object detection.

    Shen, Jie; Fan, Tanghuai; Tang, Min; Zhang, Qian; Sun, Zhen; Huang, Fengchen

    2014-01-01

    Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results. PMID:25140194

  12. Exploiting database technology for object based event storage and retrieval

    This paper discusses the storage and retrieval of experimental data on relational databases. Physics experiments carried out using reactors and particle accelerators, generate huge amount of data. Also, most of the data analysis and simulation programs are developed using object oriented programming concepts. Hence, one of the most important design features of an experiment related software framework is the way object persistency is handled. We intend to discuss these issues in the light of the module developed by us for storing C++ objects in relational databases like Oracle. This module was developed under the POOL persistency framework being developed for LHC, CERN grid. (author)

  13. Coherent ladar imaging of the SEASAT satellite retro-reflector array using linear-FM chirp waveforms and pulse-compression

    Youmans, Douglas G.

    2007-04-01

    Coherent ladar imaging of satellite retro-reflector arrays is analyzed to determine some of the potential capabilities of coherent ladar systems for long range imaging. The satellites are at mega-meters of slant range and are basically angularly unresolved assuming a nominal one meter telescope used at a laser wavelength of 1.064 μm corresponding to a 281,625 GHz center-frequency. A coherent ladar may have a selectable waveform ranging from single nanosecond pulses through tone-pulses, but the imaging waveform considered here is the linear-FM chirp pulse-compression ladar waveform, which consists of a series of frequency chirps over a long period of time. The linear-FM chirp return is pulse compressed digitally using several possible approaches. Image reconstruction follows basic ISAR algorithms in forming a "range-resolved Doppler and intensity" (RRDI) image. A retro-reflector ring on the SEASAT satellite is used to illustrate the ladar's capability, although we spin the satellite faster than the true rotation rate to demonstrate waveform resolution. Several other useful algorithms as (multi-chirp) range-time-intensity (RTI matrix) range-bin summation and segmented-spectrum frequency-bin summation are also discussed. A covariance matrix calculation is applied to the RTI matrix and also to the segmented-spectrum matrix for the extraction of additional target information.

  14. Dominant object detection for autonomous vision-based surveillance

    Celik, H.

    2010-01-01

    The deployment of visual surveillance and monitoring systems has reached massive proportions. Consequently, a need to automate the processes involved in retrieving useful information from surveillance videos, such as detecting and counting objects, and interpreting their individual and joint behavio

  15. Adaptive Multi-Objective Optimization Based on Feedback Design

    DOU Liqian; ZONG Qun; JI Yuehui; ZENG Fanlin

    2010-01-01

    The problem of adaptive multi-objective optimization(AMOO)has received extensive attention due to its practical significance.An important issue in optimizing a multi-objective system is adjusting the weighting coefficients of multiple objectives so as to keep track of various conditions.In this paper,a feedback structure for AMOO is designed.Moreover,the reinforcement learning combined with hidden biasing information is applied to online tuning weighting coefficients of objective functions.Finally,the proposed approach is applied to the optimization design problem of an elevator group control system.Simulation results show that AMOO has the best average performance at up-peak traffic profile,and its average waiting time reaches 22 s.AMOO is suitable for various traffic patterns,and it is also superior to the majority of algorithms at down-peak traffic profile.

  16. A Biological Hierarchical Model Based Underwater Moving Object Detection

    Jie Shen; Tanghuai Fan; Min Tang; Qian Zhang; Zhen Sun; Fengchen Huang

    2014-01-01

    Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater appl...

  17. An Approach to Absolute Position Control based on Object Coordinate

    Nakano, Keisuke; Murakami, Toshiyuki

    This paper describes an accurate position control in object coordinate. In case the motion control of industrial robot placed in global coordinate is considered in object coordinate, it is preferable and convenient to decide its motion by the teaching of robot operator. However the teaching procedure requires much time and effort. Moreover, as often as relative position between robot and object is changed, the operator needs to do the teaching operation again. To improve the above issue, it is required to develop the strategy that decides the robot motion without the teaching operation. This paper proposes a control strategy that is not required the teaching operation and enables to realize the desired motion without affecting the relative position error between the robot and the target object in object coordinate defined by PSD (Position Sensitive Detector). In the proposed approach, the estimation algorithm of the kinetic transformation between global and object coordinates is introduced by using PSD output, and the error of coordinate transformation estimated by the proposed approach is compensated in global coordinate. The validity of the proposed method is shown by simulations and experiments.

  18. Topic Modelling for Object-Based Classification of Vhr Satellite Images Based on Multiscale Segmentations

    Shen, Li; Wu, Linmei; Li, Zhipeng

    2016-06-01

    Multiscale segmentation is a key prerequisite step for object-based classification methods. However, it is often not possible to determine a sole optimal scale for the image to be classified because in many cases different geo-objects and even an identical geo-object may appear at different scales in one image. In this paper, an object-based classification method based on mutliscale segmentation results in the framework of topic modelling is proposed to classify VHR satellite images in an entirely unsupervised fashion. In the stage of topic modelling, grayscale histogram distributions for each geo-object class and each segment are learned in an unsupervised manner from multiscale segments. In the stage of classification, each segment is allocated a geo-object class label by the similarity comparison between the grayscale histogram distributions of each segment and each geo-object class. Experimental results show that the proposed method can perform better than the traditional methods based on topic modelling.

  19. Drifting Recovery Base Concept for GEO Derelict Object Capture

    Bacon, John B.

    2009-01-01

    Over 250 objects hover within 6 m/sec of perfect geostationary orbit. Over half of these objects lie within 0.1 m/sec of the GEO velocity. Such items have 62% of the total velocity required to achieve Earth gravitational escape. A conceptual architecture is proposed to clean this orbit area of derelict objects while providing a demonstration mission for many facets of future asteroid mining operations. These near-GEO objects average nearly 2000kg each, consisting of (typically functioning) power systems, batteries, and large quantities of components and raw aerospace-grade refined materials. Such a demonstration collection system could capture, collect and remove all GEO derelict objects in an international effort to create a depot of components and of aerospace-grade raw materials--with a total mass greater than that of the International Space Station--as a space scrap depot ready for transfer to lunar or Mars orbit, using only two heavy-lift launches and 2-3 years of on-orbit operations.

  20. Fast calculation of object infrared spectral scattering based on CUDA

    Li, Liang-chao; Niu, Wu-bin; Wu, Zhen-sen

    2010-11-01

    Computational unified device architecture (CUDA) is used for paralleling the spectral scattering calculation from non-Lambertian object of sky and earth background irradiation. The bidirectional reflectance distribution function (BRDF) of five parameter model is utilized in object surface element scattering calculation. The calculation process is partitioned into many threads running in GPU kernel and each thread computes a visible surface element infrared spectral scattering intensity in a specific incident direction, all visible surface elements' intensity are weighted and averaged to obtain the object surface scattering intensity. The comparison of results of the CPU calculation and CUDA parallel calculation of a cylinder shows that the CUDA parallel calculation speed improves more than two hundred times in meeting the accuracy, with a high engineering value.

  1. MOPSO-based multi-objective TSO planning considering uncertainties

    Wang, Qi; Zhang, Chunyu; Ding, Yi;

    2014-01-01

    The concerns of sustainability and climate change have posed a significant growth of renewable energy associated with smart grid technologies. Various uncertainties are the major problems need to be handled by transmission system operator (TSO) planning. This paper mainly focuses on three uncertain...... factors, i.e. load growth, generation capacity and line faults, and aims to enhance the transmission system via the multi-objective TSO planning (MOTP) approach. The proposed MOTP approach optimizes three objectives simultaneously, namely the probabilistic available transfer capability (PATC), investment...... cost and power outage cost. A two-phase MOPSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity ofPareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the...

  2. JBOOM: Java Based Object Oriented Model of Software Configuration Management

    Bhavya Mehta

    2006-01-01

    Full Text Available Most of the present Software Configuration Management systems deal with version and configurations in the form of files and directories, the need today is to have a Software Configuration Management system that handles versions and configurations directly in terms of functions (program module. A major objective of this research is the use of Java in the Software Configuration Management systems. An object-oriented language provides both design and implementation in an integrated manner. We have proposed a model that expresses change evolution in terms of class hierarchies. As the changes evolve so does the class hierarchy, it can be further extended and existing classes can be extended.

  3. CONTENT BASED INDEXING OF MUSIC OBJECTS USING APPROXIMATE SEQUENTIAL PATTERNS

    Dr.M.Shashi

    2015-03-01

    Full Text Available The music objects are classified into Monophonic and Polyphonic. In Monophonic there is only one track which is the main melody that leads the song. In Polyphonic objects, there are several tracks that accompany the main melody. Each track is a sequence of notes played simultaneously with other tracks. But, the main melody captures the essence of the music and plays vital role in MIR. The MIR involves representation of main melody as a sequence of notes played, extraction of repeating patterns from it and matching of query sequence with frequent repeating sequential patterns constituting the music object. Repeating patterns are subsequences of notes played time and again in a main melody with possible variations in the notes to a tolerable extent. Similarly, the query sequence meant for retrieving a music object may not contain the repeating patterns of the main melody in its exact form. Hence, extraction of approximate patterns is essential for a MIR system. This paper proposes a novel method of finding approximate repeating patterns for the purpose of MIR. The effectiveness of methodology is tested and found satisfactory on real world data namely ‘Raga Surabhi’ an Indian Carnatic Music portal.

  4. Ontology-Based Annotation of Learning Object Content

    Gasevic, Dragan; Jovanovic, Jelena; Devedzic, Vladan

    2007-01-01

    The paper proposes a framework for building ontology-aware learning object (LO) content. Previously ontologies were exclusively employed for enriching LOs' metadata. Although such an approach is useful, as it improves retrieval of relevant LOs from LO repositories, it does not enable one to reuse components of a LO, nor to incorporate an explicit…

  5. Objective, Way and Method of Faculty Management Based on Ergonomics

    WANG, Hong-bin; Liu, Yu-hua

    2008-01-01

    The core problem that influences educational quality of talents in colleges and universities is the faculty management. Without advanced faculty, it is difficult to cultivate excellent talents. With regard to some problems in present faculty construction of colleges and universities, this paper puts forward the new objectives, ways and methods of…

  6. Bandwidth trading under misaligned objectives: decentralized measurement-based control

    Mandjes, M.R.H.; Ramakrishnan, M.

    2006-01-01

    This paper studies the interplay between a profit-maximizing network and a number of users competing for the finite bandwidth on each link. In our setting, the objectives of the network and the users are ‘misaligned’, in that the prices that optimize the network’s profit do not maximize the aggregat

  7. ICT Competence-Based Learning Object Recommendations for Teachers

    Sergis, Stylianos; Zervas, Panagiotis; Sampson, Demetrios G.

    2014-01-01

    Recommender Systems (RS) have been applied in the Technology enhanced Learning (TeL) field for facilitating, among others, Learning Object (LO) selection and retrieval. Most of the existing approaches, however, aim at accommodating the needs of learners and teacher-oriented RS are still an under-investigated field. Moreover, the systems that focus…

  8. Development of learning object from IP-based television programme

    Fallahkhair, Sanaz

    2013-01-01

    The TAMALLE+[1, 2] is a prototype system that supports learners in their television viewing, enhancing informal language learning via interactive television and mobile phones. In this paper we describe a learner-centred study designed to elicit criteria for selection of those language learning object whose annotation or explanation through TAMALLE+ system could best enhance the advanced learner’s understanding of popular broadcast television programmes in English. We identified two main areas...

  9. Software-Based Extraction of Objective Parameters from Music Performances

    Lerch, Alexander

    2008-01-01

    Different music performances of the same score may significantly differ from each other. It is obvious that not only the composer’s work, the score, defines the listener’s music experience, but that the music performance itself is an integral part of this experience. Music performers use the information contained in the score, but interpret, transform or add to this information.Four parameter classes can be used to describe a performance objectively: tempo and timing, loudness, timbre and pit...

  10. Application of Object-Based Industrial Controls for Cryogenics

    Casas-Cubillos, J; Gomes, P; Pezzetti, M; Sicard, Claude Henri; Varas, F J

    2002-01-01

    The first application of the CERN Unified Industrial Control system (UNICOS) has been developed for the 1.8 K refrigerator at point 1.8 in mid-2001. This paper presents the engineering methods used for application development, in order to reach the objectives of maintainability and reusability, in the context of a development done by an external consortium of engineering firms. It will also review the lessons learned during this first development and the improvements planned for the next applications.

  11. A Framework for Geographic Object-Based Image Analysis (GEOBIA) based on geographic ontology

    Gu, H. Y.; Li, H. T.; Yan, L.; Lu, X. J.

    2015-06-01

    GEOBIA (Geographic Object-Based Image Analysis) is not only a hot topic of current remote sensing and geographical research. It is believed to be a paradigm in remote sensing and GIScience. The lack of a systematic approach designed to conceptualize and formalize the class definitions makes GEOBIA a highly subjective and difficult method to reproduce. This paper aims to put forward a framework for GEOBIA based on geographic ontology theory, which could implement "Geographic entities - Image objects - Geographic objects" true reappearance. It consists of three steps, first, geographical entities are described by geographic ontology, second, semantic network model is built based on OWL(ontology web language), at last, geographical objects are classified with decision rule or other classifiers. A case study of farmland ontology was conducted for describing the framework. The strength of this framework is that it provides interpretation strategies and global framework for GEOBIA with the property of objective, overall, universal, universality, etc., which avoids inconsistencies caused by different experts' experience and provides an objective model for mage analysis.

  12. Resampling technique in the orthogonal direction for down-looking Synthetic Aperture Imaging Ladar

    Li, Guangyuan; Sun, Jianfeng; Lu, Zhiyong; Zhang, Ning; Cai, Guangyu; Sun, Zhiwei; Liu, Liren

    2015-09-01

    The implementation of down-looking Synthetic Aperture Imaging Ladar(SAIL) uses quadratic phase history reconstruction in the travel direction and linear phase modulation reconstruction in the orthogonal direction. And the linear phase modulation in the orthogonal direction is generated by the shift of two cylindrical lenses in the two polarization-orthogonal beams. Therefore, the fast-moving of two cylindrical lenses is necessary for airborne down-looking SAIL to match the aircraft flight speed and to realize the compression of the orthogonal direction, but the quick start and the quick stop of the cylindrical lenses must greatly damage the motor and make the motion trail non-uniform. To reduce the damage and get relatively well trajectory, we make the motor move like a sinusoidal curve to make it more realistic movement, and through a resampling interpolation imaging algorithm, we can transform the nonlinear phase to linear phase, and get good reconstruction results of point target and area target in laboratory. The influences on imaging quality in different sampling positions when the motor make a sinusoidal motion and the necessity of the algorithm are analyzed. At last, we perform a comparison of the results of two cases in resolution.

  13. Integration of an object knowledge base into a medical workstation.

    Timmers, T.; van Mulligen, E. M.; van den Heuvel, F.

    1991-01-01

    A simple, yet powerful, knowledge base and its development environment is described that can act as a "knowledge server", integrated into a medical workstation. In many areas, such an integration of a knowledge base with other modules and systems is required, but difficult or impossible to achieve with existing commercial development shells. Three applications of the knowledge base are described: a controlled vocabulary for the classification of Congenital Heart Diseases, an extended data mod...

  14. Model-based beam control for illumination of remote objects

    Chandler, Susan M.; Lukesh, Gordon W.; Voelz, David; Basu, Santasri; Sjogren, Jon A.

    2004-11-01

    On September 1, 2003, Nukove Scientific Consulting, together with partner New Mexico State University, began work on a Phase 1 Small Business Technology TRansfer (STTR) grant from the United States Air Force Office of Scientific Research (AFOSR). The purpose of the grant was to show the feasibility of taking Nukove's pointing estimation technique from a post-processing tool for estimation of laser system characteristics to a real-time tool usable in the field. Nukove's techniques for pointing, shape, and OCS estimation do not require an imaging sensor nor a target board, thus estimates may be made very quickly. To prove feasibility, Nukove developed an analysis tool RHINO (Real-time Histogram Interpretation of Numerical Observations) and successfully demonstrated the emulation of real-time, frame-by-frame estimation of laser system characteristics, with data streamed into the tool and the estimates displayed as they are made. The eventual objective will be to use the frame-by-frame estimates to allow for feedback to a fielded system. Closely associated with this, NMSU developed a laboratory testbed to illuminate test objects, collect the received photons, and stream the data into RHINO. The two coupled efforts clearly demonstrate the feasibility of real-time pointing control of a laser system.

  15. Video object's behavior analyzing based on motion history image and hidden markov model

    Meng Fanfeng; Qu Zhenshen; Zeng Qingshuang; Li li

    2009-01-01

    A novel method was proposed, which extracted video object's track and analyzed video object's behavior. Firstly, this method tracked the video object based on motion history image, and obtained the coordinate-based track sequence and orientation-based track sequence of the video object. Then the proposed hidden markov model (HMM) based algorithm was used to analyze the behavior of video object with the track sequence as input. Experimental results on traffic object show that this method can achieve the statistics of a mass of traffic objects' behavior efficiently, can acquire the reasonable velocity behavior curve of traffic object, and can recognize traffic object's various behaviors accurately. It provides a base for further research on video object behavior.

  16. Android Based Robot Implementation For Pick and Retain of Objects

    Ranjith Kumar Goud

    2014-10-01

    Full Text Available Now-a-days it is complicated about terrorists and their bomb attacks. Even though we found a bomb it is much more complicated to remove the bomb safely. Many lives are depending on the bomb diffusion. Our project helps in diffusion of bombs with safe distance from the bomb. Bomb diffusion is controlled with the help of wireless communication using android phones. By our project we can diffuse the bomb from safe distance and it can save more lives. We can send the few commands to the robot situated at the bomb. We can control two motors situated at the wheels for direction control and other two motors at robot hand. With these four motors we can control all the directions of the robot and at the same time we can pick any object at any direction.

  17. Semantic Map Building Based on Object Detection for Indoor Navigation

    Jinfu Yang

    2015-12-01

    Full Text Available Building a map of the environment is a prerequisite for mobile robot navigation. In this paper, we present a semantic map building method for indoor navigation of a robot using only the image sequence acquired by a monocular camera installed on the robot. First, a topological map of the environment is created, where each key frame forms a node of the map represented as visual words (VWs. The edges between two adjacent nodes are built from relative poses obtained by performing a novel pose estimation approach, called one point RANSAC camera pose estimation (ORPE. Then, taking advantage of an improved deformable part model (iDPM for object detection, the topological map is extended by assigning semantic attributes to the nodes. Extensive experimental evaluations demonstrate the effectiveness of the proposed monocular SLAM method.

  18. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    Na Li

    2016-01-01

    Full Text Available An integrate fabrication framework is presented to build heterogeneous objects (HEO using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.

  19. Automated Detection of Objects Based on Sérsic Profiles

    Cabrera, Guillermo; Miller, C.; Harrison, C.; Vera, E.; Asahi, T.

    2011-01-01

    We present the results of a new astronomical object detection and deblending algorithm when applied to Sloan Digital Sky Survey data. Our algorithm fits PSF-convolved Sérsic profiles to elliptical isophotes of source candidates. The main advantage of our method is that it minimizes the amount and complexity of real-time user input relative to many commonly used source detection algorithms. Our results are compared with 1D radial profile Sérsic fits. Our long-term goal is to use these techniques in a mixture-model environment to leverage the speed and advantages of machine learning. This approach will have a great impact when re-processing large data-sets and data-streams from next generation telescopes, such as the LSST and the E-ELT.

  20. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110

  1. Buried object location based on frequency-domain UWB measurements

    In this paper, a wideband ground penetrating radar (GPR) system and a proposed frequency-domain data analysis technique are presented for the detection of shallow buried objects such as anti-personnel landmines. The GPR system uses one transmitting antenna and an array of six monopole receiving antenna elements and operates from 1 GHz to 20 GHz. This system is able to acquire, save and analyse data in the frequency domain. A common source or wide-angle reflection and refraction technique has been used for acquiring and processing the data. This technique is effective for the rejection of ground surface clutter. By applying the C-scan scheme, metallic and plastic mine-like targets buried in dry soil will be located

  2. Flattop beam illumination for 3D imaging ladar with simple optical devices in the wide distance range

    Tsuji, Hidenobu; Nakano, Takayuki; Matsumoto, Yoshihiro; Kameyama, Shumpei

    2016-04-01

    We have developed an illumination optical system for 3D imaging ladar (laser detection and ranging) which forms flattop beam shape by transformation of the Gaussian beam in the wide distance range. The illumination is achieved by beam division and recombination using a prism and a negative powered lens. The optimum condition of the transformation by the optical system is derived. It is confirmed that the flattop distribution can be formed in the wide range of the propagation distance from 1 to 1000 m. The experimental result with the prototype is in good agreement with the calculation result.

  3. Identifying Objective EEG Based Markers of Linear Vection in Depth

    Palmisano, Stephen; Barry, Robert J.; De Blasio, Frances M.; Fogarty, Jack S.

    2016-01-01

    This proof-of-concept study investigated whether a time-frequency EEG approach could be used to examine vection (i.e., illusions of self-motion). In the main experiment, we compared the event-related spectral perturbation (ERSP) data of 10 observers during and directly after repeated exposures to two different types of optic flow display (each was 35° wide by 29° high and provided 20 s of motion stimulation). Displays consisted of either a vection display (which simulated constant velocity forward self-motion in depth) or a control display (a spatially scrambled version of the vection display). ERSP data were decomposed using time-frequency Principal Components Analysis (t–f PCA). We found an increase in 10 Hz alpha activity, peaking some 14 s after display motion commenced, which was positively associated with stronger vection ratings. This followed decreases in beta activity, and was also followed by a decrease in delta activity; these decreases in EEG amplitudes were negatively related to the intensity of the vection experience. After display motion ceased, a series of increases in the alpha band also correlated with vection intensity, and appear to reflect vection- and/or motion-aftereffects, as well as later cognitive preparation for reporting the strength of the vection experience. Overall, these findings provide support for the notion that EEG can be used to provide objective markers of changes in both vection status (i.e., “vection/no vection”) and vection strength. PMID:27559328

  4. Relational and Object-Oriented Methodology in Data Bases Systems

    Marian Pompiliu CRISTESCU

    2006-01-01

    Full Text Available Database programming languages integrate concepts of databases and programming languages to provide both implementation tools for data-intensive applications and high-level user interfaces to databases. Frequently, database programs contain a large amount of application knowledge which is hidden in the procedural code and thus difficult to maintain with changing data and user views. This paper presents a first attempt to improve the situation by supporting the integrated definition and management of data and rules based on a setoriented and predicative approach. The use of database technology for integrated fact and rule base management is shown to have some important advantages in terms of fact and rule integrity, question-answering, and explanation of results.

  5. Design of Objects Tracking System Based on ARM Embedded Platform

    XU Mei; SONG Yong-duan; LV Shao-dong; LIU Zhi-long; HUANG Cong-ying

    2014-01-01

    In recent years, according to the need of intelligent video surveillance system increasing rapidly in metropolitan cities ,a design based on S3C2440 microprocessor and embedded Linux operating system is adopted for real-time video target tracking. However, it is very challenging as embedded systems usually afford limited processing power and limited resources. Therefore, to address this problem, a real-time tracking algorithm using multi-features based on compressive sensing is proposed and implemented. The algorithm uses multiple matrix as the projection matrix of the compressive sensing and the compressed date as the multiple features to extract useful information needed by tracking process. Functions and libraries in OpenCV which were developed by Intel Corporation are utilized for building the tracking algorithms. It is tested with variant video sequences and the results show that the algorithm achieves stable tracking for the target moved of the light changed.

  6. Rule Based Selection of 2D Urban Area Map Objects

    Jagdish Lal Raheja; Umesh Kumar

    2010-01-01

    The purpose of cartographic generalization is to represent a particular situation adapted to the needs of its users, with adequate legibility of the representation and perceptional congruity with the real situation. In this paper, a simple approach is presented for the selection process of building ground plans that are represented as 2D line, square and polygon segments. It is based on simple selection process from the field of computer graphics. It is important to preserve the overall chara...

  7. Hierarchical Object-Based Visual Attention for Machine Vision

    Sun, Yaoru

    2003-01-01

    Human vision uses mechanisms of covert attention to selectively process interesting information and overt eye movements to extend this selectivity ability. Thus, visual tasks can be effectively dealt with by limited processing resources. Modelling visual attention for machine vision systems is not only critical but also challenging. In the machine vision literature there have been many conventional attention models developed but they are all space-based only and cannot perform ...

  8. Object Structure from Manipulation via Particle Filter and Robot-based Active Learning

    LI, Kun; Meng, Max Q.-H.

    2014-01-01

    To learn object models for robotic manipulation, unsupervised methods cannot provide accurate object structural information and supervised methods require a large amount of manually labeled training samples, thus interactive object segmentation is developed to automate object modeling. In this article, we formulate a novel dynamic process for interactive object segmentation, and develop a solution based on particle filter and active learning so that a robot can manipulate and learn object str...

  9. Web-based visualization of spatial objects in 3DGIS

    ZHANG LiQiang; GUO ZhiFeng; KANG ZhiZhong; ZHANG LiXin; ZHANG XingMing; YANG Ling

    2009-01-01

    Adaptive rendering large and complex spatial data has become an important research issue In a 3DGIS application.In order to transmit the data to the client efficiently,this paper proposes a node-layer data model to manage the 3D scene.Because the large spatial data and limited network bandwidth are the main bottlenecks of web-based 3DGIS,a client/server architecture including progressive transmission methods and multiresolution representations,together with the spatial index,are developed to improve the performance.All this makes the application quite scalable.Experimental results reveal that the application works appropriately.

  10. From neural-based object recognition toward microelectronic eyes

    Sheu, Bing J.; Bang, Sa Hyun

    1994-01-01

    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.

  11. Multi-objective optimization of process based on resource capability

    2007-01-01

    To improve the practicability, suitability and accuracy of the trade-off among time, cost and quality of a process, a method based on resource capability is introduced. Through analyzing the relationship between an activity and its' supporting resource, the model trades off the time, cost and quality by changing intensity of labor or changing the types of supporting resource or units of labor of resource in a certain time respectively according to the different types of its' supporting resources. Through contrasting this method with the model of unit time cost corresponding to different quality levels and inter-related linear programming model of time, cost and quality for process optimizing, it is shown that this model does not only cover the above two models but also can describe some conditions the above two models can not express. The method supports to select different function to optimize a process according to different types of its supporting resource.

  12. Mass Measurements of Isolated Objects from Space-based Microlensing

    Zhu, Wei; Gould, A; Udalski, A; Han, C; Shvartzvald, Y; Ranc, C; Jorgensen, U G; Poleski, R; Bozza, V; Beichman, C; Bryden, G; Carey, S; Gaudi, B S; Henderson, C B; Pogge, R W; Porritt, I; Wibking, B; Yee, J C; Pawlak, M; Szymanski, M K; Skowron, J; Mroz, P; Kozlowski, S; Wyrzykowski, L; Pietrukowicz, P; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Choi, J Y; Park, H; Jung, Y K; Shin, I -G; Albrow, M D; Park, B -G; Kim, S -L; Lee, C -U; Kim, D -J; Lee, Y; Friedmann, M; Kaspi, S; Maoz, D; Hundertmark, M; Street, R A; Tsapras, Y; Bramich, D M; Cassan, A; Dominik, M; Bachelet, E; Dong, Subo; Jaimes, R Figuera; Horne, K; Mao, S; Menzies, J; Schmidt, R; Snodgrass, C; Steele, I A; Wambsganss, J; Skottfelt, J; Andersen, M I; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Gu, S -H; Hinse, T C; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Peixinho, N; popovas, A; Rabus, M; Rahvar, S; Rasmussen, R T; Scarpetta, G; Southworth, J; Surdej, J; von Essen, C; Wang, Y -B; Wertz, O

    2015-01-01

    We report on the mass and distance measurements of two single-lens events from the 2015 \\emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is a $47\\pm7$ $M_{\\rm J}$ brown dwarf at $5.4\\pm1.0$ kpc, and that the lens of OGLE-2015-BLG-0763 is a $0.50\\pm0.04$ $M_\\odot$ star at $6.9\\pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses, including isolated stellar mass black holes and free floating planets, is dramatically increased once simultaneous ground- and space-based observations are conducted.

  13. Mass Measurements of Isolated Objects from Space-based Microlensing

    Zhu, Wei; Calchi Novati, S.; Gould, A.; Udalski, A.; Han, C.; Shvartzvald, Y.; Ranc, C.; Jørgensen, U. G.; Poleski, R.; Bozza, V.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Porritt, I.; Wibking, B.; Yee, J. C.; SPITZER Team; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNET Group; Friedmann, M.; Kaspi, S.; Maoz, D.; WISE Group; Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bramich, D. M.; Cassan, A.; Dominik, M.; Bachelet, E.; Dong, Subo; Figuera Jaimes, R.; Horne, K.; Mao, S.; Menzies, J.; Schmidt, R.; Snodgrass, C.; Steele, I. A.; Wambsganss, J.; RoboNeT Team; Skottfelt, J.; Andersen, M. I.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Gu, S.-H.; Hinse, T. C.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Tronsgaard, R.; Scarpetta, G.; Southworth, J.; Surdej, J.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEP Group

    2016-07-01

    We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}ȯ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted.

  14. Actin-based propulsion of spatially extended objects

    We propose a mathematical model of the actin-based propulsion of spatially extended obstacles. It starts from the properties of individual actin filaments and includes transient attachment to the obstacle, polymerization as well as cross-linking. Two particular geometries are discussed, which apply to the motion of protein-coated beads in a cell-like medium and the leading edge of a cell protrusion, respectively. The model gives rise to both steady and saltatory movement of beads and can explain the experimentally observed transitions of the dynamic regime with changing bead radius and protein surface density. Several spatiotemporal patterns are obtained with a soft obstacle under tension, including the experimentally observed spontaneous emergence of lateral traveling waves in crawling cells. Thus, we suggest a unifying mechanism for systems that are currently described by differential concepts.

  15. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking.

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the "laws of perceptual organization" proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. "Additive effect" refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The "where" and "what" pathways might have played an important role in the additive grouping effect. PMID:27199875

  16. A Knowledge-Based Approach to Describe and Adapt Learning Objects

    Bouzeghoub, Amel; Defude, Bruno; Duitama, John Freddy; Lecocq, Claire

    2006-01-01

    Our claim is that semantic metadata are required to allow a real reusing and assembling of learning objects. Our system is based on three models used to describe the domain, learners, and learning objects. The learning object model is inspired from knowledge representation proposals. A learning object can be reused directly or can be combined with…

  17. Rule Based Selection of 2D Urban Area Map Objects

    Jagdish Lal Raheja

    2010-09-01

    Full Text Available The purpose of cartographic generalization is to represent a particular situation adapted to the needs of its users, with adequate legibility of the representation and perceptional congruity with the real situation. In this paper, a simple approach is presented for the selection process of building ground plans that are represented as 2D line, square and polygon segments. It is based on simple selection process from the field of computer graphics. It is important to preserve the overall characteristics of the buildings; the lines are simplified with regard to geometric relations. These characteristics allow for an easy recognition of buildings even on small displays of mobile devices. Such equipment has become a tool for our everyday life in the form of mobile phones, personal digital assistants and GPS assisted navigation systems. Although the computing performance and network bandwidth will increase further, such devices will always be limited by the rather small display area available for communicating the spatial information. This means that an appropriate transformation and visualization of building data as presented in this paper is essential.

  18. Spectroscopic Assessment of WISE-based Young Stellar Object Selection

    Koenig, Xavier; Padgett, Deborah; DeFelippis, Daniel

    2015-01-01

    We have conducted a sensitive search down to the hydrogen burning limit for unextincted stars over $\\sim$200 square degrees around Lambda Orionis and 20 square degrees around Sigma Orionis using the methodology of Koenig & Leisawitz (2014). From WISE and 2MASS data we identify 544 and 418 candidate YSOs in the vicinity of Lambda and Sigma respectively. Based on our followup spectroscopy for some candidates and the existing literature for others, we found that $\\sim$80% of the K14-selected candidates are probable or likely members of the Orion star forming region. The yield from the photometric selection criteria shows that WISE sources with $K_S -w3 > 1.5$ mag and $K_S $ between 10--12 mag are most likely to show spectroscopic signs of youth, while WISE sources with $K_S -w3 > 4$ mag and $K_S > 12$ were often AGNs when followed up spectroscopically. The population of candidate YSOs traces known areas of active star formation, with a few new `hot spots' of activity near Lynds 1588 and 1589 and a more dispe...

  19. Attentional spreading to task-irrelevant object features: Experimental support and a 3-step model of attention for object-based selection and feature-based processing modulation

    Detlef eWegener

    2014-06-01

    Full Text Available Directing attention to a specific feature of an object has been linked to different forms of attentional modulation. Object-based attention theory founds on the finding that even task-irrelevant features at the selected object are subject to attentional modulation, while feature-based attention theory proposes a global processing benefit for the selected feature even at other objects. Most studies investigated either the one or the other form of attention, leaving open the possibility that both object- and feature-specific attentional effects do occur at the same time and may just represent two sides of a single attention system. We here investigate this issue by testing attentional spreading within and across objects, using reaction time measurements to changes of attended and unattended features on both attended and unattended objects. We asked subjects to report color and speed changes occurring on one of two overlapping random dot patterns, presented at the center of gaze. The key property of the stimulation was that only one of the features (e.g. motion direction was unique for each object, whereas the other feature (e.g. color was shared by both. The results of two experiments show that co-selection of unattended features even occurs when those features have no means for selecting the object. At the same time, they demonstrate that this processing benefit is not restricted to the selected object but spreads to the task-irrelevant one. We conceptualize these findings by a 3-step model of attention that assumes a task-dependent top-down gain, object-specific feature selection based on task- and binding characteristics, and a global feature-specific processing enhancement. The model allows for the unification of a vast amount of experimental results into a single model, and makes various experimentally testable predictions for the interaction of object- and feature-specific processes.

  20. A Growth-Cone Model for the Spread of Object-Based Attention during Contour Grouping

    Pooresmaeili, Arezoo; Roelfsema, Pieter R

    2014-01-01

    BACKGROUND: Object-based attention can group image elements of spatially extended objects into coherent representations, but its mechanisms have remained unclear. The mechanisms for object-based attention may include shape-selective neurons in higher visual cortical areas that feed back to lower are

  1. Fast object tracking based on template matching and region information fusion extraction

    Liu, Liman; Chen, Yun; Liu, Haihua

    2015-12-01

    In this paper, a fast object tracking algorithm based on template matching and region information fusion extraction is proposed. In the prediction framework, the data connection task is achieved by object template and object information extraction. And then the object is tracked accurately by using the object motion information. We handle the tracking shift by using the confidence estimation strategy. The experiments show that the proposed algorithm has robust performance.

  2. Object-based change detection for landslide monitoring based on SPOT imagery

    Hölbling, Daniel; Friedl, Barbara; Eisank, Clemens

    2014-05-01

    The steadily increasing availability of Earth observation (EO) data from a wide range of sensors facilitates the long-time monitoring of mass movements and retrospective analysis. Pixel-based approaches are most commonly used for detecting changes based on optical remote sensing data. However, single pixels are not suitable for depicting natural phenomena such as landslides in their full complexity and their transformation over time. By applying semi-automated object-based change detection limitations inherent to pixel-based methods can be overcome to a certain extent. For instance, the problem of variant spectral reflectance for the same pixel location in images from different points in time can be minimized. Therefore, atmospheric and radiometric correction of input data sets - although highly recommended - seems to be not that important for developing a straightforward change detection approach based on object-based image analysis (OBIA). The object-based change detection approach was developed for a subset of the Baichi catchment, which is located in the Shihmen Reservoir watershed in northern Taiwan. The study area is characterized by mountainous terrain with steep slopes and is regularly affected by severe landslides and debris flows. Several optical satellite images, i.e. SPOT images from different years and seasons with a spatial resolution ranging from 2.5 to 6.25 m, have been used for monitoring the past evolution of landslides and landslide affected areas. A digital elevation model (DEM) with 5 m spatial resolution was integrated in the analysis for supporting the differentiation of landslides and debris flows. The landslide changes were identified by comparing feature values of segmentation-derived image objects between two subsequent images in eCognition (Trimble) software. To increase the robustness and transferability of the approach we identified changes by using the relative difference in values of band-specific relational features, spectral

  3. Guided Creation and Update of Objects in RDF(S) Bases

    Hermann, Alice; Ferré, Sébastien; Ducassé, Mireille

    2011-01-01

    International audience Updating existing knowledge bases is crucial to take into account the information that are regularly discovered. However, this is quite tedious and in practice Semantic Web data are rarely updated by users. This paper presents UTILIS, an approach to help users create and update objects in RDF(S) bases. While creating a new object, o, UTILIS searches for similar objects, found by applying relaxation rules to the description of o, taken as a query. The resulting object...

  4. A Machine Learning based Efficient Software Reusability Prediction Model for Java Based Object Oriented Software

    Surbhi Maggo

    2014-01-01

    Full Text Available Software reuse refers to the development of new software systems with the likelihood of completely or partially using existing components or resources with or without modification. Reusability is the measure of the ease with which previously acquired concepts and objects can be used in new contexts. It is a promising strategy for improvements in software quality, productivity and maintainability as it provides for cost effective, reliable (with the consideration that prior testing and use has eliminated bugs and accelerated (reduced time to market development of the software products. In this paper we present an efficient automation model for the identification and evaluation of reusable software components to measure the reusability levels (high, medium or low of procedure oriented Java based (object oriented software systems. The presented model uses a metric framework for the functional analysis of the Object oriented software components that target essential attributes of reusability analysis also taking into consideration Maintainability Index to account for partial reuse. Further machine learning algorithm LMNN is explored to establish relationships between the functional attributes. The model works at functional level rather than at structural level. The system is implemented as a tool in Java and the performance of the automation tool developed is recorded using criteria like precision, recall, accuracy and error rate. The results gathered indicate that the model can be effectively used as an efficient, accurate, fast and economic model for the identification of procedure based reusable components from the existing inventory of software resources.

  5. A Dynamic Object Behavior Model and Implementation Based on Computational Reflection

    HE Cheng-wan; HE Fei; HE Ke-qing

    2005-01-01

    A dynamic object behavior model based on computational reflection is proposed. This model consists of function level and meta level, the meta objects in meta level manage the base objects and behaviors in function level, including dynamic binding and unbinding of base object and behavior.We implement this model with RoleJava Language, which is our self linguistic extension of the Java Language. Meta Objects are generated automatically at compile-time, this makes the reflecton mechanism transparent to programmers. Finally an example applying this model to a banking system is presented.

  6. Optical MEMS-based arrays

    Ruffin, Paul B.

    2003-07-01

    Industrial Micro Electro Mechanical Systems (MEMS) developers are rapidly bringing to demonstration inertial radio frequency, and optical MEMS devices and components. The Army has a requirement for compact, highly reliable, and inexpensive laser beam steering components for missile seekers and unmanned aerial vehicles remote sensing components to provide a fast scanning capability for pointing, acquisition, tracking, and data communication. The coupling of this requirement with recent developments in the micro-optics area, has led scientists and engineers at the Army Aviation and Missile Command (AMCOM) to consider optical MEMS-based phased arrays, which have potential applications in the commercial industry as well as in the military, as a replacement for gimbals. Laser beam steering in commercial applications such as free space communicataion, scanning display, bar-code reading, and gimbaled seekers; require relatively large monolithic micro-mirrors to accomplish the required optical resolution. The Army will benefit from phased arrays composed of relatively small micro-mirrors that can be actuated through large deflection angles with substantially reduced volume times. The AMCOM Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has initiated a research project to develop MEMS-based phased arrays for use in a small volume, inexpensive Laser Detection and Ranging (LADAR) seeker that is particularly attractive because of its ability to provide large field-of-regard and autonomous target acquisition for reconnaissance mission applications. The primary objective of the collaborative project with the Defence Advanced Research Projects Agency (DARPA) is to develop a rugged, MEMS-based phased arrays for incorporation into the 2-D scanner of a LADAR seeker. Design challenges and approach to achieving performance requirements will be discussed.

  7. Novel 3-D Object Recognition Methodology Employing a Curvature-Based Histogram

    Liang-Chia Chen

    2013-07-01

    Full Text Available In this paper, a new object recognition algorithm employing a curvature-based histogram is presented. Recognition of three-dimensional (3-D objects using range images remains one of the most challenging problems in 3-D computer vision due to its noisy and cluttered scene characteristics. The key breakthroughs for this problem mainly lie in defining unique features that distinguish the similarity among various 3-D objects. In our approach, an object detection scheme is developed to identify targets underlining an automated search in the range images using an initial process of object segmentation to subdivide all possible objects in the scenes and then applying a process of object recognition based on geometric constraints and a curvature-based histogram for object recognition. The developed method has been verified through experimental tests for its feasibility confirmation.

  8. Intra-Inter Triplet Object Interaction Mechanism in Triplet-Based Hierarchical Interconnection Network

    Shahnawaz Talpur

    2013-07-01

    Full Text Available Object oriented languages usually avoid direct message passing, due to its complicated implementation, though that is the promising way to communicate in concurrently inherited objects. With the advancement in the high performance computing system, interaction between parallel application objects onto physical cores becomes one of the significant issues, which is not fully explored yet. In object oriented programming attribute data is included in objects and their state can be changed using the methods. Objects enable massage passing to other objects interacting with each other. Comprehensive problems can be molded by object-oriented methodology, and solves difficult program running object-oriented programs.Cores communicate with each other through communicator and groups in MPI, but in our reference architecture TBHIN (Triplet Based Hierarchical Interconnection Network, the cores are already faction in Triplets. We propose IITOIM Model to improve the performance with efficient intra-inter triplet cores communication mechanism between the objects in TBHIN

  9. A Review of Computer Vision based Algorithms for accurate and efficient Object Detection

    Aneissha Chebolu

    2013-05-01

    Full Text Available In this paper two vision-based algorithms are adopted to locate and identify the objects and obstacles from the environment. In recent days, robot vision and navigation are emerging as essential services especially in hazardous environments. In this work, two vision based techniques such as color based thresholding and template matching – both correlation based similarity measure and FFT (Fast Fourier Transform based have been adopted and used for object identification and classification using the image captured in CCD camera attached to the robotic arm. Then, the robotic arm manipulator is integrated with the computer for futher manipulation of the objects based on the application.

  10. An object-oriented feature-based design system face-based detection of feature interactions

    This paper presents an object-oriented, feature-based design system which supports the integration of design and manufacture by ensuring that part descriptions fully account for any feature interactions. Manufacturing information is extracted from the feature descriptions in the form of volumes and Tool Access Directions, TADs. When features interact, both volumes and TADs are updated. This methodology has been demonstrated by developing a prototype system in which ACIS attributes are used to record feature information within the data structure of the solid model. The system implemented in the C++ programming language and embedded in a menu-driven X-windows user interface to the ACIS 3D Toolkit. (author)

  11. Proposal of a Framework for Internet Based Licensing of Learning Objects

    Santos, Osvaldo A.; Ramos, Fernando M. S.

    2004-01-01

    This paper presents a proposal of a framework whose main objective is to manage the delivery and rendering of learning objects in a digital rights controlled environment. The framework is based on a digital licensing scheme that requires each learning object to have the proper license in order to be rendered by a trusted player. A conceptual model…

  12. Attribute and topology based change detection in a constellation of previously detected objects

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  13. Spatial Object Aggregation Based on Data Structure,Local Triangulation and Hierarchical Analyzing Method

    2002-01-01

    This paper focuses on the methods and process of spatial aggregation based on semantic and geometric characteristics of spatial objects and relations among the objects with the help of spatial data structure (Formal Data Structure),the Local Constrained Delaunay Triangulations and semantic hierarchy.The adjacent relation among connected objects and unconnected objects has been studied through constrained triangle as elementary processing unit in aggregation operation.The hierarchical semantic analytical matrix is given for analyzing the similarity between objects types and between objects.Several different cases of aggregation have been presented in this paper.

  14. Logical Foundations of Object-Oriented and Frame-Based Languages

    Kifer, Michael; Lausen, Georg; Wu, James

    1990-01-01

    We propose a novel logic, called Frame Logic (abbr., F-logic), that accounts in a clean, declarative fashion for most of the structural aspects of object-oriented and frame-based languages. These features include object identity, complex objects, inheritance, polymorphic types, methods, encapsulation, and others. In a sense, F-logic stands in the same relationship to the object-oriented paradigm as classical predicate calculus stands to relational programming. The syntax of F-logic is higher-...

  15. Point pattern match-based change detection in a constellation of previously detected objects

    Paglieroni, David W.

    2016-06-07

    A method and system is provided that applies attribute- and topology-based change detection to objects that were detected on previous scans of a medium. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, detection strength, size, elongation, orientation, etc. The locations define a three-dimensional network topology forming a constellation of previously detected objects. The change detection system stores attributes of the previously detected objects in a constellation database. The change detection system detects changes by comparing the attributes and topological consistency of newly detected objects encountered during a new scan of the medium to previously detected objects in the constellation database. The change detection system may receive the attributes of the newly detected objects as the objects are detected by an object detection system in real time.

  16. A simple software environment based on objects and relations / [by] Bruce J. MacLennan.

    MacLennan, Bruce J.

    1985-01-01

    Author(s) key words: Object-oriented programming, programming environments, software engineering environments, production rules, production systems, entity-relationship approach, software prototyping, knowledge representation, logic programming, simulation languages, rule-based systems, knowledge base fifth generation languages, classification

  17. 基于Object-Z的UML对象模型的形式化%The Formalization of Object Model in UML Based on Object-Z

    杨卫东; 蔡希尧

    2000-01-01

    UML is the main visual Object-oriented modeling language currently, which is used widely and supported by most CASE tools. Comparing with traditional Object-oriented methods, LML describes its semantics and syntax more rigouly by using metamodel and Object Constrain Language. But some important concepts in UML are not specified clearly. This paper presents a formal specification for object model of UML, mainly includes the concepts of class, association, association class, aggregation, and inheritance, etc, so that the analyse, verification, refine, and consistent cheking can be applied to object model.

  18. An attitude-based reasoning strategy to enhance interaction with augmented objects

    Iglesias Alvarez, Josué; Gómez Cordero, David; Bernardos Barbolla, Ana M.; Casar Corredera, Jose Ramon

    2012-01-01

    This paper describes a mobile-based system to interact with objects in smart spaces, where the offer of resources may be extensive. The underlying idea is to use the augmentation capabilities of the mobile device to enable it as user-object mediator. In particular, the paper details how to build an attitude-based reasoning strategy that facilitates user-object interaction and resource filtering. The strategy prioritizes the available resources depending on the spatial history of the user, his...

  19. Robust Online Object Tracking Based on Feature Grouping and 2DPCA

    Ming-Xin Jiang; Jun-Xing Zhang; Min Li

    2013-01-01

    We present an online object tracking algorithm based on feature grouping and two-dimensional principal component analysis (2DPCA). Firstly, we introduce regularization into the 2DPCA reconstruction and develop an iterative algorithm to represent an object by 2DPCA bases. Secondly, the object templates are grouped into a more discriminative image and a less discriminative image by computing the variance of the pixels in multiple frames. Then, the projection matrix is learned according to the m...

  20. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  1. An object-based approach to image/video-based synthesis and processing for 3-D and multiview televisions

    Chan, SC; Ng, KT; Ho, KL; Gan, ZF; Shum, HY

    2009-01-01

    This paper proposes an object-based approach to a class of dynamic image-based representations called "plenoptic videos," where the plenoptic video sequences are segmented into image-based rendering (IBR) objects each with its image sequence, depth map, and other relevant information such as shape and alpha information. This allows desirable functionalities such as scalability of contents, error resilience, and interactivity with individual IBR objects to be supported. Moreover, the rendering...

  2. Semi-automatic classification of glaciovolcanic landforms: An object-based mapping approach based on geomorphometry

    Pedersen, G. B. M.

    2016-02-01

    A new object-oriented approach is developed to classify glaciovolcanic landforms (Procedure A) and their landform elements boundaries (Procedure B). It utilizes the principle that glaciovolcanic edifices are geomorphometrically distinct from lava shields and plains (Pedersen and Grosse, 2014), and the approach is tested on data from Reykjanes Peninsula, Iceland. The outlined procedures utilize slope and profile curvature attribute maps (20 m/pixel) and the classified results are evaluated quantitatively through error matrix maps (Procedure A) and visual inspection (Procedure B). In procedure A, the highest obtained accuracy is 94.1%, but even simple mapping procedures provide good results (> 90% accuracy). Successful classification of glaciovolcanic landform element boundaries (Procedure B) is also achieved and this technique has the potential to delineate the transition from intraglacial to subaerial volcanic activity in orthographic view. This object-oriented approach based on geomorphometry overcomes issues with vegetation cover, which has been typically problematic for classification schemes utilizing spectral data. Furthermore, it handles complex edifice outlines well and is easily incorporated into a GIS environment, where results can be edited or fused with other mapping results. The approach outlined here is designed to map glaciovolcanic edifices within the Icelandic neovolcanic zone but may also be applied to similar subaerial or submarine volcanic settings, where steep volcanic edifices are surrounded by flat plains.

  3. File-based storage of Digital Objects and constituent datastreams: XMLtapes and Internet Archive ARC files

    Liu, XM; BALAKIREVA, L; Hochstenbach, Patrick; H. Van de Sompel

    2005-01-01

    This paper introduces the write-once/read-many XMLtape/ARC storage approach for Digital Objects and their constituent datastreams. The approach combines two interconnected file-based storage mechanisms that are made accessible in a protocol-based manner. First, XML-based representations of multiple Digital Objects are concatenated into a single file named an XMLtape. An XMLtape is a valid XML file; its format definition is independent of the choice of the XML-based complex object format by wh...

  4. UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning

    J. Fernandez Galarreta

    2014-09-01

    Full Text Available Structural damage assessment is critical after disasters but remains a challenge. Many studies have explored the potential of remote sensing data, but limitations of vertical data persist. Oblique imagery has been identified as more useful, though the multi-angle imagery also adds a new dimension of complexity. This paper addresses damage assessment based on multi-perspective, overlapping, very high resolution oblique images obtained with unmanned aerial vehicles (UAVs. 3-D point-cloud assessment for the entire building is combined with detailed object-based image analysis (OBIA of façades and roofs. This research focuses not on automatic damage assessment, but on creating a methodology that supports the often ambiguous classification of intermediate damage levels, aiming at producing comprehensive per-building damage scores. We identify completely damaged structures in the 3-D point cloud, and for all other cases provide the OBIA-based damage indicators to be used as auxiliary information by damage analysts. The results demonstrate the usability of the 3-D point-cloud data to identify major damage features. Also the UAV-derived and OBIA-processed oblique images are shown to be a suitable basis for the identification of detailed damage features on façades and roofs. Finally, we also demonstrate the possibility of aggregating the multi-perspective damage information at building level.

  5. Video Image Object Tracking Algorithm based on Improved Principal Component Analysis

    Liping Wang

    2014-05-01

    Full Text Available Since the existing object tracking algorithms are very difficult to adapt the object appearance changes caused by illumination changes, large pose variations, and partial or full occlusions, an object tracking algorithm based on two-dimensional principal component analysis (2DPCA and sparse-representation is proposed in this paper. The tracking algorithm adopts 2DPCA and sparse-representation to establish object appearance model. In order to reduce dimension of object template, incremental subspace updating algorithm is introduced to online update the object template, reduce the requirement of memory space and enhance the precision of object appearance description. Experimental results show the proposed algorithm is robust for image illumination variance and object partial occlusion.

  6. Model of Recommendation System for for Indexing and Retrieving the Learning Object based on Multiagent System

    Ronaldo Lima Rocha Campos

    2012-07-01

    Full Text Available This paper proposes a multiagent system application model for indexing, retrieving and recommendation learning objects stored in different and heterogeneous repositories. The objects within these repositories are described by filled fields using different metadata standards. The searching mechanism covers several different learning object repositories and the same object can be described in these repositories by the use of different types of fields. Aiming to improve accuracy and coverage in terms of recovering a learning object and improve the signification of the results we propose an information retrieval model based on the multiagent system approach and an ontological model to describe the knowledge domain covered.

  7. Model-based recognition of 3-D objects by geometric hashing technique

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  8. A Computational Model of Visual Attention Based on Space and Object

    Shuhong Li

    2014-01-01

    Full Text Available Object-based visual attention has got more and more attention in image processing. A computational model of visual attention based on space and object is proposed in this study. Firstly spatial visual saliency of each pixel is calculated and edges of the input image are extracted. Salient edges are obtained according to the visual saliency of each edge. Secondly, a graph-based clustering process is done to get the homogeneity regions of the image. Then the most salient homogeneity regions are extracted based on their spatial visual saliency. Perceptual objects can be extracted by combining salient edges and salient regions. Attention value of each perceptual object is computed according to the area and saliency. Focus of attention is shifted among these perceptual objects in terms of the attention value. The proposed computational model was tested on lots of natural images. Experiment results indicate that our model is valid and effective.

  9. Retrieving top-k prestige-based relevant spatial web objects

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2010-01-01

    The location-aware keyword query returns ranked objects that are near a query location and that have textual descriptions that match query keywords. This query occurs inherently in many types of mobile and traditional web services and applications, e.g., Yellow Pages and Maps services. Previous...... prestige-based relevance to capture both the textual relevance of an object to a query and the effects of nearby objects. Based on this, a new type of query, the Location-aware top-k Prestige-based Text retrieval (LkPT) query, is proposed that retrieves the top-k spatial web objects ranked according to...... both prestige-based relevance and location proximity. We propose two algorithms that compute LkPT queries. Empirical studies with real-world spatial data demonstrate that LkPT queries are more effective in retrieving web objects than a previous approach that does not consider the effects of nearby...

  10. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.